code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def __lowerCamelCase (UpperCAmelCase__ : str , UpperCAmelCase__ : list[str] | None = None , UpperCAmelCase__ : dict[str, float] | None = None , UpperCAmelCase__ : bool = False , ): SCREAMING_SNAKE_CASE = cipher_alphabet or [chr(UpperCAmelCase__ ) for i in range(9_7 , 1_2_3 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) SCREAMING_SNAKE_CASE = { "a": 0.0_8497, "b": 0.0_1492, "c": 0.0_2202, "d": 0.0_4253, "e": 0.1_1162, "f": 0.0_2228, "g": 0.0_2015, "h": 0.0_6094, "i": 0.0_7546, "j": 0.0_0153, "k": 0.0_1292, "l": 0.0_4025, "m": 0.0_2406, "n": 0.0_6749, "o": 0.0_7507, "p": 0.0_1929, "q": 0.0_0095, "r": 0.0_7587, "s": 0.0_6327, "t": 0.0_9356, "u": 0.0_2758, "v": 0.0_0978, "w": 0.0_2560, "x": 0.0_0150, "y": 0.0_1994, "z": 0.0_0077, } else: # Custom frequencies dictionary SCREAMING_SNAKE_CASE = frequencies_dict if not case_sensitive: SCREAMING_SNAKE_CASE = ciphertext.lower() # Chi squared statistic values SCREAMING_SNAKE_CASE = {} # cycle through all of the shifts for shift in range(len(UpperCAmelCase__ ) ): SCREAMING_SNAKE_CASE = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet SCREAMING_SNAKE_CASE = (alphabet_letters.index(letter.lower() ) - shift) % len( UpperCAmelCase__ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter SCREAMING_SNAKE_CASE = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: SCREAMING_SNAKE_CASE = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message SCREAMING_SNAKE_CASE = decrypted_with_shift.lower().count(UpperCAmelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies SCREAMING_SNAKE_CASE = frequencies[letter] * occurrences # Complete the chi squared statistic formula SCREAMING_SNAKE_CASE = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message SCREAMING_SNAKE_CASE = decrypted_with_shift.count(UpperCAmelCase__ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies SCREAMING_SNAKE_CASE = frequencies[letter] * occurrences # Complete the chi squared statistic formula SCREAMING_SNAKE_CASE = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary SCREAMING_SNAKE_CASE = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCAmelCase__ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] SCREAMING_SNAKE_CASE = min( UpperCAmelCase__ , key=UpperCAmelCase__ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
403
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : Optional[int] = { '''vocab_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt''' ), '''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''', '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''squeezebert/squeezebert-uncased''': ( '''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json''' ), '''squeezebert/squeezebert-mnli-headless''': ( '''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json''' ), }, } _lowerCamelCase : List[str] = { '''squeezebert/squeezebert-uncased''': 5_12, '''squeezebert/squeezebert-mnli''': 5_12, '''squeezebert/squeezebert-mnli-headless''': 5_12, } _lowerCamelCase : int = { '''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True}, '''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True}, } class lowercase ( a ): lowercase__ : Optional[Any] = VOCAB_FILES_NAMES lowercase__ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : str = SqueezeBertTokenizer def __init__( self : Dict , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : List[Any]="[UNK]" , _UpperCamelCase : List[Any]="[SEP]" , _UpperCamelCase : Tuple="[PAD]" , _UpperCamelCase : int="[CLS]" , _UpperCamelCase : Tuple="[MASK]" , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[Any]=None , **_UpperCamelCase : Any , ) -> Optional[Any]: '''simple docstring''' super().__init__( _UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _UpperCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , normalizer_state.pop("type" ) ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = strip_accents SCREAMING_SNAKE_CASE = tokenize_chinese_chars SCREAMING_SNAKE_CASE = normalizer_class(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = do_lower_case def __snake_case( self : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __snake_case( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase )
403
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
248
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def _lowerCAmelCase ( UpperCamelCase_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = 2 while True: if is_prime(UpperCamelCase_ ): yield num num += 1 def _lowerCAmelCase ( UpperCamelCase_ = 200_0000 ): return sum(takewhile(lambda UpperCamelCase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
248
1
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=8 ): a__ : List[str] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 a__ : Tuple = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , A__ : MultilingualCLIP , A__ : XLMRobertaTokenizer , A__ : UNetaDConditionModel , A__ : Union[DDIMScheduler, DDPMScheduler] , A__ : VQModel , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules( text_encoder=A__ , tokenizer=A__ , unet=A__ , scheduler=A__ , movq=A__ , ) a__ : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self : int , A__ : Dict , A__ : Dict , A__ : List[Any] , A__ : int , A__ : Union[str, Any] , A__ : Tuple ) -> Tuple: '''simple docstring''' if latents is None: a__ : List[Any] = randn_tensor(A__ , generator=A__ , device=A__ , dtype=A__ ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) a__ : int = latents.to(A__ ) a__ : Any = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self : Optional[int] , A__ : List[Any] , A__ : List[str] , A__ : str , A__ : Optional[Any] , A__ : int=None , ) -> List[str]: '''simple docstring''' a__ : Dict = len(A__ ) if isinstance(A__ , A__ ) else 1 # get prompt text embeddings a__ : str = self.tokenizer( A__ , padding='''max_length''' , truncation=A__ , max_length=7_7 , return_attention_mask=A__ , add_special_tokens=A__ , return_tensors='''pt''' , ) a__ : str = text_inputs.input_ids a__ : int = self.tokenizer(A__ , padding='''longest''' , return_tensors='''pt''' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(A__ , A__ ): a__ : List[str] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) a__ : Optional[Any] = text_input_ids.to(A__ ) a__ : Dict = text_inputs.attention_mask.to(A__ ) a__ , a__ : Tuple = self.text_encoder( input_ids=A__ , attention_mask=A__ ) a__ : Optional[int] = prompt_embeds.repeat_interleave(A__ , dim=0 ) a__ : str = text_encoder_hidden_states.repeat_interleave(A__ , dim=0 ) a__ : List[str] = text_mask.repeat_interleave(A__ , dim=0 ) if do_classifier_free_guidance: a__ : List[str] if negative_prompt is None: a__ : Optional[int] = [''''''] * batch_size elif type(A__ ) is not type(A__ ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(A__ )} !=' F' {type(A__ )}.' ) elif isinstance(A__ , A__ ): a__ : str = [negative_prompt] elif batch_size != len(A__ ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(A__ )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ''' the batch size of `prompt`.''' ) else: a__ : Optional[int] = negative_prompt a__ : int = self.tokenizer( A__ , padding='''max_length''' , max_length=7_7 , truncation=A__ , return_attention_mask=A__ , add_special_tokens=A__ , return_tensors='''pt''' , ) a__ : Dict = uncond_input.input_ids.to(A__ ) a__ : List[Any] = uncond_input.attention_mask.to(A__ ) a__ , a__ : Optional[int] = self.text_encoder( input_ids=A__ , attention_mask=A__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method a__ : Optional[Any] = negative_prompt_embeds.shape[1] a__ : Union[str, Any] = negative_prompt_embeds.repeat(1 , A__ ) a__ : Dict = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A__ ) a__ : Optional[int] = uncond_text_encoder_hidden_states.shape[1] a__ : List[str] = uncond_text_encoder_hidden_states.repeat(1 , A__ , 1 ) a__ : int = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , A__ , -1 ) a__ : List[Any] = uncond_text_mask.repeat_interleave(A__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes a__ : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) a__ : str = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) a__ : Union[str, Any] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCAmelCase ( self : Tuple , A__ : Tuple=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a__ : Optional[Any] = torch.device(F'cuda:{gpu_id}' ) a__ : Optional[Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A__ , A__ ) def __lowerCAmelCase ( self : Dict , A__ : Optional[Any]=0 ) -> Any: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a__ : Tuple = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=A__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a__ : str = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: a__ , a__ : Optional[int] = cpu_offload_with_hook(A__ , A__ , prev_module_hook=A__ ) if self.safety_checker is not None: a__ , a__ : List[str] = cpu_offload_with_hook(self.safety_checker , A__ , prev_module_hook=A__ ) # We'll offload the last model manually. a__ : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self : int ) -> Any: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(A__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A__ ) def __call__( self : Dict , A__ : Union[str, List[str]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , A__ : Optional[Union[str, List[str]]] = None , A__ : int = 5_1_2 , A__ : int = 5_1_2 , A__ : int = 1_0_0 , A__ : float = 4.0 , A__ : int = 1 , A__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A__ : Optional[torch.FloatTensor] = None , A__ : Optional[str] = "pil" , A__ : bool = True , ) -> Union[str, Any]: '''simple docstring''' if isinstance(A__ , A__ ): a__ : Union[str, Any] = 1 elif isinstance(A__ , A__ ): a__ : List[str] = len(A__ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(A__ )}' ) a__ : List[str] = self._execution_device a__ : int = batch_size * num_images_per_prompt a__ : List[Any] = guidance_scale > 1.0 a__ , a__ , a__ : str = self._encode_prompt( A__ , A__ , A__ , A__ , A__ ) if isinstance(A__ , A__ ): a__ : List[Any] = torch.cat(A__ , dim=0 ) if isinstance(A__ , A__ ): a__ : List[str] = torch.cat(A__ , dim=0 ) if do_classifier_free_guidance: a__ : Any = image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Dict = negative_image_embeds.repeat_interleave(A__ , dim=0 ) a__ : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=A__ ) self.scheduler.set_timesteps(A__ , device=A__ ) a__ : Optional[Any] = self.scheduler.timesteps a__ : List[Any] = self.unet.config.in_channels a__ , a__ : Union[str, Any] = get_new_h_w(A__ , A__ , self.movq_scale_factor ) # create initial latent a__ : Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , A__ , A__ , A__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance a__ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a__ : Any = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} a__ : Dict = self.unet( sample=A__ , timestep=A__ , encoder_hidden_states=A__ , added_cond_kwargs=A__ , return_dict=A__ , )[0] if do_classifier_free_guidance: a__ , a__ : Any = noise_pred.split(latents.shape[1] , dim=1 ) a__ , a__ : List[str] = noise_pred.chunk(2 ) a__ , a__ : Tuple = variance_pred.chunk(2 ) a__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a__ : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a__ , a__ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a__ : int = self.scheduler.step( A__ , A__ , A__ , generator=A__ , ).prev_sample # post-processing a__ : Dict = self.movq.decode(A__ , force_not_quantize=A__ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: a__ : Optional[Any] = image * 0.5 + 0.5 a__ : str = image.clamp(0 , 1 ) a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a__ : List[str] = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
688
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __SCREAMING_SNAKE_CASE = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __SCREAMING_SNAKE_CASE = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __SCREAMING_SNAKE_CASE = reader.read() __SCREAMING_SNAKE_CASE = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __SCREAMING_SNAKE_CASE = UNetaDModel(**config) else: __SCREAMING_SNAKE_CASE = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __SCREAMING_SNAKE_CASE = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __SCREAMING_SNAKE_CASE = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __SCREAMING_SNAKE_CASE = config[key] del config[key] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['down_block_types']] __SCREAMING_SNAKE_CASE = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __SCREAMING_SNAKE_CASE = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __SCREAMING_SNAKE_CASE = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __SCREAMING_SNAKE_CASE = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __SCREAMING_SNAKE_CASE = param_value __SCREAMING_SNAKE_CASE = True if not has_changed: __SCREAMING_SNAKE_CASE = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
688
1
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class snake_case ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=100 , UpperCamelCase=13 , UpperCamelCase=30 , UpperCamelCase=2 , UpperCamelCase=3 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=32 , UpperCamelCase=5 , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=10 , UpperCamelCase=0.02 , UpperCamelCase=3 , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = vocab_size lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase_ = (image_size // patch_size) ** 2 lowerCamelCase_ = num_patches + 1 def snake_case ( self ): """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = FlaxBeitModel(config=snake_case_ ) lowerCamelCase_ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = FlaxBeitForMaskedImageModeling(config=snake_case_ ) lowerCamelCase_ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = FlaxBeitForImageClassification(config=snake_case_ ) lowerCamelCase_ = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = FlaxBeitForImageClassification(snake_case_ ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(snake_case_ ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() ( ( lowerCamelCase_ ) ,( lowerCamelCase_ ) ,( lowerCamelCase_ ) , ) = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class snake_case ( _a , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = FlaxBeitModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(snake_case_ ) lowerCamelCase_ = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ = self._prepare_for_class(snake_case_ , snake_case_ ) lowerCamelCase_ = model_class(snake_case_ ) @jax.jit def model_jitted(UpperCamelCase , **UpperCamelCase ): return model(pixel_values=snake_case_ , **snake_case_ ) with self.subTest("JIT Enabled" ): lowerCamelCase_ = model_jitted(**snake_case_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCamelCase_ = model_jitted(**snake_case_ ).to_tuple() self.assertEqual(len(snake_case_ ) , len(snake_case_ ) ) for jitted_output, output in zip(snake_case_ , snake_case_ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def snake_case ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase_ = model_class_name.from_pretrained("microsoft/beit-base-patch16-224" ) lowerCamelCase_ = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case_ ) def __snake_case ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @require_flax class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = FlaxBeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=snake_case_ , return_tensors="np" ).pixel_values # prepare bool_masked_pos lowerCamelCase_ = np.ones((1, 196) , dtype=snake_case_ ) # forward pass lowerCamelCase_ = model(pixel_values=snake_case_ , bool_masked_pos=snake_case_ ) lowerCamelCase_ = outputs.logits # verify the logits lowerCamelCase_ = (1, 196, 8192) self.assertEqual(logits.shape , snake_case_ ) lowerCamelCase_ = np.array( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , snake_case_ , atol=1e-2 ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=snake_case_ , return_tensors="np" ) # forward pass lowerCamelCase_ = model(**snake_case_ ) lowerCamelCase_ = outputs.logits # verify the logits lowerCamelCase_ = (1, 1000) self.assertEqual(logits.shape , snake_case_ ) lowerCamelCase_ = np.array([-1.2_385, -1.0_987, -1.0_108] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1e-4 ) ) lowerCamelCase_ = 281 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = FlaxBeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=snake_case_ , return_tensors="np" ) # forward pass lowerCamelCase_ = model(**snake_case_ ) lowerCamelCase_ = outputs.logits # verify the logits lowerCamelCase_ = (1, 2_1841) self.assertEqual(logits.shape , snake_case_ ) lowerCamelCase_ = np.array([1.6_881, -0.2_787, 0.5_901] ) self.assertTrue(np.allclose(logits[0, :3] , snake_case_ , atol=1e-4 ) ) lowerCamelCase_ = 2396 self.assertEqual(logits.argmax(-1 ).item() , snake_case_ )
720
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): return math.pow(UpperCAmelCase_ , 2 ) - a def __snake_case ( UpperCAmelCase_ : float ): return 2 * x def __snake_case ( UpperCAmelCase_ : float ): lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(UpperCAmelCase_ , 2 ) return start def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 9999 , UpperCAmelCase_ : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError("math domain error" ) lowerCamelCase_ = get_initial_point(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
445
0
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def _lowerCAmelCase ( __magic_name__ : Any ) -> Optional[int]: # getting number of pixels in the image lowercase , lowercase : List[Any] =img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__magic_name__ ): for j in range(__magic_name__ ): lowercase : str =[255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCamelCase_ = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCamelCase_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
92
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase_ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase_ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : str ) -> tuple[str, float]: lowercase : int =len([g for position, g in enumerate(__magic_name__ ) if g == main_target[position]] ) return (item, float(__magic_name__ )) def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : str ) -> tuple[str, str]: lowercase : Any =random.randint(0 , len(__magic_name__ ) - 1 ) lowercase : Tuple =parent_a[:random_slice] + parent_a[random_slice:] lowercase : List[str] =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : list[str] ) -> str: lowercase : Union[str, Any] =list(__magic_name__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowercase : Dict =random.choice(__magic_name__ ) return "".join(__magic_name__ ) def _lowerCAmelCase ( __magic_name__ : tuple[str, float] , __magic_name__ : list[tuple[str, float]] , __magic_name__ : list[str] , ) -> list[str]: lowercase : Any =[] # Generate more children proportionally to the fitness score. lowercase : Dict =int(parent_a[1] * 100 ) + 1 lowercase : List[str] =10 if child_n >= 10 else child_n for _ in range(__magic_name__ ): lowercase : List[str] =population_score[random.randint(0 , __magic_name__ )][0] lowercase , lowercase : Dict =crossover(parent_a[0] , __magic_name__ ) # Append new string to the population list. pop.append(mutate(__magic_name__ , __magic_name__ ) ) pop.append(mutate(__magic_name__ , __magic_name__ ) ) return pop def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : list[str] , __magic_name__ : bool = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowercase : List[str] =f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(__magic_name__ ) # Verify that the target contains no genes besides the ones inside genes variable. lowercase : Optional[int] =sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowercase : Dict =f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(__magic_name__ ) # Generate random starting population. lowercase : int =[] for _ in range(__magic_name__ ): population.append(''''''.join([random.choice(__magic_name__ ) for i in range(len(__magic_name__ ) )] ) ) # Just some logs to know what the algorithms is doing. lowercase , lowercase : Optional[int] =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__magic_name__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowercase : List[str] =[evaluate(__magic_name__ , __magic_name__ ) for item in population] # Check if there is a matching evolution. lowercase : int =sorted(__magic_name__ , key=lambda __magic_name__ : x[1] , reverse=__magic_name__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowercase : Any =population[: int(N_POPULATION / 3 )] population.clear() population.extend(__magic_name__ ) # Normalize population score to be between 0 and 1. lowercase : Dict =[ (item, score / len(__magic_name__ )) for item, score in population_score ] # This is selection for i in range(__magic_name__ ): population.extend(select(population_score[int(__magic_name__ )] , __magic_name__ , __magic_name__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__magic_name__ ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase_ = ( """This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!""" ) UpperCamelCase_ = list( """ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm""" """nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\""" ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
92
1
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path / "cache" __SCREAMING_SNAKE_CASE = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE = TextDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path / "cache" __SCREAMING_SNAKE_CASE = {"text": "string"} __SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE = TextDatasetReader(lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path / "cache" __SCREAMING_SNAKE_CASE = {"text": "string"} __SCREAMING_SNAKE_CASE = TextDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , split=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = text_path elif issubclass(lowerCAmelCase_ , lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = [text_path] __SCREAMING_SNAKE_CASE = tmp_path / "cache" __SCREAMING_SNAKE_CASE = {"text": "string"} __SCREAMING_SNAKE_CASE = TextDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_text_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=("train",) ): '''simple docstring''' assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for split in splits: __SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path / "cache" __SCREAMING_SNAKE_CASE = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __SCREAMING_SNAKE_CASE = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __SCREAMING_SNAKE_CASE = {"text": "string"} __SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features __SCREAMING_SNAKE_CASE = ( Features({feature: Value(lowerCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __SCREAMING_SNAKE_CASE = TextDatasetReader({"train": text_path} , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if split: __SCREAMING_SNAKE_CASE = {split: text_path} else: __SCREAMING_SNAKE_CASE = "train" __SCREAMING_SNAKE_CASE = {"train": text_path, "test": text_path} __SCREAMING_SNAKE_CASE = tmp_path / "cache" __SCREAMING_SNAKE_CASE = {"text": "string"} __SCREAMING_SNAKE_CASE = TextDatasetReader(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ).read() _check_text_datasetdict(lowerCAmelCase_ , lowerCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
553
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a__ : Dict = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" snake_case__ : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case__ : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: snake_case__ : List[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: snake_case__ : Dict = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCAmelCase_ ( self : str ) -> Tuple: __SCREAMING_SNAKE_CASE = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) __SCREAMING_SNAKE_CASE = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}] ) __SCREAMING_SNAKE_CASE = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] ) __SCREAMING_SNAKE_CASE = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) __SCREAMING_SNAKE_CASE = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}] ) # Legacy behavior __SCREAMING_SNAKE_CASE = text_classifier("This is great !" , return_all_scores=UpperCAmelCase__ ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}] ) __SCREAMING_SNAKE_CASE = text_classifier("This is great !" , return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] ) __SCREAMING_SNAKE_CASE = text_classifier(["This is great !", "Something else"] , return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) __SCREAMING_SNAKE_CASE = text_classifier(["This is great !", "Something else"] , return_all_scores=UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ] , ) @require_torch def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[int]: import torch __SCREAMING_SNAKE_CASE = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) __SCREAMING_SNAKE_CASE = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}] ) @require_tf def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) __SCREAMING_SNAKE_CASE = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.504}] ) @slow @require_torch def UpperCAmelCase_ ( self : Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE = pipeline("text-classification" ) __SCREAMING_SNAKE_CASE = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": "POSITIVE", "score": 1.0}] ) __SCREAMING_SNAKE_CASE = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) __SCREAMING_SNAKE_CASE = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": "POSITIVE", "score": 0.988}] ) @slow @require_tf def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = pipeline("text-classification" , framework="tf" ) __SCREAMING_SNAKE_CASE = text_classifier("This is great !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": "POSITIVE", "score": 1.0}] ) __SCREAMING_SNAKE_CASE = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) __SCREAMING_SNAKE_CASE = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": "POSITIVE", "score": 0.988}] ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple ) -> Dict: __SCREAMING_SNAKE_CASE = TextClassificationPipeline(model=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __SCREAMING_SNAKE_CASE = "HuggingFace is in" __SCREAMING_SNAKE_CASE = text_classifier(UpperCAmelCase__ ) self.assertEqual(nested_simplify(UpperCAmelCase__ ) , [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) __SCREAMING_SNAKE_CASE = ["HuggingFace is in ", "Paris is in France"] __SCREAMING_SNAKE_CASE = text_classifier(UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}, {"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __SCREAMING_SNAKE_CASE = text_classifier(UpperCAmelCase__ , top_k=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [[{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] * N, [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] * N] , ) __SCREAMING_SNAKE_CASE = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} __SCREAMING_SNAKE_CASE = text_classifier(UpperCAmelCase__ ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , {"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __SCREAMING_SNAKE_CASE = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(UpperCAmelCase__ ): text_classifier(UpperCAmelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __SCREAMING_SNAKE_CASE = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(UpperCAmelCase__ ) , [{"label": ANY(UpperCAmelCase__ ), "score": ANY(UpperCAmelCase__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
553
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowercase : """simple docstring""" _a = BlenderbotConfig _a = {} _a = '''gelu''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=20 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=0 , ): '''simple docstring''' UpperCamelCase__ :List[str] = parent UpperCamelCase__ :int = batch_size UpperCamelCase__ :Optional[int] = seq_length UpperCamelCase__ :Any = is_training UpperCamelCase__ :Any = use_labels UpperCamelCase__ :Dict = vocab_size UpperCamelCase__ :Optional[Any] = hidden_size UpperCamelCase__ :Tuple = num_hidden_layers UpperCamelCase__ :List[str] = num_attention_heads UpperCamelCase__ :List[Any] = intermediate_size UpperCamelCase__ :List[str] = hidden_dropout_prob UpperCamelCase__ :Optional[int] = attention_probs_dropout_prob UpperCamelCase__ :Union[str, Any] = max_position_embeddings UpperCamelCase__ :Optional[Any] = eos_token_id UpperCamelCase__ :Union[str, Any] = pad_token_id UpperCamelCase__ :Optional[Any] = bos_token_id def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase__ :str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase__ :int = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase__ :Optional[int] = prepare_blenderbot_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :Dict = TFBlenderbotModel(config=_lowerCamelCase ).get_decoder() UpperCamelCase__ :Any = inputs_dict['input_ids'] UpperCamelCase__ :Dict = input_ids[:1, :] UpperCamelCase__ :Dict = inputs_dict['attention_mask'][:1, :] UpperCamelCase__ :Optional[Any] = inputs_dict['head_mask'] UpperCamelCase__ :List[Any] = 1 # first forward pass UpperCamelCase__ :Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase__ :List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase__ :Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase__ :int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase__ :List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase__ :int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase__ :int = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase__ :Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase__ :Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase__ :str = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase__ :str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def a ( __a , __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: UpperCamelCase__ :List[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase__ :Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase__ :Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase__ :Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase__ :Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _a = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _a = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _a = ( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _a = True _a = False _a = False def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = TFBlenderbotModelTester(self ) UpperCamelCase__ :int = ConfigTester(self , config_class=_lowerCamelCase ) def lowerCAmelCase__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" _a = ['''My friends are cool but they eat too many carbs.'''] _a = '''facebook/blenderbot-400M-distill''' @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCamelCase__ :List[Any] = self.model.generate( model_inputs.input_ids , ) UpperCamelCase__ :List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
189
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[Any] = { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json' ), 'distilbert-base-uncased-finetuned-sst-2-english': ( 'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json' ), } class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict ='''distilbert''' a : List[str] ={ '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , _lowerCamelCase=3_0_5_2_2 , _lowerCamelCase=5_1_2 , _lowerCamelCase=False , _lowerCamelCase=6 , _lowerCamelCase=1_2 , _lowerCamelCase=7_6_8 , _lowerCamelCase=4 * 7_6_8 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase="gelu" , _lowerCamelCase=0.0_2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.2 , _lowerCamelCase=0 , **_lowerCamelCase , ): UpperCamelCase_: Tuple = vocab_size UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: Optional[int] = sinusoidal_pos_embds UpperCamelCase_: Union[str, Any] = n_layers UpperCamelCase_: Optional[int] = n_heads UpperCamelCase_: int = dim UpperCamelCase_: Tuple = hidden_dim UpperCamelCase_: Any = dropout UpperCamelCase_: Optional[Any] = attention_dropout UpperCamelCase_: List[str] = activation UpperCamelCase_: Optional[Any] = initializer_range UpperCamelCase_: Optional[Any] = qa_dropout UpperCamelCase_: List[str] = seq_classif_dropout super().__init__(**_lowerCamelCase , pad_token_id=_lowerCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self ): if self.task == "multiple-choice": UpperCamelCase_: Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_: List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
57
0
def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''only integers accepted as input''' ) else: A_ : int = str(abs(_UpperCAmelCase ) ) A_ : List[Any] = [list(_UpperCAmelCase ) for char in range(len(_UpperCAmelCase ) )] for index in range(len(_UpperCAmelCase ) ): num_transpositions[index].pop(_UpperCAmelCase ) return max( int(''''''.join(list(_UpperCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
719
"""simple docstring""" from collections.abc import Generator from math import sin def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if len(_UpperCAmelCase ) != 32: raise ValueError('''Input must be of length 32''' ) A_ : int = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) A_ : int = format(_UpperCAmelCase , '''08x''' )[-8:] A_ : Optional[Any] = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : int = b'''''' for char in message: bit_string += format(_UpperCAmelCase , '''08b''' ).encode('''utf-8''' ) A_ : Optional[Any] = format(len(_UpperCAmelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if len(_UpperCAmelCase ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(_UpperCAmelCase ) , 512 ): A_ : Union[str, Any] = bit_string[pos : pos + 512] A_ : Optional[int] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) A_ : str = format(_UpperCAmelCase , '''032b''' ) A_ : List[str] = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCAmelCase , 2 ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" return (a + b) % 2**32 def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Any = preprocess(_UpperCAmelCase ) A_ : Any = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states A_ : List[str] = 0x6_7_4_5_2_3_0_1 A_ : str = 0xe_f_c_d_a_b_8_9 A_ : Union[str, Any] = 0x9_8_b_a_d_c_f_e A_ : Dict = 0x1_0_3_2_5_4_7_6 A_ : int = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCAmelCase ): A_ : str = aa A_ : Tuple = ba A_ : Tuple = ca A_ : int = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f A_ : str = d ^ (b & (c ^ d)) A_ : int = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f A_ : List[Any] = c ^ (d & (b ^ c)) A_ : Optional[int] = (5 * i + 1) % 16 elif i <= 47: A_ : Optional[Any] = b ^ c ^ d A_ : List[Any] = (3 * i + 5) % 16 else: A_ : Dict = c ^ (b | not_aa(_UpperCAmelCase )) A_ : Dict = (7 * i) % 16 A_ : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 A_ : List[str] = d A_ : str = c A_ : Tuple = b A_ : Tuple = sum_aa(_UpperCAmelCase , left_rotate_aa(_UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total A_ : str = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) A_ : int = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) A_ : int = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) A_ : Optional[Any] = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) A_ : Dict = reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
361
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar SCREAMING_SNAKE_CASE : int = TypeVar("T") class UpperCamelCase ( Generic[T] ): '''simple docstring''' lowercase : deque[T] # Cache store of keys lowercase : set[T] # References of the keys in cache lowercase : int =10 # Maximum capacity of cache def __init__( self , UpperCamelCase_ ): lowercase_ :Dict = deque() lowercase_ :Optional[int] = set() if not n: lowercase_ :str = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowercase_ :Any = n def UpperCamelCase ( self , UpperCamelCase_ ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase_ :Optional[int] = self.dq_store.pop() self.key_reference.remove(UpperCamelCase_ ) else: self.dq_store.remove(UpperCamelCase_ ) self.dq_store.appendleft(UpperCamelCase_ ) self.key_reference.add(UpperCamelCase_ ) def UpperCamelCase ( self ): for k in self.dq_store: print(UpperCamelCase_ ) def __repr__( self ): return f"LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}" if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : LRUCache[str | int] = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
257
import math def UpperCamelCase ( _a ) -> bool: '''simple docstring''' lowercase_ :int = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_a ) def UpperCamelCase ( _a = 1 / 1_2_3_4_5 ) -> int: '''simple docstring''' lowercase_ :Union[str, Any] = 0 lowercase_ :List[str] = 0 lowercase_ :int = 3 while True: lowercase_ :Optional[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_a ): lowercase_ :List[Any] = int(_a ) total_partitions += 1 if check_partition_perfect(_a ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_a ) integer += 1 if __name__ == "__main__": print(f"{solution() = }")
257
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a__ : Union[str, Any] =logging.get_logger(__name__) def lowercase__ ( __lowercase : str ) -> Tuple: """simple docstring""" __UpperCamelCase = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: __UpperCamelCase = 1024 __UpperCamelCase = 4096 __UpperCamelCase = 24 __UpperCamelCase = 16 __UpperCamelCase = [5, 11, 17, 23] __UpperCamelCase = [256, 512, 1024, 1024] __UpperCamelCase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __UpperCamelCase = 768 __UpperCamelCase = [1, 1, 1, 0.5] __UpperCamelCase = [256, 512, 768, 768] __UpperCamelCase = 150 __UpperCamelCase = 16 __UpperCamelCase = (1, 384, 384) __UpperCamelCase = False __UpperCamelCase = 'project' if "ade" in checkpoint_url: __UpperCamelCase = True __UpperCamelCase = 768 __UpperCamelCase = [1, 1, 1, 0.5] __UpperCamelCase = 150 __UpperCamelCase = 16 __UpperCamelCase = 'huggingface/label-files' __UpperCamelCase = 'ade20k-id2label.json' __UpperCamelCase = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset' ) ) , 'r' ) ) __UpperCamelCase = {int(__lowercase ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} __UpperCamelCase = [1, 150, 480, 480] return config, expected_shape def lowercase__ ( __lowercase : List[str] ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def lowercase__ ( __lowercase : Tuple ) -> Dict: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __UpperCamelCase = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: __UpperCamelCase = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: __UpperCamelCase = name.replace('patch_embed' , '' ) if "pos_embed" in name: __UpperCamelCase = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: __UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: __UpperCamelCase = name.replace('proj' , 'projection' ) if "blocks" in name: __UpperCamelCase = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: __UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: __UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: __UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: __UpperCamelCase = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: __UpperCamelCase = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: __UpperCamelCase = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: __UpperCamelCase = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: __UpperCamelCase = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: __UpperCamelCase = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: __UpperCamelCase = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __UpperCamelCase = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: __UpperCamelCase = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: __UpperCamelCase = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: __UpperCamelCase = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: __UpperCamelCase = name.replace('conv1' , 'convolution1' ) if "conv2" in name: __UpperCamelCase = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: __UpperCamelCase = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: __UpperCamelCase = name.replace('pretrained' , 'dpt' ) if "bn" in name: __UpperCamelCase = name.replace('bn' , 'batch_norm' ) if "head" in name: __UpperCamelCase = name.replace('head' , 'head.head' ) if "encoder.norm" in name: __UpperCamelCase = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: __UpperCamelCase = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: __UpperCamelCase = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: __UpperCamelCase = name.replace('..' , '.' ) if "stem.conv" in name: __UpperCamelCase = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: __UpperCamelCase = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: __UpperCamelCase = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: __UpperCamelCase = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: __UpperCamelCase = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: __UpperCamelCase = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: __UpperCamelCase = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def lowercase__ ( __lowercase : Optional[Any] , __lowercase : Dict ) -> Optional[int]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCamelCase = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) __UpperCamelCase = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase = in_proj_weight[: config.hidden_size, :] __UpperCamelCase = in_proj_bias[: config.hidden_size] __UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] __UpperCamelCase = in_proj_bias[-config.hidden_size :] def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def lowercase__ ( __lowercase : Tuple , __lowercase : int , __lowercase : str , __lowercase : Optional[Any] , __lowercase : Tuple ) -> Optional[Any]: """simple docstring""" __UpperCamelCase , __UpperCamelCase = get_dpt_config(__lowercase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __UpperCamelCase = torch.load(__lowercase , map_location='cpu' ) # remove certain keys remove_ignore_keys_(__lowercase ) # rename keys for key in state_dict.copy().keys(): __UpperCamelCase = state_dict.pop(__lowercase ) __UpperCamelCase = val # read in qkv matrices read_in_q_k_v(__lowercase , __lowercase ) # load HuggingFace model __UpperCamelCase = DPTForSemanticSegmentation(__lowercase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(__lowercase ) model.load_state_dict(__lowercase ) model.eval() # Check outputs on an image __UpperCamelCase = 480 if 'ade' in checkpoint_url else 384 __UpperCamelCase = DPTImageProcessor(size=__lowercase ) __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(__lowercase , return_tensors='pt' ) # forward pass __UpperCamelCase = model(**__lowercase ).logits if 'ade' in checkpoint_url else model(**__lowercase ).predicted_depth if show_prediction: __UpperCamelCase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=__lowercase , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowercase ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": a__ : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) a__ : Tuple =parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
434
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case ( unittest.TestCase ): """simple docstring""" @property def _lowerCamelCase ( self : List[str] ): torch.manual_seed(0 ) __UpperCamelCase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.dummy_uncond_unet __UpperCamelCase = ScoreSdeVeScheduler() __UpperCamelCase = ScoreSdeVePipeline(unet=__A , scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__A ).images __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=__A , return_dict=__A )[ 0 ] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCamelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self : int ): __UpperCamelCase = 'google/ncsnpp-church-256' __UpperCamelCase = UNetaDModel.from_pretrained(__A ) __UpperCamelCase = ScoreSdeVeScheduler.from_pretrained(__A ) __UpperCamelCase = ScoreSdeVePipeline(unet=__A , scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = sde_ve(num_inference_steps=1_0 , output_type='numpy' , generator=__A ).images __UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __UpperCamelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
434
1
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __A : List[Any] = logging.getLogger() def snake_case__ ( ) ->Any: """simple docstring""" __lowercase : List[str] = argparse.ArgumentParser() parser.add_argument("-f" ) __lowercase : Optional[Any] = parser.parse_args() return args.f def snake_case__ ( _lowerCamelCase ) ->List[str]: """simple docstring""" __lowercase : List[Any] = {} __lowercase : int = os.path.join(_lowerCamelCase, "all_results.json" ) if os.path.exists(_lowerCamelCase ): with open(_lowerCamelCase, "r" ) as f: __lowercase : str = json.load(_lowerCamelCase ) else: raise ValueError(F'can\'t find {path}' ) return results def snake_case__ ( ) ->Optional[int]: """simple docstring""" __lowercase : Optional[Any] = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() __A : List[Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" @classmethod def snake_case ( cls : int ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __lowercase : Optional[Any] = tempfile.mkdtemp() __lowercase : Any = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) __lowercase : int = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def snake_case ( cls : Any ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def snake_case ( self : Optional[Any] ): __lowercase : Union[str, Any] = self.get_auto_remove_tmp_dir() __lowercase : Union[str, Any] = f'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __lowercase : List[str] = get_results(lowercase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def snake_case ( self : str ): __lowercase : Optional[Any] = self.get_auto_remove_tmp_dir() __lowercase : Optional[Any] = f'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __lowercase : Tuple = get_results(lowercase__ ) self.assertLess(result["perplexity"] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def snake_case ( self : Tuple ): __lowercase : int = self.get_auto_remove_tmp_dir() __lowercase : str = f'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __lowercase : Optional[Any] = get_results(lowercase__ ) self.assertLess(result["perplexity"] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def snake_case ( self : str ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __lowercase : int = 7 if get_gpu_count() > 1 else 2 __lowercase : List[str] = self.get_auto_remove_tmp_dir() __lowercase : Optional[Any] = f'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __lowercase : str = get_results(lowercase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def snake_case ( self : Dict ): __lowercase : Any = self.get_auto_remove_tmp_dir() __lowercase : int = f'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __lowercase : Union[str, Any] = get_results(lowercase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 2_8 ) self.assertGreaterEqual(result["eval_exact"] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def snake_case ( self : List[str] ): __lowercase : Optional[Any] = self.get_auto_remove_tmp_dir() __lowercase : List[Any] = f'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __lowercase : Union[str, Any] = get_results(lowercase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def snake_case ( self : Dict ): __lowercase : Optional[int] = self.get_auto_remove_tmp_dir() __lowercase : Optional[int] = f'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __lowercase : Any = get_results(lowercase__ ) self.assertGreaterEqual(result["eval_rouge1"] , 1_0 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def snake_case ( self : str ): __lowercase : Dict = self.get_auto_remove_tmp_dir() __lowercase : Optional[Any] = f'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __lowercase : Any = get_results(lowercase__ ) self.assertGreaterEqual(result["eval_bleu"] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "translation_no_trainer" ) ) ) @slow def snake_case ( self : Optional[int] ): __lowercase : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase__ ) __lowercase : Any = self.get_auto_remove_tmp_dir() __lowercase : List[str] = f'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) __lowercase : Dict = get_results(lowercase__ ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.1_0 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def snake_case ( self : Optional[int] ): __lowercase : List[Any] = self.get_auto_remove_tmp_dir() __lowercase : Any = f'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __lowercase : int = get_results(lowercase__ ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , "image_classification_no_trainer" ) ) )
575
"""simple docstring""" from __future__ import annotations def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, ) ->tuple: """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
575
1
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCAmelCase__ = logging.get_logger(__name__) class _a ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = 'linear' __SCREAMING_SNAKE_CASE = 'cosine' __SCREAMING_SNAKE_CASE = 'cosine_with_restarts' __SCREAMING_SNAKE_CASE = 'polynomial' __SCREAMING_SNAKE_CASE = 'constant' __SCREAMING_SNAKE_CASE = 'constant_with_warmup' __SCREAMING_SNAKE_CASE = 'piecewise_constant' def __lowerCamelCase ( __a : Optimizer , __a : int = -1 ) -> Optional[Any]: return LambdaLR(__a , lambda __a : 1 , last_epoch=__a ) def __lowerCamelCase ( __a : Optimizer , __a : int , __a : int = -1 ) -> Optional[Any]: def lr_lambda(__a : int ): if current_step < num_warmup_steps: return float(__a ) / float(max(1.0 , __a ) ) return 1.0 return LambdaLR(__a , __a , last_epoch=__a ) def __lowerCamelCase ( __a : Optimizer , __a : str , __a : int = -1 ) -> Any: _lowercase ={} _lowercase =step_rules.split("," ) for rule_str in rule_list[:-1]: _lowercase , _lowercase =rule_str.split(":" ) _lowercase =int(__a ) _lowercase =float(__a ) _lowercase =value _lowercase =float(rule_list[-1] ) def create_rules_function(__a : Union[str, Any] , __a : Tuple ): def rule_func(__a : int ) -> float: _lowercase =sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__a ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _lowercase =create_rules_function(__a , __a ) return LambdaLR(__a , __a , last_epoch=__a ) def __lowerCamelCase ( __a : Union[str, Any] , __a : int , __a : Tuple , __a : List[Any]=-1 ) -> Dict: def lr_lambda(__a : int ): if current_step < num_warmup_steps: return float(__a ) / float(max(1 , __a ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__a , __a , __a ) def __lowerCamelCase ( __a : Optimizer , __a : int , __a : int , __a : float = 0.5 , __a : int = -1 ) -> Optional[Any]: def lr_lambda(__a : Tuple ): if current_step < num_warmup_steps: return float(__a ) / float(max(1 , __a ) ) _lowercase =float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__a ) * 2.0 * progress )) ) return LambdaLR(__a , __a , __a ) def __lowerCamelCase ( __a : Optimizer , __a : int , __a : int , __a : int = 1 , __a : int = -1 ) -> Dict: def lr_lambda(__a : Tuple ): if current_step < num_warmup_steps: return float(__a ) / float(max(1 , __a ) ) _lowercase =float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__a ) * progress) % 1.0) )) ) return LambdaLR(__a , __a , __a ) def __lowerCamelCase ( __a : Any , __a : int , __a : Optional[Any] , __a : Optional[int]=1E-7 , __a : Optional[Any]=1.0 , __a : int=-1 ) -> Any: _lowercase =optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' ) def lr_lambda(__a : int ): if current_step < num_warmup_steps: return float(__a ) / float(max(1 , __a ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _lowercase =lr_init - lr_end _lowercase =num_training_steps - num_warmup_steps _lowercase =1 - (current_step - num_warmup_steps) / decay_steps _lowercase =lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__a , __a , __a ) lowerCAmelCase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __lowerCamelCase ( __a : Union[str, SchedulerType] , __a : Optimizer , __a : Optional[str] = None , __a : Optional[int] = None , __a : Optional[int] = None , __a : int = 1 , __a : float = 1.0 , __a : int = -1 , ) -> List[str]: _lowercase =SchedulerType(__a ) _lowercase =TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__a , last_epoch=__a ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__a , step_rules=__a , last_epoch=__a ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__a , num_warmup_steps=__a , last_epoch=__a ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __a , num_warmup_steps=__a , num_training_steps=__a , num_cycles=__a , last_epoch=__a , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __a , num_warmup_steps=__a , num_training_steps=__a , power=__a , last_epoch=__a , ) return schedule_func( __a , num_warmup_steps=__a , num_training_steps=__a , last_epoch=__a )
594
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCAmelCase__ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCAmelCase__ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCAmelCase__ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) lowerCAmelCase__ = train_datagen.flow_from_directory( "dataset/training_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) lowerCAmelCase__ = test_datagen.flow_from_directory( "dataset/test_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions lowerCAmelCase__ = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(6_4, 6_4) ) lowerCAmelCase__ = tf.keras.preprocessing.image.img_to_array(test_image) lowerCAmelCase__ = np.expand_dims(test_image, axis=0) lowerCAmelCase__ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCAmelCase__ = "Normal" if result[0][0] == 1: lowerCAmelCase__ = "Abnormality detected"
594
1
def _SCREAMING_SNAKE_CASE ( __snake_case ) -> int: if not isinstance(__snake_case , __snake_case ): raise ValueError("""Input must be an integer""" ) if input_num <= 0: raise ValueError("""Input must be positive""" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
108
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a: Dict = logging.get_logger(__name__) __a: Optional[int] = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''efficientnet''' def __init__( self : Dict , lowerCamelCase : int = 3 , lowerCamelCase : int = 600 , lowerCamelCase : float = 2.0 , lowerCamelCase : float = 3.1 , lowerCamelCase : int = 8 , lowerCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCamelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCamelCase : List[int] = [] , lowerCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase : float = 0.25 , lowerCamelCase : str = "swish" , lowerCamelCase : int = 2560 , lowerCamelCase : str = "mean" , lowerCamelCase : float = 0.02 , lowerCamelCase : float = 0.001 , lowerCamelCase : float = 0.99 , lowerCamelCase : float = 0.5 , lowerCamelCase : float = 0.2 , **lowerCamelCase : List[str] , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCamelCase ) _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = width_coefficient _UpperCAmelCase = depth_coefficient _UpperCAmelCase = depth_divisor _UpperCAmelCase = kernel_sizes _UpperCAmelCase = in_channels _UpperCAmelCase = out_channels _UpperCAmelCase = depthwise_padding _UpperCAmelCase = strides _UpperCAmelCase = num_block_repeats _UpperCAmelCase = expand_ratios _UpperCAmelCase = squeeze_expansion_ratio _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dim _UpperCAmelCase = pooling_type _UpperCAmelCase = initializer_range _UpperCAmelCase = batch_norm_eps _UpperCAmelCase = batch_norm_momentum _UpperCAmelCase = dropout_rate _UpperCAmelCase = drop_connect_rate _UpperCAmelCase = sum(lowerCamelCase ) * 4 class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = version.parse('''1.11''' ) @property def lowerCamelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase ( self : Dict ) -> float: """simple docstring""" return 1E-5
108
1
"""simple docstring""" def lowerCAmelCase ( UpperCamelCase_: str ) -> list[int]: '''simple docstring''' _a = [0 for i in range(len(UpperCamelCase_ ) )] # initialize interval's left pointer and right pointer _a , _a = 0, 0 for i in range(1 , len(UpperCamelCase_ ) ): # case when current index is inside the interval if i <= right_pointer: _a = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _a = min_edge while go_next(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _a , _a = i, i + z_result[i] - 1 return z_result def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: list[int] , UpperCamelCase_: str ) -> bool: '''simple docstring''' return i + z_result[i] < len(UpperCamelCase_ ) and s[z_result[i]] == s[i + z_result[i]] def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: str ) -> int: '''simple docstring''' _a = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _a = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase_ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
612
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase = """pt""" elif is_tf_available(): UpperCamelCase = """tf""" else: UpperCamelCase = """jax""" class lowercase_ (_UpperCAmelCase, unittest.TestCase ): A__ : List[str] = ByTaTokenizer A__ : List[Any] = False def lowerCamelCase__ ( self ) ->Any: '''simple docstring''' super().setUp() _a = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCamelCase__ ( self ) ->List[str]: '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def lowerCamelCase__ ( self , **a_ ) ->ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase__ ( self , a_ , a_=False , a_=2_0 , a_=5 ) ->Tuple[str, list]: '''simple docstring''' _a = [] for i in range(len(a_ ) ): try: _a = tokenizer.decode([i] , clean_up_tokenization_spaces=a_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _a = list(filter(lambda a_ : re.match(R"^[ a-zA-Z]+$" , t[1] ) , a_ ) ) _a = list(filter(lambda a_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a_ ) , a_ ) ) if max_length is not None and len(a_ ) > max_length: _a = toks[:max_length] if min_length is not None and len(a_ ) < min_length and len(a_ ) > 0: while len(a_ ) < min_length: _a = toks + toks # toks_str = [t[1] for t in toks] _a = [t[0] for t in toks] # Ensure consistency _a = tokenizer.decode(a_ , clean_up_tokenization_spaces=a_ ) if " " not in output_txt and len(a_ ) > 1: _a = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a_ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a_ ) ) if with_prefix_space: _a = " " + output_txt _a = tokenizer.encode(a_ , add_special_tokens=a_ ) return output_txt, output_ids def lowerCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' _a = self.ta_base_tokenizer _a = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) _a = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def lowerCamelCase__ ( self ) ->Tuple: '''simple docstring''' _a = self.ta_base_tokenizer _a = "Unicode €." _a = tokenizer(a_ ) _a = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded["input_ids"] , a_ ) # decoding _a = tokenizer.decode(a_ ) self.assertEqual(a_ , "Unicode €.</s>" ) _a = tokenizer("e è é ê ë" ) _a = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded["input_ids"] , a_ ) # decoding _a = tokenizer.decode(a_ ) self.assertEqual(a_ , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def lowerCamelCase__ ( self ) ->int: '''simple docstring''' _a = self.ta_base_tokenizer _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off _a = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on _a = tokenizer(a_ , padding=a_ , return_tensors=a_ ) self.assertIsInstance(a_ , a_ ) if FRAMEWORK != "jax": _a = list(batch.input_ids.numpy()[0] ) else: _a = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a_ , a_ ) self.assertEqual((2, 3_7) , batch.input_ids.shape ) self.assertEqual((2, 3_7) , batch.attention_mask.shape ) def lowerCamelCase__ ( self ) ->Dict: '''simple docstring''' _a = self.ta_base_tokenizer _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = tokenizer(a_ , padding=a_ , return_tensors=a_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , a_ ) self.assertIn("attention_mask" , a_ ) self.assertNotIn("decoder_input_ids" , a_ ) self.assertNotIn("decoder_attention_mask" , a_ ) def lowerCamelCase__ ( self ) ->List[Any]: '''simple docstring''' _a = self.ta_base_tokenizer _a = [ "Summary of the text.", "Another summary.", ] _a = tokenizer( text_target=a_ , max_length=3_2 , padding="max_length" , truncation=a_ , return_tensors=a_ ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) def lowerCamelCase__ ( self ) ->Dict: '''simple docstring''' _a = self.ta_base_tokenizer _a = ["A long paragraph for summarization. </s>"] _a = ["Summary of the text. </s>"] # fmt: off _a = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] _a = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on _a = tokenizer(a_ , text_target=a_ ) self.assertEqual(a_ , batch["input_ids"][0] ) self.assertEqual(a_ , batch["labels"][0] ) def lowerCamelCase__ ( self ) ->int: '''simple docstring''' _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _a = tempfile.mkdtemp() _a = " He is very happy, UNwant\u00E9d,running" _a = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _a = tokenizer.__class__.from_pretrained(a_ ) _a = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) shutil.rmtree(a_ ) _a = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _a = tempfile.mkdtemp() _a = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) _a = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) _a = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) _a = tokenizer.__class__.from_pretrained(a_ ) _a = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _a = tokenizer.__class__.from_pretrained(a_ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(a_ ) def lowerCamelCase__ ( self ) ->List[str]: '''simple docstring''' _a = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: _a = json.load(a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: _a = json.load(a_ ) _a = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] _a = added_tokens_extra_ids + [ "an_additional_special_token" ] _a = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(a_ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _a = tokenizer_class.from_pretrained( a_ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _a = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=a_ )] _a = tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def lowerCamelCase__ ( self ) ->List[str]: '''simple docstring''' _a = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) _a = tokenizer_class.from_pretrained(a_ ) self.assertTrue(tokenizer.decode([2_5_5] ) == "" ) def lowerCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' pass def lowerCamelCase__ ( self ) ->List[Any]: '''simple docstring''' pass def lowerCamelCase__ ( self ) ->Tuple: '''simple docstring''' pass def lowerCamelCase__ ( self ) ->List[Any]: '''simple docstring''' pass def lowerCamelCase__ ( self ) ->List[Any]: '''simple docstring''' _a = self.get_tokenizers(fast=a_ , do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _a = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] _a = tokenizer.convert_tokens_to_string(a_ ) self.assertIsInstance(a_ , a_ ) def lowerCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): _a = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] _a = 0 _a = tokenizer.convert_ids_to_tokens( a_ , skip_special_tokens=a_ ) for attr in attributes_list: setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [] ) setattr(a_ , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
612
1
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) a : Tuple = logging.getLogger(__name__) @dataclass(frozen=_UpperCamelCase ) class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None @dataclass(frozen=_UpperCamelCase ) class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if is_torch_available(): import torch from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = 42 def __init__( self : List[Any] , a_ : str , a_ : PreTrainedTokenizer , a_ : str , a_ : Optional[int] = None , a_ : List[Any]=False , a_ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = os.path.join( a_ , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case = cached_features_file + ".lock" with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) __snake_case = torch.load(a_ ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) __snake_case = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info("Training examples: %s" , len(a_ ) ) __snake_case = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info("Saving features into cached file %s" , a_ ) torch.save(self.features , a_ ) def __len__( self : Any ): """simple docstring""" return len(self.features ) def __getitem__( self : int , a_ : List[str] ): """simple docstring""" return self.features[i] def A ( self : Dict ): """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = 42 def __init__( self : Tuple , a_ : str , a_ : PreTrainedTokenizer , a_ : str , a_ : Optional[int] = 128 , a_ : List[Any]=False , a_ : bool = False , ): """simple docstring""" __snake_case = hans_processors[task]() __snake_case = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case = label_list[2], label_list[1] __snake_case = label_list __snake_case = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10_000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case = tf.data.Dataset.from_generator( a_ , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A ( self : List[str] ): """simple docstring""" return self.dataset def __len__( self : Optional[Any] ): """simple docstring""" return len(self.features ) def __getitem__( self : Tuple , a_ : Tuple ): """simple docstring""" return self.features[i] def A ( self : int ): """simple docstring""" return self.label_list class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : List[str] , a_ : int ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a_ , "heuristics_train_set.txt" ) ) , "train" ) def A ( self : List[str] , a_ : Optional[Any] ): """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(a_ , "heuristics_evaluation_set.txt" ) ) , "dev" ) def A ( self : str ): """simple docstring""" return ["contradiction", "entailment", "neutral"] def A ( self : Tuple , a_ : int , a_ : int ): """simple docstring""" __snake_case = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case = "%s-%s" % (set_type, line[0]) __snake_case = line[5] __snake_case = line[6] __snake_case = line[7][2:] if line[7].startswith("ex" ) else line[7] __snake_case = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def __UpperCAmelCase ( _UpperCAmelCase : List[InputExample] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : PreTrainedTokenizer , ) -> Optional[Any]: __snake_case = {label: i for i, label in enumerate(_UpperCAmelCase )} __snake_case = [] for ex_index, example in tqdm.tqdm(enumerate(_UpperCAmelCase ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d" % (ex_index) ) __snake_case = tokenizer( example.text_a , example.text_b , add_special_tokens=_UpperCAmelCase , max_length=_UpperCAmelCase , padding="max_length" , truncation=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , ) __snake_case = label_map[example.label] if example.label in label_map else 0 __snake_case = int(example.pairID ) features.append(InputFeatures(**_UpperCAmelCase , label=_UpperCAmelCase , pairID=_UpperCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F'''guid: {example}''' ) logger.info(F'''features: {features[i]}''' ) return features a : Optional[Any] = { '''hans''': 3, } a : str = { '''hans''': HansProcessor, }
69
'''simple docstring''' from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """SpeechT5FeatureExtractor""" __SCREAMING_SNAKE_CASE = """SpeechT5Tokenizer""" def __init__( self : List[Any] , a_ : str , a_ : str ): """simple docstring""" super().__init__(a_ , a_ ) def __call__( self : Dict , *a_ : Tuple , **a_ : List[str] ): """simple docstring""" __snake_case = kwargs.pop("audio" , a_ ) __snake_case = kwargs.pop("text" , a_ ) __snake_case = kwargs.pop("text_target" , a_ ) __snake_case = kwargs.pop("audio_target" , a_ ) __snake_case = kwargs.pop("sampling_rate" , a_ ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: __snake_case = self.feature_extractor(a_ , *a_ , sampling_rate=a_ , **a_ ) elif text is not None: __snake_case = self.tokenizer(a_ , **a_ ) else: __snake_case = None if audio_target is not None: __snake_case = self.feature_extractor(audio_target=a_ , *a_ , sampling_rate=a_ , **a_ ) __snake_case = targets["input_values"] elif text_target is not None: __snake_case = self.tokenizer(a_ , **a_ ) __snake_case = targets["input_ids"] else: __snake_case = None if inputs is None: return targets if targets is not None: __snake_case = labels __snake_case = targets.get("attention_mask" ) if decoder_attention_mask is not None: __snake_case = decoder_attention_mask return inputs def A ( self : List[str] , *a_ : str , **a_ : Dict ): """simple docstring""" __snake_case = kwargs.pop("input_values" , a_ ) __snake_case = kwargs.pop("input_ids" , a_ ) __snake_case = kwargs.pop("labels" , a_ ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: __snake_case = self.feature_extractor.pad(a_ , *a_ , **a_ ) elif input_ids is not None: __snake_case = self.tokenizer.pad(a_ , **a_ ) else: __snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(a_ , a_ ) and "input_ids" in labels[0]): __snake_case = self.tokenizer.pad(a_ , **a_ ) __snake_case = targets["input_ids"] else: __snake_case = self.feature_extractor.feature_size __snake_case = self.feature_extractor.num_mel_bins __snake_case = self.feature_extractor.pad(a_ , *a_ , **a_ ) __snake_case = feature_size_hack __snake_case = targets["input_values"] else: __snake_case = None if inputs is None: return targets if targets is not None: __snake_case = labels __snake_case = targets.get("attention_mask" ) if decoder_attention_mask is not None: __snake_case = decoder_attention_mask return inputs def A ( self : List[str] , *a_ : Any , **a_ : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def A ( self : Optional[int] , *a_ : Union[str, Any] , **a_ : str ): """simple docstring""" return self.tokenizer.decode(*a_ , **a_ )
69
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "pytorch", "script": "run_ddp.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.7, "eval_loss": 0.6}, }, { "framework": "tensorflow", "script": "run_tf_dist.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.p3.16xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.6, "eval_loss": 0.7}, }, ] ) class __a ( unittest.TestCase ): def snake_case_ ( self ): if self.framework == "pytorch": subprocess.run( F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='utf-8' , check=a__ , ) assert hasattr(self , 'env' ) def snake_case_ ( self , a__ ): _lowerCamelCase = F'{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}' # distributed data settings _lowerCamelCase = {'smdistributed': {'dataparallel': {'enabled': True}}} if self.script != 'run_ddp.py' else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=a__ , instance_count=a__ , instance_type=self.instance_type , debugger_hook_config=a__ , hyperparameters={**self.env.distributed_hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=a__ , py_version='py36' , ) def snake_case_ ( self , a__ ): TrainingJobAnalytics(a__ ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' ) @parameterized.expand([(2,)] ) def snake_case_ ( self , a__ ): # create estimator _lowerCamelCase = self.create_estimator(a__ ) # run training estimator.fit() # result dataframe _lowerCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) _lowerCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_99_99 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'{estimator.latest_training_job.name}.json' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , a__ )
222
"""simple docstring""" A_ : List[Any] =9.8_0665 def SCREAMING_SNAKE_CASE_ ( snake_case : float , snake_case : float , snake_case : float = g )-> float: if fluid_density <= 0: raise ValueError('Impossible fluid density' ) if volume < 0: raise ValueError('Impossible Object volume' ) if gravity <= 0: raise ValueError('Impossible Gravity' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
222
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=99 ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=None ,) -> Any: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : List[str] = seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Optional[Any] = use_input_mask UpperCAmelCase_ : Optional[Any] = use_token_type_ids UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Tuple = intermediate_multiple_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[Any] = attention_dropout UpperCAmelCase_ : Optional[int] = weight_tying UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : List[Any] = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : str = num_labels UpperCAmelCase_ : int = num_choices UpperCAmelCase_ : Optional[Any] = scope def a__ ( self ) -> str: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Optional[Any] = None if self.use_input_mask: UpperCAmelCase_ : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def a__ ( self ) -> int: return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_multiple_size=self.intermediate_multiple_size ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,weight_tying=self.weight_tying ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=_SCREAMING_SNAKE_CASE ,initializer_range=self.initializer_range ,) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : Dict = True return config, input_ids, input_mask, token_labels def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCAmelCase_ : int = GPTNeoXJapaneseModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase_ : Tuple = model(_SCREAMING_SNAKE_CASE ,attention_mask=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : str = True UpperCAmelCase_ : int = GPTNeoXJapaneseModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase_ : int = model(_SCREAMING_SNAKE_CASE ,attention_mask=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : List[str] = GPTNeoXJapaneseForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase_ : List[Any] = model(_SCREAMING_SNAKE_CASE ,attention_mask=_SCREAMING_SNAKE_CASE ,labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : str = GPTNeoXJapaneseForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # first forward pass UpperCAmelCase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ,attention_mask=_SCREAMING_SNAKE_CASE ,use_cache=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase_ : Dict = ids_tensor((self.batch_size, 3) ,config.vocab_size ) UpperCAmelCase_ : List[Any] = ids_tensor((self.batch_size, 3) ,vocab_size=2 ) # append to next input_ids and UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] ,dim=-1 ) UpperCAmelCase_ : Optional[Any] = torch.cat([input_mask, next_mask] ,dim=-1 ) UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ,attention_mask=_SCREAMING_SNAKE_CASE ,output_hidden_states=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = output_from_no_past["""hidden_states"""][0] UpperCAmelCase_ : Tuple = model( _SCREAMING_SNAKE_CASE ,attention_mask=_SCREAMING_SNAKE_CASE ,past_key_values=_SCREAMING_SNAKE_CASE ,output_hidden_states=_SCREAMING_SNAKE_CASE ,)["""hidden_states"""][0] # select random slice UpperCAmelCase_ : Union[str, Any] = ids_tensor((1,) ,output_from_past.shape[-1] ).item() UpperCAmelCase_ : Any = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase_ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,atol=1e-3 ) ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.prepare_config_and_inputs() UpperCAmelCase_ : str = config_and_inputs UpperCAmelCase_ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __a( _a , _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCAmelCase = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def a__ ( self ) -> str: UpperCAmelCase_ : List[str] = GPTNeoXJapaneseModelTester(self ) UpperCAmelCase_ : List[str] = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,hidden_size=37 ) def a__ ( self ) -> str: self.config_tester.run_common_tests() def a__ ( self ) -> Any: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase_ : List[str] = None self.model_tester.create_and_check_model_as_decoder(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Dict: UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_SCREAMING_SNAKE_CASE ) @slow def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[Any] = """abeja/gpt-neox-japanese-2.7b""" UpperCAmelCase_ : List[str] = ["""データサイエンティストとは、""", """100年後に必要とされる会社は、""", """フルリモートの環境で働くために必要なことは、""", """国境の長いトンネルを抜けると""", """美味しい日本食といえば、"""] UpperCAmelCase_ : Any = [ """データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。""", """100年後に必要とされる会社は、「人」が中心の会社です。""", """フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。""", """国境の長いトンネルを抜けると、そこは雪国だった。""", """美味しい日本食といえば、やっぱりお寿司ですよね。""", ] UpperCAmelCase_ : Dict = GPTNeoXJapaneseTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = GPTNeoXJapaneseForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = [] for prompt in prompts: UpperCAmelCase_ : Optional[Any] = tokenizer(_SCREAMING_SNAKE_CASE ,return_tensors='''pt''' ).input_ids UpperCAmelCase_ : Any = model.generate(_SCREAMING_SNAKE_CASE ,max_length=50 ) UpperCAmelCase_ : Dict = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ,skip_special_tokens=_SCREAMING_SNAKE_CASE ) predicted_outputs += generated_string self.assertListEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
30
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') UpperCAmelCase : Dict = logging.getLogger(__name__) @dataclass class lowerCamelCase__ : """simple docstring""" __a = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a = field( default=A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a = field( default=A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a = field( default=A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __a = field( default=A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __a = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __a = field( default=A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class lowerCamelCase__ : """simple docstring""" __a = field(default=A , metadata={"""help""": """The input training data file (a text file)."""} ) __a = field( default=A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __a = field( default=A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __a = field( default=A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __a = field( default=A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a = field( default=A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __a = field( default=A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __a = field( default=A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.train_file is not None: __UpperCAmelCase : List[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __UpperCAmelCase : List[str] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCamelCase__ : """simple docstring""" __a = 42 __a = True __a = None __a = None def __call__( self : Tuple , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : List[str] = """label""" if """label""" in features[0].keys() else """labels""" __UpperCAmelCase : Union[str, Any] = [feature.pop(UpperCamelCase ) for feature in features] __UpperCAmelCase : str = len(UpperCamelCase ) __UpperCAmelCase : Dict = len(features[0]["""input_ids"""] ) __UpperCAmelCase : int = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCamelCase )] for feature in features ] __UpperCAmelCase : str = list(chain(*UpperCamelCase ) ) __UpperCAmelCase : int = self.tokenizer.pad( UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten __UpperCAmelCase : Optional[Any] = {k: v.view(UpperCamelCase , UpperCamelCase , -1 ) for k, v in batch.items()} # Add back labels __UpperCAmelCase : int = torch.tensor(UpperCamelCase , dtype=torch.intaa ) return batch def lowerCamelCase ( ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCAmelCase : Any = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) datasets.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __UpperCAmelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __UpperCAmelCase : str = {} if data_args.train_file is not None: __UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: __UpperCAmelCase : Union[str, Any] = data_args.validation_file __UpperCAmelCase : List[Any] = data_args.train_file.split(""".""" )[-1] __UpperCAmelCase : Optional[int] = load_dataset( _UpperCamelCase , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __UpperCAmelCase : Any = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : Dict = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __UpperCAmelCase : Dict = [f'''ending{i}''' for i in range(4 )] __UpperCAmelCase : Any = """sent1""" __UpperCAmelCase : List[str] = """sent2""" if data_args.max_seq_length is None: __UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) __UpperCAmelCase : str = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __UpperCAmelCase : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_UpperCamelCase : str ): __UpperCAmelCase : List[str] = [[context] * 4 for context in examples[context_name]] __UpperCAmelCase : Union[str, Any] = examples[question_header_name] __UpperCAmelCase : int = [ [f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(_UpperCamelCase ) ] # Flatten out __UpperCAmelCase : List[str] = list(chain(*_UpperCamelCase ) ) __UpperCAmelCase : List[Any] = list(chain(*_UpperCamelCase ) ) # Tokenize __UpperCAmelCase : Optional[int] = tokenizer( _UpperCamelCase , _UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_UpperCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __UpperCAmelCase : List[Any] = raw_datasets["""train"""] if data_args.max_train_samples is not None: __UpperCAmelCase : Optional[int] = min(len(_UpperCamelCase ) , data_args.max_train_samples ) __UpperCAmelCase : Union[str, Any] = train_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): __UpperCAmelCase : List[str] = train_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __UpperCAmelCase : int = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __UpperCAmelCase : Dict = min(len(_UpperCamelCase ) , data_args.max_eval_samples ) __UpperCAmelCase : Any = eval_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): __UpperCAmelCase : Any = eval_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __UpperCAmelCase : Optional[int] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_UpperCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_UpperCamelCase : Dict ): __UpperCAmelCase ,__UpperCAmelCase : List[str] = eval_predictions __UpperCAmelCase : Optional[int] = np.argmax(_UpperCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __UpperCAmelCase : Tuple = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , compute_metrics=_UpperCamelCase , ) # Training if training_args.do_train: __UpperCAmelCase : str = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase : List[str] = last_checkpoint __UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __UpperCAmelCase : Dict = train_result.metrics __UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) __UpperCAmelCase : List[Any] = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics("""train""" , _UpperCamelCase ) trainer.save_metrics("""train""" , _UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __UpperCAmelCase : List[str] = trainer.evaluate() __UpperCAmelCase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics("""eval""" , _UpperCamelCase ) trainer.save_metrics("""eval""" , _UpperCamelCase ) __UpperCAmelCase : Tuple = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
139
0
import os import sys import unittest SCREAMING_SNAKE_CASE_:str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path SCREAMING_SNAKE_CASE_:List[Any] = os.path.join(git_repo_path, """src""", """transformers""") SCREAMING_SNAKE_CASE_:str = """ {0} = None """ SCREAMING_SNAKE_CASE_:str = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ SCREAMING_SNAKE_CASE_:List[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : str = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(lowerCamelCase__ ) A : Optional[int] = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(lowerCamelCase__, """tokenizers""" ) A : Optional[int] = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(lowerCamelCase__, """tensorflow_text""" ) A : Dict = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(lowerCamelCase__, """sentencepiece_and_tokenizers""" ) A : List[Any] = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(lowerCamelCase__, """sentencepiece_and_tensorflow_text""" ) A : List[Any] = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(lowerCamelCase__, """sentencepiece_and_tokenizers_and_vision""" ) def _lowerCAmelCase ( self ): A : Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""", lowerCamelCase__ ) self.assertIn("""tensorflow_text""", lowerCamelCase__ ) self.assertIn("""sentencepiece_and_tokenizers""", lowerCamelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""", objects["""torch"""] ) self.assertIn("""TFBertModel""", objects["""tf"""] ) self.assertIn("""FlaxBertModel""", objects["""flax"""] ) self.assertIn("""BertModel""", objects["""torch"""] ) self.assertIn("""TFBertTokenizer""", objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""", objects["""sentencepiece_and_tokenizers"""] ) def _lowerCAmelCase ( self ): A : Optional[Any] = create_dummy_object("""CONSTANT""", """'torch'""" ) self.assertEqual(lowerCamelCase__, """\nCONSTANT = None\n""" ) A : int = create_dummy_object("""function""", """'torch'""" ) self.assertEqual( lowerCamelCase__, """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) A : Union[str, Any] = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ A : Tuple = create_dummy_object("""FakeClass""", """'torch'""" ) self.assertEqual(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Optional[int] = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ A : Optional[Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""], lowerCamelCase__ )
520
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : '''simple docstring''' @staticmethod def _lowerCAmelCase ( *lowerCamelCase__, **lowerCamelCase__ ): pass def __UpperCamelCase ( _lowerCAmelCase ) -> str: """simple docstring""" A : List[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def __UpperCamelCase ( _lowerCAmelCase ) -> Dict: """simple docstring""" A : Union[str, Any] = np.array(_lowerCAmelCase ) A : str = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __lowerCamelCase : Union[str, Any] = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Union[str, Any] = MaskGenerationPipeline(model=lowerCamelCase__, image_processor=lowerCamelCase__ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""" ) def _lowerCAmelCase ( self ): pass @slow @require_torch def _lowerCAmelCase ( self ): A : Tuple = pipeline("""mask-generation""", model="""facebook/sam-vit-huge""" ) A : Dict = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""", points_per_batch=256 ) # Shortening by hashing A : Union[str, Any] = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowerCamelCase__, decimals=4 ), [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (480, 640)}, """scores""": 0.9967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (480, 640)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (480, 640)}, """scores""": 0.9909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (480, 640)}, """scores""": 0.9879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (480, 640)}, """scores""": 0.9834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (480, 640)}, """scores""": 0.9716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (480, 640)}, """scores""": 0.9612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (480, 640)}, """scores""": 0.9599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (480, 640)}, """scores""": 0.9552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (480, 640)}, """scores""": 0.9532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (480, 640)}, """scores""": 0.9516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (480, 640)}, """scores""": 0.9499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (480, 640)}, """scores""": 0.9483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (480, 640)}, """scores""": 0.9464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (480, 640)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (480, 640)}, """scores""": 0.9408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (480, 640)}, """scores""": 0.9335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (480, 640)}, """scores""": 0.9326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (480, 640)}, """scores""": 0.9262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (480, 640)}, """scores""": 0.8999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (480, 640)}, """scores""": 0.8986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (480, 640)}, """scores""": 0.8984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (480, 640)}, """scores""": 0.8873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (480, 640)}, """scores""": 0.8871} ], ) # fmt: on @require_torch @slow def _lowerCAmelCase ( self ): A : Union[str, Any] = """facebook/sam-vit-huge""" A : int = pipeline("""mask-generation""", model=lowerCamelCase__ ) A : int = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""", pred_iou_thresh=1, points_per_batch=256 ) # Shortening by hashing A : Tuple = [] for i, o in enumerate(outputs["""masks"""] ): new_outupt += [{"mask": mask_to_test_readable(lowerCamelCase__ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowerCamelCase__, decimals=4 ), [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (480, 640)}, """scores""": 1.0444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (480, 640)}, """scores""": 1.0210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (480, 640)}, """scores""": 1.0167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (480, 640)}, """scores""": 1.0132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (480, 640)}, """scores""": 1.0053}, ], )
520
1
"""simple docstring""" def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" _UpperCamelCase = 1 for i in range(1, num + 1 ): fact *= i return fact def lowerCamelCase__ ( __snake_case ) -> int: """simple docstring""" _UpperCamelCase = 0 while number > 0: _UpperCamelCase = number % 10 sum_of_digits += last_digit _UpperCamelCase = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase__ ( __snake_case = 1_00 ) -> int: """simple docstring""" _UpperCamelCase = factorial(__snake_case ) _UpperCamelCase = split_and_add(__snake_case ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
19
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[Any]=13 , UpperCamelCase : List[Any]=16 , UpperCamelCase : Tuple=7 , UpperCamelCase : Any=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : List[str]=True , UpperCamelCase : Dict=False , UpperCamelCase : str=True , UpperCamelCase : Any=2 , UpperCamelCase : Union[str, Any]=32 , UpperCamelCase : str=4 , UpperCamelCase : str=4 , UpperCamelCase : Union[str, Any]=30 , UpperCamelCase : Any=0 , UpperCamelCase : Union[str, Any]=1 , UpperCamelCase : int=2 , UpperCamelCase : int=None , ): """simple docstring""" _lowercase : Tuple = parent _lowercase : Optional[Any] = batch_size _lowercase : Any = decoder_seq_length # For common tests _lowercase : Union[str, Any] = self.decoder_seq_length _lowercase : str = is_training _lowercase : int = use_attention_mask _lowercase : Any = use_labels _lowercase : List[str] = vocab_size _lowercase : int = d_model _lowercase : Optional[int] = d_model _lowercase : Optional[int] = decoder_layers _lowercase : str = decoder_layers _lowercase : Dict = decoder_ffn_dim _lowercase : Union[str, Any] = decoder_attention_heads _lowercase : Optional[Any] = decoder_attention_heads _lowercase : int = eos_token_id _lowercase : Optional[Any] = bos_token_id _lowercase : Any = pad_token_id _lowercase : List[str] = decoder_start_token_id _lowercase : str = use_cache _lowercase : str = max_position_embeddings _lowercase : Union[str, Any] = None _lowercase : int = decoder_seq_length _lowercase : List[Any] = 2 _lowercase : str = 1 def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowercase : Optional[Any] = None if self.use_attention_mask: _lowercase : str = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _lowercase : int = None if self.use_labels: _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _lowercase : List[str] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowerCAmelCase_ ( self : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] , UpperCamelCase : List[str] , UpperCamelCase : int , ): """simple docstring""" _lowercase : List[str] = True _lowercase : int = TrOCRDecoder(config=UpperCamelCase ).to(UpperCamelCase ).eval() _lowercase : List[Any] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _lowercase : List[str] = model(UpperCamelCase , use_cache=UpperCamelCase ) _lowercase : Optional[Any] = model(UpperCamelCase ) _lowercase : Tuple = model(UpperCamelCase , use_cache=UpperCamelCase ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) ) self.parent.assertTrue(len(UpperCamelCase ) == len(UpperCamelCase ) + 1 ) _lowercase : int = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids _lowercase : Any = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _lowercase : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowercase : str = model(UpperCamelCase )['''last_hidden_state'''] _lowercase : str = model(UpperCamelCase , past_key_values=UpperCamelCase )['''last_hidden_state'''] # select random slice _lowercase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowercase : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _lowercase : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCamelCase , UpperCamelCase , atol=1E-3 ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _lowercase : Tuple = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = config_and_inputs _lowercase : str = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , A_ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCAmelCase_ = (TrOCRForCausalLM,) if is_torch_available() else () UpperCAmelCase_ = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} UpperCAmelCase_ = True UpperCAmelCase_ = False def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" _lowercase : int = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase ) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Dict ): """simple docstring""" _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" pass
322
0
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __lowercase = TypeVar('''T''') def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): return (position - 1) // 2 def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): return (2 * position) + 1 def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): return (2 * position) + 2 class _snake_case ( Generic[T] ): """simple docstring""" def __init__( self : str ): lowerCAmelCase_ : list[tuple[T, int]] =[] lowerCAmelCase_ : dict[T, int] ={} lowerCAmelCase_ : int =0 def __len__( self : Dict ): return self.elements def __repr__( self : str ): return str(self.heap ) def __A ( self : Union[str, Any] ): # Check if the priority queue is empty return self.elements == 0 def __A ( self : Union[str, Any] , UpperCamelCase_ : T , UpperCamelCase_ : int ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) lowerCAmelCase_ : Optional[int] =self.elements self.elements += 1 self._bubble_up(UpperCamelCase_ ) def __A ( self : Optional[Any] ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowerCAmelCase_ , lowerCAmelCase_ : Any =self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCAmelCase_ , lowerCAmelCase_ : Dict =self.heap[0] self._bubble_down(UpperCamelCase_ ) return elem def __A ( self : List[str] , UpperCamelCase_ : T , UpperCamelCase_ : int ): # Update the weight of the given key lowerCAmelCase_ : Optional[Any] =self.position_map[elem] lowerCAmelCase_ : Optional[int] =(elem, weight) if position > 0: lowerCAmelCase_ : str =get_parent_position(UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] =self.heap[parent_position] if parent_weight > weight: self._bubble_up(UpperCamelCase_ ) else: self._bubble_down(UpperCamelCase_ ) else: self._bubble_down(UpperCamelCase_ ) def __A ( self : Optional[Any] , UpperCamelCase_ : T ): # Place a node at the proper position (upward movement) [to be used internally # only] lowerCAmelCase_ : Dict =self.position_map[elem] if curr_pos == 0: return None lowerCAmelCase_ : List[Any] =get_parent_position(UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Dict =self.heap[curr_pos] lowerCAmelCase_ , lowerCAmelCase_ : Tuple =self.heap[parent_position] if parent_weight > weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_up(UpperCamelCase_ ) return None def __A ( self : int , UpperCamelCase_ : T ): # Place a node at the proper position (downward movement) [to be used # internally only] lowerCAmelCase_ : Optional[int] =self.position_map[elem] lowerCAmelCase_ , lowerCAmelCase_ : str =self.heap[curr_pos] lowerCAmelCase_ : Tuple =get_child_left_position(UpperCamelCase_ ) lowerCAmelCase_ : Optional[int] =get_child_right_position(UpperCamelCase_ ) if child_left_position < self.elements and child_right_position < self.elements: lowerCAmelCase_ , lowerCAmelCase_ : str =self.heap[child_left_position] lowerCAmelCase_ , lowerCAmelCase_ : int =self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) if child_left_position < self.elements: lowerCAmelCase_ , lowerCAmelCase_ : str =self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) else: return None if child_right_position < self.elements: lowerCAmelCase_ , lowerCAmelCase_ : int =self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) return None def __A ( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : int ): # Swap the nodes at the given positions lowerCAmelCase_ : Union[str, Any] =self.heap[nodea_pos][0] lowerCAmelCase_ : Dict =self.heap[nodea_pos][0] lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] =( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCAmelCase_ : Optional[int] =nodea_pos lowerCAmelCase_ : Tuple =nodea_pos class _snake_case ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ): lowerCAmelCase_ : dict[T, dict[T, int]] ={} lowerCAmelCase_ : int =0 def __repr__( self : Any ): return str(self.connections ) def __len__( self : str ): return self.nodes def __A ( self : Optional[Any] , UpperCamelCase_ : T ): # Add a node in the graph if it is not in the graph if node not in self.connections: lowerCAmelCase_ : Union[str, Any] ={} self.nodes += 1 def __A ( self : List[Any] , UpperCamelCase_ : T , UpperCamelCase_ : T , UpperCamelCase_ : int ): # Add an edge between 2 nodes in the graph self.add_node(UpperCamelCase_ ) self.add_node(UpperCamelCase_ ) lowerCAmelCase_ : Any =weight lowerCAmelCase_ : str =weight def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , ): lowerCAmelCase_ : dict[T, int] ={node: maxsize for node in graph.connections} lowerCAmelCase_ : dict[T, T | None] ={node: None for node in graph.connections} lowerCAmelCase_ : MinPriorityQueue[T] =MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if priority_queue.is_empty(): return dist, parent # initialization lowerCAmelCase_ : List[str] =priority_queue.extract_min() lowerCAmelCase_ : str =0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase_ : Dict =dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) lowerCAmelCase_ : Any =node # running prim's algorithm while not priority_queue.is_empty(): lowerCAmelCase_ : str =priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase_ : List[Any] =dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] ) lowerCAmelCase_ : List[str] =node return dist, parent
305
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __lowercase = logging.getLogger(__name__) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : str , UpperCamelCase_ : List[Any]=-1 ): # in NER datasets, the last column is usually reserved for NER label lowerCAmelCase_ : Tuple =label_idx def __A ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[Split, str] ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase_ : Any =mode.value lowerCAmelCase_ : List[str] =os.path.join(UpperCamelCase_ , F'{mode}.txt' ) lowerCAmelCase_ : Tuple =1 lowerCAmelCase_ : Dict =[] with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: lowerCAmelCase_ : Optional[Any] =[] lowerCAmelCase_ : Optional[Any] =[] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=UpperCamelCase_ , labels=UpperCamelCase_ ) ) guid_index += 1 lowerCAmelCase_ : Dict =[] lowerCAmelCase_ : int =[] else: lowerCAmelCase_ : Tuple =line.split(''' ''' ) words.append(splits[0] ) if len(UpperCamelCase_ ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=UpperCamelCase_ , labels=UpperCamelCase_ ) ) return examples def __A ( self : List[str] , UpperCamelCase_ : TextIO , UpperCamelCase_ : TextIO , UpperCamelCase_ : List ): lowerCAmelCase_ : Any =0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(UpperCamelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase_ : List[str] =line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(UpperCamelCase_ ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def __A ( self : int , UpperCamelCase_ : str ): if path: with open(UpperCamelCase_ , '''r''' ) as f: lowerCAmelCase_ : int =f.read().splitlines() if "O" not in labels: lowerCAmelCase_ : str =['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class _snake_case ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : List[str] ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __A ( self : Optional[int] , UpperCamelCase_ : str ): if path: with open(UpperCamelCase_ , '''r''' ) as f: lowerCAmelCase_ : Tuple =f.read().splitlines() if "O" not in labels: lowerCAmelCase_ : Optional[int] =['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class _snake_case ( lowerCAmelCase_ ): """simple docstring""" def __A ( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[Split, str] ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase_ : str =mode.value lowerCAmelCase_ : Tuple =os.path.join(UpperCamelCase_ , F'{mode}.txt' ) lowerCAmelCase_ : Any =1 lowerCAmelCase_ : Union[str, Any] =[] with open(UpperCamelCase_ , encoding='''utf-8''' ) as f: for sentence in parse_incr(UpperCamelCase_ ): lowerCAmelCase_ : int =[] lowerCAmelCase_ : Tuple =[] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ) if words: examples.append(InputExample(guid=F'{mode}-{guid_index}' , words=UpperCamelCase_ , labels=UpperCamelCase_ ) ) guid_index += 1 return examples def __A ( self : Dict , UpperCamelCase_ : TextIO , UpperCamelCase_ : TextIO , UpperCamelCase_ : List ): lowerCAmelCase_ : Optional[Any] =0 for sentence in parse_incr(UpperCamelCase_ ): lowerCAmelCase_ : List[str] =preds_list[example_id] lowerCAmelCase_ : str ='''''' for token in sentence: out += F'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(UpperCamelCase_ ) example_id += 1 def __A ( self : Union[str, Any] , UpperCamelCase_ : str ): if path: with open(UpperCamelCase_ , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
305
1
import math from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : Union[str, Any] = """data2vec-audio""" def __init__( self, snake_case__=32, snake_case__=7_68, snake_case__=12, snake_case__=12, snake_case__=30_72, snake_case__="gelu", snake_case__=0.1, snake_case__=0.1, snake_case__=0.1, snake_case__=0.0, snake_case__=0.1, snake_case__=0.1, snake_case__=0.02, snake_case__=1E-5, snake_case__="gelu", snake_case__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12), snake_case__=(5, 2, 2, 2, 2, 2, 2), snake_case__=(10, 3, 3, 3, 3, 2, 2), snake_case__=False, snake_case__=16, snake_case__=19, snake_case__=5, snake_case__=0.05, snake_case__=10, snake_case__=2, snake_case__=0.0, snake_case__=10, snake_case__=0, snake_case__="sum", snake_case__=False, snake_case__=False, snake_case__=2_56, snake_case__=(5_12, 5_12, 5_12, 5_12, 15_00), snake_case__=(5, 3, 3, 1, 1), snake_case__=(1, 2, 3, 1, 1), snake_case__=5_12, snake_case__=0, snake_case__=1, snake_case__=2, snake_case__=False, snake_case__=3, snake_case__=2, snake_case__=3, snake_case__=None, **snake_case__, ) -> str: """simple docstring""" super().__init__(**snake_case__, pad_token_id=snake_case__, bos_token_id=snake_case__, eos_token_id=snake_case__ ) lowercase_ : List[Any] = hidden_size lowercase_ : int = feat_extract_activation lowercase_ : str = list(snake_case__ ) lowercase_ : Optional[Any] = list(snake_case__ ) lowercase_ : str = list(snake_case__ ) lowercase_ : int = conv_bias lowercase_ : int = num_conv_pos_embeddings lowercase_ : Optional[int] = num_conv_pos_embedding_groups lowercase_ : List[str] = conv_pos_kernel_size lowercase_ : List[str] = len(self.conv_dim ) lowercase_ : Dict = num_hidden_layers lowercase_ : Tuple = intermediate_size lowercase_ : str = hidden_act lowercase_ : str = num_attention_heads lowercase_ : Optional[int] = hidden_dropout lowercase_ : List[Any] = attention_dropout lowercase_ : Any = activation_dropout lowercase_ : Union[str, Any] = feat_proj_dropout lowercase_ : int = final_dropout lowercase_ : Union[str, Any] = layerdrop lowercase_ : List[Any] = layer_norm_eps lowercase_ : Optional[int] = initializer_range lowercase_ : Any = vocab_size lowercase_ : Union[str, Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase_ : List[str] = mask_time_prob lowercase_ : Optional[int] = mask_time_length lowercase_ : List[Any] = mask_time_min_masks lowercase_ : List[Any] = mask_feature_prob lowercase_ : Tuple = mask_feature_length lowercase_ : int = mask_feature_min_masks # ctc loss lowercase_ : int = ctc_loss_reduction lowercase_ : Tuple = ctc_zero_infinity # adapter lowercase_ : Union[str, Any] = add_adapter lowercase_ : int = adapter_kernel_size lowercase_ : Optional[Any] = adapter_stride lowercase_ : Union[str, Any] = num_adapter_layers lowercase_ : int = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase_ : str = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase_ : Optional[Any] = list(snake_case__ ) lowercase_ : Any = list(snake_case__ ) lowercase_ : Tuple = list(snake_case__ ) lowercase_ : int = xvector_output_dim @property def snake_case__ ( self ) -> Tuple: """simple docstring""" return math.prod(self.conv_stride )
458
def __magic_name__ ( lowercase ) -> list: """simple docstring""" if n_term == "": return [] lowercase_ : list = [] for temp in range(int(lowercase ) ): series.append(f"""1/{temp + 1}""" if series else """1""" ) return series if __name__ == "__main__": UpperCAmelCase_ = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
458
1
def __lowerCAmelCase ( _UpperCamelCase ) -> list: '''simple docstring''' lowerCamelCase__: Optional[int] = len(_UpperCamelCase ) for _ in range(_UpperCamelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: lowerCamelCase__ , lowerCamelCase__: List[Any] = arr[i + 1], arr[i] return arr if __name__ == "__main__": _lowercase = list(range(10, 0, -1)) print(F"""Original: {arr}. Sorted: {odd_even_transposition(arr)}""")
242
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _lowercase = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] _lowercase = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } _lowercase = {F"""funnel-transformer/{name}""": 512 for name in _model_names} _lowercase = {F"""funnel-transformer/{name}""": {'do_lower_case': True} for name in _model_names} class lowerCamelCase__ ( A__ ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = FunnelTokenizer __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = 2 def __init__( self : Tuple , __a : Optional[Any]=None , __a : List[Any]=None , __a : str=True , __a : Union[str, Any]="<unk>" , __a : List[Any]="<sep>" , __a : Any="<pad>" , __a : int="<cls>" , __a : Tuple="<mask>" , __a : Any="<s>" , __a : Dict="</s>" , __a : Optional[Any]=True , __a : Union[str, Any]=True , __a : Optional[Any]=None , __a : Optional[Any]="##" , **__a : Optional[int] , ): '''simple docstring''' super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , bos_token=__a , eos_token=__a , clean_text=__a , tokenize_chinese_chars=__a , strip_accents=__a , wordpieces_prefix=__a , **__a , ) lowerCamelCase__: int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __a ) != do_lower_case or normalizer_state.get("""strip_accents""" , __a ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __a ) != tokenize_chinese_chars ): lowerCamelCase__: List[str] = getattr(__a , normalizer_state.pop("""type""" ) ) lowerCamelCase__: Union[str, Any] = do_lower_case lowerCamelCase__: int = strip_accents lowerCamelCase__: Tuple = tokenize_chinese_chars lowerCamelCase__: Dict = normalizer_class(**__a ) lowerCamelCase__: Dict = do_lower_case def lowerCamelCase_ ( self : List[str] , __a : Dict , __a : List[Any]=None ): '''simple docstring''' lowerCamelCase__: Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self : Optional[Any] , __a : List[int] , __a : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__: Tuple = [self.sep_token_id] lowerCamelCase__: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self : Optional[Any] , __a : str , __a : Optional[str] = None ): '''simple docstring''' lowerCamelCase__: Any = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
242
1
"""simple docstring""" import sys def UpperCAmelCase ( snake_case : Union[str, Any] ): _lowerCAmelCase:Dict = len(snake_case ) _lowerCAmelCase:List[str] = [[0 for x in range(snake_case )] for x in range(snake_case )] _lowerCAmelCase:str = [[0 for x in range(snake_case )] for x in range(snake_case )] for chain_length in range(2 , snake_case ): for a in range(1 , n - chain_length + 1 ): _lowerCAmelCase:int = a + chain_length - 1 _lowerCAmelCase:str = sys.maxsize for c in range(snake_case , snake_case ): _lowerCAmelCase:Union[str, Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: _lowerCAmelCase:int = cost _lowerCAmelCase:str = c return matrix, sol def UpperCAmelCase ( snake_case : Optional[int] , snake_case : Dict , snake_case : str ): if i == j: print('''A''' + str(snake_case ) , end=''' ''' ) else: print('''(''' , end=''' ''' ) print_optiomal_solution(snake_case , snake_case , optimal_solution[i][j] ) print_optiomal_solution(snake_case , optimal_solution[i][j] + 1 , snake_case ) print(''')''' , end=''' ''' ) def UpperCAmelCase ( ): _lowerCAmelCase:List[Any] = [30, 35, 15, 5, 10, 20, 25] _lowerCAmelCase:Optional[Any] = len(snake_case ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 _lowerCAmelCase , _lowerCAmelCase:Optional[int] = matrix_chain_order(snake_case ) print('''No. of Operation required: ''' + str(matrix[1][n - 1] ) ) print_optiomal_solution(snake_case , 1 , n - 1 ) if __name__ == "__main__": main()
227
"""simple docstring""" from datetime import datetime import requests def UpperCAmelCase ( snake_case : str ): _lowerCAmelCase:Optional[Any] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' _lowerCAmelCase:Any = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(snake_case ).content if __name__ == "__main__": UpperCamelCase__ = input('''Enter Video/IGTV url: ''').strip() UpperCamelCase__ = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F"Done. Video saved to disk as {file_name}.")
227
1
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowercase =logging.get_logger(__name__) lowercase ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowercase ={ 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } lowercase ={'allegro/herbert-base-cased': 514} lowercase ={} class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =VOCAB_FILES_NAMES UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase =PRETRAINED_INIT_CONFIGURATION UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase =HerbertTokenizer def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case="</s>" , **snake_case , ) -> Any: '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , sep_token=snake_case , **snake_case , ) def lowerCAmelCase ( self , snake_case , snake_case = None) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Any =[self.cls_token_id] _UpperCAmelCase : Optional[Any] =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self , snake_case , snake_case = None , snake_case = False) -> str: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case) if token_ids_a is None: return [1] + ([0] * len(snake_case)) + [1] return [1] + ([0] * len(snake_case)) + [1] + ([0] * len(snake_case)) + [1] def lowerCAmelCase ( self , snake_case , snake_case = None) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple =[self.sep_token_id] _UpperCAmelCase : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def lowerCAmelCase ( self , snake_case , snake_case = None) -> Any: '''simple docstring''' _UpperCAmelCase : List[Any] =self._tokenizer.model.save(snake_case , name=snake_case) return tuple(snake_case)
716
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase =logging.get_logger(__name__) lowercase ={ 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="dpr" def __init__( self , snake_case=3_0_5_2_2 , snake_case=7_6_8 , snake_case=1_2 , snake_case=1_2 , snake_case=3_0_7_2 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=2 , snake_case=0.02 , snake_case=1E-1_2 , snake_case=0 , snake_case="absolute" , snake_case = 0 , **snake_case , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=snake_case , **snake_case) _UpperCAmelCase : int =vocab_size _UpperCAmelCase : Dict =hidden_size _UpperCAmelCase : List[Any] =num_hidden_layers _UpperCAmelCase : List[Any] =num_attention_heads _UpperCAmelCase : str =hidden_act _UpperCAmelCase : Optional[Any] =intermediate_size _UpperCAmelCase : Optional[Any] =hidden_dropout_prob _UpperCAmelCase : Tuple =attention_probs_dropout_prob _UpperCAmelCase : int =max_position_embeddings _UpperCAmelCase : Tuple =type_vocab_size _UpperCAmelCase : Union[str, Any] =initializer_range _UpperCAmelCase : Tuple =layer_norm_eps _UpperCAmelCase : int =projection_dim _UpperCAmelCase : List[Any] =position_embedding_type
331
0
from __future__ import annotations __a = '#' class lowercase__: """simple docstring""" def __init__( self : Dict ) -> None: lowercase_ = {} def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : str ) -> None: lowercase_ = self._trie for char in text: if char not in trie: lowercase_ = {} lowercase_ = trie[char] lowercase_ = True def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : str ) -> tuple | list: lowercase_ = self._trie for char in prefix: if char in trie: lowercase_ = trie[char] else: return [] return self._elements(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : dict ) -> tuple: lowercase_ = [] for c, v in d.items(): lowercase_ = [''' '''] if c == END else [(c + s) for s in self._elements(SCREAMING_SNAKE_CASE_ )] result.extend(SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) __a = Trie() __a = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def a ( snake_case__: str ): '''simple docstring''' lowercase_ = trie.find_word(snake_case__ ) return tuple(string + word for word in suffixes ) def a ( ): '''simple docstring''' print(autocomplete_using_trie('''de''' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
97
def _A ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : List[str] =len(SCREAMING_SNAKE_CASE ) a__ : Optional[int] =[[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): a__ : Optional[int] =True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): a__ : str =False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: a__ : str =subset[i - 1][j] if arr[i - 1] <= j: a__ : Tuple =subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
563
0
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: if exponent == 1: return base if exponent % 2 == 0: _snake_case : int = _modexpt(SCREAMING_SNAKE_CASE__ , exponent // 2 , SCREAMING_SNAKE_CASE__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(SCREAMING_SNAKE_CASE__ , exponent - 1 , SCREAMING_SNAKE_CASE__ )) % modulo_value def lowercase ( SCREAMING_SNAKE_CASE__ : int = 1_777 , SCREAMING_SNAKE_CASE__ : int = 1_855 , SCREAMING_SNAKE_CASE__ : int = 8 ) -> int: _snake_case : List[str] = base for _ in range(1 , SCREAMING_SNAKE_CASE__ ): _snake_case : str = _modexpt(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 10**digits ) return result if __name__ == "__main__": print(F'''{solution() = }''')
198
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : str = AudioLDMPipeline snake_case_ : Any = TEXT_TO_AUDIO_PARAMS snake_case_ : Tuple = TEXT_TO_AUDIO_BATCH_PARAMS snake_case_ : Dict = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" torch.manual_seed(0) _snake_case : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowerCAmelCase , ) _snake_case : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0) _snake_case : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0) _snake_case : Any = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _snake_case : Any = ClapTextModelWithProjection(lowerCAmelCase) _snake_case : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77) _snake_case : List[Any] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCAmelCase , ) _snake_case : Tuple = SpeechTaHifiGan(lowerCAmelCase) _snake_case : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict=0) -> int: """simple docstring""" if str(lowerCAmelCase).startswith("""mps"""): _snake_case : List[str] = torch.manual_seed(lowerCAmelCase) else: _snake_case : Optional[Any] = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) _snake_case : Tuple = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : Dict = self.get_dummy_components() _snake_case : Optional[Any] = AudioLDMPipeline(**lowerCAmelCase) _snake_case : Optional[int] = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : str = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Tuple = audioldm_pipe(**lowerCAmelCase) _snake_case : int = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) == 256 _snake_case : Union[str, Any] = audio[:10] _snake_case : Union[str, Any] = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033]) assert np.abs(audio_slice - expected_slice).max() < 1E-2 def UpperCamelCase_ ( self : List[str]) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.get_dummy_components() _snake_case : Any = AudioLDMPipeline(**lowerCAmelCase) _snake_case : int = audioldm_pipe.to(lowerCAmelCase) _snake_case : str = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : str = self.get_dummy_inputs(lowerCAmelCase) _snake_case : List[Any] = 3 * [inputs["""prompt"""]] # forward _snake_case : str = audioldm_pipe(**lowerCAmelCase) _snake_case : Dict = output.audios[0] _snake_case : Dict = self.get_dummy_inputs(lowerCAmelCase) _snake_case : List[str] = 3 * [inputs.pop("""prompt""")] _snake_case : List[Any] = audioldm_pipe.tokenizer( lowerCAmelCase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors="""pt""" , ) _snake_case : List[Any] = text_inputs["""input_ids"""].to(lowerCAmelCase) _snake_case : str = audioldm_pipe.text_encoder( lowerCAmelCase , ) _snake_case : Optional[int] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _snake_case : Tuple = F.normalize(lowerCAmelCase , dim=-1) _snake_case : List[Any] = prompt_embeds # forward _snake_case : Union[str, Any] = audioldm_pipe(**lowerCAmelCase) _snake_case : str = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1E-2 def UpperCamelCase_ ( self : Optional[Any]) -> Dict: """simple docstring""" _snake_case : List[Any] = self.get_dummy_components() _snake_case : Optional[Any] = AudioLDMPipeline(**lowerCAmelCase) _snake_case : Tuple = audioldm_pipe.to(lowerCAmelCase) _snake_case : List[Any] = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Optional[int] = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Optional[Any] = 3 * ["""this is a negative prompt"""] _snake_case : int = negative_prompt _snake_case : Dict = 3 * [inputs["""prompt"""]] # forward _snake_case : Dict = audioldm_pipe(**lowerCAmelCase) _snake_case : Union[str, Any] = output.audios[0] _snake_case : str = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Union[str, Any] = 3 * [inputs.pop("""prompt""")] _snake_case : Tuple = [] for p in [prompt, negative_prompt]: _snake_case : Optional[Any] = audioldm_pipe.tokenizer( lowerCAmelCase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors="""pt""" , ) _snake_case : Any = text_inputs["""input_ids"""].to(lowerCAmelCase) _snake_case : int = audioldm_pipe.text_encoder( lowerCAmelCase , ) _snake_case : Optional[Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _snake_case : str = F.normalize(lowerCAmelCase , dim=-1) embeds.append(lowerCAmelCase) _snake_case , _snake_case : int = embeds # forward _snake_case : List[str] = audioldm_pipe(**lowerCAmelCase) _snake_case : Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1E-2 def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : List[Any] = self.get_dummy_components() _snake_case : int = PNDMScheduler(skip_prk_steps=lowerCAmelCase) _snake_case : Tuple = AudioLDMPipeline(**lowerCAmelCase) _snake_case : str = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : List[str] = self.get_dummy_inputs(lowerCAmelCase) _snake_case : List[Any] = """egg cracking""" _snake_case : Optional[Any] = audioldm_pipe(**lowerCAmelCase , negative_prompt=lowerCAmelCase) _snake_case : List[str] = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) == 256 _snake_case : int = audio[:10] _snake_case : Any = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032]) assert np.abs(audio_slice - expected_slice).max() < 1E-2 def UpperCamelCase_ ( self : Optional[int]) -> Optional[int]: """simple docstring""" _snake_case : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : Any = self.get_dummy_components() _snake_case : int = PNDMScheduler(skip_prk_steps=lowerCAmelCase) _snake_case : Tuple = AudioLDMPipeline(**lowerCAmelCase) _snake_case : Union[str, Any] = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : List[str] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) _snake_case : List[Any] = audioldm_pipe(lowerCAmelCase , num_inference_steps=2).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _snake_case : Optional[Any] = 2 _snake_case : Optional[int] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _snake_case : List[Any] = 2 _snake_case : Tuple = audioldm_pipe(lowerCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=lowerCAmelCase).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _snake_case : Dict = 2 _snake_case : int = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCAmelCase).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" _snake_case : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : Optional[int] = self.get_dummy_components() _snake_case : Any = AudioLDMPipeline(**lowerCAmelCase) _snake_case : Any = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : str = audioldm_pipe.vocoder.config.sampling_rate _snake_case : List[str] = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Optional[int] = audioldm_pipe(audio_length_in_s=0.016 , **lowerCAmelCase) _snake_case : str = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) / vocoder_sampling_rate == 0.016 _snake_case : int = audioldm_pipe(audio_length_in_s=0.032 , **lowerCAmelCase) _snake_case : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) / vocoder_sampling_rate == 0.032 def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : str = self.get_dummy_components() _snake_case : List[str] = AudioLDMPipeline(**lowerCAmelCase) _snake_case : str = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : List[str] = ["""hey"""] _snake_case : int = audioldm_pipe(lowerCAmelCase , num_inference_steps=1) _snake_case : Optional[int] = output.audios.shape assert audio_shape == (1, 256) _snake_case : Dict = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _snake_case : str = SpeechTaHifiGan(lowerCAmelCase).to(lowerCAmelCase) _snake_case : List[str] = audioldm_pipe(lowerCAmelCase , num_inference_steps=1) _snake_case : Dict = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def UpperCamelCase_ ( self : Dict) -> Dict: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase) def UpperCamelCase_ ( self : str) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCAmelCase) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase) @slow class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]="cpu" , lowerCAmelCase : Any=torch.floataa , lowerCAmelCase : Optional[Any]=0) -> Tuple: """simple docstring""" _snake_case : Any = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) _snake_case : Optional[Any] = np.random.RandomState(lowerCAmelCase).standard_normal((1, 8, 128, 16)) _snake_case : List[str] = torch.from_numpy(lowerCAmelCase).to(device=lowerCAmelCase , dtype=lowerCAmelCase) _snake_case : Optional[int] = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def UpperCamelCase_ ( self : Any) -> List[str]: """simple docstring""" _snake_case : Dict = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""") _snake_case : Optional[int] = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Tuple = self.get_inputs(lowerCAmelCase) _snake_case : int = 25 _snake_case : Optional[Any] = audioldm_pipe(**lowerCAmelCase).audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) == 8_1920 _snake_case : Any = audio[7_7230:7_7240] _snake_case : str = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315]) _snake_case : List[str] = np.abs(expected_slice - audio_slice).max() assert max_diff < 1E-2 def UpperCamelCase_ ( self : Dict) -> List[Any]: """simple docstring""" _snake_case : Dict = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""") _snake_case : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) _snake_case : Optional[int] = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Union[str, Any] = self.get_inputs(lowerCAmelCase) _snake_case : List[str] = audioldm_pipe(**lowerCAmelCase).audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) == 8_1920 _snake_case : Optional[Any] = audio[2_7780:2_7790] _snake_case : int = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212]) _snake_case : List[Any] = np.abs(expected_slice - audio_slice).max() assert max_diff < 3E-2
198
1
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.txt'''} __magic_name__ = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } __magic_name__ = { '''facebook/esm2_t6_8M_UR50D''': 1_024, '''facebook/esm2_t12_35M_UR50D''': 1_024, } def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): with open(__lowerCAmelCase , "r" ) as f: snake_case__ = f.read().splitlines() return [l.strip() for l in lines] class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Optional[int] = VOCAB_FILES_NAMES _A : List[Any] = PRETRAINED_VOCAB_FILES_MAP _A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Any = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase , lowerCamelCase="<unk>" , lowerCamelCase="<cls>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase="<eos>" , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) snake_case__ = load_vocab_file(lowerCamelCase ) snake_case__ = dict(enumerate(self.all_tokens ) ) snake_case__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} snake_case__ = unk_token snake_case__ = cls_token snake_case__ = pad_token snake_case__ = mask_token snake_case__ = eos_token snake_case__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A_ ( self , lowerCamelCase ): return self._id_to_token.get(lowerCamelCase , self.unk_token ) def A_ ( self , lowerCamelCase ): return self._token_to_id.get(lowerCamelCase , self._token_to_id.get(self.unk_token ) ) def A_ ( self , lowerCamelCase , **lowerCamelCase ): return text.split() def A_ ( self , lowerCamelCase=False ): return len(self._id_to_token ) def A_ ( self ): return {token: i for i, token in enumerate(self.all_tokens )} def A_ ( self , lowerCamelCase ): return self._token_to_id.get(lowerCamelCase , self._token_to_id.get(self.unk_token ) ) def A_ ( self , lowerCamelCase ): return self._id_to_token.get(lowerCamelCase , self.unk_token ) def A_ ( self , lowerCamelCase , lowerCamelCase = None ): snake_case__ = [self.cls_token_id] snake_case__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A_ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] snake_case__ = [1] + ([0] * len(lowerCamelCase )) + [1] if token_ids_a is not None: mask += [0] * len(lowerCamelCase ) + [1] return mask def A_ ( self , lowerCamelCase , lowerCamelCase ): snake_case__ = os.path.join(lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(lowerCamelCase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A_ ( self ): return self.get_vocab_size(with_added_tokens=lowerCamelCase ) def A_ ( self , lowerCamelCase , lowerCamelCase = False ): return super()._add_tokens(lowerCamelCase , special_tokens=lowerCamelCase )
276
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def A_ ( self ): snake_case__ = "ZinengTang/tvlt-base" snake_case__ = tempfile.mkdtemp() def A_ ( self , **lowerCamelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCamelCase ) def A_ ( self , **lowerCamelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCamelCase ) def A_ ( self ): shutil.rmtree(self.tmpdirname ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCamelCase ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(lowerCamelCase , return_tensors="np" ) snake_case__ = processor(audio=lowerCamelCase , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(lowerCamelCase , return_tensors="np" ) snake_case__ = processor(images=lowerCamelCase , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
276
1
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' _A : str = [R"""h\.\d+\.attn\.bias""", R"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self: str , snake_case: int , snake_case: int , snake_case: Optional[int] = None , snake_case: int = 50_257 , snake_case: int = 1_024 , snake_case: int = 768 , snake_case: int = 12 , snake_case: int = 12 , snake_case: Optional[int] = None , snake_case: str = "gelu_new" , snake_case: float = 0.1 , snake_case: float = 0.1 , snake_case: float = 0.1 , snake_case: float = 1E-5 , snake_case: float = 0.0_2 , snake_case: bool = True , snake_case: bool = True , snake_case: bool = False , snake_case: bool = False , ) -> Optional[Any]: super().__init__() snake_case_ :Any = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" f""" `n_embd`: {n_embd} are not equal.""" ) snake_case_ :List[str] = prefix_inner_dim snake_case_ :Optional[Any] = prefix_hidden_dim snake_case_ :Optional[Any] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case_ :str = ( nn.Linear(self.prefix_hidden_dim , snake_case ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case_ :Dict = GPTaConfig( vocab_size=snake_case , n_positions=snake_case , n_embd=snake_case , n_layer=snake_case , n_head=snake_case , n_inner=snake_case , activation_function=snake_case , resid_pdrop=snake_case , embd_pdrop=snake_case , attn_pdrop=snake_case , layer_norm_epsilon=snake_case , initializer_range=snake_case , scale_attn_weights=snake_case , use_cache=snake_case , scale_attn_by_inverse_layer_idx=snake_case , reorder_and_upcast_attn=snake_case , ) snake_case_ :Tuple = GPTaLMHeadModel(snake_case ) def lowerCAmelCase_ ( self: Tuple , snake_case: torch.Tensor , snake_case: torch.Tensor , snake_case: Optional[torch.Tensor] = None , snake_case: Optional[torch.Tensor] = None , ) -> Union[str, Any]: snake_case_ :List[str] = self.transformer.transformer.wte(snake_case ) snake_case_ :Union[str, Any] = self.encode_prefix(snake_case ) snake_case_ :Optional[int] = self.decode_prefix(snake_case ) snake_case_ :int = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case_ :Dict = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case_ :Dict = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case_ :Dict = self.transformer(inputs_embeds=snake_case , labels=snake_case , attention_mask=snake_case ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCAmelCase_ ( self: Optional[int] , snake_case: int , snake_case: torch.device ) -> torch.Tensor: return torch.zeros(snake_case , self.prefix_length , dtype=torch.intaa , device=snake_case ) def lowerCAmelCase_ ( self: Optional[Any] , snake_case: str ) -> Union[str, Any]: return self.encode_prefix(snake_case ) @torch.no_grad() def lowerCAmelCase_ ( self: str , snake_case: Dict , snake_case: Optional[int] , snake_case: List[str] ) -> Union[str, Any]: snake_case_ :List[Any] = torch.split(snake_case , 1 , dim=0 ) snake_case_ :str = [] snake_case_ :List[Any] = [] for feature in features: snake_case_ :str = self.decode_prefix(feature.to(snake_case ) ) # back to the clip feature # Only support beam search for now snake_case_, snake_case_ :List[Any] = self.generate_beam( input_embeds=snake_case , device=snake_case , eos_token_id=snake_case ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case_ :Dict = torch.stack(snake_case ) snake_case_ :Any = torch.stack(snake_case ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCAmelCase_ ( self: Dict , snake_case: int=None , snake_case: Tuple=None , snake_case: str=None , snake_case: int = 5 , snake_case: int = 67 , snake_case: float = 1.0 , snake_case: Optional[int] = None , ) -> Optional[Any]: snake_case_ :Tuple = eos_token_id snake_case_ :Dict = None snake_case_ :Dict = None snake_case_ :Any = torch.ones(snake_case , device=snake_case , dtype=torch.int ) snake_case_ :Optional[int] = torch.zeros(snake_case , device=snake_case , dtype=torch.bool ) if input_embeds is not None: snake_case_ :Tuple = input_embeds else: snake_case_ :Optional[int] = self.transformer.transformer.wte(snake_case ) for i in range(snake_case ): snake_case_ :str = self.transformer(inputs_embeds=snake_case ) snake_case_ :Optional[Any] = outputs.logits snake_case_ :Any = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case_ :Any = logits.softmax(-1 ).log() if scores is None: snake_case_, snake_case_ :Optional[Any] = logits.topk(snake_case , -1 ) snake_case_ :Tuple = generated.expand(snake_case , *generated.shape[1:] ) snake_case_, snake_case_ :Union[str, Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case_ :Optional[int] = next_tokens else: snake_case_ :List[str] = tokens.expand(snake_case , *tokens.shape[1:] ) snake_case_ :Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case_ :Dict = -float(np.inf ) snake_case_ :str = 0 snake_case_ :List[str] = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case_ :List[str] = scores_sum / seq_lengths[:, None] snake_case_, snake_case_ :List[str] = scores_sum_average.view(-1 ).topk(snake_case , -1 ) snake_case_ :Dict = next_tokens // scores_sum.shape[1] snake_case_ :List[str] = seq_lengths[next_tokens_source] snake_case_ :List[str] = next_tokens % scores_sum.shape[1] snake_case_ :Optional[int] = next_tokens.unsqueeze(1 ) snake_case_ :List[str] = tokens[next_tokens_source] snake_case_ :Union[str, Any] = torch.cat((tokens, next_tokens) , dim=1 ) snake_case_ :Any = generated[next_tokens_source] snake_case_ :List[Any] = scores_sum_average * seq_lengths snake_case_ :int = is_stopped[next_tokens_source] snake_case_ :Any = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case_ :Union[str, Any] = torch.cat((generated, next_token_embed) , dim=1 ) snake_case_ :Any = is_stopped + next_tokens.eq(snake_case ).squeeze() if is_stopped.all(): break snake_case_ :Optional[int] = scores / seq_lengths snake_case_ :Tuple = scores.argsort(descending=snake_case ) # tokens tensors are already padded to max_seq_length snake_case_ :int = [tokens[i] for i in order] snake_case_ :List[str] = torch.stack(snake_case , dim=0 ) snake_case_ :List[str] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
310
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : int = """time_series_transformer""" _A : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self: Dict , snake_case: Optional[int] = None , snake_case: Optional[int] = None , snake_case: str = "student_t" , snake_case: str = "nll" , snake_case: int = 1 , snake_case: List[int] = [1, 2, 3, 4, 5, 6, 7] , snake_case: Optional[Union[str, bool]] = "mean" , snake_case: int = 0 , snake_case: int = 0 , snake_case: int = 0 , snake_case: int = 0 , snake_case: Optional[List[int]] = None , snake_case: Optional[List[int]] = None , snake_case: int = 32 , snake_case: int = 32 , snake_case: int = 2 , snake_case: int = 2 , snake_case: int = 2 , snake_case: int = 2 , snake_case: bool = True , snake_case: str = "gelu" , snake_case: int = 64 , snake_case: float = 0.1 , snake_case: float = 0.1 , snake_case: float = 0.1 , snake_case: float = 0.1 , snake_case: float = 0.1 , snake_case: int = 100 , snake_case: float = 0.0_2 , snake_case: List[str]=True , **snake_case: List[str] , ) -> Union[str, Any]: # time series specific configuration snake_case_ :Any = prediction_length snake_case_ :Any = context_length or prediction_length snake_case_ :int = distribution_output snake_case_ :Any = loss snake_case_ :List[Any] = input_size snake_case_ :Any = num_time_features snake_case_ :Any = lags_sequence snake_case_ :Any = scaling snake_case_ :Any = num_dynamic_real_features snake_case_ :List[str] = num_static_real_features snake_case_ :List[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) snake_case_ :int = cardinality else: snake_case_ :List[str] = [0] if embedding_dimension and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) snake_case_ :int = embedding_dimension else: snake_case_ :int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] snake_case_ :Dict = num_parallel_samples # Transformer architecture configuration snake_case_ :Any = input_size * len(snake_case ) + self._number_of_features snake_case_ :Dict = d_model snake_case_ :Optional[Any] = encoder_attention_heads snake_case_ :Tuple = decoder_attention_heads snake_case_ :Any = encoder_ffn_dim snake_case_ :Any = decoder_ffn_dim snake_case_ :Tuple = encoder_layers snake_case_ :int = decoder_layers snake_case_ :Tuple = dropout snake_case_ :Any = attention_dropout snake_case_ :List[str] = activation_dropout snake_case_ :Any = encoder_layerdrop snake_case_ :str = decoder_layerdrop snake_case_ :Union[str, Any] = activation_function snake_case_ :List[str] = init_std snake_case_ :int = use_cache super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def lowerCAmelCase_ ( self: Optional[Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
310
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def _a (self ): '''simple docstring''' lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowerCamelCase = AutoTokenizer.from_pretrained("google/mt5-small" ) lowerCamelCase = tokenizer("Hello there" , return_tensors="np" ).input_ids lowerCamelCase = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowerCamelCase = shift_tokens_right(__a , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase = model(__a , decoder_input_ids=__a ).logits lowerCamelCase = optax.softmax_cross_entropy(__a , onehot(__a , logits.shape[-1] ) ).mean() lowerCamelCase = -(labels.shape[-1] * loss.item()) lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
623
from __future__ import annotations from math import pow, sqrt def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(UpperCAmelCase__ , 2 ) - pow(UpperCAmelCase__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(UpperCAmelCase__ , 2 ) - pow(UpperCAmelCase__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(UpperCAmelCase__ , 2 ) + pow(UpperCAmelCase__ , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
623
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=18 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , ): lowercase = size if size is not None else {'height': 18, 'width': 18} lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = image_size lowercase = min_resolution lowercase = max_resolution lowercase = do_resize lowercase = size lowercase = apply_ocr def SCREAMING_SNAKE_CASE__ ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class A_ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : Any = LayoutLMvaImageProcessor if is_pytesseract_available() else None def SCREAMING_SNAKE_CASE__ ( self ): lowercase = LayoutLMvaImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'apply_ocr' ) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , snake_case ) self.assertIsInstance(encoding.boxes , snake_case ) # Test batched lowercase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self ): # Initialize image_processing lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input lowercase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowercase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self ): # with apply_OCR = True lowercase = LayoutLMvaImageProcessor() from datasets import load_dataset lowercase = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) lowercase = Image.open(ds[0]['file'] ).convert('RGB' ) lowercase = image_processing(snake_case , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowercase = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 lowercase = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , snake_case ) self.assertListEqual(encoding.boxes , snake_case ) # with apply_OCR = False lowercase = LayoutLMvaImageProcessor(apply_ocr=snake_case ) lowercase = image_processing(snake_case , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
565
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
565
1
'''simple docstring''' import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" if isinstance(__lowerCamelCase , torch.Tensor ): return image elif isinstance(__lowerCamelCase , PIL.Image.Image ): __snake_case : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): __snake_case : Any = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] __snake_case : Tuple = np.concatenate(__lowerCamelCase , axis=0 ) __snake_case : Tuple = np.array(__lowerCamelCase ).astype(np.floataa ) / 255.0 __snake_case : List[str] = image.transpose(0 , 3 , 1 , 2 ) __snake_case : List[str] = 2.0 * image - 1.0 __snake_case : Union[str, Any] = torch.from_numpy(__lowerCamelCase ) elif isinstance(image[0] , torch.Tensor ): __snake_case : int = torch.cat(__lowerCamelCase , dim=0 ) return image def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=0.99_95 ) -> Optional[Any]: """simple docstring""" if not isinstance(__lowerCamelCase , np.ndarray ): __snake_case : Any = True __snake_case : Any = va.device __snake_case : str = va.cpu().numpy() __snake_case : Optional[int] = va.cpu().numpy() __snake_case : List[Any] = np.sum(va * va / (np.linalg.norm(__lowerCamelCase ) * np.linalg.norm(__lowerCamelCase )) ) if np.abs(__lowerCamelCase ) > DOT_THRESHOLD: __snake_case : List[Any] = (1 - t) * va + t * va else: __snake_case : Any = np.arccos(__lowerCamelCase ) __snake_case : Optional[Any] = np.sin(__lowerCamelCase ) __snake_case : int = theta_a * t __snake_case : List[Any] = np.sin(__lowerCamelCase ) __snake_case : str = np.sin(theta_a - theta_t ) / sin_theta_a __snake_case : Optional[Any] = sin_theta_t / sin_theta_a __snake_case : Dict = sa * va + sa * va if inputs_are_torch: __snake_case : List[Any] = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) return va def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" __snake_case : Any = F.normalize(__lowerCamelCase , dim=-1 ) __snake_case : Optional[Any] = F.normalize(__lowerCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" for param in model.parameters(): __snake_case : List[str] = value class _A ( _lowerCAmelCase ): def __init__( self : Optional[Any] , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __magic_name__ : CLIPFeatureExtractor , __magic_name__ : Any=None , __magic_name__ : Union[str, Any]=None , __magic_name__ : Tuple=None , ) -> Tuple: """simple docstring""" super().__init__() self.register_modules( vae=__magic_name__ , text_encoder=__magic_name__ , clip_model=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , feature_extractor=__magic_name__ , coca_model=__magic_name__ , coca_tokenizer=__magic_name__ , coca_transform=__magic_name__ , ) __snake_case : str = ( feature_extractor.size if isinstance(feature_extractor.size , __magic_name__ ) else feature_extractor.size["shortest_edge"] ) __snake_case : Optional[Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __magic_name__ ) set_requires_grad(self.clip_model , __magic_name__ ) def lowercase__ ( self : Tuple , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__magic_name__ ) def lowercase__ ( self : int ) -> Dict: """simple docstring""" self.enable_attention_slicing(__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" set_requires_grad(self.vae , __magic_name__ ) def lowercase__ ( self : int ) -> List[str]: """simple docstring""" set_requires_grad(self.vae , __magic_name__ ) def lowercase__ ( self : List[Any] ) -> Dict: """simple docstring""" set_requires_grad(self.unet , __magic_name__ ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" set_requires_grad(self.unet , __magic_name__ ) def lowercase__ ( self : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" __snake_case : str = min(int(num_inference_steps * strength ) , __magic_name__ ) __snake_case : Optional[Any] = max(num_inference_steps - init_timestep , 0 ) __snake_case : Optional[Any] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase__ ( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any]=None ) -> Optional[Any]: """simple docstring""" if not isinstance(__magic_name__ , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(__magic_name__ )}''' ) __snake_case : Optional[int] = image.to(device=__magic_name__ , dtype=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ): __snake_case : Any = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__magic_name__ ) ] __snake_case : List[Any] = torch.cat(__magic_name__ , dim=0 ) else: __snake_case : Any = self.vae.encode(__magic_name__ ).latent_dist.sample(__magic_name__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __snake_case : Union[str, Any] = 0.18215 * init_latents __snake_case : Optional[Any] = init_latents.repeat_interleave(__magic_name__ , dim=0 ) __snake_case : Union[str, Any] = randn_tensor(init_latents.shape , generator=__magic_name__ , device=__magic_name__ , dtype=__magic_name__ ) # get latents __snake_case : List[Any] = self.scheduler.add_noise(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : Tuple = init_latents return latents def lowercase__ ( self : Optional[int] , __magic_name__ : Dict ) -> List[Any]: """simple docstring""" __snake_case : Any = self.coca_transform(__magic_name__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __snake_case : Union[str, Any] = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __snake_case : List[Any] = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : List[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.feature_extractor.preprocess(__magic_name__ ) __snake_case : Optional[int] = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() __snake_case : Tuple = self.clip_model.get_image_features(__magic_name__ ) __snake_case : str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__magic_name__ ) __snake_case : List[str] = image_embeddings_clip.repeat_interleave(__magic_name__ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = latents.detach().requires_grad_() __snake_case : Dict = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : Optional[Any] = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __snake_case : Tuple = self.scheduler.alphas_cumprod[timestep] __snake_case : Dict = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case : List[str] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __snake_case : Union[str, Any] = torch.sqrt(__magic_name__ ) __snake_case : Union[str, Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __magic_name__ ): __snake_case : Any = self.scheduler.sigmas[index] __snake_case : Any = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __snake_case : Tuple = 1 / 0.18215 * sample __snake_case : int = self.vae.decode(__magic_name__ ).sample __snake_case : str = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case : str = transforms.Resize(self.feature_extractor_size )(__magic_name__ ) __snake_case : List[str] = self.normalize(__magic_name__ ).to(latents.dtype ) __snake_case : List[str] = self.clip_model.get_image_features(__magic_name__ ) __snake_case : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__magic_name__ ) __snake_case : str = spherical_dist_loss(__magic_name__ , __magic_name__ ).mean() * clip_guidance_scale __snake_case : Union[str, Any] = -torch.autograd.grad(__magic_name__ , __magic_name__ )[0] if isinstance(self.scheduler , __magic_name__ ): __snake_case : str = latents.detach() + grads * (sigma**2) __snake_case : List[Any] = noise_pred_original else: __snake_case : str = noise_pred_original - torch.sqrt(__magic_name__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : List[str] , __magic_name__ : Union[torch.FloatTensor, PIL.Image.Image] , __magic_name__ : Union[torch.FloatTensor, PIL.Image.Image] , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[int] = 5_12 , __magic_name__ : Optional[int] = 5_12 , __magic_name__ : float = 0.6 , __magic_name__ : Optional[int] = 50 , __magic_name__ : Optional[float] = 7.5 , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[float] = 1_00 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : float = 0.8 , __magic_name__ : float = 0.1 , __magic_name__ : float = 0.1 , ) -> Any: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(__magic_name__ )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(__magic_name__ , torch.Generator ) and batch_size > 1: __snake_case : int = [generator] + [None] * (batch_size - 1) __snake_case : Tuple = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __snake_case : Dict = [x[0] for x in coca_is_none if x[1]] __snake_case : List[Any] = ", ".join(__magic_name__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__magic_name__ ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) __snake_case : List[Any] = self.get_image_description(__magic_name__ ) if style_prompt is None: if len(__magic_name__ ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) __snake_case : Union[str, Any] = self.get_image_description(__magic_name__ ) # get prompt text embeddings for content and style __snake_case : List[Any] = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Union[str, Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __snake_case : Tuple = self.tokenizer( __magic_name__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors="""pt""" , ) __snake_case : Any = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __snake_case : Optional[Any] = slerp(__magic_name__ , __magic_name__ , __magic_name__ ) # duplicate text embeddings for each generation per prompt __snake_case : str = text_embeddings.repeat_interleave(__magic_name__ , dim=0 ) # set timesteps __snake_case : Tuple = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __snake_case : str = {} if accepts_offset: __snake_case : Optional[Any] = 1 self.scheduler.set_timesteps(__magic_name__ , **__magic_name__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __snake_case : str = self.get_timesteps(__magic_name__ , __magic_name__ , self.device ) __snake_case : Dict = timesteps[:1].repeat(__magic_name__ ) # Preprocess image __snake_case : Dict = preprocess(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : List[Any] = self.prepare_latents( __magic_name__ , __magic_name__ , __magic_name__ , text_embeddings.dtype , self.device , __magic_name__ ) __snake_case : Dict = preprocess(__magic_name__ , __magic_name__ , __magic_name__ ) __snake_case : Dict = self.prepare_latents( __magic_name__ , __magic_name__ , __magic_name__ , text_embeddings.dtype , self.device , __magic_name__ ) __snake_case : Optional[int] = slerp(__magic_name__ , __magic_name__ , __magic_name__ ) if clip_guidance_scale > 0: __snake_case : List[str] = self.get_clip_image_embeddings(__magic_name__ , __magic_name__ ) __snake_case : Optional[int] = self.get_clip_image_embeddings(__magic_name__ , __magic_name__ ) __snake_case : str = slerp( __magic_name__ , __magic_name__ , __magic_name__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __snake_case : str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __snake_case : Any = content_text_input.input_ids.shape[-1] __snake_case : Tuple = self.tokenizer([""""""] , padding="""max_length""" , max_length=__magic_name__ , return_tensors="""pt""" ) __snake_case : List[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __snake_case : Dict = uncond_embeddings.repeat_interleave(__magic_name__ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __snake_case : str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __snake_case : Union[str, Any] = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __snake_case : Tuple = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __snake_case : Union[str, Any] = torch.randn(__magic_name__ , generator=__magic_name__ , device="""cpu""" , dtype=__magic_name__ ).to( self.device ) else: __snake_case : Optional[Any] = torch.randn(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=__magic_name__ ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __snake_case : int = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __snake_case : List[str] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Tuple = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : Optional[int] = {} if accepts_eta: __snake_case : List[str] = eta # check if the scheduler accepts generator __snake_case : Optional[Any] = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __snake_case : Any = generator with self.progress_bar(total=__magic_name__ ): for i, t in enumerate(__magic_name__ ): # expand the latents if we are doing classifier free guidance __snake_case : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __snake_case : Union[str, Any] = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ ) # predict the noise residual __snake_case : List[Any] = self.unet(__magic_name__ , __magic_name__ , encoder_hidden_states=__magic_name__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __snake_case : Optional[Any] = noise_pred.chunk(2 ) __snake_case : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __snake_case : Dict = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __snake_case : Tuple = self.cond_fn( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) # compute the previous noisy sample x_t -> x_t-1 __snake_case : Tuple = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __snake_case : int = 1 / 0.18215 * latents __snake_case : Optional[int] = self.vae.decode(__magic_name__ ).sample __snake_case : int = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case : str = self.numpy_to_pil(__magic_name__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__magic_name__ , nsfw_content_detected=__magic_name__ )
26
from ....configuration_utils import PretrainedConfig from ....utils import logging _snake_case : int = logging.get_logger(__name__) _snake_case : str = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[Any] = "van" def __init__( self : Optional[int] , lowerCamelCase : Any=224 , lowerCamelCase : str=3 , lowerCamelCase : Any=[7, 3, 3, 3] , lowerCamelCase : Dict=[4, 2, 2, 2] , lowerCamelCase : List[Any]=[64, 128, 320, 512] , lowerCamelCase : str=[3, 3, 12, 3] , lowerCamelCase : Dict=[8, 8, 4, 4] , lowerCamelCase : Any="gelu" , lowerCamelCase : Optional[int]=0.02 , lowerCamelCase : Tuple=1E-6 , lowerCamelCase : Optional[int]=1E-2 , lowerCamelCase : int=0.0 , lowerCamelCase : Optional[Any]=0.0 , **lowerCamelCase : Optional[int] , ) -> int: super().__init__(**lowerCamelCase ) __snake_case : Union[str, Any] = image_size __snake_case : Any = num_channels __snake_case : Any = patch_sizes __snake_case : List[Any] = strides __snake_case : str = hidden_sizes __snake_case : Dict = depths __snake_case : Optional[int] = mlp_ratios __snake_case : Dict = hidden_act __snake_case : Union[str, Any] = initializer_range __snake_case : List[str] = layer_norm_eps __snake_case : Optional[int] = layer_scale_init_value __snake_case : List[Any] = drop_path_rate __snake_case : int = dropout_rate
81
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class a_ : UpperCamelCase_ : str = field( metadata={"help": "The output directory where the model will be written."} , ) UpperCamelCase_ : str = field( metadata={ "help": ( "The encoder model checkpoint for weights initialization." "Don't set if you want to train an encoder model from scratch." ) } , ) UpperCamelCase_ : str = field( metadata={ "help": ( "The decoder model checkpoint for weights initialization." "Don't set if you want to train a decoder model from scratch." ) } , ) UpperCamelCase_ : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Pretrained encoder config name or path if not the same as encoder_model_name"} ) UpperCamelCase_ : Optional[str] = field( default=__UpperCamelCase , metadata={"help": "Pretrained decoder config name or path if not the same as decoder_model_name"} ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser((ModelArguments,) ) ((lowerCAmelCase__) , ) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: lowerCAmelCase__ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowerCamelCase__ , decoder_config=lowerCamelCase__ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens lowerCAmelCase__ = decoder_config.decoder_start_token_id lowerCAmelCase__ = decoder_config.pad_token_id if decoder_start_token_id is None: lowerCAmelCase__ = decoder_config.bos_token_id if pad_token_id is None: lowerCAmelCase__ = decoder_config.eos_token_id # This is necessary to make Flax's generate() work lowerCAmelCase__ = decoder_config.eos_token_id lowerCAmelCase__ = decoder_start_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) lowerCAmelCase__ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
674
"""simple docstring""" import os def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = os.path.dirname(os.path.realpath(lowerCamelCase__ ) ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , """triangle.txt""" ) with open(lowerCamelCase__ ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] for line in triangle: lowerCAmelCase__ = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(lowerCamelCase__ ) ) a.append(lowerCamelCase__ ) for i in range(1 , len(lowerCamelCase__ ) ): for j in range(len(a[i] ) ): lowerCAmelCase__ = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCAmelCase__ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(lowerCamelCase__ , lowerCamelCase__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
674
1
from __future__ import annotations import pandas as pd def __SCREAMING_SNAKE_CASE ( a__ : list[int] ,a__ : list[int] ,a__ : int ) -> list[int]: __A : List[str] = [0] * no_of_processes __A : Dict = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(a__ ): __A : Tuple = burst_time[i] __A : Dict = 0 __A : Any = 0 __A : List[Any] = 999999999 __A : List[str] = 0 __A : List[str] = False # Process until all processes are completed while complete != no_of_processes: for j in range(a__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __A : List[Any] = remaining_time[j] __A : Union[str, Any] = j __A : int = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __A : int = remaining_time[short] if minm == 0: __A : List[str] = 999999999 if remaining_time[short] == 0: complete += 1 __A : Optional[Any] = False # Find finish time of current process __A : Union[str, Any] = increment_time + 1 # Calculate waiting time __A : Tuple = finish_time - arrival_time[short] __A : Tuple = finar - burst_time[short] if waiting_time[short] < 0: __A : str = 0 # Increment time increment_time += 1 return waiting_time def __SCREAMING_SNAKE_CASE ( a__ : list[int] ,a__ : int ,a__ : list[int] ) -> list[int]: __A : Any = [0] * no_of_processes for i in range(a__ ): __A : Optional[Any] = burst_time[i] + waiting_time[i] return turn_around_time def __SCREAMING_SNAKE_CASE ( a__ : list[int] ,a__ : list[int] ,a__ : int ) -> None: __A : int = 0 __A : Any = 0 for i in range(a__ ): __A : Dict = total_waiting_time + waiting_time[i] __A : List[str] = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print("""Average turn around time =""" ,total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') UpperCAmelCase_ : Tuple = int(input()) UpperCAmelCase_ : Dict = [0] * no_of_processes UpperCAmelCase_ : Union[str, Any] = [0] * no_of_processes UpperCAmelCase_ : Optional[int] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) UpperCAmelCase_ , UpperCAmelCase_ : Dict = map(int, input().split()) UpperCAmelCase_ : str = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCAmelCase_ : Union[str, Any] = burst_time UpperCAmelCase_ : Any = no_of_processes UpperCAmelCase_ : int = waiting_time UpperCAmelCase_ : Optional[Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) UpperCAmelCase_ : Tuple = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
17
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : str = logging.get_logger(__name__) __lowerCamelCase : Tuple = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class A_ (a_ ): """simple docstring""" a__ = '''gpt_bigcode''' a__ = ['''past_key_values'''] a__ = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :List[Any] , lowerCAmelCase__ :Any=50_257 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=768 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :int=12 , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[str]="gelu_pytorch_tanh" , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Any=1E-5 , lowerCAmelCase__ :Union[str, Any]=0.0_2 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=50_256 , lowerCAmelCase__ :List[str]=50_256 , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :int=True , **lowerCAmelCase__ :Union[str, Any] , ) -> Any: '''simple docstring''' snake_case_ : List[Any] = vocab_size snake_case_ : Any = n_positions snake_case_ : Any = n_embd snake_case_ : Optional[Any] = n_layer snake_case_ : List[Any] = n_head snake_case_ : Tuple = n_inner snake_case_ : str = activation_function snake_case_ : Union[str, Any] = resid_pdrop snake_case_ : Optional[Any] = embd_pdrop snake_case_ : Any = attn_pdrop snake_case_ : List[Any] = layer_norm_epsilon snake_case_ : Tuple = initializer_range snake_case_ : int = scale_attn_weights snake_case_ : Union[str, Any] = use_cache snake_case_ : Dict = attention_softmax_in_fpaa snake_case_ : Any = scale_attention_softmax_in_fpaa snake_case_ : List[str] = multi_query snake_case_ : List[str] = bos_token_id snake_case_ : Any = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
653
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A_ : int = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
709
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A_ : Optional[int] = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def UpperCamelCase (lowercase_: List[str] ) -> Any: config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def UpperCamelCase (lowercase_: Optional[int] ) -> Optional[Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowercase_ ) def UpperCamelCase (lowercase_: List[str] ) -> Optional[Any]: from transformers.testing_utils import pytest_terminal_summary_main A__ : List[Any] = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(lowercase_ , id=lowercase_ ) def UpperCamelCase (lowercase_: Union[str, Any] , lowercase_: int ) -> List[str]: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: A__ : Tuple = 0 # Doctest custom flag to ignore output. A_ : Tuple = doctest.register_optionflag('IGNORE_RESULT') A_ : Dict = doctest.OutputChecker class _a (__magic_name__ ): '''simple docstring''' def __A ( self , A__ , A__ , A__ ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , A__ , A__ , A__ ) A_ : str = CustomOutputChecker A_ : Dict = HfDoctestModule A_ : Optional[int] = HfDocTestParser
64
0
class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase = name _UpperCAmelCase = val def __str__( self : Tuple ) -> Optional[int]: """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self : Optional[int] , lowerCamelCase : Union[str, Any] ) -> Any: """simple docstring""" return self.val < other.val class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : int , lowerCamelCase : Optional[int] ) -> int: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = self.build_heap(lowerCamelCase ) def __getitem__( self : Any , lowerCamelCase : Union[str, Any] ) -> Any: """simple docstring""" return self.get_value(lowerCamelCase ) def lowerCamelCase ( self : int , lowerCamelCase : Optional[Any] ) -> Dict: """simple docstring""" return (idx - 1) // 2 def lowerCamelCase ( self : int , lowerCamelCase : Optional[int] ) -> int: """simple docstring""" return idx * 2 + 1 def lowerCamelCase ( self : int , lowerCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return idx * 2 + 2 def lowerCamelCase ( self : Dict , lowerCamelCase : Union[str, Any] ) -> List[Any]: """simple docstring""" return self.heap_dict[key] def lowerCamelCase ( self : Any , lowerCamelCase : Any ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = len(lowerCamelCase ) - 1 _UpperCAmelCase = self.get_parent_idx(lowerCamelCase ) for idx, i in enumerate(lowerCamelCase ): _UpperCAmelCase = idx _UpperCAmelCase = i.val for i in range(lowerCamelCase , -1 , -1 ): self.sift_down(lowerCamelCase , lowerCamelCase ) return array def lowerCamelCase ( self : str , lowerCamelCase : List[str] , lowerCamelCase : int ) -> List[str]: """simple docstring""" while True: _UpperCAmelCase = self.get_left_child_idx(lowerCamelCase ) # noqa: E741 _UpperCAmelCase = self.get_right_child_idx(lowerCamelCase ) _UpperCAmelCase = idx if l < len(lowerCamelCase ) and array[l] < array[idx]: _UpperCAmelCase = l if r < len(lowerCamelCase ) and array[r] < array[smallest]: _UpperCAmelCase = r if smallest != idx: _UpperCAmelCase , _UpperCAmelCase = array[smallest], array[idx] ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) _UpperCAmelCase = smallest else: break def lowerCamelCase ( self : Tuple , lowerCamelCase : Optional[int] ) -> Any: """simple docstring""" _UpperCAmelCase = self.get_parent_idx(lowerCamelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: _UpperCAmelCase , _UpperCAmelCase = self.heap[idx], self.heap[p] _UpperCAmelCase , _UpperCAmelCase = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) _UpperCAmelCase = p _UpperCAmelCase = self.get_parent_idx(lowerCamelCase ) def lowerCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" return self.heap[0] def lowerCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.heap[-1], self.heap[0] _UpperCAmelCase , _UpperCAmelCase = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) _UpperCAmelCase = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : List[str] ) -> List[Any]: """simple docstring""" self.heap.append(lowerCamelCase ) _UpperCAmelCase = len(self.heap ) - 1 _UpperCAmelCase = node.val self.sift_up(len(self.heap ) - 1 ) def lowerCamelCase ( self : List[Any] ) -> int: """simple docstring""" return len(self.heap ) == 0 def lowerCamelCase ( self : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any] ) -> List[str]: """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" _UpperCAmelCase = new_value _UpperCAmelCase = new_value self.sift_up(self.idx_of_element[node] ) __a: str = Node('''R''', -1) __a: List[Any] = Node('''B''', 6) __a: List[str] = Node('''A''', 3) __a: Optional[Any] = Node('''X''', 1) __a: Tuple = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __a: List[Any] = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
108
"""simple docstring""" import argparse import importlib from pathlib import Path # Test all the extensions added in the setup A__ : Optional[int] = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') A__ : Optional[int] = parser.parse_args() if args.check_lib: A__ : Union[str, Any] = importlib.import_module('transformers') A__ : Optional[Any] = Path(transformers_module.__file__).parent else: A__ : str = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
353
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class A_ ( __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Tuple = """resnet""" _UpperCamelCase : int = ["""basic""", """bottleneck"""] def __init__( self , snake_case=3 , snake_case=64 , snake_case=[256, 512, 1024, 2048] , snake_case=[3, 4, 6, 3] , snake_case="bottleneck" , snake_case="relu" , snake_case=False , snake_case=None , snake_case=None , **snake_case , ): super().__init__(**snake_case ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) lowercase = num_channels lowercase = embedding_size lowercase = hidden_sizes lowercase = depths lowercase = layer_type lowercase = hidden_act lowercase = downsample_in_first_stage lowercase = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(snake_case ) + 1 )] lowercase , lowercase = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Any = version.parse("""1.11""" ) @property def SCREAMING_SNAKE_CASE__ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 1E-3
711
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase = set() return any( node not in visited and depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for node in graph ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): visited.add(__SCREAMING_SNAKE_CASE ) rec_stk.add(__SCREAMING_SNAKE_CASE ) for node in graph[vertex]: if node not in visited: if depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__SCREAMING_SNAKE_CASE ) return False if __name__ == "__main__": from doctest import testmod testmod()
565
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig class _UpperCAmelCase ( _lowerCAmelCase ): a__ : Optional[Any] = "bert-generation" def __init__( self : Any , _lowercase : List[Any]=5_03_58 , _lowercase : str=10_24 , _lowercase : str=24 , _lowercase : int=16 , _lowercase : Any=40_96 , _lowercase : Union[str, Any]="gelu" , _lowercase : str=0.1 , _lowercase : Union[str, Any]=0.1 , _lowercase : Optional[Any]=5_12 , _lowercase : str=0.02 , _lowercase : Dict=1E-12 , _lowercase : int=0 , _lowercase : Optional[int]=2 , _lowercase : Dict=1 , _lowercase : Dict="absolute" , _lowercase : Tuple=True , **_lowercase : str , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
49
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase :Dict = 16 lowerCamelCase :List[Any] = 32 def __snake_case ( _UpperCamelCase , _UpperCamelCase = 16 ) -> Optional[Any]: _a = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) _a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. _a = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a = 16 elif accelerator.mixed_precision != "no": _a = 8 else: _a = None return tokenizer.pad( _UpperCamelCase , padding='''longest''' , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. _a = DataLoader( tokenized_datasets['''train'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase , drop_last=_UpperCamelCase ) _a = DataLoader( tokenized_datasets['''validation'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> Any: # Initialize accelerator _a = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a = config['''lr'''] _a = int(config['''num_epochs'''] ) _a = int(config['''seed'''] ) _a = int(config['''batch_size'''] ) _a = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _a = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a = batch_size // MAX_GPU_BATCH_SIZE _a = MAX_GPU_BATCH_SIZE set_seed(_UpperCamelCase ) _a , _a = get_dataloaders(_UpperCamelCase , _UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a = model.to(accelerator.device ) # Instantiate optimizer _a = AdamW(params=model.parameters() , lr=_UpperCamelCase ) # Instantiate scheduler _a = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a = model(**_UpperCamelCase ) _a = outputs.loss _a = loss / gradient_accumulation_steps accelerator.backward(_UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a = model(**_UpperCamelCase ) _a = outputs.logits.argmax(dim=-1 ) _a , _a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) _a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCamelCase ) def __snake_case ( ) -> int: _a = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=_UpperCamelCase , default=_UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) _a = parser.parse_args() _a = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
487
0
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger SCREAMING_SNAKE_CASE_: List[Any] ='<<<<<<< This should probably be modified because it mentions: ' SCREAMING_SNAKE_CASE_: List[Any] ='=======\n>>>>>>>\n' SCREAMING_SNAKE_CASE_: List[str] =[ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] SCREAMING_SNAKE_CASE_: Tuple =[ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def lowerCAmelCase_ ( snake_case_ : Namespace ) -> int: '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class __A ( UpperCamelCase__ ): @staticmethod def _lowercase (__a : ArgumentParser ): UpperCAmelCase_ = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=__a , required=__a , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=__a , required=__a , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__a ) def __init__(self : Dict , __a : str , __a : str , *__a : Union[str, Any] ): UpperCAmelCase_ = get_logger("datasets-cli/converting" ) UpperCAmelCase_ = tfds_path UpperCAmelCase_ = datasets_directory def _lowercase (self : Union[str, Any] ): if os.path.isdir(self._tfds_path ): UpperCAmelCase_ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase_ = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) UpperCAmelCase_ = os.path.abspath(self._datasets_directory ) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase_ = os.listdir(__a ) else: UpperCAmelCase_ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""" ) UpperCAmelCase_ = os.path.join(__a , __a ) UpperCAmelCase_ = os.path.join(__a , __a ) if not os.path.isfile(__a ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__a , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [] UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = [] for line in lines: UpperCAmelCase_ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase_ = "import datasets\n" elif "import tensorflow" in out_line: # order is important here UpperCAmelCase_ = "" continue elif "from absl import logging" in out_line: UpperCAmelCase_ = "from datasets import logging\n" elif "getLogger" in out_line: UpperCAmelCase_ = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase_ = True UpperCAmelCase_ = list(filter(lambda __a : e in out_line , __a ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__a ) + "\n" ) out_lines.append(__a ) out_lines.append(__a ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase_ = re.sub(__a , __a , __a ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase_ = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , __a ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) UpperCAmelCase_ = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase_ = True out_lines.append(__a ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase_ = f_name.replace(".py" , "" ) UpperCAmelCase_ = os.path.join(__a , __a ) UpperCAmelCase_ = os.path.join(__a , __a ) os.makedirs(__a , exist_ok=__a ) self._logger.info(f"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__a ) if needs_manual_update: with_manual_update.append(__a ) with open(__a , "w" , encoding="utf-8" ) as f: f.writelines(__a ) self._logger.info(f"""Converted in {output_file}""" ) for utils_file in utils_files: try: UpperCAmelCase_ = os.path.basename(__a ) UpperCAmelCase_ = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(f"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(__a , __a ) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
415
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): SCREAMING_SNAKE_CASE_: Dict ='pt' elif is_tf_available(): SCREAMING_SNAKE_CASE_: str ='tf' else: SCREAMING_SNAKE_CASE_: str ='jax' class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Optional[Any] = PerceiverTokenizer a__ : Union[str, Any] = False def _lowercase (self : int ): super().setUp() UpperCAmelCase_ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowercase (self : Dict ): return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" ) def _lowercase (self : List[str] , **__a : Dict ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def _lowercase (self : str , __a : Dict , __a : Dict=False , __a : List[str]=20 , __a : Optional[int]=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCAmelCase_ = [] for i in range(len(__a ) ): try: UpperCAmelCase_ = tokenizer.decode([i] , clean_up_tokenization_spaces=__a ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase_ = list(filter(lambda __a : re.match(r"^[ a-zA-Z]+$" , t[1] ) , __a ) ) UpperCAmelCase_ = list(filter(lambda __a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__a ) , __a ) ) if max_length is not None and len(__a ) > max_length: UpperCAmelCase_ = toks[:max_length] if min_length is not None and len(__a ) < min_length and len(__a ) > 0: while len(__a ) < min_length: UpperCAmelCase_ = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase_ = [t[0] for t in toks] # Ensure consistency UpperCAmelCase_ = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) if " " not in output_txt and len(__a ) > 1: UpperCAmelCase_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__a ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__a ) ) if with_prefix_space: UpperCAmelCase_ = " " + output_txt UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) return output_txt, output_ids def _lowercase (self : Dict ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = "Unicode €." UpperCAmelCase_ = tokenizer(__a ) UpperCAmelCase_ = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded["input_ids"] , __a ) # decoding UpperCAmelCase_ = tokenizer.decode(__a ) self.assertEqual(__a , "[CLS]Unicode €.[SEP]" ) UpperCAmelCase_ = tokenizer("e è é ê ë" ) UpperCAmelCase_ = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded["input_ids"] , __a ) # decoding UpperCAmelCase_ = tokenizer.decode(__a ) self.assertEqual(__a , "[CLS]e è é ê ë[SEP]" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off UpperCAmelCase_ = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on UpperCAmelCase_ = tokenizer(__a , padding=__a , return_tensors=__a ) self.assertIsInstance(__a , __a ) if FRAMEWORK != "jax": UpperCAmelCase_ = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__a , __a ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCAmelCase_ = tokenizer(__a , padding=__a , return_tensors=__a ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , __a ) self.assertIn("attention_mask" , __a ) self.assertNotIn("decoder_input_ids" , __a ) self.assertNotIn("decoder_attention_mask" , __a ) def _lowercase (self : List[str] ): UpperCAmelCase_ = self.perceiver_tokenizer UpperCAmelCase_ = [ "Summary of the text.", "Another summary.", ] UpperCAmelCase_ = tokenizer( text_target=__a , max_length=32 , padding="max_length" , truncation=__a , return_tensors=__a ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowercase (self : Any ): # safety check on max_len default value so we are sure the test works UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test UpperCAmelCase_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = " He is very happy, UNwant\u00E9d,running" UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) tokenizer.save_pretrained(__a ) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(__a ) UpperCAmelCase_ = after_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) shutil.rmtree(__a ) UpperCAmelCase_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) UpperCAmelCase_ = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) UpperCAmelCase_ = tokenizer.encode(__a , add_special_tokens=__a ) tokenizer.save_pretrained(__a ) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(__a ) UpperCAmelCase_ = after_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) UpperCAmelCase_ = tokenizer.__class__.from_pretrained(__a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__a ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__a ) with open(os.path.join(__a , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ = json.load(__a ) with open(os.path.join(__a , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: UpperCAmelCase_ = json.load(__a ) UpperCAmelCase_ = [f"""<extra_id_{i}>""" for i in range(125 )] UpperCAmelCase_ = added_tokens_extra_ids + [ "an_additional_special_token" ] UpperCAmelCase_ = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(__a , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__a , __a ) with open(os.path.join(__a , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__a , __a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ = tokenizer_class.from_pretrained( __a , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=__a )] UpperCAmelCase_ = tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def _lowercase (self : int ): UpperCAmelCase_ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , "�" ) def _lowercase (self : Optional[int] ): pass def _lowercase (self : List[str] ): pass def _lowercase (self : Tuple ): pass def _lowercase (self : List[Any] ): pass def _lowercase (self : int ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens UpperCAmelCase_ = self.get_tokenizers(fast=__a , do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase_ = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"] UpperCAmelCase_ = tokenizer.convert_tokens_to_string(__a ) self.assertIsInstance(__a , __a )
415
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : str = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
679
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a : Optional[int] = logging.get_logger(__name__) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = R"\w+[.]\d+" UpperCAmelCase : Dict = re.findall(__magic_name__ , __magic_name__ ) for pat in pats: UpperCAmelCase : Tuple = key.replace(__magic_name__ , "_".join(pat.split("." ) ) ) return key def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase : Dict = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase : int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": UpperCAmelCase : Union[str, Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=42 ): '''simple docstring''' UpperCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase : Tuple = flax_model.init_weights(PRNGKey(__magic_name__ ) ) UpperCAmelCase : Optional[Any] = flatten_dict(__magic_name__ ) UpperCAmelCase : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase : Tuple = rename_key(__magic_name__ ) UpperCAmelCase : List[str] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase : Optional[int] = rename_key_and_reshape_tensor(__magic_name__ , __magic_name__ , __magic_name__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # also add unexpected weight so that warning is thrown UpperCAmelCase : Optional[int] = jnp.asarray(__magic_name__ ) return unflatten_dict(__magic_name__ )
679
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : Dict ) -> str: '''simple docstring''' UpperCamelCase__ : Optional[int] = 10 def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = [1, 2, 3, 4] UpperCamelCase__ : str = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCamelCase__ , self.block_size , 0 ) , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Any ) -> str: '''simple docstring''' UpperCamelCase__ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCamelCase__ : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase__ , self.block_size , 0 ) , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Any ) -> int: '''simple docstring''' UpperCamelCase__ : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCamelCase__ : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase__ , self.block_size , 0 ) , lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : str = '''It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this.''' UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = process_story(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , [] ) def UpperCAmelCase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCamelCase__ : Optional[int] = '''''' UpperCamelCase__ , UpperCamelCase__ : List[str] = process_story(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , [] ) self.assertEqual(lowerCamelCase__ , [] ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Any = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCamelCase__ , UpperCamelCase__ : List[Any] = process_story(lowerCamelCase__ ) UpperCamelCase__ : Dict = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = ['''It was the best of times.'''] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : str = torch.tensor([1, 2, 3, 4] ) UpperCamelCase__ : Dict = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCamelCase__ , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCamelCase__ : Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase__ , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCamelCase__ : List[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCamelCase__ : Dict = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase__ , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : str = 101 UpperCamelCase__ : Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCamelCase__ : List[str] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCamelCase__ : List[str] = compute_token_type_ids(lowerCamelCase__ , lowerCamelCase__ ) np.testing.assert_array_equal(lowerCamelCase__ , lowerCamelCase__ )
720
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = {"vocab_file": "sentencepiece.bpe.model"} __UpperCamelCase : List[Any] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } __UpperCamelCase : int = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } __UpperCamelCase : int = "▁" class __magic_name__ ( __lowerCAmelCase): A: Tuple = VOCAB_FILES_NAMES A: Optional[int] = PRETRAINED_VOCAB_FILES_MAP A: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A: Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple="<s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : int="</s>" , lowerCamelCase__ : Optional[Any]="<s>" , lowerCamelCase__ : List[str]="<unk>" , lowerCamelCase__ : str="<pad>" , lowerCamelCase__ : int="<mask>" , lowerCamelCase__ : Optional[Dict[str, Any]] = None , **lowerCamelCase__ : Any , ) -> None: '''simple docstring''' UpperCamelCase__ : str = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token UpperCamelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) UpperCamelCase__ : Any = vocab_file UpperCamelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) UpperCamelCase__ : Any = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} UpperCamelCase__ : Tuple = len(self.sp_model ) - 1 UpperCamelCase__ : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ : List[str] = [self.cls_token_id] UpperCamelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None , lowerCamelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCamelCase__ : int = [self.sep_token_id] UpperCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' return len(self.sp_model ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Tuple = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : int , lowerCamelCase__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ : List[str] = self.sp_model.PieceToId(lowerCamelCase__ ) return spm_id if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : int ) -> List[str]: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCamelCase__ ) def UpperCAmelCase__ ( self : str , lowerCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Any = '''''' UpperCamelCase__ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase__ ) + token UpperCamelCase__ : str = True UpperCamelCase__ : Tuple = [] else: current_sub_tokens.append(lowerCamelCase__ ) UpperCamelCase__ : Any = False out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def __getstate__( self : Tuple ) -> Dict: '''simple docstring''' UpperCamelCase__ : str = self.__dict__.copy() UpperCamelCase__ : int = None return state def __setstate__( self : Tuple , lowerCamelCase__ : Any ) -> str: '''simple docstring''' UpperCamelCase__ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ : Any = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: UpperCamelCase__ : int = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (out_vocab_file,)
106
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
182
"""simple docstring""" import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = 10 def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = [1, 2, 3, 4] UpperCAmelCase__ : Tuple = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_lowerCamelCase , self.block_size , 0 ) , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCAmelCase__ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowerCamelCase , self.block_size , 0 ) , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCAmelCase__ : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_lowerCamelCase , self.block_size , 0 ) , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" UpperCAmelCase__ , UpperCAmelCase__ : Any = process_story(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = """""" UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = process_story(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , [] ) self.assertEqual(_lowerCamelCase , [] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = process_story(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : List[Any] = ["""It was the best of times."""] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = torch.tensor([1, 2, 3, 4] ) UpperCAmelCase__ : str = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_lowerCamelCase , 0 ).numpy() , expected.numpy() ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCAmelCase__ : Union[str, Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowerCamelCase , 23 ).numpy() , expected.numpy() ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCAmelCase__ : Any = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_lowerCamelCase , 1 ).numpy() , expected.numpy() ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = 101 UpperCAmelCase__ : Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCAmelCase__ : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCAmelCase__ : int = compute_token_type_ids(_lowerCamelCase , _lowerCamelCase ) np.testing.assert_array_equal(_lowerCamelCase , _lowerCamelCase )
182
1
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __UpperCAmelCase ( a__ ): '''simple docstring''' lowercase : Any = ["vqvae"] def __init__( self , _A , _A , _A , _A , ): '''simple docstring''' super().__init__() self.register_modules(unet=_A , scheduler=_A , mel=_A , vqvae=_A ) def UpperCamelCase_ ( self ): '''simple docstring''' return 5_0 if isinstance(self.scheduler , _A ) else 1_0_0_0 @torch.no_grad() def __call__( self , _A = 1 , _A = None , _A = None , _A = 0 , _A = 0 , _A = None , _A = None , _A = 0 , _A = 0 , _A = None , _A = 0 , _A = None , _A = None , _A=True , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =steps or self.get_default_steps() self.scheduler.set_timesteps(_A ) _SCREAMING_SNAKE_CASE =step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _SCREAMING_SNAKE_CASE =(self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _SCREAMING_SNAKE_CASE =randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_A , device=self.device , ) _SCREAMING_SNAKE_CASE =noise _SCREAMING_SNAKE_CASE =None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_A , _A ) _SCREAMING_SNAKE_CASE =self.mel.audio_slice_to_image(_A ) _SCREAMING_SNAKE_CASE =np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) _SCREAMING_SNAKE_CASE =(input_image / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE =torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _SCREAMING_SNAKE_CASE =self.vqvae.encode(torch.unsqueeze(_A , 0 ) ).latent_dist.sample( generator=_A )[0] _SCREAMING_SNAKE_CASE =self.vqvae.config.scaling_factor * input_images if start_step > 0: _SCREAMING_SNAKE_CASE =self.scheduler.add_noise(_A , _A , self.scheduler.timesteps[start_step - 1] ) _SCREAMING_SNAKE_CASE =( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _SCREAMING_SNAKE_CASE =int(mask_start_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE =int(mask_end_secs * pixels_per_second ) _SCREAMING_SNAKE_CASE =self.scheduler.add_noise(_A , _A , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _A ): _SCREAMING_SNAKE_CASE =self.unet(_A , _A , _A )['sample'] else: _SCREAMING_SNAKE_CASE =self.unet(_A , _A )['sample'] if isinstance(self.scheduler , _A ): _SCREAMING_SNAKE_CASE =self.scheduler.step( model_output=_A , timestep=_A , sample=_A , eta=_A , generator=_A , )['prev_sample'] else: _SCREAMING_SNAKE_CASE =self.scheduler.step( model_output=_A , timestep=_A , sample=_A , generator=_A , )['prev_sample'] if mask is not None: if mask_start > 0: _SCREAMING_SNAKE_CASE =mask[:, step, :, :mask_start] if mask_end > 0: _SCREAMING_SNAKE_CASE =mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _SCREAMING_SNAKE_CASE =1 / self.vqvae.config.scaling_factor * images _SCREAMING_SNAKE_CASE =self.vqvae.decode(_A )['sample'] _SCREAMING_SNAKE_CASE =(images / 2 + 0.5).clamp(0 , 1 ) _SCREAMING_SNAKE_CASE =images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _SCREAMING_SNAKE_CASE =(images * 2_5_5).round().astype('''uint8''' ) _SCREAMING_SNAKE_CASE =list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_A , mode='''RGB''' ).convert('''L''' ) for _ in images) ) _SCREAMING_SNAKE_CASE =[self.mel.image_to_audio(_A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) , **ImagePipelineOutput(_A ) ) @torch.no_grad() def UpperCamelCase_ ( self , _A , _A = 5_0 ): '''simple docstring''' assert isinstance(self.scheduler , _A ) self.scheduler.set_timesteps(_A ) _SCREAMING_SNAKE_CASE =np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) _SCREAMING_SNAKE_CASE =(sample / 2_5_5) * 2 - 1 _SCREAMING_SNAKE_CASE =torch.Tensor(_A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _SCREAMING_SNAKE_CASE =t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _SCREAMING_SNAKE_CASE =self.scheduler.alphas_cumprod[t] _SCREAMING_SNAKE_CASE =( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _SCREAMING_SNAKE_CASE =1 - alpha_prod_t _SCREAMING_SNAKE_CASE =self.unet(_A , _A )['sample'] _SCREAMING_SNAKE_CASE =(1 - alpha_prod_t_prev) ** 0.5 * model_output _SCREAMING_SNAKE_CASE =(sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _SCREAMING_SNAKE_CASE =sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCamelCase_ ( _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =acos(torch.dot(torch.flatten(_A ) , torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) ) return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A )
716
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Union[str, Any] = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
165
0
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ ) ->bool: if num < 0: return False lowercase_ = num lowercase_ = 0 while num > 0: lowercase_ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
451
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 16 ) ->str: lowercase_ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowercase_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(SCREAMING_SNAKE_CASE_ ): # max_length=None => use the model max length (it's actually the default) lowercase_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase_ = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(SCREAMING_SNAKE_CASE_ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase_ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase_ = 16 elif accelerator.mixed_precision != "no": lowercase_ = 8 else: lowercase_ = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding="""longest""" , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) # Instantiate dataloaders. lowercase_ = DataLoader( tokenized_datasets["""train"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) lowercase_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __snake_case = mocked_dataloaders # noqa: F811 def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Dict: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , SCREAMING_SNAKE_CASE_ ) == "1": lowercase_ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowercase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="""all""" , project_dir=args.project_dir ) else: lowercase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ = config["""lr"""] lowercase_ = int(config["""num_epochs"""] ) lowercase_ = int(config["""seed"""] ) lowercase_ = int(config["""batch_size"""] ) set_seed(SCREAMING_SNAKE_CASE_ ) lowercase_ , lowercase_ = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation lowercase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase_ = batch_size // MAX_GPU_BATCH_SIZE lowercase_ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase_ = model.to(accelerator.device ) # Instantiate optimizer lowercase_ = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler lowercase_ = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowercase_ = os.path.split(SCREAMING_SNAKE_CASE_ )[-1].split(""".""" )[0] accelerator.init_trackers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowercase_ = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase_ = model(**SCREAMING_SNAKE_CASE_ ) lowercase_ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowercase_ = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowercase_ = model(**SCREAMING_SNAKE_CASE_ ) lowercase_ = outputs.logits.argmax(dim=-1 ) lowercase_ , lowercase_ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) lowercase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { """accuracy""": eval_metric["""accuracy"""], """f1""": eval_metric["""f1"""], """train_loss""": total_loss.item() / len(SCREAMING_SNAKE_CASE_ ), """epoch""": epoch, } , step=SCREAMING_SNAKE_CASE_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def A_ ( ) ->Union[str, Any]: lowercase_ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) parser.add_argument( """--with_tracking""" , action="""store_true""" , help="""Whether to load in all available experiment trackers from the environment and use them for logging.""" , ) parser.add_argument( """--project_dir""" , type=SCREAMING_SNAKE_CASE_ , default="""logs""" , help="""Location on where to store experiment tracking logs` and relevent project information""" , ) lowercase_ = parser.parse_args() lowercase_ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
451
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : int = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class _UpperCamelCase (a_ ): snake_case_ = """luke""" def __init__( self , __UpperCamelCase=5_0_2_6_7 , __UpperCamelCase=5_0_0_0_0_0 , __UpperCamelCase=7_6_8 , __UpperCamelCase=2_5_6 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1e-12 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , **__UpperCamelCase , )-> Any: super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __lowerCAmelCase = vocab_size __lowerCAmelCase = entity_vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = entity_emb_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = use_entity_aware_attention __lowerCAmelCase = classifier_dropout
719
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : int = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class _UpperCamelCase (a_ ): snake_case_ = """swin2sr""" snake_case_ = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __UpperCamelCase=6_4 , __UpperCamelCase=1 , __UpperCamelCase=3 , __UpperCamelCase=1_8_0 , __UpperCamelCase=[6, 6, 6, 6, 6, 6] , __UpperCamelCase=[6, 6, 6, 6, 6, 6] , __UpperCamelCase=8 , __UpperCamelCase=2.0 , __UpperCamelCase=True , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase="gelu" , __UpperCamelCase=False , __UpperCamelCase=0.0_2 , __UpperCamelCase=1e-5 , __UpperCamelCase=2 , __UpperCamelCase=1.0 , __UpperCamelCase="1conv" , __UpperCamelCase="pixelshuffle" , **__UpperCamelCase , )-> Tuple: super().__init__(**__UpperCamelCase ) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = embed_dim __lowerCAmelCase = depths __lowerCAmelCase = len(__UpperCamelCase ) __lowerCAmelCase = num_heads __lowerCAmelCase = window_size __lowerCAmelCase = mlp_ratio __lowerCAmelCase = qkv_bias __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = drop_path_rate __lowerCAmelCase = hidden_act __lowerCAmelCase = use_absolute_embeddings __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = upscale __lowerCAmelCase = img_range __lowerCAmelCase = resi_connection __lowerCAmelCase = upsampler
290
0
def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) A_ = str(SCREAMING_SNAKE_CASE ) A_ = ''''''.join(sorted(SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _lowerCamelCase ( SCREAMING_SNAKE_CASE = 99 ): '''simple docstring''' if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) A_ = 0 A_ = 1 while True: if check_bouncy(SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f'{solution(99)}')
203
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowercase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowercase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } __lowercase = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } __lowercase = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } __lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } __lowercase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } __lowercase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class _lowercase ( __lowerCamelCase ): _lowercase : List[Any] = VOCAB_FILES_NAMES _lowercase : Tuple = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : int = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowercase ( __lowerCamelCase ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[int] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __lowercase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) __lowercase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) __lowercase = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(__lowerCamelCase ) class _lowercase : def __call__( self : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Union[bool, str] = False , lowerCamelCase__ : Union[bool, str] = False , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : Optional[bool] = None , **lowerCamelCase__ : Optional[int] , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) elif titles is None or texts is None: A_ = titles if texts is None else texts return super().__call__( lowerCamelCase__ , lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) A_ = titles if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [titles] A_ = texts if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [texts] A_ = len(lowerCamelCase__ ) A_ = questions if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) else [questions] * n_passages if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( F"There should be as many titles than texts but got {len(lowerCamelCase__ )} titles and {len(lowerCamelCase__ )} texts." ) A_ = super().__call__(lowerCamelCase__ , lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )['''input_ids'''] A_ = super().__call__(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ )['''input_ids'''] A_ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCamelCase__ , lowerCamelCase__ ) ] } if return_attention_mask is not False: A_ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) A_ = attention_mask return self.pad(lowerCamelCase__ , padding=lowerCamelCase__ , max_length=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) def UpperCamelCase ( self : int , lowerCamelCase__ : BatchEncoding , lowerCamelCase__ : DPRReaderOutput , lowerCamelCase__ : int = 1_6 , lowerCamelCase__ : int = 6_4 , lowerCamelCase__ : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" A_ = reader_input['''input_ids'''] A_ ,A_ ,A_ = reader_output[:3] A_ = len(lowerCamelCase__ ) A_ = sorted(range(lowerCamelCase__ ) , reverse=lowerCamelCase__ , key=relevance_logits.__getitem__ ) A_ = [] for doc_id in sorted_docs: A_ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence A_ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A_ = sequence_ids.index(self.pad_token_id ) else: A_ = len(lowerCamelCase__ ) A_ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCamelCase__ , top_spans=lowerCamelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCamelCase__ , start_index=lowerCamelCase__ , end_index=lowerCamelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCamelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase ( self : str , lowerCamelCase__ : List[int] , lowerCamelCase__ : List[int] , lowerCamelCase__ : int , lowerCamelCase__ : int , ) -> List[DPRSpanPrediction]: """simple docstring""" A_ = [] for start_index, start_score in enumerate(lowerCamelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) A_ = sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[1] , reverse=lowerCamelCase__ ) A_ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"Wrong span indices: [{start_index}:{end_index}]" ) A_ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCamelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__lowerCamelCase ) class _lowercase ( __lowerCamelCase,__lowerCamelCase ): _lowercase : Any = VOCAB_FILES_NAMES _lowercase : Any = READER_PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION _lowercase : List[Any] = ['input_ids', 'attention_mask']
203
1
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a_ = "sshleifer/bart-tiny-random" a_ = "patrickvonplaten/t5-tiny-random" @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case__ ( self): return AutoConfig.from_pretrained(lowercase_) def snake_case__ ( self): snake_case_ : Dict = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.num_hidden_layers , 1) def snake_case__ ( self): snake_case_ : int = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=lowercase_) def snake_case__ ( self): snake_case_ : str = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=lowercase_) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers) def snake_case__ ( self): snake_case_ : Optional[int] = create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=1 , d=1) self.assertEqual(student.config.encoder_layers , 1) self.assertEqual(student.config.decoder_layers , 1) def snake_case__ ( self): with self.assertRaises(lowercase_): create_student_by_copying_alternating_layers(lowercase_ , tempfile.mkdtemp() , e=lowercase_ , d=lowercase_)
703
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = 1_6 ): """simple docstring""" snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) snake_case_ : int = DatasetDict( { "train": dataset["train"].select(__SCREAMING_SNAKE_CASE ), "validation": dataset["train"].select(__SCREAMING_SNAKE_CASE ), "test": dataset["validation"], } ) def tokenize_function(__SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case_ : str = tokenizer(examples["sentence1"], examples["sentence2"], truncation=__SCREAMING_SNAKE_CASE, max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ : List[Any] = datasets.map( __SCREAMING_SNAKE_CASE, batched=__SCREAMING_SNAKE_CASE, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ : Dict = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(__SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ : Optional[int] = 1_6 elif accelerator.mixed_precision != "no": snake_case_ : Tuple = 8 else: snake_case_ : Union[str, Any] = None return tokenizer.pad( __SCREAMING_SNAKE_CASE, padding="longest", max_length=__SCREAMING_SNAKE_CASE, pad_to_multiple_of=__SCREAMING_SNAKE_CASE, return_tensors="pt", ) # Instantiate dataloaders. snake_case_ : Optional[int] = DataLoader( tokenized_datasets["train"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) snake_case_ : int = DataLoader( tokenized_datasets["validation"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = DataLoader( tokenized_datasets["test"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader, test_dataloader def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Optional[Any] = [] # Download the dataset snake_case_ : Tuple = load_dataset("glue", "mrpc" ) # Create our splits snake_case_ : Union[str, Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator snake_case_ : Optional[Any] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : Optional[Any] = config["lr"] snake_case_ : str = int(config["num_epochs"] ) snake_case_ : Tuple = int(config["seed"] ) snake_case_ : Optional[Any] = int(config["batch_size"] ) snake_case_ : List[Any] = evaluate.load("glue", "mrpc" ) # If the batch size is too big we use gradient accumulation snake_case_ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case_ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE snake_case_ : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(__SCREAMING_SNAKE_CASE ) # New Code # # Create our folds: snake_case_ : int = kfold.split(np.zeros(datasets["train"].num_rows ), datasets["train"]["label"] ) snake_case_ : Optional[int] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__SCREAMING_SNAKE_CASE ): snake_case_ , snake_case_ , snake_case_ : Tuple = get_fold_dataloaders( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer snake_case_ : Any = AdamW(params=model.parameters(), lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler snake_case_ : List[str] = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE, num_warmup_steps=1_0_0, num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : str = accelerator.prepare( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case_ : List[Any] = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = outputs.loss snake_case_ : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(__SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : Dict = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : str = outputs.logits.argmax(dim=-1 ) snake_case_ , snake_case_ : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE, references=__SCREAMING_SNAKE_CASE, ) snake_case_ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:', __SCREAMING_SNAKE_CASE ) # New Code # # We also run predictions on the test set at the very end snake_case_ : Any = [] for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : int = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = outputs.logits snake_case_ , snake_case_ : List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__SCREAMING_SNAKE_CASE, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: snake_case_ : List[Any] = torch.cat(__SCREAMING_SNAKE_CASE, dim=0 ) snake_case_ : Any = torch.stack(__SCREAMING_SNAKE_CASE, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) snake_case_ : Tuple = metric.compute(predictions=__SCREAMING_SNAKE_CASE, references=__SCREAMING_SNAKE_CASE ) accelerator.print("Average test metrics from all folds:", __SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( ): """simple docstring""" snake_case_ : Tuple = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision", type=__SCREAMING_SNAKE_CASE, default=__SCREAMING_SNAKE_CASE, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds", type=__SCREAMING_SNAKE_CASE, default=3, help="The number of splits to perform across the dataset" ) snake_case_ : List[Any] = parser.parse_args() snake_case_ : Optional[Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
92
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } _UpperCamelCase = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> Dict: for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase__ : Optional[Any] = "lm_head" lowerCAmelCase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: lowerCAmelCase__ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: lowerCAmelCase__ : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ : int = value elif weight_type == "weight_g": lowerCAmelCase__ : int = value elif weight_type == "weight_v": lowerCAmelCase__ : str = value elif weight_type == "bias": lowerCAmelCase__ : Union[str, Any] = value else: lowerCAmelCase__ : Optional[int] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ) -> Optional[int]: lowerCAmelCase__ : List[Any] = [] lowerCAmelCase__ : str = fairseq_model.state_dict() lowerCAmelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ : Any = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase__ : Dict = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ : Optional[int] = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase__ : Tuple = True if "*" in mapped_key: lowerCAmelCase__ : Any = name.split(_lowerCAmelCase )[0].split("." )[-2] lowerCAmelCase__ : Any = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: lowerCAmelCase__ : List[Any] = "weight_g" elif "weight_v" in name: lowerCAmelCase__ : List[str] = "weight_v" elif "bias" in name: lowerCAmelCase__ : Any = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ : Optional[int] = "weight" else: lowerCAmelCase__ : Any = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> str: lowerCAmelCase__ : int = full_name.split("conv_layers." )[-1] lowerCAmelCase__ : str = name.split("." ) lowerCAmelCase__ : Union[str, Any] = int(items[0] ) lowerCAmelCase__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase__ : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=True ) -> Dict: if config_path is not None: lowerCAmelCase__ : List[Any] = UniSpeechConfig.from_pretrained(_lowerCAmelCase ) else: lowerCAmelCase__ : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase__ : str = Dictionary.load_from_json(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ : str = target_dict.pad_index lowerCAmelCase__ : Dict = target_dict.bos_index lowerCAmelCase__ : List[Any] = target_dict.eos_index lowerCAmelCase__ : Dict = len(target_dict.symbols ) lowerCAmelCase__ : Tuple = os.path.join(_lowerCAmelCase , "vocab.json" ) if not os.path.isdir(_lowerCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) lowerCAmelCase__ : Any = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ : Tuple = 4_2 lowerCAmelCase__ : Dict = 4_3 with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase__ : Union[str, Any] = WavaVecaPhonemeCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCAmelCase , ) lowerCAmelCase__ : Dict = True if config.feat_extract_norm == "layer" else False lowerCAmelCase__ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) lowerCAmelCase__ : Tuple = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) lowerCAmelCase__ : int = UniSpeechForCTC(_lowerCAmelCase ) else: lowerCAmelCase__ : Any = UniSpeechForPreTraining(_lowerCAmelCase ) if is_finetuned: lowerCAmelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCAmelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase__ : List[str] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) hf_unispeech.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) _UpperCamelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
453
from math import sqrt def __snake_case ( _lowerCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( _lowerCAmelCase : int = 10001 ) -> int: A_ : Any = 0 A_ : Tuple = 1 while count != nth and number < 3: number += 1 if is_prime(_lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(_lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
454
0
import pickle import numpy as np from matplotlib import pyplot as plt class UpperCamelCase__ : '''simple docstring''' def __init__( self, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=0.2, snake_case__=0.2 ) -> Tuple: """simple docstring""" lowercase_ : List[str] = bp_numa lowercase_ : str = bp_numa lowercase_ : Optional[int] = bp_numa lowercase_ : Optional[int] = conva_get[:2] lowercase_ : Tuple = conva_get[2] lowercase_ : List[Any] = size_pa lowercase_ : Any = rate_w lowercase_ : str = rate_t lowercase_ : List[Any] = [ np.mat(-1 * np.random.rand(self.conva[0], self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowercase_ : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) lowercase_ : Optional[Any] = np.mat(-1 * np.random.rand(self.num_bpa, self.num_bpa ) + 0.5 ) lowercase_ : Tuple = -2 * np.random.rand(self.conva[1] ) + 1 lowercase_ : Dict = -2 * np.random.rand(self.num_bpa ) + 1 lowercase_ : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def snake_case__ ( self, snake_case__ ) -> Dict: """simple docstring""" # save model dict with pickle lowercase_ : Optional[int] = { """num_bp1""": self.num_bpa, """num_bp2""": self.num_bpa, """num_bp3""": self.num_bpa, """conv1""": self.conva, """step_conv1""": self.step_conva, """size_pooling1""": self.size_poolinga, """rate_weight""": self.rate_weight, """rate_thre""": self.rate_thre, """w_conv1""": self.w_conva, """wkj""": self.wkj, """vji""": self.vji, """thre_conv1""": self.thre_conva, """thre_bp2""": self.thre_bpa, """thre_bp3""": self.thre_bpa, } with open(snake_case__, """wb""" ) as f: pickle.dump(snake_case__, snake_case__ ) print(f"""Model saved: {save_path}""" ) @classmethod def snake_case__ ( cls, snake_case__ ) -> Optional[int]: """simple docstring""" # read saved model with open(snake_case__, """rb""" ) as f: lowercase_ : Tuple = pickle.load(snake_case__ ) # noqa: S301 lowercase_ : Dict = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) lowercase_ : Optional[Any] = model_dic.get("""size_pooling1""" ) lowercase_ : Optional[Any] = model_dic.get("""num_bp1""" ) lowercase_ : Any = model_dic.get("""num_bp2""" ) lowercase_ : Optional[int] = model_dic.get("""num_bp3""" ) lowercase_ : Any = model_dic.get("""rate_weight""" ) lowercase_ : Optional[Any] = model_dic.get("""rate_thre""" ) # create model instance lowercase_ : int = CNN(snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) # modify model parameter lowercase_ : Union[str, Any] = model_dic.get("""w_conv1""" ) lowercase_ : Optional[int] = model_dic.get("""wkj""" ) lowercase_ : List[Any] = model_dic.get("""vji""" ) lowercase_ : List[str] = model_dic.get("""thre_conv1""" ) lowercase_ : Optional[Any] = model_dic.get("""thre_bp2""" ) lowercase_ : Union[str, Any] = model_dic.get("""thre_bp3""" ) return conv_ins def snake_case__ ( self, snake_case__ ) -> str: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def snake_case__ ( self, snake_case__ ) -> Any: """simple docstring""" return round(snake_case__, 3 ) def snake_case__ ( self, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: """simple docstring""" # convolution process lowercase_ : List[Any] = convs[0] lowercase_ : List[str] = convs[1] lowercase_ : Any = np.shape(snake_case__ )[0] # get the data slice of original image data, data_focus lowercase_ : Tuple = [] for i_focus in range(0, size_data - size_conv + 1, snake_case__ ): for j_focus in range(0, size_data - size_conv + 1, snake_case__ ): lowercase_ : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(snake_case__ ) # calculate the feature map of every single kernel, and saved as list of matrix lowercase_ : List[str] = [] lowercase_ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(snake_case__ ): lowercase_ : Optional[Any] = [] for i_focus in range(len(snake_case__ ) ): lowercase_ : int = ( np.sum(np.multiply(data_focus[i_focus], w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(snake_case__ ) ) lowercase_ : str = np.asmatrix(snake_case__ ).reshape( snake_case__, snake_case__ ) data_featuremap.append(snake_case__ ) # expanding the data slice to One dimenssion lowercase_ : Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(snake_case__ ) ) lowercase_ : List[str] = np.asarray(snake_case__ ) return focus_list, data_featuremap def snake_case__ ( self, snake_case__, snake_case__, snake_case__="average_pool" ) -> Optional[Any]: """simple docstring""" # pooling process lowercase_ : Optional[int] = len(featuremaps[0] ) lowercase_ : str = int(size_map / size_pooling ) lowercase_ : Optional[Any] = [] for i_map in range(len(snake_case__ ) ): lowercase_ : Tuple = featuremaps[i_map] lowercase_ : Any = [] for i_focus in range(0, snake_case__, snake_case__ ): for j_focus in range(0, snake_case__, snake_case__ ): lowercase_ : Tuple = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(snake_case__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(snake_case__ ) ) lowercase_ : Optional[int] = np.asmatrix(snake_case__ ).reshape(snake_case__, snake_case__ ) featuremap_pooled.append(snake_case__ ) return featuremap_pooled def snake_case__ ( self, snake_case__ ) -> Optional[int]: """simple docstring""" # expanding three dimension data to one dimension list lowercase_ : str = [] for i in range(len(snake_case__ ) ): lowercase_ : Optional[Any] = np.shape(data[i] ) lowercase_ : Dict = data[i].reshape(1, shapes[0] * shapes[1] ) lowercase_ : Dict = data_listed.getA().tolist()[0] data_expanded.extend(snake_case__ ) lowercase_ : Optional[int] = np.asarray(snake_case__ ) return data_expanded def snake_case__ ( self, snake_case__ ) -> Tuple: """simple docstring""" # expanding matrix to one dimension list lowercase_ : Optional[int] = np.asarray(snake_case__ ) lowercase_ : Any = np.shape(snake_case__ ) lowercase_ : Dict = data_mat.reshape(1, shapes[0] * shapes[1] ) return data_expanded def snake_case__ ( self, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> Tuple: """simple docstring""" lowercase_ : int = [] lowercase_ : str = 0 for i_map in range(snake_case__ ): lowercase_ : Dict = np.ones((size_map, size_map) ) for i in range(0, snake_case__, snake_case__ ): for j in range(0, snake_case__, snake_case__ ): lowercase_ : Tuple = pd_pool[ i_pool ] lowercase_ : Tuple = i_pool + 1 lowercase_ : List[str] = np.multiply( snake_case__, np.multiply(out_map[i_map], (1 - out_map[i_map]) ) ) pd_all.append(snake_case__ ) return pd_all def snake_case__ ( self, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=bool ) -> Any: """simple docstring""" # model traning print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(snake_case__ )) ) print((""" - - Shape: Teach_Data """, np.shape(snake_case__ )) ) lowercase_ : Tuple = 0 lowercase_ : str = [] lowercase_ : int = 1_00_00 while rp < n_repeat and mse >= error_accuracy: lowercase_ : str = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(snake_case__ ) ): # print('------------Learning Image: %d--------------'%p) lowercase_ : Dict = np.asmatrix(datas_train[p] ) lowercase_ : List[str] = np.asarray(datas_teach[p] ) lowercase_ , lowercase_ : Tuple = self.convolute( snake_case__, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) lowercase_ : Union[str, Any] = self.pooling(snake_case__, self.size_poolinga ) lowercase_ : List[str] = np.shape(snake_case__ ) lowercase_ : Tuple = self._expand(snake_case__ ) lowercase_ : Dict = data_bp_input lowercase_ : Union[str, Any] = np.dot(snake_case__, self.vji.T ) - self.thre_bpa lowercase_ : Optional[Any] = self.sig(snake_case__ ) lowercase_ : Union[str, Any] = np.dot(snake_case__, self.wkj.T ) - self.thre_bpa lowercase_ : str = self.sig(snake_case__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowercase_ : Dict = np.multiply( (data_teach - bp_outa), np.multiply(snake_case__, (1 - bp_outa) ) ) lowercase_ : Union[str, Any] = np.multiply( np.dot(snake_case__, self.wkj ), np.multiply(snake_case__, (1 - bp_outa) ) ) lowercase_ : List[str] = np.dot(snake_case__, self.vji ) lowercase_ : Optional[int] = pd_i_all / (self.size_poolinga * self.size_poolinga) lowercase_ : Optional[Any] = pd_conva_pooled.T.getA().tolist() lowercase_ : List[str] = self._calculate_gradient_from_pool( snake_case__, snake_case__, shape_featuremapa[0], shape_featuremapa[1], self.size_poolinga, ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowercase_ : Tuple = self._expand_mat(pd_conva_all[k_conv] ) lowercase_ : Union[str, Any] = self.rate_weight * np.dot(snake_case__, snake_case__ ) lowercase_ : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowercase_ : List[str] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowercase_ : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowercase_ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowercase_ : Dict = self.thre_bpa - pd_k_all * self.rate_thre lowercase_ : int = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowercase_ : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowercase_ : Optional[int] = rp + 1 lowercase_ : Dict = error_count / patterns all_mse.append(snake_case__ ) def draw_error(): lowercase_ : Tuple = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(snake_case__, """+-""" ) plt.plot(snake_case__, """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(snake_case__, alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def snake_case__ ( self, snake_case__ ) -> List[str]: """simple docstring""" # model predict lowercase_ : Optional[Any] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(snake_case__ )) ) for p in range(len(snake_case__ ) ): lowercase_ : Optional[Any] = np.asmatrix(datas_test[p] ) lowercase_ , lowercase_ : List[Any] = self.convolute( snake_case__, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) lowercase_ : Any = self.pooling(snake_case__, self.size_poolinga ) lowercase_ : Tuple = self._expand(snake_case__ ) lowercase_ : Optional[Any] = data_bp_input lowercase_ : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa lowercase_ : List[str] = self.sig(snake_case__ ) lowercase_ : Any = bp_outa * self.wkj.T - self.thre_bpa lowercase_ : Any = self.sig(snake_case__ ) produce_out.extend(bp_outa.getA().tolist() ) lowercase_ : str = [list(map(self.do_round, snake_case__ ) ) for each in produce_out] return np.asarray(snake_case__ ) def snake_case__ ( self, snake_case__ ) -> Dict: """simple docstring""" # return the data of image after convoluting process so we can check it out lowercase_ : Union[str, Any] = np.asmatrix(snake_case__ ) lowercase_ , lowercase_ : int = self.convolute( snake_case__, self.conva, self.w_conva, self.thre_conva, conv_step=self.step_conva, ) lowercase_ : Optional[int] = self.pooling(snake_case__, self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
436
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
436
1
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _snake_case = get_logger(__name__) def snake_case ( _a: Tuple , _a: int , _a: Dict , _a: Optional[int] , _a: Any=0 )-> Dict: '''simple docstring''' os.makedirs(_a , exist_ok=_a ) with FSDP.state_dict_type( _a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCamelCase__ = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCamelCase__ = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' lowerCamelCase__ = os.path.join(_a , _a ) if accelerator.process_index == 0: logger.info(F'Saving model to {output_model_file}' ) torch.save(_a , _a ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCamelCase__ = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) lowerCamelCase__ = os.path.join(_a , _a ) logger.info(F'Saving model to {output_model_file}' ) torch.save(_a , _a ) logger.info(F'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCamelCase__ = os.path.join(_a , F'{MODEL_NAME}_{model_index}' ) os.makedirs(_a , exist_ok=_a ) logger.info(F'Saving model to {ckpt_dir}' ) lowerCamelCase__ = {'model': state_dict} dist_cp.save_state_dict( state_dict=_a , storage_writer=dist_cp.FileSystemWriter(_a ) , planner=DefaultSavePlanner() , ) logger.info(F'Model saved to {ckpt_dir}' ) def snake_case ( _a: Optional[int] , _a: Optional[Any] , _a: List[str] , _a: int , _a: Dict=0 )-> int: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return lowerCamelCase__ = F'{MODEL_NAME}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}.bin' lowerCamelCase__ = os.path.join(_a , _a ) logger.info(F'Loading model from {input_model_file}' ) lowerCamelCase__ = torch.load(_a ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowerCamelCase__ = ( F'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else F'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) lowerCamelCase__ = os.path.join(_a , _a ) logger.info(F'Loading model from {input_model_file}' ) lowerCamelCase__ = torch.load(_a ) logger.info(F'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowerCamelCase__ = ( os.path.join(_a , F'{MODEL_NAME}_{model_index}' ) if F'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(F'Loading model from {ckpt_dir}' ) lowerCamelCase__ = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=_a , storage_reader=dist_cp.FileSystemReader(_a ) , planner=DefaultLoadPlanner() , ) lowerCamelCase__ = state_dict['model'] logger.info(F'Model loaded from {ckpt_dir}' ) model.load_state_dict(_a ) def snake_case ( _a: List[Any] , _a: Any , _a: str , _a: str , _a: Any , _a: int=0 )-> List[str]: '''simple docstring''' os.makedirs(_a , exist_ok=_a ) with FSDP.state_dict_type( _a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowerCamelCase__ = FSDP.optim_state_dict(_a , _a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowerCamelCase__ = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) lowerCamelCase__ = os.path.join(_a , _a ) logger.info(F'Saving Optimizer state to {output_optimizer_file}' ) torch.save(_a , _a ) logger.info(F'Optimizer state saved in {output_optimizer_file}' ) else: lowerCamelCase__ = os.path.join(_a , F'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(_a , exist_ok=_a ) logger.info(F'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(_a ) , planner=DefaultSavePlanner() , ) logger.info(F'Optimizer state saved in {ckpt_dir}' ) def snake_case ( _a: List[Any] , _a: Any , _a: int , _a: Optional[int] , _a: List[str] , _a: Union[str, Any]=0 )-> Dict: '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( _a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowerCamelCase__ = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowerCamelCase__ = ( F'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else F'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) lowerCamelCase__ = os.path.join(_a , _a ) logger.info(F'Loading Optimizer state from {input_optimizer_file}' ) lowerCamelCase__ = torch.load(_a ) logger.info(F'Optimizer state loaded from {input_optimizer_file}' ) else: lowerCamelCase__ = ( os.path.join(_a , F'{OPTIMIZER_NAME}_{optimizer_index}' ) if F'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(F'Loading Optimizer from {ckpt_dir}' ) lowerCamelCase__ = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(_a ) , ) lowerCamelCase__ = optim_state['optimizer'] logger.info(F'Optimizer loaded from {ckpt_dir}' ) lowerCamelCase__ = FSDP.optim_state_dict_to_load(_a , _a , _a ) optimizer.load_state_dict(_a )
510
"""simple docstring""" def snake_case ( _a: int , _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCamelCase__ = n - k # Calculate C(n,k) for i in range(_a ): result *= n - i result //= i + 1 return result def snake_case ( _a: int )-> int: '''simple docstring''' return binomial_coefficient(2 * node_count , _a ) // (node_count + 1) def snake_case ( _a: int )-> int: '''simple docstring''' if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCamelCase__ = 1 for i in range(1 , n + 1 ): result *= i return result def snake_case ( _a: int )-> int: '''simple docstring''' return catalan_number(_a ) * factorial(_a ) if __name__ == "__main__": _snake_case = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
510
1
'''simple docstring''' from math import pi, sqrt def lowerCAmelCase__ ( lowerCamelCase_ : float): '''simple docstring''' if num <= 0: raise ValueError('''math domain error''') if num > 171.5: raise OverflowError('''math range error''') elif num - int(_A) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''') elif num == 0.5: return sqrt(_A) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1) def lowerCAmelCase__ ( ): '''simple docstring''' assert gamma(0.5) == sqrt(_A) assert gamma(1) == 1.0 assert gamma(2) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __snake_case : Dict =1.0 while num: __snake_case : List[str] =float(input('Gamma of: ')) print(f"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
705
from bisect import bisect from itertools import accumulate def lowerCAmelCase__ ( lowerCamelCase_ : List[str] ,lowerCamelCase_ : Optional[Any] ,lowerCamelCase_ : List[str] ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : Any = sorted(zip(lowerCamelCase_ ,lowerCamelCase_) ,key=lambda lowerCamelCase_: x[0] / x[1] ,reverse=lowerCamelCase_) lowerCAmelCase__ , lowerCAmelCase__ : List[str] = [i[0] for i in r], [i[1] for i in r] lowerCAmelCase__ : Tuple = list(accumulate(lowerCamelCase_)) lowerCAmelCase__ : str = bisect(lowerCamelCase_ ,lowerCamelCase_) return ( 0 if k == 0 else sum(vl[:k]) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k]) ) if __name__ == "__main__": import doctest doctest.testmod()
90
0
'''simple docstring''' import os def lowerCAmelCase_ ( __A : str = "matrix.txt" ): '''simple docstring''' with open(os.path.join(os.path.dirname(__A ) , __A ) ) as in_file: snake_case: Any = in_file.read() snake_case: Dict = [[int(__A ) for cell in row.split(',' )] for row in data.strip().splitlines()] snake_case: List[Any] = [[0 for cell in row] for row in grid] snake_case: Any = len(grid[0] ) snake_case: Optional[Any] = [[0 for i in range(__A )] for j in range(__A )] snake_case: Dict = grid[0][0] for i in range(1 , __A ): snake_case: Optional[int] = grid[0][i] + dp[0][i - 1] for i in range(1 , __A ): snake_case: Optional[int] = grid[i][0] + dp[i - 1][0] for i in range(1 , __A ): for j in range(1 , __A ): snake_case: Union[str, Any] = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'{solution() = }')
329
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( __A : Union[str, Any] ): '''simple docstring''' snake_case: Union[str, Any] = r'\w+[.]\d+' snake_case: Union[str, Any] = re.findall(__A , __A ) for pat in pats: snake_case: Any = key.replace(__A , '_'.join(pat.split('.' ) ) ) return key def lowerCAmelCase_ ( __A : List[Any] , __A : List[Any] , __A : List[str] ): '''simple docstring''' snake_case: str = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): snake_case: Union[str, Any] = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: snake_case: Dict = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: snake_case: Tuple = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer snake_case: List[str] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: snake_case: Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case: List[Any] = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": snake_case: Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case: Any = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case: Optional[int] = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( __A : Any , __A : Union[str, Any] , __A : Optional[Any]=42 ): '''simple docstring''' snake_case: int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params snake_case: int = flax_model.init_weights(PRNGKey(__A ) ) snake_case: Optional[Any] = flatten_dict(__A ) snake_case: Any = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case: Any = rename_key(__A ) snake_case: List[Any] = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters snake_case , snake_case: Any = rename_key_and_reshape_tensor(__A , __A , __A ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown snake_case: Union[str, Any] = jnp.asarray(__A ) return unflatten_dict(__A )
329
1
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) UpperCamelCase : List[Any] = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( snake_case : str ) -> Any: """simple docstring""" a : Optional[Any] = git.Repo(search_parent_directories=snake_case ) a : Dict = { 'repo_id': str(snake_case ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), } with open(os.path.join(snake_case , 'git_log.json' ) , 'w' ) as f: json.dump(snake_case , snake_case , indent=4 ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" if params.n_gpu <= 0: a : Any = 0 a : Optional[int] = -1 a : int = True a : Dict = False return assert torch.cuda.is_available() logger.info('Initializing GPUs' ) if params.n_gpu > 1: assert params.local_rank != -1 a : Dict = int(os.environ['WORLD_SIZE'] ) a : Dict = int(os.environ['N_GPU_NODE'] ) a : int = int(os.environ['RANK'] ) # number of nodes / node ID a : Dict = params.world_size // params.n_gpu_per_node a : str = params.global_rank // params.n_gpu_per_node a : Union[str, Any] = True assert params.n_nodes == int(os.environ['N_NODES'] ) assert params.node_id == int(os.environ['NODE_RANK'] ) # local job (single GPU) else: assert params.local_rank == -1 a : Any = 1 a : Union[str, Any] = 0 a : str = 0 a : Tuple = 0 a : int = 1 a : Optional[Any] = 1 a : Dict = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode a : Any = params.node_id == 0 and params.local_rank == 0 a : str = params.n_nodes > 1 # summary a : Any = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes ) logger.info(PREFIX + 'Node ID : %i' % params.node_id ) logger.info(PREFIX + 'Local rank : %i' % params.local_rank ) logger.info(PREFIX + 'World size : %i' % params.world_size ) logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node ) logger.info(PREFIX + 'Master : %s' % str(params.is_master ) ) logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) ) logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) ) logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('Initializing PyTorch distributed' ) torch.distributed.init_process_group( init_method='env://' , backend='nccl' , ) def SCREAMING_SNAKE_CASE__ ( snake_case : int ) -> Any: """simple docstring""" np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
610
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase : Optional[int] = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys UpperCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
610
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( lowercase ): """simple docstring""" UpperCamelCase_ : Any =['pixel_values'] def __init__( self , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1 / 255 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = size if size is not None else {'''shortest_edge''': 224} UpperCamelCase :Any = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} UpperCamelCase :Any = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) UpperCamelCase :Optional[Any] = do_resize UpperCamelCase :Dict = size UpperCamelCase :Tuple = resample UpperCamelCase :List[Any] = do_rescale UpperCamelCase :Tuple = rescale_factor UpperCamelCase :List[Any] = do_center_crop UpperCamelCase :Dict = crop_size UpperCamelCase :Any = do_flip_channel_order def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = PIL.Image.BILINEAR , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: UpperCamelCase :Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase :int = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ , size=size['''shortest_edge'''] , default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> np.ndarray: UpperCamelCase :int = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(SCREAMING_SNAKE_CASE_ , size=(size['''height'''], size['''width''']) , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Dict: return rescale(SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> np.ndarray: return flip_channel_order(SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ , ) -> PIL.Image.Image: UpperCamelCase :List[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase :str = resample if resample is not None else self.resample UpperCamelCase :List[str] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase :List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase :Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase :Union[str, Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase :List[str] = size if size is not None else self.size UpperCamelCase :Optional[int] = get_size_dict(SCREAMING_SNAKE_CASE_ , default_to_square=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :int = crop_size if crop_size is not None else self.crop_size UpperCamelCase :Dict = get_size_dict(SCREAMING_SNAKE_CASE_ , param_name='''crop_size''' ) UpperCamelCase :List[Any] = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. UpperCamelCase :List[Any] = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: UpperCamelCase :Tuple = [self.resize(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: UpperCamelCase :List[Any] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ , size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: UpperCamelCase :str = [self.rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase :List[str] = [self.flip_channel_order(image=SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :Any = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] UpperCamelCase :List[str] = {'''pixel_values''': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Union[str, Any]: UpperCamelCase :int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :Union[str, Any] = target_sizes.numpy() UpperCamelCase :Dict = [] for idx in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase :Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase :Optional[Any] = logits.argmax(dim=1 ) UpperCamelCase :List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
658
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ ( lowercase ): """simple docstring""" def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Union[str, Any] = tempfile.mkdtemp() UpperCamelCase :List[str] = 5 # Realm tok UpperCamelCase :List[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCamelCase :Dict = os.path.join(self.tmpdirname , '''realm_tokenizer''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCamelCase :Any = os.path.join(self.tmpdirname , '''realm_block_records''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''realm_tokenizer''' ) ) def UpperCAmelCase ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ) -> str: UpperCamelCase :Union[str, Any] = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCAmelCase ( self ) -> List[str]: UpperCamelCase :Tuple = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def UpperCAmelCase ( self ) -> str: UpperCamelCase :Optional[Any] = np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ] , dtype=SCREAMING_SNAKE_CASE_ , ) return block_records def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :Optional[int] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Optional[Any] = self.get_config() UpperCamelCase :str = self.get_dummy_retriever() UpperCamelCase :int = retriever.tokenizer UpperCamelCase :Optional[Any] = np.array([0, 3] , dtype='''long''' ) UpperCamelCase :Optional[Any] = tokenizer(['''Test question'''] ).input_ids UpperCamelCase :Tuple = tokenizer( ['''the fourth'''] , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).input_ids UpperCamelCase :Optional[Any] = config.reader_seq_len UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :str = retriever( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , answer_ids=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''] , ) def UpperCAmelCase ( self ) -> int: UpperCamelCase :Union[str, Any] = self.get_config() UpperCamelCase :Union[str, Any] = self.get_dummy_retriever() UpperCamelCase :Dict = retriever.tokenizer UpperCamelCase :str = np.array([0, 3, 5] , dtype='''long''' ) UpperCamelCase :List[str] = tokenizer(['''Test question'''] ).input_ids UpperCamelCase :Optional[Any] = tokenizer( ['''the fourth''', '''longer longer'''] , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).input_ids UpperCamelCase :Any = config.reader_seq_len UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Any = retriever( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , answer_ids=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) self.assertEqual([False, True, True] , SCREAMING_SNAKE_CASE_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , SCREAMING_SNAKE_CASE_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :str = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) # Test local path UpperCamelCase :List[str] = retriever.from_pretrained(os.path.join(self.tmpdirname , '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: UpperCamelCase :Tuple = os.path.join( os.path.join(self.tmpdirname , '''realm_block_records''' ) , _REALM_BLOCK_RECORDS_FILENAME ) UpperCamelCase :List[Any] = RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0] , b'''This is the first record''' )
658
1
import os import string import sys __a : Dict = 1 << 8 __a : List[str] = { '''tab''': ord("""\t"""), '''newline''': ord("""\r"""), '''esc''': 2_7, '''up''': 6_5 + ARROW_KEY_FLAG, '''down''': 6_6 + ARROW_KEY_FLAG, '''right''': 6_7 + ARROW_KEY_FLAG, '''left''': 6_8 + ARROW_KEY_FLAG, '''mod_int''': 9_1, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 5_0, '''delete''': 5_1, '''pg_up''': 5_3, '''pg_down''': 5_4, } __a : int = KEYMAP['''up'''] __a : List[str] = KEYMAP['''left'''] if sys.platform == "win32": __a : List[str] = [] __a : Dict = { b'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, b'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, b'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, b'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, b'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(1_0): __a : Any = ord(str(i)) def __magic_name__ ( ) -> Dict: '''simple docstring''' if os.name == "nt": import msvcrt UpperCamelCase = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(_lowercase ) == 0: # Read the keystroke UpperCamelCase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCamelCase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCamelCase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(_lowercase ) if ord(_lowercase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) UpperCamelCase = chr(KEYMAP["esc"] ) except KeyError: UpperCamelCase = cha[1] else: UpperCamelCase = ch.decode(_lowercase ) else: UpperCamelCase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCamelCase = sys.stdin.fileno() UpperCamelCase = termios.tcgetattr(_lowercase ) try: tty.setraw(_lowercase ) UpperCamelCase = sys.stdin.read(1 ) finally: termios.tcsetattr(_lowercase , termios.TCSADRAIN , _lowercase ) return ch def __magic_name__ ( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = get_raw_chars() if ord(_lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(_lowercase ) == KEYMAP["esc"]: UpperCamelCase = get_raw_chars() if ord(_lowercase ) == KEYMAP["mod_int"]: UpperCamelCase = get_raw_chars() if ord(_lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(_lowercase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
709
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __a : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = {} if "candidate_labels" in kwargs: UpperCamelCase = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: UpperCamelCase = kwargs["hypothesis_template"] return preprocess_params, {}, {} def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="This is a sound of {}." ) -> Optional[int]: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png UpperCamelCase = requests.get(SCREAMING_SNAKE_CASE ).content else: with open(SCREAMING_SNAKE_CASE , "rb" ) as f: UpperCamelCase = f.read() if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase = ffmpeg_read(SCREAMING_SNAKE_CASE , self.feature_extractor.sampling_rate ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) UpperCamelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" ) UpperCamelCase = candidate_labels UpperCamelCase = [hypothesis_template.format(SCREAMING_SNAKE_CASE ) for x in candidate_labels] UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE ) UpperCamelCase = [text_inputs] return inputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = model_inputs.pop("candidate_labels" ) UpperCamelCase = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE ): UpperCamelCase = text_inputs[0] else: # Batching case. UpperCamelCase = text_inputs[0][0] UpperCamelCase = self.model(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase = model_outputs.pop("candidate_labels" ) UpperCamelCase = model_outputs["logits"][0] if self.framework == "pt": UpperCamelCase = logits.softmax(dim=0 ) UpperCamelCase = probs.tolist() else: raise ValueError("`tf` framework not supported." ) UpperCamelCase = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : -x[0] ) ] return result
414
0
'''simple docstring''' import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE ( __a ): '''simple docstring''' __UpperCamelCase = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) __UpperCamelCase = """CIDAS/clipseg-rd64-refined""" __UpperCamelCase = """image_segmenter""" __UpperCamelCase = CLIPSegForImageSegmentation __UpperCamelCase = ["""image""", """text"""] __UpperCamelCase = ["""image"""] def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='pt' ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' with torch.no_grad(): snake_case: Union[str, Any] = self.model(**_lowerCamelCase ).logits return logits def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: List[Any] = outputs.cpu().detach().numpy() snake_case: Tuple = 0 snake_case: Optional[int] = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
329
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ) ->str: __lowercase = os.path.abspath(__magic_name__ ) logger.info(F'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model __lowercase = tf.train.list_variables(__magic_name__ ) __lowercase = [] __lowercase = [] __lowercase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __lowercase = full_name.split("/" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(F'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' __lowercase = name[1:] # figure out how many levels deep the name is __lowercase = 0 for _name in name: if _name.startswith("layer_with_weights" ): depth += 1 else: break layer_depth.append(__magic_name__ ) # read data __lowercase = tf.train.load_variable(__magic_name__ , __magic_name__ ) names.append("/".join(__magic_name__ ) ) arrays.append(__magic_name__ ) logger.info(F'''Read a total of {len(__magic_name__ ):,} layers''' ) # Sanity check if len(set(__magic_name__ ) ) != 1: raise ValueError(F'''Found layer names with different depths (layer depth {list(set(__magic_name__ ) )})''' ) __lowercase = list(set(__magic_name__ ) )[0] if layer_depth != 1: raise ValueError( "The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP" " heads." ) # convert layers logger.info("Converting weights..." ) for full_name, array in zip(__magic_name__ , __magic_name__ ): __lowercase = full_name.split("/" ) __lowercase = model __lowercase = [] for i, m_name in enumerate(__magic_name__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("layer_with_weights" ): __lowercase = int(m_name.split("-" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["embeddings", "LayerNorm"] ) __lowercase = getattr(__magic_name__ , "embeddings" ) __lowercase = getattr(__magic_name__ , "LayerNorm" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["encoder", "layer", str(layer_num - 4 )] ) __lowercase = getattr(__magic_name__ , "encoder" ) __lowercase = getattr(__magic_name__ , "layer" ) __lowercase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["pooler", "dense"] ) __lowercase = getattr(__magic_name__ , "pooler" ) __lowercase = getattr(__magic_name__ , "dense" ) elif m_name == "embeddings": trace.append("embeddings" ) __lowercase = getattr(__magic_name__ , "embeddings" ) if layer_num == 0: trace.append("word_embeddings" ) __lowercase = getattr(__magic_name__ , "word_embeddings" ) elif layer_num == 1: trace.append("position_embeddings" ) __lowercase = getattr(__magic_name__ , "position_embeddings" ) elif layer_num == 2: trace.append("token_type_embeddings" ) __lowercase = getattr(__magic_name__ , "token_type_embeddings" ) else: raise ValueError(F'''Unknown embedding layer with name {full_name}''' ) trace.append("weight" ) __lowercase = getattr(__magic_name__ , "weight" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["attention", "self"] ) __lowercase = getattr(__magic_name__ , "attention" ) __lowercase = getattr(__magic_name__ , "self" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["attention", "output", "LayerNorm"] ) __lowercase = getattr(__magic_name__ , "attention" ) __lowercase = getattr(__magic_name__ , "output" ) __lowercase = getattr(__magic_name__ , "LayerNorm" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["attention", "output", "dense"] ) __lowercase = getattr(__magic_name__ , "attention" ) __lowercase = getattr(__magic_name__ , "output" ) __lowercase = getattr(__magic_name__ , "dense" ) elif m_name == "_output_dense": # output dense trace.extend(["output", "dense"] ) __lowercase = getattr(__magic_name__ , "output" ) __lowercase = getattr(__magic_name__ , "dense" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["output", "LayerNorm"] ) __lowercase = getattr(__magic_name__ , "output" ) __lowercase = getattr(__magic_name__ , "LayerNorm" ) elif m_name == "_key_dense": # attention key trace.append("key" ) __lowercase = getattr(__magic_name__ , "key" ) elif m_name == "_query_dense": # attention query trace.append("query" ) __lowercase = getattr(__magic_name__ , "query" ) elif m_name == "_value_dense": # attention value trace.append("value" ) __lowercase = getattr(__magic_name__ , "value" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["intermediate", "dense"] ) __lowercase = getattr(__magic_name__ , "intermediate" ) __lowercase = getattr(__magic_name__ , "dense" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("output" ) __lowercase = getattr(__magic_name__ , "output" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("bias" ) __lowercase = getattr(__magic_name__ , "bias" ) elif m_name in ["kernel", "gamma"]: trace.append("weight" ) __lowercase = getattr(__magic_name__ , "weight" ) else: logger.warning(F'''Ignored {m_name}''' ) # for certain layers reshape is necessary __lowercase = ".".join(__magic_name__ ) if re.match(R"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , __magic_name__ ) or re.match( R"(\S+)\.attention\.output\.dense\.weight" , __magic_name__ ): __lowercase = array.reshape(pointer.data.shape ) if "kernel" in full_name: __lowercase = array.transpose() if pointer.shape == array.shape: __lowercase = torch.from_numpy(__magic_name__ ) else: raise ValueError( F'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' F''' {array.shape}''' ) logger.info(F'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ) ->str: # Instantiate model logger.info(F'''Loading model based on config from {config_path}...''' ) __lowercase = BertConfig.from_json_file(__magic_name__ ) __lowercase = BertModel(__magic_name__ ) # Load weights from checkpoint logger.info(F'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(__magic_name__ , __magic_name__ , __magic_name__ ) # Save pytorch-model logger.info(F'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , __magic_name__ ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) _lowercase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
118
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __lowercase ( _SCREAMING_SNAKE_CASE ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Optional[int] = ["pixel_values"] def __init__( self : List[Any] ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Union[int, float] = 1 / 255 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Optional[Union[float, List[float]]] = None ,lowerCamelCase__ : Optional[Union[float, List[float]]] = None ,**lowerCamelCase__ : List[str] ,) -> None: '''simple docstring''' super().__init__(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 256} SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase__ ,param_name="""crop_size""" ) SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_center_crop SCREAMING_SNAKE_CASE = crop_size SCREAMING_SNAKE_CASE = resample SCREAMING_SNAKE_CASE = do_rescale SCREAMING_SNAKE_CASE = rescale_factor SCREAMING_SNAKE_CASE = offset SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self : List[Any] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Any ,) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) if "shortest_edge" in size: SCREAMING_SNAKE_CASE = get_resize_output_image_size(lowerCamelCase__ ,size["""shortest_edge"""] ,default_to_square=lowerCamelCase__ ) elif "height" in size and "width" in size: SCREAMING_SNAKE_CASE = (size["""height"""], size["""width"""]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : int ,) -> np.ndarray: '''simple docstring''' SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(lowerCamelCase__ ,size=(size["""height"""], size["""width"""]) ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[int, float] ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : int ,) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = image.astype(np.floataa ) if offset: SCREAMING_SNAKE_CASE = image - (scale / 2) return rescale(lowerCamelCase__ ,scale=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[float, List[float]] ,lowerCamelCase__ : Union[float, List[float]] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : List[Any] ,) -> np.ndarray: '''simple docstring''' return normalize(lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : ImageInput ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : PILImageResampling = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : float = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Optional[Union[float, List[float]]] = None ,lowerCamelCase__ : Optional[Union[float, List[float]]] = None ,lowerCamelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST ,) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE = to_numpy_array(lowerCamelCase__ ) if do_resize: SCREAMING_SNAKE_CASE = self.resize(image=lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ) if do_center_crop: SCREAMING_SNAKE_CASE = self.center_crop(lowerCamelCase__ ,size=lowerCamelCase__ ) if do_rescale: SCREAMING_SNAKE_CASE = self.rescale(image=lowerCamelCase__ ,scale=lowerCamelCase__ ,offset=lowerCamelCase__ ) if do_normalize: SCREAMING_SNAKE_CASE = self.normalize(image=lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = to_channel_dimension_format(lowerCamelCase__ ,lowerCamelCase__ ) return image def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : ImageInput ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : PILImageResampling = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : float = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Optional[Union[float, List[float]]] = None ,lowerCamelCase__ : Optional[Union[float, List[float]]] = None ,lowerCamelCase__ : Optional[Union[str, TensorType]] = None ,lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST ,**lowerCamelCase__ : Optional[int] ,) -> PIL.Image.Image: '''simple docstring''' SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE = offset if offset is not None else self.offset SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE = size if size is not None else self.size SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase__ ,default_to_square=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE = get_size_dict(lowerCamelCase__ ,param_name="""crop_size""" ) if not valid_images(lowerCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) SCREAMING_SNAKE_CASE = make_batched(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = [ [ self._preprocess_image( image=lowerCamelCase__ ,do_resize=lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ,do_center_crop=lowerCamelCase__ ,crop_size=lowerCamelCase__ ,do_rescale=lowerCamelCase__ ,rescale_factor=lowerCamelCase__ ,offset=lowerCamelCase__ ,do_normalize=lowerCamelCase__ ,image_mean=lowerCamelCase__ ,image_std=lowerCamelCase__ ,data_format=lowerCamelCase__ ,) for img in video ] for video in videos ] SCREAMING_SNAKE_CASE = {"""pixel_values""": videos} return BatchFeature(data=lowerCamelCase__ ,tensor_type=lowerCamelCase__ )
116
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = [] for line in lines: SCREAMING_SNAKE_CASE = re.sub(r"""#.*""" , """""" , _SCREAMING_SNAKE_CASE ) # remove comments if line: filtered_lines.append(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = """\n""".join(_SCREAMING_SNAKE_CASE ) # Make a hash from all this code SCREAMING_SNAKE_CASE = full_str.encode("""utf-8""" ) return shaaaa(_SCREAMING_SNAKE_CASE ).hexdigest() # get importable module names and hash for caching SCREAMING_SNAKE_CASE_ = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions SCREAMING_SNAKE_CASE_ = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) SCREAMING_SNAKE_CASE_ = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name SCREAMING_SNAKE_CASE_ = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
116
1
'''simple docstring''' from __future__ import annotations class __lowerCAmelCase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : int = 0 ) -> Dict: '''simple docstring''' _UpperCamelCase = key def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> list[str]: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content] def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> list[str]: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content] def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 0 ) -> str: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _UpperCamelCase = '''''' for ch in content: ans += chr(ord(lowerCAmelCase__ ) ^ key ) return ans def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 0 ) -> str: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _UpperCamelCase = '''''' for ch in content: ans += chr(ord(lowerCAmelCase__ ) ^ key ) return ans def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : int = 0 ) -> bool: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) try: with open(lowerCAmelCase__ ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) ) except OSError: return False return True def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> bool: '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) try: with open(lowerCAmelCase__ ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
98
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = KandinskyVaaControlnetImgaImgPipeline __SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] __SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] __SCREAMING_SNAKE_CASE = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __SCREAMING_SNAKE_CASE = False @property def _lowerCamelCase ( self) -> Tuple: return 3_2 @property def _lowerCamelCase ( self) -> Dict: return 3_2 @property def _lowerCamelCase ( self) -> str: return self.time_input_dim @property def _lowerCamelCase ( self) -> str: return self.time_input_dim * 4 @property def _lowerCamelCase ( self) -> str: return 1_0_0 @property def _lowerCamelCase ( self) -> Tuple: torch.manual_seed(0) _A : str = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _A : str = UNetaDConditionModel(**__lowerCamelCase) return model @property def _lowerCamelCase ( self) -> str: return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self) -> List[Any]: torch.manual_seed(0) _A : int = VQModel(**self.dummy_movq_kwargs) return model def _lowerCamelCase ( self) -> Any: _A : List[str] = self.dummy_unet _A : Optional[int] = self.dummy_movq _A : str = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _A : int = DDIMScheduler(**__lowerCamelCase) _A : Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=0) -> Any: _A : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase)).to(__lowerCamelCase) _A : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( __lowerCamelCase) # create init_image _A : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__lowerCamelCase)).to(__lowerCamelCase) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1)[0] _A : Union[str, Any] = Image.fromarray(np.uinta(__lowerCamelCase)).convert("RGB").resize((2_5_6, 2_5_6)) # create hint _A : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__lowerCamelCase)).to(__lowerCamelCase) if str(__lowerCamelCase).startswith("mps"): _A : Dict = torch.manual_seed(__lowerCamelCase) else: _A : Tuple = torch.Generator(device=__lowerCamelCase).manual_seed(__lowerCamelCase) _A : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _lowerCamelCase ( self) -> int: _A : List[Any] = "cpu" _A : List[Any] = self.get_dummy_components() _A : Any = self.pipeline_class(**__lowerCamelCase) _A : Any = pipe.to(__lowerCamelCase) pipe.set_progress_bar_config(disable=__lowerCamelCase) _A : str = pipe(**self.get_dummy_inputs(__lowerCamelCase)) _A : int = output.images _A : Dict = pipe( **self.get_dummy_inputs(__lowerCamelCase) , return_dict=__lowerCamelCase , )[0] _A : Any = image[0, -3:, -3:, -1] _A : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _A : List[str] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self) -> Tuple: _A : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy") _A : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png") _A : str = init_image.resize((5_1_2, 5_1_2)) _A : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png") _A : Optional[Any] = torch.from_numpy(np.array(__lowerCamelCase)).float() / 2_5_5.0 _A : Optional[Any] = hint.permute(2 , 0 , 1).unsqueeze(0) _A : List[str] = "A robot, 4k photo" _A : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa) pipe_prior.to(__lowerCamelCase) _A : List[str] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa) _A : Dict = pipeline.to(__lowerCamelCase) pipeline.set_progress_bar_config(disable=__lowerCamelCase) _A : Tuple = torch.Generator(device="cpu").manual_seed(0) _A , _A : List[str] = pipe_prior( __lowerCamelCase , image=__lowerCamelCase , strength=0.8_5 , generator=__lowerCamelCase , negative_prompt="" , ).to_tuple() _A : Optional[int] = pipeline( image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , hint=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type="np" , ) _A : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase)
503
0
def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :int = len(A_ ) UpperCAmelCase__ :Optional[Any] = len(A_ ) UpperCAmelCase__ :Optional[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] UpperCAmelCase__ :int = True for i in range(A_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: UpperCAmelCase__ :Optional[int] = True if a[i].islower(): UpperCAmelCase__ :Optional[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
710
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __snake_case : Dict = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 48_000, 'sample_size': 65_536, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 48_000, 'sample_size': 131_072, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 16_000, 'sample_size': 65_536, }, } def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" return torch.atana(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) / math.pi * 2 def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :List[str] = torch.sin(t * math.pi / 2 ) ** 2 UpperCAmelCase__ :int = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' pass class UpperCamelCase__ ( nn.Module): '''simple docstring''' def __init__( self , A ) ->Union[str, Any]: super().__init__() UpperCAmelCase__ :Dict = DiffusionAttnUnetaD(A , n_attn_layers=4 ) UpperCAmelCase__ :Optional[Any] = deepcopy(self.diffusion ) UpperCAmelCase__ :str = torch.quasirandom.SobolEngine(1 , scramble=A ) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Dict = MODELS_MAP[model_name]['url'] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" __snake_case : Union[str, Any] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } __snake_case : Tuple = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } __snake_case : Optional[int] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } __snake_case : str = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } __snake_case : Optional[int] = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } __snake_case : Union[str, Any] = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" if name.startswith('skip' ): return name.replace('skip' , RES_CONV_MAP['skip'] ) # name has to be of format main.{digit} if not name.startswith('main.' ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE ) and not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif name.startswith(SCREAMING_SNAKE_CASE ): return [name.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 ): """simple docstring""" UpperCAmelCase__ :Any = input_string if string.split('.' )[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj' ) UpperCAmelCase__ :List[Any] = 0 if string.startswith('net.3.' ): depth += 1 UpperCAmelCase__ :int = string[6:] elif string.startswith('net.' ): UpperCAmelCase__ :Union[str, Any] = string[4:] while string.startswith('main.7.' ): depth += 1 UpperCAmelCase__ :List[str] = string[7:] if string.startswith('main.' ): UpperCAmelCase__ :Tuple = string[5:] # mid block if string[:2].isdigit(): UpperCAmelCase__ :int = string[:2] UpperCAmelCase__ :List[Any] = string[2:] else: UpperCAmelCase__ :Dict = string[0] UpperCAmelCase__ :Union[str, Any] = string[1:] if depth == max_depth: UpperCAmelCase__ :Dict = MID_NUM_TO_LAYER[layer_num] UpperCAmelCase__ :int = 'mid_block' elif depth > 0 and int(SCREAMING_SNAKE_CASE ) < 7: UpperCAmelCase__ :List[Any] = DOWN_NUM_TO_LAYER[layer_num] UpperCAmelCase__ :Any = f"""down_blocks.{depth}""" elif depth > 0 and int(SCREAMING_SNAKE_CASE ) > 7: UpperCAmelCase__ :Union[str, Any] = UP_NUM_TO_LAYER[layer_num] UpperCAmelCase__ :Union[str, Any] = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: UpperCAmelCase__ :List[str] = DEPTH_0_TO_LAYER[layer_num] UpperCAmelCase__ :List[str] = f"""up_blocks.{max_depth - 1}""" if int(SCREAMING_SNAKE_CASE ) > 3 else 'down_blocks.0' if not string_left.startswith('.' ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) UpperCAmelCase__ :int = string_left[1:] if "resnets" in new_layer: UpperCAmelCase__ :Optional[Any] = convert_resconv_naming(SCREAMING_SNAKE_CASE ) elif "attentions" in new_layer: UpperCAmelCase__ :Any = convert_attn_naming(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Any = new_string_left if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :Tuple = prefix + '.' + new_layer + '.' + string_left else: UpperCAmelCase__ :int = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :str = {} for k, v in state_dict.items(): if k.endswith('kernel' ): # up- and downsample layers, don't have trainable weights continue UpperCAmelCase__ :Tuple = rename(SCREAMING_SNAKE_CASE ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCAmelCase__ :Tuple = transform_conv_attns(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: UpperCAmelCase__ :Union[str, Any] = v return new_state_dict def A ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if len(SCREAMING_SNAKE_CASE ) == 1: if len(v.shape ) == 3: # weight UpperCAmelCase__ :List[str] = v[:, :, 0] else: # bias UpperCAmelCase__ :Union[str, Any] = v else: # qkv matrices UpperCAmelCase__ :Optional[int] = v.shape[0] UpperCAmelCase__ :str = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCAmelCase__ :Optional[int] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCAmelCase__ :Optional[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def A ( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase__ :Union[str, Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) UpperCAmelCase__ :List[Any] = args.model_path.split('/' )[-1].split('.' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" UpperCAmelCase__ :List[str] = download(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[int] = MODELS_MAP[model_name]['sample_rate'] UpperCAmelCase__ :Tuple = MODELS_MAP[model_name]['sample_size'] UpperCAmelCase__ :Optional[Any] = Object() UpperCAmelCase__ :int = sample_size UpperCAmelCase__ :Any = sample_rate UpperCAmelCase__ :List[str] = 0 UpperCAmelCase__ :Union[str, Any] = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE , sample_rate=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Dict = diffusers_model.state_dict() UpperCAmelCase__ :Dict = DiffusionUncond(SCREAMING_SNAKE_CASE ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE )['state_dict'] ) UpperCAmelCase__ :Dict = orig_model.diffusion_ema.eval() UpperCAmelCase__ :Optional[Any] = orig_model.state_dict() UpperCAmelCase__ :Tuple = rename_orig_weights(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Dict = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCAmelCase__ :Dict = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('kernel' ) for k in list(SCREAMING_SNAKE_CASE ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": UpperCAmelCase__ :List[Any] = value.squeeze() UpperCAmelCase__ :List[Any] = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[int] = 100 UpperCAmelCase__ :Any = 33 UpperCAmelCase__ :int = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :int = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[int] = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE )[:-1] UpperCAmelCase__ :List[Any] = get_crash_schedule(SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Tuple = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE ) UpperCAmelCase__ :Optional[Any] = torch.manual_seed(33 ) UpperCAmelCase__ :List[str] = pipe(num_inference_steps=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE ).audios UpperCAmelCase__ :Any = sampling.iplms_sample(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {} ) UpperCAmelCase__ :List[Any] = generated.clamp(-1 , 1 ) UpperCAmelCase__ :int = (generated - audio).abs().sum() UpperCAmelCase__ :Optional[Any] = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('Diff sum' , SCREAMING_SNAKE_CASE ) print('Diff max' , SCREAMING_SNAKE_CASE ) assert diff_max < 1E-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": __snake_case : Any = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') __snake_case : Union[str, Any] = parser.parse_args() main(args)
433
0
import sys import turtle def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase )-> Dict: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ,)-> Tuple: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) if depth == 0: return triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( "Correct format for using this script: " "python fractals.py <int:depth_for_fractal>" ) A_ = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("red") A_ = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
393
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = CTRLTokenizer __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Any = False def a__ (self ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ['''adapt''', '''re@@''', '''a@@''', '''apt''', '''c@@''', '''t''', '''<unk>'''] _a = dict(zip(A , range(len(A ) ) ) ) _a = ['''#version: 0.2''', '''a p''', '''ap t</w>''', '''r e''', '''a d''', '''ad apt</w>''', ''''''] _a = {'''unk_token''': '''<unk>'''} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def a__ (self , **A ) -> int: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **A ) def a__ (self , A ) -> Tuple: """simple docstring""" _a = '''adapt react readapt apt''' _a = '''adapt react readapt apt''' return input_text, output_text def a__ (self ) -> List[Any]: """simple docstring""" _a = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = '''adapt react readapt apt''' _a = '''adapt re@@ a@@ c@@ t re@@ adapt apt'''.split() _a = tokenizer.tokenize(A ) self.assertListEqual(A , A ) _a = tokens + [tokenizer.unk_token] _a = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A )
11
0
from ....utils import logging _lowerCamelCase = logging.get_logger(__name__) class __A ( __UpperCAmelCase ): """simple docstring""" def __init__( self , a__ , a__=None , a__=2048): """simple docstring""" _lowerCamelCase : Any = config.__dict__ _lowerCamelCase : Optional[int] = modal_hidden_size if num_labels: _lowerCamelCase : Optional[Any] = num_labels
716
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _lowerCamelCase = logging.get_logger(__name__) class __A ( lowerCamelCase__ ): """simple docstring""" def __init__( self , *a__ , **a__): """simple docstring""" warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , a__ , ) super().__init__(*a__ , **a__)
613
0
import os from collections import deque import torch from torch.utils.data import Dataset class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): def __init__( self , lowerCamelCase="" , lowerCamelCase="train" ): assert os.path.isdir(lowerCamelCase ) snake_case__ = [] snake_case__ = os.listdir(lowerCamelCase ) for story_filename in story_filenames_list: if "summary" in story_filename: continue snake_case__ = os.path.join(lowerCamelCase , lowerCamelCase ) if not os.path.isfile(lowerCamelCase ): continue self.documents.append(lowerCamelCase ) def __len__( self ): return len(self.documents ) def __getitem__( self , lowerCamelCase ): snake_case__ = self.documents[idx] snake_case__ = document_path.split("/" )[-1] with open(lowerCamelCase , encoding="utf-8" ) as source: snake_case__ = source.read() snake_case__ , snake_case__ = process_story(lowerCamelCase ) return document_name, story_lines, summary_lines def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = list(filter(lambda __lowerCAmelCase : len(__lowerCAmelCase ) != 0 , [line.strip() for line in raw_story.split("\n" )] ) ) # for some unknown reason some lines miss a period, add it snake_case__ = [_add_missing_period(__lowerCAmelCase ) for line in nonempty_lines] # gather article lines snake_case__ = [] snake_case__ = deque(__lowerCAmelCase ) while True: try: snake_case__ = lines.popleft() if element.startswith("@highlight" ): break story_lines.append(__lowerCAmelCase ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines snake_case__ = list(filter(lambda __lowerCAmelCase : not t.startswith("@highlight" ) , __lowerCAmelCase ) ) return story_lines, summary_lines def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = [".", "!", "?", "...", "'", "`", "\"", "\u2019", "\u2019", ")"] if line.startswith("@highlight" ): return line if line[-1] in END_TOKENS: return line return line + "." def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if len(__lowerCAmelCase ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__lowerCAmelCase )) ) return sequence def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = torch.ones_like(__lowerCAmelCase ) snake_case__ = sequence == pad_token_id snake_case__ = 0 return mask def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = [tokenizer.encode(__lowerCAmelCase ) for line in story_lines] snake_case__ = [token for sentence in story_lines_token_ids for token in sentence] snake_case__ = [tokenizer.encode(__lowerCAmelCase ) for line in summary_lines] snake_case__ = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = [] for sequence in batch: snake_case__ = -1 snake_case__ = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__lowerCAmelCase ) return torch.tensor(__lowerCAmelCase )
276
def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(__lowerCAmelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__lowerCAmelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
276
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( ): __snake_case = 0 for i in range(1, 10_01): total += i**i return str(UpperCAmelCase__)[-10:] if __name__ == "__main__": print(solution())
708
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowercase : int = logging.get_logger(__name__) __lowercase : Tuple = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __lowercase : List[Any] = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __lowercase : List[str] = {"facebook/blenderbot-3B": 128} class _A ( _UpperCAmelCase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ : str = BlenderbotTokenizer def __init__( self : Union[str, Any] , A_ : Any=None , A_ : Optional[int]=None , A_ : Optional[Any]=None , A_ : Union[str, Any]="replace" , A_ : Union[str, Any]="<s>" , A_ : Union[str, Any]="</s>" , A_ : Optional[int]="</s>" , A_ : List[Any]="<s>" , A_ : Union[str, Any]="<unk>" , A_ : Any="<pad>" , A_ : List[str]="<mask>" , A_ : int=False , A_ : Tuple=True , **A_ : Optional[Any] , ) -> int: super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) __snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A_ ) != add_prefix_space: __snake_case = getattr(A_ , pre_tok_state.pop('''type''' ) ) __snake_case = add_prefix_space __snake_case = pre_tok_class(**A_ ) __snake_case = add_prefix_space __snake_case = '''post_processor''' __snake_case = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: __snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case = tuple(state['''sep'''] ) if "cls" in state: __snake_case = tuple(state['''cls'''] ) __snake_case = False if state.get('''add_prefix_space''' , A_ ) != add_prefix_space: __snake_case = add_prefix_space __snake_case = True if state.get('''trim_offsets''' , A_ ) != trim_offsets: __snake_case = trim_offsets __snake_case = True if changes_to_apply: __snake_case = getattr(A_ , state.pop('''type''' ) ) __snake_case = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase ( self : List[Any] ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowercase ( self : int , A_ : Union[str, Any] ) -> List[Any]: __snake_case = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value __snake_case = value def lowercase ( self : Any , *A_ : List[str] , **A_ : Optional[int] ) -> BatchEncoding: __snake_case = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def lowercase ( self : str , *A_ : Tuple , **A_ : str ) -> BatchEncoding: __snake_case = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def lowercase ( self : str , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]: __snake_case = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def lowercase ( self : Tuple , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]: __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : Tuple , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Any: return token_ids_a + [self.eos_token_id] def lowercase ( self : Optional[Any] , A_ : "Conversation" ) -> List[int]: __snake_case = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(A_ ) __snake_case = ''' '''.join(A_ ) __snake_case = self.encode(A_ ) if len(A_ ) > self.model_max_length: __snake_case = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
93
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __snake_case :Tuple =DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __snake_case :Tuple ='main' # Default branch name __snake_case :Union[str, Any] ='f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) __snake_case :List[str] ='aaaaaaa' # This commit does not exist, so we should 404. __snake_case :int ='d9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes __snake_case :int ='4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def lowerCamelCase_ ( ) -> Dict: '''simple docstring''' print('Welcome!' ) yield print('Bye!' ) @contextlib.contextmanager def lowerCamelCase_ ( ) -> Dict: '''simple docstring''' print('Bonjour!' ) yield print('Au revoir!' ) class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> str: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('transformers' ) is not None class lowerCAmelCase__ ( unittest.TestCase ): @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def __UpperCamelCase ( self : str , __UpperCamelCase : Union[str, Any] ) -> Dict: with ContextManagers([] ): print('Transformers are awesome!' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def __UpperCamelCase ( self : List[Any] , __UpperCamelCase : Any ) -> Tuple: with ContextManagers([context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' ) @unittest.mock.patch('sys.stdout' , new_callable=io.StringIO ) def __UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : int ) -> Optional[Any]: with ContextManagers([context_fr(), context_en()] ): print('Transformers are awesome!' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' ) @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: self.assertEqual(find_labels(__UpperCamelCase ) , ['labels'] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['start_positions', 'end_positions'] ) class lowerCAmelCase__ ( _lowerCamelCase ): pass self.assertEqual(find_labels(__UpperCamelCase ) , ['labels'] ) @require_tf def __UpperCamelCase ( self : str ) -> Optional[Any]: self.assertEqual(find_labels(__UpperCamelCase ) , ['labels'] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['labels', 'next_sentence_label'] ) self.assertEqual(find_labels(__UpperCamelCase ) , ['start_positions', 'end_positions'] ) class lowerCAmelCase__ ( _lowerCamelCase ): pass self.assertEqual(find_labels(__UpperCamelCase ) , ['labels'] ) @require_flax def __UpperCamelCase ( self : Dict ) -> Dict: # Flax models don't have labels self.assertEqual(find_labels(__UpperCamelCase ) , [] ) self.assertEqual(find_labels(__UpperCamelCase ) , [] ) self.assertEqual(find_labels(__UpperCamelCase ) , [] ) class lowerCAmelCase__ ( _lowerCamelCase ): pass self.assertEqual(find_labels(__UpperCamelCase ) , [] )
106
from collections.abc import Callable import numpy as np def lowerCamelCase_ ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> np.array: '''simple docstring''' A = int(np.ceil((x_end - xa) / step_size ) ) A = np.zeros((n + 1,) ) A = ya A = xa for k in range(lowerCAmelCase__ ): A = y[k] + step_size * ode_func(lowerCAmelCase__ , y[k] ) A = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase__ , y[k] ) + ode_func(x + step_size , lowerCAmelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
106
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _UpperCAmelCase = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[Any] , SCREAMING_SNAKE_CASE :List[str] ) -> str: # save results if os.path.exists(lowerCAmelCase__ ): if os.path.exists(os.path.join(lowerCAmelCase__ , """config.json""" ) ) and os.path.isfile( os.path.join(lowerCAmelCase__ , """config.json""" ) ): os.remove(os.path.join(lowerCAmelCase__ , """config.json""" ) ) if os.path.exists(os.path.join(lowerCAmelCase__ , """pytorch_model.bin""" ) ) and os.path.isfile( os.path.join(lowerCAmelCase__ , """pytorch_model.bin""" ) ): os.remove(os.path.join(lowerCAmelCase__ , """pytorch_model.bin""" ) ) else: os.makedirs(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :str=False ) -> Optional[Any]: __lowerCAmelCase : Tuple = 2 if unlogit: __lowerCAmelCase : Optional[int] = torch.pow(lowerCAmelCase__ , lowerCAmelCase__ ) __lowerCAmelCase : Optional[int] = p * torch.log(lowerCAmelCase__ ) __lowerCAmelCase : str = 0 return -plogp.sum(dim=-1 ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] ) -> List[Any]: logger.info("""lv, h >\t""" + """\t""".join(F'''{x + 1}''' for x in range(len(lowerCAmelCase__ ) ) ) ) for row in range(len(lowerCAmelCase__ ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + """\t""".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :List[str] , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :int=True , SCREAMING_SNAKE_CASE :str=None , SCREAMING_SNAKE_CASE :List[Any]=False ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase : List[str] = model.config.num_hidden_layers, model.config.num_attention_heads __lowerCAmelCase : Tuple = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ ).to(args.device ) __lowerCAmelCase : str = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__ ).to(args.device ) if head_mask is None: __lowerCAmelCase : Any = torch.ones(lowerCAmelCase__ , lowerCAmelCase__ ).to(args.device ) head_mask.requires_grad_(requires_grad=lowerCAmelCase__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __lowerCAmelCase : int = None __lowerCAmelCase : Tuple = 0.0 __lowerCAmelCase : Tuple = 0.0 for step, inputs in enumerate(tqdm(lowerCAmelCase__ , desc="""Iteration""" , disable=args.local_rank not in [-1, 0] ) ): __lowerCAmelCase : List[str] = tuple(t.to(args.device ) for t in inputs ) ((__lowerCAmelCase ) , ) : List[Any] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __lowerCAmelCase : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(lowerCAmelCase__ ): __lowerCAmelCase : Dict = entropy(attn.detach() , lowerCAmelCase__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(lowerCAmelCase__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __lowerCAmelCase : Dict = 2 __lowerCAmelCase : List[Any] = torch.pow(torch.pow(lowerCAmelCase__ , lowerCAmelCase__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: __lowerCAmelCase : Any = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("""Attention entropies""" ) print_ad_tensor(lowerCAmelCase__ ) if compute_importance: logger.info("""Head importance scores""" ) print_ad_tensor(lowerCAmelCase__ ) logger.info("""Head ranked by importance scores""" ) __lowerCAmelCase : Optional[Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __lowerCAmelCase : Tuple = torch.arange( head_importance.numel() , device=args.device ) __lowerCAmelCase : Optional[Any] = head_ranks.view_as(lowerCAmelCase__ ) print_ad_tensor(lowerCAmelCase__ ) return attn_entropy, head_importance, total_loss def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Any , SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> str: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = compute_heads_importance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ ) __lowerCAmelCase : Any = 1 / loss # instead of downsteam score use the LM loss logger.info("""Pruning: original score: %f, threshold: %f""" , lowerCAmelCase__ , original_score * args.masking_threshold ) __lowerCAmelCase : Optional[Any] = torch.ones_like(lowerCAmelCase__ ) __lowerCAmelCase : Dict = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __lowerCAmelCase : Any = original_score while current_score >= original_score * args.masking_threshold: __lowerCAmelCase : Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __lowerCAmelCase : Optional[Any] = float("""Inf""" ) __lowerCAmelCase : List[Any] = head_importance.view(-1 ).sort()[1] if len(lowerCAmelCase__ ) <= num_to_mask: print("""BREAK BY num_to_mask""" ) break # mask heads __lowerCAmelCase : int = current_heads_to_mask[:num_to_mask] logger.info("""Heads to mask: %s""" , str(current_heads_to_mask.tolist() ) ) __lowerCAmelCase : int = new_head_mask.view(-1 ) __lowerCAmelCase : List[str] = 0.0 __lowerCAmelCase : str = new_head_mask.view_as(lowerCAmelCase__ ) __lowerCAmelCase : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(lowerCAmelCase__ ) # Compute metric and head importance again __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = compute_heads_importance( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __lowerCAmelCase : Dict = 1 / loss logger.info( """Masking: current score: %f, remaining heads %d (%.1f percents)""" , lowerCAmelCase__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , ) logger.info("""Final head mask""" ) print_ad_tensor(lowerCAmelCase__ ) np.save(os.path.join(args.output_dir , """head_mask.npy""" ) , head_mask.detach().cpu().numpy() ) return head_mask def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Tuple , SCREAMING_SNAKE_CASE :Any ) -> Tuple: __lowerCAmelCase : Union[str, Any] = datetime.now() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[Any] = compute_heads_importance( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ , compute_importance=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) __lowerCAmelCase : List[Any] = 1 / loss __lowerCAmelCase : str = datetime.now() - before_time __lowerCAmelCase : Optional[int] = sum(p.numel() for p in model.parameters() ) __lowerCAmelCase : str = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(lowerCAmelCase__ ) ) } for k, v in heads_to_prune.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowerCAmelCase : Optional[Any] = [ v, ] assert sum(len(lowerCAmelCase__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(lowerCAmelCase__ ) __lowerCAmelCase : int = sum(p.numel() for p in model.parameters() ) __lowerCAmelCase : Any = datetime.now() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = compute_heads_importance( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , compute_entropy=lowerCAmelCase__ , compute_importance=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , actually_pruned=lowerCAmelCase__ , ) __lowerCAmelCase : int = 1 / loss __lowerCAmelCase : int = datetime.now() - before_time logger.info( """Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)""" , lowerCAmelCase__ , lowerCAmelCase__ , pruned_num_params / original_num_params * 100 , ) logger.info("""Pruning: score with masking: %f score with pruning: %f""" , lowerCAmelCase__ , lowerCAmelCase__ ) logger.info("""Pruning: speed ratio (original timing / new timing): %f percents""" , original_time / new_time * 100 ) save_model(lowerCAmelCase__ , args.output_dir ) def _SCREAMING_SNAKE_CASE ( ) -> Optional[int]: __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--data_dir""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""The input data dir. Should contain the .tsv files (or other data files) for the task.""" , ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--output_dir""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""The output directory where the model predictions and checkpoints will be written.""" , ) # Other parameters parser.add_argument( """--config_name""" , default="""""" , type=lowerCAmelCase__ , help="""Pretrained config name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--tokenizer_name""" , default="""""" , type=lowerCAmelCase__ , help="""Pretrained tokenizer name or path if not the same as model_name_or_path""" , ) parser.add_argument( """--cache_dir""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Where do you want to store the pre-trained models downloaded from s3""" , ) parser.add_argument( """--data_subset""" , type=lowerCAmelCase__ , default=-1 , help="""If > 0: limit the data to a subset of data_subset instances.""" ) parser.add_argument( """--overwrite_output_dir""" , action="""store_true""" , help="""Whether to overwrite data in output directory""" ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) parser.add_argument( """--dont_normalize_importance_by_layer""" , action="""store_true""" , help="""Don\'t normalize importance score by layers""" ) parser.add_argument( """--dont_normalize_global_importance""" , action="""store_true""" , help="""Don\'t normalize all importance scores between 0 and 1""" , ) parser.add_argument( """--try_masking""" , action="""store_true""" , help="""Whether to try to mask head until a threshold of accuracy.""" ) parser.add_argument( """--masking_threshold""" , default=0.9 , type=lowerCAmelCase__ , help="""masking threshold in term of metrics (stop masking when metric < threshold * original metric value).""" , ) parser.add_argument( """--masking_amount""" , default=0.1 , type=lowerCAmelCase__ , help="""Amount to heads to masking at each masking step.""" ) parser.add_argument("""--metric_name""" , default="""acc""" , type=lowerCAmelCase__ , help="""Metric to use for head masking.""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after WordPiece tokenization. \n""" """Sequences longer than this will be truncated, sequences shorter padded.""" ) , ) parser.add_argument("""--batch_size""" , default=1 , type=lowerCAmelCase__ , help="""Batch size.""" ) parser.add_argument("""--seed""" , type=lowerCAmelCase__ , default=42 ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase__ , default=-1 , help="""local_rank for distributed training on gpus""" ) parser.add_argument("""--no_cuda""" , action="""store_true""" , help="""Whether not to use CUDA when available""" ) parser.add_argument("""--server_ip""" , type=lowerCAmelCase__ , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=lowerCAmelCase__ , default="""""" , help="""Can be used for distant debugging.""" ) __lowerCAmelCase : List[str] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=lowerCAmelCase__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __lowerCAmelCase : Tuple = torch.device("""cuda""" if torch.cuda.is_available() and not args.no_cuda else """cpu""" ) __lowerCAmelCase : Optional[int] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __lowerCAmelCase : Any = torch.device("""cuda""" , args.local_rank ) __lowerCAmelCase : List[str] = 1 torch.distributed.init_process_group(backend="""nccl""" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("""device: {} n_gpu: {}, distributed: {}""".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __lowerCAmelCase : List[str] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __lowerCAmelCase : Tuple = nn.parallel.DistributedDataParallel( lowerCAmelCase__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=lowerCAmelCase__ ) elif args.n_gpu > 1: __lowerCAmelCase : Optional[Any] = nn.DataParallel(lowerCAmelCase__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=lowerCAmelCase__ ) torch.save(lowerCAmelCase__ , os.path.join(args.output_dir , """run_args.bin""" ) ) logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase__ ) # Prepare dataset __lowerCAmelCase : Tuple = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __lowerCAmelCase : Tuple = (torch.from_numpy(lowerCAmelCase__ ),) __lowerCAmelCase : Any = TensorDataset(*lowerCAmelCase__ ) __lowerCAmelCase : Union[str, Any] = RandomSampler(lowerCAmelCase__ ) __lowerCAmelCase : str = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __lowerCAmelCase : str = mask_heads(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) prune_heads(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
721
from datetime import datetime import requests def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str ) -> bytes: __lowerCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __lowerCAmelCase : Any = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(SCREAMING_SNAKE_CASE ).content if __name__ == "__main__": _UpperCAmelCase = input('Enter Video/IGTV url: ').strip() _UpperCAmelCase = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
240
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : complex , lowerCamelCase_ : str = "x" , lowerCamelCase_ : float = 10**-10 , lowerCamelCase_ : int = 1 , ) -> complex: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = symbols(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = lambdify(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = lambdify(lowerCamelCase_ , diff(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Dict = starting_point while True: if diff_function(lowerCamelCase_ ) != 0: SCREAMING_SNAKE_CASE_ : Optional[int] = prev_guess - multiplicity * func(lowerCamelCase_ ) / diff_function( lowerCamelCase_ ) else: raise ZeroDivisionError('Could not find root' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess SCREAMING_SNAKE_CASE_ : str = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(F"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', F"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', F"""{newton_raphson("exp(x) - 1", 10, precision=0.0_05)}""", ) # Find root of cos(x) print(F"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
105
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Any = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''resnet''' lowerCamelCase__ = ['''basic''', '''bottleneck'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="bottleneck" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) snake_case__ : List[Any] = num_channels snake_case__ : str = embedding_size snake_case__ : List[Any] = hidden_sizes snake_case__ : Dict = depths snake_case__ : List[Any] = layer_type snake_case__ : int = hidden_act snake_case__ : Union[str, Any] = downsample_in_first_stage snake_case__ : Dict = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Any = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-3
38
0
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class SCREAMING_SNAKE_CASE_ ( _a , _a , _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Optional[Any] =StableDiffusionControlNetImgaImgPipeline __lowerCAmelCase : str =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __lowerCAmelCase : int =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase : Optional[int] =IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) __lowerCAmelCase : Dict =IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self :List[Any]): """simple docstring""" torch.manual_seed(0) _lowercase =UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) torch.manual_seed(0) _lowercase =ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) torch.manual_seed(0) _lowercase =DDIMScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='scaled_linear', clip_sample=snake_case, set_alpha_to_one=snake_case, ) torch.manual_seed(0) _lowercase =AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0) _lowercase =CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) _lowercase =CLIPTextModel(snake_case) _lowercase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _lowercase ={ 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self :Optional[Any], snake_case :Any, snake_case :List[Any]=0): """simple docstring""" if str(snake_case).startswith('mps'): _lowercase =torch.manual_seed(snake_case) else: _lowercase =torch.Generator(device=snake_case).manual_seed(snake_case) _lowercase =2 _lowercase =randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=snake_case, device=torch.device(snake_case), ) _lowercase =floats_tensor(control_image.shape, rng=random.Random(snake_case)).to(snake_case) _lowercase =image.cpu().permute(0, 2, 3, 1)[0] _lowercase =Image.fromarray(np.uinta(snake_case)).convert('RGB').resize((64, 64)) _lowercase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def UpperCamelCase__ ( self :List[str]): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def UpperCamelCase__ ( self :List[str]): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3) class SCREAMING_SNAKE_CASE_ ( _a , _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : List[Any] =StableDiffusionControlNetImgaImgPipeline __lowerCAmelCase : Optional[Any] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __lowerCAmelCase : Dict =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase : Dict =frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" torch.manual_seed(0) _lowercase =UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) torch.manual_seed(0) def init_weights(snake_case :Dict): if isinstance(snake_case, torch.nn.Convad): torch.nn.init.normal(m.weight) m.bias.data.fill_(1.0) _lowercase =ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlneta.controlnet_down_blocks.apply(snake_case) torch.manual_seed(0) _lowercase =ControlNetModel( block_out_channels=(32, 64), layers_per_block=2, in_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), cross_attention_dim=32, conditioning_embedding_out_channels=(16, 32), ) controlneta.controlnet_down_blocks.apply(snake_case) torch.manual_seed(0) _lowercase =DDIMScheduler( beta_start=0.0_0_0_8_5, beta_end=0.0_1_2, beta_schedule='scaled_linear', clip_sample=snake_case, set_alpha_to_one=snake_case, ) torch.manual_seed(0) _lowercase =AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) torch.manual_seed(0) _lowercase =CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-0_5, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) _lowercase =CLIPTextModel(snake_case) _lowercase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') _lowercase =MultiControlNetModel([controlneta, controlneta]) _lowercase ={ 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase__ ( self :int, snake_case :Any, snake_case :Optional[Any]=0): """simple docstring""" if str(snake_case).startswith('mps'): _lowercase =torch.manual_seed(snake_case) else: _lowercase =torch.Generator(device=snake_case).manual_seed(snake_case) _lowercase =2 _lowercase =[ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=snake_case, device=torch.device(snake_case), ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), generator=snake_case, device=torch.device(snake_case), ), ] _lowercase =floats_tensor(control_image[0].shape, rng=random.Random(snake_case)).to(snake_case) _lowercase =image.cpu().permute(0, 2, 3, 1)[0] _lowercase =Image.fromarray(np.uinta(snake_case)).convert('RGB').resize((64, 64)) _lowercase ={ 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" _lowercase =self.get_dummy_components() _lowercase =self.pipeline_class(**snake_case) pipe.to(snake_case) _lowercase =1_0.0 _lowercase =4 _lowercase =self.get_dummy_inputs(snake_case) _lowercase =steps _lowercase =scale _lowercase =pipe(**snake_case)[0] _lowercase =self.get_dummy_inputs(snake_case) _lowercase =steps _lowercase =scale _lowercase =pipe(**snake_case, control_guidance_start=0.1, control_guidance_end=0.2)[0] _lowercase =self.get_dummy_inputs(snake_case) _lowercase =steps _lowercase =scale _lowercase =pipe(**snake_case, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] _lowercase =self.get_dummy_inputs(snake_case) _lowercase =steps _lowercase =scale _lowercase =pipe(**snake_case, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 assert np.sum(np.abs(output_a - output_a)) > 1e-3 def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def UpperCamelCase__ ( self :List[Any]): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) def UpperCamelCase__ ( self :Tuple): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2e-3) def UpperCamelCase__ ( self :Dict): """simple docstring""" _lowercase =self.get_dummy_components() _lowercase =self.pipeline_class(**snake_case) pipe.to(snake_case) pipe.set_progress_bar_config(disable=snake_case) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(snake_case) except NotImplementedError: pass @slow @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self :int): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase =ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny') _lowercase =StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', safety_checker=snake_case, controlnet=snake_case) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case) _lowercase =torch.Generator(device='cpu').manual_seed(0) _lowercase ='evil space-punk bird' _lowercase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png').resize((512, 512)) _lowercase =load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png').resize((512, 512)) _lowercase =pipe( snake_case, snake_case, control_image=snake_case, generator=snake_case, output_type='np', num_inference_steps=50, strength=0.6, ) _lowercase =output.images[0] assert image.shape == (512, 512, 3) _lowercase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy') assert np.abs(expected_image - image).max() < 9e-2
557
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Tuple ='''visual_bert''' def __init__( self :Any, snake_case :Dict=3_0522, snake_case :Optional[Any]=768, snake_case :Optional[Any]=512, snake_case :Tuple=12, snake_case :List[Any]=12, snake_case :List[Any]=3072, snake_case :Optional[int]="gelu", snake_case :Union[str, Any]=0.1, snake_case :List[str]=0.1, snake_case :Optional[Any]=512, snake_case :Tuple=2, snake_case :Optional[int]=0.0_2, snake_case :Union[str, Any]=1e-1_2, snake_case :Union[str, Any]=False, snake_case :Optional[Any]=True, snake_case :Tuple=1, snake_case :int=0, snake_case :Any=2, **snake_case :Union[str, Any], ): """simple docstring""" super().__init__(pad_token_id=snake_case, bos_token_id=snake_case, eos_token_id=snake_case, **snake_case) _lowercase =vocab_size _lowercase =max_position_embeddings _lowercase =hidden_size _lowercase =visual_embedding_dim _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =initializer_range _lowercase =type_vocab_size _lowercase =layer_norm_eps _lowercase =bypass_transformer _lowercase =special_visual_initialize
557
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'spiece.model'} lowercase_ = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } lowercase_ = {'bert_for_seq_generation': 5_12} class __a ( __UpperCamelCase ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self : str , snake_case_ : List[str] , snake_case_ : Tuple="<s>" , snake_case_ : Optional[Any]="</s>" , snake_case_ : int="<unk>" , snake_case_ : Tuple="<pad>" , snake_case_ : Any="<::::>" , snake_case_ : Union[str, Any] = None , **snake_case_ : List[str] , )-> Any: __lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , sep_token=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , **snake_case_ , ) __lowerCAmelCase =vocab_file __lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(snake_case_) @property def UpperCamelCase ( self : Union[str, Any])-> Tuple: return self.sp_model.get_piece_size() def UpperCamelCase ( self : int)-> Any: __lowerCAmelCase ={self.convert_ids_to_tokens(snake_case_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Dict)-> List[str]: __lowerCAmelCase =self.__dict__.copy() __lowerCAmelCase =None return state def __setstate__( self : Dict , snake_case_ : Optional[Any])-> Union[str, Any]: __lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs"""): __lowerCAmelCase ={} __lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCamelCase ( self : List[str] , snake_case_ : Union[str, Any])-> Dict: return self.sp_model.encode(snake_case_ , out_type=snake_case_) def UpperCamelCase ( self : Tuple , snake_case_ : List[Any])-> Optional[Any]: return self.sp_model.piece_to_id(snake_case_) def UpperCamelCase ( self : List[str] , snake_case_ : List[Any])-> Union[str, Any]: __lowerCAmelCase =self.sp_model.IdToPiece(snake_case_) return token def UpperCamelCase ( self : Optional[int] , snake_case_ : List[Any])-> int: __lowerCAmelCase =[] __lowerCAmelCase ="""""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case_) + token __lowerCAmelCase =[] else: current_sub_tokens.append(snake_case_) out_string += self.sp_model.decode(snake_case_) return out_string.strip() def UpperCamelCase ( self : Any , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] = None)-> List[str]: if not os.path.isdir(snake_case_): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""") return __lowerCAmelCase =os.path.join( snake_case_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(snake_case_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , snake_case_) elif not os.path.isfile(self.vocab_file): with open(snake_case_ , """wb""") as fi: __lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(snake_case_) return (out_vocab_file,)
354
import math import flax.linen as nn import jax.numpy as jnp def UpperCamelCase__ ( _A: jnp.ndarray , _A: int , _A: float = 1 , _A: float = 1 , _A: float = 1.0e4 , _A: bool = False , _A: float = 1.0 , ): '''simple docstring''' assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' __lowerCamelCase = float(embedding_dim // 2 ) __lowerCamelCase = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) __lowerCamelCase = min_timescale * jnp.exp(jnp.arange(_A , dtype=jnp.floataa ) * -log_timescale_increment ) __lowerCamelCase = jnp.expand_dims(_A , 1 ) * jnp.expand_dims(_A , 0 ) # scale embeddings __lowerCamelCase = scale * emb if flip_sin_to_cos: __lowerCamelCase = jnp.concatenate([jnp.cos(_A ), jnp.sin(_A )] , axis=1 ) else: __lowerCamelCase = jnp.concatenate([jnp.sin(_A ), jnp.cos(_A )] , axis=1 ) __lowerCamelCase = jnp.reshape(_A , [jnp.shape(_A )[0], embedding_dim] ) return signal class UpperCamelCase_ ( nn.Module ): """simple docstring""" A = 32 A = jnp.floataa @nn.compact def __call__( self , UpperCAmelCase ): __lowerCamelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_1""" )(UpperCAmelCase ) __lowerCamelCase = nn.silu(UpperCAmelCase ) __lowerCamelCase = nn.Dense(self.time_embed_dim , dtype=self.dtype , name="""linear_2""" )(UpperCAmelCase ) return temb class UpperCamelCase_ ( nn.Module ): """simple docstring""" A = 32 A = False A = 1 @nn.compact def __call__( self , UpperCAmelCase ): return get_sinusoidal_embeddings( UpperCAmelCase , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
479
0
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=3_0_5_2_2, type=int) _SCREAMING_SNAKE_CASE = parser.parse_args() logger.info(f'Loading data from {args.data_file}') with open(args.data_file, """rb""") as fp: _SCREAMING_SNAKE_CASE = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") _SCREAMING_SNAKE_CASE = Counter() for tk_ids in data: counter.update(tk_ids) _SCREAMING_SNAKE_CASE = [0] * args.vocab_size for k, v in counter.items(): _SCREAMING_SNAKE_CASE = v logger.info(f'Dump to {args.token_counts_dump}') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
239
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__(self , *lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowercase_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None ): '''simple docstring''' _UpperCamelCase : Optional[int] = {} _UpperCamelCase : Optional[int] = {} if prompt is not None: _UpperCamelCase : Optional[int] = prompt if generate_kwargs is not None: _UpperCamelCase : List[str] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _UpperCamelCase : List[Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) _UpperCamelCase : Optional[int] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__(self , lowerCAmelCase__ , **lowerCAmelCase__ ): '''simple docstring''' return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__=None ): '''simple docstring''' _UpperCamelCase : Dict = load_image(lowerCAmelCase__ ) if prompt is not None: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError( F"Received an invalid text input, got - {type(lowerCAmelCase__ )} - but expected a single string. " "Note also that one single text can be provided for conditional image to text generation." ) _UpperCamelCase : Dict = self.model.config.model_type if model_type == "git": _UpperCamelCase : Union[str, Any] = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) _UpperCamelCase : Optional[int] = self.tokenizer(text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids _UpperCamelCase : int = [self.tokenizer.cls_token_id] + input_ids _UpperCamelCase : Optional[int] = torch.tensor(lowerCAmelCase__ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": _UpperCamelCase : Optional[int] = self.image_processor(images=lowerCAmelCase__ , header_text=lowerCAmelCase__ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _UpperCamelCase : Tuple = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) _UpperCamelCase : List[str] = self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase__ ) else: raise ValueError(F"Model type {model_type} does not support conditional text generation" ) else: _UpperCamelCase : Union[str, Any] = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _UpperCamelCase : Union[str, Any] = None return model_inputs def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__=None ): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , lowerCAmelCase__ ) and all(x is None for x in model_inputs["input_ids"] ) ): _UpperCamelCase : Optional[Any] = None if generate_kwargs is None: _UpperCamelCase : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _UpperCamelCase : Any = model_inputs.pop(self.model.main_input_name ) _UpperCamelCase : Tuple = self.model.generate(lowerCAmelCase__ , **lowerCAmelCase__ , **lowerCAmelCase__ ) return model_outputs def lowercase_ (self , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Optional[Any] = [] for output_ids in model_outputs: _UpperCamelCase : Tuple = { "generated_text": self.tokenizer.decode( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , ) } records.append(lowerCAmelCase__ ) return records
239
1
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __snake_case = HfArgumentParser(InitializationArguments) __snake_case = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __snake_case = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __snake_case = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) __snake_case = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __snake_case = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
451
import os lowerCAmelCase__ : str ={'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1000} def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while index < len(a__ ) - 1: __SCREAMING_SNAKE_CASE = SYMBOLS[numerals[index]] __SCREAMING_SNAKE_CASE = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def __lowercase ( a__ ) -> str: __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = num // 10_00 numerals += m_count * "M" num %= 10_00 __SCREAMING_SNAKE_CASE = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 __SCREAMING_SNAKE_CASE = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def __lowercase ( a__ = "/p089_roman.txt" ) -> int: __SCREAMING_SNAKE_CASE = 0 with open(os.path.dirname(a__ ) + roman_numerals_filename ) as filea: __SCREAMING_SNAKE_CASE = filea.readlines() for line in lines: __SCREAMING_SNAKE_CASE = line.strip() __SCREAMING_SNAKE_CASE = parse_roman_numerals(a__ ) __SCREAMING_SNAKE_CASE = generate_roman_numerals(a__ ) savings += len(a__ ) - len(a__ ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
148
0
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __a ( A__ : Optional[int] , A__ : List[Any] , A__ : Any ): SCREAMING_SNAKE_CASE = BertConfig.from_json_file(A__ ) print(F"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE = BertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(A__ , A__ , A__ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
698
0
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , **_a , ): """simple docstring""" super().__init__( features=_a , cache_dir=_a , keep_in_memory=_a , streaming=_a , num_proc=_a , **_a , ) lowerCamelCase = Generator( cache_dir=_a , features=_a , generator=_a , gen_kwargs=_a , **_a , ) def _lowerCAmelCase ( self ): """simple docstring""" # Build iterable dataset if self.streaming: lowerCamelCase = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None self.builder.download_and_prepare( download_config=_a , download_mode=_a , verification_mode=_a , base_path=_a , num_proc=self.num_proc , ) lowerCamelCase = self.builder.as_dataset( split="""train""" , verification_mode=_a , in_memory=self.keep_in_memory ) return dataset
543
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "mctct" def __init__( self , _a=8_065 , _a=1_536 , _a=36 , _a=6_144 , _a=4 , _a=384 , _a=920 , _a=1e-5 , _a=0.3 , _a="relu" , _a=0.02 , _a=0.3 , _a=0.3 , _a=1 , _a=0 , _a=2 , _a=1 , _a=0.3 , _a=1 , _a=(7,) , _a=(3,) , _a=80 , _a=1 , _a=None , _a="sum" , _a=False , **_a , ): """simple docstring""" super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) lowerCamelCase = vocab_size lowerCamelCase = hidden_size lowerCamelCase = num_hidden_layers lowerCamelCase = intermediate_size lowerCamelCase = num_attention_heads lowerCamelCase = attention_head_dim lowerCamelCase = max_position_embeddings lowerCamelCase = layer_norm_eps lowerCamelCase = layerdrop lowerCamelCase = hidden_act lowerCamelCase = initializer_range lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = pad_token_id lowerCamelCase = bos_token_id lowerCamelCase = eos_token_id lowerCamelCase = conv_glu_dim lowerCamelCase = conv_dropout lowerCamelCase = num_conv_layers lowerCamelCase = input_feat_per_channel lowerCamelCase = input_channels lowerCamelCase = conv_channels lowerCamelCase = ctc_loss_reduction lowerCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json lowerCamelCase = list(_a ) lowerCamelCase = list(_a ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ f'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ' f'`config.num_conv_layers = {self.num_conv_layers}`.' )
543
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Optional[Any] = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = DebertaVaTokenizer _lowercase = DebertaVaTokenizerFast _lowercase = True _lowercase = True def _UpperCamelCase( self : str ): super().setUp() # We have a SentencePiece fixture for testing a__ : Any = DebertaVaTokenizer(lowerCamelCase__ , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] ): a__ : str = "this is a test" a__ : Tuple = "this is a test" return input_text, output_text def _UpperCamelCase( self : List[str] ): a__ : Optional[Any] = "<pad>" a__ : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def _UpperCamelCase( self : Tuple ): a__ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(lowerCamelCase__ ) , 30_001 ) def _UpperCamelCase( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def _UpperCamelCase( self : Tuple ): # fmt: off a__ : List[str] = " \tHeLLo!how \n Are yoU? " a__ : Tuple = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on a__ : Tuple = DebertaVaTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ ) a__ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Optional[Any] = DebertaVaTokenizerFast(lowerCamelCase__ , do_lower_case=lowerCamelCase__ ) a__ : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _UpperCamelCase( self : Tuple ): pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def _UpperCamelCase( self : Tuple ): pass def _UpperCamelCase( self : Union[str, Any] ): # fmt: off a__ : List[Any] = "I was born in 92000, and this is falsé." a__ : int = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on a__ : List[Any] = DebertaVaTokenizer(lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) a__ : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Union[str, Any] = DebertaVaTokenizerFast(lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) a__ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : int ): # fmt: off a__ : Union[str, Any] = "I was born in 92000, and this is falsé." a__ : Any = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on a__ : List[str] = DebertaVaTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) a__ : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Tuple = DebertaVaTokenizerFast(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) a__ : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): # fmt: off a__ : List[Any] = "I was born in 92000, and this is falsé." a__ : Tuple = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on a__ : List[str] = DebertaVaTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) a__ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : str = DebertaVaTokenizerFast(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) a__ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): # fmt: off a__ : Optional[Any] = "I was born in 92000, and this is falsé." a__ : List[str] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on a__ : str = DebertaVaTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) a__ : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Optional[int] = DebertaVaTokenizerFast(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) a__ : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): # fmt: off a__ : Optional[int] = " \tHeLLo!how \n Are yoU? " a__ : int = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on a__ : int = DebertaVaTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) a__ : Dict = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Union[str, Any] = DebertaVaTokenizerFast(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) a__ : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : List[str] ): a__ : List[Any] = self.get_tokenizer() a__ : Union[str, Any] = self.get_rust_tokenizer() a__ : Union[str, Any] = "I was born in 92000, and this is falsé." a__ : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) a__ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Union[str, Any] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) a__ : str = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : str = self.get_rust_tokenizer() a__ : Optional[int] = tokenizer.encode(lowerCamelCase__ ) a__ : int = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : List[str] ): a__ : Optional[int] = "This is a test" a__ : int = [13, 1, 4_398, 25, 21, 1_289] a__ : List[str] = ["▁", "T", "his", "▁is", "▁a", "▁test"] a__ : Union[str, Any] = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] a__ : Optional[int] = DebertaVaTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) a__ : Union[str, Any] = DebertaVaTokenizerFast(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) a__ : Optional[Any] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : str = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : int = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : List[str] = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # fmt: off a__ : int = "I was born in 92000, and this is falsé." a__ : List[Any] = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] a__ : List[str] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] a__ : str = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on a__ : List[str] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Any = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Any = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : str = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Tuple = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Tuple = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : List[str] ): a__ : Optional[int] = DebertaVaTokenizer(lowerCamelCase__ ) a__ : int = tokenizer.encode("sequence builders" ) a__ : List[Any] = tokenizer.encode("multi-sequence build" ) a__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) a__ : List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCamelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCamelCase__ , ) @slow def _UpperCamelCase( self : int ): # fmt: off a__ : Union[str, Any] = {"input_ids": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
151
def UpperCamelCase_ ( __a ) -> bool: a__ : Tuple = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCamelCase_ ( __a = 5_000 ) -> int: a__ : List[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , __a )] for i, pentagonal_i in enumerate(__a ): for j in range(__a , len(__a ) ): a__ : Dict = pentagonal_nums[j] a__ : Optional[Any] = pentagonal_i + pentagonal_j a__ : str = pentagonal_j - pentagonal_i if is_pentagonal(__a ) and is_pentagonal(__a ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
151
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 lowerCamelCase_ : List[str] = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 2048-bit 14: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 3072-bit 15: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 4096-bit 16: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 6144-bit 17: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 8192-bit 18: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, } class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , snake_case_ : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) UpperCamelCase_: Tuple = primes[group]["""prime"""] UpperCamelCase_: List[Any] = primes[group]["""generator"""] UpperCamelCase_: Tuple = int(hexlify(urandom(32 ) ) , base=16 ) def lowerCAmelCase__ ( self : List[str] ): return hex(self.__private_key )[2:] def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Union[str, Any] = pow(self.generator , self.__private_key , self.prime ) return hex(_lowercase )[2:] def lowerCAmelCase__ ( self : int , snake_case_ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_lowercase , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : str ): UpperCamelCase_: Any = int(_lowercase , base=16 ) if not self.is_valid_public_key(_lowercase ): raise ValueError("""Invalid public key""" ) UpperCamelCase_: Tuple = pow(_lowercase , self.__private_key , self.prime ) return shaaaa(str(_lowercase ).encode() ).hexdigest() @staticmethod def lowerCAmelCase__ ( snake_case_ : int , snake_case_ : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_lowercase , (prime - 1) // 2 , _lowercase ) == 1 ) @staticmethod def lowerCAmelCase__ ( snake_case_ : str , snake_case_ : str , snake_case_ : int = 14 ): UpperCamelCase_: List[str] = int(_lowercase , base=16 ) UpperCamelCase_: int = int(_lowercase , base=16 ) UpperCamelCase_: Optional[int] = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(_lowercase , _lowercase ): raise ValueError("""Invalid public key""" ) UpperCamelCase_: Union[str, Any] = pow(_lowercase , _lowercase , _lowercase ) return shaaaa(str(_lowercase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
548
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __UpperCAmelCase ( lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = CTRLTokenizer _UpperCamelCase = False _UpperCamelCase = False def __snake_case ( self : str) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] A_ = dict(zip(_lowercase , range(len(_lowercase)))) A_ = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] A_ = {'unk_token': '<unk>'} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(_lowercase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(_lowercase)) def __snake_case ( self : Optional[int] , **_lowercase : Optional[int]) -> Union[str, Any]: kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_lowercase) def __snake_case ( self : List[Any] , _lowercase : Union[str, Any]) -> Dict: A_ = 'adapt react readapt apt' A_ = 'adapt react readapt apt' return input_text, output_text def __snake_case ( self : Any) -> Any: A_ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) A_ = 'adapt react readapt apt' A_ = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() A_ = tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) A_ = tokens + [tokenizer.unk_token] A_ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase) , _lowercase)
366
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowerCAmelCase : Union[str, Any] = 0b1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowerCAmelCase : Optional[int] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class SCREAMING_SNAKE_CASE__ : def __init__( self )-> Tuple: '''simple docstring''' UpperCamelCase = WATERMARK_BITS UpperCamelCase = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCAmelCase_ ( self , A_ )-> int: '''simple docstring''' if images.shape[-1] < 256: return images UpperCamelCase = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase = [self.encoder.encode(A_ , 'dwtDct' ) for image in images] UpperCamelCase = torch.from_numpy(np.array(A_ ) ).permute(0 , 3 , 1 , 2 ) UpperCamelCase = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
703
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Any = logging.get_logger(__name__) def A_( A : List[Any] , A : Union[str, Any]=False): UpperCamelCase = [] # fmt: off # stem: rename_keys.append(('cls_token', 'vit.embeddings.cls_token')) rename_keys.append(('pos_embed', 'vit.embeddings.position_embeddings')) rename_keys.append(('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight')) rename_keys.append(('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias')) # backbone rename_keys.append(('patch_embed.backbone.stem.conv.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight')) rename_keys.append(('patch_embed.backbone.stem.norm.weight', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight')) rename_keys.append(('patch_embed.backbone.stem.norm.bias', 'vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''')) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''')) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''')) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''')) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''')) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''')) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''')) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''')) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''')) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''')) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''')) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''')) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('vit') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ]) # fmt: on return rename_keys def A_( A : Optional[int] , A : str , A : str=False): for i in range(config.num_hidden_layers): if base_model: UpperCamelCase = '' else: UpperCamelCase = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''') UpperCamelCase = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase = in_proj_bias[: config.hidden_size] UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase = in_proj_bias[-config.hidden_size :] def A_( A : Optional[Any]): UpperCamelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(A , A) def A_( A : Union[str, Any] , A : List[str] , A : Optional[Any]): UpperCamelCase = dct.pop(A) UpperCamelCase = val def A_( ): UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = Image.open(requests.get(A , stream=A).raw) return im @torch.no_grad() def A_( A : Optional[Any] , A : Optional[int] , A : Union[str, Any]=False): UpperCamelCase = BitConfig( global_padding='same' , layer_type='bottleneck' , depths=(3, 4, 9) , out_features=['stage3'] , embedding_dynamic_padding=A , ) UpperCamelCase = ViTHybridConfig(backbone_config=A , image_size=384 , num_labels=1000) UpperCamelCase = False # load original model from timm UpperCamelCase = timm.create_model(A , pretrained=A) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase = timm_model.state_dict() if base_model: remove_classification_head_(A) UpperCamelCase = create_rename_keys(A , A) for src, dest in rename_keys: rename_key(A , A , A) read_in_q_k_v(A , A , A) UpperCamelCase = 'huggingface/label-files' UpperCamelCase = 'imagenet-1k-id2label.json' UpperCamelCase = json.load(open(hf_hub_download(A , A , repo_type='dataset') , 'r')) UpperCamelCase = {int(A): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": UpperCamelCase = ViTHybridModel(A).eval() else: UpperCamelCase = ViTHybridForImageClassification(A).eval() model.load_state_dict(A) # create image processor UpperCamelCase = create_transform(**resolve_data_config({} , model=A)) UpperCamelCase = transform.transforms UpperCamelCase = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } UpperCamelCase = ViTHybridImageProcessor( do_resize=A , size={'shortest_edge': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=A , crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]} , do_normalize=A , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCamelCase = prepare_img() UpperCamelCase = transform(A).unsqueeze(0) UpperCamelCase = processor(A , return_tensors='pt').pixel_values # verify pixel values assert torch.allclose(A , A) # verify logits with torch.no_grad(): UpperCamelCase = model(A) UpperCamelCase = outputs.logits print('Predicted class:' , logits.argmax(-1).item()) if base_model: UpperCamelCase = timm_model.forward_features(A) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A , outputs.pooler_output , atol=1E-3) else: UpperCamelCase = timm_model(A) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A , outputs.logits , atol=1E-3) print('Looks ok!') if pytorch_dump_folder_path is not None: Path(A).mkdir(exist_ok=A) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''') model.save_pretrained(A) print(f'''Saving processor to {pytorch_dump_folder_path}''') processor.save_pretrained(A) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''') model.push_to_hub(f'''ybelkada/{vit_name}''') processor.push_to_hub(f'''ybelkada/{vit_name}''') if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) lowerCAmelCase : Any = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
432
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __a = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __a = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above __a = tf_top_k_top_p_filtering(snake_case_ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __a = output[output != -float('''inf''' )] __a = tf.cast( tf.where(tf.not_equal(snake_case_ , tf.constant(-float('''inf''' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(snake_case_ , snake_case_ , rtol=1E-12 ) tf.debugging.assert_equal(snake_case_ , snake_case_ ) @require_tf class __lowerCAmelCase ( unittest.TestCase , __SCREAMING_SNAKE_CASE ): '''simple docstring''' if is_tf_available(): __UpperCAmelCase : Optional[int] = { 'AutoModelForCausalLM': TFAutoModelForCausalLM, 'AutoModelForSpeechSeq2Seq': TFAutoModelForSpeechSeqaSeq, 'AutoModelForSeq2SeqLM': TFAutoModelForSeqaSeqLM, 'AutoModelForVision2Seq': TFAutoModelForVisionaSeq, 'LogitsProcessorList': TFLogitsProcessorList, 'MinLengthLogitsProcessor': TFMinLengthLogitsProcessor, 'create_tensor_fn': tf.convert_to_tensor, 'floats_tensor': floats_tensor, 'return_tensors': 'tf', } @slow def __UpperCAmelCase ( self ): # TF-only test: tf.saved_model export __a = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = 2 __a = 2 class __lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self , _a ): super(snake_case_ , self ).__init__() __a = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((None, input_length) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=snake_case_ , ) def __UpperCAmelCase ( self , _a , _a ): __a = self.model.generate( input_ids=snake_case_ , attention_mask=snake_case_ , max_new_tokens=snake_case_ , return_dict_in_generate=snake_case_ , ) return {"sequences": outputs["sequences"]} __a = [[2, 0], [102, 103]] __a = [[1, 0], [1, 1]] __a = DummyModel(model=snake_case_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case_ , snake_case_ , signatures={'''serving_default''': dummy_model.serving} ) __a = tf.saved_model.load(snake_case_ ).signatures['''serving_default'''] for batch_size in range(1 , len(snake_case_ ) + 1 ): __a = { '''input_ids''': tf.constant(dummy_input_ids[:batch_size] ), '''attention_mask''': tf.constant(dummy_attention_masks[:batch_size] ), } __a = serving_func(**snake_case_ )['''sequences'''] __a = test_model.generate(**snake_case_ , max_new_tokens=snake_case_ ) tf.debugging.assert_equal(snake_case_ , snake_case_ ) @slow def __UpperCAmelCase ( self ): # TF-only test: tf.saved_model export __a = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = 1 __a = 2 class __lowerCAmelCase ( tf.Module ): '''simple docstring''' def __init__( self , _a ): super(snake_case_ , self ).__init__() __a = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='''input_ids''' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='''attention_mask''' ), ) , jit_compile=snake_case_ , ) def __UpperCAmelCase ( self , _a , _a ): __a = self.model.generate( input_ids=snake_case_ , attention_mask=snake_case_ , max_new_tokens=snake_case_ , return_dict_in_generate=snake_case_ , ) return {"sequences": outputs["sequences"]} __a = [[2], [102, 103]] __a = [[1], [1, 1]] __a = DummyModel(model=snake_case_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(snake_case_ , snake_case_ , signatures={'''serving_default''': dummy_model.serving} ) __a = tf.saved_model.load(snake_case_ ).signatures['''serving_default'''] for input_row in range(len(snake_case_ ) ): __a = { '''input_ids''': tf.constant([dummy_input_ids[input_row]] ), '''attention_mask''': tf.constant([dummy_attention_masks[input_row]] ), } __a = serving_func(**snake_case_ )['''sequences'''] __a = test_model.generate(**snake_case_ , max_new_tokens=snake_case_ ) tf.debugging.assert_equal(snake_case_ , snake_case_ ) @slow @require_tensorflow_text def __UpperCAmelCase ( self ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='''google/flan-t5-small''' , filename='''spiece.model''' , local_dir=snake_case_ ) class __lowerCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self ): super().__init__() __a = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(snake_case_ , '''spiece.model''' ) , '''rb''' ).read() ) __a = TFAutoModelForSeqaSeqLM.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) def __UpperCAmelCase ( self , _a , *_a , **_a ): __a = self.tokenizer.tokenize(snake_case_ ) __a , __a = text.pad_model_inputs( snake_case_ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __a = self.model.generate(input_ids=snake_case_ , attention_mask=snake_case_ ) return self.tokenizer.detokenize(snake_case_ ) __a = CompleteSentenceTransformer() __a = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='''inputs''' ) __a = complete_model(snake_case_ ) __a = tf.keras.Model(snake_case_ , snake_case_ ) keras_model.save(snake_case_ ) def __UpperCAmelCase ( self ): # Has PT equivalent: this test relies on random sampling __a = { '''do_sample''': True, '''num_beams''': 1, '''top_p''': 0.7, '''top_k''': 10, '''temperature''': 0.7, } __a = 14 __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = '''Hello, my dog is cute and''' __a = tokenizer(snake_case_ , return_tensors='''tf''' ) __a = TFAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __a = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) __a = model.generate(**snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __a = [638, 198] with tf.device(''':/CPU:0''' ): tf.random.set_seed(0 ) __a = model.generate(**snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __UpperCAmelCase ( self ): # Has PT equivalent: ample use of framework-specific code __a = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) __a = '''Hugging Face is a technology company based in New York and Paris.''' __a = bart_tokenizer(snake_case_ , return_tensors='''tf''' ).input_ids __a = TFBartForConditionalGeneration.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) __a = bart_model.generate(snake_case_ ).numpy() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCAmelCase ( self , _a , _a=None , **_a ): return super().call(snake_case_ , **snake_case_ ) __a = FakeBart.from_pretrained('''hf-internal-testing/tiny-random-bart''' ) __a = bart_model.generate(snake_case_ , foo='''bar''' ).numpy() self.assertTrue(np.array_equal(snake_case_ , snake_case_ ) ) class __lowerCAmelCase ( bart_model.model.encoder.__class__ ): '''simple docstring''' def __UpperCAmelCase ( self , _a , **_a ): return super().call(snake_case_ , **snake_case_ ) __a = FakeEncoder(bart_model.config , bart_model.model.shared ) __a = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __a = bart_model.generate(snake_case_ ).numpy() with self.assertRaises(snake_case_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(snake_case_ , foo='''bar''' )
695
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __a ( SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , snake_case_ : Tuple , snake_case_ : Dict=13 , snake_case_ : List[Any]=7 , snake_case_ : Optional[int]=True , snake_case_ : Tuple=True , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=True , snake_case_ : Any=True , snake_case_ : Any=False , snake_case_ : Union[str, Any]=False , snake_case_ : Dict=False , snake_case_ : str=2 , snake_case_ : Optional[int]=99 , snake_case_ : Any=0 , snake_case_ : Dict=32 , snake_case_ : Optional[Any]=5 , snake_case_ : Optional[Any]=4 , snake_case_ : Tuple=0.1 , snake_case_ : Any=0.1 , snake_case_ : str=5_12 , snake_case_ : List[str]=12 , snake_case_ : List[Any]=2 , snake_case_ : Optional[int]=0.0_2 , snake_case_ : Dict=3 , snake_case_ : Dict=4 , snake_case_ : Any="last" , snake_case_ : List[Any]=None , snake_case_ : int=None , )-> List[Any]: __lowerCAmelCase =parent __lowerCAmelCase =batch_size __lowerCAmelCase =seq_length __lowerCAmelCase =is_training __lowerCAmelCase =use_input_lengths __lowerCAmelCase =use_token_type_ids __lowerCAmelCase =use_labels __lowerCAmelCase =gelu_activation __lowerCAmelCase =sinusoidal_embeddings __lowerCAmelCase =causal __lowerCAmelCase =asm __lowerCAmelCase =n_langs __lowerCAmelCase =vocab_size __lowerCAmelCase =n_special __lowerCAmelCase =hidden_size __lowerCAmelCase =num_hidden_layers __lowerCAmelCase =num_attention_heads __lowerCAmelCase =hidden_dropout_prob __lowerCAmelCase =attention_probs_dropout_prob __lowerCAmelCase =max_position_embeddings __lowerCAmelCase =type_vocab_size __lowerCAmelCase =type_sequence_label_size __lowerCAmelCase =initializer_range __lowerCAmelCase =num_labels __lowerCAmelCase =num_choices __lowerCAmelCase =summary_type __lowerCAmelCase =use_proj __lowerCAmelCase =scope def UpperCamelCase ( self : List[Any])-> str: __lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length]) __lowerCAmelCase =None if self.use_input_lengths: __lowerCAmelCase =( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length __lowerCAmelCase =None if self.use_token_type_ids: __lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs) __lowerCAmelCase =None __lowerCAmelCase =None __lowerCAmelCase =None if self.use_labels: __lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size) __lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __lowerCAmelCase =ids_tensor([self.batch_size] , 2).float() __lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices) __lowerCAmelCase =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase ( self : Union[str, Any])-> Union[str, Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase ( self : Any , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : int , )-> Tuple: __lowerCAmelCase =FlaubertModel(config=snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_ , lengths=snake_case_ , langs=snake_case_) __lowerCAmelCase =model(snake_case_ , langs=snake_case_) __lowerCAmelCase =model(snake_case_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : str , )-> str: __lowerCAmelCase =FlaubertWithLMHeadModel(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self : Optional[Any] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Any , )-> Tuple: __lowerCAmelCase =FlaubertForQuestionAnsweringSimple(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_) __lowerCAmelCase =model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase ( self : List[str] , snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : Optional[Any] , )-> Optional[int]: __lowerCAmelCase =FlaubertForQuestionAnswering(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_) __lowerCAmelCase =model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , p_mask=snake_case_ , ) __lowerCAmelCase =model( snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , cls_index=snake_case_ , is_impossible=snake_case_ , ) ((__lowerCAmelCase) , ) =result_with_labels.to_tuple() __lowerCAmelCase =model(snake_case_ , start_positions=snake_case_ , end_positions=snake_case_) ((__lowerCAmelCase) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def UpperCamelCase ( self : List[Any] , snake_case_ : Any , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : int , snake_case_ : Tuple , snake_case_ : int , snake_case_ : str , snake_case_ : Dict , )-> Tuple: __lowerCAmelCase =FlaubertForSequenceClassification(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_) __lowerCAmelCase =model(snake_case_ , labels=snake_case_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase ( self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Tuple , )-> Any: __lowerCAmelCase =self.num_labels __lowerCAmelCase =FlaubertForTokenClassification(snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , )-> Optional[int]: __lowerCAmelCase =self.num_choices __lowerCAmelCase =FlaubertForMultipleChoice(config=snake_case_) model.to(snake_case_) model.eval() __lowerCAmelCase =input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase =token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase =input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __lowerCAmelCase =model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase ( self : int)-> Dict: __lowerCAmelCase =self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) =config_and_inputs __lowerCAmelCase ={ """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase ( self : List[str] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Dict , snake_case_ : Dict)-> str: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase ( self : int , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : int=False)-> Optional[Any]: __lowerCAmelCase =super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __lowerCAmelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_) __lowerCAmelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_) return inputs_dict def UpperCamelCase ( self : Dict)-> Optional[Any]: __lowerCAmelCase =FlaubertModelTester(self) __lowerCAmelCase =ConfigTester(self , config_class=snake_case_ , emb_dim=37) def UpperCamelCase ( self : int)-> Dict: self.config_tester.run_common_tests() def UpperCamelCase ( self : Any)-> Tuple: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case_) def UpperCamelCase ( self : Union[str, Any])-> List[str]: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case_) def UpperCamelCase ( self : Any)-> Any: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*snake_case_) def UpperCamelCase ( self : Optional[int])-> List[str]: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case_) def UpperCamelCase ( self : List[Any])-> Optional[Any]: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case_) def UpperCamelCase ( self : Tuple)-> Union[str, Any]: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*snake_case_) def UpperCamelCase ( self : List[Any])-> Any: __lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*snake_case_) @slow def UpperCamelCase ( self : List[str])-> Tuple: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase =FlaubertModel.from_pretrained(snake_case_) self.assertIsNotNone(snake_case_) @slow @require_torch_gpu def UpperCamelCase ( self : Dict)-> str: __lowerCAmelCase , __lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __lowerCAmelCase =True __lowerCAmelCase =model_class(config=snake_case_) __lowerCAmelCase =self._prepare_for_class(snake_case_ , snake_case_) __lowerCAmelCase =torch.jit.trace( snake_case_ , (inputs_dict["""input_ids"""].to("""cpu"""), inputs_dict["""attention_mask"""].to("""cpu"""))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case_ , os.path.join(snake_case_ , """traced_model.pt""")) __lowerCAmelCase =torch.jit.load(os.path.join(snake_case_ , """traced_model.pt""") , map_location=snake_case_) loaded(inputs_dict["""input_ids"""].to(snake_case_) , inputs_dict["""attention_mask"""].to(snake_case_)) @require_torch class __a ( unittest.TestCase ): @slow def UpperCamelCase ( self : Tuple)-> str: __lowerCAmelCase =FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""") __lowerCAmelCase =torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) with torch.no_grad(): __lowerCAmelCase =model(snake_case_)[0] __lowerCAmelCase =torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , snake_case_) __lowerCAmelCase =torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case_ , atol=1e-4))
354
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = int(_lowerCamelCase ) # Initialize Result __SCREAMING_SNAKE_CASE = [] # Traverse through all denomination for denomination in reversed(_lowerCamelCase ): # Find denominations while int(_lowerCamelCase ) >= int(_lowerCamelCase ): total_value -= int(_lowerCamelCase ) answer.append(_lowerCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": a__ : Dict = [] a__ : Tuple = "0" if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): a__ : str = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"Denomination {i}: ").strip())) a__ : str = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter a__ : Dict = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] a__ : Tuple = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"Following is minimal change for {value}: ") a__ : Dict = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
704
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() a__ : Union[str, Any] = logging.get_logger('''transformers.models.encodec''') a__ : Optional[Any] = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } a__ : int = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } a__ : List[Any] = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } a__ : List[Any] = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } a__ : Union[str, Any] = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } a__ : List[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } a__ : Any = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } a__ : List[Any] = [] a__ : str = [] def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' for attribute in key.split("." ): __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) if weight_type is not None: __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape else: __SCREAMING_SNAKE_CASE = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_g": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_v": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias": __SCREAMING_SNAKE_CASE = value elif weight_type == "running_mean": __SCREAMING_SNAKE_CASE = value elif weight_type == "running_var": __SCREAMING_SNAKE_CASE = value elif weight_type == "num_batches_tracked": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_ih_l0": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_hh_l0": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias_ih_l0": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias_hh_l0": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_ih_l1": __SCREAMING_SNAKE_CASE = value elif weight_type == "weight_hh_l1": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias_ih_l1": __SCREAMING_SNAKE_CASE = value elif weight_type == "bias_hh_l1": __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = value logger.info(f"""{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.""" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] if model_name == "encodec_24khz" or "encodec_32khz": __SCREAMING_SNAKE_CASE = MAPPING_24K elif model_name == "encodec_48khz": __SCREAMING_SNAKE_CASE = MAPPING_48K else: raise ValueError(f"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(lowerCAmelCase_ , lowerCAmelCase_ ): logger.info(f"""{name} was ignored""" ) continue __SCREAMING_SNAKE_CASE = False for key, mapped_key in MAPPING.items(): if "*" in key: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = key.split(".*." ) if prefix in name and suffix in name: __SCREAMING_SNAKE_CASE = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue __SCREAMING_SNAKE_CASE = True if "*" in mapped_key: __SCREAMING_SNAKE_CASE = name.split(lowerCAmelCase_ )[0].split("." )[-2] __SCREAMING_SNAKE_CASE = mapped_key.replace("*" , lowerCAmelCase_ ) if "weight_g" in name: __SCREAMING_SNAKE_CASE = "weight_g" elif "weight_v" in name: __SCREAMING_SNAKE_CASE = "weight_v" elif "weight_ih_l0" in name: __SCREAMING_SNAKE_CASE = "weight_ih_l0" elif "weight_hh_l0" in name: __SCREAMING_SNAKE_CASE = "weight_hh_l0" elif "bias_ih_l0" in name: __SCREAMING_SNAKE_CASE = "bias_ih_l0" elif "bias_hh_l0" in name: __SCREAMING_SNAKE_CASE = "bias_hh_l0" elif "weight_ih_l1" in name: __SCREAMING_SNAKE_CASE = "weight_ih_l1" elif "weight_hh_l1" in name: __SCREAMING_SNAKE_CASE = "weight_hh_l1" elif "bias_ih_l1" in name: __SCREAMING_SNAKE_CASE = "bias_ih_l1" elif "bias_hh_l1" in name: __SCREAMING_SNAKE_CASE = "bias_hh_l1" elif "bias" in name: __SCREAMING_SNAKE_CASE = "bias" elif "weight" in name: __SCREAMING_SNAKE_CASE = "weight" elif "running_mean" in name: __SCREAMING_SNAKE_CASE = "running_mean" elif "running_var" in name: __SCREAMING_SNAKE_CASE = "running_var" elif "num_batches_tracked" in name: __SCREAMING_SNAKE_CASE = "num_batches_tracked" else: __SCREAMING_SNAKE_CASE = None set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) @torch.no_grad() def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , ): '''simple docstring''' if config_path is not None: __SCREAMING_SNAKE_CASE = EncodecConfig.from_pretrained(lowerCAmelCase_ ) else: __SCREAMING_SNAKE_CASE = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __SCREAMING_SNAKE_CASE = [8, 5, 4, 4] __SCREAMING_SNAKE_CASE = [2.2] __SCREAMING_SNAKE_CASE = 64 __SCREAMING_SNAKE_CASE = 3_2000 __SCREAMING_SNAKE_CASE = 2048 __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False elif model_name == "encodec_48khz": __SCREAMING_SNAKE_CASE = [8, 5, 4, 2] __SCREAMING_SNAKE_CASE = [3.0, 6.0, 12.0, 24.0] __SCREAMING_SNAKE_CASE = 4_8000 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = "time_group_norm" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = 1.0 __SCREAMING_SNAKE_CASE = 0.01 else: raise ValueError(f"""Unknown model name: {model_name}""" ) __SCREAMING_SNAKE_CASE = EncodecModel(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = torch.load(lowerCAmelCase_ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __SCREAMING_SNAKE_CASE = original_checkpoint["best_state"] recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(lowerCAmelCase_ ) model.push_to_hub(lowerCAmelCase_ ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) a__ : Optional[int] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
553
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_A ).to(_A ) UpperCamelCase : Dict = AutoTokenizer.from_pretrained("""google/mt5-small""" ) UpperCamelCase : List[str] = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids UpperCamelCase : Any = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids UpperCamelCase : Dict = model(input_ids.to(_A ) , labels=labels.to(_A ) ).loss UpperCamelCase : List[Any] = -(labels.shape[-1] * loss.item()) UpperCamelCase : Union[str, Any] = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
102
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder _UpperCamelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCamelCase : Tuple = 2_56 class _lowercase( _lowerCamelCase ): """simple docstring""" __lowerCamelCase = ['''melgan'''] def __init__( self: List[str] ,a: SpectrogramNotesEncoder ,a: SpectrogramContEncoder ,a: TaFilmDecoder ,a: DDPMScheduler ,a: OnnxRuntimeModel if is_onnx_available() else Any ,): super().__init__() # From MELGAN __UpperCAmelCase = math.log(1e-5 ) # Matches MelGAN training. __UpperCAmelCase = 4.0 # Largest value for most examples __UpperCAmelCase = 128 self.register_modules( notes_encoder=a ,continuous_encoder=a ,decoder=a ,scheduler=a ,melgan=a ,) def snake_case ( self: List[str] ,a: Union[str, Any] ,a: Optional[Any]=(-1.0, 1.0) ,a: Optional[int]=False ): __UpperCAmelCase , __UpperCAmelCase = output_range if clip: __UpperCAmelCase = torch.clip(a ,self.min_value ,self.max_value ) # Scale to [0, 1]. __UpperCAmelCase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def snake_case ( self: List[Any] ,a: List[str] ,a: int=(-1.0, 1.0) ,a: Optional[int]=False ): __UpperCAmelCase , __UpperCAmelCase = input_range __UpperCAmelCase = torch.clip(a ,a ,a ) if clip else outputs # Scale to [0, 1]. __UpperCAmelCase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def snake_case ( self: Optional[int] ,a: Any ,a: Optional[Any] ,a: Optional[Any] ): __UpperCAmelCase = input_tokens > 0 __UpperCAmelCase , __UpperCAmelCase = self.notes_encoder( encoder_input_tokens=a ,encoder_inputs_mask=a ) __UpperCAmelCase , __UpperCAmelCase = self.continuous_encoder( encoder_inputs=a ,encoder_inputs_mask=a ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def snake_case ( self: Optional[int] ,a: int ,a: str ,a: Dict ): __UpperCAmelCase = noise_time if not torch.is_tensor(a ): __UpperCAmelCase = torch.tensor([timesteps] ,dtype=torch.long ,device=input_tokens.device ) elif torch.is_tensor(a ) and len(timesteps.shape ) == 0: __UpperCAmelCase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase = timesteps * torch.ones(input_tokens.shape[0] ,dtype=timesteps.dtype ,device=timesteps.device ) __UpperCAmelCase = self.decoder( encodings_and_masks=a ,decoder_input_tokens=a ,decoder_noise_time=a ) return logits @torch.no_grad() def __call__( self: str ,a: List[List[int]] ,a: Optional[torch.Generator] = None ,a: int = 100 ,a: bool = True ,a: str = "numpy" ,a: Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,a: int = 1 ,): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a ,a ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(a )}.""" ) __UpperCAmelCase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] ,dtype=np.floataa ) __UpperCAmelCase = np.zeros([1, 0, self.n_dims] ,np.floataa ) __UpperCAmelCase = torch.ones((1, TARGET_FEATURE_LENGTH) ,dtype=a ,device=self.device ) for i, encoder_input_tokens in enumerate(a ): if i == 0: __UpperCAmelCase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device ,dtype=self.decoder.dtype ) # The first chunk has no previous context. __UpperCAmelCase = torch.zeros((1, TARGET_FEATURE_LENGTH) ,dtype=a ,device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. __UpperCAmelCase = ones __UpperCAmelCase = self.scale_features( a ,output_range=[-1.0, 1.0] ,clip=a ) __UpperCAmelCase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) ,continuous_inputs=a ,continuous_mask=a ,) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop __UpperCAmelCase = randn_tensor( shape=encoder_continuous_inputs.shape ,generator=a ,device=self.device ,dtype=self.decoder.dtype ,) # set step values self.scheduler.set_timesteps(a ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCAmelCase = self.decode( encodings_and_masks=a ,input_tokens=a ,noise_time=t / self.scheduler.config.num_train_timesteps ,) # Compute previous output: x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(a ,a ,a ,generator=a ).prev_sample __UpperCAmelCase = self.scale_to_features(a ,input_range=[-1.0, 1.0] ) __UpperCAmelCase = mel[:1] __UpperCAmelCase = mel.cpu().float().numpy() __UpperCAmelCase = np.concatenate([full_pred_mel, pred_mel[:1]] ,axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a ,a ) logger.info('Generated segment' ,a ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' ) if output_type == "numpy": __UpperCAmelCase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: __UpperCAmelCase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=a )
396
0
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _UpperCAmelCase ): UpperCAmelCase__ = (IPNDMScheduler,) UpperCAmelCase__ = (('''num_inference_steps''', 5_0),) def _snake_case ( self : Dict , **__lowerCamelCase : Dict ) -> Tuple: __magic_name__ = {"""num_train_timesteps""": 1_0_0_0} config.update(**lowercase_ ) return config def _snake_case ( self : Tuple , __lowerCamelCase : Optional[Any]=0 , **__lowerCamelCase : Any ) -> List[str]: __magic_name__ = dict(self.forward_default_kwargs ) __magic_name__ = kwargs.pop("num_inference_steps" , lowercase_ ) __magic_name__ = self.dummy_sample __magic_name__ = 0.1 * sample __magic_name__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __magic_name__ = self.get_scheduler_config(**lowercase_ ) __magic_name__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals __magic_name__ = dummy_past_residuals[:] if time_step is None: __magic_name__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) __magic_name__ = scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals __magic_name__ = dummy_past_residuals[:] __magic_name__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample __magic_name__ = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __magic_name__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample __magic_name__ = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _snake_case ( self : int ) -> List[str]: pass def _snake_case ( self : Union[str, Any] , __lowerCamelCase : int=0 , **__lowerCamelCase : Any ) -> Union[str, Any]: __magic_name__ = dict(self.forward_default_kwargs ) __magic_name__ = kwargs.pop("num_inference_steps" , lowercase_ ) __magic_name__ = self.dummy_sample __magic_name__ = 0.1 * sample __magic_name__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) __magic_name__ = dummy_past_residuals[:] if time_step is None: __magic_name__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) __magic_name__ = scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) __magic_name__ = dummy_past_residuals[:] __magic_name__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample __magic_name__ = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __magic_name__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample __magic_name__ = new_scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _snake_case ( self : Union[str, Any] , **__lowerCamelCase : List[Any] ) -> List[Any]: __magic_name__ = self.scheduler_classes[0] __magic_name__ = self.get_scheduler_config(**lowercase_ ) __magic_name__ = scheduler_class(**lowercase_ ) __magic_name__ = 1_0 __magic_name__ = self.dummy_model() __magic_name__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ = model(lowercase_ , lowercase_ ) __magic_name__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.timesteps ): __magic_name__ = model(lowercase_ , lowercase_ ) __magic_name__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def _snake_case ( self : List[str] ) -> Optional[Any]: __magic_name__ = dict(self.forward_default_kwargs ) __magic_name__ = kwargs.pop("num_inference_steps" , lowercase_ ) for scheduler_class in self.scheduler_classes: __magic_name__ = self.get_scheduler_config() __magic_name__ = scheduler_class(**lowercase_ ) __magic_name__ = self.dummy_sample __magic_name__ = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , "set_timesteps" ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , "set_timesteps" ): __magic_name__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __magic_name__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __magic_name__ = dummy_past_residuals[:] __magic_name__ = scheduler.timesteps[5] __magic_name__ = scheduler.timesteps[6] __magic_name__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample __magic_name__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __magic_name__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample __magic_name__ = scheduler.step(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self : Any ) -> List[str]: for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase_ , time_step=lowercase_ ) def _snake_case ( self : Union[str, Any] ) -> List[Any]: for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=lowercase_ , time_step=lowercase_ ) def _snake_case ( self : Tuple ) -> int: __magic_name__ = self.full_loop() __magic_name__ = torch.mean(torch.abs(lowercase_ ) ) assert abs(result_mean.item() - 2_5_4_0_5_2_9 ) < 1_0
708
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase = 250004 lowercase = 250020 @require_sentencepiece @require_tokenizers class A_ ( snake_case_ , unittest.TestCase ): UpperCAmelCase__ = MBartaaTokenizer UpperCAmelCase__ = MBartaaTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True def _snake_case ( self : Any ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing __magic_name__ = MBartaaTokenizer(__lowerCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self : Dict ) -> List[Any]: __magic_name__ = "<s>" __magic_name__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self : int ) -> Union[str, Any]: __magic_name__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 1_0_5_4 ) def _snake_case ( self : Any ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def _snake_case ( self : str ) -> Optional[Any]: __magic_name__ = MBartaaTokenizer(__lowerCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCamelCase ) __magic_name__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __magic_name__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) __magic_name__ = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __magic_name__ = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def _snake_case ( self : List[str] ) -> List[str]: # fmt: off __magic_name__ = {"input_ids": [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def _snake_case ( self : int ) -> Any: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __magic_name__ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __magic_name__ = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) __magic_name__ = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(__lowerCamelCase ) __magic_name__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __magic_name__ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(__lowerCamelCase ) __magic_name__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=True __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) __magic_name__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(__lowerCamelCase ) __magic_name__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) # Save tokenizer rust, legacy_format=False __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase ) __magic_name__ = tokenizer_p.save_pretrained(__lowerCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(__lowerCamelCase ) __magic_name__ = tokenizer_p.from_pretrained(__lowerCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) ) shutil.rmtree(__lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class A_ ( unittest.TestCase ): UpperCAmelCase__ = '''facebook/mbart-large-50-one-to-many-mmt''' UpperCAmelCase__ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] UpperCAmelCase__ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] UpperCAmelCase__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def _snake_case ( cls : Any ) -> Dict: __magic_name__ = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) __magic_name__ = 1 return cls def _snake_case ( self : Any ) -> Dict: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 2_5_0_0_3_8 ) def _snake_case ( self : Any ) -> str: __magic_name__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) def _snake_case ( self : Any ) -> List[str]: self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids ) __magic_name__ = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] __magic_name__ = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) __magic_name__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase ) def _snake_case ( self : int ) -> List[str]: __magic_name__ = ["this is gunna be a long sentence " * 2_0] assert isinstance(src_text[0] , __lowerCamelCase ) __magic_name__ = 1_0 __magic_name__ = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ).input_ids[0] self.assertEqual(ids[0] , __lowerCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) def _snake_case ( self : str ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def _snake_case ( self : Any ) -> str: __magic_name__ = tempfile.mkdtemp() __magic_name__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCamelCase ) __magic_name__ = MBartaaTokenizer.from_pretrained(__lowerCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase ) @require_torch def _snake_case ( self : int ) -> Dict: __magic_name__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , return_tensors="pt" ) __magic_name__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _snake_case ( self : Dict ) -> Tuple: __magic_name__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __magic_name__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) __magic_name__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _snake_case ( self : Optional[int] ) -> Dict: __magic_name__ = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors="pt" ) __magic_name__ = self.tokenizer( text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=1_0 , return_tensors="pt" ) __magic_name__ = targets["input_ids"] __magic_name__ = shift_tokens_right(__lowerCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def _snake_case ( self : Optional[int] ) -> Tuple: __magic_name__ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(__lowerCamelCase ) , { # en_XX, A, test, EOS "input_ids": [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 2_5_0_0_0_1, } , )
468
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ : """simple docstring""" def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=1_6 , _A=3_6 , _A=6 , _A=6 , _A=6 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , ): '''simple docstring''' UpperCamelCase : Optional[int] = parent UpperCamelCase : List[str] = batch_size UpperCamelCase : List[str] = seq_length UpperCamelCase : str = is_training UpperCamelCase : Optional[Any] = use_input_mask UpperCamelCase : Tuple = use_token_type_ids UpperCamelCase : List[str] = use_labels UpperCamelCase : List[Any] = vocab_size UpperCamelCase : Optional[int] = embedding_size UpperCamelCase : Dict = hidden_size UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Tuple = num_hidden_groups UpperCamelCase : str = num_attention_heads UpperCamelCase : str = intermediate_size UpperCamelCase : int = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : Tuple = type_sequence_label_size UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : Any = num_labels UpperCamelCase : Dict = num_choices UpperCamelCase : List[str] = scope def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Union[str, Any] = None if self.use_input_mask: UpperCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Any = None if self.use_token_type_ids: UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Tuple = None UpperCamelCase : Tuple = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Dict = AlbertModel(config=_A ) model.to(_A ) model.eval() UpperCamelCase : Union[str, Any] = model(_A , attention_mask=_A , token_type_ids=_A ) UpperCamelCase : str = model(_A , token_type_ids=_A ) UpperCamelCase : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : List[str] = AlbertForPreTraining(config=_A ) model.to(_A ) model.eval() UpperCamelCase : Tuple = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , sentence_order_label=_A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : List[str] = AlbertForMaskedLM(config=_A ) model.to(_A ) model.eval() UpperCamelCase : List[Any] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Tuple = AlbertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() UpperCamelCase : Tuple = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.num_labels UpperCamelCase : int = AlbertForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCamelCase : int = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.num_labels UpperCamelCase : Optional[Any] = AlbertForTokenClassification(config=_A ) model.to(_A ) model.eval() UpperCamelCase : int = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : int = self.num_choices UpperCamelCase : Any = AlbertForMultipleChoice(config=_A ) model.to(_A ) model.eval() UpperCamelCase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Optional[Any] = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Optional[Any] = config_and_inputs UpperCamelCase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : str = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase : str = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : int = True def _a ( self , _A , _A , _A=False ): '''simple docstring''' UpperCamelCase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class in get_values(_A ): UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_A ) UpperCamelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = AlbertModelTester(self ) UpperCamelCase : str = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def _a ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase : int = type self.model_tester.create_and_check_model(*_A ) @slow def _a ( self ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : int = AlbertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class lowercase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = AlbertModel.from_pretrained("""albert-base-v2""" ) UpperCamelCase : Optional[int] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCamelCase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase : Tuple = model(_A , attention_mask=_A )[0] UpperCamelCase : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _A ) UpperCamelCase : int = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1e-4 ) )
102
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __magic_name__ : str = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_A , speech_processor=_A , vae=_A , text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , feature_extractor=_A , ) def _a ( self , _A = "auto" ): '''simple docstring''' if slice_size == "auto": UpperCamelCase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def _a ( self ): '''simple docstring''' self.enable_attention_slicing(_A ) @torch.no_grad() def __call__( self , _A , _A=1_6_0_0_0 , _A = 5_1_2 , _A = 5_1_2 , _A = 5_0 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ): '''simple docstring''' UpperCamelCase : str = self.speech_processor.feature_extractor( _A , return_tensors="""pt""" , sampling_rate=_A ).input_features.to(self.device ) UpperCamelCase : List[Any] = self.speech_model.generate(_A , max_length=4_8_0_0_0_0 ) UpperCamelCase : Optional[int] = self.speech_processor.tokenizer.batch_decode(_A , skip_special_tokens=_A , normalize=_A )[ 0 ] if isinstance(_A , _A ): UpperCamelCase : Tuple = 1 elif isinstance(_A , _A ): UpperCamelCase : List[Any] = len(_A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_A )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_A )}.""" ) # get prompt text embeddings UpperCamelCase : Dict = self.tokenizer( _A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCamelCase : int = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = text_embeddings.shape UpperCamelCase : Optional[int] = text_embeddings.repeat(1 , _A , 1 ) UpperCamelCase : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase : List[str] if negative_prompt is None: UpperCamelCase : str = [""""""] * batch_size elif type(_A ) is not type(_A ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=""" f""" {type(_A )}.""" ) elif isinstance(_A , _A ): UpperCamelCase : Tuple = [negative_prompt] elif batch_size != len(_A ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: UpperCamelCase : Any = negative_prompt UpperCamelCase : Optional[int] = text_input_ids.shape[-1] UpperCamelCase : List[str] = self.tokenizer( _A , padding="""max_length""" , max_length=_A , truncation=_A , return_tensors="""pt""" , ) UpperCamelCase : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase : List[Any] = uncond_embeddings.shape[1] UpperCamelCase : Dict = uncond_embeddings.repeat(1 , _A , 1 ) UpperCamelCase : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase : str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase : Tuple = torch.randn(_A , generator=_A , device="""cpu""" , dtype=_A ).to( self.device ) else: UpperCamelCase : Any = torch.randn(_A , generator=_A , device=self.device , dtype=_A ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCamelCase : Optional[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase : Tuple = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase : str = {} if accepts_eta: UpperCamelCase : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : str = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual UpperCamelCase : Optional[Any] = self.unet(_A , _A , encoder_hidden_states=_A ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase : str = noise_pred.chunk(2 ) UpperCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : Any = self.scheduler.step(_A , _A , _A , **_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) UpperCamelCase : Optional[Any] = 1 / 0.1_82_15 * latents UpperCamelCase : Union[str, Any] = self.vae.decode(_A ).sample UpperCamelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase : Optional[Any] = self.numpy_to_pil(_A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_A , nsfw_content_detected=_A )
102
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowercase_ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowercase_ : list[int] = [ord(letter) for letter in string.ascii_lowercase] lowercase_ : set[int] = {ord(char) for char in VALID_CHARS} lowercase_ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A__ ( snake_case_ : list[int] , snake_case_ : tuple[int, ...] ): SCREAMING_SNAKE_CASE__: str= "" SCREAMING_SNAKE_CASE__: int SCREAMING_SNAKE_CASE__: int SCREAMING_SNAKE_CASE__: int for keychar, cipherchar in zip(cycle(snake_case_ ) , snake_case_ ): SCREAMING_SNAKE_CASE__: Any= cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case_ ) return decoded def A__ ( snake_case_ : list[int] ): SCREAMING_SNAKE_CASE__: list[str]= [] for key in product(snake_case_ , repeat=3 ): SCREAMING_SNAKE_CASE__: Union[str, Any]= try_key(snake_case_ , snake_case_ ) if encoded is not None: possibles.append(snake_case_ ) return possibles def A__ ( snake_case_ : list[str] , snake_case_ : str ): return [possible for possible in possibles if common_word in possible.lower()] def A__ ( snake_case_ : str = "p059_cipher.txt" ): SCREAMING_SNAKE_CASE__: list[int] SCREAMING_SNAKE_CASE__: list[str] SCREAMING_SNAKE_CASE__: str SCREAMING_SNAKE_CASE__: str SCREAMING_SNAKE_CASE__: str= Path(snake_case_ ).parent.joinpath(snake_case_ ).read_text(encoding='''utf-8''' ) SCREAMING_SNAKE_CASE__: List[Any]= [int(snake_case_ ) for number in data.strip().split(''',''' )] SCREAMING_SNAKE_CASE__: Union[str, Any]= filter_valid_chars(snake_case_ ) for common_word in COMMON_WORDS: SCREAMING_SNAKE_CASE__: str= filter_common_word(snake_case_ , snake_case_ ) if len(snake_case_ ) == 1: break SCREAMING_SNAKE_CASE__: Dict= possibles[0] return sum(ord(snake_case_ ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
107
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase_ : List[str] = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def A__ ( snake_case_ : Optional[int] ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case_ ) def A__ ( snake_case_ : Optional[int] ): from diffusers.utils.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__: Optional[int]= terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(snake_case_ , id=snake_case_ )
107
1
from __future__ import annotations def __a ( __UpperCAmelCase : list[int] ) -> List[Any]: # This function is recursive """simple docstring""" lowerCamelCase_ : Dict = len(lowerCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCamelCase_ : Union[str, Any] = array[0] lowerCamelCase_ : Any = False lowerCamelCase_ : Any = 1 lowerCamelCase_ : Any = [] while not is_found and i < array_length: if array[i] < pivot: lowerCamelCase_ : int = True lowerCamelCase_ : int = [element for element in array[i:] if element >= array[i]] lowerCamelCase_ : List[str] = longest_subsequence(lowerCamelCase__ ) if len(lowerCamelCase__ ) > len(lowerCamelCase__ ): lowerCamelCase_ : int = temp_array else: i += 1 lowerCamelCase_ : Union[str, Any] = [element for element in array[1:] if element >= pivot] lowerCamelCase_ : Optional[int] = [pivot, *longest_subsequence(lowerCamelCase__ )] if len(lowerCamelCase__ ) > len(lowerCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
488
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCAmelCase : Any = logging.getLogger(__name__) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=lowerCamelCase__ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=lowerCamelCase__ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=lowerCamelCase__ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=lowerCamelCase__ , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=lowerCamelCase__ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=lowerCamelCase__ , type=lowerCamelCase__ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=lowerCamelCase__ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=lowerCamelCase__ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) lowerCamelCase = parser.parse_args() return args def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' def fn(lowerCamelCase__ : Any ): return tokenizer(examples["""text"""] ) return fn def __lowerCamelCase ( lowerCamelCase__ : Optional[int] ): '''simple docstring''' lowerCamelCase = [] for i in range(len(tokenized_data["""input_ids"""] ) ): lowerCamelCase = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } lowerCamelCase = tf.train.Features(feature=lowerCamelCase__ ) lowerCamelCase = tf.train.Example(features=lowerCamelCase__ ) lowerCamelCase = example.SerializeToString() records.append(lowerCamelCase__ ) return records def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowerCamelCase = min(len(lowerCamelCase__ ) , args.limit ) lowerCamelCase = dataset.select(range(lowerCamelCase__ ) ) print(f'Limiting the dataset to {args.limit} entries.' ) lowerCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowerCamelCase = os.path.join(args.output_dir , args.split ) if not os.path.exists(lowerCamelCase__ ): os.makedirs(lowerCamelCase__ ) else: lowerCamelCase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowerCamelCase = tokenize_function(lowerCamelCase__ ) lowerCamelCase = dataset.map(lowerCamelCase__ , batched=lowerCamelCase__ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(lowerCamelCase__ : List[str] ): # Concatenate all texts. lowerCamelCase = {k: sum(examples[k] , [] ) for k in examples.keys()} lowerCamelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowerCamelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowerCamelCase = { k: [t[i : i + args.max_length] for i in range(0 , lowerCamelCase__ , args.max_length )] for k, t in concatenated_examples.items() } return result lowerCamelCase = dataset_tokenized.map(lowerCamelCase__ , batched=lowerCamelCase__ , batch_size=1000 , num_proc=4 ) lowerCamelCase = 0 lowerCamelCase = 0 for shard in range(0 , len(lowerCamelCase__ ) , args.shard_size ): lowerCamelCase = grouped_dataset[shard : shard + args.shard_size] lowerCamelCase = len(dataset_snapshot["""input_ids"""] ) lowerCamelCase = os.path.join(lowerCamelCase__ , f'dataset-{shard_count}-{records_containing}.tfrecord' ) lowerCamelCase = get_serialized_examples(lowerCamelCase__ ) with tf.io.TFRecordWriter(lowerCamelCase__ ) as out_file: for i in range(len(lowerCamelCase__ ) ): lowerCamelCase = serialized_examples[i] out_file.write(lowerCamelCase__ ) print("""Wrote file {} containing {} records""".format(lowerCamelCase__ , lowerCamelCase__ ) ) shard_count += 1 total_records += records_containing with open(f'split-{args.split}-records-count.txt' , """w""" ) as f: print(f'Total {args.split} records: {total_records}' , file=lowerCamelCase__ ) if __name__ == "__main__": UpperCAmelCase : Optional[int] = parse_args() main(args)
457
0
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _lowerCamelCase : int = logging.get_logger(__name__) class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , **lowercase__ ): '''simple docstring''' requires_backends(self , ['''bs4'''] ) super().__init__(**lowercase__ ) def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A =[] __A =[] __A =element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag __A =parent.find_all(child.name , recursive=lowercase__ ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(lowercase__ ) else next(i for i, s in enumerate(lowercase__ , 1 ) if s is child ) ) __A =parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __UpperCamelCase ( self , lowercase__ ): '''simple docstring''' __A =BeautifulSoup(lowercase__ , '''html.parser''' ) __A =[] __A =[] __A =[] for element in html_code.descendants: if type(lowercase__ ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue __A =html.unescape(lowercase__ ).strip() if not text_in_this_tag: continue all_doc_strings.append(lowercase__ ) __A , __A =self.xpath_soup(lowercase__ ) stringaxtag_seq.append(lowercase__ ) stringaxsubs_seq.append(lowercase__ ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' __A ='''''' for tagname, subs in zip(lowercase__ , lowercase__ ): xpath += f'''/{tagname}''' if subs != 0: xpath += f'''[{subs}]''' return xpath def __call__( self , lowercase__ ): '''simple docstring''' __A =False # Check that strings has a valid type if isinstance(lowercase__ , lowercase__ ): __A =True elif isinstance(lowercase__ , (list, tuple) ): if len(lowercase__ ) == 0 or isinstance(html_strings[0] , lowercase__ ): __A =True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' f'''but is of type {type(lowercase__ )}.''' ) __A =bool(isinstance(lowercase__ , (list, tuple) ) and (isinstance(html_strings[0] , lowercase__ )) ) if not is_batched: __A =[html_strings] # Get nodes + xpaths __A =[] __A =[] for html_string in html_strings: __A , __A , __A =self.get_three_from_single(lowercase__ ) nodes.append(lowercase__ ) __A =[] for node, tag_list, sub_list in zip(lowercase__ , lowercase__ , lowercase__ ): __A =self.construct_xpath(lowercase__ , lowercase__ ) xpath_strings.append(lowercase__ ) xpaths.append(lowercase__ ) # return as Dict __A ={'''nodes''': nodes, '''xpaths''': xpaths} __A =BatchFeature(data=lowercase__ , tensor_type=lowercase__ ) return encoded_inputs
721
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : List[str] = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' lowercase_ = """encodec""" def __init__( self , lowercase__=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase__=2_4_0_0_0 , lowercase__=1 , lowercase__=False , lowercase__=None , lowercase__=None , lowercase__=1_2_8 , lowercase__=3_2 , lowercase__=1 , lowercase__=[8, 5, 4, 2] , lowercase__="weight_norm" , lowercase__=7 , lowercase__=7 , lowercase__=3 , lowercase__=2 , lowercase__=True , lowercase__="reflect" , lowercase__=2 , lowercase__=2 , lowercase__=1.0 , lowercase__=1_0_2_4 , lowercase__=None , lowercase__=True , **lowercase__ , ): '''simple docstring''' __A =target_bandwidths __A =sampling_rate __A =audio_channels __A =normalize __A =chunk_length_s __A =overlap __A =hidden_size __A =num_filters __A =num_residual_layers __A =upsampling_ratios __A =norm_type __A =kernel_size __A =last_kernel_size __A =residual_kernel_size __A =dilation_growth_rate __A =use_causal_conv __A =pad_mode __A =compress __A =num_lstm_layers __A =trim_right_ratio __A =codebook_size __A =codebook_dim if codebook_dim is not None else hidden_size __A =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**lowercase__ ) @property def __UpperCamelCase ( self ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __UpperCamelCase ( self ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __UpperCamelCase ( self ): '''simple docstring''' __A =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __UpperCamelCase ( self ): '''simple docstring''' return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
516
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : int = (UnCLIPScheduler,) def __lowercase ( self , **_a ) -> Optional[Any]: _a : Tuple = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_a ) return config def __lowercase ( self ) -> List[str]: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_a ) def __lowercase ( self ) -> Union[str, Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_a ) def __lowercase ( self ) -> Optional[int]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_a ) def __lowercase ( self ) -> List[str]: for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=_a ) def __lowercase ( self ) -> Union[str, Any]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_a ) def __lowercase ( self ) -> Optional[Any]: for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_a , prev_timestep=_a ) def __lowercase ( self ) -> Tuple: _a : Optional[int] = self.scheduler_classes[0] _a : str = self.get_scheduler_config(variance_type='''fixed_small_log''' ) _a : List[str] = scheduler_class(**_a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.999_4987 ) ) < 1e-5 def __lowercase ( self ) -> Optional[Any]: _a : List[str] = self.scheduler_classes[0] _a : List[str] = self.get_scheduler_config(variance_type='''learned_range''' ) _a : Tuple = scheduler_class(**_a ) _a : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=_a ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(4_8_7 , predicted_variance=_a ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(9_9_9 , predicted_variance=_a ) - -0.001_0011 < 1e-5 def __lowercase ( self ) -> Optional[Any]: _a : Union[str, Any] = self.scheduler_classes[0] _a : int = self.get_scheduler_config() _a : List[Any] = scheduler_class(**_a ) _a : List[Any] = scheduler.timesteps _a : Tuple = self.dummy_model() _a : List[str] = self.dummy_sample_deter _a : Union[str, Any] = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual _a : Union[str, Any] = model(_a , _a ) # 2. predict previous mean of sample x_t-1 _a : Union[str, Any] = scheduler.step(_a , _a , _a , generator=_a ).prev_sample _a : Tuple = pred_prev_sample _a : int = torch.sum(torch.abs(_a ) ) _a : Dict = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def __lowercase ( self ) -> Union[str, Any]: _a : str = self.scheduler_classes[0] _a : Any = self.get_scheduler_config() _a : Tuple = scheduler_class(**_a ) scheduler.set_timesteps(2_5 ) _a : Optional[int] = scheduler.timesteps _a : Dict = self.dummy_model() _a : Tuple = self.dummy_sample_deter _a : Dict = torch.manual_seed(0 ) for i, t in enumerate(_a ): # 1. predict noise residual _a : Dict = model(_a , _a ) if i + 1 == timesteps.shape[0]: _a : Tuple = None else: _a : Union[str, Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _a : str = scheduler.step( _a , _a , _a , prev_timestep=_a , generator=_a ).prev_sample _a : Tuple = pred_prev_sample _a : Any = torch.sum(torch.abs(_a ) ) _a : str = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def __lowercase ( self ) -> List[Any]: pass def __lowercase ( self ) -> List[Any]: pass
14
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
574
0
"""simple docstring""" def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ = 5_0 ): SCREAMING_SNAKE_CASE = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
406
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 snake_case = sys.version_info >= (3, 1_0) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ): return field(default_factory=lambda: default, metadata=SCREAMING_SNAKE_CASE_ ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int UpperCAmelCase_ : float UpperCAmelCase_ : str UpperCAmelCase_ : bool @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int = 42 UpperCAmelCase_ : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : Optional[bool] = None class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : Tuple = "titi" UpperCAmelCase_ : str = "toto" class UpperCamelCase ( __magic_name__ ): """simple docstring""" UpperCAmelCase_ : Dict = "titi" UpperCAmelCase_ : Tuple = "toto" UpperCAmelCase_ : Any = 42 @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : BasicEnum = "toto" def A ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = BasicEnum(self.foo ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : MixedTypeEnum = "toto" def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = MixedTypeEnum(self.foo ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Optional[float] = field(default=__magic_name__ , metadata={"help": "help message"} ) UpperCAmelCase_ : Optional[str] = None UpperCAmelCase_ : Optional[List[str]] = list_field(default=[] ) UpperCAmelCase_ : Optional[List[int]] = list_field(default=[] ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : List[int] = list_field(default=[] ) UpperCAmelCase_ : List[int] = list_field(default=[1, 2, 3] ) UpperCAmelCase_ : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) UpperCAmelCase_ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : List[int] = field() UpperCAmelCase_ : str = field() UpperCAmelCase_ : BasicEnum = field() def A ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = BasicEnum(self.required_enum ) @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int UpperCAmelCase_ : "BasicEnum" = field() UpperCAmelCase_ : "Optional[bool]" = None UpperCAmelCase_ : "str" = field(default="toto" , metadata={"help": "help message"} ) UpperCAmelCase_ : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : bool = False UpperCAmelCase_ : bool = True UpperCAmelCase_ : bool | None = None @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : int | None = None UpperCAmelCase_ : float | None = field(default=__magic_name__ , metadata={"help": "help message"} ) UpperCAmelCase_ : str | None = None UpperCAmelCase_ : list[str] | None = list_field(default=[] ) UpperCAmelCase_ : list[int] | None = list_field(default=[] ) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A ( self , lowercase__ , lowercase__ ) -> Optional[Any]: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): SCREAMING_SNAKE_CASE = {k: v for k, v in vars(lowercase__ ).items() if k != 'container'} SCREAMING_SNAKE_CASE = {k: v for k, v in vars(lowercase__ ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase__ ) and yy.get('choices' , lowercase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase__ ) , yy['type'](lowercase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--bar' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--baz' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--flag' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='?' ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((SCREAMING_SNAKE_CASE) , ) = parser.parse_args_into_dataclasses(lowercase__ , look_for_args_file=lowercase__ ) self.assertFalse(example.flag ) def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase__ ) expected.add_argument('--baz' , default='toto' , type=lowercase__ , help='help message' ) self.argparsersEqual(lowercase__ , lowercase__ ) def A ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='?' ) expected.add_argument('--baz' , type=lowercase__ , default=lowercase__ , const=lowercase__ , nargs='?' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase__ , dest='baz' ) expected.add_argument('--opt' , type=lowercase__ , default=lowercase__ ) SCREAMING_SNAKE_CASE = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '--no_baz'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '--baz'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , baz=lowercase__ , opt=lowercase__ ) ) def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses(['--foo', 'titi'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses(['--foo', '42'] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def A ( self ) -> Dict: """simple docstring""" @dataclass class UpperCamelCase : """simple docstring""" UpperCAmelCase_ : Literal["titi", "toto", 42] = "toto" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42] ) , ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(args.foo , 'toto' ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', 'titi'] ) self.assertEqual(args.foo , 'titi' ) SCREAMING_SNAKE_CASE = parser.parse_args(['--foo', '42'] ) self.assertEqual(args.foo , 42 ) def A ( self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase__ ) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase__ ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase__ ) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual( lowercase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3] ) , ) SCREAMING_SNAKE_CASE = parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split() ) self.assertEqual(lowercase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7] ) ) def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase__ , type=lowercase__ ) expected.add_argument('--bar' , default=lowercase__ , type=lowercase__ , help='help message' ) expected.add_argument('--baz' , default=lowercase__ , type=lowercase__ ) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase__ ) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase__ ) SCREAMING_SNAKE_CASE = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase__ ) for dataclass_type in dataclass_types: SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_args([] ) self.assertEqual(lowercase__ , Namespace(foo=lowercase__ , bar=lowercase__ , baz=lowercase__ , ces=[] , des=[] ) ) SCREAMING_SNAKE_CASE = parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split() ) self.assertEqual(lowercase__ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3] ) ) def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase__ , required=lowercase__ ) expected.add_argument('--required_str' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowercase__ , ) self.argparsersEqual(lowercase__ , lowercase__ ) def A ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase__ , required=lowercase__ ) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto'] ) , choices=['titi', 'toto'] , required=lowercase__ , ) expected.add_argument('--opt' , type=lowercase__ , default=lowercase__ ) expected.add_argument('--baz' , default='toto' , type=lowercase__ , help='help message' ) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase__ ) self.argparsersEqual(lowercase__ , lowercase__ ) def A ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } SCREAMING_SNAKE_CASE = parser.parse_dict(lowercase__ )[0] SCREAMING_SNAKE_CASE = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase__ , parser.parse_dict , lowercase__ , allow_extra_keys=lowercase__ ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = os.path.join(lowercase__ , 'temp_json' ) os.mkdir(lowercase__ ) with open(temp_local_path + '.json' , 'w+' ) as f: json.dump(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_yaml_file(Path(temp_local_path + '.json' ) )[0] SCREAMING_SNAKE_CASE = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) SCREAMING_SNAKE_CASE = { 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = os.path.join(lowercase__ , 'temp_yaml' ) os.mkdir(lowercase__ ) with open(temp_local_path + '.yaml' , 'w+' ) as f: yaml.dump(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE = parser.parse_yaml_file(Path(temp_local_path + '.yaml' ) )[0] SCREAMING_SNAKE_CASE = BasicExample(**lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = HfArgumentParser(lowercase__ ) self.assertIsNotNone(lowercase__ )
406
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Any = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class __snake_case ( __SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'timesformer' def __init__( self : List[Any] , lowerCamelCase : str=2_24 , lowerCamelCase : Tuple=16 , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : Tuple=8 , lowerCamelCase : str=7_68 , lowerCamelCase : str=12 , lowerCamelCase : str=12 , lowerCamelCase : Optional[int]=30_72 , lowerCamelCase : List[str]="gelu" , lowerCamelCase : Dict=0.0 , lowerCamelCase : Any=0.0 , lowerCamelCase : Optional[int]=0.02 , lowerCamelCase : Dict=1E-6 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Optional[Any]="divided_space_time" , lowerCamelCase : Dict=0 , **lowerCamelCase : Dict , ) -> Dict: super().__init__(**snake_case__ ) lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Optional[int] = patch_size lowerCAmelCase_ : List[Any] = num_channels lowerCAmelCase_ : Any = num_frames lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : int = qkv_bias lowerCAmelCase_ : Optional[Any] = attention_type lowerCAmelCase_ : str = drop_path_rate
275
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : Any = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : str = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowercase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
572
0
'''simple docstring''' from __future__ import annotations from random import random class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , A__ : int | None = None ): """simple docstring""" __lowerCamelCase : int = value __lowerCamelCase : Dict = random() __lowerCamelCase : Node | None = None __lowerCamelCase : Node | None = None def __repr__( self : Any ): """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f"'{self.value}: {self.prior:.5}'" else: return pformat( {f"{self.value}: {self.prior:.5}": (self.left, self.right)} , indent=1 ) def __str__( self : List[Any] ): """simple docstring""" __lowerCamelCase : List[str] = str(self.value ) + """ """ __lowerCamelCase : Any = str(self.left or """""" ) __lowerCamelCase : List[str] = str(self.right or """""" ) return value + left + right def __lowercase (_lowercase, _lowercase ) -> tuple[Node | None, Node | None]: """simple docstring""" if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __lowerCamelCase : int = split(root.left, _lowercase ) return left, root else: __lowerCamelCase : Union[str, Any] = split(root.right, _lowercase ) return root, right def __lowercase (_lowercase, _lowercase ) -> Node | None: """simple docstring""" if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __lowerCamelCase : Tuple = merge(left.right, _lowercase ) return left else: __lowerCamelCase : int = merge(_lowercase, right.left ) return right def __lowercase (_lowercase, _lowercase ) -> Node | None: """simple docstring""" __lowerCamelCase : List[str] = Node(_lowercase ) __lowerCamelCase : List[Any] = split(_lowercase, _lowercase ) return merge(merge(_lowercase, _lowercase ), _lowercase ) def __lowercase (_lowercase, _lowercase ) -> Node | None: """simple docstring""" __lowerCamelCase : int = split(_lowercase, value - 1 ) __lowerCamelCase : List[str] = split(_lowercase, _lowercase ) return merge(_lowercase, _lowercase ) def __lowercase (_lowercase ) -> None: """simple docstring""" if not root: # None return else: inorder(root.left ) print(root.value, end=""",""" ) inorder(root.right ) def __lowercase (_lowercase, _lowercase ) -> Node | None: """simple docstring""" for arg in args.split(): if arg[0] == "+": __lowerCamelCase : Dict = insert(_lowercase, int(arg[1:] ) ) elif arg[0] == "-": __lowerCamelCase : List[str] = erase(_lowercase, int(arg[1:] ) ) else: print("""Unknown command""" ) return root def __lowercase () -> None: """simple docstring""" __lowerCamelCase : str = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. 'q' to quit. """ ) __lowerCamelCase : int = input() while args != "q": __lowerCamelCase : List[Any] = interact_treap(_lowercase, _lowercase ) print(_lowercase ) __lowerCamelCase : List[Any] = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
703
'''simple docstring''' from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : List[Any] = 'SpeechT5FeatureExtractor' snake_case__ : Union[str, Any] = 'SpeechT5Tokenizer' def __init__( self : Union[str, Any] , A__ : str , A__ : Tuple ): """simple docstring""" super().__init__(A__ , A__ ) def __call__( self : List[Any] , *A__ : Any , **A__ : Optional[int] ): """simple docstring""" __lowerCamelCase : Any = kwargs.pop("""audio""" , A__ ) __lowerCamelCase : Any = kwargs.pop("""text""" , A__ ) __lowerCamelCase : Union[str, Any] = kwargs.pop("""text_target""" , A__ ) __lowerCamelCase : Union[str, Any] = kwargs.pop("""audio_target""" , A__ ) __lowerCamelCase : Any = kwargs.pop("""sampling_rate""" , A__ ) if audio is not None and text is not None: raise ValueError( """Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?""" ) if audio_target is not None and text_target is not None: raise ValueError( """Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?""" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( """You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.""" ) if audio is not None: __lowerCamelCase : Optional[int] = self.feature_extractor(A__ , *A__ , sampling_rate=A__ , **A__ ) elif text is not None: __lowerCamelCase : Optional[int] = self.tokenizer(A__ , **A__ ) else: __lowerCamelCase : Tuple = None if audio_target is not None: __lowerCamelCase : Optional[int] = self.feature_extractor(audio_target=A__ , *A__ , sampling_rate=A__ , **A__ ) __lowerCamelCase : Union[str, Any] = targets["""input_values"""] elif text_target is not None: __lowerCamelCase : Tuple = self.tokenizer(A__ , **A__ ) __lowerCamelCase : List[str] = targets["""input_ids"""] else: __lowerCamelCase : Dict = None if inputs is None: return targets if targets is not None: __lowerCamelCase : str = labels __lowerCamelCase : int = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: __lowerCamelCase : Optional[int] = decoder_attention_mask return inputs def a_ ( self : Any , *A__ : Union[str, Any] , **A__ : List[str] ): """simple docstring""" __lowerCamelCase : Optional[int] = kwargs.pop("""input_values""" , A__ ) __lowerCamelCase : List[Any] = kwargs.pop("""input_ids""" , A__ ) __lowerCamelCase : List[Any] = kwargs.pop("""labels""" , A__ ) if input_values is not None and input_ids is not None: raise ValueError("""Cannot process both `input_values` and `input_ids` inputs.""" ) if input_values is None and input_ids is None and labels is None: raise ValueError( """You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.""" ) if input_values is not None: __lowerCamelCase : List[Any] = self.feature_extractor.pad(A__ , *A__ , **A__ ) elif input_ids is not None: __lowerCamelCase : Any = self.tokenizer.pad(A__ , **A__ ) else: __lowerCamelCase : Any = None if labels is not None: if "input_ids" in labels or (isinstance(A__ , A__ ) and "input_ids" in labels[0]): __lowerCamelCase : List[Any] = self.tokenizer.pad(A__ , **A__ ) __lowerCamelCase : Tuple = targets["""input_ids"""] else: __lowerCamelCase : Optional[int] = self.feature_extractor.feature_size __lowerCamelCase : Any = self.feature_extractor.num_mel_bins __lowerCamelCase : List[str] = self.feature_extractor.pad(A__ , *A__ , **A__ ) __lowerCamelCase : Dict = feature_size_hack __lowerCamelCase : List[Any] = targets["""input_values"""] else: __lowerCamelCase : Optional[int] = None if inputs is None: return targets if targets is not None: __lowerCamelCase : Dict = labels __lowerCamelCase : List[str] = targets.get("""attention_mask""" ) if decoder_attention_mask is not None: __lowerCamelCase : int = decoder_attention_mask return inputs def a_ ( self : Optional[Any] , *A__ : List[Any] , **A__ : Optional[int] ): """simple docstring""" return self.tokenizer.batch_decode(*A__ , **A__ ) def a_ ( self : Any , *A__ : int , **A__ : Dict ): """simple docstring""" return self.tokenizer.decode(*A__ , **A__ )
483
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = XLMRobertaTokenizer lowercase__ : Optional[Any] = XLMRobertaTokenizerFast lowercase__ : Union[str, Any] = True lowercase__ : List[str] = True def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = '''<pad>''' lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_02 ) def __SCREAMING_SNAKE_CASE ( self ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase__ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCAmelCase__ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase_ , f.name ) lowerCAmelCase__ = XLMRobertaTokenizer(f.name , keep_accents=lowerCamelCase_ ) lowerCAmelCase__ = pickle.dumps(lowerCamelCase_ ) pickle.loads(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = '''I was born in 92000, and this is falsé.''' lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = '''Hello World!''' lowerCAmelCase__ = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowerCAmelCase__ = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: # fmt: off lowerCAmelCase__ = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
90
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCAmelCase_ = Lock() def SCREAMING_SNAKE_CASE ( a_ : str , a_ : Tuple , a_ : Dict , a_ : Optional[Any] , a_ : str , a_ : Any , a_ : Optional[Any] ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(a_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __a = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __a = min(a_ , a_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(a_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __a = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __a = max(a_ , a_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(a_ ) def SCREAMING_SNAKE_CASE ( a_ : List[str] ): __a = [] __a = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __a = Pipe() __a = Pipe() process_array_.append( Process( target=a_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __a = temp_rs __a = temp_rr for i in range(1 , len(a_ ) - 1 ): __a = Pipe() __a = Pipe() process_array_.append( Process( target=a_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __a = temp_rs __a = temp_rr process_array_.append( Process( target=a_ , args=( len(a_ ) - 1, arr[len(a_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(a_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(a_ ) ): __a = result_pipe[p][0].recv() process_array_[p].join() return arr def SCREAMING_SNAKE_CASE ( ): __a = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*a_ ) __a = odd_even_transposition(a_ ) print('Sorted List\n' ) print(*a_ ) if __name__ == "__main__": main()
539
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case ={ """configuration_mask2former""": [ """MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Mask2FormerConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =["""Mask2FormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case =[ """MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """Mask2FormerForUniversalSegmentation""", """Mask2FormerModel""", """Mask2FormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
513
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={"""vocab_file""": """spiece.model"""} __snake_case ={ """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } __snake_case ={ """google/bigbird-roberta-base""": 4_096, """google/bigbird-roberta-large""": 4_096, """google/bigbird-base-trivia-itc""": 4_096, } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = ['''input_ids''', '''attention_mask'''] lowerCamelCase : List[int] = [] def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any="<unk>" , UpperCAmelCase__ : Union[str, Any]="<s>" , UpperCAmelCase__ : str="</s>" , UpperCAmelCase__ : List[Any]="<pad>" , UpperCAmelCase__ : Any="[SEP]" , UpperCAmelCase__ : List[Any]="[MASK]" , UpperCAmelCase__ : Optional[int]="[CLS]" , UpperCAmelCase__ : Optional[Dict[str, Any]] = None , **UpperCAmelCase__ : Tuple , ) -> None: lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else bos_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else eos_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else unk_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else pad_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else cls_token lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def __UpperCAmelCase ( self : List[str] ) -> Tuple: return self.sp_model.get_piece_size() def __UpperCAmelCase ( self : Dict ) -> Tuple: lowerCAmelCase = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ) -> Optional[int]: lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self : int , UpperCAmelCase__ : List[Any] ) -> Dict: lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : str ) -> List[str]: return self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : Optional[int] ) -> Dict: return self.sp_model.piece_to_id(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : int ) -> Optional[int]: lowerCAmelCase = self.sp_model.IdToPiece(UpperCAmelCase__ ) return token def __UpperCAmelCase ( self : int , UpperCAmelCase__ : List[str] ) -> Any: lowerCAmelCase = [] lowerCAmelCase = '' lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase__ ) + token lowerCAmelCase = True lowerCAmelCase = [] else: current_sub_tokens.append(UpperCAmelCase__ ) lowerCAmelCase = False out_string += self.sp_model.decode(UpperCAmelCase__ ) return out_string.strip() def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : int , ) -> str: lowerCAmelCase = kwargs.pop('use_source_tokenizer' , UpperCAmelCase__ ) lowerCAmelCase = self.convert_ids_to_tokens(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCAmelCase = [] lowerCAmelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) lowerCAmelCase = [] sub_texts.append(UpperCAmelCase__ ) else: current_sub_text.append(UpperCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowerCAmelCase = re.sub(R' (\[(MASK|SEP)\])' , R'\1' , ' '.join(UpperCAmelCase__ ) ) else: lowerCAmelCase = ''.join(UpperCAmelCase__ ) lowerCAmelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCAmelCase = self.clean_up_tokenization(UpperCAmelCase__ ) return clean_text else: return text def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(UpperCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase = os.path.join( UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,) def __UpperCAmelCase ( self : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None , UpperCAmelCase__ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
513
1
"""simple docstring""" from __future__ import annotations class UpperCamelCase : def __init__( self , snake_case__=None ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = data _SCREAMING_SNAKE_CASE : Optional[int] = None def __repr__( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = [] _SCREAMING_SNAKE_CASE : Union[str, Any] = self while temp: string_rep.append(F'''{temp.data}''' ) _SCREAMING_SNAKE_CASE : Any = temp.next return "->".join(_lowercase ) def _lowerCAmelCase ( lowerCamelCase__ : List[str] ) -> List[str]: if not elements_list: raise Exception("The Elements List is empty" ) _SCREAMING_SNAKE_CASE : int = Node(elements_list[0] ) for i in range(1, len(lowerCamelCase__ ) ): _SCREAMING_SNAKE_CASE : Optional[Any] = Node(elements_list[i] ) _SCREAMING_SNAKE_CASE : Optional[int] = current.next return head def _lowerCAmelCase ( lowerCamelCase__ : Dict ) -> int: if head_node is not None and isinstance(lowerCamelCase__, lowerCamelCase__ ): print_reverse(head_node.next ) print(head_node.data ) def _lowerCAmelCase ( ) -> List[Any]: from doctest import testmod testmod() _SCREAMING_SNAKE_CASE : Any = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] ) print("Linked List:" ) print(lowerCamelCase__ ) print("Elements in Reverse:" ) print_reverse(lowerCamelCase__ ) if __name__ == "__main__": main()
572
from __future__ import annotations class lowerCAmelCase : def __init__( self :Union[str, Any] , _lowercase :List[Any]=None ): '''simple docstring''' lowercase__ = data lowercase__ = None def __repr__( self :Dict ): '''simple docstring''' lowercase__ = [] lowercase__ = self while temp: string_rep.append(f'''{temp.data}''' ) lowercase__ = temp.next return "->".join(_lowercase ) def _A ( __magic_name__ ): if not elements_list: raise Exception("The Elements List is empty" ) lowercase__ = lowercase__ = Node(elements_list[0] ) for i in range(1 , len(__magic_name__ ) ): lowercase__ = Node(elements_list[i] ) lowercase__ = current.next return head def _A ( __magic_name__ ): if head_node is not None and isinstance(__magic_name__ , __magic_name__ ): print_reverse(head_node.next ) print(head_node.data ) def _A ( ): from doctest import testmod testmod() lowercase__ = make_linked_list([14, 52, 14, 12, 43] ) print("Linked List:" ) print(__magic_name__ ) print("Elements in Reverse:" ) print_reverse(__magic_name__ ) if __name__ == "__main__": main()
655
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance lowerCAmelCase__ = 6_378_137.0 lowerCAmelCase__ = 6_356_752.314_245 lowerCAmelCase__ = 6_3_7_8_1_3_7 def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowercase__ : Union[str, Any] = atan((1 - flattening) * tan(radians(lowerCamelCase__ ) ) ) lowercase__ : Optional[int] = atan((1 - flattening) * tan(radians(lowerCamelCase__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowercase__ : str = haversine_distance(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowercase__ : Optional[Any] = (b_lata + b_lata) / 2 lowercase__ : List[Any] = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowercase__ : str = (sin(lowerCamelCase__ ) ** 2) * (cos(lowerCamelCase__ ) ** 2) lowercase__ : List[Any] = cos(sigma / 2 ) ** 2 lowercase__ : Dict = (sigma - sin(lowerCamelCase__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowercase__ : Tuple = (cos(lowerCamelCase__ ) ** 2) * (sin(lowerCamelCase__ ) ** 2) lowercase__ : Union[str, Any] = sin(sigma / 2 ) ** 2 lowercase__ : Any = (sigma + sin(lowerCamelCase__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
81
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = """informer""" lowercase_ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : int , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : str = "student_t" , SCREAMING_SNAKE_CASE : str = "nll" , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : List[int] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, bool]] = "mean" , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : int = 64 , SCREAMING_SNAKE_CASE : int = 32 , SCREAMING_SNAKE_CASE : int = 32 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : int = 2 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : str = "gelu" , SCREAMING_SNAKE_CASE : float = 0.05 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : float = 0.1 , SCREAMING_SNAKE_CASE : int = 100 , SCREAMING_SNAKE_CASE : float = 0.02 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : str = "prob" , SCREAMING_SNAKE_CASE : int = 5 , SCREAMING_SNAKE_CASE : bool = True , **SCREAMING_SNAKE_CASE : List[Any] , ): # time series specific configuration lowercase__ : Any = prediction_length lowercase__ : List[str] = context_length or prediction_length lowercase__ : Tuple = distribution_output lowercase__ : Union[str, Any] = loss lowercase__ : Union[str, Any] = input_size lowercase__ : List[str] = num_time_features lowercase__ : Optional[Any] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowercase__ : List[str] = scaling lowercase__ : str = num_dynamic_real_features lowercase__ : Tuple = num_static_real_features lowercase__ : List[str] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowercase__ : Dict = cardinality else: lowercase__ : Dict = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowercase__ : Union[str, Any] = embedding_dimension else: lowercase__ : Optional[int] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase__ : Dict = num_parallel_samples # Transformer architecture configuration lowercase__ : Tuple = input_size * len(self.lags_sequence ) + self._number_of_features lowercase__ : Optional[Any] = d_model lowercase__ : int = encoder_attention_heads lowercase__ : Tuple = decoder_attention_heads lowercase__ : List[Any] = encoder_ffn_dim lowercase__ : List[str] = decoder_ffn_dim lowercase__ : List[str] = encoder_layers lowercase__ : Tuple = decoder_layers lowercase__ : Union[str, Any] = dropout lowercase__ : List[Any] = attention_dropout lowercase__ : str = activation_dropout lowercase__ : int = encoder_layerdrop lowercase__ : Union[str, Any] = decoder_layerdrop lowercase__ : Tuple = activation_function lowercase__ : str = init_std lowercase__ : Tuple = use_cache # Informer lowercase__ : Union[str, Any] = attention_type lowercase__ : Union[str, Any] = sampling_factor lowercase__ : Tuple = distil super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) @property def snake_case ( self : str ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
81
1
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": a : Dict = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") a : List[Any] = parser.parse_args() if args.model_type == "bert": a : Dict = BertForMaskedLM.from_pretrained(args.model_name) a : Union[str, Any] = "bert" else: raise ValueError("args.model_type should be \"bert\".") a : Optional[Any] = model.state_dict() a : Optional[Any] = {} for w in ["word_embeddings", "position_embeddings"]: a : Union[str, Any] = state_dict[F'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: a : Any = state_dict[F'{prefix}.embeddings.LayerNorm.{w}'] a : Any = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: a : Tuple = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] a : Dict = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] a : List[str] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] a : Any = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] a : List[Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] a : Dict = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] a : Dict = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] a : Optional[Any] = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 a : List[str] = state_dict["cls.predictions.decoder.weight"] a : Tuple = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: a : List[Any] = state_dict[F'cls.predictions.transform.dense.{w}'] a : int = state_dict[F'cls.predictions.transform.LayerNorm.{w}'] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
679
'''simple docstring''' import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = (EulerDiscreteScheduler,) SCREAMING_SNAKE_CASE__ : List[Any] = 10 def A_ ( self , **snake_case ): '''simple docstring''' UpperCAmelCase : List[Any] = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**snake_case ) return config def A_ ( self ): '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case ) def A_ ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def A_ ( self ): '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case ) def A_ ( self ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase : Union[str, Any] = self.get_scheduler_config() UpperCAmelCase : Optional[Any] = scheduler_class(**snake_case ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = self.dummy_model() UpperCAmelCase : int = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : Any = sample.to(snake_case ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : Tuple = scheduler.scale_model_input(snake_case , snake_case ) UpperCAmelCase : List[Any] = model(snake_case , snake_case ) UpperCAmelCase : str = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ) UpperCAmelCase : Dict = output.prev_sample UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(snake_case ) ) UpperCAmelCase : List[Any] = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : int = self.get_scheduler_config(prediction_type="v_prediction" ) UpperCAmelCase : List[Any] = scheduler_class(**snake_case ) scheduler.set_timesteps(self.num_inference_steps ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : Dict = self.dummy_model() UpperCAmelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCAmelCase : int = sample.to(snake_case ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase : str = scheduler.scale_model_input(snake_case , snake_case ) UpperCAmelCase : Dict = model(snake_case , snake_case ) UpperCAmelCase : List[Any] = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ) UpperCAmelCase : Any = output.prev_sample UpperCAmelCase : Optional[int] = torch.sum(torch.abs(snake_case ) ) UpperCAmelCase : Any = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 0.0002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = self.scheduler_classes[0] UpperCAmelCase : Optional[int] = self.get_scheduler_config() UpperCAmelCase : Any = scheduler_class(**snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case ) UpperCAmelCase : List[Any] = torch.manual_seed(0 ) UpperCAmelCase : int = self.dummy_model() UpperCAmelCase : str = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase : str = sample.to(snake_case ) for t in scheduler.timesteps: UpperCAmelCase : Union[str, Any] = scheduler.scale_model_input(snake_case , snake_case ) UpperCAmelCase : List[Any] = model(snake_case , snake_case ) UpperCAmelCase : List[str] = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ) UpperCAmelCase : Dict = output.prev_sample UpperCAmelCase : Optional[int] = torch.sum(torch.abs(snake_case ) ) UpperCAmelCase : Any = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 10.0807 ) < 1e-2 assert abs(result_mean.item() - 0.0131 ) < 1e-3 def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.scheduler_classes[0] UpperCAmelCase : Tuple = self.get_scheduler_config() UpperCAmelCase : Dict = scheduler_class(**snake_case , use_karras_sigmas=snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case ) UpperCAmelCase : List[str] = torch.manual_seed(0 ) UpperCAmelCase : Any = self.dummy_model() UpperCAmelCase : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCAmelCase : List[str] = sample.to(snake_case ) for t in scheduler.timesteps: UpperCAmelCase : str = scheduler.scale_model_input(snake_case , snake_case ) UpperCAmelCase : Dict = model(snake_case , snake_case ) UpperCAmelCase : Dict = scheduler.step(snake_case , snake_case , snake_case , generator=snake_case ) UpperCAmelCase : List[str] = output.prev_sample UpperCAmelCase : int = torch.sum(torch.abs(snake_case ) ) UpperCAmelCase : Any = torch.mean(torch.abs(snake_case ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1e-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1e-3
679
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def a ( _UpperCAmelCase : int="" ): '''simple docstring''' __UpperCAmelCase : Any = tempfile.mkdtemp() return os.path.join(lowerCAmelCase__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : List[str] = torch.rand(12 , dtype=torch.floataa ) - 0.5 __UpperCAmelCase : Optional[int] = AgentAudio(UpperCamelCase__ ) __UpperCAmelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(UpperCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(UpperCamelCase__ ) ) # Ensure that the file contains the same value as the original tensor __UpperCAmelCase : Tuple = sf.read(UpperCamelCase__ ) self.assertTrue(torch.allclose(UpperCamelCase__ , torch.tensor(UpperCamelCase__ ) , atol=1e-4 ) ) def snake_case__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 __UpperCAmelCase : int = get_new_path(suffix='''.wav''' ) sf.write(UpperCamelCase__ , UpperCamelCase__ , 1_60_00 ) __UpperCAmelCase : Tuple = AgentAudio(UpperCamelCase__ ) self.assertTrue(torch.allclose(UpperCamelCase__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , UpperCamelCase__ ) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = torch.randint(0 , 2_56 , (64, 64, 3) ) __UpperCAmelCase : Tuple = AgentImage(UpperCamelCase__ ) __UpperCAmelCase : Tuple = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(UpperCamelCase__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCamelCase__ ) ) def snake_case__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '000000039769.png' __UpperCAmelCase : Optional[Any] = Image.open(UpperCamelCase__ ) __UpperCAmelCase : Optional[Any] = AgentImage(UpperCamelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCamelCase__ ) ) def snake_case__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : int = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '000000039769.png' __UpperCAmelCase : List[str] = Image.open(UpperCamelCase__ ) __UpperCAmelCase : str = AgentImage(UpperCamelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(UpperCamelCase__ ) ) class UpperCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'Hey!' __UpperCAmelCase : Union[str, Any] = AgentText(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , agent_type.to_string() ) self.assertEqual(UpperCamelCase__ , agent_type.to_raw() ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
709
from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize('''repo_id''' , ['''canonical_dataset_name''', '''org-name/dataset-name'''] ) @pytest.mark.parametrize('''path''' , ['''filename.csv''', '''filename with blanks.csv'''] ) @pytest.mark.parametrize('''revision''' , [None, '''v2'''] ) def a ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = hf_hub_url(repo_id=_UpperCAmelCase , path=_UpperCAmelCase , revision=_UpperCAmelCase ) assert url == f'https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(_UpperCAmelCase )}'
241
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
77
"""simple docstring""" import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( A_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase : List[Any] = ConsistencyModelPipeline lowerCAmelCase : str = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCAmelCase : Optional[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowerCAmelCase : Any = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def UpperCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[int] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet''' ,) return unet @property def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ : Any = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' ,subfolder='''test_unet_class_cond''' ,) return unet def UpperCAmelCase ( self : Optional[int] ,_snake_case : int=False ) -> Dict: """simple docstring""" if class_cond: lowercase__ : Optional[int] = self.dummy_cond_unet else: lowercase__ : List[Any] = self.dummy_uncond_unet # Default to CM multistep sampler lowercase__ : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) lowercase__ : Dict = { '''unet''': unet, '''scheduler''': scheduler, } return components def UpperCAmelCase ( self : Optional[int] ,_snake_case : Tuple ,_snake_case : List[Any]=0 ) -> str: """simple docstring""" if str(_snake_case ).startswith('''mps''' ): lowercase__ : Dict = torch.manual_seed(_snake_case ) else: lowercase__ : int = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : List[str] = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Union[str, Any] = self.get_dummy_components() lowercase__ : Dict = ConsistencyModelPipeline(**_snake_case ) lowercase__ : List[str] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : Union[str, Any] = pipe(**_snake_case ).images assert image.shape == (1, 32, 32, 3) lowercase__ : Optional[Any] = image[0, -3:, -3:, -1] lowercase__ : Dict = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" lowercase__ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : int = self.get_dummy_components(class_cond=_snake_case ) lowercase__ : List[Any] = ConsistencyModelPipeline(**_snake_case ) lowercase__ : Dict = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[Any] = self.get_dummy_inputs(_snake_case ) lowercase__ : Dict = 0 lowercase__ : Union[str, Any] = pipe(**_snake_case ).images assert image.shape == (1, 32, 32, 3) lowercase__ : List[Any] = image[0, -3:, -3:, -1] lowercase__ : Union[str, Any] = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : str = self.get_dummy_components() lowercase__ : int = ConsistencyModelPipeline(**_snake_case ) lowercase__ : List[str] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Union[str, Any] = self.get_dummy_inputs(_snake_case ) lowercase__ : Union[str, Any] = 1 lowercase__ : List[Any] = None lowercase__ : Any = pipe(**_snake_case ).images assert image.shape == (1, 32, 32, 3) lowercase__ : Dict = image[0, -3:, -3:, -1] lowercase__ : List[str] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowercase__ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ : Any = self.get_dummy_components(class_cond=_snake_case ) lowercase__ : int = ConsistencyModelPipeline(**_snake_case ) lowercase__ : Dict = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : List[str] = self.get_dummy_inputs(_snake_case ) lowercase__ : Union[str, Any] = 1 lowercase__ : Any = None lowercase__ : Union[str, Any] = 0 lowercase__ : Optional[Any] = pipe(**_snake_case ).images assert image.shape == (1, 32, 32, 3) lowercase__ : List[Any] = image[0, -3:, -3:, -1] lowercase__ : Optional[Any] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __A ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[int] ,_snake_case : Any=0 ,_snake_case : Optional[int]=False ,_snake_case : List[Any]="cpu" ,_snake_case : Tuple=torch.floataa ,_snake_case : List[Any]=(1, 3, 64, 64) ) -> str: """simple docstring""" lowercase__ : Optional[int] = torch.manual_seed(_snake_case ) lowercase__ : Optional[int] = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: lowercase__ : str = self.get_fixed_latents(seed=_snake_case ,device=_snake_case ,dtype=_snake_case ,shape=_snake_case ) lowercase__ : Tuple = latents return inputs def UpperCAmelCase ( self : List[Any] ,_snake_case : int=0 ,_snake_case : Any="cpu" ,_snake_case : Optional[Any]=torch.floataa ,_snake_case : Tuple=(1, 3, 64, 64) ) -> Any: """simple docstring""" if type(_snake_case ) == str: lowercase__ : List[str] = torch.device(_snake_case ) lowercase__ : Tuple = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowercase__ : Tuple = randn_tensor(_snake_case ,generator=_snake_case ,device=_snake_case ,dtype=_snake_case ) return latents def UpperCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ : Union[str, Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) lowercase__ : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) lowercase__ : Optional[int] = ConsistencyModelPipeline(unet=_snake_case ,scheduler=_snake_case ) pipe.to(torch_device=_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Union[str, Any] = self.get_inputs() lowercase__ : Union[str, Any] = pipe(**_snake_case ).images assert image.shape == (1, 64, 64, 3) lowercase__ : int = image[0, -3:, -3:, -1] lowercase__ : Dict = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def UpperCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" lowercase__ : str = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) lowercase__ : str = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) lowercase__ : List[Any] = ConsistencyModelPipeline(unet=_snake_case ,scheduler=_snake_case ) pipe.to(torch_device=_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : int = self.get_inputs() lowercase__ : Optional[int] = 1 lowercase__ : Union[str, Any] = None lowercase__ : Optional[int] = pipe(**_snake_case ).images assert image.shape == (1, 64, 64, 3) lowercase__ : int = image[0, -3:, -3:, -1] lowercase__ : Any = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def UpperCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" lowercase__ : Optional[Any] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) lowercase__ : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) lowercase__ : Tuple = ConsistencyModelPipeline(unet=_snake_case ,scheduler=_snake_case ) pipe.to(torch_device=_snake_case ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[Any] = self.get_inputs(get_fixed_latents=_snake_case ,device=_snake_case ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_snake_case ,enable_math=_snake_case ,enable_mem_efficient=_snake_case ): lowercase__ : List[str] = pipe(**_snake_case ).images assert image.shape == (1, 64, 64, 3) lowercase__ : int = image[0, -3:, -3:, -1] lowercase__ : str = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ : List[str] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' ,subfolder='''diffusers_cd_imagenet64_l2''' ) lowercase__ : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 ,sigma_min=0.002 ,sigma_max=80.0 ,) lowercase__ : Any = ConsistencyModelPipeline(unet=_snake_case ,scheduler=_snake_case ) pipe.to(torch_device=_snake_case ,torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=_snake_case ) lowercase__ : Optional[int] = self.get_inputs(get_fixed_latents=_snake_case ,device=_snake_case ) lowercase__ : List[str] = 1 lowercase__ : Optional[Any] = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=_snake_case ,enable_math=_snake_case ,enable_mem_efficient=_snake_case ): lowercase__ : Any = pipe(**_snake_case ).images assert image.shape == (1, 64, 64, 3) lowercase__ : Tuple = image[0, -3:, -3:, -1] lowercase__ : str = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
560
0
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class __lowerCAmelCase( lowerCAmelCase__ ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : List[Any]=True , SCREAMING_SNAKE_CASE : Dict=None , **SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[str] = parent SCREAMING_SNAKE_CASE_ :str = config_class SCREAMING_SNAKE_CASE_ :List[str] = has_text_modality SCREAMING_SNAKE_CASE_ :Optional[int] = kwargs SCREAMING_SNAKE_CASE_ :Any = common_properties def _lowercase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :str = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = ( ['hidden_size', 'num_attention_heads', 'num_hidden_layers'] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['vocab_size'] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , msg=f'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(SCREAMING_SNAKE_CASE ): try: setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.parent.assertEqual( getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , msg=f'`{name} value {idx} expected, but was {getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(SCREAMING_SNAKE_CASE ): try: SCREAMING_SNAKE_CASE_ :Optional[Any] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , msg=f'`{name} value {idx} expected, but was {getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[str] = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE_ :str = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , SCREAMING_SNAKE_CASE ) def _lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ :Dict = os.path.join(SCREAMING_SNAKE_CASE , 'config.json' ) config_first.to_json_file(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :int = self.config_class.from_json_file(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ :List[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Dict = self.config_class.from_pretrained(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Tuple = self.config_class(**self.inputs_dict ) SCREAMING_SNAKE_CASE_ :List[str] = 'test' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ :Dict = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) config_first.save_pretrained(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :List[Any] = self.config_class.from_pretrained(SCREAMING_SNAKE_CASE , subfolder=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ :int = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) SCREAMING_SNAKE_CASE_ :Optional[int] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Dict ): """simple docstring""" if self.config_class.is_composition: return SCREAMING_SNAKE_CASE_ :Any = self.config_class() self.parent.assertIsNotNone(SCREAMING_SNAKE_CASE ) def _lowercase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = copy.deepcopy(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Optional[int] = self.config_class(**SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('torch_dtype', config.torch_dtype, torch.floataa) ) elif getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) != value: wrong_values.append((key, getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), value) ) if len(SCREAMING_SNAKE_CASE ) > 0: SCREAMING_SNAKE_CASE_ :int = '\n'.join([f'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(f'The following keys were not properly set in the config:\n{errors}' ) def _lowercase ( self : List[Any] ): """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
233
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm SCREAMING_SNAKE_CASE__ : List[Any] = logging.get_logger(__name__) @dataclass class __lowerCAmelCase( lowerCAmelCase__ ): __snake_case : str = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : List[Any] , **SCREAMING_SNAKE_CASE : str ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE_ :Optional[Any] = deprecated_arg[3:] setattr(self , SCREAMING_SNAKE_CASE , not kwargs.pop(SCREAMING_SNAKE_CASE ) ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) SCREAMING_SNAKE_CASE_ :List[str] = kwargs.pop('torchscript' , self.torchscript ) SCREAMING_SNAKE_CASE_ :Dict = kwargs.pop('torch_xla_tpu_print_metrics' , self.torch_xla_tpu_print_metrics ) SCREAMING_SNAKE_CASE_ :str = kwargs.pop('fp16_opt_level' , self.fpaa_opt_level ) super().__init__(**SCREAMING_SNAKE_CASE ) __snake_case : bool = field(default=lowerCAmelCase__ , metadata={'help': 'Trace the models using torchscript'} ) __snake_case : bool = field(default=lowerCAmelCase__ , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) __snake_case : str = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def _lowercase ( self : str ): """simple docstring""" requires_backends(self , ['torch'] ) logger.info('PyTorch: setting up devices' ) if not self.cuda: SCREAMING_SNAKE_CASE_ :Tuple = torch.device('cpu' ) SCREAMING_SNAKE_CASE_ :List[str] = 0 elif is_torch_tpu_available(): SCREAMING_SNAKE_CASE_ :Dict = xm.xla_device() SCREAMING_SNAKE_CASE_ :Tuple = 0 else: SCREAMING_SNAKE_CASE_ :int = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) SCREAMING_SNAKE_CASE_ :Tuple = torch.cuda.device_count() return device, n_gpu @property def _lowercase ( self : str ): """simple docstring""" return is_torch_tpu_available() and self.tpu @property def _lowercase ( self : int ): """simple docstring""" requires_backends(self , ['torch'] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def _lowercase ( self : List[str] ): """simple docstring""" requires_backends(self , ['torch'] ) return self._setup_devices[0] @property def _lowercase ( self : Optional[int] ): """simple docstring""" requires_backends(self , ['torch'] ) return self._setup_devices[1] @property def _lowercase ( self : Dict ): """simple docstring""" return self.n_gpu > 0
233
1
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __snake_case( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , A_ , A_ , A_ = None , A_ = None ) -> Optional[Any]: super().__init__() lowerCAmelCase = pad_token_id lowerCAmelCase = max_length lowerCAmelCase = vocab lowerCAmelCase = merges lowerCAmelCase = BytePairTokenizer(__A , __A , sequence_length=__A ) @classmethod def __snake_case ( cls , A_ , *A_ , **A_ ) -> Any: lowerCAmelCase = [""" """.join(__A ) for m in tokenizer.bpe_ranks.keys()] lowerCAmelCase = tokenizer.get_vocab() return cls(__A , __A , *__A , **__A ) @classmethod def __snake_case ( cls , A_ , *A_ , **A_ ) -> str: lowerCAmelCase = GPTaTokenizer.from_pretrained(__A , *__A , **__A ) return cls.from_tokenizer(__A , *__A , **__A ) @classmethod def __snake_case ( cls , A_ ) -> List[str]: return cls(**__A ) def __snake_case ( self ) -> Tuple: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __snake_case ( self , A_ , A_ = None ) -> List[str]: lowerCAmelCase = self.tf_tokenizer(__A ) lowerCAmelCase = tf.ones_like(__A ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCAmelCase = max_length if max_length is not None else self.max_length if max_length is not None: lowerCAmelCase = pad_model_inputs( __A , max_seq_length=__A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
433
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__=13 , lowercase__=30 , lowercase__=2 , lowercase__=3 , lowercase__=True , lowercase__=True , lowercase__=32 , lowercase__=5 , lowercase__=4 , lowercase__=37 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=10 , lowercase__=0.0_2 , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : int = patch_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : Optional[int] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE : str = num_patches + 1 def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : str = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) return config, pixel_values def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> Dict: SCREAMING_SNAKE_CASE : Optional[int] = FlaxViTModel(config=lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = model(lowercase__ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE : List[Any] = (self.image_size, self.image_size) SCREAMING_SNAKE_CASE : Tuple = (self.patch_size, self.patch_size) SCREAMING_SNAKE_CASE : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = self.type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[int] = FlaxViTForImageClassification(config=lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = model(lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : Tuple = FlaxViTForImageClassification(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowercase__ ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Dict = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _UpperCamelCase ( self ) -> None: SCREAMING_SNAKE_CASE : Optional[Any] = FlaxViTModelTester(self ) SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37 ) def _UpperCamelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowercase__ ) SCREAMING_SNAKE_CASE : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase__ ) def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Any = model_class(lowercase__ ) @jax.jit def model_jitted(lowercase__ , **lowercase__ ): return model(pixel_values=lowercase__ , **lowercase__ ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE : Any = model_jitted(**lowercase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : Any = model_jitted(**lowercase__ ).to_tuple() self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for jitted_output, output in zip(lowercase__ , lowercase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCamelCase ( self ) -> int: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : str = model_class_name.from_pretrained('google/vit-base-patch16-224' ) SCREAMING_SNAKE_CASE : Tuple = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowercase__ )
179
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : int = CLIPTokenizer snake_case__ : Union[str, Any] = CLIPTokenizerFast snake_case__ : str = True snake_case__ : Optional[int] = {} snake_case__ : int = False def _UpperCamelCase ( self ) -> Tuple: super().setUp() # fmt: off SCREAMING_SNAKE_CASE : Optional[int] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE : int = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) SCREAMING_SNAKE_CASE : Dict = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE : List[str] = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowercase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowercase__ ) ) def _UpperCamelCase ( self , **lowercase__ ) -> Dict: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def _UpperCamelCase ( self , **lowercase__ ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__ ) def _UpperCamelCase ( self , lowercase__ ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 'lower newer' SCREAMING_SNAKE_CASE : Dict = 'lower newer' return input_text, output_text def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE : str = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Optional[int] = 'lower newer' SCREAMING_SNAKE_CASE : List[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE : int = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , lowercase__ ) @require_ftfy def _UpperCamelCase ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE : List[str] = tokenizer_s.tokenize(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE : Tuple = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_s.tokenize(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE : Union[str, Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE : Tuple = tokenizer_s.tokenize(lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE : int = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE : List[Any] = tokenizer_s.tokenize(lowercase__ ) SCREAMING_SNAKE_CASE : int = tokenizer_r.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def _UpperCamelCase ( self ) -> int: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE : str = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE : Union[str, Any] = F"""{text_of_1_token} {text_of_1_token}""" SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase__ ) + 1, len(lowercase__ ) + 1 + len(lowercase__ )) , ) SCREAMING_SNAKE_CASE : Optional[int] = F""" {text}""" SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained( lowercase__ , use_fast=lowercase__ , ) SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r(lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase__ ) + 1, 1 + len(lowercase__ ) + 1 + len(lowercase__ )) , ) def _UpperCamelCase ( self ) -> int: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowercase__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def _UpperCamelCase ( self ) -> Union[str, Any]: super().test_tokenization_python_rust_equals() def _UpperCamelCase ( self ) -> int: # CLIP always lower cases letters pass
179
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : List[Any] = { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
120
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer UpperCAmelCase_ : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ : Union[str, Any] = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ : str = { "unc-nlp/lxmert-base-uncased": 512, } UpperCAmelCase_ : Optional[int] = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Tuple = VOCAB_FILES_NAMES __lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Optional[Any] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : List[Any] = LxmertTokenizer def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , lowerCamelCase_=True , lowerCamelCase_=None , **lowerCamelCase_ , ) -> Optional[int]: super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) _a : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCamelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCamelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCamelCase_ ) != tokenize_chinese_chars ): _a : str = getattr(lowerCamelCase_ , normalizer_state.pop('type' ) ) _a : Tuple = do_lower_case _a : str = strip_accents _a : Optional[Any] = tokenize_chinese_chars _a : Dict = normalizer_class(**lowerCamelCase_ ) _a : Optional[int] = do_lower_case def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_=None ) -> Optional[Any]: _a : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: _a : Union[str, Any] = [self.sep_token_id] _a : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> Tuple[str]: _a : Optional[Any] = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
120
1
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors snake_case__ : Any = logging.getLogger(__name__) class snake_case_( __A ): __UpperCamelCase = '''sequence-classification''' def __init__( self : Any , UpperCamelCase_ : Optional[int] ): if type(UpperCamelCase_ ) == dict: lowerCAmelCase : Any = Namespace(**UpperCamelCase_ ) lowerCAmelCase : int = glue_output_modes[hparams.task] lowerCAmelCase : Any = glue_tasks_num_labels[hparams.task] super().__init__(UpperCamelCase_ , UpperCamelCase_ , self.mode ) def lowerCamelCase__ ( self : Dict , **UpperCamelCase_ : Any ): return self.model(**UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Optional[int] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase : str = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowerCAmelCase : Union[str, Any] = self(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = outputs[0] lowerCAmelCase : str = self.trainer.lr_schedulers[0]['''scheduler'''] lowerCAmelCase : Union[str, Any] = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Union[str, Any] = self.hparams lowerCAmelCase : str = processors[args.task]() lowerCAmelCase : Optional[int] = processor.get_labels() for mode in ["train", "dev"]: lowerCAmelCase : List[str] = self._feature_file(UpperCamelCase_ ) if os.path.exists(UpperCamelCase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowerCAmelCase : Optional[int] = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) lowerCAmelCase : Optional[int] = convert_examples_to_features( UpperCamelCase_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , UpperCamelCase_ ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : bool = False ): lowerCAmelCase : Tuple = '''dev''' if mode == '''test''' else mode lowerCAmelCase : Any = self._feature_file(UpperCamelCase_ ) logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = torch.load(UpperCamelCase_ ) lowerCAmelCase : int = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCAmelCase : str = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) lowerCAmelCase : Tuple = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": lowerCAmelCase : int = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase : int = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , batch_size=UpperCamelCase_ , shuffle=UpperCamelCase_ , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ): lowerCAmelCase : Any = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: lowerCAmelCase : Any = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None lowerCAmelCase : Union[str, Any] = self(**UpperCamelCase_ ) lowerCAmelCase : List[Any] = outputs[:2] lowerCAmelCase : Union[str, Any] = logits.detach().cpu().numpy() lowerCAmelCase : int = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Dict ): lowerCAmelCase : Optional[Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() lowerCAmelCase : List[str] = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": lowerCAmelCase : Optional[Any] = np.argmax(UpperCamelCase_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": lowerCAmelCase : int = np.squeeze(UpperCamelCase_ ) lowerCAmelCase : Any = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowerCAmelCase : int = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase : Any = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , UpperCamelCase_ , UpperCamelCase_ )} lowerCAmelCase : Optional[Any] = dict(results.items() ) lowerCAmelCase : str = results return ret, preds_list, out_label_list def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase_ : list ): lowerCAmelCase : Dict = self._eval_end(UpperCamelCase_ ) lowerCAmelCase : Any = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowerCamelCase__ ( self : int , UpperCamelCase_ : Tuple ): lowerCAmelCase : Union[str, Any] = self._eval_end(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowerCamelCase__ ( UpperCamelCase_ : str , UpperCamelCase_ : Any ): BaseTransformer.add_model_specific_args(UpperCamelCase_ , UpperCamelCase_ ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=UpperCamelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=UpperCamelCase_ , required=UpperCamelCase_ , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=UpperCamelCase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def _snake_case ( ): lowerCAmelCase : Tuple = argparse.ArgumentParser() add_generic_args(__A , os.getcwd() ) lowerCAmelCase : Any = GLUETransformer.add_model_specific_args(__A , os.getcwd() ) lowerCAmelCase : Optional[Any] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: lowerCAmelCase : Tuple = os.path.join( '''./results''' , f'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) lowerCAmelCase : str = GLUETransformer(__A ) lowerCAmelCase : Any = generic_train(__A , __A ) # Optionally, predict on dev set and write to output_dir if args.do_predict: lowerCAmelCase : Tuple = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__A ) ) lowerCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__A ) if __name__ == "__main__": main()
708
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class snake_case_: def __init__( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=1_3 , UpperCamelCase_ : Optional[Any]=7 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[str]=9_9 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Any=3_7 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Union[str, Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_6 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : int=None , ): lowerCAmelCase : Any = parent lowerCAmelCase : Any = batch_size lowerCAmelCase : List[Any] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : List[Any] = use_input_mask lowerCAmelCase : Optional[int] = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : List[str] = vocab_size lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : int = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Optional[Any] = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Tuple = type_sequence_label_size lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : str = num_labels lowerCAmelCase : Optional[int] = num_choices lowerCAmelCase : Tuple = scope def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = None if self.use_input_mask: lowerCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : List[str] = None if self.use_token_type_ids: lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : int = None lowerCAmelCase : int = None lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Tuple ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase : List[Any] = LlamaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Dict = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCAmelCase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Any , ): lowerCAmelCase : Tuple = True lowerCAmelCase : Optional[int] = LlamaModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) lowerCAmelCase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : str , ): lowerCAmelCase : Optional[Any] = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , ): lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : str = True lowerCAmelCase : Tuple = LlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass lowerCAmelCase : Optional[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) lowerCAmelCase : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase : Dict = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] lowerCAmelCase : str = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['''hidden_states'''][0] # select random slice lowerCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase : Any = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Dict = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) : Tuple = config_and_inputs lowerCAmelCase : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case_( a__ , a__ , a__ , unittest.TestCase ): __UpperCamelCase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () __UpperCamelCase = (LlamaForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = LlamaModelTester(self ) lowerCAmelCase : Dict = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=3_7 ) def lowerCamelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase : str = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : List[str] = 3 lowerCAmelCase : List[str] = input_dict['''input_ids'''] lowerCAmelCase : List[str] = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Tuple = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Union[str, Any] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase, lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : int = '''single_label_classification''' lowerCAmelCase : Tuple = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase : Tuple = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase, lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = 3 lowerCAmelCase : Dict = '''multi_label_classification''' lowerCAmelCase : Union[str, Any] = input_dict['''input_ids'''] lowerCAmelCase : Tuple = input_ids.ne(1 ).to(UpperCamelCase_ ) lowerCAmelCase : Any = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase : Optional[int] = LlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() lowerCAmelCase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def lowerCamelCase__ ( self : Optional[Any] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : Tuple ): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[int] = ids_tensor([1, 1_0] , config.vocab_size ) lowerCAmelCase : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : List[Any] = LlamaModel(UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) original_model.eval() lowerCAmelCase : Optional[int] = original_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : List[Any] = original_model(UpperCamelCase_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCAmelCase : int = {'''type''': scaling_type, '''factor''': 10.0} lowerCAmelCase : List[str] = LlamaModel(UpperCamelCase_ ) scaled_model.to(UpperCamelCase_ ) scaled_model.eval() lowerCAmelCase : Union[str, Any] = scaled_model(UpperCamelCase_ ).last_hidden_state lowerCAmelCase : Optional[int] = scaled_model(UpperCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) @require_torch class snake_case_( unittest.TestCase ): @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Tuple = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 lowerCAmelCase : int = torch.tensor([[-6.6_550, -4.1_227, -4.9_859, -3.2_406, 0.8_262, -3.0_033, 1.2_964, -3.3_699]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-12.8_281, -7.4_453, -0.4_639, -8.0_625, -7.2_500, -8.0_000, -6.4_883, -7.7_695, -7.8_438, -7.0_312, -6.2_188, -7.1_328, -1.8_496, 1.9_961, -8.6_250, -6.7_227, -12.8_281, -6.9_492, -7.0_742, -7.7_852, -7.5_820, -7.9_062, -6.9_375, -7.9_805, -8.3_438, -8.1_562, -8.0_469, -7.6_250, -7.7_422, -7.3_398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : str = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Dict = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) lowerCAmelCase : str = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : Any = torch.tensor([[-2.0_622, -1.2_794, -1.1_638, -0.9_788, -1.4_603, -1.0_238, -1.7_893, -1.4_411]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Tuple = torch.tensor([-8.1_406, -8.0_547, 2.7_461, -1.2_344, -0.1_448, -1.8_262, -1.0_020, -1.8_154, -1.6_895, -1.8_516, -2.3_574, -0.9_277, 3.7_598, 6.5_742, -1.2_998, -0.1_177, -8.1_406, -2.9_688, -2.9_199, -3.1_699, -3.5_254, -2.3_555, -2.7_988, -3.4_141, -2.8_262, -4.5_195, -3.3_379, -3.3_164, -2.7_832, -3.0_273] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : int = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : List[str] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) lowerCAmelCase : List[Any] = model(torch.tensor(UpperCamelCase_ ) ) # Expected mean on dim = -1 lowerCAmelCase : List[str] = torch.tensor([[-0.8_562, -1.8_520, -0.7_551, -0.4_162, -1.5_161, -1.2_038, -2.4_823, -2.3_254]] ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off lowerCAmelCase : Dict = torch.tensor([-2.2_227, 4.8_828, 0.9_023, -0.4_578, -0.7_871, -0.1_033, -0.6_221, -0.5_786, -0.7_803, -1.0_674, -1.2_920, -0.1_570, 0.8_008, 2.0_723, -0.9_497, 0.2_771, -2.2_227, -0.7_612, -1.4_346, -1.2_061, -1.6_426, -0.3_000, -0.7_139, -1.1_934, -1.8_691, -1.6_973, -1.5_947, -1.2_705, -0.3_523, -0.5_513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : Optional[Any] = [1, 3_0_6, 4_6_5_8, 2_7_8, 6_5_9_3, 3_1_0, 2_8_3_4, 3_3_8] lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) lowerCAmelCase : Any = model(torch.tensor(UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = torch.tensor( [[-4.2_327, -3.3_360, -4.6_665, -4.7_631, -1.8_180, -3.4_170, -1.4_211, -3.1_810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , UpperCamelCase_ , atol=1E-2 , rtol=1E-2 ) # fmt: off lowerCAmelCase : Any = torch.tensor([-9.4_922, -3.9_551, 1.7_998, -5.6_758, -5.1_055, -5.8_984, -4.8_320, -6.8_086, -6.5_391, -5.6_172, -5.5_820, -5.5_352, 1.7_881, 3.6_289, -6.5_117, -3.4_785, -9.5_000, -6.0_352, -6.8_125, -6.0_195, -6.6_836, -5.4_727, -6.2_812, -6.0_391, -7.3_398, -7.4_297, -7.4_844, -6.5_820, -5.8_789, -5.5_312] ) # fmt: on torch.testing.assert_close(out[0, 0, :3_0] , UpperCamelCase_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' lowerCAmelCase : int = '''Simply put, the theory of relativity states that ''' lowerCAmelCase : str = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) lowerCAmelCase : Optional[int] = tokenizer.encode(UpperCamelCase_ , return_tensors='''pt''' ) lowerCAmelCase : List[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=UpperCamelCase_ ) # greedy generation outputs lowerCAmelCase : int = model.generate(UpperCamelCase_ , max_new_tokens=6_4 , top_p=UpperCamelCase_ , temperature=1 , do_sample=UpperCamelCase_ ) lowerCAmelCase : int = tokenizer.decode(generated_ids[0] , skip_special_tokens=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
637
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class lowerCamelCase_ : pass
17
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __snake_case = { """vocab_file""": {"""mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"""}, """tokenizer_file""": { """mobilebert-uncased""": """https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json""" }, } __snake_case = {"""mobilebert-uncased""": 512} __snake_case = {} class _a ( __a ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_INIT_CONFIGURATION A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = MobileBertTokenizer def __init__( self : Any , lowercase_ : Dict=None , lowercase_ : Dict=None , lowercase_ : str=True , lowercase_ : List[Any]="[UNK]" , lowercase_ : Any="[SEP]" , lowercase_ : Dict="[PAD]" , lowercase_ : Tuple="[CLS]" , lowercase_ : Optional[Any]="[MASK]" , lowercase_ : Optional[int]=True , lowercase_ : List[str]=None , **lowercase_ : int , ): '''simple docstring''' super().__init__( lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , tokenize_chinese_chars=lowercase_ , strip_accents=lowercase_ , **lowercase_ , ) lowercase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase_ ) != tokenize_chinese_chars ): lowercase_ = getattr(lowercase_ , normalizer_state.pop("""type""" ) ) lowercase_ = do_lower_case lowercase_ = strip_accents lowercase_ = tokenize_chinese_chars lowercase_ = normalizer_class(**lowercase_ ) lowercase_ = do_lower_case def lowerCamelCase__ ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : List[str]=None ): '''simple docstring''' lowercase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : Optional[Any] , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.sep_token_id] lowercase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Dict , lowercase_ : str , lowercase_ : Optional[str] = None ): '''simple docstring''' lowercase_ = self._tokenizer.model.save(lowercase_ , name=lowercase_ ) return tuple(lowercase_ )
603
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ ) ->int: lowercase_ = [[0 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(m + 1 )] for i in range(m + 1 ): lowercase_ = 1 for n in range(m + 1 ): for k in range(1 , SCREAMING_SNAKE_CASE_ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: __snake_case = int(input("""Enter a number: """).strip()) print(partition(n)) except ValueError: print("""Please enter a number.""") else: try: __snake_case = int(sys.argv[1]) print(partition(n)) except ValueError: print("""Please pass a number.""")
603
1