code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations from typing import Any class a_ ( snake_case_ ): '''simple docstring''' pass class a_ : '''simple docstring''' def __init__( self , A ) -> None: _SCREAMING_SNAKE_CASE = data _SCREAMING_SNAKE_CASE = None def __iter__( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self _SCREAMING_SNAKE_CASE = [] while node: if node in visited: raise ContainsLoopError visited.append(A ) yield node.data _SCREAMING_SNAKE_CASE = node.next_node @property def snake_case_( self ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowercase_ = Node(1) lowercase_ = Node(2) lowercase_ = Node(3) lowercase_ = Node(4) print(root_node.has_loop) # False lowercase_ = root_node.next_node print(root_node.has_loop) # True lowercase_ = Node(5) lowercase_ = Node(6) lowercase_ = Node(5) lowercase_ = Node(6) print(root_node.has_loop) # False lowercase_ = Node(1) print(root_node.has_loop) # False
314
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping lowercase_ = tuple[int, int] class a_ : '''simple docstring''' def __init__( self , A , A ) -> None: _SCREAMING_SNAKE_CASE = vertices _SCREAMING_SNAKE_CASE = { (min(A ), max(A )): weight for edge, weight in edges.items() } def snake_case_( self , A , A ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) _SCREAMING_SNAKE_CASE = weight def snake_case_( self ) -> Graph: _SCREAMING_SNAKE_CASE = Graph({min(self.vertices )} , {} ) _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 while len(subgraph.vertices ) < len(self.vertices ): _SCREAMING_SNAKE_CASE = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _SCREAMING_SNAKE_CASE = edge _SCREAMING_SNAKE_CASE = weight subgraph.add_edge(A , A ) return subgraph def lowerCamelCase ( __lowerCamelCase : str = "p107_network.txt" ) ->int: _SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 with open(__lowerCamelCase ) as f: _SCREAMING_SNAKE_CASE = f.read().strip().split("""\n""" ) _SCREAMING_SNAKE_CASE = [line.split(""",""" ) for line in data] for edgea in range(1 , len(__lowerCamelCase ) ): for edgea in range(__lowerCamelCase ): if adjaceny_matrix[edgea][edgea] != "-": _SCREAMING_SNAKE_CASE = int(adjaceny_matrix[edgea][edgea] ) _SCREAMING_SNAKE_CASE = Graph(set(range(len(__lowerCamelCase ) ) ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = graph.prims_algorithm() _SCREAMING_SNAKE_CASE = sum(graph.edges.values() ) _SCREAMING_SNAKE_CASE = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"""{solution() = }""")
314
1
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : bytes ): '''simple docstring''' return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = "▁" _SCREAMING_SNAKE_CASE = {"vocab_file": "sentencepiece.bpe.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } _SCREAMING_SNAKE_CASE = { "facebook/xglm-564M": 20_48, } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = VOCAB_FILES_NAMES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : str = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer _lowerCAmelCase = 7 _lowerCAmelCase = [f'''<madeupword{i}>''' for i in range(self.num_madeup_words )] _lowerCAmelCase = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCAmelCase ) ) _lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase = 1 # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _lowerCAmelCase = len(self.sp_model ) _lowerCAmelCase = {f'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_lowerCAmelCase ) _lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[str]: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None _lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a _lowerCAmelCase = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_lowerCAmelCase )) return [1] + ([0] * len(_lowerCAmelCase )) + [1, 1] + ([0] * len(_lowerCAmelCase )) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _snake_case ( self ) -> str: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _snake_case ( self ) -> Any: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , _lowerCAmelCase ) -> List[str]: return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> List[str]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase = self.sp_model.PieceToId(_lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , _lowerCAmelCase ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = "".join(_lowerCAmelCase ).replace(_lowerCAmelCase , " " ).strip() return out_string def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
489
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __magic_name__ ( A__ ): def __init__( self : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]=13 , UpperCamelCase__ : Tuple=7 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : str=False , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[str]=99 , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : Optional[int]=37 , UpperCamelCase__ : List[str]="gelu" , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Dict=0.1 , UpperCamelCase__ : int=5_12 , UpperCamelCase__ : List[str]=16 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : Optional[Any]=3 , UpperCamelCase__ : str=4 , UpperCamelCase__ : Dict=None , ) -> int: '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> str: '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE_ ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = DistilBertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = model(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = DistilBertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase = DistilBertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = DistilBertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Any ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = DistilBertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = DistilBertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ((UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase) , (UpperCAmelCase)) = config_and_inputs UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __magic_name__ ( A__, A__, unittest.TestCase ): lowercase : Union[str, Any] =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowercase : int =( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowercase : Optional[int] =True lowercase : Dict =True lowercase : List[Any] =True lowercase : List[Any] =True def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase = DistilBertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=UpperCamelCase__ , dim=37 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict: '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = DistilBertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return UpperCAmelCase = True UpperCAmelCase = model_class(config=UpperCamelCase__ ) UpperCAmelCase = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = torch.jit.trace( UpperCamelCase__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "traced_model.pt" ) ) UpperCAmelCase = torch.jit.load(os.path.join(UpperCamelCase__ , "traced_model.pt" ) , map_location=UpperCamelCase__ ) loaded(inputs_dict["input_ids"].to(UpperCamelCase__ ) , inputs_dict["attention_mask"].to(UpperCamelCase__ ) ) @require_torch class __magic_name__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : str ) -> Any: '''simple docstring''' UpperCAmelCase = DistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] UpperCAmelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCAmelCase = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1e-4 ) )
323
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( A__, unittest.TestCase ): lowercase : Optional[Any] =RobertaTokenizer lowercase : Dict =RobertaTokenizerFast lowercase : Union[str, Any] =True lowercase : Dict ={'''cls_token''': '''<s>'''} def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCAmelCase = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) UpperCAmelCase = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase = {"unk_token": "<unk>"} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , **UpperCamelCase__ : Dict ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **UpperCamelCase__ : Dict ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase = "lower newer" UpperCAmelCase = "lower newer" return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Tuple: '''simple docstring''' UpperCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase = "lower newer" UpperCAmelCase = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] UpperCAmelCase = tokenizer.tokenize(UpperCamelCase__ ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: '''simple docstring''' UpperCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=UpperCamelCase__ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=UpperCamelCase__ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase = self.tokenizer_class.from_pretrained("roberta-base" ) UpperCAmelCase = tokenizer.encode("sequence builders" , add_special_tokens=UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode( "sequence builders" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = "Encode this sequence." UpperCAmelCase = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) UpperCAmelCase = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing spaces after special tokens UpperCAmelCase = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ )} ) # mask token has a left space UpperCAmelCase = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) UpperCAmelCase = "Encode <mask> sequence" UpperCAmelCase = "Encode <mask>sequence" UpperCAmelCase = tokenizer.encode(UpperCamelCase__ ) UpperCAmelCase = encoded.index(UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = tokenizer.encode(UpperCamelCase__ ) UpperCAmelCase = encoded.index(UpperCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase = "A, <mask> AllenNLP sentence." UpperCAmelCase = tokenizer_r.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) UpperCAmelCase = tokenizer_p.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCamelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( UpperCamelCase__ , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict: '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , UpperCamelCase__ ) self.assertEqual(post_processor_state["add_prefix_space"] , UpperCamelCase__ ) self.assertEqual(post_processor_state["trim_offsets"] , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCAmelCase = "hello" # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase = F'{text_of_1_token} {text_of_1_token}' UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ) + 1, len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCamelCase__ ), len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ) + 1, 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( UpperCamelCase__ , use_fast=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ ) UpperCAmelCase = tokenizer_r(UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCamelCase__ ), 1 + len(UpperCamelCase__ ) + 1 + len(UpperCamelCase__ )) , )
323
1
"""simple docstring""" from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class a__ : snake_case__ = 4_2 # [batch_size x 3] snake_case__ = 4_2 # [batch_size x 3] snake_case__ = 4_2 # [batch_size x 3] snake_case__ = 4_2 # [batch_size x 3] snake_case__ = 4_2 snake_case__ = 4_2 snake_case__ = 4_2 snake_case__ = 4_2 snake_case__ = 4_2 def __UpperCamelCase ( self : Optional[int]) -> List[str]: """simple docstring""" assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape) == len(self.y.shape) == len(self.z.shape) == len(self.origin.shape) == 2 def __UpperCamelCase ( self : int) -> Any: """simple docstring""" return torch.from_numpy(np.array([self.width, self.height] ,dtype=np.floataa)) def __UpperCamelCase ( self : Any) -> List[str]: """simple docstring""" return torch.from_numpy(np.array([self.x_fov, self.y_fov] ,dtype=np.floataa)) def __UpperCamelCase ( self : int) -> torch.Tensor: """simple docstring""" _lowerCAmelCase:int = torch.arange(self.height * self.width) _lowerCAmelCase:str = torch.stack( [ pixel_indices % self.width, torch.div(a__ ,self.width ,rounding_mode='''trunc'''), ] ,axis=1 ,) return coords @property def __UpperCamelCase ( self : int) -> List[str]: """simple docstring""" _lowerCAmelCase:Dict = self.shape _lowerCAmelCase:List[Any] = int(np.prod(a__)) _lowerCAmelCase:List[str] = self.get_image_coords() _lowerCAmelCase:Union[str, Any] = torch.broadcast_to(coords.unsqueeze(0) ,[batch_size * inner_batch_size, *coords.shape]) _lowerCAmelCase:str = self.get_camera_rays(a__) _lowerCAmelCase:Tuple = rays.view(a__ ,inner_batch_size * self.height * self.width ,2 ,3) return rays def __UpperCamelCase ( self : Dict ,a__ : torch.Tensor) -> torch.Tensor: """simple docstring""" _lowerCAmelCase:Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _lowerCAmelCase:int = coords.view(a__ ,-1 ,2) _lowerCAmelCase:Optional[int] = self.resolution() _lowerCAmelCase:Union[str, Any] = self.fov() _lowerCAmelCase:Tuple = (flat.float() / (res - 1)) * 2 - 1 _lowerCAmelCase:Union[str, Any] = fracs * torch.tan(fov / 2) _lowerCAmelCase:str = fracs.view(a__ ,-1 ,2) _lowerCAmelCase:Tuple = ( self.z.view(a__ ,1 ,3) + self.x.view(a__ ,1 ,3) * fracs[:, :, :1] + self.y.view(a__ ,1 ,3) * fracs[:, :, 1:] ) _lowerCAmelCase:str = directions / directions.norm(dim=-1 ,keepdim=a__) _lowerCAmelCase:List[str] = torch.stack( [ torch.broadcast_to(self.origin.view(a__ ,1 ,3) ,[batch_size, directions.shape[1], 3]), directions, ] ,dim=2 ,) return rays.view(a__ ,*a__ ,2 ,3) def __UpperCamelCase ( self : int ,a__ : int ,a__ : int) -> "DifferentiableProjectiveCamera": """simple docstring""" assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin ,x=self.x ,y=self.y ,z=self.z ,width=a__ ,height=a__ ,x_fov=self.x_fov ,y_fov=self.y_fov ,) def UpperCAmelCase ( snake_case : int ): _lowerCAmelCase:Dict = [] _lowerCAmelCase:int = [] _lowerCAmelCase:Union[str, Any] = [] _lowerCAmelCase:Union[str, Any] = [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): _lowerCAmelCase:int = np.array([np.sin(snake_case ), np.cos(snake_case ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _lowerCAmelCase:Union[str, Any] = -z * 4 _lowerCAmelCase:List[str] = np.array([np.cos(snake_case ), -np.sin(snake_case ), 0.0] ) _lowerCAmelCase:int = np.cross(snake_case , snake_case ) origins.append(snake_case ) xs.append(snake_case ) ys.append(snake_case ) zs.append(snake_case ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , x=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , y=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , z=torch.from_numpy(np.stack(snake_case , axis=0 ) ).float() , width=snake_case , height=snake_case , x_fov=0.7 , y_fov=0.7 , shape=(1, len(snake_case )) , )
719
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class a__ ( UpperCamelCase_ ): snake_case__ = '''roc_bert''' def __init__( self : Union[str, Any] ,a__ : Union[str, Any]=3_0522 ,a__ : List[Any]=768 ,a__ : Tuple=12 ,a__ : Optional[int]=12 ,a__ : Any=3072 ,a__ : Optional[int]="gelu" ,a__ : Union[str, Any]=0.1 ,a__ : List[str]=0.1 ,a__ : Dict=512 ,a__ : int=2 ,a__ : Dict=0.02 ,a__ : Dict=1E-12 ,a__ : int=True ,a__ : Optional[int]=0 ,a__ : Union[str, Any]="absolute" ,a__ : List[Any]=None ,a__ : str=True ,a__ : str=True ,a__ : List[str]=768 ,a__ : Optional[int]=910 ,a__ : Any=512 ,a__ : str=2_4858 ,a__ : List[str]=True ,**a__ : str ,) -> List[str]: """simple docstring""" _lowerCAmelCase:Tuple = vocab_size _lowerCAmelCase:Any = max_position_embeddings _lowerCAmelCase:Union[str, Any] = hidden_size _lowerCAmelCase:Optional[Any] = num_hidden_layers _lowerCAmelCase:int = num_attention_heads _lowerCAmelCase:int = intermediate_size _lowerCAmelCase:Union[str, Any] = hidden_act _lowerCAmelCase:Any = hidden_dropout_prob _lowerCAmelCase:List[Any] = attention_probs_dropout_prob _lowerCAmelCase:List[Any] = initializer_range _lowerCAmelCase:Dict = type_vocab_size _lowerCAmelCase:Dict = layer_norm_eps _lowerCAmelCase:str = use_cache _lowerCAmelCase:Any = enable_pronunciation _lowerCAmelCase:List[str] = enable_shape _lowerCAmelCase:Optional[int] = pronunciation_embed_dim _lowerCAmelCase:Union[str, Any] = pronunciation_vocab_size _lowerCAmelCase:str = shape_embed_dim _lowerCAmelCase:List[Any] = shape_vocab_size _lowerCAmelCase:str = concat_input _lowerCAmelCase:Optional[int] = position_embedding_type _lowerCAmelCase:Any = classifier_dropout super().__init__(pad_token_id=a__ ,**a__)
439
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , ) -> Optional[int]: """simple docstring""" lowercase__ : int = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : List[str] = parent lowercase__ : str = batch_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[int] = image_size lowercase__ : str = min_resolution lowercase__ : str = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Optional[int] = size lowercase__ : Optional[int] = do_normalize lowercase__ : Optional[Any] = image_mean lowercase__ : int = image_std def __a ( self ) -> Any: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCAmelCase( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a : Optional[int] = DPTImageProcessor if is_vision_available() else None def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : int = DPTImageProcessingTester(self ) @property def __a ( self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) lowercase__ : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input lowercase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowercase__ : Union[str, Any] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input lowercase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowercase__ : str = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input lowercase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched lowercase__ : Optional[int] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
397
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
477
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a__ ( A__ , A__ , unittest.TestCase ): UpperCAmelCase__ = StableDiffusionSAGPipeline UpperCAmelCase__ = TEXT_TO_IMAGE_PARAMS UpperCAmelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase__ = False def lowerCamelCase_ ( self :Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase_ : List[Any] =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ : Union[str, Any] =DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) UpperCamelCase_ : List[str] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ : Optional[Any] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase_ : Optional[Any] =CLIPTextModel(_lowerCamelCase ) UpperCamelCase_ : Optional[int] =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ : str ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def lowerCamelCase_ ( self :Any , _lowerCamelCase :Optional[int] , _lowerCamelCase :Any=0 ): '''simple docstring''' if str(_lowerCamelCase ).startswith('mps' ): UpperCamelCase_ : Union[str, Any] =torch.manual_seed(_lowerCamelCase ) else: UpperCamelCase_ : Dict =torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) UpperCamelCase_ : Optional[Any] ={ 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def lowerCamelCase_ ( self :Any ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a__ ( unittest.TestCase ): def lowerCamelCase_ ( self :int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : int =StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase_ : Tuple =sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_ : Any ='.' UpperCamelCase_ : Optional[Any] =torch.manual_seed(0 ) UpperCamelCase_ : List[Any] =sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ : Optional[int] =output.images UpperCamelCase_ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ : Optional[int] =np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ : Tuple =sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_ : List[Any] ='.' UpperCamelCase_ : List[str] =torch.manual_seed(0 ) UpperCamelCase_ : Optional[int] =sag_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ : str =output.images UpperCamelCase_ : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ : List[str] =np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCamelCase_ ( self :Any ): '''simple docstring''' UpperCamelCase_ : Dict =StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ : str =sag_pipe.to(_lowerCamelCase ) sag_pipe.set_progress_bar_config(disable=_lowerCamelCase ) UpperCamelCase_ : Tuple ='.' UpperCamelCase_ : List[Any] =torch.manual_seed(0 ) UpperCamelCase_ : List[Any] =sag_pipe( [prompt] , width=768 , height=512 , generator=_lowerCamelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase_ : Dict =output.images assert image.shape == (1, 512, 768, 3)
706
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def A_ ( __lowercase ): monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set() ) @pytest.fixture def A_ ( __lowercase ): class a__ : def __init__( self :int , _lowerCamelCase :Any ): '''simple docstring''' UpperCamelCase_ : str =metric_id class a__ : UpperCAmelCase__ = [MetricMock(A__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def lowerCamelCase_ ( self :Optional[int] ): '''simple docstring''' return self._metrics monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock() ) @pytest.mark.parametrize( 'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))] ) def A_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if "tmp_path" in args: UpperCamelCase_ : List[Any] =tuple(arg if arg != 'tmp_path' else tmp_path for arg in args ) with pytest.warns(__lowercase , match='https://huggingface.co/docs/evaluate' ): func(*__lowercase )
395
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class __lowerCAmelCase : '''simple docstring''' def __init__( self , a ): """simple docstring""" snake_case_ :str = value snake_case_ :Node | None = None snake_case_ :Node | None = None class __lowerCAmelCase : '''simple docstring''' def __init__( self , a ): """simple docstring""" snake_case_ :str = tree def _a ( self , a ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
584
"""simple docstring""" def A ( _A, _A ): """simple docstring""" return x if y == 0 else greatest_common_divisor(_A, x % y ) def A ( _A, _A ): """simple docstring""" return (x * y) // greatest_common_divisor(_A, _A ) def A ( _A = 20 ): """simple docstring""" snake_case_ :Dict = 1 for i in range(1, n + 1 ): snake_case_ :Dict = lcm(_A, _A ) return g if __name__ == "__main__": print(F'''{solution() = }''')
584
1
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __SCREAMING_SNAKE_CASE : List[str] = 5_0_0_0_0_0 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.split(__file__) __SCREAMING_SNAKE_CASE : Any = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def lowerCAmelCase_( lowercase_ : datasets.Dataset , **lowercase_ : Union[str, Any] ) -> List[str]: _lowerCamelCase = dataset.map(**lowercase_ ) @get_duration def lowerCAmelCase_( lowercase_ : datasets.Dataset , **lowercase_ : Optional[int] ) -> Any: _lowerCamelCase = dataset.filter(**lowercase_ ) def lowerCAmelCase_( ) -> List[Any]: _lowerCamelCase = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) _lowerCamelCase = generate_example_dataset( os.path.join(lowercase_ , '''dataset.arrow''' ) , lowercase_ , num_examples=lowercase_ ) _lowerCamelCase = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowercase_ ) def tokenize(lowercase_ : Dict ): return tokenizer(examples['''text'''] ) _lowerCamelCase = map(lowercase_ ) _lowerCamelCase = map(lowercase_ , batched=lowercase_ ) _lowerCamelCase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type='''numpy''' ): _lowerCamelCase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type='''pandas''' ): _lowerCamelCase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): _lowerCamelCase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): _lowerCamelCase = map(lowercase_ , function=lambda lowercase_ : None , batched=lowercase_ ) _lowerCamelCase = map(lowercase_ , function=lowercase_ , batched=lowercase_ ) _lowerCamelCase = filter(lowercase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase_ , '''wb''' ) as f: f.write(json.dumps(lowercase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
623
"""simple docstring""" def lowerCAmelCase_( lowercase_ : str , lowercase_ : str ) -> bool: _lowerCamelCase = len(lowercase_ ) _lowerCamelCase = len(lowercase_ ) _lowerCamelCase = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] _lowerCamelCase = True for i in range(lowercase_ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: _lowerCamelCase = True if a[i].islower(): _lowerCamelCase = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
623
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : Any = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
348
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE : Any = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
348
1
'''simple docstring''' import warnings from .generation import TFGenerationMixin class _a (_lowerCamelCase): """simple docstring""" warnings.warn( 'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ' 'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.' , _lowerCamelCase , )
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase__ : Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) UpperCamelCase__ : Union[str, Any] = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase__ : str = "sshleifer/tiny-mbart" @require_torch class _a (_lowerCamelCase): """simple docstring""" def UpperCamelCase ( self , A__=False , A__=None , A__=True , A__=True , A__=True , A__=True , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=1 , max_len=12 , model_name=A__ , num_train_epochs=1 , distributed=A__ , extra_args_str=A__ , predict_with_generate=A__ , do_train=A__ , do_eval=A__ , do_predict=A__ , ) _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history if not do_eval: return _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def UpperCamelCase ( self ) -> Optional[int]: self.run_seqaseq_quick() @require_torch_multi_gpu def UpperCamelCase ( self ) -> Optional[Any]: self.run_seqaseq_quick(distributed=A__ ) @require_torch_multi_gpu def UpperCamelCase ( self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Any: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> Tuple: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> str: self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=A__ ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def UpperCamelCase ( self ) -> List[str]: self.run_seqaseq_quick( distributed=A__ , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=A__ ) @require_apex @require_torch_gpu def UpperCamelCase ( self ) -> Optional[Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=A__ , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def UpperCamelCase ( self , A__ ) -> List[Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _SCREAMING_SNAKE_CASE = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } _SCREAMING_SNAKE_CASE = experiments[experiment_id] _SCREAMING_SNAKE_CASE = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} _SCREAMING_SNAKE_CASE = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**A__ , extra_args_str=data["""extra_args_str"""] ) _SCREAMING_SNAKE_CASE = len(re.findall(A__ , cl.err ) ) self.assertEqual(A__ , data["""n_matches"""] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=10 , distributed=A__ , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(os.path.join(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = [log for log in logs if """eval_loss""" in log.keys()] _SCREAMING_SNAKE_CASE = eval_metrics[0] _SCREAMING_SNAKE_CASE = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , A__ ) # test if do_predict saves generations and metrics _SCREAMING_SNAKE_CASE = os.listdir(A__ ) _SCREAMING_SNAKE_CASE = {os.path.basename(A__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def UpperCamelCase ( self ) -> Dict: from transformers.training_args import OptimizerNames def train_and_return_metrics(A__ ) -> Tuple[int, float]: _SCREAMING_SNAKE_CASE = """--skip_memory_metrics 0""" _SCREAMING_SNAKE_CASE = self.run_trainer( max_len=1_28 , model_name=A__ , learning_rate=3E-4 , num_train_epochs=1 , optim=A__ , distributed=A__ , extra_args_str=A__ , do_eval=A__ , do_predict=A__ , n_gpus_to_use=1 , ) # Check metrics _SCREAMING_SNAKE_CASE = TrainerState.load_from_json(Path(A__ , """trainer_state.json""" ) ).log_history _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) _SCREAMING_SNAKE_CASE = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _SCREAMING_SNAKE_CASE = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_peak_mem_orig + gpu_alloc_mem_orig _SCREAMING_SNAKE_CASE = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _SCREAMING_SNAKE_CASE = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _SCREAMING_SNAKE_CASE = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( A__ , A__ , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" F" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( A__ , A__ , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" F" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( A__ , A__ , F"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ = 3E-3 , A__ = "adafactor" , A__ = False , A__ = None , A__ = 0 , A__ = True , A__ = True , A__ = True , A__ = True , A__ = None , ) -> Dict: _SCREAMING_SNAKE_CASE = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" _SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE = F"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(A__ )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(A__ )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() _SCREAMING_SNAKE_CASE = F"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(A__ )}\n ".split() _SCREAMING_SNAKE_CASE = """ --do_predict """.split() _SCREAMING_SNAKE_CASE = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _SCREAMING_SNAKE_CASE = get_gpu_count() _SCREAMING_SNAKE_CASE = get_torch_dist_unique_port() _SCREAMING_SNAKE_CASE = F"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() _SCREAMING_SNAKE_CASE = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(A__ , env=self.get_env() ) else: _SCREAMING_SNAKE_CASE = ["""run_translation.py"""] + args with patch.object(A__ , """argv""" , A__ ): main() return output_dir
0
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __a ( lowerCAmelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' return getitem, k def __a ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return setitem, k, v def __a ( lowerCAmelCase_ : Any ) -> str: '''simple docstring''' return delitem, k def __a ( lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Optional[int] ,*lowerCAmelCase_ : Optional[int] ) -> int: '''simple docstring''' try: return fun(lowerCamelCase__ ,*lowerCamelCase__ ), None except Exception as e: return None, e __A = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) __A = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] __A = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] __A = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] __A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( """operations""" ,( pytest.param(_add_items ,id="""add items""" ), pytest.param(_overwrite_items ,id="""overwrite items""" ), pytest.param(_delete_items ,id="""delete items""" ), pytest.param(_access_absent_items ,id="""access absent items""" ), pytest.param(_add_with_resize_up ,id="""add with resize up""" ), pytest.param(_add_with_resize_down ,id="""add with resize down""" ), ) ,) def __a ( lowerCAmelCase_ : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_= HashMap(initial_block_size=4 ) UpperCAmelCase_= {} for _, (fun, *args) in enumerate(lowerCamelCase__ ): UpperCAmelCase_, UpperCAmelCase_= _run_operation(lowerCamelCase__ ,lowerCamelCase__ ,*lowerCamelCase__ ) UpperCAmelCase_, UpperCAmelCase_= _run_operation(lowerCamelCase__ ,lowerCamelCase__ ,*lowerCamelCase__ ) assert my_res == py_res assert str(lowerCamelCase__ ) == str(lowerCamelCase__ ) assert set(lowerCamelCase__ ) == set(lowerCamelCase__ ) assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) assert set(my.items() ) == set(py.items() ) def __a ( ) -> List[str]: '''simple docstring''' def is_public(lowerCAmelCase_ : List[Any] ) -> bool: return not name.startswith("""_""" ) UpperCAmelCase_= {name for name in dir({} ) if is_public(lowerCamelCase__ )} UpperCAmelCase_= {name for name in dir(HashMap() ) if is_public(lowerCamelCase__ )} assert dict_public_names > hash_public_names
593
"""simple docstring""" import math from datetime import datetime, timedelta def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = year % 19 lowerCAmelCase__ = year % 4 lowerCAmelCase__ = year % 7 lowerCAmelCase__ = math.floor(year / 100 ) lowerCAmelCase__ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowerCAmelCase__ = leap_day_inhibits / 4 lowerCAmelCase__ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowerCAmelCase__ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowerCAmelCase__ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowerCAmelCase__ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowerCamelCase__ , 4 , 18 ) else: return datetime(lowerCamelCase__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): __lowerCAmelCase : List[str] = "will be" if year > datetime.now().year else "was" print(F"Easter in {year} {tense} {gauss_easter(year)}")
644
0
"""simple docstring""" def __lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" return [ a * b * (1000 - a - b) for a in range(1 , 999 ) for b in range(_lowerCamelCase , 999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'''{solution() = }''')
716
"""simple docstring""" from typing import Any def __lowerCAmelCase ( lowercase : list , lowercase : list , lowercase : dict , lowercase : dict , lowercase : dict , ) -> list: """simple docstring""" _validation( lowercase , lowercase , lowercase , lowercase , lowercase , ) # Creates data structures and fill initial step snake_case : dict = {} snake_case : dict = {} for state in states_space: snake_case : int = observations_space[0] snake_case : Any = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case : Union[str, Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowercase ) ): snake_case : Optional[Any] = observations_space[o] snake_case : str = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case : str = "" snake_case : List[Any] = -1 for k_state in states_space: snake_case : Tuple = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case : Optional[Any] = probability snake_case : int = k_state # Update probabilities and pointers dicts snake_case : List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case : List[Any] = arg_max # The final observation snake_case : Dict = observations_space[len(lowercase ) - 1] # argmax for given final observation snake_case : str = "" snake_case : Optional[int] = -1 for k_state in states_space: snake_case : int = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case : Optional[int] = probability snake_case : List[Any] = k_state snake_case : str = arg_max # Process pointers backwards snake_case : List[str] = last_state snake_case : Optional[int] = [] for o in range(len(lowercase ) - 1 , -1 , -1 ): result.append(lowercase ) snake_case : List[str] = pointers[previous, observations_space[o]] result.reverse() return result def __lowerCAmelCase ( lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , ) -> None: """simple docstring""" _validate_not_empty( lowercase , lowercase , lowercase , lowercase , lowercase , ) _validate_lists(lowercase , lowercase ) _validate_dicts( lowercase , lowercase , lowercase ) def __lowerCAmelCase ( lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def __lowerCAmelCase ( lowercase : Any , lowercase : Any ) -> None: """simple docstring""" _validate_list(lowercase , "observations_space" ) _validate_list(lowercase , "states_space" ) def __lowerCAmelCase ( lowercase : Any , lowercase : str ) -> None: """simple docstring""" if not isinstance(_object , lowercase ): snake_case : List[str] = F'{var_name} must be a list' raise ValueError(lowercase ) else: for x in _object: if not isinstance(lowercase , lowercase ): snake_case : Tuple = F'{var_name} must be a list of strings' raise ValueError(lowercase ) def __lowerCAmelCase ( lowercase : Any , lowercase : Any , lowercase : Any , ) -> None: """simple docstring""" _validate_dict(lowercase , "initial_probabilities" , lowercase ) _validate_nested_dict(lowercase , "transition_probabilities" ) _validate_nested_dict(lowercase , "emission_probabilities" ) def __lowerCAmelCase ( lowercase : Any , lowercase : str ) -> None: """simple docstring""" _validate_dict(_object , lowercase , lowercase ) for x in _object.values(): _validate_dict(lowercase , lowercase , lowercase , lowercase ) def __lowerCAmelCase ( lowercase : Any , lowercase : str , lowercase : type , lowercase : bool = False ) -> None: """simple docstring""" if not isinstance(_object , lowercase ): snake_case : int = F'{var_name} must be a dict' raise ValueError(lowercase ) if not all(isinstance(lowercase , lowercase ) for x in _object ): snake_case : Optional[Any] = F'{var_name} all keys must be strings' raise ValueError(lowercase ) if not all(isinstance(lowercase , lowercase ) for x in _object.values() ): snake_case : Optional[int] = "nested dictionary " if nested else "" snake_case : int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
117
0
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example a = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example a = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __magic_name__ ( __UpperCAmelCase ) -> list[list[int]]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for i in range(len(__UpperCAmelCase ) ): __SCREAMING_SNAKE_CASE = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours __SCREAMING_SNAKE_CASE = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(__UpperCAmelCase ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(__UpperCAmelCase ) - 1: neighbour_count += cells[i + 1][j] if i < len(__UpperCAmelCase ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. __SCREAMING_SNAKE_CASE = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(__UpperCAmelCase ) return next_generation def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> list[Image.Image]: '''simple docstring''' __SCREAMING_SNAKE_CASE = [] for _ in range(__UpperCAmelCase ): # Create output image __SCREAMING_SNAKE_CASE = Image.new("""RGB""" , (len(cells[0] ), len(__UpperCAmelCase )) ) __SCREAMING_SNAKE_CASE = img.load() # Save cells to image for x in range(len(__UpperCAmelCase ) ): for y in range(len(cells[0] ) ): __SCREAMING_SNAKE_CASE = 255 - cells[y][x] * 255 __SCREAMING_SNAKE_CASE = (colour, colour, colour) # Save image images.append(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = new_generation(__UpperCAmelCase ) return images if __name__ == "__main__": a = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
109
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCAmelCase__ : Tuple = logging.get_logger(__name__) # General docstring UpperCAmelCase__ : int = "RegNetConfig" # Base docstring UpperCAmelCase__ : Optional[int] = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[int] = [1, 10_88, 7, 7] # Image classification docstring UpperCAmelCase__ : Tuple = "facebook/regnet-y-040" UpperCAmelCase__ : Optional[Any] = "tabby, tabby cat" UpperCAmelCase__ : int = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A ( tf.keras.layers.Layer ): def __init__( self : str , __magic_name__ : int , __magic_name__ : int = 3 , __magic_name__ : int = 1 , __magic_name__ : int = 1 , __magic_name__ : Optional[str] = "relu" , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowerCAmelCase__ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=__magic_name__ , strides=__magic_name__ , padding="VALID" , groups=__magic_name__ , use_bias=__magic_name__ , name="convolution" , ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) lowerCAmelCase__ = ACTaFN[activation] if activation is not None else tf.identity def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = self.convolution(self.padding(__magic_name__ ) ) lowerCAmelCase__ = self.normalization(__magic_name__ ) lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : List[Any] , __magic_name__ : RegNetConfig , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config.num_channels lowerCAmelCase__ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = shape_list(__magic_name__ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 2, 3, 1) ) lowerCAmelCase__ = self.embedder(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Any , __magic_name__ : int , __magic_name__ : int = 2 , **__magic_name__ : Optional[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.ConvaD( filters=__magic_name__ , kernel_size=1 , strides=__magic_name__ , use_bias=__magic_name__ , name="convolution" ) lowerCAmelCase__ = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name="normalization" ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : bool = False ): """simple docstring""" return self.normalization(self.convolution(__magic_name__ ) , training=__magic_name__ ) class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) lowerCAmelCase__ = [ tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__magic_name__ , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ = self.pooler(__magic_name__ ) for layer_module in self.attention: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = hidden_state * pooled return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.2" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : int , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 1 , **__magic_name__ : str ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = in_channels != out_channels or stride != 1 lowerCAmelCase__ = max(1 , out_channels // config.groups_width ) lowerCAmelCase__ = ( TFRegNetShortCut(__magic_name__ , stride=__magic_name__ , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowerCAmelCase__ = [ TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __magic_name__ , stride=__magic_name__ , groups=__magic_name__ , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__magic_name__ , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__magic_name__ , kernel_size=1 , activation=__magic_name__ , name="layer.3" ), ] lowerCAmelCase__ = ACTaFN[config.hidden_act] def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = hidden_state for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) lowerCAmelCase__ = self.shortcut(__magic_name__ ) hidden_state += residual lowerCAmelCase__ = self.activation(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] , __magic_name__ : RegNetConfig , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int = 2 , __magic_name__ : int = 2 , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer lowerCAmelCase__ = [ # downsampling is done in the first layer with stride of 2 layer(__magic_name__ , __magic_name__ , __magic_name__ , stride=__magic_name__ , name="layers.0" ), *[layer(__magic_name__ , __magic_name__ , __magic_name__ , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : List[str] ): """simple docstring""" for layer_module in self.layers: lowerCAmelCase__ = layer_module(__magic_name__ ) return hidden_state class A ( tf.keras.layers.Layer ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __magic_name__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowerCAmelCase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__magic_name__ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__magic_name__ , __magic_name__ , __magic_name__ , depth=__magic_name__ , name=f"""stages.{i+1}""" ) ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : tf.Tensor , __magic_name__ : bool = False , __magic_name__ : bool = True ): """simple docstring""" lowerCAmelCase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) lowerCAmelCase__ = stage_module(__magic_name__ ) if output_hidden_states: lowerCAmelCase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__magic_name__ , hidden_states=__magic_name__ ) @keras_serializable class A ( tf.keras.layers.Layer ): snake_case__ :List[Any] = RegNetConfig def __init__( self : str , __magic_name__ : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = config lowerCAmelCase__ = TFRegNetEmbeddings(__magic_name__ , name="embedder" ) lowerCAmelCase__ = TFRegNetEncoder(__magic_name__ , name="encoder" ) lowerCAmelCase__ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__magic_name__ , name="pooler" ) @unpack_inputs def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : bool = False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.embedder(__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = self.encoder( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = encoder_outputs[0] lowerCAmelCase__ = self.pooler(__magic_name__ ) # Change to NCHW output format have uniformity in the modules lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) lowerCAmelCase__ = tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowerCAmelCase__ = tuple([tf.transpose(__magic_name__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__magic_name__ , pooler_output=__magic_name__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :str = RegNetConfig snake_case__ :Optional[Any] = 'regnet' snake_case__ :Tuple = 'pixel_values' @property def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} UpperCAmelCase__ : List[str] = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCAmelCase__ : Tuple = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ ): def __init__( self : Any , __magic_name__ : RegNetConfig , *__magic_name__ : Optional[int] , **__magic_name__ : Union[str, Any] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : tf.Tensor , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : int=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( pixel_values=__magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , SCREAMING_SNAKE_CASE__ , ) class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): def __init__( self : Tuple , __magic_name__ : RegNetConfig , *__magic_name__ : Tuple , **__magic_name__ : Optional[int] ): """simple docstring""" super().__init__(__magic_name__ , *__magic_name__ , **__magic_name__ ) lowerCAmelCase__ = config.num_labels lowerCAmelCase__ = TFRegNetMainLayer(__magic_name__ , name="regnet" ) # classification head lowerCAmelCase__ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__magic_name__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__magic_name__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : tf.Tensor = None , __magic_name__ : tf.Tensor = None , __magic_name__ : bool = None , __magic_name__ : bool = None , __magic_name__ : Dict=False , ): """simple docstring""" lowerCAmelCase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ = self.regnet( __magic_name__ , output_hidden_states=__magic_name__ , return_dict=__magic_name__ , training=__magic_name__ ) lowerCAmelCase__ = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ = self.classifier[0](__magic_name__ ) lowerCAmelCase__ = self.classifier[1](__magic_name__ ) lowerCAmelCase__ = None if labels is None else self.hf_compute_loss(labels=__magic_name__ , logits=__magic_name__ ) if not return_dict: lowerCAmelCase__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__magic_name__ , logits=__magic_name__ , hidden_states=outputs.hidden_states )
48
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCamelCase__ : Optional[int] = datasets.utils.logging.get_logger(__name__) @dataclass class _snake_case ( datasets.BuilderConfig ): __lowerCAmelCase : int = 10_000 __lowerCAmelCase : Optional[List[str]] = None __lowerCAmelCase : Optional[datasets.Features] = None class _snake_case ( datasets.ArrowBasedBuilder ): __lowerCAmelCase : Any = ParquetConfig def lowercase__ ( self): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}') lowercase__ : List[Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(SCREAMING_SNAKE_CASE_ , (str, list, tuple)): lowercase__ : str = data_files if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : str = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__ : Optional[Any] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] lowercase__ : int = [] for split_name, files in data_files.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): lowercase__ : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowercase__ : List[str] = [dl_manager.iter_files(SCREAMING_SNAKE_CASE_) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_): with open(SCREAMING_SNAKE_CASE_ , """rb""") as f: lowercase__ : Optional[Any] = datasets.Features.from_arrow_schema(pq.read_schema(SCREAMING_SNAKE_CASE_)) break splits.append(datasets.SplitGenerator(name=SCREAMING_SNAKE_CASE_ , gen_kwargs={"""files""": files})) return splits def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__ : List[Any] = table_cast(SCREAMING_SNAKE_CASE_ , self.info.features.arrow_schema) return pa_table def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : int = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema) != sorted(self.config.columns): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'') for file_idx, file in enumerate(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE_)): with open(SCREAMING_SNAKE_CASE_ , """rb""") as f: lowercase__ : int = pq.ParquetFile(SCREAMING_SNAKE_CASE_) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns)): lowercase__ : Tuple = pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(SCREAMING_SNAKE_CASE_) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(SCREAMING_SNAKE_CASE_)}: {e}') raise
495
def UpperCamelCase ( lowercase_ = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
495
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'spiece.model'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } SCREAMING_SNAKE_CASE = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } SCREAMING_SNAKE_CASE = '▁' class A_ ( __UpperCAmelCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _A , _A=True , _A=True , _A=False , _A="[CLS]" , _A="[SEP]" , _A="<unk>" , _A="[SEP]" , _A="<pad>" , _A="[CLS]" , _A="[MASK]" , _A = None , **_A , ) -> Tuple: """simple docstring""" _UpperCAmelCase : int = ( AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ , normalized=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else mask_token ) _UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) _UpperCAmelCase : List[Any] = do_lower_case _UpperCAmelCase : Any = remove_space _UpperCAmelCase : Optional[Any] = keep_accents _UpperCAmelCase : Tuple = vocab_file _UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCamelCase__) @property def snake_case__ ( self) -> Tuple: """simple docstring""" return len(self.sp_model) def snake_case__ ( self) -> Tuple: """simple docstring""" _UpperCAmelCase : str = {self.convert_ids_to_tokens(UpperCamelCase__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self) -> int: """simple docstring""" _UpperCAmelCase : List[str] = self.__dict__.copy() _UpperCAmelCase : Optional[int] = None return state def __setstate__( self , _A) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): _UpperCAmelCase : List[str] = {} _UpperCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def snake_case__ ( self , _A) -> int: """simple docstring""" if self.remove_space: _UpperCAmelCase : Optional[int] = ''' '''.join(inputs.strip().split()) else: _UpperCAmelCase : Tuple = inputs _UpperCAmelCase : Optional[Any] = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: _UpperCAmelCase : List[str] = unicodedata.normalize('''NFKD''' , UpperCamelCase__) _UpperCAmelCase : Optional[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCamelCase__)]) if self.do_lower_case: _UpperCAmelCase : Tuple = outputs.lower() return outputs def snake_case__ ( self , _A) -> str: """simple docstring""" _UpperCAmelCase : Any = self.preprocess_text(UpperCamelCase__) _UpperCAmelCase : Dict = self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__) _UpperCAmelCase : int = [] for piece in pieces: if len(UpperCamelCase__) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): _UpperCAmelCase : Optional[int] = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__ , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: _UpperCAmelCase : str = cur_pieces[1:] else: _UpperCAmelCase : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(UpperCamelCase__) else: new_pieces.append(UpperCamelCase__) return new_pieces def snake_case__ ( self , _A) -> Any: """simple docstring""" return self.sp_model.PieceToId(UpperCamelCase__) def snake_case__ ( self , _A) -> List[str]: """simple docstring""" return self.sp_model.IdToPiece(UpperCamelCase__) def snake_case__ ( self , _A) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = [] _UpperCAmelCase : Union[str, Any] = '''''' _UpperCAmelCase : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__) + token _UpperCAmelCase : Tuple = True _UpperCAmelCase : Any = [] else: current_sub_tokens.append(UpperCamelCase__) _UpperCAmelCase : Union[str, Any] = False out_string += self.sp_model.decode(UpperCamelCase__) return out_string.strip() def snake_case__ ( self , _A , _A = None) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Dict = [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self , _A , _A = None , _A = False) -> str: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__)) + [1] + ([0] * len(UpperCamelCase__)) + [1] return [1] + ([0] * len(UpperCamelCase__)) + [1] def snake_case__ ( self , _A , _A = None) -> List[Any]: """simple docstring""" _UpperCAmelCase : List[str] = [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case__ ( self , _A , _A = None) -> Optional[Any]: """simple docstring""" if not os.path.isdir(UpperCamelCase__): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCAmelCase : int = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCamelCase__) elif not os.path.isfile(self.vocab_file): with open(UpperCamelCase__ , '''wb''') as fi: _UpperCAmelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__) return (out_vocab_file,)
485
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def __UpperCamelCase ( _A , _A=False ): try: lowerCAmelCase_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCAmelCase_ = default else: # KEY is set, convert it to True or False. try: lowerCAmelCase_ = strtobool(_A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no." ) return _value _A = parse_flag_from_env('''RUN_SLOW''', default=False) _A = parse_flag_from_env('''RUN_REMOTE''', default=False) _A = parse_flag_from_env('''RUN_LOCAL''', default=True) _A = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression _A = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') _A = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') _A = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio _A = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam _A = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility _A = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows _A = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def __UpperCamelCase ( _A ): try: import faiss # noqa except ImportError: lowerCAmelCase_ = unittest.skip('''test requires faiss''' )(_A ) return test_case def __UpperCamelCase ( _A ): try: import regex # noqa except ImportError: lowerCAmelCase_ = unittest.skip('''test requires regex''' )(_A ) return test_case def __UpperCamelCase ( _A ): try: import elasticsearch # noqa except ImportError: lowerCAmelCase_ = unittest.skip('''test requires elasticsearch''' )(_A ) return test_case def __UpperCamelCase ( _A ): try: import sqlalchemy # noqa except ImportError: lowerCAmelCase_ = unittest.skip('''test requires sqlalchemy''' )(_A ) return test_case def __UpperCamelCase ( _A ): if not config.TORCH_AVAILABLE: lowerCAmelCase_ = unittest.skip('''test requires PyTorch''' )(_A ) return test_case def __UpperCamelCase ( _A ): if not config.TF_AVAILABLE: lowerCAmelCase_ = unittest.skip('''test requires TensorFlow''' )(_A ) return test_case def __UpperCamelCase ( _A ): if not config.JAX_AVAILABLE: lowerCAmelCase_ = unittest.skip('''test requires JAX''' )(_A ) return test_case def __UpperCamelCase ( _A ): if not config.PIL_AVAILABLE: lowerCAmelCase_ = unittest.skip('''test requires Pillow''' )(_A ) return test_case def __UpperCamelCase ( _A ): try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''' )(_A ) else: return test_case def __UpperCamelCase ( _A ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''' )(_A ) else: return test_case def __UpperCamelCase ( _A ): try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''' )(_A ) else: return test_case def __UpperCamelCase ( _A ): def _require_spacy_model(_A ): try: import spacy # noqa F401 spacy.load(_A ) except ImportError: return unittest.skip('''test requires spacy''' )(_A ) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(_A ) )(_A ) else: return test_case return _require_spacy_model def __UpperCamelCase ( _A ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''' )(_A ) else: return test_case def __UpperCamelCase ( _A ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''' )(_A ) else: return test_case def __UpperCamelCase ( _A ): if not _run_slow_tests or _run_slow_tests == 0: lowerCAmelCase_ = unittest.skip('''test is slow''' )(_A ) return test_case def __UpperCamelCase ( _A ): if not _run_local_tests or _run_local_tests == 0: lowerCAmelCase_ = unittest.skip('''test is local''' )(_A ) return test_case def __UpperCamelCase ( _A ): if not _run_packaged_tests or _run_packaged_tests == 0: lowerCAmelCase_ = unittest.skip('''test is packaged''' )(_A ) return test_case def __UpperCamelCase ( _A ): if not _run_remote_tests or _run_remote_tests == 0: lowerCAmelCase_ = unittest.skip('''test requires remote''' )(_A ) return test_case def __UpperCamelCase ( *_A ): def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_A ) and name.startswith('''test''' ): for decorator in decorators: lowerCAmelCase_ = decorator(_A ) setattr(cls , _A , _A ) return cls return decorate class A ( __UpperCAmelCase ): pass class A ( __UpperCAmelCase ): __snake_case = 0 __snake_case = 1 __snake_case = 2 @contextmanager def __UpperCamelCase ( _A=OfflineSimulationMode.CONNECTION_FAILS , _A=1E-1_6 ): lowerCAmelCase_ = requests.Session().request def timeout_request(_A , _A , _A , **_A ): # Change the url to an invalid url so that the connection hangs lowerCAmelCase_ = '''https://10.255.255.1''' if kwargs.get('''timeout''' ) is None: raise RequestWouldHangIndefinitelyError( f"Tried a call to {url} in offline mode with no timeout set. Please set a timeout." ) lowerCAmelCase_ = timeout try: return online_request(_A , _A , **_A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowerCAmelCase_ = url lowerCAmelCase_ = e.args[0] lowerCAmelCase_ = (max_retry_error.args[0].replace('''10.255.255.1''' , f"OfflineMock[{url}]" ),) lowerCAmelCase_ = (max_retry_error,) raise def raise_connection_error(_A , _A , **_A ): raise requests.ConnectionError('''Offline mode is enabled.''' , request=_A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , _A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , _A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , _A ): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''' ) @contextmanager def __UpperCamelCase ( *_A , **_A ): lowerCAmelCase_ = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_A , **_A ) as tmp_dir: try: os.chdir(_A ) yield finally: os.chdir(_A ) @contextmanager def __UpperCamelCase ( ): import gc gc.collect() lowerCAmelCase_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __UpperCamelCase ( ): import gc gc.collect() lowerCAmelCase_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __UpperCamelCase ( _A , _A ): return deepcopy(_A ).integers(0 , 100 , 10 ).tolist() == deepcopy(_A ).integers(0 , 100 , 10 ).tolist() def __UpperCamelCase ( _A ): import decorator from requests.exceptions import HTTPError def _wrapper(_A , *_A , **_A ): try: return func(*_A , **_A ) except HTTPError as err: if str(_A ).startswith('''500''' ) or str(_A ).startswith('''502''' ): pytest.xfail(str(_A ) ) raise err return decorator.decorator(_wrapper , _A ) class A : def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = returncode lowerCAmelCase_ = stdout lowerCAmelCase_ = stderr async def __UpperCamelCase ( _A , _A ): while True: lowerCAmelCase_ = await stream.readline() if line: callback(_A ) else: break async def __UpperCamelCase ( _A , _A=None , _A=None , _A=None , _A=False , _A=False ): if echo: print('''\nRunning: ''' , ''' '''.join(_A ) ) lowerCAmelCase_ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCAmelCase_ = [] lowerCAmelCase_ = [] def tee(_A , _A , _A , _A="" ): lowerCAmelCase_ = line.decode('''utf-8''' ).rstrip() sink.append(_A ) if not quiet: print(_A , _A , file=_A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label='''stdout:''' ) ), _read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label='''stderr:''' ) ), ] , timeout=_A , ) return _RunOutput(await p.wait() , _A , _A ) def __UpperCamelCase ( _A , _A=None , _A=None , _A=180 , _A=False , _A=True ): lowerCAmelCase_ = asyncio.get_event_loop() lowerCAmelCase_ = loop.run_until_complete( _stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) ) lowerCAmelCase_ = ''' '''.join(_A ) if result.returncode > 0: lowerCAmelCase_ = '''\n'''.join(result.stderr ) raise RuntimeError( f"'{cmd_str}' failed with returncode {result.returncode}\n\n" f"The combined stderr from workers follows:\n{stderr}" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f"'{cmd_str}' produced no output." ) return result def __UpperCamelCase ( ): lowerCAmelCase_ = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''' ) lowerCAmelCase_ = re.sub(r'''^gw''' , '''''' , _A , 0 , re.M ) return int(_A ) def __UpperCamelCase ( ): lowerCAmelCase_ = 29500 lowerCAmelCase_ = pytest_xdist_worker_id() return port + uniq_delta
431
0
'''simple docstring''' from PIL import Image def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Any ) -> Image: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =image.size SCREAMING_SNAKE_CASE_ : List[str] =0 SCREAMING_SNAKE_CASE_ : Optional[Any] =image.load() for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] =pixels[j, i] mean += pixel mean //= width * height for j in range(__UpperCamelCase ): for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ : int =2_5_5 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _lowercase = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
708
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _lowercase = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[Any]: return (preds == labels).mean() @dataclass class lowercase_ : __lowerCamelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __lowerCamelCase = field( default=A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __lowerCamelCase = field( default=A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __lowerCamelCase = field( default=A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class lowercase_ : __lowerCamelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) __lowerCamelCase = field(metadata={"help": "Should contain the data files for the task."} ) __lowerCamelCase = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __lowerCamelCase = field( default=A , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def SCREAMING_SNAKE_CASE_ ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE_ : Optional[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , UpperCAmelCase_ ) # Set seed set_seed(training_args.seed ) try: SCREAMING_SNAKE_CASE_ : List[Any] =processors[data_args.task_name]() SCREAMING_SNAKE_CASE_ : Optional[Any] =processor.get_labels() SCREAMING_SNAKE_CASE_ : int =len(UpperCAmelCase_ ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ : Optional[Any] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE_ : List[str] =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE_ : int =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets SCREAMING_SNAKE_CASE_ : List[Any] =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE_ : Optional[Any] =( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase_ : EvalPrediction ) -> Dict: SCREAMING_SNAKE_CASE_ : Tuple =np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase_ , p.label_ids )} # Data collator SCREAMING_SNAKE_CASE_ : Dict =DataCollatorWithPadding(UpperCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE_ : str =Trainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , data_collator=UpperCAmelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE_ : Dict ={} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE_ : Dict =trainer.evaluate() SCREAMING_SNAKE_CASE_ : Any =os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(UpperCAmelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , UpperCAmelCase_ , UpperCAmelCase_ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(UpperCAmelCase_ ) return results def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
431
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Any = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Tuple = """sew""" def __init__( self , lowerCamelCase_=3_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_=2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-5 , lowerCamelCase_="group" , lowerCamelCase_="gelu" , lowerCamelCase_=(6_4, 1_2_8, 1_2_8, 1_2_8, 1_2_8, 2_5_6, 2_5_6, 2_5_6, 2_5_6, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCamelCase_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase_=(1_0, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase_=False , lowerCamelCase_=1_2_8 , lowerCamelCase_=1_6 , lowerCamelCase_=True , lowerCamelCase_=0.05 , lowerCamelCase_=1_0 , lowerCamelCase_=2 , lowerCamelCase_=0.0 , lowerCamelCase_=1_0 , lowerCamelCase_=0 , lowerCamelCase_="mean" , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=2_5_6 , lowerCamelCase_=0 , lowerCamelCase_=1 , lowerCamelCase_=2 , **lowerCamelCase_ , ) -> Tuple: super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) _a : Optional[int] = hidden_size _a : int = feat_extract_norm _a : Optional[int] = feat_extract_activation _a : str = list(lowerCamelCase_ ) _a : Union[str, Any] = list(lowerCamelCase_ ) _a : List[Any] = list(lowerCamelCase_ ) _a : Union[str, Any] = conv_bias _a : Optional[int] = num_conv_pos_embeddings _a : Dict = num_conv_pos_embedding_groups _a : str = len(self.conv_dim ) _a : Any = num_hidden_layers _a : List[Any] = intermediate_size _a : Tuple = squeeze_factor _a : Tuple = hidden_act _a : Any = num_attention_heads _a : Optional[int] = hidden_dropout _a : List[str] = attention_dropout _a : Optional[Any] = activation_dropout _a : str = feat_proj_dropout _a : str = final_dropout _a : str = layerdrop _a : Optional[Any] = layer_norm_eps _a : Optional[Any] = initializer_range _a : Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a : str = apply_spec_augment _a : List[Any] = mask_time_prob _a : Optional[Any] = mask_time_length _a : Union[str, Any] = mask_time_min_masks _a : List[str] = mask_feature_prob _a : List[str] = mask_feature_length _a : str = mask_feature_min_masks # ctc loss _a : Any = ctc_loss_reduction _a : Optional[Any] = ctc_zero_infinity # sequence classification _a : List[Any] = use_weighted_layer_sum _a : Tuple = classifier_proj_size @property def __UpperCamelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
120
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : List[Any] = """segformer""" def __init__( self , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=[2, 2, 2, 2] , lowerCamelCase_=[8, 4, 2, 1] , lowerCamelCase_=[3_2, 6_4, 1_6_0, 2_5_6] , lowerCamelCase_=[7, 3, 3, 3] , lowerCamelCase_=[4, 2, 2, 2] , lowerCamelCase_=[1, 2, 5, 8] , lowerCamelCase_=[4, 4, 4, 4] , lowerCamelCase_="gelu" , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=0.1 , lowerCamelCase_=1e-6 , lowerCamelCase_=2_5_6 , lowerCamelCase_=2_5_5 , **lowerCamelCase_ , ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , lowerCamelCase_ , ) _a : Union[str, Any] = num_channels _a : Any = num_encoder_blocks _a : Union[str, Any] = depths _a : int = sr_ratios _a : List[str] = hidden_sizes _a : Tuple = patch_sizes _a : Any = strides _a : List[Any] = mlp_ratios _a : str = num_attention_heads _a : str = hidden_act _a : List[Any] = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : Any = classifier_dropout_prob _a : Optional[Any] = initializer_range _a : int = drop_path_rate _a : int = layer_norm_eps _a : Optional[Any] = decoder_hidden_size _a : int = kwargs.get('reshape_last_stage' , lowerCamelCase_ ) _a : str = semantic_loss_ignore_index class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Any = version.parse("""1.11""" ) @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCamelCase ( self ) -> float: return 1e-4 @property def __UpperCamelCase ( self ) -> int: return 1_2
120
1
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase( SCREAMING_SNAKE_CASE , unittest.TestCase ): __A: List[str] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def a__ ( self : Optional[int] , _lowerCamelCase : List[Any]=0 ): _UpperCAmelCase : List[str] = np.random.RandomState(_lowerCamelCase ) _UpperCAmelCase : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def a__ ( self : Optional[Any] ): _UpperCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : Dict = self.get_dummy_inputs() _UpperCAmelCase : List[str] = pipe(**_lowerCamelCase ).images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase : str = np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : List[Any] ): _UpperCAmelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _UpperCAmelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : List[Any] = self.get_dummy_inputs() _UpperCAmelCase : List[Any] = pipe(**_lowerCamelCase ).images _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase : int = np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : Dict ): _UpperCAmelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _UpperCAmelCase : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : Optional[Any] = self.get_dummy_inputs() _UpperCAmelCase : List[str] = pipe(**_lowerCamelCase ).images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase : Tuple = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _UpperCAmelCase : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : Dict = self.get_dummy_inputs() _UpperCAmelCase : Dict = pipe(**_lowerCamelCase ).images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase : Any = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : Optional[Any] ): _UpperCAmelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _UpperCAmelCase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : Optional[Any] = self.get_dummy_inputs() _UpperCAmelCase : str = pipe(**_lowerCamelCase ).images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase : List[str] = np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : Any ): _UpperCAmelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) _UpperCAmelCase : Optional[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs() _UpperCAmelCase : Optional[Any] = pipe(**_lowerCamelCase ).images _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : Optional[int] ): _UpperCAmelCase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : int = self.get_dummy_inputs() _UpperCAmelCase : Union[str, Any] = 3 * [inputs["prompt"]] # forward _UpperCAmelCase : int = pipe(**_lowerCamelCase ) _UpperCAmelCase : int = output.images[0, -3:, -3:, -1] _UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs() _UpperCAmelCase : int = 3 * [inputs.pop("prompt" )] _UpperCAmelCase : int = pipe.tokenizer( _lowerCamelCase , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors="np" , ) _UpperCAmelCase : List[str] = text_inputs["input_ids"] _UpperCAmelCase : Dict = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] _UpperCAmelCase : List[Any] = prompt_embeds # forward _UpperCAmelCase : int = pipe(**_lowerCamelCase ) _UpperCAmelCase : str = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def a__ ( self : Optional[Any] ): _UpperCAmelCase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : List[Any] = self.get_dummy_inputs() _UpperCAmelCase : Any = 3 * ["this is a negative prompt"] _UpperCAmelCase : List[Any] = negative_prompt _UpperCAmelCase : List[str] = 3 * [inputs["prompt"]] # forward _UpperCAmelCase : int = pipe(**_lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] _UpperCAmelCase : Dict = self.get_dummy_inputs() _UpperCAmelCase : Dict = 3 * [inputs.pop("prompt" )] _UpperCAmelCase : List[str] = [] for p in [prompt, negative_prompt]: _UpperCAmelCase : Union[str, Any] = pipe.tokenizer( _lowerCamelCase , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors="np" , ) _UpperCAmelCase : Tuple = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) _UpperCAmelCase : Optional[int] = embeds # forward _UpperCAmelCase : Any = pipe(**_lowerCamelCase ) _UpperCAmelCase : Optional[int] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase( unittest.TestCase ): @property def a__ ( self : List[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self : str ): _UpperCAmelCase : Dict = ort.SessionOptions() _UpperCAmelCase : int = False return options def a__ ( self : Optional[Any] ): # using the PNDM scheduler by default _UpperCAmelCase : Any = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : Optional[int] = "A painting of a squirrel eating a burger" np.random.seed(0 ) _UpperCAmelCase : Any = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase : Dict = np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a__ ( self : Optional[int] ): _UpperCAmelCase : int = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) _UpperCAmelCase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : Dict = "open neural network exchange" _UpperCAmelCase : Union[str, Any] = np.random.RandomState(0 ) _UpperCAmelCase : Dict = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCamelCase , output_type="np" ) _UpperCAmelCase : Any = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a__ ( self : List[str] ): _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) _UpperCAmelCase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : int = "open neural network exchange" _UpperCAmelCase : Tuple = np.random.RandomState(0 ) _UpperCAmelCase : Union[str, Any] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCamelCase , output_type="np" ) _UpperCAmelCase : List[Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _UpperCAmelCase : Tuple = np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a__ ( self : Tuple ): _UpperCAmelCase : int = 0 def test_callback_fn(_lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : np.ndarray ) -> None: _UpperCAmelCase : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _UpperCAmelCase : Any = latents[0, -3:, -3:, -1] _UpperCAmelCase : Tuple = np.array( [-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _UpperCAmelCase : Optional[Any] = latents[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = np.array( [-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 _UpperCAmelCase : str = False _UpperCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _UpperCAmelCase : Any = "Andromeda galaxy in a bottle" _UpperCAmelCase : Any = np.random.RandomState(0 ) pipe( prompt=_lowerCamelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def a__ ( self : Any ): _UpperCAmelCase : str = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert pipe.safety_checker is None _UpperCAmelCase : List[str] = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(_lowerCamelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Any = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
717
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) set_seed(7_7_0) __lowerCamelCase = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } __lowerCamelCase = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } __lowerCamelCase = os.path.dirname(os.path.abspath(__file__)) __lowerCamelCase = os.path.join(os.path.expanduser('~'), '.cache') __lowerCamelCase = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = model_type if use_small: key += "_small" return os.path.join(_SCREAMING_SNAKE_CASE , REMOTE_MODEL_PATHS[key]["file_name"] ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) hf_hub_download(repo_id=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , local_dir=_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="text" ) -> Dict: """simple docstring""" if model_type == "text": _UpperCAmelCase : int = BarkSemanticModel _UpperCAmelCase : Dict = BarkSemanticConfig _UpperCAmelCase : Any = BarkSemanticGenerationConfig elif model_type == "coarse": _UpperCAmelCase : Optional[Any] = BarkCoarseModel _UpperCAmelCase : int = BarkCoarseConfig _UpperCAmelCase : Any = BarkCoarseGenerationConfig elif model_type == "fine": _UpperCAmelCase : Dict = BarkFineModel _UpperCAmelCase : Optional[Any] = BarkFineConfig _UpperCAmelCase : List[str] = BarkFineGenerationConfig else: raise NotImplementedError() _UpperCAmelCase : Union[str, Any] = F"""{model_type}_small""" if use_small else model_type _UpperCAmelCase : str = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(_SCREAMING_SNAKE_CASE ): logger.info(F"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["repo_id"] , model_info["file_name"] ) _UpperCAmelCase : int = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) # this is a hack _UpperCAmelCase : Union[str, Any] = checkpoint["model_args"] if "input_vocab_size" not in model_args: _UpperCAmelCase : List[Any] = model_args["vocab_size"] _UpperCAmelCase : Union[str, Any] = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments _UpperCAmelCase : str = model_args.pop("n_head" ) _UpperCAmelCase : Optional[int] = model_args.pop("n_embd" ) _UpperCAmelCase : Optional[Any] = model_args.pop("n_layer" ) _UpperCAmelCase : Tuple = ConfigClass(**checkpoint["model_args"] ) _UpperCAmelCase : List[Any] = ModelClass(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[int] = GenerationConfigClass() _UpperCAmelCase : str = model_generation_config _UpperCAmelCase : Optional[int] = checkpoint["model"] # fixup checkpoint _UpperCAmelCase : Union[str, Any] = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(_SCREAMING_SNAKE_CASE ): # replace part of the key with corresponding layer name in HF implementation _UpperCAmelCase : List[Any] = k[len(_SCREAMING_SNAKE_CASE ) :] for old_layer_name in new_layer_name_dict: _UpperCAmelCase : Optional[Any] = new_k.replace(_SCREAMING_SNAKE_CASE , new_layer_name_dict[old_layer_name] ) _UpperCAmelCase : str = state_dict.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = set(state_dict.keys() ) - set(model.state_dict().keys() ) _UpperCAmelCase : List[Any] = {k for k in extra_keys if not k.endswith(".attn.bias" )} _UpperCAmelCase : str = set(model.state_dict().keys() ) - set(state_dict.keys() ) _UpperCAmelCase : Optional[int] = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F"""extra keys found: {extra_keys}""" ) if len(_SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F"""missing keys: {missing_keys}""" ) model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = checkpoint["best_val_loss"].item() logger.info(F"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(_SCREAMING_SNAKE_CASE , 3 )} loss""" ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) del checkpoint, state_dict return model def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="text" ) -> Tuple: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() _UpperCAmelCase : Optional[Any] = "cpu" # do conversion on cpu _UpperCAmelCase : List[str] = _get_ckpt_path(_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[str] = _load_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , model_type=_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) # load bark initial model _UpperCAmelCase : Union[str, Any] = _bark_load_model(_SCREAMING_SNAKE_CASE , "cpu" , model_type=_SCREAMING_SNAKE_CASE , use_small=_SCREAMING_SNAKE_CASE ) if model_type == "text": _UpperCAmelCase : Tuple = bark_model["model"] if model.num_parameters(exclude_embeddings=_SCREAMING_SNAKE_CASE ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model _UpperCAmelCase : Dict = 5 _UpperCAmelCase : List[str] = 1_0 if model_type in ["text", "coarse"]: _UpperCAmelCase : str = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) _UpperCAmelCase : Dict = bark_model(_SCREAMING_SNAKE_CASE )[0] _UpperCAmelCase : int = model(_SCREAMING_SNAKE_CASE ) # take last logits _UpperCAmelCase : Tuple = output_new_model_total.logits[:, [-1], :] else: _UpperCAmelCase : List[Any] = 3 _UpperCAmelCase : Any = 8 _UpperCAmelCase : List[str] = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) _UpperCAmelCase : Optional[int] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Union[str, Any] = bark_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[Any] = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" _UpperCAmelCase : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase : str = BarkSemanticConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ) _UpperCAmelCase : Tuple = BarkCoarseConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ) _UpperCAmelCase : str = BarkFineConfig.from_pretrained(os.path.join(_SCREAMING_SNAKE_CASE , "config.json" ) ) _UpperCAmelCase : Dict = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) _UpperCAmelCase : List[Any] = BarkSemanticModel.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : int = BarkCoarseModel.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : int = BarkFineModel.from_pretrained(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : Optional[int] = EncodecModel.from_pretrained("facebook/encodec_24khz" ) _UpperCAmelCase : Dict = BarkConfig.from_sub_model_configs( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase : List[str] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) _UpperCAmelCase : Any = BarkModel(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase : int = semantic _UpperCAmelCase : Tuple = coarseAcoustic _UpperCAmelCase : str = fineAcoustic _UpperCAmelCase : str = codec _UpperCAmelCase : Optional[Any] = bark_generation_config Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) bark.save_pretrained(_SCREAMING_SNAKE_CASE , repo_id=_SCREAMING_SNAKE_CASE , push_to_hub=_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') __lowerCamelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
328
0
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase : Dict =nn.ModuleList(UpperCAmelCase ) def A__ ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : torch.Tensor , UpperCAmelCase : List[torch.tensor] , UpperCAmelCase : List[float] , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[torch.Tensor] = None , UpperCAmelCase : Optional[Dict[str, Any]] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , ) -> Union[ControlNetOutput, Tuple]: '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(UpperCAmelCase , UpperCAmelCase , self.nets ) ): lowercase , lowercase : List[Any] =controlnet( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) # merge samples if i == 0: lowercase , lowercase : Union[str, Any] =down_samples, mid_sample else: lowercase : Union[str, Any] =[ samples_prev + samples_curr for samples_prev, samples_curr in zip(UpperCAmelCase , UpperCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def A__ ( self : Dict , UpperCAmelCase : Union[str, os.PathLike] , UpperCAmelCase : bool = True , UpperCAmelCase : Callable = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[str] = None , ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] =0 lowercase : Dict =save_directory for controlnet in self.nets: controlnet.save_pretrained( UpperCAmelCase , is_main_process=UpperCAmelCase , save_function=UpperCAmelCase , safe_serialization=UpperCAmelCase , variant=UpperCAmelCase , ) idx += 1 lowercase : str =model_path_to_save + f'_{idx}' @classmethod def A__ ( cls : str , UpperCAmelCase : Optional[Union[str, os.PathLike]] , **UpperCAmelCase : Dict ) -> Any: '''simple docstring''' lowercase : Optional[int] =0 lowercase : str =[] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowercase : List[str] =pretrained_model_path while os.path.isdir(UpperCAmelCase ): lowercase : Optional[Any] =ControlNetModel.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) controlnets.append(UpperCAmelCase ) idx += 1 lowercase : Dict =pretrained_model_path + f'_{idx}' logger.info(f'{len(UpperCAmelCase )} controlnets loaded from {pretrained_model_path}.' ) if len(UpperCAmelCase ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(UpperCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(UpperCAmelCase )
94
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : Any = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class __A( a ): snake_case_ = '''levit''' def __init__( self , _snake_case=224 , _snake_case=3 , _snake_case=3 , _snake_case=2 , _snake_case=1 , _snake_case=16 , _snake_case=[128, 256, 384] , _snake_case=[4, 8, 12] , _snake_case=[4, 4, 4] , _snake_case=[16, 16, 16] , _snake_case=0 , _snake_case=[2, 2, 2] , _snake_case=[2, 2, 2] , _snake_case=0.02 , **_snake_case , ) -> Tuple: '''simple docstring''' super().__init__(**_snake_case ) __a = image_size __a = num_channels __a = kernel_size __a = stride __a = padding __a = hidden_sizes __a = num_attention_heads __a = depths __a = key_dim __a = drop_path_rate __a = patch_size __a = attention_ratio __a = mlp_ratio __a = initializer_range __a = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A( a ): snake_case_ = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> float: '''simple docstring''' return 1E-4
219
0
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any]=13 , __snake_case : str=7 , __snake_case : List[str]=True , __snake_case : Any=True , __snake_case : str=True , __snake_case : Optional[Any]=True , __snake_case : str=99 , __snake_case : Optional[Any]=32 , __snake_case : Any=5 , __snake_case : Any=4 , __snake_case : int=37 , __snake_case : Dict="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=0.1 , __snake_case : Any=5_12 , __snake_case : Union[str, Any]=16 , __snake_case : Tuple=2 , __snake_case : Dict=0.02 , __snake_case : List[Any]=False , __snake_case : Optional[int]=True , __snake_case : Dict="None" , __snake_case : Optional[int]=3 , __snake_case : List[str]=4 , __snake_case : Any=None , ): '''simple docstring''' _snake_case: List[str] = parent _snake_case: int = batch_size _snake_case: Optional[Any] = seq_length _snake_case: str = is_training _snake_case: Any = use_input_mask _snake_case: Any = use_token_type_ids _snake_case: str = use_labels _snake_case: List[str] = vocab_size _snake_case: int = hidden_size _snake_case: List[Any] = num_hidden_layers _snake_case: Any = num_attention_heads _snake_case: int = intermediate_size _snake_case: int = hidden_act _snake_case: int = hidden_dropout_prob _snake_case: Dict = attention_probs_dropout_prob _snake_case: Optional[Any] = max_position_embeddings _snake_case: str = type_vocab_size _snake_case: Dict = type_sequence_label_size _snake_case: List[Any] = initializer_range _snake_case: Dict = num_labels _snake_case: int = num_choices _snake_case: Optional[Any] = relative_attention _snake_case: str = position_biased_input _snake_case: List[str] = pos_att_type _snake_case: Optional[int] = scope def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case: Dict = None if self.use_input_mask: _snake_case: int = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _snake_case: int = None if self.use_token_type_ids: _snake_case: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case: Optional[int] = None _snake_case: List[str] = None _snake_case: int = None if self.use_labels: _snake_case: int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case: int = ids_tensor([self.batch_size] , self.num_choices ) _snake_case: Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , __snake_case : Any ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE_ ( self : str , __snake_case : Tuple , __snake_case : Tuple , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' _snake_case: Any = DebertaVaModel(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: int = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case )[0] _snake_case: List[Any] = model(__snake_case , token_type_ids=__snake_case )[0] _snake_case: Dict = model(__snake_case )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : int ): '''simple docstring''' _snake_case: int = DebertaVaForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Any = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , __snake_case : List[Any] , __snake_case : int , __snake_case : str , __snake_case : int , __snake_case : Tuple , __snake_case : List[str] , __snake_case : str ): '''simple docstring''' _snake_case: Union[str, Any] = self.num_labels _snake_case: str = DebertaVaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() _snake_case: str = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : int , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] ): '''simple docstring''' _snake_case: Optional[int] = self.num_labels _snake_case: Optional[Any] = DebertaVaForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Union[str, Any] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Any , __snake_case : List[Any] , __snake_case : Any , __snake_case : Any , __snake_case : Any , __snake_case : List[str] , __snake_case : Dict , __snake_case : List[str] ): '''simple docstring''' _snake_case: Optional[int] = DebertaVaForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : int , __snake_case : Tuple ): '''simple docstring''' _snake_case: Any = DebertaVaForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() _snake_case: Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case: List[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case: Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case: Tuple = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: Optional[Any] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ): int = config_and_inputs _snake_case: Any = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: List[str] = DebertaVaModelTester(self ) _snake_case: Union[str, Any] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' _snake_case: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' _snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' _snake_case: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__snake_case ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' _snake_case: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__snake_case ) @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case: int = DebertaVaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' _snake_case: List[Any] = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) _snake_case: Dict = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _snake_case: str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _snake_case: Any = model(__snake_case , attention_mask=__snake_case )[0] # compare the actual values for a slice. _snake_case: List[Any] = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __snake_case , atol=1e-4 ) , f'''{output[:, 1:4, 1:4]}''' )
273
'''simple docstring''' def lowercase_ ( lowercase__ = 50 ) ->int: _snake_case: Union[str, Any] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
273
1
from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Any = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """trajectory_transformer""" _snake_case = ["""past_key_values"""] _snake_case = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , A=1_0_0 , A=5 , A=1 , A=1 , A=2_4_9 , A=6 , A=1_7 , A=2_5 , A=4 , A=4 , A=1_2_8 , A=0.1 , A=0.1 , A=0.1 , A=0.00_06 , A=5_1_2 , A=0.02 , A=1e-1_2 , A=1 , A=True , A=1 , A=5_0_2_5_6 , A=5_0_2_5_6 , **A , ) -> Tuple: snake_case : List[Any] = vocab_size snake_case : Union[str, Any] = action_weight snake_case : List[Any] = reward_weight snake_case : Optional[Any] = value_weight snake_case : List[str] = max_position_embeddings snake_case : Union[str, Any] = block_size snake_case : str = action_dim snake_case : int = observation_dim snake_case : Union[str, Any] = transition_dim snake_case : List[Any] = learning_rate snake_case : int = n_layer snake_case : List[Any] = n_head snake_case : Any = n_embd snake_case : List[str] = embd_pdrop snake_case : Dict = attn_pdrop snake_case : Tuple = resid_pdrop snake_case : int = initializer_range snake_case : Dict = layer_norm_eps snake_case : Optional[Any] = kaiming_initializer_range snake_case : List[str] = use_cache super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A )
587
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = RoFormerTokenizer _snake_case = RoFormerTokenizerFast _snake_case = True _snake_case = True def UpperCAmelCase ( self ) -> int: super().setUp() def UpperCAmelCase ( self , **A ) -> Any: return self.tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **A ) def UpperCAmelCase ( self , **A ) -> Union[str, Any]: return self.rust_tokenizer_class.from_pretrained("""junnyu/roformer_chinese_base""" , **A ) def UpperCAmelCase ( self ) -> Any: snake_case : int = """永和服装饰品有限公司,今天天气非常好""" snake_case : Optional[int] = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def UpperCAmelCase ( self ) -> int: snake_case : Optional[Any] = self.get_tokenizer() snake_case , snake_case : Union[str, Any] = self.get_chinese_input_output_texts() snake_case : Any = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) snake_case : List[Any] = tokens + [tokenizer.unk_token] snake_case : Optional[int] = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def UpperCAmelCase ( self ) -> List[str]: snake_case : Union[str, Any] = self.get_rust_tokenizer() snake_case , snake_case : int = self.get_chinese_input_output_texts() snake_case : Dict = tokenizer.tokenize(A ) self.assertListEqual(A , output_text.split() ) snake_case : List[Any] = tokens + [tokenizer.unk_token] snake_case : Any = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def UpperCAmelCase ( self ) -> Dict: pass def UpperCAmelCase ( self ) -> Union[str, Any]: pass def UpperCAmelCase ( self ) -> Dict: pass
587
1
"""simple docstring""" def lowercase_ ( _snake_case ,_snake_case = False ): if not isinstance(_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Dict = f'''Expected string as input, found {type(_snake_case )}''' raise ValueError(_snake_case ) if not isinstance(_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : Tuple = f'''Expected boolean as use_pascal parameter, found {type(_snake_case )}''' raise ValueError(_snake_case ) SCREAMING_SNAKE_CASE__ : List[Any] = input_str.split("""_""" ) SCREAMING_SNAKE_CASE__ : str = 0 if use_pascal else 1 SCREAMING_SNAKE_CASE__ : Union[str, Any] = words[start_index:] SCREAMING_SNAKE_CASE__ : Tuple = [word[0].upper() + word[1:] for word in words_to_capitalize] SCREAMING_SNAKE_CASE__ : str = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
545
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase__ : Tuple = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : str = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Any = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCAmelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
545
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser lowercase : Tuple = logging.getLogger(__name__) torch.set_grad_enabled(False) lowercase : List[str] = """cuda""" if torch.cuda.is_available() else """cpu""" def UpperCAmelCase_ (_lowerCAmelCase : Any , _lowerCAmelCase : Any=1_00 , _lowerCAmelCase : str=" " ): __UpperCamelCase : List[str] = text.split(SCREAMING_SNAKE_CASE__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )] def UpperCAmelCase_ (_lowerCAmelCase : List[Any] ): __UpperCamelCase , __UpperCamelCase : List[Any] = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(SCREAMING_SNAKE_CASE__ ): titles.append(title if title is not None else "" ) texts.append(SCREAMING_SNAKE_CASE__ ) return {"title": titles, "text": texts} def UpperCAmelCase_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : str ): __UpperCamelCase : Dict = ctx_tokenizer( documents["title"] , documents["text"] , truncation=SCREAMING_SNAKE_CASE__ , padding="longest" , return_tensors="pt" )["input_ids"] __UpperCamelCase : Optional[Any] = ctx_encoder(input_ids.to(device=SCREAMING_SNAKE_CASE__ ) , return_dict=SCREAMING_SNAKE_CASE__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCAmelCase_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , ): logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __UpperCamelCase : List[Any] = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __UpperCamelCase : Dict = dataset.map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , num_proc=processing_args.num_proc ) # And compute the embeddings __UpperCamelCase : Dict = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase : Tuple = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __UpperCamelCase : int = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space __UpperCamelCase : Tuple = dataset.map( partial(SCREAMING_SNAKE_CASE__ , ctx_encoder=SCREAMING_SNAKE_CASE__ , ctx_tokenizer=SCREAMING_SNAKE_CASE__ ) , batched=SCREAMING_SNAKE_CASE__ , batch_size=processing_args.batch_size , features=SCREAMING_SNAKE_CASE__ , ) # And finally save your dataset __UpperCamelCase : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(SCREAMING_SNAKE_CASE__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __UpperCamelCase : int = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=SCREAMING_SNAKE_CASE__ ) # And save the index __UpperCamelCase : Union[str, Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(SCREAMING_SNAKE_CASE__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" lowercase : str = field( default=str(Path(__UpperCamelCase ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) lowercase : Optional[str] = field( default=__UpperCamelCase , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) lowercase : str = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) lowercase : str = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) lowercase : Optional[str] = field( default=str(Path(__UpperCamelCase ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" lowercase : Optional[int] = field( default=__UpperCamelCase , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) lowercase : int = field( default=16 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" lowercase : int = field( default=768 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) lowercase : int = field( default=128 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) lowercase : str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) lowercase : Union[str, Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: lowercase : Union[str, Any] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
327
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : Optional[int] = logging.get_logger(__name__) __magic_name__ : Optional[int] = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Tuple = '''git_vision_model''' def __init__( self , lowerCamelCase=768 , lowerCamelCase=3_072 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3 , lowerCamelCase=224 , lowerCamelCase=16 , lowerCamelCase="quick_gelu" , lowerCamelCase=1e-5 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , **lowerCamelCase , ): super().__init__(**lowerCamelCase ) _snake_case = hidden_size _snake_case = intermediate_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = num_channels _snake_case = patch_size _snake_case = image_size _snake_case = initializer_range _snake_case = attention_dropout _snake_case = layer_norm_eps _snake_case = hidden_act @classmethod def UpperCamelCase( cls , lowerCamelCase , **lowerCamelCase ): cls._set_token_in_kwargs(lowerCamelCase ) _snake_case , _snake_case = cls.get_config_dict(lowerCamelCase , **lowerCamelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": _snake_case = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase , **lowerCamelCase ) class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : int = '''git''' def __init__( self , lowerCamelCase=None , lowerCamelCase=30_522 , lowerCamelCase=768 , lowerCamelCase=6 , lowerCamelCase=12 , lowerCamelCase=3_072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=1_024 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=0 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=101 , lowerCamelCase=102 , lowerCamelCase=None , **lowerCamelCase , ): super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , pad_token_id=lowerCamelCase , **lowerCamelCase ) if vision_config is None: _snake_case = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) _snake_case = GitVisionConfig(**lowerCamelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = use_cache _snake_case = tie_word_embeddings _snake_case = num_image_with_embedding _snake_case = bos_token_id _snake_case = eos_token_id def UpperCamelCase( self ): _snake_case = copy.deepcopy(self.__dict__ ) _snake_case = self.vision_config.to_dict() _snake_case = self.__class__.model_type return output
672
0
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Optional[Any] =["input_features", "attention_mask"] def __init__( self : Any , lowerCAmelCase : Tuple=80 , lowerCAmelCase : Any=1_60_00 , lowerCAmelCase : Union[str, Any]=80 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Any=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Tuple=True , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" super().__init__(feature_size=lowerCAmelCase , sampling_rate=lowerCAmelCase , padding_value=lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : Any = num_mel_bins __lowerCAmelCase : Dict = do_ceptral_normalize __lowerCAmelCase : str = normalize_means __lowerCAmelCase : str = normalize_vars __lowerCAmelCase : Optional[Any] = True def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : np.ndarray , ) -> np.ndarray: """simple docstring""" __lowerCAmelCase : Dict = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __lowerCAmelCase : Optional[int] = torch.from_numpy(lowerCAmelCase ).unsqueeze(0 ) __lowerCAmelCase : int = ta_kaldi.fbank(lowerCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def SCREAMING_SNAKE_CASE ( lowerCAmelCase : np.ndarray , lowerCAmelCase : int , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : float = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: __lowerCAmelCase : Optional[Any] = x[:input_length].mean(axis=0 ) __lowerCAmelCase : List[str] = np.subtract(lowerCAmelCase , lowerCAmelCase ) if normalize_vars: __lowerCAmelCase : List[str] = x[:input_length].std(axis=0 ) __lowerCAmelCase : Optional[int] = np.divide(lowerCAmelCase , lowerCAmelCase ) if input_length < x.shape[0]: __lowerCAmelCase : int = padding_value # make sure array is in float32 __lowerCAmelCase : int = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : List[np.ndarray] , lowerCAmelCase : Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" __lowerCAmelCase : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowerCAmelCase , lowerCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(lowerCAmelCase , lowerCAmelCase ) ] def __call__( self : str , lowerCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , **lowerCAmelCase : Any , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __lowerCAmelCase : int = isinstance(lowerCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __lowerCAmelCase : Union[str, Any] = is_batched_numpy or ( isinstance(lowerCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCAmelCase : List[Any] = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase , np.ndarray ): __lowerCAmelCase : List[str] = np.asarray(lowerCAmelCase , dtype=np.floataa ) elif isinstance(lowerCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCAmelCase : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCAmelCase : Any = [raw_speech] # extract fbank features __lowerCAmelCase : Union[str, Any] = [self._extract_fbank_features(lowerCAmelCase ) for waveform in raw_speech] # convert into correct format for padding __lowerCAmelCase : List[str] = BatchFeature({"""input_features""": features} ) __lowerCAmelCase : Union[str, Any] = self.pad( lowerCAmelCase , padding=lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , **lowerCAmelCase , ) # make sure list is in array format __lowerCAmelCase : Any = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , lowerCAmelCase ): __lowerCAmelCase : Optional[int] = [np.asarray(lowerCAmelCase , dtype=np.floataa ) for feature in input_features] __lowerCAmelCase : Tuple = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: __lowerCAmelCase : Union[str, Any] = [np.asarray(lowerCAmelCase , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __lowerCAmelCase : Any = ( np.array(lowerCAmelCase , dtype=np.intaa ) if self._get_padding_strategies(lowerCAmelCase , max_length=lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) __lowerCAmelCase : Dict = self.normalize( padded_inputs["""input_features"""] , attention_mask=lowerCAmelCase ) if return_tensors is not None: __lowerCAmelCase : str = padded_inputs.convert_to_tensors(lowerCAmelCase ) return padded_inputs
218
def snake_case_ (__A : int = 1_0**9 ) -> int: __lowerCAmelCase : Any = 1 __lowerCAmelCase : Optional[int] = 2 __lowerCAmelCase : List[Any] = 0 __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : Dict = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __lowerCAmelCase : int = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'{solution() = }')
218
1
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType lowercase__ , lowercase__ , lowercase__ : Optional[int] = False, False, False @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = None lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = None # Automatically constructed lowerCAmelCase = "dict" lowerCAmelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase = field(default='''Audio''' , init=a__ , repr=a__ ) def __call__( self): '''simple docstring''' return self.pa_type def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.') from err if isinstance(_UpperCAmelCase , _UpperCAmelCase): return {"bytes": None, "path": value} elif isinstance(_UpperCAmelCase , _UpperCAmelCase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __A : Optional[int] = BytesIO() sf.write(_UpperCAmelCase , value['array'] , value['sampling_rate'] , format='wav') return {"bytes": buffer.getvalue(), "path": None} elif value.get('path') is not None and os.path.isfile(value['path']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm'): # "PCM" only has raw audio bytes if value.get('sampling_rate') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object') if value.get('bytes'): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __A : Tuple = np.frombuffer(value['bytes'] , dtype=np.intaa).astype(np.floataa) / 3_2767 else: __A : List[Any] = np.memmap(value['path'] , dtype='h' , mode='r').astype(np.floataa) / 3_2767 __A : Optional[Any] = BytesIO(bytes()) sf.write(_UpperCAmelCase , _UpperCAmelCase , value['sampling_rate'] , format='wav') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path')} elif value.get('bytes') is not None or value.get('path') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes'), "path": value.get('path')} else: raise ValueError( F'An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.') def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.') __A ,__A : Any = (value['path'], BytesIO(value['bytes'])) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F'An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.') try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.') from err __A : Tuple = xsplitext(_UpperCAmelCase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ') if file is None: __A : List[str] = token_per_repo_id or {} __A : Optional[int] = path.split('::')[-1] try: __A : str = string_to_dict(_UpperCAmelCase , config.HUB_DATASETS_URL)['repo_id'] __A : Union[str, Any] = token_per_repo_id[repo_id] except (ValueError, KeyError): __A : List[Any] = None with xopen(_UpperCAmelCase , 'rb' , use_auth_token=_UpperCAmelCase) as f: __A ,__A : Optional[Any] = sf.read(_UpperCAmelCase) else: __A ,__A : Tuple = sf.read(_UpperCAmelCase) __A : Union[str, Any] = array.T if self.mono: __A : Optional[Any] = librosa.to_mono(_UpperCAmelCase) if self.sampling_rate and self.sampling_rate != sampling_rate: __A : List[Any] = librosa.resample(_UpperCAmelCase , orig_sr=_UpperCAmelCase , target_sr=self.sampling_rate) __A : Optional[Any] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.') return { "bytes": Value('binary'), "path": Value('string'), } def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if pa.types.is_string(storage.type): __A : str = pa.array([None] * len(_UpperCAmelCase) , type=pa.binary()) __A : Optional[int] = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): __A : Optional[Any] = pa.array([None] * len(_UpperCAmelCase) , type=pa.string()) __A : str = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('array'): __A : Dict = pa.array([Audio().encode_example(_UpperCAmelCase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('bytes') >= 0: __A : Tuple = storage.field('bytes') else: __A : Any = pa.array([None] * len(_UpperCAmelCase) , type=pa.binary()) if storage.type.get_field_index('path') >= 0: __A : List[Any] = storage.field('path') else: __A : Dict = pa.array([None] * len(_UpperCAmelCase) , type=pa.string()) __A : Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null()) return array_cast(_UpperCAmelCase , self.pa_type) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(_UpperCAmelCase): with xopen(_UpperCAmelCase , 'rb') as f: __A : Union[str, Any] = f.read() return bytes_ __A : int = pa.array( [ (path_to_bytes(x['path']) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __A : Optional[int] = pa.array( [os.path.basename(_UpperCAmelCase) if path is not None else None for path in storage.field('path').to_pylist()] , type=pa.string() , ) __A : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(_UpperCAmelCase , self.pa_type)
8
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _snake_case( unittest.TestCase ): def _UpperCamelCase (self : List[str] ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _UpperCamelCase (self : int ) -> Any: """simple docstring""" A__ = 1 A__ = 3 A__ = (32, 32) A__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a ) return image @property def _UpperCamelCase (self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=a , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def _UpperCamelCase (self : Tuple ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _UpperCamelCase (self : str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) return CLIPTextModel(a ) def _UpperCamelCase (self : str ) -> List[str]: """simple docstring""" A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.dummy_cond_unet_upscale A__ = DDPMScheduler() A__ = DDIMScheduler(prediction_type='v_prediction' ) A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(a ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A__ = StableDiffusionUpscalePipeline( unet=a , low_res_scheduler=a , scheduler=a , vae=a , text_encoder=a , tokenizer=a , max_noise_level=3_50 , ) A__ = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) A__ = 'A painting of a squirrel eating a burger' A__ = torch.Generator(device=a ).manual_seed(0 ) A__ = sd_pipe( [prompt] , image=a , generator=a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) A__ = output.images A__ = torch.Generator(device=a ).manual_seed(0 ) A__ = sd_pipe( [prompt] , image=a , generator=a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=a , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] A__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) A__ = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCamelCase (self : Optional[int] ) -> Optional[int]: """simple docstring""" A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.dummy_cond_unet_upscale A__ = DDPMScheduler() A__ = DDIMScheduler(prediction_type='v_prediction' ) A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(a ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk A__ = StableDiffusionUpscalePipeline( unet=a , low_res_scheduler=a , scheduler=a , vae=a , text_encoder=a , tokenizer=a , max_noise_level=3_50 , ) A__ = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) A__ = 'A painting of a squirrel eating a burger' A__ = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) A__ = output.images assert image.shape[0] == 2 A__ = torch.Generator(device=a ).manual_seed(0 ) A__ = sd_pipe( [prompt] , image=a , generator=a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) A__ = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _UpperCamelCase (self : List[Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.dummy_cond_unet_upscale A__ = DDPMScheduler() A__ = DDIMScheduler(prediction_type='v_prediction' ) A__ = self.dummy_vae A__ = self.dummy_text_encoder A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] A__ = Image.fromarray(np.uinta(a ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 A__ = unet.half() A__ = text_encoder.half() # make sure here that pndm scheduler skips prk A__ = StableDiffusionUpscalePipeline( unet=a , low_res_scheduler=a , scheduler=a , vae=a , text_encoder=a , tokenizer=a , max_noise_level=3_50 , ) A__ = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) A__ = 'A painting of a squirrel eating a burger' A__ = torch.manual_seed(0 ) A__ = sd_pipe( [prompt] , image=a , generator=a , num_inference_steps=2 , output_type='np' , ).images A__ = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class _snake_case( unittest.TestCase ): def _UpperCamelCase (self : Union[str, Any] ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase (self : Optional[Any] ) -> Optional[int]: """simple docstring""" A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) A__ = 'stabilityai/stable-diffusion-x4-upscaler' A__ = StableDiffusionUpscalePipeline.from_pretrained(a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() A__ = 'a cat sitting on a park bench' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=a , image=a , generator=a , output_type='np' , ) A__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-3 def _UpperCamelCase (self : Any ) -> str: """simple docstring""" A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) A__ = 'stabilityai/stable-diffusion-x4-upscaler' A__ = StableDiffusionUpscalePipeline.from_pretrained( a , torch_dtype=torch.floataa , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() A__ = 'a cat sitting on a park bench' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=a , image=a , generator=a , output_type='np' , ) A__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def _UpperCamelCase (self : Dict ) -> List[str]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) A__ = 'stabilityai/stable-diffusion-x4-upscaler' A__ = StableDiffusionUpscalePipeline.from_pretrained( a , torch_dtype=torch.floataa , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A__ = 'a cat sitting on a park bench' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=a , image=a , generator=a , num_inference_steps=5 , output_type='np' , ) A__ = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
531
0
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = logging.getLogger(__name__) def _snake_case ( ): A__ = argparse.ArgumentParser( description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" ) parser.add_argument( """--dataset_name""" , type=UpperCAmelCase_ , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , ) parser.add_argument( """--dataset_config""" , type=UpperCAmelCase_ , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" ) parser.add_argument( """--tokenizer_name_or_path""" , type=UpperCAmelCase_ , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , ) parser.add_argument( """--shard_size""" , type=UpperCAmelCase_ , default=1000 , help="""Number of entries to go in a single shard.""" , ) parser.add_argument("""--split""" , type=UpperCAmelCase_ , default="""train""" , choices=["""train""", """test""", """validation"""] ) parser.add_argument( """--limit""" , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help="""Limit the number of shards (used for debugging).""" , ) parser.add_argument( """--max_length""" , type=UpperCAmelCase_ , default=512 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum""" """ sequence length that is a multiple of 8.""" , ) parser.add_argument( """--output_dir""" , default="""tf-tpu""" , type=UpperCAmelCase_ , help="""Output directory where the TFRecord shards will be saved. If the""" """ path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord""" """ shards will be directly saved to a Google Cloud Storage bucket.""" , ) A__ = parser.parse_args() return args def _snake_case ( UpperCAmelCase_ : Any ): def fn(UpperCAmelCase_ : Union[str, Any] ): return tokenizer(examples["""text"""] ) return fn def _snake_case ( UpperCAmelCase_ : Optional[Any] ): A__ = [] for i in range(len(tokenized_data["""input_ids"""] ) ): A__ = { """input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ), """attention_mask""": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ), } A__ = tf.train.Features(feature=UpperCAmelCase_ ) A__ = tf.train.Example(features=UpperCAmelCase_ ) A__ = example.SerializeToString() records.append(UpperCAmelCase_ ) return records def _snake_case ( UpperCAmelCase_ : Optional[int] ): A__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: A__ = min(len(UpperCAmelCase_ ) , args.limit ) A__ = dataset.select(range(UpperCAmelCase_ ) ) print(F"""Limiting the dataset to {args.limit} entries.""" ) A__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) A__ = os.path.join(args.output_dir , args.split ) if not os.path.exists(UpperCAmelCase_ ): os.makedirs(UpperCAmelCase_ ) else: A__ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. A__ = tokenize_function(UpperCAmelCase_ ) A__ = dataset.map(UpperCAmelCase_ , batched=UpperCAmelCase_ , num_proc=4 , remove_columns=["""text"""] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(UpperCAmelCase_ : Tuple ): # Concatenate all texts. A__ = {k: sum(examples[k] , [] ) for k in examples.keys()} A__ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 A__ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. A__ = { k: [t[i : i + args.max_length] for i in range(0 , UpperCAmelCase_ , args.max_length )] for k, t in concatenated_examples.items() } return result A__ = dataset_tokenized.map(UpperCAmelCase_ , batched=UpperCAmelCase_ , batch_size=1000 , num_proc=4 ) A__ = 0 A__ = 0 for shard in range(0 , len(UpperCAmelCase_ ) , args.shard_size ): A__ = grouped_dataset[shard : shard + args.shard_size] A__ = len(dataset_snapshot["""input_ids"""] ) A__ = os.path.join(UpperCAmelCase_ , F"""dataset-{shard_count}-{records_containing}.tfrecord""" ) A__ = get_serialized_examples(UpperCAmelCase_ ) with tf.io.TFRecordWriter(UpperCAmelCase_ ) as out_file: for i in range(len(UpperCAmelCase_ ) ): A__ = serialized_examples[i] out_file.write(UpperCAmelCase_ ) print("""Wrote file {} containing {} records""".format(UpperCAmelCase_ , UpperCAmelCase_ ) ) shard_count += 1 total_records += records_containing with open(F"""split-{args.split}-records-count.txt""" , """w""" ) as f: print(F"""Total {args.split} records: {total_records}""" , file=UpperCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Union[str, Any] = parse_args() main(args)
500
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int ): A__ = generate_pascal_triangle(UpperCAmelCase_ ) for row_idx in range(UpperCAmelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=""" """ ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=""" """ ) else: print(triangle[row_idx][col_idx] , end="""""" ) print() def _snake_case ( UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) A__ = [] for current_row_idx in range(UpperCAmelCase_ ): A__ = populate_current_row(UpperCAmelCase_ , UpperCAmelCase_ ) triangle.append(UpperCAmelCase_ ) return triangle def _snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : int ): A__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A__ , A__ = 1, 1 for current_col_idx in range(1 , UpperCAmelCase_ ): calculate_current_element( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) return current_row def _snake_case ( UpperCAmelCase_ : list[list[int]] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , ): A__ = triangle[current_row_idx - 1][current_col_idx - 1] A__ = triangle[current_row_idx - 1][current_col_idx] A__ = above_to_left_elt + above_to_right_elt def _snake_case ( UpperCAmelCase_ : int ): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError("""The input value of 'num_rows' should be 'int'""" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( """The input value of 'num_rows' should be greater than or equal to 0""" ) A__ = [[1]] for row_index in range(1 , UpperCAmelCase_ ): A__ = [0] + result[-1] + [0] A__ = row_index + 1 # Calculate the number of distinct elements in a row A__ = sum(divmod(UpperCAmelCase_ , 2 ) ) A__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] A__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A__ = row_first_half + row_second_half result.append(UpperCAmelCase_ ) return result def _snake_case ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCAmelCase_ : Callable , UpperCAmelCase_ : int ) -> None: A__ = F"""{func.__name__}({value})""" A__ = timeit(F"""__main__.{call}""" , setup="""import __main__""" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCAmelCase_ , UpperCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
500
1
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _snake_case ( snake_case_ ): '''simple docstring''' __snake_case = "" __snake_case = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self: Any , __UpperCamelCase: Optional[DatasetInfo] = None , __UpperCamelCase: Optional[str] = None , **__UpperCamelCase: str , ) -> List[str]: super().__init__(self , **__UpperCamelCase ) __magic_name__ : Dict = repo_info __magic_name__ : List[Any] = token __magic_name__ : Union[str, Any] = None def lowerCAmelCase__ ( self: List[str] ) -> Optional[int]: if self.dir_cache is None: __magic_name__ : Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __magic_name__ : int = { "name": hf_file.rfilename, "size": None, "type": "file", } self.dir_cache.update( { str(__UpperCamelCase ): {"name": str(__UpperCamelCase ), "size": None, "type": "directory"} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase__ ( self: Tuple , __UpperCamelCase: str , __UpperCamelCase: str = "rb" , **__UpperCamelCase: Dict , ) -> Tuple: if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) __magic_name__ : List[Any] = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open() def lowerCAmelCase__ ( self: int , __UpperCamelCase: Optional[Any] , **__UpperCamelCase: Optional[Any] ) -> Dict: self._get_dirs() __magic_name__ : Optional[int] = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def lowerCAmelCase__ ( self: Tuple , __UpperCamelCase: Any , __UpperCamelCase: Tuple=False , **__UpperCamelCase: Optional[Any] ) -> Any: self._get_dirs() __magic_name__ : Union[str, Any] = PurePosixPath(path.strip("/" ) ) __magic_name__ : Optional[int] = {} for p, f in self.dir_cache.items(): __magic_name__ : Any = PurePosixPath(p.strip("/" ) ) __magic_name__ : Dict = p.parent if root == path: __magic_name__ : List[str] = f __magic_name__ : Dict = list(paths.values() ) if detail: return out else: return sorted(f["name"] for f in out )
436
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : Union[str, Any] = cva.getAffineTransform(UpperCamelCase__ , UpperCamelCase__ ) return cva.warpAffine(UpperCamelCase__ , UpperCamelCase__ , (rows, cols) ) if __name__ == "__main__": # read original image _SCREAMING_SNAKE_CASE : int = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value _SCREAMING_SNAKE_CASE : Tuple = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = gray_img.shape # set different points to rotate image _SCREAMING_SNAKE_CASE : Dict = np.array([[50, 50], [2_00, 50], [50, 2_00]], np.floataa) _SCREAMING_SNAKE_CASE : str = np.array([[10, 1_00], [2_00, 50], [1_00, 2_50]], np.floataa) _SCREAMING_SNAKE_CASE : Any = np.array([[50, 50], [1_50, 50], [1_20, 2_00]], np.floataa) _SCREAMING_SNAKE_CASE : Dict = np.array([[10, 1_00], [80, 50], [1_80, 2_50]], np.floataa) # add all rotated images in a list _SCREAMING_SNAKE_CASE : List[str] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations _SCREAMING_SNAKE_CASE : Optional[int] = plt.figure(1) _SCREAMING_SNAKE_CASE : Any = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
436
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=False , __a=True , __a="None" , __a=3 , __a=4 , __a=None , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = relative_attention _UpperCamelCase = position_biased_input _UpperCamelCase = pos_att_type _UpperCamelCase = scope def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDebertaVaModel(config=_UpperCamelCase) _UpperCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(_UpperCamelCase) _UpperCamelCase = model(_UpperCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDebertaVaForMaskedLM(config=_UpperCamelCase) _UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _UpperCamelCase = model(_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Tuple: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFDebertaVaForSequenceClassification(config=_UpperCamelCase) _UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _UpperCamelCase = model(_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFDebertaVaForTokenClassification(config=_UpperCamelCase) _UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _UpperCamelCase = model(_UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = TFDebertaVaForQuestionAnswering(config=_UpperCamelCase) _UpperCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _UpperCamelCase = model(_UpperCamelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( _UpperCamelCase ) = config_and_inputs _UpperCamelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _UpperCAmelCase( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): lowercase__ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowercase__ = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = TFDebertaVaModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37) def UpperCAmelCase ( self) -> str: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase) @slow def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''') self.assertIsNotNone(_UpperCamelCase) @require_tf class _UpperCAmelCase( unittest.TestCase ): @unittest.skip(reason='''Model not available yet''') def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' pass @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''') _UpperCamelCase = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]]) _UpperCamelCase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) _UpperCamelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase)[0] _UpperCamelCase = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]]) tf.debugging.assert_near(output[:, 1:4, 1:4] , _UpperCamelCase , atol=1e-4)
715
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase( unittest.TestCase ): def __init__( self , __a , __a=7 , __a=3 , __a=18 , __a=30 , __a=4_00 , __a=True , __a=None , __a=True , __a=None , __a=True , ) -> int: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 20} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_flip_channel_order def UpperCAmelCase ( self) -> str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = MobileViTImageProcessor if is_vision_available() else None def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = MobileViTImageProcessingTester(self) @property def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(__a , '''do_resize''')) self.assertTrue(hasattr(__a , '''size''')) self.assertTrue(hasattr(__a , '''do_center_crop''')) self.assertTrue(hasattr(__a , '''center_crop''')) self.assertTrue(hasattr(__a , '''do_flip_channel_order''')) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 20}) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18}) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'''shortest_edge''': 42}) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84}) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' pass def UpperCAmelCase ( self) -> str: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a) for image in image_inputs: self.assertIsInstance(__a , Image.Image) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a) for image in image_inputs: self.assertIsInstance(__a , np.ndarray) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self) -> int: '''simple docstring''' # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(__a , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
78
0
"""simple docstring""" import datasets from .evaluate import evaluate snake_case = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' snake_case = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' snake_case = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} _snake_case = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] _snake_case = evaluate(dataset=__lowerCamelCase , predictions=__lowerCamelCase ) return score
103
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__: Union[str, Any] = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def lowerCAmelCase_ ( A_ ,A_=None): require_version(deps[pkg] ,A_)
380
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = [] for part_id in partition_order: __UpperCamelCase :Optional[int] = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect() for row_idx, row in enumerate(SCREAMING_SNAKE_CASE ): expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __UpperCamelCase :List[Any] = spark.range(100 ).repartition(1 ) __UpperCamelCase :Any = Spark(SCREAMING_SNAKE_CASE ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Optional[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __UpperCamelCase :Union[str, Any] = spark.range(10 ).repartition(2 ) __UpperCamelCase :Optional[Any] = [1, 0] __UpperCamelCase :Any = _generate_iterable_examples(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Reverse the partitions. __UpperCamelCase :Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i, (row_id, row_dict) in enumerate(generate_fn() ): __UpperCamelCase , __UpperCamelCase :int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Optional[int] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __UpperCamelCase :str = spark.range(10 ).repartition(1 ) __UpperCamelCase :Tuple = SparkExamplesIterable(SCREAMING_SNAKE_CASE ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE ): assert row_id == f"""0_{i}""" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :str = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __UpperCamelCase :Union[str, Any] = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: __UpperCamelCase :int = lambda SCREAMING_SNAKE_CASE : x.reverse() __UpperCamelCase :List[str] = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE , [2, 1, 0] ) __UpperCamelCase :Union[str, Any] = SparkExamplesIterable(SCREAMING_SNAKE_CASE ).shuffle_data_sources(SCREAMING_SNAKE_CASE ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE ): __UpperCamelCase , __UpperCamelCase :str = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Dict = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __UpperCamelCase :List[str] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 __UpperCamelCase :Union[str, Any] = SparkExamplesIterable(SCREAMING_SNAKE_CASE ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 __UpperCamelCase :Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE , [0, 2] ) for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE ): __UpperCamelCase , __UpperCamelCase :int = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 __UpperCamelCase :Optional[Any] = SparkExamplesIterable(SCREAMING_SNAKE_CASE ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 __UpperCamelCase :Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(SCREAMING_SNAKE_CASE , [1, 3] ) for i, (row_id, row_dict) in enumerate(SCREAMING_SNAKE_CASE ): __UpperCamelCase , __UpperCamelCase :str = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase ( ): '''simple docstring''' __UpperCamelCase :Optional[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() __UpperCamelCase :List[Any] = spark.range(100 ).repartition(1 ) __UpperCamelCase :List[Any] = Spark(SCREAMING_SNAKE_CASE ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
452
def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = generate_pascal_triangle(SCREAMING_SNAKE_CASE ) for row_idx in range(SCREAMING_SNAKE_CASE ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase :list[list[int]] = [] for current_row_idx in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[Any] = populate_current_row(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) triangle.append(SCREAMING_SNAKE_CASE ) return triangle def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :int = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 __UpperCamelCase , __UpperCamelCase :int = 1, 1 for current_col_idx in range(1 , SCREAMING_SNAKE_CASE ): calculate_current_element( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return current_row def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): '''simple docstring''' __UpperCamelCase :Dict = triangle[current_row_idx - 1][current_col_idx - 1] __UpperCamelCase :List[Any] = triangle[current_row_idx - 1][current_col_idx] __UpperCamelCase :List[Any] = above_to_left_elt + above_to_right_elt def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) __UpperCamelCase :list[list[int]] = [[1]] for row_index in range(1 , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = [0] + result[-1] + [0] __UpperCamelCase :Any = row_index + 1 # Calculate the number of distinct elements in a row __UpperCamelCase :Optional[Any] = sum(divmod(SCREAMING_SNAKE_CASE , 2 ) ) __UpperCamelCase :Union[str, Any] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] __UpperCamelCase :List[Any] = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() __UpperCamelCase :List[str] = row_first_half + row_second_half result.append(SCREAMING_SNAKE_CASE ) return result def lowerCamelCase ( ): '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: __UpperCamelCase :List[str] = f"""{func.__name__}({value})""" __UpperCamelCase :Optional[int] = timeit(f"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
452
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase ={ "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase =[ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
285
def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): def get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) -> str: UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Union[str, Any] = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): UpperCamelCase__ : Optional[int] = int(max(0 , i - limit ) ) UpperCamelCase__ : List[str] = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(UpperCamelCase__ ) UpperCamelCase__ : List[str] = f'''{_stra[0:_stra.index(UpperCamelCase__ )]} {_stra[_stra.index(UpperCamelCase__ ) + 1:]}''' return "".join(UpperCamelCase__ ) # matching characters UpperCamelCase__ : Any = get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : Union[str, Any] = get_matched_characters(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ : List[Any] = len(UpperCamelCase__ ) # transposition UpperCamelCase__ : str = ( len([(ca, ca) for ca, ca in zip(UpperCamelCase__ , UpperCamelCase__ ) if ca != ca] ) // 2 ) if not match_count: UpperCamelCase__ : Union[str, Any] = 0.0 else: UpperCamelCase__ : Optional[int] = ( 1 / 3 * ( match_count / len(UpperCamelCase__ ) + match_count / len(UpperCamelCase__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters UpperCamelCase__ : Dict = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler("hello", "world"))
285
1
def _SCREAMING_SNAKE_CASE ( ) -> List[str]: """simple docstring""" __A = [] __A = 1 while len(__lowercase ) < 1E6: constant.append(str(__lowercase ) ) i += 1 __A = """""".join(__lowercase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
199
def _SCREAMING_SNAKE_CASE ( __lowercase : List[Any] , __lowercase : Dict , __lowercase : str ) -> Dict: """simple docstring""" if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(__lowercase , n - 1 , __lowercase ) * a) % mod else: __A = binary_exponentiation(__lowercase , n / 2 , __lowercase ) return (b * b) % mod # a prime number __a : Union[str, Any] = 701 __a : Dict = 1000000000 __a : Union[str, Any] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
199
1
SCREAMING_SNAKE_CASE__ : Dict = 9.80665 def __lowercase ( snake_case, snake_case, snake_case = g ): """simple docstring""" if fluid_density <= 0: raise ValueError('''Impossible fluid density''' ) if volume < 0: raise ValueError('''Impossible Object volume''' ) if gravity <= 0: raise ValueError('''Impossible Gravity''' ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
0
import string def lowerCamelCase_ ( lowerCAmelCase: str )-> str: _snake_case : str = '' for i in sequence: _snake_case : Tuple = ord(lowerCAmelCase ) if 65 <= extract <= 90: output += chr(1_55 - extract ) elif 97 <= extract <= 1_22: output += chr(2_19 - extract ) else: output += i return output def lowerCamelCase_ ( lowerCAmelCase: str )-> str: _snake_case : str = string.ascii_letters _snake_case : List[str] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCAmelCase )] if c in letters else c for c in sequence ) def lowerCamelCase_ ( )-> None: from timeit import timeit print('Running performance benchmarks...' ) _snake_case : List[str] = 'from string import printable ; from __main__ import atbash, atbash_slow' print(F"""> atbash_slow(): {timeit('atbash_slow(printable)' , setup=lowerCAmelCase )} seconds""" ) print(F"""> atbash(): {timeit('atbash(printable)' , setup=lowerCAmelCase )} seconds""" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
411
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase ( __snake_case ): """simple docstring""" def lowercase_ ( self ): A_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , "num_attention_heads" ) ) class lowerCamelCase : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=64 , __UpperCamelCase=3 , __UpperCamelCase=3 , __UpperCamelCase=2 , __UpperCamelCase=1 , __UpperCamelCase=16 , __UpperCamelCase=[128, 256, 384] , __UpperCamelCase=[4, 6, 8] , __UpperCamelCase=[2, 3, 4] , __UpperCamelCase=[16, 16, 16] , __UpperCamelCase=0 , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=[2, 2, 2] , __UpperCamelCase=0.02 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=2 , ): A_ = parent A_ = batch_size A_ = image_size A_ = num_channels A_ = kernel_size A_ = stride A_ = padding A_ = hidden_sizes A_ = num_attention_heads A_ = depths A_ = key_dim A_ = drop_path_rate A_ = patch_size A_ = attention_ratio A_ = mlp_ratio A_ = initializer_range A_ = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] A_ = is_training A_ = use_labels A_ = num_labels A_ = initializer_range def lowercase_ ( self ): A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def lowercase_ ( self ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = LevitModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A_ = model(__UpperCamelCase ) A_ = (self.image_size, self.image_size) A_ , A_ = image_size[0], image_size[1] for _ in range(4 ): A_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) A_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = self.num_labels A_ = LevitForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() A_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self ): A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def lowercase_ ( self ): A_ = LevitModelTester(self ) A_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def lowercase_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def lowercase_ ( self ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def lowercase_ ( self ): pass @unittest.skip(reason="Levit does not output attentions" ) def lowercase_ ( self ): pass def lowercase_ ( self ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(__UpperCamelCase ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowercase_ ( self ): def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): A_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): A_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) A_ = outputs.hidden_states A_ = len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) A_ = (self.model_tester.image_size, self.model_tester.image_size) A_ , A_ = image_size[0], image_size[1] for _ in range(4 ): A_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) A_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase_ ( self ): pass def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ): A_ = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase_ ( self ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase_ ( self ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def lowercase_ ( self ): if not self.model_tester.is_training: return A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCamelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue A_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() A_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) A_ = model(**__UpperCamelCase ).loss loss.backward() def lowercase_ ( self ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ = False A_ = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue A_ = model_class(__UpperCamelCase ) model.gradient_checkpointing_enable() model.to(__UpperCamelCase ) model.train() A_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) A_ = model(**__UpperCamelCase ).loss loss.backward() def lowercase_ ( self ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCamelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'Testing {model_class} with {problem_type["title"]}' ): A_ = problem_type["title"] A_ = problem_type["num_labels"] A_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() A_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if problem_type["num_labels"] > 1: A_ = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) A_ = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCamelCase ) as warning_list: A_ = model(**__UpperCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def lowercase_ ( self ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = LevitModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def lowerCAmelCase ( )-> int: A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase_ ( self ): A_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCamelCase ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): A_ = model(**__UpperCamelCase ) # verify the logits A_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) A_ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
608
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def lowerCAmelCase ( snake_case__ : int = 3 )-> qiskit.result.counts.Counts: if isinstance(snake_case__ , snake_case__ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(snake_case__ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) A_ = QuantumRegister(snake_case__ , "qr" ) A_ = ClassicalRegister(snake_case__ , "cr" ) A_ = QuantumCircuit(snake_case__ , snake_case__ ) A_ = number_of_qubits for i in range(snake_case__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(snake_case__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , snake_case__ , snake_case__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(snake_case__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(snake_case__ , snake_case__ ) # simulate with 10000 shots A_ = Aer.get_backend("qasm_simulator" ) A_ = execute(snake_case__ , snake_case__ , shots=10000 ) return job.result().get_counts(snake_case__ ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
608
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class a_ ( _UpperCamelCase ): lowercase = 42 lowercase = 42 def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = 2000 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , **_SCREAMING_SNAKE_CASE , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" UpperCamelCase = self.unet.config.sample_size UpperCamelCase = (batch_size, 3, img_size, img_size) UpperCamelCase = self.unet UpperCamelCase = randn_tensor(__a , generator=__a ) * self.scheduler.init_noise_sigma UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__a ) self.scheduler.set_sigmas(__a ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCamelCase = self.unet(__a , __a ).sample UpperCamelCase = self.scheduler.step_correct(__a , __a , generator=__a ).prev_sample # prediction step UpperCamelCase = model(__a , __a ).sample UpperCamelCase = self.scheduler.step_pred(__a , __a , __a , generator=__a ) UpperCamelCase ,UpperCamelCase = output.prev_sample, output.prev_sample_mean UpperCamelCase = sample_mean.clamp(0 , 1 ) UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(__a ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__a )
301
def UpperCamelCase_( snake_case__: str , snake_case__: list[str] ) -> str: UpperCAmelCase__ = '' for word_or_phrase in separated: if not isinstance(snake_case__ , snake_case__ ): raise Exception('join() accepts only strings to be joined' ) joined += word_or_phrase + separator return joined.strip(snake_case__ ) if __name__ == "__main__": from doctest import testmod testmod()
146
0
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu a : Optional[int] = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: a : str = json.load(f) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self , __lowercase ): return FSMTTokenizer.from_pretrained(__lowercase ) def A__ ( self , __lowercase ): UpperCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(__lowercase ).to(__lowercase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def A__ ( self , __lowercase , __lowercase ): UpperCAmelCase__ = F'''facebook/wmt19-{pair}''' UpperCAmelCase__ = self.get_tokenizer(__lowercase ) UpperCAmelCase__ = self.get_model(__lowercase ) UpperCAmelCase__ = bleu_data[pair]['src'] UpperCAmelCase__ = bleu_data[pair]['tgt'] UpperCAmelCase__ = tokenizer(__lowercase , return_tensors="""pt""" , truncation=__lowercase , padding="""longest""" ).to(__lowercase ) UpperCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase__ = tokenizer.batch_decode( __lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase ) UpperCAmelCase__ = calculate_bleu(__lowercase , __lowercase ) print(__lowercase ) self.assertGreaterEqual(scores["""bleu"""] , __lowercase )
704
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def A__ ( self , __lowercase ): with open(__lowercase , encoding="""utf-8""" ) as input_file: UpperCAmelCase__ = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) UpperCAmelCase__ = input_file.read() UpperCAmelCase__ = regexp.search(__lowercase ) return match def A__ ( self , __lowercase ): with open(__lowercase , encoding="""utf-8""" ) as input_file: UpperCAmelCase__ = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) UpperCAmelCase__ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ = regexp.finditer(__lowercase ) UpperCAmelCase__ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A__ ( self ): UpperCAmelCase__ = Path("""./datasets""" ) UpperCAmelCase__ = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__lowercase ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def A__ ( self ): UpperCAmelCase__ = Path("""./datasets""" ) UpperCAmelCase__ = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(__lowercase ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
422
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _snake_case ( ): _UpperCamelCase = HfArgumentParser(__snake_case ) _UpperCamelCase = parser.parse_args_into_dataclasses()[0] _UpperCamelCase = TensorFlowBenchmark(args=__snake_case ) try: _UpperCamelCase = parser.parse_args_into_dataclasses()[0] except ValueError as e: _UpperCamelCase = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' _UpperCamelCase = ''' '''.join(str(__snake_case ).split(''' ''' )[:-1] ) _UpperCamelCase = '''''' _UpperCamelCase = eval(str(__snake_case ).split(''' ''' )[-1] ) _UpperCamelCase = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__snake_case ) if len(__snake_case ) > 0: _UpperCamelCase = full_error_msg + begin_error_msg + str(__snake_case ) raise ValueError(__snake_case ) benchmark.run() if __name__ == "__main__": main()
10
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __A = logging.get_logger(__name__) __A = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class _A ( UpperCamelCase ): """simple docstring""" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , __SCREAMING_SNAKE_CASE : str=None , *__SCREAMING_SNAKE_CASE : Union[str, Any] , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Any: super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if config is None: assert isinstance(self.model , __SCREAMING_SNAKE_CASE ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) __UpperCAmelCase =self.model.config else: __UpperCAmelCase =config __UpperCAmelCase =data_args __UpperCAmelCase =self.config.tgt_vocab_size if isinstance(self.config , __SCREAMING_SNAKE_CASE ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: __UpperCAmelCase =torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss __UpperCAmelCase =label_smoothed_nll_loss def _a ( self : Any , __SCREAMING_SNAKE_CASE : int ) -> Any: if self.optimizer is None: __UpperCAmelCase =["""bias""", """LayerNorm.weight"""] __UpperCAmelCase =[ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] __UpperCAmelCase =Adafactor if self.args.adafactor else AdamW if self.args.adafactor: __UpperCAmelCase =Adafactor __UpperCAmelCase ={"""scale_parameter""": False, """relative_step""": False} else: __UpperCAmelCase =AdamW __UpperCAmelCase ={ """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } __UpperCAmelCase =self.args.learning_rate if self.sharded_ddp: __UpperCAmelCase =OSS( params=__SCREAMING_SNAKE_CASE , optim=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) else: __UpperCAmelCase =optimizer_cls(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if self.lr_scheduler is None: __UpperCAmelCase =self._get_lr_scheduler(__SCREAMING_SNAKE_CASE ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: __UpperCAmelCase =arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": __UpperCAmelCase =schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": __UpperCAmelCase =schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: __UpperCAmelCase =schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__SCREAMING_SNAKE_CASE ) return scheduler def _a ( self : Optional[Any] ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[0] __UpperCAmelCase =self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models __UpperCAmelCase , __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[:2] else: # compute label smoothed loss __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )[0] __UpperCAmelCase =torch.nn.functional.log_softmax(__SCREAMING_SNAKE_CASE , dim=-1 ) __UpperCAmelCase , __UpperCAmelCase =self.loss_fn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: __UpperCAmelCase =inputs.pop("""labels""" ) __UpperCAmelCase , __UpperCAmelCase =self._compute_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return loss def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : nn.Module , __SCREAMING_SNAKE_CASE : Dict[str, Union[torch.Tensor, Any]] , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: __UpperCAmelCase =self._prepare_inputs(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase ={ """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: __UpperCAmelCase =self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__SCREAMING_SNAKE_CASE , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: __UpperCAmelCase =self._pad_tensors_to_max_len(__SCREAMING_SNAKE_CASE , gen_kwargs["""max_length"""] ) __UpperCAmelCase =inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data __UpperCAmelCase , __UpperCAmelCase =self._compute_loss(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) __UpperCAmelCase =generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: __UpperCAmelCase =self._pad_tensors_to_max_len(__SCREAMING_SNAKE_CASE , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : int ) -> List[Any]: # If PAD token is not defined at least EOS token has to be defined __UpperCAmelCase =self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" f''' padded to `max_length`={max_length}''' ) __UpperCAmelCase =pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) __UpperCAmelCase =tensor return padded_tensor
68
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __UpperCAmelCase : __A : Union[str, Any] = MBartConfig __A : Optional[Any] = {} __A : int = 'gelu' def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=20 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = pad_token_id lowerCAmelCase_ = bos_token_id def UpperCAmelCase_ ( self ): lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase_ = prepare_mbart_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = TFMBartModel(config=_lowerCamelCase ).get_decoder() lowerCAmelCase_ = inputs_dict['''input_ids'''] lowerCAmelCase_ = input_ids[:1, :] lowerCAmelCase_ = inputs_dict['''attention_mask'''][:1, :] lowerCAmelCase_ = inputs_dict['''head_mask'''] lowerCAmelCase_ = 1 # first forward pass lowerCAmelCase_ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) lowerCAmelCase_ ,lowerCAmelCase_ = outputs.to_tuple() lowerCAmelCase_ = past_key_values[1] def snake_case_ ( __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any]=None , __snake_case : str=None , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Any=None , ) -> Union[str, Any]: if attention_mask is None: lowerCAmelCase_ = tf.cast(tf.math.not_equal(__snake_case , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: lowerCAmelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: lowerCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: lowerCAmelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __UpperCAmelCase ( __a , __a , unittest.TestCase ): __A : Optional[int] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __A : Union[str, Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else () __A : Any = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __A : Optional[Any] = True __A : Dict = False __A : str = False def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def UpperCAmelCase_ ( self ): lowerCAmelCase_ = TFMBartModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_lowerCamelCase ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class __UpperCAmelCase ( unittest.TestCase ): __A : Tuple = [ ' UN Chief Says There Is No Military Solution in Syria', ] __A : str = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] __A : Dict = 'facebook/mbart-large-en-ro' @cached_property def UpperCAmelCase_ ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self ): lowerCAmelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase_ ( self , **_lowerCamelCase ): lowerCAmelCase_ = self.translate_src_text(**_lowerCamelCase ) self.assertListEqual(self.expected_text , _lowerCamelCase ) def UpperCAmelCase_ ( self , **_lowerCamelCase ): lowerCAmelCase_ = self.tokenizer(self.src_text , **_lowerCamelCase , return_tensors='''tf''' ) lowerCAmelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowerCAmelCase_ = self.tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) return generated_words @slow def UpperCAmelCase_ ( self ): self._assert_generated_batch_equal_expected()
709
'''simple docstring''' # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def snake_case_ ( __snake_case : Optional[Any]) -> Union[str, Any]: lowerCAmelCase_ = [False] * len(__snake_case) lowerCAmelCase_ = [-1] * len(__snake_case) def dfs(__snake_case : str , __snake_case : Any): lowerCAmelCase_ = True lowerCAmelCase_ = c for u in graph[v]: if not visited[u]: dfs(__snake_case , 1 - c) for i in range(len(__snake_case)): if not visited[i]: dfs(__snake_case , 0) for i in range(len(__snake_case)): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph A_ : Optional[Any] ={0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
606
0
'''simple docstring''' def __UpperCamelCase( _A : int = 1 , _A : int = 10_00 ): '''simple docstring''' UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : Optional[int] = 0 for divide_by_number in range(_A , digit + 1 ): UpperCAmelCase__ : list[int] = [] UpperCAmelCase__ : Union[str, Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_A ): UpperCAmelCase__ : Tuple = len(_A ) UpperCAmelCase__ : Any = divide_by_number else: has_been_divided.append(_A ) UpperCAmelCase__ : Dict = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
614
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : Any = KandinskyInpaintPipeline UpperCAmelCase_ : str = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] UpperCAmelCase_ : Union[str, Any] = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] UpperCAmelCase_ : Union[str, Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase_ : Optional[int] = False @property def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return 32 @property def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' return 100 @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Any = MCLIPConfig( numDims=self.cross_attention_dim ,transformerDimensions=self.text_embedder_hidden_size ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=1005 ,) UpperCAmelCase__ : Any = MultilingualCLIP(lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = text_encoder.eval() return text_encoder @property def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase__ : List[str] = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase__ : List[Any] = self.dummy_text_encoder UpperCAmelCase__ : Optional[int] = self.dummy_tokenizer UpperCAmelCase__ : Optional[Any] = self.dummy_unet UpperCAmelCase__ : Any = self.dummy_movq UpperCAmelCase__ : Tuple = DDIMScheduler( num_train_timesteps=1000 ,beta_schedule='''linear''' ,beta_start=0.0_0085 ,beta_end=0.012 ,clip_sample=lowerCamelCase_ ,set_alpha_to_one=lowerCamelCase_ ,steps_offset=1 ,prediction_type='''epsilon''' ,thresholding=lowerCamelCase_ ,) UpperCAmelCase__ : Dict = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=0 ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : Dict = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) UpperCAmelCase__ : str = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(seed + 1 ) ).to(lowerCamelCase_ ) # create init_image UpperCAmelCase__ : str = floats_tensor((1, 3, 64, 64) ,rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] UpperCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask UpperCAmelCase__ : List[str] = np.ones((64, 64) ,dtype=np.floataa ) UpperCAmelCase__ : Optional[Any] = 0 if str(lowerCamelCase_ ).startswith('''mps''' ): UpperCAmelCase__ : Any = torch.manual_seed(lowerCamelCase_ ) else: UpperCAmelCase__ : Dict = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Tuple = '''cpu''' UpperCAmelCase__ : List[str] = self.get_dummy_components() UpperCAmelCase__ : Tuple = self.pipeline_class(**lowerCamelCase_ ) UpperCAmelCase__ : int = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase__ : Tuple = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) UpperCAmelCase__ : List[Any] = output.images UpperCAmelCase__ : Union[str, Any] = pipe( **self.get_dummy_inputs(lowerCamelCase_ ) ,return_dict=lowerCamelCase_ ,)[0] UpperCAmelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCAmelCase__ : int = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ : List[Any] = np.array( [0.832_6919, 0.7379_0467, 0.2091_8581, 0.930_9612, 0.551_1791, 0.4371_3328, 0.551_3321, 0.4992_2934, 0.5949_7786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase__ : Dict = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) UpperCAmelCase__ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase__ : Union[str, Any] = np.ones((768, 768) ,dtype=np.floataa ) UpperCAmelCase__ : int = 0 UpperCAmelCase__ : List[Any] = '''a hat''' UpperCAmelCase__ : str = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' ,torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) UpperCAmelCase__ : List[str] = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' ,torch_dtype=torch.floataa ) UpperCAmelCase__ : Tuple = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ : int = pipe_prior( lowerCamelCase_ ,generator=lowerCamelCase_ ,num_inference_steps=5 ,negative_prompt='''''' ,).to_tuple() UpperCAmelCase__ : Optional[Any] = pipeline( lowerCamelCase_ ,image=lowerCamelCase_ ,mask_image=lowerCamelCase_ ,image_embeds=lowerCamelCase_ ,negative_image_embeds=lowerCamelCase_ ,generator=lowerCamelCase_ ,num_inference_steps=100 ,height=768 ,width=768 ,output_type='''np''' ,) UpperCAmelCase__ : str = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase_ ,lowerCamelCase_ )
614
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase = '''CLIPImageProcessor''' __UpperCAmelCase = ('''XLMRobertaTokenizer''', '''XLMRobertaTokenizerFast''') def __init__( self , lowercase_=None , lowercase_=None , **lowercase_) -> Dict: __snake_case = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase_ , ) __snake_case = kwargs.pop('feature_extractor') __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowercase_ , lowercase_) def __call__( self , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_) -> List[Any]: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: __snake_case = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_) if images is not None: __snake_case = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_) if text is not None and images is not None: __snake_case = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase_) , tensor_type=lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> Any: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> str: return self.tokenizer.decode(*lowercase_ , **lowercase_) @property def _a ( self) -> Dict: __snake_case = self.tokenizer.model_input_names __snake_case = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
676
from __future__ import annotations class __lowercase : def __init__( self , lowercase_) -> None: __snake_case = data __snake_case = None __snake_case = None def A ( snake_case__ : Node | None ) -> None: # In Order traversal of the tree '''simple docstring''' if tree: display(tree.left ) print(tree.data ) display(tree.right ) def A ( snake_case__ : Node | None ) -> int: '''simple docstring''' return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def A ( snake_case__ : Node ) -> bool: '''simple docstring''' if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def A ( ) -> None: # Main function for testing. '''simple docstring''' __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(snake_case__ ) ) print(depth_of_tree(snake_case__ ) ) print('Tree is: ' ) display(snake_case__ ) if __name__ == "__main__": main()
676
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging a_ : int = '\\n\n' a_ : Tuple = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' a_ : List[Any] = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string'), }) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a = 16 , a = True , a=None) -> List[Any]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": SCREAMING_SNAKE_CASE = 'cuda' else: SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(a) SCREAMING_SNAKE_CASE = model.to(a) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(a) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: SCREAMING_SNAKE_CASE = list(tokenizer.special_tokens_map_extended.values()) # check that the model already has at least one special token defined assert ( len(a) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]}) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" SCREAMING_SNAKE_CASE = model.config.max_length - 1 else: SCREAMING_SNAKE_CASE = model.config.max_length SCREAMING_SNAKE_CASE = tokenizer( a , add_special_tokens=a , padding=a , truncation=a , max_length=a , return_tensors='pt' , return_attention_mask=a , ).to(a) SCREAMING_SNAKE_CASE = encodings['input_ids'] SCREAMING_SNAKE_CASE = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1) , 1)), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1) , 2)), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = CrossEntropyLoss(reduction='none') for start_index in logging.tqdm(range(0 , len(a) , a)): SCREAMING_SNAKE_CASE = min(start_index + batch_size , len(a)) SCREAMING_SNAKE_CASE = encoded_texts[start_index:end_index] SCREAMING_SNAKE_CASE = attn_masks[start_index:end_index] if add_start_token: SCREAMING_SNAKE_CASE = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0)).to(a) SCREAMING_SNAKE_CASE = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1) SCREAMING_SNAKE_CASE = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa).to(a), attn_mask] , dim=1) SCREAMING_SNAKE_CASE = encoded_batch with torch.no_grad(): SCREAMING_SNAKE_CASE = model(a , attention_mask=a).logits SCREAMING_SNAKE_CASE = out_logits[..., :-1, :].contiguous() SCREAMING_SNAKE_CASE = labels[..., 1:].contiguous() SCREAMING_SNAKE_CASE = attn_mask[..., 1:].contiguous() SCREAMING_SNAKE_CASE = torch.expa( (loss_fct(shift_logits.transpose(1 , 2) , a) * shift_attention_mask_batch).sum(1) / shift_attention_mask_batch.sum(1)) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(a)}
73
from __future__ import annotations def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = [] create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase ) return result def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCAmelCase , total_number - level + 2 ): current_list.append(_lowerCAmelCase ) create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase ) current_list.pop() def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" for i in total_list: print(*_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase =4 __lowerCAmelCase =2 __lowerCAmelCase =generate_all_combinations(n, k) print_all_state(total_list)
333
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self ) -> Union[str, Any]: _UpperCAmelCase = tempfile.mkdtemp() # fmt: off _UpperCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _UpperCAmelCase = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } _UpperCAmelCase = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case , snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self , **snake_case ) -> int: return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def lowerCamelCase_ ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def lowerCamelCase_ ( self ) -> Optional[int]: _UpperCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _UpperCAmelCase = self.get_image_processor(do_normalize=snake_case , padding_value=1.0 ) _UpperCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(snake_case , return_tensors='np' ) _UpperCAmelCase = processor(images=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase_ ( self ) -> str: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = processor(text=snake_case ) _UpperCAmelCase = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(snake_case ): processor() def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(snake_case ) _UpperCAmelCase = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = VisionTextDualEncoderProcessor(tokenizer=snake_case , image_processor=snake_case ) _UpperCAmelCase = 'lower newer' _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
24
"""simple docstring""" from __future__ import annotations from cmath import sqrt def UpperCAmelCase ( A : int , A : int , A : int ): '''simple docstring''' if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _UpperCAmelCase = b * b - 4 * a * c _UpperCAmelCase = (-b + sqrt(A )) / (2 * a) _UpperCAmelCase = (-b - sqrt(A )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = quadratic_roots(a=5 , b=6 , c=1 ) print(f'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
24
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase : Tuple = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(__a ) , torch_builtin(__a ) ) ) self.assertFalse(torch.allclose(gelu_python(__a ) , gelu_new(__a ) ) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : int = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) lowerCamelCase : Optional[int] = get_activation("gelu" ) lowerCamelCase : Optional[Any] = get_activation("gelu_10" ) lowerCamelCase : str = torch_builtin(__a ) lowerCamelCase : List[Any] = geluaa(__a ) lowerCamelCase : Optional[Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(__a ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _snake_case ( self ): """simple docstring""" get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(__a ): get_activation("bogus" ) with self.assertRaises(__a ): get_activation(__a ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Tuple = get_activation("gelu" ) lowerCamelCase : Optional[int] = 1 lowerCamelCase : List[str] = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__a ): lowerCamelCase : List[str] = acta.a
340
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Dict = ["input_features", "is_longer"] def __init__( self : Dict , snake_case : int=64 , snake_case : Dict=48000 , snake_case : Tuple=480 , snake_case : Optional[Any]=10 , snake_case : Union[str, Any]=1024 , snake_case : Union[str, Any]=0.0 , snake_case : List[str]=False , snake_case : float = 0 , snake_case : float = 14000 , snake_case : int = None , snake_case : str = "fusion" , snake_case : str = "repeatpad" , **snake_case : int , ): super().__init__( feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , return_attention_mask=snake_case , **snake_case , ) __UpperCamelCase = top_db __UpperCamelCase = truncation __UpperCamelCase = padding __UpperCamelCase = fft_window_size __UpperCamelCase = (fft_window_size >> 1) + 1 __UpperCamelCase = hop_length __UpperCamelCase = max_length_s __UpperCamelCase = max_length_s * sampling_rate __UpperCamelCase = sampling_rate __UpperCamelCase = frequency_min __UpperCamelCase = frequency_max __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm=snake_case , mel_scale='''htk''' , ) __UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case , min_frequency=snake_case , max_frequency=snake_case , sampling_rate=snake_case , norm='''slaney''' , mel_scale='''slaney''' , ) def snake_case ( self : Union[str, Any] ): __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def snake_case ( self : Tuple , snake_case : np.array , snake_case : Optional[np.array] = None ): __UpperCamelCase = spectrogram( snake_case , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case , log_mel='''dB''' , ) return log_mel_spectrogram.T def snake_case ( self : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : int ): __UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __UpperCamelCase = [0] # randomly choose index for each part __UpperCamelCase = np.random.choice(ranges[0] ) __UpperCamelCase = np.random.choice(ranges[1] ) __UpperCamelCase = np.random.choice(ranges[2] ) __UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] __UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] __UpperCamelCase = torch.tensor(mel[None, None, :] ) __UpperCamelCase = torch.nn.functional.interpolate( snake_case , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=snake_case ) __UpperCamelCase = mel_shrink[0][0].numpy() __UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def snake_case ( self : Optional[Any] , snake_case : np.array , snake_case : Optional[int] , snake_case : Tuple , snake_case : str ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCamelCase = len(snake_case ) - max_length __UpperCamelCase = np.random.randint(0 , overflow + 1 ) __UpperCamelCase = waveform[idx : idx + max_length] __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters ) __UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __UpperCamelCase = False else: __UpperCamelCase = self._random_mel_fusion(snake_case , snake_case , snake_case ) __UpperCamelCase = True else: raise NotImplementedError(F"data_truncating {truncation} not implemented" ) else: __UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCamelCase = int(max_length / len(snake_case ) ) __UpperCamelCase = np.stack(np.tile(snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __UpperCamelCase = int(max_length / len(snake_case ) ) __UpperCamelCase = np.stack(np.tile(snake_case , snake_case ) ) __UpperCamelCase = np.pad(snake_case , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters ) __UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __UpperCamelCase = self._np_extract_fbank_features(snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[str] , snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case : str = None , snake_case : Optional[str] = None , snake_case : Optional[int] = None , snake_case : Optional[int] = None , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : Any , ): __UpperCamelCase = truncation if truncation is not None else self.truncation __UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" F" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" F" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __UpperCamelCase = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) __UpperCamelCase = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCamelCase = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): __UpperCamelCase = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCamelCase = [np.asarray(snake_case )] # convert to mel spectrogram, truncate and pad if needed. __UpperCamelCase = [ self._get_input_mel(snake_case , max_length if max_length else self.nb_max_samples , snake_case , snake_case ) for waveform in raw_speech ] __UpperCamelCase = [] __UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(snake_case ) is_longer.append(snake_case ) if truncation == "fusion" and sum(snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCamelCase = np.random.randint(0 , len(snake_case ) ) __UpperCamelCase = True if isinstance(input_mel[0] , snake_case ): __UpperCamelCase = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __UpperCamelCase = [[longer] for longer in is_longer] __UpperCamelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} __UpperCamelCase = BatchFeature(snake_case ) if return_tensors is not None: __UpperCamelCase = input_features.convert_to_tensors(snake_case ) return input_features
375
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : Dict = "unispeech" def __init__( self : str , snake_case : Union[str, Any]=32 , snake_case : Optional[Any]=768 , snake_case : Dict=12 , snake_case : Tuple=12 , snake_case : Optional[Any]=3072 , snake_case : Any="gelu" , snake_case : Dict=0.1 , snake_case : Tuple=0.1 , snake_case : str=0.1 , snake_case : Optional[int]=0.0 , snake_case : Any=0.0 , snake_case : Optional[Any]=0.1 , snake_case : List[Any]=0.1 , snake_case : Optional[int]=0.02 , snake_case : List[str]=1E-5 , snake_case : str="group" , snake_case : List[Any]="gelu" , snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , snake_case : List[Any]=(5, 2, 2, 2, 2, 2, 2) , snake_case : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , snake_case : Tuple=False , snake_case : Optional[int]=128 , snake_case : List[str]=16 , snake_case : List[str]=False , snake_case : Dict=True , snake_case : Optional[Any]=0.05 , snake_case : Optional[Any]=10 , snake_case : Union[str, Any]=2 , snake_case : List[str]=0.0 , snake_case : str=10 , snake_case : int=0 , snake_case : Tuple=320 , snake_case : Any=2 , snake_case : List[str]=0.1 , snake_case : Optional[Any]=100 , snake_case : List[Any]=256 , snake_case : Union[str, Any]=256 , snake_case : Any=0.1 , snake_case : str="mean" , snake_case : Union[str, Any]=False , snake_case : str=False , snake_case : Union[str, Any]=256 , snake_case : Optional[Any]=80 , snake_case : str=0 , snake_case : int=1 , snake_case : int=2 , snake_case : Dict=0.5 , **snake_case : Optional[int] , ): super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case ) __UpperCamelCase = hidden_size __UpperCamelCase = feat_extract_norm __UpperCamelCase = feat_extract_activation __UpperCamelCase = list(snake_case ) __UpperCamelCase = list(snake_case ) __UpperCamelCase = list(snake_case ) __UpperCamelCase = conv_bias __UpperCamelCase = num_conv_pos_embeddings __UpperCamelCase = num_conv_pos_embedding_groups __UpperCamelCase = len(self.conv_dim ) __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = feat_proj_dropout __UpperCamelCase = final_dropout __UpperCamelCase = layerdrop __UpperCamelCase = layer_norm_eps __UpperCamelCase = initializer_range __UpperCamelCase = num_ctc_classes __UpperCamelCase = vocab_size __UpperCamelCase = do_stable_layer_norm __UpperCamelCase = use_weighted_layer_sum __UpperCamelCase = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase = apply_spec_augment __UpperCamelCase = mask_time_prob __UpperCamelCase = mask_time_length __UpperCamelCase = mask_time_min_masks __UpperCamelCase = mask_feature_prob __UpperCamelCase = mask_feature_length __UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase = num_codevectors_per_group __UpperCamelCase = num_codevector_groups __UpperCamelCase = contrastive_logits_temperature __UpperCamelCase = feat_quantizer_dropout __UpperCamelCase = num_negatives __UpperCamelCase = codevector_dim __UpperCamelCase = proj_codevector_dim __UpperCamelCase = diversity_loss_weight # ctc loss __UpperCamelCase = ctc_loss_reduction __UpperCamelCase = ctc_zero_infinity # pretraining loss __UpperCamelCase = replace_prob @property def snake_case ( self : Dict ): return functools.reduce(operator.mul , self.conv_stride , 1 )
375
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = IFInpaintingSuperResolutionPipeline lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} lowerCAmelCase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'''original_image'''} ) lowerCAmelCase_ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCAmelCase__ ( self : Any , _A : str , _A : Tuple=0 ): """simple docstring""" if str(_A ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : int = torch.manual_seed(_A ) else: __SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=_A ).manual_seed(_A ) __SCREAMING_SNAKE_CASE : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(_A ) ).to(_A ) __SCREAMING_SNAKE_CASE : Tuple = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __SCREAMING_SNAKE_CASE : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) __SCREAMING_SNAKE_CASE : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def UpperCAmelCase__ ( self : int ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def UpperCAmelCase__ ( self : str ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" self._test_save_load_local() def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
74
def a ( A__ ) -> int: '''simple docstring''' if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(A__ , A__ ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(A__ ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
35
0
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCamelCase = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") UpperCamelCase = F'''https://www.google.com/search?q={query}&num=100''' UpperCamelCase = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: UpperCamelCase = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: UpperCamelCase = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
152
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 snake_case = None class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" snake_case = 2 @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 0.0_2 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 1.0_0_7 , _SCREAMING_SNAKE_CASE = 80 , _SCREAMING_SNAKE_CASE = 0.0_5 , _SCREAMING_SNAKE_CASE = 50 , )->Optional[Any]: '''simple docstring''' A_ : Tuple = sigma_max # setable values A_ : int = None A_ : np.IntTensor = None A_ : torch.FloatTensor = None # sigma(t_i) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->torch.FloatTensor: '''simple docstring''' return sample def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[Any]: '''simple docstring''' A_ : int = num_inference_steps A_ : List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() A_ : Optional[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) A_ : Any = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] A_ : Any = torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A_ : int = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: A_ : Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) A_ : Tuple = self.config.s_noise * randn_tensor(sample.shape , generator=_SCREAMING_SNAKE_CASE ).to(sample.device ) A_ : Any = sigma + gamma * sigma A_ : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[KarrasVeOutput, Tuple]: '''simple docstring''' A_ : Dict = sample_hat + sigma_hat * model_output A_ : Optional[int] = (sample_hat - pred_original_sample) / sigma_hat A_ : Dict = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[KarrasVeOutput, Tuple]: '''simple docstring''' A_ : Any = sample_prev + sigma_prev * model_output A_ : str = (sample_prev - pred_original_sample) / sigma_prev A_ : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' raise NotImplementedError()
152
1
"""simple docstring""" import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase_ : Union[str, Any] = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') lowerCAmelCase_ : str = parser.parse_args() if args.check_lib: lowerCAmelCase_ : int = importlib.import_module('''transformers''') lowerCAmelCase_ : Union[str, Any] = Path(transformers_module.__file__).parent else: lowerCAmelCase_ : Optional[int] = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
673
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : List[str] = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase=False ): '''simple docstring''' UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase = """""" else: UpperCAmelCase = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = dct.pop(lowerCAmelCase ) UpperCAmelCase = val def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase = 1000 UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = """imagenet-1k-id2label.json""" UpperCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = int(deit_name[-6:-4] ) UpperCAmelCase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 elif deit_name[9:].startswith("""small""" ): UpperCAmelCase = 384 UpperCAmelCase = 1536 UpperCAmelCase = 12 UpperCAmelCase = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): UpperCAmelCase = 1024 UpperCAmelCase = 4096 UpperCAmelCase = 24 UpperCAmelCase = 16 # load original model from timm UpperCAmelCase = timm.create_model(lowerCAmelCase , pretrained=lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase = timm_model.state_dict() UpperCAmelCase = create_rename_keys(lowerCAmelCase , lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # load HuggingFace model UpperCAmelCase = DeiTForImageClassificationWithTeacher(lowerCAmelCase ).eval() model.load_state_dict(lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase = DeiTImageProcessor(size=lowerCAmelCase , crop_size=config.image_size ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ) UpperCAmelCase = encoding["""pixel_values"""] UpperCAmelCase = model(lowerCAmelCase ) UpperCAmelCase = timm_model(lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase_ : str = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
673
1
lowerCAmelCase__ = "Input must be a string of 8 numbers plus letter" lowerCAmelCase__ = "TRWAGMYFPDXBNJZSQVHLCKE" def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Optional[Any]: '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCamelCase : Optional[int] = F'''Expected string as input, found {type(_SCREAMING_SNAKE_CASE ).__name__}''' raise TypeError(_SCREAMING_SNAKE_CASE ) _UpperCamelCase : Tuple = spanish_id.replace('-' , '' ).upper() if len(_SCREAMING_SNAKE_CASE ) != 9: raise ValueError(_SCREAMING_SNAKE_CASE ) try: _UpperCamelCase : Optional[int] = int(spanish_id_clean[0:8] ) _UpperCamelCase : List[Any] = spanish_id_clean[8] except ValueError as ex: raise ValueError(_SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(_SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
449
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: int , lowerCamelCase_: int ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
449
1
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _snake_case = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] _snake_case = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = ''' Hello world! cécé herlolip''' _snake_case = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def __lowerCamelCase ( _lowercase ) -> List[Any]: UpperCamelCase = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Optional[int]: UpperCamelCase = dct.pop(_lowercase ) UpperCamelCase = val def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCamelCase = torch.load(_lowercase , map_location='cpu' ) UpperCamelCase = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def __lowerCamelCase ( _lowercase ) -> Dict: UpperCamelCase , UpperCamelCase = emb.weight.shape UpperCamelCase = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None ) -> List[Any]: if not os.path.exists(_lowercase ): UpperCamelCase = torch.hub.load('pytorch/fairseq' , _lowercase ).eval() else: UpperCamelCase = load_xsum_checkpoint(_lowercase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCamelCase = checkpoint_path.replace('.' , '-' ) UpperCamelCase = BartConfig.from_pretrained(_lowercase ) UpperCamelCase = bart.encode(_lowercase ).unsqueeze(0 ) UpperCamelCase = BartTokenizer.from_pretrained(_lowercase ).encode(_lowercase , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(_lowercase , _lowercase ).all(): raise ValueError( F'converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}' ) if checkpoint_path == "bart.large.mnli": UpperCamelCase = bart.state_dict() remove_ignore_keys_(_lowercase ) UpperCamelCase = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) UpperCamelCase = BartForSequenceClassification(_lowercase ).eval() model.load_state_dict(_lowercase ) UpperCamelCase = bart.predict('mnli' , _lowercase , return_logits=_lowercase ) UpperCamelCase = model(_lowercase )[0] # logits else: # no classification heads to worry about UpperCamelCase = bart.model.state_dict() remove_ignore_keys_(_lowercase ) UpperCamelCase = state_dict['decoder.embed_tokens.weight'] UpperCamelCase = bart.extract_features(_lowercase ) if hf_checkpoint_name == "facebook/bart-large": UpperCamelCase = BartModel(_lowercase ).eval() model.load_state_dict(_lowercase ) UpperCamelCase = model(_lowercase ).model[0] else: UpperCamelCase = BartForConditionalGeneration(_lowercase ).eval() # an existing summarization ckpt model.model.load_state_dict(_lowercase ) if hasattr(_lowercase , 'lm_head' ): UpperCamelCase = make_linear_from_emb(model.model.shared ) UpperCamelCase = model.model(_lowercase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) _snake_case = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
170
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] =DanceDiffusionPipeline SCREAMING_SNAKE_CASE_ : str =UNCONDITIONAL_AUDIO_GENERATION_PARAMS SCREAMING_SNAKE_CASE_ : int =PipelineTesterMixin.required_optional_params - { "callback", "latents", "callback_steps", "output_type", "num_images_per_prompt", } SCREAMING_SNAKE_CASE_ : Optional[int] =UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : Optional[int] =False SCREAMING_SNAKE_CASE_ : Union[str, Any] =False def __lowerCAmelCase ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=SCREAMING_SNAKE_CASE__ , use_timestep_embedding=SCREAMING_SNAKE_CASE__ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) UpperCamelCase = IPNDMScheduler() UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, } return components def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str=0 ): """simple docstring""" if str(SCREAMING_SNAKE_CASE__ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __lowerCAmelCase ( self : Dict ): """simple docstring""" UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = DanceDiffusionPipeline(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = pipe(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase = output.audios UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) UpperCamelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __lowerCAmelCase ( self : List[Any] ): """simple docstring""" return super().test_save_load_local() @skip_mps def __lowerCAmelCase ( self : Any ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def __lowerCAmelCase ( self : Any ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def __lowerCAmelCase ( self : Any ): """simple docstring""" return super().test_attention_slicing_forward_pass() def __lowerCAmelCase ( self : List[str] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : str ): """simple docstring""" UpperCamelCase = torch_device UpperCamelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) UpperCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) UpperCamelCase = output.audios UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Tuple ): """simple docstring""" UpperCamelCase = torch_device UpperCamelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) UpperCamelCase = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = torch.manual_seed(0 ) UpperCamelCase = pipe(generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) UpperCamelCase = output.audios UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) UpperCamelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
170
1
'''simple docstring''' __UpperCAmelCase ="Tobias Carryer" from time import time class a__ : def __init__( self : Dict , a : Optional[Any] , a : Optional[Any] , a : str , a : Optional[int]=int(time() ) ): # noqa: B008 """simple docstring""" __lowerCamelCase = multiplier __lowerCamelCase = increment __lowerCamelCase = modulo __lowerCamelCase = seed def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" __lowerCamelCase = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __UpperCAmelCase =LinearCongruentialGenerator(1_6_6_4_5_2_5, 1_0_1_3_9_0_4_2_2_3, 2 << 3_1) while True: print(lcg.next_number())
546
__lowerCamelCase = """Tobias Carryer""" from time import time class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Optional[int]=int(time() ) ) -> List[Any]: # noqa: B008 '''simple docstring''' snake_case : Dict = multiplier snake_case : Dict = increment snake_case : Union[str, Any] = modulo snake_case : Tuple = seed def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any: '''simple docstring''' snake_case : Optional[int] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. __lowerCamelCase = LinearCongruentialGenerator(1_66_45_25, 10_13_90_42_23, 2 << 31) while True: print(lcg.next_number())
204
0
import argparse from collections import defaultdict import yaml _snake_case = "docs/source/en/_toctree.yml" def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = defaultdict(_lowerCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 _lowerCAmelCase : List[str] = [key for key, value in counts.items() if value > 1] _lowerCAmelCase : Union[str, Any] = [] for duplicate_key in duplicates: _lowerCAmelCase : List[str] = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(_lowerCamelCase ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : s["title"].lower() ) def A ( _lowerCamelCase=False ): '''simple docstring''' with open(_lowerCamelCase , encoding="utf-8" ) as f: _lowerCAmelCase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowerCAmelCase : Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCAmelCase : Dict = content[api_idx]["sections"] # Then to the model doc _lowerCAmelCase : Optional[int] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _lowerCAmelCase : Optional[Any] = api_doc[model_idx]["sections"] _lowerCAmelCase : Optional[int] = [(idx, section) for idx, section in enumerate(_lowerCamelCase ) if "sections" in section] _lowerCAmelCase : Optional[Any] = False for idx, modality_doc in modalities_docs: _lowerCAmelCase : Tuple = modality_doc["sections"] _lowerCAmelCase : Optional[Any] = clean_model_doc_toc(_lowerCamelCase ) if old_modality_doc != new_modality_doc: _lowerCAmelCase : int = True if overwrite: _lowerCAmelCase : Any = new_modality_doc if diff: if overwrite: _lowerCAmelCase : Union[str, Any] = model_doc _lowerCAmelCase : List[str] = api_doc with open(_lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(_lowerCamelCase , allow_unicode=_lowerCamelCase ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _snake_case = parser.parse_args() check_model_doc(args.fix_and_overwrite)
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase : list[int] , __UpperCamelCase : int ): '''simple docstring''' __lowercase = 0 __lowercase = len(__UpperCamelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowercase = i + 1 else: __lowercase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
566
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__( snake_case_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=9_9 , __UpperCAmelCase=3_2 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=3_7 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_1_2 , __UpperCAmelCase=1_6 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = relative_attention __lowercase = position_biased_input __lowercase = pos_att_type __lowercase = scope def __magic_name__ ( self ): """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_config() __lowercase = 3_0_0 return config def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = DebertaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] __lowercase = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )[0] __lowercase = model(__UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = DebertaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = self.num_labels __lowercase = DebertaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = self.num_labels __lowercase = DebertaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = DebertaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Tuple = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase : str = ( { "feature-extraction": DebertaModel, "fill-mask": DebertaForMaskedLM, "question-answering": DebertaForQuestionAnswering, "text-classification": DebertaForSequenceClassification, "token-classification": DebertaForTokenClassification, "zero-shot": DebertaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase : List[Any] = True UpperCamelCase : Optional[Any] = False UpperCamelCase : List[Any] = False UpperCamelCase : Tuple = False UpperCamelCase : List[str] = False def __magic_name__ ( self ): """simple docstring""" __lowercase = DebertaModelTester(self ) __lowercase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=3_7 ) def __magic_name__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase ) @slow def __magic_name__ ( self ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = DebertaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def __magic_name__ ( self ): """simple docstring""" pass @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) __lowercase = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowercase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] # compare the actual values for a slice. __lowercase = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
566
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = StableDiffusionSAGPipeline SCREAMING_SNAKE_CASE_ : int = TEXT_TO_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : int = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ : Tuple = False def __A ( self ) -> Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __A ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Any: if str(lowerCAmelCase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def __A ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self ) -> int: SCREAMING_SNAKE_CASE = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) SCREAMING_SNAKE_CASE = sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = '.' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = sag_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) SCREAMING_SNAKE_CASE = sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = '.' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = sag_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) SCREAMING_SNAKE_CASE = sag_pipe.to(lowerCAmelCase__ ) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = '.' SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = sag_pipe( [prompt] , width=768 , height=512 , generator=lowerCAmelCase__ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) SCREAMING_SNAKE_CASE = output.images assert image.shape == (1, 512, 768, 3)
327
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = BlipImageProcessor() SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) SCREAMING_SNAKE_CASE = BlipProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) def __A ( self , **lowerCAmelCase__ ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).tokenizer def __A ( self , **lowerCAmelCase__ ) -> int: return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ).image_processor def __A ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = image_processor(lowerCAmelCase__ , return_tensors='np' ) SCREAMING_SNAKE_CASE = processor(images=lowerCAmelCase__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = processor(text=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer(lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE = processor.batch_decode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> str: SCREAMING_SNAKE_CASE = self.get_image_processor() SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = self.prepare_image_inputs() SCREAMING_SNAKE_CASE = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
327
1
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput a : int = 8 def lowercase_ ( _UpperCamelCase , _UpperCamelCase=BITS ): '''simple docstring''' __lowercase = x.device __lowercase = (x * 2_55).int().clamp(0 , 2_55 ) __lowercase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCamelCase ) __lowercase = rearrange(__lowerCamelCase , '''d -> d 1 1''' ) __lowercase = rearrange(__lowerCamelCase , '''b c h w -> b c 1 h w''' ) __lowercase = ((x & mask) != 0).float() __lowercase = rearrange(__lowerCamelCase , '''b c d h w -> b (c d) h w''' ) __lowercase = bits * 2 - 1 return bits def lowercase_ ( _UpperCamelCase , _UpperCamelCase=BITS ): '''simple docstring''' __lowercase = x.device __lowercase = (x > 0).int() __lowercase = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__lowerCamelCase , dtype=torch.intaa ) __lowercase = rearrange(__lowerCamelCase , '''d -> d 1 1''' ) __lowercase = rearrange(__lowerCamelCase , '''b (c d) h w -> b c d h w''' , d=8 ) __lowercase = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 2_55).clamp(0.0 , 1.0 ) def lowercase_ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0.0 , _UpperCamelCase = True , _UpperCamelCase=None , _UpperCamelCase = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __lowercase = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __lowercase = self.alphas_cumprod[timestep] __lowercase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __lowercase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __lowercase = self.bit_scale if self.config.clip_sample: __lowercase = torch.clamp(__lowerCamelCase , -scale , __lowerCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __lowercase = self._get_variance(__lowerCamelCase , __lowerCamelCase ) __lowercase = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __lowercase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __lowercase = model_output.device if torch.is_tensor(__lowerCamelCase ) else '''cpu''' __lowercase = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__lowerCamelCase ).to(__lowerCamelCase ) __lowercase = self._get_variance(__lowerCamelCase , __lowerCamelCase ) ** 0.5 * eta * noise __lowercase = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) def lowercase_ ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="epsilon" , _UpperCamelCase=None , _UpperCamelCase = True , ): '''simple docstring''' __lowercase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __lowercase , __lowercase = torch.split(__lowerCamelCase , sample.shape[1] , dim=1 ) else: __lowercase = None # 1. compute alphas, betas __lowercase = self.alphas_cumprod[t] __lowercase = self.alphas_cumprod[t - 1] if t > 0 else self.one __lowercase = 1 - alpha_prod_t __lowercase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __lowercase = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" __lowercase = self.bit_scale if self.config.clip_sample: __lowercase = torch.clamp(__lowerCamelCase , -scale , __lowerCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __lowercase = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowercase = 0 if t > 0: __lowercase = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__lowerCamelCase ).to(model_output.device ) __lowercase = (self._get_variance(__lowerCamelCase , predicted_variance=__lowerCamelCase ) ** 0.5) * noise __lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase ) class lowerCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ = 1.0 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() __lowercase = bit_scale __lowercase = ( ddim_bit_scheduler_step if isinstance(snake_case_ , snake_case_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self , snake_case_ = 2_5_6 , snake_case_ = 2_5_6 , snake_case_ = 5_0 , snake_case_ = None , snake_case_ = 1 , snake_case_ = "pil" , snake_case_ = True , **snake_case_ , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' __lowercase = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=snake_case_ , ) __lowercase = decimal_to_bits(snake_case_ ) * self.bit_scale __lowercase = latents.to(self.device ) self.scheduler.set_timesteps(snake_case_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __lowercase = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ ).prev_sample __lowercase = bits_to_decimal(snake_case_ ) if output_type == "pil": __lowercase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
639
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar lowercase_ = TypeVar("""T""") class a_ ( Generic[T] ): '''simple docstring''' def __init__( self , A , A ) -> None: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = len(A ) _SCREAMING_SNAKE_CASE = [any_type for _ in range(self.N )] + arr _SCREAMING_SNAKE_CASE = fnc self.build() def snake_case_( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): _SCREAMING_SNAKE_CASE = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def snake_case_( self , A , A ) -> None: p += self.N _SCREAMING_SNAKE_CASE = v while p > 1: _SCREAMING_SNAKE_CASE = p // 2 _SCREAMING_SNAKE_CASE = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def snake_case_( self , A , A ) -> T | None: # noqa: E741 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = l + self.N, r + self.N _SCREAMING_SNAKE_CASE = None while l <= r: if l % 2 == 1: _SCREAMING_SNAKE_CASE = self.st[l] if res is None else self.fn(A , self.st[l] ) if r % 2 == 0: _SCREAMING_SNAKE_CASE = self.st[r] if res is None else self.fn(A , self.st[r] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce lowercase_ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] lowercase_ = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } lowercase_ = SegmentTree(test_array, min) lowercase_ = SegmentTree(test_array, max) lowercase_ = SegmentTree(test_array, lambda a, b: a + b) def lowerCamelCase ( ) ->None: for i in range(len(__lowerCamelCase ) ): for j in range(__lowerCamelCase , len(__lowerCamelCase ) ): _SCREAMING_SNAKE_CASE = reduce(__lowerCamelCase , test_array[i : j + 1] ) _SCREAMING_SNAKE_CASE = reduce(__lowerCamelCase , test_array[i : j + 1] ) _SCREAMING_SNAKE_CASE = reduce(lambda __lowerCamelCase , __lowerCamelCase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__lowerCamelCase , __lowerCamelCase ) assert max_range == max_segment_tree.query(__lowerCamelCase , __lowerCamelCase ) assert sum_range == sum_segment_tree.query(__lowerCamelCase , __lowerCamelCase ) test_all_segments() for index, value in test_updates.items(): lowercase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
314
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) snake_case_ = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
388
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : List[str] = 'new-model' if is_tf_available(): class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Optional[Any] = NewModelConfig @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def a (self : Union[str, Any] ): """simple docstring""" __snake_case = '''bert-base-cased''' __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : Union[str, Any] ): """simple docstring""" __snake_case = '''bert-base-cased''' __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForPreTraining.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : int ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForCausalLM.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForCausalLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : int ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : str ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForMaskedLM.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForMaskedLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : Any ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : Union[str, Any] ): """simple docstring""" for model_name in ["bert-base-uncased"]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForSequenceClassification.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow def a (self : str ): """simple docstring""" for model_name in ["bert-base-uncased"]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForQuestionAnswering.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) @slow @require_tensorflow_probability def a (self : List[str] ): """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __snake_case = AutoConfig.from_pretrained(a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) __snake_case = TFAutoModelForTableQuestionAnswering.from_pretrained(a__ ) __snake_case , __snake_case = TFAutoModelForTableQuestionAnswering.from_pretrained( a__ , output_loading_info=a__ ) self.assertIsNotNone(a__ ) self.assertIsInstance(a__ , a__ ) def a (self : Optional[int] ): """simple docstring""" __snake_case = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_4410 ) def a (self : List[Any] ): """simple docstring""" __snake_case = TFAutoModelWithLMHead.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=a__ ) , 1_4410 ) def a (self : List[str] ): """simple docstring""" __snake_case = TFAutoModel.from_pretrained('''sgugger/funnel-random-tiny''' ) self.assertIsInstance(a__ , a__ ) __snake_case = copy.deepcopy(model.config ) __snake_case = ['''FunnelBaseModel'''] __snake_case = TFAutoModel.from_config(a__ ) self.assertIsInstance(a__ , a__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a__ ) __snake_case = TFAutoModel.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) def a (self : str ): """simple docstring""" try: AutoConfig.register('''new-model''' , a__ ) __snake_case = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(a__ ): auto_class.register(a__ , a__ ) auto_class.register(a__ , a__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a__ ): auto_class.register(a__ , a__ ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case = BertModelTester(self ).get_config() __snake_case = NewModelConfig(**tiny_config.to_dict() ) __snake_case = auto_class.from_config(a__ ) self.assertIsInstance(a__ , a__ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a__ ) __snake_case = auto_class.from_pretrained(a__ ) self.assertIsInstance(a__ , a__ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a (self : Tuple ): """simple docstring""" with self.assertRaisesRegex( a__ , '''bert-base is not a local folder and is not a valid model identifier''' ): __snake_case = TFAutoModel.from_pretrained('''bert-base''' ) def a (self : Dict ): """simple docstring""" with self.assertRaisesRegex( a__ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): __snake_case = TFAutoModel.from_pretrained(a__ , revision='''aaaaaa''' ) def a (self : Tuple ): """simple docstring""" with self.assertRaisesRegex( a__ , '''hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin''' , ): __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def a (self : int ): """simple docstring""" with self.assertRaisesRegex(a__ , '''Use `from_pt=True` to load this model''' ): __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' ) def a (self : List[str] ): """simple docstring""" __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: __snake_case = TFAutoModel.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __snake_case = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) with RequestCounter() as counter: __snake_case = TFAutoModel.from_pretrained('''ArthurZ/tiny-random-bert-sharded''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
388
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) a__ = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , _a , _a , _a = None , _a = None ) -> List[Any]: _a : Union[str, Any] = None _a : Optional[Any] = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) _a : Optional[int] = os.path.abspath('''examples''' ) for item in os.listdir(_a ): if item not in EXCLUDE_EXAMPLES: _a : Any = os.path.join(_a , _a ) if os.path.isfile(_a ) and ".py" in item_path: with self.subTest( tested_script=_a , feature_script=_a , tested_section='''main()''' if parser_only else '''training_function()''' , ): _a : Optional[int] = compare_against_test( os.path.join(_a , _a ) , _a , _a , _a ) _a : Union[str, Any] = '''\n'''.join(_a ) if special_strings is not None: for string in special_strings: _a : Union[str, Any] = diff.replace(_a , '''''' ) self.assertEqual(_a , '''''' ) def __lowercase ( self ) -> Optional[Any]: self.one_complete_example('''complete_nlp_example.py''' , _a ) self.one_complete_example('''complete_nlp_example.py''' , _a ) def __lowercase ( self ) -> Union[str, Any]: _a : Optional[int] = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) _a : int = [ ''' ''' * 1_6 + '''{\n\n''', ''' ''' * 2_0 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 2_0 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 2_0 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 2_0 + '''"epoch": epoch,\n\n''', ''' ''' * 1_6 + '''},\n\n''', ''' ''' * 1_6 + '''step=epoch,\n''', ''' ''' * 1_2, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , _a , _a , _a ) self.one_complete_example('''complete_cv_example.py''' , _a , _a , _a ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" UpperCAmelCase__ : Any = False @classmethod def __lowercase ( cls ) -> List[Any]: super().setUpClass() _a : str = tempfile.mkdtemp() _a : str = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _a : int = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def __lowercase ( cls ) -> Optional[int]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __lowercase ( self ) -> Dict: _a : Union[str, Any] = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def __lowercase ( self ) -> List[str]: _a : Union[str, Any] = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() _a : List[str] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def __lowercase ( self ) -> Any: _a : Dict = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() _a : str = run_command(self._launch_args + testargs , return_stdout=_a ) self.assertNotIn('''epoch 0:''' , _a ) self.assertIn('''epoch 1:''' , _a ) def __lowercase ( self ) -> Dict: _a : Optional[Any] = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() _a : Optional[int] = run_command(self._launch_args + testargs , return_stdout=_a ) if torch.cuda.is_available(): _a : List[Any] = torch.cuda.device_count() else: _a : Tuple = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , _a ) self.assertIn('''epoch 1:''' , _a ) else: self.assertIn('''epoch 0:''' , _a ) self.assertIn('''epoch 1:''' , _a ) @slow def __lowercase ( self ) -> Union[str, Any]: _a : List[str] = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): _a : Tuple = run_command(self._launch_args + testargs , return_stdout=_a ) _a : int = re.findall('''({.+})''' , _a ) _a : int = [r for r in results if '''accuracy''' in r][-1] _a : Optional[Any] = ast.literal_eval(_a ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def __lowercase ( self ) -> str: _a : Optional[int] = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __lowercase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: _a : str = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(_a , '''tracking''' ) ) ) def __lowercase ( self ) -> Optional[int]: _a : List[str] = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def __lowercase ( self ) -> List[Any]: _a : Union[str, Any] = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
14
import math def _A (UpperCamelCase : list , UpperCamelCase : int = 0 , UpperCamelCase : int = 0 ) ->list: '''simple docstring''' lowerCamelCase__ : Tuple = end or len(UpperCamelCase ) for i in range(UpperCamelCase , UpperCamelCase ): lowerCamelCase__ : List[str] = i lowerCamelCase__ : List[str] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: lowerCamelCase__ : Union[str, Any] = array[temp_index - 1] temp_index -= 1 lowerCamelCase__ : Dict = temp_index_value return array def _A (UpperCamelCase : list , UpperCamelCase : int , UpperCamelCase : int ) ->None: # Max Heap '''simple docstring''' lowerCamelCase__ : Any = index lowerCamelCase__ : int = 2 * index + 1 # Left Node lowerCamelCase__ : str = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: lowerCamelCase__ : Tuple = left_index if right_index < heap_size and array[largest] < array[right_index]: lowerCamelCase__ : List[Any] = right_index if largest != index: lowerCamelCase__ ,lowerCamelCase__ : Any = array[largest], array[index] heapify(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def _A (UpperCamelCase : list ) ->list: '''simple docstring''' lowerCamelCase__ : Optional[int] = len(UpperCamelCase ) for i in range(n // 2 , -1 , -1 ): heapify(UpperCamelCase , UpperCamelCase , UpperCamelCase ) for i in range(n - 1 , 0 , -1 ): lowerCamelCase__ ,lowerCamelCase__ : int = array[0], array[i] heapify(UpperCamelCase , 0 , UpperCamelCase ) return array def _A (UpperCamelCase : list , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def _A (UpperCamelCase : list , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int ) ->int: '''simple docstring''' lowerCamelCase__ : Optional[Any] = low lowerCamelCase__ : Optional[int] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i lowerCamelCase__ ,lowerCamelCase__ : Dict = array[j], array[i] i += 1 def _A (UpperCamelCase : list ) ->list: '''simple docstring''' if len(UpperCamelCase ) == 0: return array lowerCamelCase__ : Any = 2 * math.ceil(math.loga(len(UpperCamelCase ) ) ) lowerCamelCase__ : Union[str, Any] = 16 return intro_sort(UpperCamelCase , 0 , len(UpperCamelCase ) , UpperCamelCase , UpperCamelCase ) def _A (UpperCamelCase : list , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int , UpperCamelCase : int ) ->list: '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(UpperCamelCase ) max_depth -= 1 lowerCamelCase__ : Tuple = median_of_a(UpperCamelCase , UpperCamelCase , start + ((end - start) // 2) + 1 , end - 1 ) lowerCamelCase__ : Optional[int] = partition(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) intro_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : str = p return insertion_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() _lowercase = input('''Enter numbers separated by a comma : ''').strip() _lowercase = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
157
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : Dict = DiTPipeline _snake_case : int = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _snake_case : str = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } _snake_case : int = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _snake_case : int = False def lowerCAmelCase_ ( self : Dict ): torch.manual_seed(0 ) _UpperCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowerCAmelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=__lowerCAmelCase , ) _UpperCAmelCase = AutoencoderKL() _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def lowerCAmelCase_ ( self : str , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict=0 ): if str(__lowerCAmelCase ).startswith("""mps""" ): _UpperCAmelCase = torch.manual_seed(__lowerCAmelCase ) else: _UpperCAmelCase = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) _UpperCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = """cpu""" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) _UpperCAmelCase = self.get_dummy_inputs(__lowerCAmelCase ) _UpperCAmelCase = pipe(**__lowerCAmelCase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _UpperCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCAmelCase , 1e-3 ) def lowerCAmelCase_ ( self : Dict ): self._test_inference_batch_single_identical(relax_max_difference=__lowerCAmelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase_ ( self : List[Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _UpperCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _UpperCAmelCase = pipe.get_label_ids(__lowerCAmelCase ) _UpperCAmelCase = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _UpperCAmelCase = ["""vase""", """umbrella"""] _UpperCAmelCase = pipe.get_label_ids(__lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe(__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(__lowerCAmelCase , __lowerCAmelCase ): _UpperCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
275
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a ( unittest.TestCase ): def __init__( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str=7 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : List[Any]=18 , __lowerCAmelCase : int=30 , __lowerCAmelCase : Any=400 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : str=None , __lowerCAmelCase : Optional[Any]=True , ): _UpperCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = apply_ocr def lowerCAmelCase_ ( self : int ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a ( lowerCAmelCase_ , unittest.TestCase ): _snake_case : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """size""" ) ) self.assertTrue(hasattr(__lowerCAmelCase , """apply_ocr""" ) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : List[str] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __lowerCAmelCase ) self.assertIsInstance(encoding.boxes , __lowerCAmelCase ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Any ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCAmelCase , torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # with apply_OCR = True _UpperCAmelCase = LayoutLMvaImageProcessor() from datasets import load_dataset _UpperCAmelCase = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) _UpperCAmelCase = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _UpperCAmelCase = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 _UpperCAmelCase = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __lowerCAmelCase ) self.assertListEqual(encoding.boxes , __lowerCAmelCase ) # with apply_OCR = False _UpperCAmelCase = LayoutLMvaImageProcessor(apply_ocr=__lowerCAmelCase ) _UpperCAmelCase = image_processing(__lowerCAmelCase , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
275
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( ) -> Dict: lowerCAmelCase = 1_0 lowerCAmelCase = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) lowerCAmelCase = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [9_7], '''text''': ['''1976''']}] * 1_0, '''id''': list(range(snake_case__ ) ), } , features=snake_case__ , ) return dataset @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Any: lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=snake_case__ ) return filename # FILE_CONTENT + files lowercase__ : Any = '''\ Text data. Second line of data.''' @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> int: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' lowerCAmelCase = FILE_CONTENT with open(snake_case__ , '''w''' ) as f: f.write(snake_case__ ) return filename @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: import bza lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' lowerCAmelCase = bytes(snake_case__ , '''utf-8''' ) with bza.open(snake_case__ , '''wb''' ) as f: f.write(snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[Any]: import gzip lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) lowerCAmelCase = bytes(snake_case__ , '''utf-8''' ) with gzip.open(snake_case__ , '''wb''' ) as f: f.write(snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[Any]: if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' lowerCAmelCase = bytes(snake_case__ , '''utf-8''' ) with lza.frame.open(snake_case__ , '''wb''' ) as f: f.write(snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Optional[Any]: if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(snake_case__ , '''w''' ) as archive: archive.write(snake_case__ , arcname=os.path.basename(snake_case__ ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> List[Any]: import tarfile lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(snake_case__ , '''w''' ) as f: f.add(snake_case__ , arcname=os.path.basename(snake_case__ ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]: import lzma lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' lowerCAmelCase = bytes(snake_case__ , '''utf-8''' ) with lzma.open(snake_case__ , '''wb''' ) as f: f.write(snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Any: import zipfile lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(snake_case__ , '''w''' ) as f: f.write(snake_case__ , arcname=os.path.basename(snake_case__ ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' lowerCAmelCase = bytes(snake_case__ , '''utf-8''' ) with zstd.open(snake_case__ , '''wb''' ) as f: f.write(snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> List[Any]: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' lowerCAmelCase = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(snake_case__ , '''w''' ) as f: f.write(snake_case__ ) return filename lowercase__ : Union[str, Any] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] lowercase__ : Tuple = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] lowercase__ : Any = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } lowercase__ : Optional[int] = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] lowercase__ : List[Any] = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( ) -> str: return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[Any]: lowerCAmelCase = datasets.Dataset.from_dict(snake_case__ ) lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(snake_case__ ) ) as con: lowerCAmelCase = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Tuple: lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(snake_case__ , '''w''' , newline='''''' ) as f: lowerCAmelCase = csv.DictWriter(snake_case__ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]: lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(snake_case__ , '''w''' , newline='''''' ) as f: lowerCAmelCase = csv.DictWriter(snake_case__ , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> List[Any]: import bza lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(snake_case__ , '''rb''' ) as f: lowerCAmelCase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(snake_case__ , '''wb''' ) as f: f.write(snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(snake_case__ , '''w''' ) as f: f.write(snake_case__ , arcname=os.path.basename(snake_case__ ) ) f.write(snake_case__ , arcname=os.path.basename(snake_case__ ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> int: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(snake_case__ , '''w''' ) as f: f.write(snake_case__ , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(snake_case__ , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(snake_case__ , '''w''' ) as f: f.write(snake_case__ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case__ ) ) ) f.write(snake_case__ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case__ ) ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]: lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) lowerCAmelCase = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(snake_case__ , '''wb''' ) as f: lowerCAmelCase = pq.ParquetWriter(snake_case__ , schema=snake_case__ ) lowerCAmelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(snake_case__ ) )] for k in DATA[0]} , schema=snake_case__ ) writer.write_table(snake_case__ ) writer.close() return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Tuple: lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowerCAmelCase = {'''data''': DATA} with open(snake_case__ , '''w''' ) as f: json.dump(snake_case__ , snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[int]: lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) lowerCAmelCase = {'''data''': DATA_DICT_OF_LISTS} with open(snake_case__ , '''w''' ) as f: json.dump(snake_case__ , snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Union[str, Any]: lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(snake_case__ , '''w''' ) as f: for item in DATA: f.write(json.dumps(snake_case__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Any: lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(snake_case__ , '''w''' ) as f: for item in DATA: f.write(json.dumps(snake_case__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> str: lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(snake_case__ , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(snake_case__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[Any]: lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(snake_case__ , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(snake_case__ ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> int: import gzip lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(snake_case__ , '''rb''' ) as orig_file: with gzip.open(snake_case__ , '''wb''' ) as zipped_file: zipped_file.writelines(snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> Optional[int]: import gzip lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(snake_case__ , '''rb''' ) as orig_file: with gzip.open(snake_case__ , '''wb''' ) as zipped_file: zipped_file.writelines(snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[str]: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(snake_case__ , '''w''' ) as f: f.write(snake_case__ , arcname=os.path.basename(snake_case__ ) ) f.write(snake_case__ , arcname=os.path.basename(snake_case__ ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(snake_case__ , '''w''' ) as f: f.write(snake_case__ , arcname=os.path.join('''nested''' , os.path.basename(snake_case__ ) ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(snake_case__ , '''w''' ) as f: f.write(snake_case__ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case__ ) ) ) f.write(snake_case__ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case__ ) ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(snake_case__ , '''w''' ) as f: f.add(snake_case__ , arcname=os.path.basename(snake_case__ ) ) f.add(snake_case__ , arcname=os.path.basename(snake_case__ ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(snake_case__ , '''w''' ) as f: f.add(snake_case__ , arcname=os.path.join('''nested''' , os.path.basename(snake_case__ ) ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Tuple: lowerCAmelCase = ['''0''', '''1''', '''2''', '''3'''] lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(snake_case__ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Dict: lowerCAmelCase = ['''0''', '''1''', '''2''', '''3'''] lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(snake_case__ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Dict: lowerCAmelCase = ['''0''', '''1''', '''2''', '''3'''] lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(snake_case__ , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> Dict: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(snake_case__ , '''w''' ) as f: f.write(snake_case__ , arcname=os.path.basename(snake_case__ ) ) f.write(snake_case__ , arcname=os.path.basename(snake_case__ ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(snake_case__ , '''w''' ) as f: f.write(snake_case__ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case__ ) ) ) f.write(snake_case__ , arcname=os.path.join('''main_dir''' , os.path.basename(snake_case__ ) ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(snake_case__ , '''w''' ) as f: f.write(snake_case__ , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(snake_case__ , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[Any]: lowerCAmelCase = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) lowerCAmelCase = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(snake_case__ ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> List[str]: lowerCAmelCase = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(snake_case__ , '''w''' ) as f: f.write(snake_case__ , arcname=os.path.basename(snake_case__ ) ) f.write(snake_case__ , arcname=os.path.basename(snake_case__ ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ ) -> Optional[Any]: lowerCAmelCase = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) return data_dir
312
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase_ ( unittest.TestCase ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: lowerCAmelCase = self.dummy_uncond_unet lowerCAmelCase = ScoreSdeVeScheduler() lowerCAmelCase = ScoreSdeVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) sde_ve.to(__SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__SCREAMING_SNAKE_CASE ).images lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE )[ 0 ] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = '''google/ncsnpp-church-256''' lowerCAmelCase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = ScoreSdeVeScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = ScoreSdeVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) sde_ve.to(__SCREAMING_SNAKE_CASE ) sde_ve.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=__SCREAMING_SNAKE_CASE ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
312
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = ["pixel_values"] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 0.9 , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = size if size is not None else {"shortest_edge": 224} lowercase_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowercase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowercase_ = get_size_dict(UpperCAmelCase , param_name="crop_size" ) lowercase_ = do_resize lowercase_ = size lowercase_ = crop_pct lowercase_ = resample lowercase_ = do_center_crop lowercase_ = crop_size lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' lowercase_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: lowercase_ = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowercase_ = int(size["height"] / crop_pct ) else: lowercase_ = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(UpperCAmelCase ) ) lowercase_ = get_resize_output_image_size(UpperCAmelCase , size=UpperCAmelCase , default_to_square=UpperCAmelCase ) else: if "shortest_edge" in size: lowercase_ = get_resize_output_image_size(UpperCAmelCase , size=size["shortest_edge"] , default_to_square=UpperCAmelCase ) elif "height" in size and "width" in size: lowercase_ = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(UpperCAmelCase ) ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' lowercase_ = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(UpperCAmelCase , size=(size["height"], size["width"]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> int: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = crop_pct if crop_pct is not None else self.crop_pct lowercase_ = resample if resample is not None else self.resample lowercase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) lowercase_ = crop_size if crop_size is not None else self.crop_size lowercase_ = get_size_dict(UpperCAmelCase , param_name="crop_size" ) lowercase_ = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(UpperCAmelCase ) for image in images] if do_resize: lowercase_ = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , crop_pct=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_center_crop: lowercase_ = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase_ = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase_ = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase_ = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
717
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
601
0
"""simple docstring""" import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __SCREAMING_SNAKE_CASE = { '''E''': 12.70, '''T''': 9.06, '''A''': 8.17, '''O''': 7.51, '''I''': 6.97, '''N''': 6.75, '''S''': 6.33, '''H''': 6.09, '''R''': 5.99, '''D''': 4.25, '''L''': 4.03, '''C''': 2.78, '''U''': 2.76, '''M''': 2.41, '''W''': 2.36, '''F''': 2.23, '''G''': 2.02, '''Y''': 1.97, '''P''': 1.93, '''B''': 1.29, '''V''': 0.98, '''K''': 0.77, '''J''': 0.15, '''X''': 0.15, '''Q''': 0.10, '''Z''': 0.07, } __SCREAMING_SNAKE_CASE = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' __SCREAMING_SNAKE_CASE = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def A_ ( __lowercase ): UpperCamelCase_ : Optional[Any] ={letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def A_ ( __lowercase ): return x[0] def A_ ( __lowercase ): UpperCamelCase_ : List[str] =get_letter_count(__lowercase ) UpperCamelCase_ : dict[int, list[str]] ={ freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(__lowercase ) UpperCamelCase_ : dict[int, str] ={} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=__lowercase ) UpperCamelCase_ : str =''.join(freq_to_letter[freq] ) UpperCamelCase_ : Union[str, Any] =list(freq_to_letter_str.items() ) freq_pairs.sort(key=__lowercase , reverse=__lowercase ) UpperCamelCase_ : list[str] =[freq_pair[1] for freq_pair in freq_pairs] return "".join(__lowercase ) def A_ ( __lowercase ): UpperCamelCase_ : str =get_frequency_order(__lowercase ) UpperCamelCase_ : Optional[int] =0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
357
'''simple docstring''' import socket def lowerCAmelCase__ ( ): _A : Dict = socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) _A : List[Any] = socket.gethostname() _A : List[str] = 12312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' ,'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: _A : Optional[int] = sock.recv(1024 ) if not data: break out_file.write(lowerCamelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
128
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _a ( __a ): def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowercase , '''num_attention_heads''' ) ) class _a : def __init__( self : Any , lowercase : Optional[Any] , lowercase : Dict=13 , lowercase : List[Any]=64 , lowercase : int=3 , lowercase : Dict=3 , lowercase : Dict=2 , lowercase : Any=1 , lowercase : Optional[int]=16 , lowercase : List[str]=[128, 256, 384] , lowercase : List[str]=[4, 6, 8] , lowercase : List[str]=[2, 3, 4] , lowercase : List[Any]=[16, 16, 16] , lowercase : Union[str, Any]=0 , lowercase : str=[2, 2, 2] , lowercase : str=[2, 2, 2] , lowercase : Union[str, Any]=0.02 , lowercase : Optional[Any]=True , lowercase : Union[str, Any]=True , lowercase : str=2 , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = kernel_size UpperCAmelCase = stride UpperCAmelCase = padding UpperCAmelCase = hidden_sizes UpperCAmelCase = num_attention_heads UpperCAmelCase = depths UpperCAmelCase = key_dim UpperCAmelCase = drop_path_rate UpperCAmelCase = patch_size UpperCAmelCase = attention_ratio UpperCAmelCase = mlp_ratio UpperCAmelCase = initializer_range UpperCAmelCase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = num_labels UpperCAmelCase = initializer_range def A ( self : str ): '''simple docstring''' UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def A ( self : Dict , lowercase : Any , lowercase : Dict , lowercase : List[str] ): '''simple docstring''' UpperCAmelCase = LevitModel(config=lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase ) UpperCAmelCase = (self.image_size, self.image_size) UpperCAmelCase , UpperCAmelCase = image_size[0], image_size[1] for _ in range(4 ): UpperCAmelCase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCAmelCase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def A ( self : Any , lowercase : Dict , lowercase : List[Any] , lowercase : Tuple ): '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = LevitForImageClassification(lowercase ) model.to(lowercase ) model.eval() UpperCAmelCase = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _a ( __a , __a , unittest.TestCase ): __a : str = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) __a : Union[str, Any] = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) __a : Any = False __a : Optional[Any] = False __a : Union[str, Any] = False __a : Optional[Any] = False __a : List[Any] = False def A ( self : Any ): '''simple docstring''' UpperCAmelCase = LevitModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def A ( self : List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Optional[Any] ): '''simple docstring''' return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def A ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def A ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='''Levit does not output attentions''' ) def A ( self : int ): '''simple docstring''' pass def A ( self : Any ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowercase ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase ) def A ( self : Dict ): '''simple docstring''' def check_hidden_states_output(lowercase : Optional[int] , lowercase : Any , lowercase : Tuple ): UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(lowercase , lowercase ) ) UpperCAmelCase = outputs.hidden_states UpperCAmelCase = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowercase ) , lowercase ) UpperCAmelCase = (self.model_tester.image_size, self.model_tester.image_size) UpperCAmelCase , UpperCAmelCase = image_size[0], image_size[1] for _ in range(4 ): UpperCAmelCase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCAmelCase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(lowercase , lowercase , lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(lowercase , lowercase , lowercase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self : int ): '''simple docstring''' pass def A ( self : Tuple , lowercase : str , lowercase : Optional[Any] , lowercase : Union[str, Any]=False ): '''simple docstring''' UpperCAmelCase = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) def A ( self : Dict ): '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.train() UpperCAmelCase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) UpperCAmelCase = model(**lowercase ).loss loss.backward() def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase = False UpperCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(lowercase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCAmelCase = model_class(lowercase ) model.gradient_checkpointing_enable() model.to(lowercase ) model.train() UpperCAmelCase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) UpperCAmelCase = model(**lowercase ).loss loss.backward() def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): UpperCAmelCase = problem_type['''title'''] UpperCAmelCase = problem_type['''num_labels'''] UpperCAmelCase = model_class(lowercase ) model.to(lowercase ) model.train() UpperCAmelCase = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if problem_type["num_labels"] > 1: UpperCAmelCase = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) UpperCAmelCase = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase ) as warning_list: UpperCAmelCase = model(**lowercase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def A ( self : Dict ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = LevitModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def snake_case_ (): UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _a ( unittest.TestCase ): @cached_property def A ( self : List[Any] ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowercase ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=lowercase , return_tensors='''pt''' ).to(lowercase ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**lowercase ) # verify the logits UpperCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase ) UpperCAmelCase = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1E-4 ) )
700
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A =logging.get_logger(__name__) def snake_case_ (_a : Tuple , _a : Any=False , _a : str=False ): UpperCAmelCase = '''backbone.''' if is_semantic else '''''' UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", '''beit.embeddings.cls_token'''), (F"{prefix}patch_embed.proj.weight", '''beit.embeddings.patch_embeddings.projection.weight'''), (F"{prefix}patch_embed.proj.bias", '''beit.embeddings.patch_embeddings.projection.bias'''), (F"{prefix}pos_embed", '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case_ (_a : str , _a : List[Any] , _a : List[Any]=False , _a : Union[str, Any]=False ): for i in range(config.num_hidden_layers ): UpperCAmelCase = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) UpperCAmelCase = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase = q_bias UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) UpperCAmelCase = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) UpperCAmelCase = gamma_a UpperCAmelCase = gamma_a def snake_case_ (_a : Union[str, Any] , _a : str , _a : Optional[int] ): UpperCAmelCase = dct.pop(_a ) UpperCAmelCase = val def snake_case_ (): UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase = Image.open(requests.get(_a , stream=_a ).raw ) return im @torch.no_grad() def snake_case_ (_a : Optional[Any] , _a : Optional[Any] , _a : Optional[Any]=False ): UpperCAmelCase = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase = BeitConfig(use_absolute_position_embeddings=_a , use_mask_token=_a ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase = 1_0_2_4 UpperCAmelCase = 4_0_9_6 UpperCAmelCase = 2_4 UpperCAmelCase = 1_6 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase = 1_6 UpperCAmelCase = '''huggingface/label-files''' UpperCAmelCase = '''rvlcdip-id2label.json''' UpperCAmelCase = json.load(open(hf_hub_download(_a , _a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase = {int(_a ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase = torch.hub.load_state_dict_from_url(_a , map_location='''cpu''' )['''model'''] UpperCAmelCase = create_rename_keys(_a , has_lm_head=_a ) for src, dest in rename_keys: rename_key(_a , _a , _a ) read_in_q_k_v(_a , _a , has_lm_head=_a ) # load HuggingFace model UpperCAmelCase = BeitForMaskedImageModeling(_a ) if has_lm_head else BeitForImageClassification(_a ) model.eval() model.load_state_dict(_a ) # Check outputs on an image UpperCAmelCase = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_a ) UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=_a , return_tensors='''pt''' ) UpperCAmelCase = encoding['''pixel_values'''] UpperCAmelCase = model(_a ) UpperCAmelCase = outputs.logits # verify logits UpperCAmelCase = [1, 1_6] if '''rvlcdip''' in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(_a ), "Shape of logits not as expected" Path(_a ).mkdir(exist_ok=_a ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_a ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_a ) if push_to_hub: if has_lm_head: UpperCAmelCase = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(_a , _a ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=_a , ) model.push_to_hub( repo_path_or_name=Path(_a , _a ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=_a , ) if __name__ == "__main__": A =argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', ) A =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
358
0
"""simple docstring""" class A_ : def __init__( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Any = "" _lowerCamelCase : Union[str, Any] = "" _lowerCamelCase : Optional[int] = [] def _lowercase ( self: Optional[Any] ,__lowerCAmelCase: int ,__lowerCAmelCase: int ): '''simple docstring''' if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _lowerCamelCase : Tuple = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) else: _lowerCamelCase : List[str] = self.__min_dist_top_down_dp(__lowerCAmelCase ,n - 1 ) _lowerCamelCase : int = self.__min_dist_top_down_dp(m - 1 ,__lowerCAmelCase ) _lowerCamelCase : int = self.__min_dist_top_down_dp(m - 1 ,n - 1 ) _lowerCamelCase : str = 1 + min(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) return self.dp[m][n] def _lowercase ( self: int ,__lowerCAmelCase: str ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = worda _lowerCamelCase : List[str] = worda _lowerCamelCase : Optional[Any] = [[-1 for _ in range(len(__lowerCAmelCase ) )] for _ in range(len(__lowerCAmelCase ) )] return self.__min_dist_top_down_dp(len(__lowerCAmelCase ) - 1 ,len(__lowerCAmelCase ) - 1 ) def _lowercase ( self: Dict ,__lowerCAmelCase: str ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : List[str] = worda _lowerCamelCase : List[str] = worda _lowerCamelCase : Optional[int] = len(__lowerCAmelCase ) _lowerCamelCase : int = len(__lowerCAmelCase ) _lowerCamelCase : List[Any] = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _lowerCamelCase : Optional[Any] = j elif j == 0: # second string is empty _lowerCamelCase : int = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _lowerCamelCase : Union[str, Any] = self.dp[i - 1][j - 1] else: _lowerCamelCase : Union[str, Any] = self.dp[i][j - 1] _lowerCamelCase : Optional[Any] = self.dp[i - 1][j] _lowerCamelCase : Dict = self.dp[i - 1][j - 1] _lowerCamelCase : int = 1 + min(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) return self.dp[m][n] if __name__ == "__main__": _lowerCAmelCase : Any = EditDistance() print('''****************** Testing Edit Distance DP Algorithm ******************''') print() _lowerCAmelCase : Union[str, Any] = input('''Enter the first string: ''').strip() _lowerCAmelCase : Tuple = input('''Enter the second string: ''').strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print('''*************** End of Testing Edit Distance DP Algorithm ***************''')
46
"""simple docstring""" def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: return 1 if input_a == input_a else 0 def snake_case ( ) -> None: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
103
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''CLIPImageProcessor''' _lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : int): UpperCamelCase__ : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = kwargs.pop('feature_extractor') UpperCamelCase__ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def __call__( self : List[str] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Any): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: UpperCamelCase__ : Union[str, Any] = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if images is not None: UpperCamelCase__ : Tuple = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if text is not None and images is not None: UpperCamelCase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_) , tensor_type=UpperCAmelCase_) def __UpperCamelCase ( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int]): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : str , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str]): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : str = self.tokenizer.model_input_names UpperCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def __UpperCamelCase ( self : int): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : str): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase_ , ) return self.image_processor
708
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
0
'''simple docstring''' __A : Tuple = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCAmelCase_ ( a : bytes ): # Make sure the supplied data is a bytes-like object if not isinstance(a , a ): a__ = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(a ) a__ = ''.join(bin(a )[2:].zfill(8 ) for byte in data ) a__ = len(a ) % 6 != 0 if padding_needed: # The padding that will be added later a__ = B'=' * ((6 - len(a ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(a ) % 6) else: a__ = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(a ) , 6 ) ).encode() + padding ) def lowerCAmelCase_ ( a : str ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(a , a ) and not isinstance(a , a ): a__ = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(a ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(a , a ): try: a__ = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) a__ = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(a ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one a__ = encoded_data[:-padding] a__ = ''.join( bin(B64_CHARSET.index(a ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: a__ = ''.join( bin(B64_CHARSET.index(a ) )[2:].zfill(6 ) for char in encoded_data ) a__ = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(a ) , 8 ) ] return bytes(a ) if __name__ == "__main__": import doctest doctest.testmod()
394
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __A : Optional[Any] = logging.getLogger(__name__) def lowerCAmelCase_ ( ): a__ = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name' , type=a , default='wikitext' , help='Name of the training. Explore datasets at: hf.co/datasets.' , ) parser.add_argument( '--dataset_config' , type=a , default='wikitext-103-raw-v1' , help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path' , type=a , default='sayakpaul/unigram-tokenizer-wikitext' , help='Tokenizer identifier. Can be a local filepath or a Hub identifier.' , ) parser.add_argument( '--shard_size' , type=a , default=1000 , help='Number of entries to go in a single shard.' , ) parser.add_argument('--split' , type=a , default='train' , choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit' , default=a , type=a , help='Limit the number of shards (used for debugging).' , ) parser.add_argument( '--max_length' , type=a , default=512 , help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.' , ) parser.add_argument( '--output_dir' , default='tf-tpu' , type=a , help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.' , ) a__ = parser.parse_args() return args def lowerCAmelCase_ ( a : int ): def fn(a : int ): return tokenizer(examples['text'] ) return fn def lowerCAmelCase_ ( a : str ): a__ = [] for i in range(len(tokenized_data['input_ids'] ) ): a__ = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } a__ = tf.train.Features(feature=a ) a__ = tf.train.Example(features=a ) a__ = example.SerializeToString() records.append(a ) return records def lowerCAmelCase_ ( a : Any ): a__ = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: a__ = min(len(a ) , args.limit ) a__ = dataset.select(range(a ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) a__ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) a__ = os.path.join(args.output_dir , args.split ) if not os.path.exists(a ): os.makedirs(a ) else: a__ = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. a__ = tokenize_function(a ) a__ = dataset.map(a , batched=a , num_proc=4 , remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a : Optional[Any] ): # Concatenate all texts. a__ = {k: sum(examples[k] , [] ) for k in examples.keys()} a__ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 a__ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. a__ = { k: [t[i : i + args.max_length] for i in range(0 , a , args.max_length )] for k, t in concatenated_examples.items() } return result a__ = dataset_tokenized.map(a , batched=a , batch_size=1000 , num_proc=4 ) a__ = 0 a__ = 0 for shard in range(0 , len(a ) , args.shard_size ): a__ = grouped_dataset[shard : shard + args.shard_size] a__ = len(dataset_snapshot['input_ids'] ) a__ = os.path.join(a , f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) a__ = get_serialized_examples(a ) with tf.io.TFRecordWriter(a ) as out_file: for i in range(len(a ) ): a__ = serialized_examples[i] out_file.write(a ) print('Wrote file {} containing {} records'.format(a , a ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' , 'w' ) as f: print(f'''Total {args.split} records: {total_records}''' , file=a ) if __name__ == "__main__": __A : str = parse_args() main(args)
394
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _lowerCAmelCase : List[str] = (7_2_0, 1_2_8_0) # Height, Width _lowerCAmelCase : List[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. _lowerCAmelCase : List[Any] = 1 / 1_0_0 _lowerCAmelCase : List[Any] = "" _lowerCAmelCase : List[str] = "" _lowerCAmelCase : int = "" _lowerCAmelCase : List[str] = 2_5_0 def _A ( ): snake_case__ : List[str] = get_dataset(snake_case__ , snake_case__ ) for index in range(snake_case__ ): snake_case__ : List[Any] = random.sample(range(len(snake_case__ ) ) , 4 ) snake_case__ : Optional[int] = update_image_and_anno( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , filter_scale=snake_case__ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case__ : Tuple = random_chars(32 ) snake_case__ : str = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] snake_case__ : Dict = f'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(f'''{file_root}.jpg''' , snake_case__ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) snake_case__ : Union[str, Any] = [] for anno in new_annos: snake_case__ : Dict = anno[3] - anno[1] snake_case__ : Union[str, Any] = anno[4] - anno[2] snake_case__ : Dict = anno[1] + width / 2 snake_case__ : Optional[int] = anno[2] + height / 2 snake_case__ : Dict = f'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(snake_case__ ) with open(f'''{file_root}.txt''' , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def _A ( snake_case__ : str , snake_case__ : str ): snake_case__ : List[Any] = [] snake_case__ : Union[str, Any] = [] for label_file in glob.glob(os.path.join(snake_case__ , '''*.txt''' ) ): snake_case__ : str = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(snake_case__ ) as in_file: snake_case__ : int = in_file.readlines() snake_case__ : List[str] = os.path.join(snake_case__ , f'''{label_name}.jpg''' ) snake_case__ : int = [] for obj_list in obj_lists: snake_case__ : int = obj_list.rstrip('''\n''' ).split(''' ''' ) snake_case__ : Any = float(obj[1] ) - float(obj[3] ) / 2 snake_case__ : List[Any] = float(obj[2] ) - float(obj[4] ) / 2 snake_case__ : Union[str, Any] = float(obj[1] ) + float(obj[3] ) / 2 snake_case__ : Any = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(snake_case__ ) labels.append(snake_case__ ) return img_paths, labels def _A ( snake_case__ : list , snake_case__ : list , snake_case__ : list[int] , snake_case__ : tuple[int, int] , snake_case__ : tuple[float, float] , snake_case__ : float = 0.0 , ): snake_case__ : Any = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) snake_case__ : Dict = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case__ : Any = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case__ : Any = int(scale_x * output_size[1] ) snake_case__ : Tuple = int(scale_y * output_size[0] ) snake_case__ : List[str] = [] snake_case__ : List[str] = [] for i, index in enumerate(snake_case__ ): snake_case__ : Any = all_img_list[index] path_list.append(snake_case__ ) snake_case__ : Tuple = all_annos[index] snake_case__ : Optional[int] = cva.imread(snake_case__ ) if i == 0: # top-left snake_case__ : Dict = cva.resize(snake_case__ , (divid_point_x, divid_point_y) ) snake_case__ : Any = img for bbox in img_annos: snake_case__ : Tuple = bbox[1] * scale_x snake_case__ : Union[str, Any] = bbox[2] * scale_y snake_case__ : int = bbox[3] * scale_x snake_case__ : List[str] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right snake_case__ : Tuple = cva.resize(snake_case__ , (output_size[1] - divid_point_x, divid_point_y) ) snake_case__ : Optional[int] = img for bbox in img_annos: snake_case__ : List[Any] = scale_x + bbox[1] * (1 - scale_x) snake_case__ : Dict = bbox[2] * scale_y snake_case__ : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) snake_case__ : int = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left snake_case__ : Tuple = cva.resize(snake_case__ , (divid_point_x, output_size[0] - divid_point_y) ) snake_case__ : Union[str, Any] = img for bbox in img_annos: snake_case__ : List[Any] = bbox[1] * scale_x snake_case__ : Dict = scale_y + bbox[2] * (1 - scale_y) snake_case__ : int = bbox[3] * scale_x snake_case__ : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right snake_case__ : Any = cva.resize( snake_case__ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) snake_case__ : Tuple = img for bbox in img_annos: snake_case__ : Optional[Any] = scale_x + bbox[1] * (1 - scale_x) snake_case__ : str = scale_y + bbox[2] * (1 - scale_y) snake_case__ : List[str] = scale_x + bbox[3] * (1 - scale_x) snake_case__ : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: snake_case__ : List[str] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def _A ( snake_case__ : int ): assert number_char > 1, "The number of character should greater than 1" snake_case__ : Dict = ascii_lowercase + digits return "".join(random.choice(snake_case__ ) for _ in range(snake_case__ ) ) if __name__ == "__main__": main() print("DONE ✅")
708
'''simple docstring''' from __future__ import annotations from collections import namedtuple def _A ( snake_case__ : float , snake_case__ : float , snake_case__ : float ): snake_case__ : Optional[Any] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
694
0
from math import factorial def __lowerCAmelCase ( A = 100 ): return sum(int(_SCREAMING_SNAKE_CASE ) for x in str(factorial(_SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
162
'''simple docstring''' import string from math import logaa def __A ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) __SCREAMING_SNAKE_CASE : Optional[Any] = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __A ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' __SCREAMING_SNAKE_CASE : List[Any] = corpus_without_punctuation.split("\n" ) __SCREAMING_SNAKE_CASE : List[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(_SCREAMING_SNAKE_CASE )) def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any]=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" return round(tf * idf , 3 )
211
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model UpperCAmelCase__ : List[Any] ='''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ) -> Dict: if rng is None: lowerCamelCase =random.Random() lowerCamelCase =1 for dim in shape: total_dims *= dim lowerCamelCase =[] for _ in range(_UpperCAmelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) lowerCamelCase =np.array(_UpperCAmelCase , dtype=jnp.intaa ).reshape(_UpperCAmelCase ) return output def _lowercase ( _UpperCAmelCase , _UpperCAmelCase=None ) -> Optional[Any]: lowerCamelCase =ids_tensor(_UpperCAmelCase , vocab_size=2 , rng=_UpperCAmelCase ) # make sure that at least one token is attended to for each batch lowerCamelCase =1 return attn_mask @require_flax class __A : __A = None __A = () def _snake_case ( self ): lowerCamelCase , lowerCamelCase =self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 lowerCamelCase =2 lowerCamelCase =inputs["""input_ids"""].shape[-1] // 2 lowerCamelCase =inputs["""input_ids"""][:max_batch_size, :sequence_length] lowerCamelCase =jnp.ones_like(UpperCAmelCase_ ) lowerCamelCase =attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens lowerCamelCase =input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` lowerCamelCase =config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_input_ids_and_config() lowerCamelCase =False lowerCamelCase =max_length lowerCamelCase =0 for model_class in self.all_generative_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCamelCase =getattr(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase =pt_model_class(UpperCAmelCase_ ).eval() lowerCamelCase =load_flax_weights_in_pytorch_model(UpperCAmelCase_ , flax_model.params ) lowerCamelCase =flax_model.generate(UpperCAmelCase_ ).sequences lowerCamelCase =pt_model.generate(torch.tensor(UpperCAmelCase_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: lowerCamelCase =flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_input_ids_and_config() lowerCamelCase =False lowerCamelCase =max_length for model_class in self.all_generative_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) lowerCamelCase =jit(model.generate ) lowerCamelCase =jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_input_ids_and_config() lowerCamelCase =True lowerCamelCase =max_length for model_class in self.all_generative_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) lowerCamelCase =jit(model.generate ) lowerCamelCase =jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_input_ids_and_config() lowerCamelCase =False lowerCamelCase =max_length lowerCamelCase =2 for model_class in self.all_generative_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) lowerCamelCase =jit(model.generate ) lowerCamelCase =jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_input_ids_and_config() lowerCamelCase =False lowerCamelCase =max_length lowerCamelCase =2 lowerCamelCase =2 for model_class in self.all_generative_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_input_ids_and_config() lowerCamelCase =True lowerCamelCase =max_length lowerCamelCase =0.8 lowerCamelCase =10 lowerCamelCase =0.3 lowerCamelCase =1 lowerCamelCase =8 lowerCamelCase =9 for model_class in self.all_generative_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) lowerCamelCase =jit(model.generate ) lowerCamelCase =jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_input_ids_and_config() lowerCamelCase =max_length lowerCamelCase =1 lowerCamelCase =8 lowerCamelCase =9 for model_class in self.all_generative_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) lowerCamelCase =jit(model.generate ) lowerCamelCase =jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_input_ids_and_config() lowerCamelCase =max_length lowerCamelCase =2 lowerCamelCase =1 lowerCamelCase =8 lowerCamelCase =9 for model_class in self.all_generative_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =model.generate(UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) lowerCamelCase =jit(model.generate ) lowerCamelCase =jit_generate(UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase =attention_mask.at[(0, 0)].set(0 ) lowerCamelCase =False lowerCamelCase =max_length for model_class in self.all_generative_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =model.generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) lowerCamelCase =jit(model.generate ) lowerCamelCase =jit_generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase =attention_mask.at[(0, 0)].set(0 ) lowerCamelCase =True lowerCamelCase =max_length for model_class in self.all_generative_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =model.generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) lowerCamelCase =jit(model.generate ) lowerCamelCase =jit_generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def _snake_case ( self ): lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase =self._get_input_ids_and_config() # pad attention mask on the left lowerCamelCase =attention_mask.at[(0, 0)].set(0 ) lowerCamelCase =2 lowerCamelCase =max_length for model_class in self.all_generative_model_classes: lowerCamelCase =model_class(UpperCAmelCase_ ) lowerCamelCase =model.generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertEqual(generation_outputs.shape[-1] , UpperCAmelCase_ ) lowerCamelCase =jit(model.generate ) lowerCamelCase =jit_generate(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class __A ( unittest.TestCase ): def _snake_case ( self ): lowerCamelCase =AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) lowerCamelCase =FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) lowerCamelCase ="""Hello world""" lowerCamelCase =tokenizer(UpperCAmelCase_ , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(UpperCAmelCase_ , """do_samples""" ): model.generate(UpperCAmelCase_ , do_samples=UpperCAmelCase_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(UpperCAmelCase_ , """foo""" ): lowerCamelCase ={"""foo""": """bar"""} model.generate(UpperCAmelCase_ , **UpperCAmelCase_ )
269
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCAmelCase__ : Optional[int] ={ '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } UpperCAmelCase__ : str ={ '''169M''': 7_68, '''430M''': 10_24, '''1B5''': 20_48, '''3B''': 25_60, '''7B''': 40_96, '''14B''': 51_20, } def _lowercase ( _UpperCAmelCase ) -> Tuple: lowerCamelCase =list(state_dict.keys() ) for name in state_dict_keys: lowerCamelCase =state_dict.pop(_UpperCAmelCase ) # emb -> embedding if name.startswith("""emb.""" ): lowerCamelCase =name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): lowerCamelCase =name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention lowerCamelCase =re.sub(r"""blocks\.(\d+)\.att""" , r"""blocks.\1.attention""" , _UpperCAmelCase ) # ffn -> feed_forward lowerCamelCase =re.sub(r"""blocks\.(\d+)\.ffn""" , r"""blocks.\1.feed_forward""" , _UpperCAmelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): lowerCamelCase =name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): lowerCamelCase =name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): lowerCamelCase =name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": lowerCamelCase ="""rwkv.""" + name lowerCamelCase =weight return state_dict def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=None ) -> Tuple: # 1. If possible, build the tokenizer. if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) lowerCamelCase =5_02_77 lowerCamelCase =AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: lowerCamelCase =PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase ) lowerCamelCase =len(_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) # 2. Build the config lowerCamelCase =list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCamelCase =candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) lowerCamelCase =RwkvConfig( vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_UpperCAmelCase ) # 3. Download model file then convert state_dict lowerCamelCase =hf_hub_download(_UpperCAmelCase , _UpperCAmelCase ) lowerCamelCase =torch.load(_UpperCAmelCase , map_location="""cpu""" ) lowerCamelCase =convert_state_dict(_UpperCAmelCase ) # 4. Split in shards and save lowerCamelCase , lowerCamelCase =shard_checkpoint(_UpperCAmelCase ) for shard_file, shard in shards.items(): torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) if index is not None: lowerCamelCase =os.path.join(_UpperCAmelCase , _UpperCAmelCase ) # Save the index as well with open(_UpperCAmelCase , """w""" , encoding="""utf-8""" ) as f: lowerCamelCase =json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase ) + """\n""" f.write(_UpperCAmelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) lowerCamelCase =list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCamelCase =torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) lowerCamelCase =AutoModelForCausalLM.from_pretrained(_UpperCAmelCase ) model.push_to_hub(_UpperCAmelCase , max_shard_size="""2GB""" ) tokenizer.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) UpperCAmelCase__ : List[Any] =parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
269
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : str = 16 lowerCAmelCase : List[Any] = 32 def A_ ( _UpperCAmelCase , _UpperCAmelCase = 16 ): SCREAMING_SNAKE_CASE_: List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE_: Tuple = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE_: str = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE_: Optional[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE_: List[Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE_: Tuple = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE_: int = 8 else: SCREAMING_SNAKE_CASE_: Any = None return tokenizer.pad( _UpperCAmelCase , padding="longest" , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE_: Optional[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : Optional[int] = mocked_dataloaders # noqa: F811 def A_ ( _UpperCAmelCase , _UpperCAmelCase ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , _UpperCAmelCase ) == "1": SCREAMING_SNAKE_CASE_: Tuple = 2 # New Code # SCREAMING_SNAKE_CASE_: List[str] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE_: int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_UpperCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE_: Tuple = config["lr"] SCREAMING_SNAKE_CASE_: List[str] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE_: List[str] = int(config["seed"] ) SCREAMING_SNAKE_CASE_: Optional[int] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE_: str = evaluate.load("glue" , "mrpc" ) set_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[str] = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE_: Union[str, Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE_: List[Any] = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE_: Union[str, Any] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE_: str = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Dict = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = output.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Optional[Any] = model(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_: List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCAmelCase ) def A_ ( ): SCREAMING_SNAKE_CASE_: str = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=_UpperCAmelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE_: List[Any] = parser.parse_args() SCREAMING_SNAKE_CASE_: Tuple = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
671
from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase : Union[str, Any] = 637_8137.0 lowerCAmelCase : int = 635_6752.31_4245 lowerCAmelCase : Union[str, Any] = 6378137 def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = (AXIS_A - AXIS_B) / AXIS_A SCREAMING_SNAKE_CASE_: str = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_: Optional[int] = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) SCREAMING_SNAKE_CASE_: Any = radians(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Dict = radians(_UpperCAmelCase ) # Equation SCREAMING_SNAKE_CASE_: str = sin((phi_a - phi_a) / 2 ) SCREAMING_SNAKE_CASE_: List[Any] = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda SCREAMING_SNAKE_CASE_: Tuple = sqrt(sin_sq_phi + (cos(_UpperCAmelCase ) * cos(_UpperCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
671
1
"""simple docstring""" import random def _SCREAMING_SNAKE_CASE ( _lowercase : list , _lowercase : Optional[Any] ) ->tuple: '''simple docstring''' a : List[Any] = [], [], [] for element in data: if element < pivot: less.append(_lowercase ) elif element > pivot: greater.append(_lowercase ) else: equal.append(_lowercase ) return less, equal, greater def _SCREAMING_SNAKE_CASE ( _lowercase : list , _lowercase : int ) ->Dict: '''simple docstring''' if index >= len(_lowercase ) or index < 0: return None a : Optional[int] = items[random.randint(0 , len(_lowercase ) - 1 )] a : Dict = 0 a : str = _partition(_lowercase , _lowercase ) a : List[Any] = len(_lowercase ) a : int = len(_lowercase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_lowercase , _lowercase ) # must be in larger else: return quick_select(_lowercase , index - (m + count) )
714
"""simple docstring""" from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=a__ ): lowerCamelCase : Optional[Any] =["""transformers""", """torch""", """note_seq"""] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def __a ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def __a ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: requires_backends(cls , ["transformers", "torch", "note_seq"] )
31
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class _a ( lowercase_ ): a_ : Any = '''mobilenet_v2''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : List[Any]=2_24 , SCREAMING_SNAKE_CASE__ : str=1.0 , SCREAMING_SNAKE_CASE__ : str=8 , SCREAMING_SNAKE_CASE__ : Any=8 , SCREAMING_SNAKE_CASE__ : Optional[int]=6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Optional[Any]="relu6" , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : str=0.8 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_01 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_55 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): super().__init__(**SCREAMING_SNAKE_CASE__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) lowerCamelCase__ = num_channels lowerCamelCase__ = image_size lowerCamelCase__ = depth_multiplier lowerCamelCase__ = depth_divisible_by lowerCamelCase__ = min_depth lowerCamelCase__ = expand_ratio lowerCamelCase__ = output_stride lowerCamelCase__ = first_layer_is_expansion lowerCamelCase__ = finegrained_output lowerCamelCase__ = hidden_act lowerCamelCase__ = tf_padding lowerCamelCase__ = classifier_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = semantic_loss_ignore_index class _a ( lowercase_ ): a_ : Any = version.parse('1.11' ) @property def _UpperCamelCase ( self : Dict ): return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def _UpperCamelCase ( self : str ): if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def _UpperCamelCase ( self : Union[str, Any] ): return 1e-4
510
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( a__) -> bool: """simple docstring""" return len(set(a__)) == len(a__) if __name__ == "__main__": import doctest doctest.testmod()
517
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : List[str] = StableUnCLIPImgaImgPipeline UpperCamelCase_ : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS UpperCamelCase_ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : Tuple = frozenset([] ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = 32 lowerCAmelCase__ = embedder_hidden_size # image encoding components lowerCAmelCase__ = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=snake_case__ , projection_dim=snake_case__ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase__ = StableUnCLIPImageNormalizer(embedding_dim=snake_case__ ) lowerCAmelCase__ = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=snake_case__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=snake_case__ , layers_per_block=1 , upcast_attention=snake_case__ , use_linear_projection=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase__ = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=snake_case__ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL() lowerCAmelCase__ = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : List[str] , snake_case__ : Union[str, Any]=0 , snake_case__ : Any=True ): if str(snake_case__ ).startswith("""mps""" ): lowerCAmelCase__ = torch.manual_seed(snake_case__ ) else: lowerCAmelCase__ = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if pil_image: lowerCAmelCase__ = input_image * 0.5 + 0.5 lowerCAmelCase__ = input_image.clamp(0 , 1 ) lowerCAmelCase__ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ = DiffusionPipeline.numpy_to_pil(snake_case__ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = StableUnCLIPImgaImgPipeline(**snake_case__ ) lowerCAmelCase__ = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase__ = self.get_dummy_inputs(snake_case__ ) inputs.update({"""image_embeds""": None} ) lowerCAmelCase__ = sd_pipe(**snake_case__ ).images lowerCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=snake_case__ ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _SCREAMING_SNAKE_CASE ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=snake_case__ ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy""" ) lowerCAmelCase__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-l-img2img""" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase__ = pipe(snake_case__ , """anime turle""" , generator=snake_case__ , output_type="""np""" ) lowerCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) lowerCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy""" ) lowerCAmelCase__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase__ = pipe(snake_case__ , """anime turle""" , generator=snake_case__ , output_type="""np""" ) lowerCAmelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : str ): lowerCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png""" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase__ = StableUnCLIPImgaImgPipeline.from_pretrained( """fusing/stable-unclip-2-1-h-img2img""" , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase__ = pipe( snake_case__ , """anime turtle""" , num_inference_steps=2 , output_type="""np""" , ) lowerCAmelCase__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
674
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __lowerCAmelCase : Union[str, Any] = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: __lowerCAmelCase : Optional[int] = json.load(f) @require_torch class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : Dict ): return FSMTTokenizer.from_pretrained(snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : Any ): lowerCAmelCase__ = FSMTForConditionalGeneration.from_pretrained(snake_case__ ).to(snake_case__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Any , snake_case__ : int ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase__ = F"""facebook/wmt19-{pair}""" lowerCAmelCase__ = self.get_tokenizer(snake_case__ ) lowerCAmelCase__ = self.get_model(snake_case__ ) lowerCAmelCase__ = bleu_data[pair]["""src"""] lowerCAmelCase__ = bleu_data[pair]["""tgt"""] lowerCAmelCase__ = tokenizer(snake_case__ , return_tensors="""pt""" , truncation=snake_case__ , padding="""longest""" ).to(snake_case__ ) lowerCAmelCase__ = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase__ = tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCAmelCase__ = calculate_bleu(snake_case__ , snake_case__ ) print(snake_case__ ) self.assertGreaterEqual(scores["""bleu"""] , snake_case__ )
674
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[Any] = parent __A : int = batch_size __A : Optional[int] = seq_length __A : Union[str, Any] = is_training __A : Dict = use_input_mask __A : Optional[Any] = use_token_type_ids __A : int = use_labels __A : int = vocab_size __A : str = hidden_size __A : Optional[int] = num_hidden_layers __A : Any = num_attention_heads __A : Optional[Any] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : Any = max_position_embeddings __A : List[Any] = type_vocab_size __A : Optional[int] = type_sequence_label_size __A : str = initializer_range __A : Optional[Any] = num_labels __A : Any = num_choices __A : List[str] = scope __A : Optional[Any] = vocab_size - 1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : List[str] = None if self.use_input_mask: __A : str = random_attention_mask([self.batch_size, self.seq_length]) __A : Union[str, Any] = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : Optional[Any] = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : Tuple = self.prepare_config_and_inputs() __A : List[Any] = True return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = GPTNeoXModel(config=snake_case__) model.to(snake_case__) model.eval() __A : Any = model(snake_case__ , attention_mask=snake_case__) __A : List[str] = model(snake_case__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = True __A : int = GPTNeoXModel(snake_case__) model.to(snake_case__) model.eval() __A : Dict = model(snake_case__ , attention_mask=snake_case__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = GPTNeoXForCausalLM(config=snake_case__) model.to(snake_case__) model.eval() __A : Any = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = self.num_labels __A : Optional[int] = GPTNeoXForQuestionAnswering(snake_case__) model.to(snake_case__) model.eval() __A : List[str] = model(snake_case__ , attention_mask=snake_case__) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = self.num_labels __A : Optional[Any] = GPTNeoXForSequenceClassification(snake_case__) model.to(snake_case__) model.eval() __A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : str = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = self.num_labels __A : Any = GPTNeoXForTokenClassification(snake_case__) model.to(snake_case__) model.eval() __A : int = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = True __A : Optional[int] = GPTNeoXForCausalLM(config=snake_case__) model.to(snake_case__) model.eval() # first forward pass __A : List[Any] = model(snake_case__ , attention_mask=snake_case__ , use_cache=snake_case__) __A : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) __A : str = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __A : Dict = torch.cat([input_ids, next_tokens] , dim=-1) __A : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1) __A : int = model(snake_case__ , attention_mask=snake_case__ , output_hidden_states=snake_case__) __A : Optional[int] = output_from_no_past['hidden_states'][0] __A : Union[str, Any] = model( snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ , output_hidden_states=snake_case__ , )['hidden_states'][0] # select random slice __A : int = ids_tensor((1,) , output_from_past.shape[-1]).item() __A : str = output_from_no_past[:, -3:, random_slice_idx].detach() __A : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.prepare_config_and_inputs() __A ,__A ,__A ,__A : Dict = config_and_inputs __A : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): lowerCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = GPTNeoXModelTester(self) __A : int = ConfigTester(self , config_class=snake_case__ , hidden_size=64 , num_attention_heads=8) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case__ , snake_case__ , snake_case__) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : str = self.model_tester.prepare_config_and_inputs_for_decoder() __A : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(snake_case__ , snake_case__ , snake_case__) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case__ , snake_case__ , snake_case__) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case__) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__) @unittest.skip(reason='Feed forward chunking is not implemented') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A ,__A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = ids_tensor([1, 10] , config.vocab_size) __A : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights __A : str = GPTNeoXModel(snake_case__) original_model.to(snake_case__) original_model.eval() __A : Any = original_model(snake_case__).last_hidden_state __A : Tuple = original_model(snake_case__).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights __A : List[Any] = {'type': scaling_type, 'factor': 10.0} __A : str = GPTNeoXModel(snake_case__) scaled_model.to(snake_case__) scaled_model.eval() __A : Dict = scaled_model(snake_case__).last_hidden_state __A : Any = scaled_model(snake_case__).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-5)) else: self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case__ , snake_case__ , atol=1e-5)) @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped') for checkpointing in [True, False]: __A : Optional[Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped') if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case__) __A : int = tokenizer('My favorite food is' , return_tensors='pt').to(snake_case__) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __A : str = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' __A : int = model.generate(**snake_case__ , do_sample=snake_case__ , max_new_tokens=20) __A : Optional[Any] = tokenizer.batch_decode(snake_case__)[0] self.assertEqual(snake_case__ , snake_case__)
8
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowerCAmelCase__ : '''simple docstring''' @staticmethod def _snake_case ( *snake_case__ : Optional[int] , **snake_case__ : Tuple ) -> Optional[Any]: pass def lowerCamelCase ( UpperCamelCase : str ) -> Tuple: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. A = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _snake_case ( self : str , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Union[str, Any] ) -> Dict: _lowerCamelCase = pipeline( 'document-question-answering' , model=snake_case__ , tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , '' ) ) ) _lowerCamelCase = 'What is the placebo?' _lowerCamelCase = [ { 'image': load_image(snake_case__ ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def _snake_case ( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] ) -> Tuple: _lowerCamelCase = dqa_pipeline(snake_case__ , top_k=2 ) self.assertEqual( snake_case__ , [ [ {'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ ), 'start': ANY(snake_case__ ), 'end': ANY(snake_case__ )}, {'score': ANY(snake_case__ ), 'answer': ANY(snake_case__ ), 'start': ANY(snake_case__ ), 'end': ANY(snake_case__ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Union[str, Any] ) -> Optional[int]: _lowerCamelCase = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'How many cats are there?' _lowerCamelCase = [ {'score': 0.0001, 'answer': 'oy 2312/2019', 'start': 3_8, 'end': 3_9}, {'score': 0.0001, 'answer': 'oy 2312/2019 DUE', 'start': 3_8, 'end': 4_0}, ] _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , snake_case__ ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , snake_case__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably _lowerCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(snake_case__ , [] ) # We can optionnally pass directly the words and bounding boxes _lowerCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png' _lowerCamelCase = [] _lowerCamelCase = [] _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , words=snake_case__ , boxes=snake_case__ , top_k=2 ) self.assertEqual(snake_case__ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : Optional[int] ) -> List[Any]: _lowerCamelCase = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.9944, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0009, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _snake_case ( self : int ) -> Optional[Any]: _lowerCamelCase = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=5_0 , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.9974, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, {'score': 0.9948, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : int ) -> List[Any]: _lowerCamelCase = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=snake_case__ ) _lowerCamelCase = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=snake_case__ , revision='3dc6de3' , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) _lowerCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] ] * 2 , ) _lowerCamelCase = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , '' ) ) ) # This model should also work if `image` is set to None _lowerCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.0819, 'answer': '1110212019', 'start': 2_3, 'end': 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _snake_case ( self : Dict ) -> List[str]: _lowerCamelCase = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=snake_case__ ) _lowerCamelCase = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=snake_case__ , revision='3dc6de3' , max_seq_len=5_0 , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) _lowerCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] ] * 2 , ) _lowerCamelCase = list(zip(*apply_tesseract(load_image(snake_case__ ) , snake_case__ , '' ) ) ) # This model should also work if `image` is set to None _lowerCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {'score': 0.9999, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, {'score': 0.9998, 'answer': 'us-001', 'start': 1_6, 'end': 1_6}, ] , ) @slow @require_torch def _snake_case ( self : Dict ) -> int: _lowerCamelCase = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) _lowerCamelCase = INVOICE_URL _lowerCamelCase = 'What is the invoice number?' _lowerCamelCase = dqa_pipeline(image=snake_case__ , question=snake_case__ , top_k=2 ) self.assertEqual(nested_simplify(snake_case__ , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def _snake_case ( self : Optional[Any] ) -> Any: pass
544
0
def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) lowercase__ : Optional[int] = 0 lowercase__ : str = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: lowercase__ : Dict = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] lowercase__ : Union[str, Any] = 1 for i in range(0 ,len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] lowercase__ : Dict = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) lowercase__ : Dict = 0 lowercase__ : List[str] = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: lowercase__ : str = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] lowercase__ : Optional[int] = 0 for i in range(0 ,len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] lowercase__ : Union[str, Any] = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
298
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a : int = logging.get_logger(__name__) __a : Tuple = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __a : Optional[Any] = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __a : Any = {'''facebook/blenderbot_small-90M''': 5_1_2} def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : str = set() lowercase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ : Any = char lowercase__ : int = set(SCREAMING_SNAKE_CASE_ ) return pairs class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Tuple = VOCAB_FILES_NAMES a : Dict = PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : str = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="__start__" , lowerCamelCase="__end__" , lowerCamelCase="__unk__" , lowerCamelCase="__null__" , **lowerCamelCase , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , pad_token=lowerCamelCase , **lowerCamelCase ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: lowercase__ : Optional[int] = json.load(lowerCamelCase ) lowercase__ : List[Any] = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: lowercase__ : Any = merges_handle.read().split("\n" )[1:-1] lowercase__ : Dict = [tuple(merge.split() ) for merge in merges] lowercase__ : Any = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) lowercase__ : Dict = {} @property def __a ( self ) -> int: """simple docstring""" return len(self.encoder ) def __a ( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self , lowerCamelCase ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ : str = re.sub("([.,!?()])" , r" \1" , lowerCamelCase ) lowercase__ : Dict = re.sub("(')" , r" \1 " , lowerCamelCase ) lowercase__ : Union[str, Any] = re.sub(r"\s{2,}" , " " , lowerCamelCase ) if "\n" in token: lowercase__ : Optional[Any] = token.replace("\n" , " __newln__" ) lowercase__ : Optional[Any] = token.split(" " ) lowercase__ : Union[str, Any] = [] for token in tokens: if not len(lowerCamelCase ): continue lowercase__ : Union[str, Any] = token.lower() lowercase__ : Any = tuple(lowerCamelCase ) lowercase__ : Tuple = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) lowercase__ : Optional[int] = get_pairs(lowerCamelCase ) if not pairs: words.append(lowerCamelCase ) continue while True: lowercase__ : str = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase__ , lowercase__ : int = bigram lowercase__ : str = [] lowercase__ : int = 0 while i < len(lowerCamelCase ): try: lowercase__ : List[str] = word.index(lowerCamelCase , lowerCamelCase ) new_word.extend(word[i:j] ) lowercase__ : Tuple = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ : int = tuple(lowerCamelCase ) lowercase__ : Tuple = new_word if len(lowerCamelCase ) == 1: break else: lowercase__ : Optional[Any] = get_pairs(lowerCamelCase ) lowercase__ : Tuple = "@@ ".join(lowerCamelCase ) lowercase__ : Optional[Any] = word[:-4] lowercase__ : int = word words.append(lowerCamelCase ) return " ".join(lowerCamelCase ) def __a ( self , lowerCamelCase ) -> List[str]: """simple docstring""" lowercase__ : Dict = [] lowercase__ : Dict = re.findall(r"\S+\n?" , lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase ).split(" " ) ) ) return split_tokens def __a ( self , lowerCamelCase ) -> int: """simple docstring""" lowercase__ : Optional[Any] = token.lower() return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def __a ( self , lowerCamelCase ) -> str: """simple docstring""" return self.decoder.get(lowerCamelCase , self.unk_token ) def __a ( self , lowerCamelCase ) -> str: """simple docstring""" lowercase__ : Optional[Any] = " ".join(lowerCamelCase ).replace("@@ " , "" ).strip() return out_string def __a ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : str = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ : Dict = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) lowercase__ : List[Any] = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) lowercase__ : str = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file
298
1
from __future__ import annotations from fractions import Fraction def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = [] __UpperCamelCase :Optional[int] = 11 __UpperCamelCase :Union[str, Any] = int('''1''' + '''0''' * digit_len ) for num in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 __UpperCamelCase :Optional[Any] = 10 return solutions def lowerCamelCase ( SCREAMING_SNAKE_CASE = 2 ): '''simple docstring''' __UpperCamelCase :str = 1.0 for fraction in fraction_list(SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[str] = Fraction(SCREAMING_SNAKE_CASE ) result *= frac.denominator / frac.numerator return int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
167
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = ["""pixel_values"""] def __init__( self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BICUBIC , __lowercase = True , __lowercase = None , __lowercase = True , __lowercase = 1 / 255 , __lowercase = True , __lowercase = None , __lowercase = None , __lowercase = True , **__lowercase , ) -> None: super().__init__(**__lowercase) __UpperCamelCase :str = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase :Tuple = get_size_dict(__lowercase , default_to_square=__lowercase) __UpperCamelCase :List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase :Optional[int] = get_size_dict(__lowercase , default_to_square=__lowercase , param_name='''crop_size''') __UpperCamelCase :List[str] = do_resize __UpperCamelCase :Any = size __UpperCamelCase :Dict = resample __UpperCamelCase :List[Any] = do_center_crop __UpperCamelCase :Any = crop_size __UpperCamelCase :Any = do_rescale __UpperCamelCase :Optional[Any] = rescale_factor __UpperCamelCase :List[str] = do_normalize __UpperCamelCase :List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCamelCase :int = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCamelCase :Tuple = do_convert_rgb def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = PILImageResampling.BICUBIC , __lowercase = None , **__lowercase , ) -> np.ndarray: __UpperCamelCase :Union[str, Any] = get_size_dict(__lowercase , default_to_square=__lowercase) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") __UpperCamelCase :Tuple = get_resize_output_image_size(__lowercase , size=size['''shortest_edge'''] , default_to_square=__lowercase) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> np.ndarray: __UpperCamelCase :Optional[Any] = get_size_dict(__lowercase) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""") return center_crop(__lowercase , size=(size['''height'''], size['''width''']) , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> List[Any]: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> PIL.Image.Image: __UpperCamelCase :List[Any] = do_resize if do_resize is not None else self.do_resize __UpperCamelCase :Optional[int] = size if size is not None else self.size __UpperCamelCase :int = get_size_dict(__lowercase , param_name='''size''' , default_to_square=__lowercase) __UpperCamelCase :str = resample if resample is not None else self.resample __UpperCamelCase :List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase :Dict = crop_size if crop_size is not None else self.crop_size __UpperCamelCase :Dict = get_size_dict(__lowercase , param_name='''crop_size''' , default_to_square=__lowercase) __UpperCamelCase :Dict = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase :str = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase :Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase :Dict = image_mean if image_mean is not None else self.image_mean __UpperCamelCase :List[Any] = image_std if image_std is not None else self.image_std __UpperCamelCase :List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCamelCase :Tuple = make_list_of_images(__lowercase) if not valid_images(__lowercase): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCamelCase :Optional[int] = [convert_to_rgb(__lowercase) for image in images] # All transformations expect numpy arrays. __UpperCamelCase :Optional[int] = [to_numpy_array(__lowercase) for image in images] if do_resize: __UpperCamelCase :List[Any] = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase) for image in images] if do_center_crop: __UpperCamelCase :List[Any] = [self.center_crop(image=__lowercase , size=__lowercase) for image in images] if do_rescale: __UpperCamelCase :str = [self.rescale(image=__lowercase , scale=__lowercase) for image in images] if do_normalize: __UpperCamelCase :Union[str, Any] = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase) for image in images] __UpperCamelCase :str = [to_channel_dimension_format(__lowercase , __lowercase) for image in images] __UpperCamelCase :Tuple = {'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase)
167
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case ( __lowercase , unittest.TestCase ): UpperCAmelCase__ = KandinskyVaaControlnetPipeline UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] UpperCAmelCase__ = ['''image_embeds''', '''negative_image_embeds''', '''hint'''] UpperCAmelCase__ = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCAmelCase__ = False @property def _lowercase (self ): """simple docstring""" return 32 @property def _lowercase (self ): """simple docstring""" return 32 @property def _lowercase (self ): """simple docstring""" return self.time_input_dim @property def _lowercase (self ): """simple docstring""" return self.time_input_dim * 4 @property def _lowercase (self ): """simple docstring""" return 1_00 @property def _lowercase (self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(**SCREAMING_SNAKE_CASE_ ) return model @property def _lowercase (self ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowercase (self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.dummy_unet SCREAMING_SNAKE_CASE_ = self.dummy_movq SCREAMING_SNAKE_CASE_ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='''linear''' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE_ ) # create hint SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = '''cpu''' SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) , return_dict=SCREAMING_SNAKE_CASE_ , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array( [0.6_95_98_26, 0.86_82_79, 0.7_55_80_92, 0.68_76_94_67, 0.85_80_58_04, 0.65_97_74_96, 0.44_88_53_02, 0.5_95_91_11, 0.4_25_15_95] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def _lowercase (self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(np.array(SCREAMING_SNAKE_CASE_ ) ).float() / 2_55.0 SCREAMING_SNAKE_CASE_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) SCREAMING_SNAKE_CASE_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipeline.to(SCREAMING_SNAKE_CASE_ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = '''A robot, 4k photo''' SCREAMING_SNAKE_CASE_ = torch.Generator(device='''cuda''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = pipe_prior( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE_ = torch.Generator(device='''cuda''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ = pipeline( image_embeds=SCREAMING_SNAKE_CASE_ , negative_image_embeds=SCREAMING_SNAKE_CASE_ , hint=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=1_00 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
628
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case ( __lowercase ): def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = 8 # DPR tok SCREAMING_SNAKE_CASE_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = os.path.join(SCREAMING_SNAKE_CASE_ , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok SCREAMING_SNAKE_CASE_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] SCREAMING_SNAKE_CASE_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) SCREAMING_SNAKE_CASE_ = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] SCREAMING_SNAKE_CASE_ = {'''unk_token''': '''<unk>'''} SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = os.path.join(SCREAMING_SNAKE_CASE_ , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE_ = os.path.join(SCREAMING_SNAKE_CASE_ , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _lowercase (self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def _lowercase (self ): """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def _lowercase (self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def _lowercase (self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_dataset() SCREAMING_SNAKE_CASE_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: SCREAMING_SNAKE_CASE_ = dataset SCREAMING_SNAKE_CASE_ = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_dataset() SCREAMING_SNAKE_CASE_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''dataset''' ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset SCREAMING_SNAKE_CASE_ = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: SCREAMING_SNAKE_CASE_ = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , SCREAMING_SNAKE_CASE_ ) , ) return retriever def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) SCREAMING_SNAKE_CASE_ = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(SCREAMING_SNAKE_CASE_ , open(SCREAMING_SNAKE_CASE_ , '''wb''' ) ) SCREAMING_SNAKE_CASE_ = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) SCREAMING_SNAKE_CASE_ = RagRetriever( SCREAMING_SNAKE_CASE_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: SCREAMING_SNAKE_CASE_ = self.get_dummy_dataset() retriever.save_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 ) self.assertTrue(out is not None ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_legacy_index_retriever() SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=SCREAMING_SNAKE_CASE_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = RagRetriever.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever.retrieve(SCREAMING_SNAKE_CASE_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase (self ): """simple docstring""" import torch SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE_ = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) SCREAMING_SNAKE_CASE_ = retriever( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_dpr_ctx_encoder_tokenizer() SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = self.get_dummy_custom_hf_index_retriever(from_disk=SCREAMING_SNAKE_CASE_ ) retriever.set_ctx_encoder_tokenizer(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE_ = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE_ = retriever(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prefix=retriever.config.generator.prefix , n_docs=SCREAMING_SNAKE_CASE_ ) self.assertEqual( len(SCREAMING_SNAKE_CASE_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , SCREAMING_SNAKE_CASE_ ) # check for doc token related keys in dictionary.
628
1
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. snake_case_ = [p / w for p, w in zip(UpperCamelCase__ , UpperCamelCase__ )] # Creating a copy of the list and sorting profit/weight in ascending order snake_case_ = sorted(UpperCamelCase__ ) # declaring useful variables snake_case_ = len(UpperCamelCase__ ) snake_case_ = 0 snake_case_ = 0 snake_case_ = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight snake_case_ = sorted_profit_by_weight[length - i - 1] snake_case_ = profit_by_weight.index(UpperCamelCase__ ) snake_case_ = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) _UpperCAmelCase : Any = [int(x) for x in input("""Input profits separated by spaces: """).split()] _UpperCAmelCase : Optional[Any] = [int(x) for x in input("""Input weights separated by spaces: """).split()] _UpperCAmelCase : str = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
362
from math import pow, sqrt def _SCREAMING_SNAKE_CASE ( *SCREAMING_SNAKE_CASE :float ) -> bool: __lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) > 0 and all(value > 0.0 for value in values ) return result def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float , SCREAMING_SNAKE_CASE :float ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
504
0
"""simple docstring""" import qiskit def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> qiskit.result.counts.Counts: __magic_name__ = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register __magic_name__ = qiskit.QuantumCircuit(__UpperCamelCase , __UpperCamelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator __magic_name__ = qiskit.execute(__UpperCamelCase , __UpperCamelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase = single_qubit_measure(2, 2) print(f"""Total count for various states are: {counts}""")
714
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
190
0
def snake_case__ ( ): return 1 def snake_case__ ( UpperCAmelCase : int ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def snake_case__ ( UpperCAmelCase : int ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(_lowercase ) def snake_case__ ( UpperCAmelCase : int ): return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(_lowercase ) def snake_case__ ( UpperCAmelCase : int ): return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(_lowercase ) def snake_case__ ( UpperCAmelCase : int ): return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(_lowercase ) def snake_case__ ( UpperCAmelCase : int ): return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(_lowercase ) def snake_case__ ( UpperCAmelCase : int ): return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(_lowercase ) def snake_case__ ( UpperCAmelCase : int = 2_0_0 ): return two_pound(_lowercase ) if __name__ == "__main__": print(solution(int(input().strip())))
145
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class snake_case__ : @staticmethod def __lowerCAmelCase ( *lowercase : Any , **lowercase : str ): '''simple docstring''' pass def lowercase_ ( _lowercase : Image ): '''simple docstring''' UpperCAmelCase : str = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def lowercase_ ( _lowercase : Image ): '''simple docstring''' UpperCAmelCase : int = np.array(_lowercase ) UpperCAmelCase : Union[str, Any] = npimg.shape return {"hash": hashimage(_lowercase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class snake_case__ ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def __lowerCAmelCase ( self : List[Any] , lowercase : List[str] , lowercase : Dict , lowercase : str ): '''simple docstring''' UpperCAmelCase : Optional[Any] = MaskGenerationPipeline(model=lowercase , image_processor=lowercase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def __lowerCAmelCase ( self : Optional[Any] , lowercase : Dict , lowercase : Dict ): '''simple docstring''' pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' pass @slow @require_torch def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : Any = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) UpperCAmelCase : str = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=2_56 ) # Shortening by hashing UpperCAmelCase : Optional[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(lowercase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.0_2_1}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0_0_5_3}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_80, 6_40)}, "scores": 0.9_9_6_7}, {"mask": {"hash": "453c7844bd", "shape": (4_80, 6_40)}, "scores": 0.9_9_3}, {"mask": {"hash": "3d44f2926d", "shape": (4_80, 6_40)}, "scores": 0.9_9_0_9}, {"mask": {"hash": "64033ddc3f", "shape": (4_80, 6_40)}, "scores": 0.9_8_7_9}, {"mask": {"hash": "801064ff79", "shape": (4_80, 6_40)}, "scores": 0.9_8_3_4}, {"mask": {"hash": "6172f276ef", "shape": (4_80, 6_40)}, "scores": 0.9_7_1_6}, {"mask": {"hash": "b49e60e084", "shape": (4_80, 6_40)}, "scores": 0.9_6_1_2}, {"mask": {"hash": "a811e775fd", "shape": (4_80, 6_40)}, "scores": 0.9_5_9_9}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_80, 6_40)}, "scores": 0.9_5_5_2}, {"mask": {"hash": "9d8257e080", "shape": (4_80, 6_40)}, "scores": 0.9_5_3_2}, {"mask": {"hash": "32de6454a8", "shape": (4_80, 6_40)}, "scores": 0.9_5_1_6}, {"mask": {"hash": "af3d4af2c8", "shape": (4_80, 6_40)}, "scores": 0.9_4_9_9}, {"mask": {"hash": "3c6db475fb", "shape": (4_80, 6_40)}, "scores": 0.9_4_8_3}, {"mask": {"hash": "c290813fb9", "shape": (4_80, 6_40)}, "scores": 0.9_4_6_4}, {"mask": {"hash": "b6f0b8f606", "shape": (4_80, 6_40)}, "scores": 0.9_4_3}, {"mask": {"hash": "92ce16bfdf", "shape": (4_80, 6_40)}, "scores": 0.9_4_3}, {"mask": {"hash": "c749b25868", "shape": (4_80, 6_40)}, "scores": 0.9_4_0_8}, {"mask": {"hash": "efb6cab859", "shape": (4_80, 6_40)}, "scores": 0.9_3_3_5}, {"mask": {"hash": "1ff2eafb30", "shape": (4_80, 6_40)}, "scores": 0.9_3_2_6}, {"mask": {"hash": "788b798e24", "shape": (4_80, 6_40)}, "scores": 0.9_2_6_2}, {"mask": {"hash": "abea804f0e", "shape": (4_80, 6_40)}, "scores": 0.8_9_9_9}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_80, 6_40)}, "scores": 0.8_9_8_6}, {"mask": {"hash": "cd24047c8a", "shape": (4_80, 6_40)}, "scores": 0.8_9_8_4}, {"mask": {"hash": "6943e6bcbd", "shape": (4_80, 6_40)}, "scores": 0.8_8_7_3}, {"mask": {"hash": "b5f47c9191", "shape": (4_80, 6_40)}, "scores": 0.8_8_7_1} ] , ) # fmt: on @require_torch @slow def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = "facebook/sam-vit-huge" UpperCAmelCase : Optional[int] = pipeline("mask-generation" , model=lowercase ) UpperCAmelCase : Dict = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=2_56 ) # Shortening by hashing UpperCAmelCase : str = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(lowercase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(lowercase , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (4_80, 6_40)}, "scores": 1.0_4_4_4}, {"mask": {"hash": "6affa964c6", "shape": (4_80, 6_40)}, "scores": 1.0_2_1_0}, {"mask": {"hash": "dfe28a0388", "shape": (4_80, 6_40)}, "scores": 1.0_1_6_7}, {"mask": {"hash": "c0a5f4a318", "shape": (4_80, 6_40)}, "scores": 1.0_1_3_2}, {"mask": {"hash": "fe8065c197", "shape": (4_80, 6_40)}, "scores": 1.0_0_5_3}, ] , )
595
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : torch.FloatTensor _lowerCAmelCase : torch.FloatTensor _lowerCAmelCase : Optional[torch.FloatTensor] = None class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): _lowerCAmelCase : Tuple = 2 @register_to_config def __init__( self , lowercase__ = 0.0_2 , lowercase__ = 1_0_0 , lowercase__ = 1.0_0_7 , lowercase__ = 8_0 , lowercase__ = 0.0_5 , lowercase__ = 5_0 , ): # standard deviation of the initial noise distribution __UpperCAmelCase : str = sigma_max # setable values __UpperCAmelCase : int = None __UpperCAmelCase : np.IntTensor = None __UpperCAmelCase : torch.FloatTensor = None # sigma(t_i) def A( self , lowercase__ , lowercase__ = None): return sample def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : str = num_inference_steps __UpperCAmelCase : Optional[int] = np.arange(0 , self.num_inference_steps)[::-1].copy() __UpperCAmelCase : List[Any] = torch.from_numpy(lowercase__).to(lowercase__) __UpperCAmelCase : List[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __UpperCAmelCase : Any = torch.tensor(lowercase__ , dtype=torch.floataa , device=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ = None): if self.config.s_min <= sigma <= self.config.s_max: __UpperCAmelCase : Optional[Any] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1) else: __UpperCAmelCase : Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) __UpperCAmelCase : Any = self.config.s_noise * randn_tensor(sample.shape , generator=lowercase__).to(sample.device) __UpperCAmelCase : str = sigma + gamma * sigma __UpperCAmelCase : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ): __UpperCAmelCase : Dict = sample_hat + sigma_hat * model_output __UpperCAmelCase : List[str] = (sample_hat - pred_original_sample) / sigma_hat __UpperCAmelCase : Dict = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase__ , derivative=lowercase__ , pred_original_sample=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = True , ): __UpperCAmelCase : Optional[int] = sample_prev + sigma_prev * model_output __UpperCAmelCase : Optional[Any] = (sample_prev - pred_original_sample) / sigma_prev __UpperCAmelCase : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowercase__ , derivative=lowercase__ , pred_original_sample=lowercase__) def A( self , lowercase__ , lowercase__ , lowercase__): raise NotImplementedError()
675
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
1
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params a : List[str] = getLogger(__name__) a : Any = """cuda""" if torch.cuda.is_available() else """cpu""" def snake_case__ ( lowercase , lowercase , lowercase , lowercase = 8 , lowercase = DEFAULT_DEVICE , lowercase=False , lowercase="summarization" , lowercase=None , **lowercase , ): lowerCAmelCase_: Union[str, Any] = Path(lowercase ).open("w" , encoding="utf-8" ) lowerCAmelCase_: Union[str, Any] = str(lowercase ) lowerCAmelCase_: Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(lowercase ).to(lowercase ) if fpaa: lowerCAmelCase_: Optional[int] = model.half() lowerCAmelCase_: List[Any] = AutoTokenizer.from_pretrained(lowercase ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. lowerCAmelCase_: List[Any] = time.time() # update config with task specific params use_task_specific_params(lowercase , lowercase ) if prefix is None: lowerCAmelCase_: Union[str, Any] = prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(lowercase , lowercase ) ) ): lowerCAmelCase_: str = [prefix + text for text in examples_chunk] lowerCAmelCase_: int = tokenizer(lowercase , return_tensors="pt" , truncation=lowercase , padding="longest" ).to(lowercase ) lowerCAmelCase_: Optional[Any] = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **lowercase , ) lowerCAmelCase_: str = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase , clean_up_tokenization_spaces=lowercase ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() lowerCAmelCase_: Dict = int(time.time() - start_time ) # seconds lowerCAmelCase_: str = len(lowercase ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def snake_case__ ( ): return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def snake_case__ ( lowercase=True ): lowerCAmelCase_: Dict = argparse.ArgumentParser() parser.add_argument("model_name" , type=lowercase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=lowercase , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=lowercase , help="where to save summaries" ) parser.add_argument("--reference_path" , type=lowercase , required=lowercase , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=lowercase , required=lowercase , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=lowercase , required=lowercase , default=lowercase , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=lowercase , required=lowercase , default=lowercase , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=lowercase , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=lowercase , default=8 , required=lowercase , help="batch size" ) parser.add_argument( "--n_obs" , type=lowercase , default=-1 , required=lowercase , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=lowercase , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate lowerCAmelCase_ , lowerCAmelCase_: List[str] = parser.parse_known_args() lowerCAmelCase_: List[Any] = parse_numeric_n_bool_cl_kwargs(lowercase ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) lowerCAmelCase_: Optional[int] = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: lowerCAmelCase_: List[str] = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=lowercase ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) lowerCAmelCase_: Optional[Any] = generate_summaries_or_translations( lowercase , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **lowercase , ) if args.reference_path is None: return {} # Compute scores lowerCAmelCase_: Any = calculate_bleu if "translation" in args.task else calculate_rouge lowerCAmelCase_: List[Any] = [x.rstrip() for x in open(args.save_path ).readlines()] lowerCAmelCase_: int = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(lowercase )] lowerCAmelCase_: dict = score_fn(lowercase , lowercase ) scores.update(lowercase ) if args.dump_args: scores.update(lowercase ) if args.info: lowerCAmelCase_: Dict = args.info if verbose: print(lowercase ) if args.score_path is not None: json.dump(lowercase , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
613
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : List[str] = False class _lowercase ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): lowerCAmelCase_: List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCAmelCase_: Tuple = "A painting of a squirrel eating a burger " lowerCAmelCase_: List[str] = torch.manual_seed(0 ) lowerCAmelCase_: Dict = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) lowerCAmelCase_: int = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCAmelCase_: List[str] = generator.manual_seed(0 ) lowerCAmelCase_: Dict = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _a ( self ): lowerCAmelCase_: Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCAmelCase_: str = "A painting of a squirrel eating a burger " lowerCAmelCase_: int = torch.manual_seed(0 ) lowerCAmelCase_: List[str] = pipe( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images lowerCAmelCase_: List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_: Optional[int] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
613
1
"""simple docstring""" import os def lowercase__(A = "input.txt" ) ->int: """simple docstring""" with open(os.path.join(os.path.dirname(A ) , A ) ) as input_file: lowercase__ : Optional[Any]= [ [int(A ) for element in line.split("," )] for line in input_file.readlines() ] lowercase__ : Optional[Any]= len(A ) lowercase__ : Dict= len(matrix[0] ) lowercase__ : Any= [[-1 for _ in range(A )] for _ in range(A )] for i in range(A ): lowercase__ : Any= matrix[i][0] for j in range(1 , A ): for i in range(A ): lowercase__ : List[str]= minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , A ): lowercase__ : str= min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowercase__ : int= min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F"""{solution() = }""")
85
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
85
1
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase_ ( a__ ): def snake_case_ ( self ) -> Tuple: UpperCamelCase : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_, 'width_multiplier' ) ) class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_="swish", SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=0.25, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, ) -> Any: UpperCamelCase : int = parent UpperCamelCase : int = batch_size UpperCamelCase : List[Any] = image_size UpperCamelCase : List[str] = patch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : List[str] = make_divisible(512 * width_multiplier, divisor=8 ) UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[int] = conv_kernel_size UpperCamelCase : List[str] = output_stride UpperCamelCase : Union[str, Any] = classifier_dropout_prob UpperCamelCase : List[Any] = use_labels UpperCamelCase : Any = is_training UpperCamelCase : int = num_labels UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Tuple = scope UpperCamelCase : List[str] = width_multiplier UpperCamelCase : Any = ffn_dropout UpperCamelCase : List[Any] = attn_dropout def snake_case_ ( self ) -> int: UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : List[str] = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels ) UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case_ ( self ) -> int: return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Any = MobileViTVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Optional[int] = self.num_labels UpperCamelCase : Tuple = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCamelCase : Any = self.num_labels UpperCamelCase : Optional[Any] = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) UpperCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs UpperCamelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[Any] = False def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Dict = MobileViTVaModelTester(self ) UpperCamelCase : Optional[Any] = MobileViTVaConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def snake_case_ ( self ) -> int: pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def snake_case_ ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def snake_case_ ( self ) -> Dict: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def snake_case_ ( self ) -> Any: pass def snake_case_ ( self ) -> List[str]: UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : str = [*signature.parameters.keys()] UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Tuple: def check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): UpperCamelCase : List[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Tuple = outputs.hidden_states UpperCamelCase : Dict = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase : Any = 2 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2 ) UpperCamelCase , UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) @slow def snake_case_ ( self ) -> Optional[Any]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def snake_case_ ( self ) -> str: return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : List[str] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Union[str, Any] = prepare_img() UpperCamelCase : Any = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = outputs.logits # verify the logits UpperCamelCase : Dict = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ], device=SCREAMING_SNAKE_CASE_, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : str = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Optional[int] = model.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase : Tuple = prepare_img() UpperCamelCase : int = image_processor(images=SCREAMING_SNAKE_CASE_, return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = outputs.logits.detach().cpu() UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_, target_sizes=[(50, 60)] ) UpperCamelCase : Optional[int] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape, SCREAMING_SNAKE_CASE_ )
40
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any]=False ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith('head' ): SCREAMING_SNAKE_CASE__ :str = 'segformer.encoder.' + key if key.startswith('backbone' ): SCREAMING_SNAKE_CASE__ :List[str] = key.replace('backbone' , 'segformer.encoder' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 SCREAMING_SNAKE_CASE__ :int = key[key.find('patch_embed' ) + len('patch_embed' )] SCREAMING_SNAKE_CASE__ :Union[str, Any] = key.replace(F'''patch_embed{idx}''' , F'''patch_embeddings.{int(UpperCAmelCase__ )-1}''' ) if "norm" in key: SCREAMING_SNAKE_CASE__ :Tuple = key.replace('norm' , 'layer_norm' ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 SCREAMING_SNAKE_CASE__ :Dict = key[key.find('segformer.encoder.layer_norm' ) + len('segformer.encoder.layer_norm' )] SCREAMING_SNAKE_CASE__ :List[Any] = key.replace(F'''layer_norm{idx}''' , F'''layer_norm.{int(UpperCAmelCase__ )-1}''' ) if "layer_norm1" in key: SCREAMING_SNAKE_CASE__ :List[Any] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: SCREAMING_SNAKE_CASE__ :Dict = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 SCREAMING_SNAKE_CASE__ :str = key[key.find('block' ) + len('block' )] SCREAMING_SNAKE_CASE__ :Tuple = key.replace(F'''block{idx}''' , F'''block.{int(UpperCAmelCase__ )-1}''' ) if "attn.q" in key: SCREAMING_SNAKE_CASE__ :Tuple = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: SCREAMING_SNAKE_CASE__ :List[str] = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: SCREAMING_SNAKE_CASE__ :Tuple = key.replace('attn' , 'attention.self' ) if "fc1" in key: SCREAMING_SNAKE_CASE__ :Tuple = key.replace('fc1' , 'dense1' ) if "fc2" in key: SCREAMING_SNAKE_CASE__ :int = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: SCREAMING_SNAKE_CASE__ :List[Any] = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: SCREAMING_SNAKE_CASE__ :Optional[Any] = key.replace('linear_fuse.conv' , 'linear_fuse' ) SCREAMING_SNAKE_CASE__ :Optional[int] = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 SCREAMING_SNAKE_CASE__ :List[Any] = key[key.find('linear_c' ) + len('linear_c' )] SCREAMING_SNAKE_CASE__ :str = key.replace(F'''linear_c{idx}''' , F'''linear_c.{int(UpperCAmelCase__ )-1}''' ) if key.startswith('head' ): SCREAMING_SNAKE_CASE__ :List[str] = key.replace('head' , 'classifier' ) SCREAMING_SNAKE_CASE__ :List[Any] = value return new_state_dict def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Any ) -> Tuple: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) SCREAMING_SNAKE_CASE__ :List[Any] = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''' ) SCREAMING_SNAKE_CASE__ :Dict = state_dict.pop(F'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ :Tuple = kv_weight[ : config.hidden_sizes[i], : ] SCREAMING_SNAKE_CASE__ :Tuple = kv_bias[: config.hidden_sizes[i]] SCREAMING_SNAKE_CASE__ :Optional[Any] = kv_weight[ config.hidden_sizes[i] :, : ] SCREAMING_SNAKE_CASE__ :Optional[int] = kv_bias[ config.hidden_sizes[i] : ] def lowerCamelCase ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE__ :Any = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) return image @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Dict = SegformerConfig() SCREAMING_SNAKE_CASE__ :Tuple = False # set attributes based on model_name SCREAMING_SNAKE_CASE__ :Any = 'huggingface/label-files' if "segformer" in model_name: SCREAMING_SNAKE_CASE__ :Tuple = model_name[len('segformer.' ) : len('segformer.' ) + 2] if "ade" in model_name: SCREAMING_SNAKE_CASE__ :List[str] = 1_5_0 SCREAMING_SNAKE_CASE__ :Dict = 'ade20k-id2label.json' SCREAMING_SNAKE_CASE__ :List[str] = (1, 1_5_0, 1_2_8, 1_2_8) elif "city" in model_name: SCREAMING_SNAKE_CASE__ :Tuple = 1_9 SCREAMING_SNAKE_CASE__ :Union[str, Any] = 'cityscapes-id2label.json' SCREAMING_SNAKE_CASE__ :Optional[int] = (1, 1_9, 1_2_8, 1_2_8) else: raise ValueError(F'''Model {model_name} not supported''' ) elif "mit" in model_name: SCREAMING_SNAKE_CASE__ :str = True SCREAMING_SNAKE_CASE__ :Optional[int] = model_name[4:6] SCREAMING_SNAKE_CASE__ :Tuple = 1_0_0_0 SCREAMING_SNAKE_CASE__ :Union[str, Any] = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE__ :Optional[Any] = (1, 1_0_0_0) else: raise ValueError(F'''Model {model_name} not supported''' ) # set config attributes SCREAMING_SNAKE_CASE__ :Dict = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ :Optional[Any] = idalabel SCREAMING_SNAKE_CASE__ :List[Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": SCREAMING_SNAKE_CASE__ :Optional[int] = [6_4, 1_2_8, 3_2_0, 5_1_2] SCREAMING_SNAKE_CASE__ :Any = 2_5_6 elif size == "b2": SCREAMING_SNAKE_CASE__ :List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2] SCREAMING_SNAKE_CASE__ :Any = 7_6_8 SCREAMING_SNAKE_CASE__ :Optional[int] = [3, 4, 6, 3] elif size == "b3": SCREAMING_SNAKE_CASE__ :List[str] = [6_4, 1_2_8, 3_2_0, 5_1_2] SCREAMING_SNAKE_CASE__ :Union[str, Any] = 7_6_8 SCREAMING_SNAKE_CASE__ :Optional[int] = [3, 4, 1_8, 3] elif size == "b4": SCREAMING_SNAKE_CASE__ :Tuple = [6_4, 1_2_8, 3_2_0, 5_1_2] SCREAMING_SNAKE_CASE__ :Union[str, Any] = 7_6_8 SCREAMING_SNAKE_CASE__ :Any = [3, 8, 2_7, 3] elif size == "b5": SCREAMING_SNAKE_CASE__ :Union[str, Any] = [6_4, 1_2_8, 3_2_0, 5_1_2] SCREAMING_SNAKE_CASE__ :Union[str, Any] = 7_6_8 SCREAMING_SNAKE_CASE__ :List[str] = [3, 6, 4_0, 3] else: raise ValueError(F'''Size {size} not supported''' ) # load image processor (only resize + normalize) SCREAMING_SNAKE_CASE__ :int = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=UpperCAmelCase__ , align=UpperCAmelCase__ , do_random_crop=UpperCAmelCase__ ) # prepare image SCREAMING_SNAKE_CASE__ :Dict = prepare_img() SCREAMING_SNAKE_CASE__ :List[Any] = image_processor(images=UpperCAmelCase__ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict if encoder_only: SCREAMING_SNAKE_CASE__ :str = torch.load(UpperCAmelCase__ , map_location=torch.device('cpu' ) ) else: SCREAMING_SNAKE_CASE__ :str = torch.load(UpperCAmelCase__ , map_location=torch.device('cpu' ) )['state_dict'] # rename keys SCREAMING_SNAKE_CASE__ :Tuple = rename_keys(UpperCAmelCase__ , encoder_only=UpperCAmelCase__ ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(UpperCAmelCase__ , UpperCAmelCase__ ) # create HuggingFace model and load state dict if encoder_only: SCREAMING_SNAKE_CASE__ :Any = False SCREAMING_SNAKE_CASE__ :int = SegformerForImageClassification(UpperCAmelCase__ ) else: SCREAMING_SNAKE_CASE__ :int = SegformerForSemanticSegmentation(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # forward pass SCREAMING_SNAKE_CASE__ :Optional[Any] = model(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": SCREAMING_SNAKE_CASE__ :Dict = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": SCREAMING_SNAKE_CASE__ :Any = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": SCREAMING_SNAKE_CASE__ :List[Any] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": SCREAMING_SNAKE_CASE__ :Optional[int] = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": SCREAMING_SNAKE_CASE__ :Optional[Any] = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": SCREAMING_SNAKE_CASE__ :Tuple = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ :List[Any] = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": SCREAMING_SNAKE_CASE__ :List[Any] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": SCREAMING_SNAKE_CASE__ :Dict = torch.tensor( [ [ [-1.1_372e01, -1.2_787e01, -1.3_477e01], [-1.2_536e01, -1.4_194e01, -1.4_409e01], [-1.3_217e01, -1.4_888e01, -1.5_327e01], ], [ [-1.4_791e01, -1.7_122e01, -1.8_277e01], [-1.7_163e01, -1.9_192e01, -1.9_533e01], [-1.7_897e01, -1.9_991e01, -2.0_315e01], ], [ [7.6_723e-01, 4.1_921e-01, -7.7_878e-02], [4.7_772e-01, 9.5_557e-03, -2.8_082e-01], [3.6_032e-01, -2.4_826e-01, -5.1_168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": SCREAMING_SNAKE_CASE__ :Optional[Any] = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ :Optional[int] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ :List[str] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ :List[str] = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ :int = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": SCREAMING_SNAKE_CASE__ :int = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: SCREAMING_SNAKE_CASE__ :Optional[int] = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase__ , atol=1e-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''segformer.b0.512x512.ade.160k''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCamelCase_ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
320
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): A_ : List[str] = 'roberta' def __init__( self : Union[str, Any] , UpperCamelCase_ : Dict=5_02_65 , UpperCamelCase_ : List[Any]=7_68 , UpperCamelCase_ : List[Any]=12 , UpperCamelCase_ : int=12 , UpperCamelCase_ : str=30_72 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Any=5_12 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : List[str]=1e-12 , UpperCamelCase_ : Optional[int]=1 , UpperCamelCase_ : str=0 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Optional[Any]="absolute" , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Dict=None , **UpperCamelCase_ : Any , ) -> List[str]: super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = vocab_size SCREAMING_SNAKE_CASE__ :List[Any] = hidden_size SCREAMING_SNAKE_CASE__ :str = num_hidden_layers SCREAMING_SNAKE_CASE__ :Tuple = num_attention_heads SCREAMING_SNAKE_CASE__ :Any = hidden_act SCREAMING_SNAKE_CASE__ :List[str] = intermediate_size SCREAMING_SNAKE_CASE__ :List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ :Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ :List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ :Optional[Any] = type_vocab_size SCREAMING_SNAKE_CASE__ :Optional[Any] = initializer_range SCREAMING_SNAKE_CASE__ :Tuple = layer_norm_eps SCREAMING_SNAKE_CASE__ :List[Any] = position_embedding_type SCREAMING_SNAKE_CASE__ :int = use_cache SCREAMING_SNAKE_CASE__ :Dict = classifier_dropout class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE ): @property def __lowerCamelCase ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ :Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE__ :List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
320
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) SCREAMING_SNAKE_CASE__ : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE__ : Optional[int] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
79
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __SCREAMING_SNAKE_CASE (__A ): """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ): """simple docstring""" super().__init__( UpperCamelCase__ , split=UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ , streaming=UpperCamelCase__ , num_proc=UpperCamelCase__ , **UpperCamelCase__ , ) a_ = field a_ = path_or_paths if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else {self.split: path_or_paths} a_ = Json( cache_dir=UpperCamelCase__ , data_files=UpperCamelCase__ , features=UpperCamelCase__ , field=UpperCamelCase__ , **UpperCamelCase__ , ) def _a ( self ): """simple docstring""" if self.streaming: a_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: a_ = None a_ = None a_ = None a_ = None self.builder.download_and_prepare( download_config=UpperCamelCase__ , download_mode=UpperCamelCase__ , verification_mode=UpperCamelCase__ , base_path=UpperCamelCase__ , num_proc=self.num_proc , ) a_ = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase__ , in_memory=self.keep_in_memory ) return dataset class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , **UpperCamelCase__ , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'num_proc {num_proc} must be an integer > 0.' ) a_ = dataset a_ = path_or_buf a_ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a_ = num_proc a_ = 'utf-8' a_ = to_json_kwargs def _a ( self ): """simple docstring""" a_ = self.to_json_kwargs.pop('path_or_buf' , UpperCamelCase__ ) a_ = self.to_json_kwargs.pop('orient' , 'records' ) a_ = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) a_ = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) a_ = self.to_json_kwargs.pop('compression' , UpperCamelCase__ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=UpperCamelCase__ ) as buffer: a_ = self._write(file_obj=UpperCamelCase__ , orient=UpperCamelCase__ , lines=UpperCamelCase__ , index=UpperCamelCase__ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'The compression parameter is not supported when writing to a buffer, but compression={compression}' ' was passed. Please provide a local path instead.' ) a_ = self._write( file_obj=self.path_or_buf , orient=UpperCamelCase__ , lines=UpperCamelCase__ , index=UpperCamelCase__ , **self.to_json_kwargs ) return written def _a ( self , UpperCamelCase__ ): """simple docstring""" a_ , a_ , a_ , a_ , a_ = args a_ = query_table( table=self.dataset.data , key=slice(UpperCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) a_ = batch.to_pandas().to_json( path_or_buf=UpperCamelCase__ , orient=UpperCamelCase__ , lines=UpperCamelCase__ , index=UpperCamelCase__ , **UpperCamelCase__ ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def _a ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ): """simple docstring""" a_ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): a_ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCamelCase__ ) else: a_ , a_ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCamelCase__ , UpperCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(UpperCamelCase__ ) return written
536
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowercase ( A, unittest.TestCase ): '''simple docstring''' _A : Optional[Any] = KandinskyVaaInpaintPipeline _A : Union[str, Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _A : Any = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _A : Optional[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _A : List[str] = False @property def A_ ( self : Optional[Any] ): return 32 @property def A_ ( self : str ): return 32 @property def A_ ( self : Dict ): return self.time_input_dim @property def A_ ( self : Tuple ): return self.time_input_dim * 4 @property def A_ ( self : Any ): return 100 @property def A_ ( self : Tuple ): torch.manual_seed(0 ) UpperCamelCase__ = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCamelCase__ = UNetaDConditionModel(**_a ) return model @property def A_ ( self : List[str] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A_ ( self : Optional[int] ): torch.manual_seed(0 ) UpperCamelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def A_ ( self : Any ): UpperCamelCase__ = self.dummy_unet UpperCamelCase__ = self.dummy_movq UpperCamelCase__ = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_a , set_alpha_to_one=_a , steps_offset=1 , prediction_type='''epsilon''' , thresholding=_a , ) UpperCamelCase__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A_ ( self : List[Any] , _a : str , _a : Dict=0 ): UpperCamelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) UpperCamelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image UpperCamelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((256, 256) ) # create mask UpperCamelCase__ = np.ones((64, 64) , dtype=np.floataa ) UpperCamelCase__ = 0 if str(_a ).startswith('''mps''' ): UpperCamelCase__ = torch.manual_seed(_a ) else: UpperCamelCase__ = torch.Generator(device=_a ).manual_seed(_a ) UpperCamelCase__ = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def A_ ( self : int ): UpperCamelCase__ = '''cpu''' UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**_a ) UpperCamelCase__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) UpperCamelCase__ = pipe(**self.get_dummy_inputs(_a ) ) UpperCamelCase__ = output.images UpperCamelCase__ = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] UpperCamelCase__ = image[0, -3:, -3:, -1] UpperCamelCase__ = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCamelCase__ = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def A_ ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : List[Any] ): UpperCamelCase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) UpperCamelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCamelCase__ = np.ones((768, 768) , dtype=np.floataa ) UpperCamelCase__ = 0 UpperCamelCase__ = '''a hat''' UpperCamelCase__ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) UpperCamelCase__ = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) UpperCamelCase__ = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) UpperCamelCase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCamelCase__ , UpperCamelCase__ = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCamelCase__ = pipeline( image=_a , mask_image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) UpperCamelCase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
715
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCamelCase__ : List[str], UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = torch.load(UpperCamelCase__, map_location='''cpu''' ) UpperCamelCase__ = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCamelCase__ = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase__ = v else: UpperCamelCase__ = v UpperCamelCase__ = chkpt['''params'''] UpperCamelCase__ = {n: v for n, v in config.items() if not isinstance(UpperCamelCase__, (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase__ = chkpt['''dico_word2id'''] UpperCamelCase__ = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''', '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCamelCase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCamelCase__ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(UpperCamelCase__, UpperCamelCase__ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(UpperCamelCase__, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(UpperCamelCase__, indent=2 ) + '''\n''' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(UpperCamelCase__, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(UpperCamelCase__, indent=2 ) + '''\n''' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
591
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __lowerCAmelCase = '\nHuman: <<task>>\n\nAssistant: ' __lowerCAmelCase = 'huggingface-tools/default-prompts' __lowerCAmelCase = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def a ( a , a , a="run" ) ->str: '''simple docstring''' if prompt_or_repo_id is None: SCREAMING_SNAKE_CASE = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , a ) is not None: return prompt_or_repo_id SCREAMING_SNAKE_CASE = cached_file( a , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(a , '''r''' , encoding='''utf-8''' ) as f: return f.read()
201
# Function to print upper half of diamond (pyramid) def a ( a ) ->Optional[Any]: '''simple docstring''' for i in range(0 , a ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def a ( a ) ->Union[str, Any]: '''simple docstring''' for i in range(a , 0 , -1 ): for _ in range(a , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def a ( a ) ->Optional[int]: '''simple docstring''' if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(a ) # upper half reverse_floyd(a ) # lower half if __name__ == "__main__": print(R'| /\ | |- | |- |--| |\ /| |-') print(R'|/ \| |- |_ |_ |__| | \/ | |_') __lowerCAmelCase = 1 while K: __lowerCAmelCase = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __lowerCAmelCase = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
201
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : str , lowercase__ : Optional[Any] , lowercase__ : Any=13 , lowercase__ : List[str]=7 , lowercase__ : Optional[int]=True , lowercase__ : List[Any]=True , lowercase__ : Dict=True , lowercase__ : str=True , lowercase__ : List[str]=99 , lowercase__ : str=32 , lowercase__ : int=5 , lowercase__ : List[str]=4 , lowercase__ : Optional[int]=37 , lowercase__ : Dict="gelu" , lowercase__ : int=0.1 , lowercase__ : Dict=0.1 , lowercase__ : Any=5_12 , lowercase__ : Any=16 , lowercase__ : Optional[int]=2 , lowercase__ : List[Any]=0.0_2 , lowercase__ : Optional[Any]=4 , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_attention_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_choices def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_attention_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =True UpperCamelCase__ =( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): _lowerCAmelCase = FlaxBertModelTester(self ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. _lowerCAmelCase = FlaxBertModel.from_pretrained('bert-base-cased' ) _lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase__ )
712
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowercase: int = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Any = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys _lowercase: Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
225
0
"""simple docstring""" import os import sys import unittest _lowerCAmelCase : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCAmelCase : Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') _lowerCAmelCase : str = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class A_ ( unittest.TestCase ): def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : int = get_test_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = get_test_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Dict = {"BertModelTest": "BertModelTester"} _lowerCamelCase : Union[str, Any] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = get_model_to_test_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = get_model_to_test_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } _lowerCamelCase : Optional[Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = get_model_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Dict = get_model_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } _lowerCamelCase : List[str] = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase )
46
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False ) -> int: '''simple docstring''' _lowerCamelCase : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _lowerCamelCase : Tuple = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Tuple = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) _lowerCamelCase : List[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : str = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : Any = in_proj_bias[: config.hidden_size] _lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Optional[int] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: '''simple docstring''' _lowerCamelCase : List[Any] = dct.pop(_lowerCamelCase ) _lowerCamelCase : Optional[int] = val @torch.no_grad() def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: '''simple docstring''' _lowerCamelCase : int = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowerCamelCase ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : str = False if "vqa" in checkpoint_url: _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = 3129 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Optional[Any] = "vqa2-id2label.json" _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : Any = {int(_lowerCamelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[int] = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} _lowerCamelCase : Any = ViltForQuestionAnswering(_lowerCamelCase ) elif "nlvr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[Any] = {0: "False", 1: "True"} _lowerCamelCase : int = {v: k for k, v in config.idalabel.items()} _lowerCamelCase : Optional[Any] = 3 _lowerCamelCase : Optional[Any] = ViltForImagesAndTextClassification(_lowerCamelCase ) elif "irtr" in checkpoint_url: _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ViltForImageAndTextRetrieval(_lowerCamelCase ) elif "mlm_itm" in checkpoint_url: _lowerCamelCase : Dict = True _lowerCamelCase : Optional[int] = ViltForMaskedLM(_lowerCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys _lowerCamelCase : List[Any] = torch.hub.load_state_dict_from_url(_lowerCamelCase , map_location="cpu" )["state_dict"] _lowerCamelCase : str = create_rename_keys(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase ) if mlm_model or irtr_model: _lowerCamelCase : Dict = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(_lowerCamelCase , _lowerCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCamelCase, _lowerCamelCase : List[str] = model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowerCamelCase ) # Define processor _lowerCamelCase : int = ViltImageProcessor(size=384 ) _lowerCamelCase : Union[str, Any] = BertTokenizer.from_pretrained("bert-base-uncased" ) _lowerCamelCase : Optional[int] = ViltProcessor(_lowerCamelCase , _lowerCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCamelCase : int = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : Union[str, Any] = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" , stream=_lowerCamelCase ).raw ) _lowerCamelCase : str = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) _lowerCamelCase : List[str] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Optional[int] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : int = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCamelCase : str = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" , stream=_lowerCamelCase ).raw ) if mlm_model: _lowerCamelCase : Any = "a bunch of [MASK] laying on a [MASK]." else: _lowerCamelCase : List[str] = "How many cats are there?" _lowerCamelCase : Union[str, Any] = processor(_lowerCamelCase , _lowerCamelCase , return_tensors="pt" ) _lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) # Verify outputs if mlm_model: _lowerCamelCase : List[str] = torch.Size([1, 11, 30522] ) _lowerCamelCase : Dict = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify masked token prediction equals "cats" _lowerCamelCase : List[Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCamelCase : List[str] = torch.Size([1, 3129] ) _lowerCamelCase : List[str] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowerCamelCase , atol=1e-4 ) # verify vqa prediction equals "2" _lowerCamelCase : Union[str, Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCamelCase : List[str] = torch.Size([1, 2] ) _lowerCamelCase : Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
46
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets SCREAMING_SNAKE_CASE = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' SCREAMING_SNAKE_CASE = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' SCREAMING_SNAKE_CASE = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def _lowerCamelCase ( __A : Optional[int] ) -> int: def remove_articles(__A : List[str] ): _UpperCAmelCase : List[str] = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(__A , ''' ''' , __A ) def white_space_fix(__A : Dict ): return " ".join(text.split() ) def remove_punc(__A : Any ): _UpperCAmelCase : Tuple = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__A : Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__A ) ) ) ) def _lowerCamelCase ( __A : Tuple , __A : int ) -> Optional[Any]: return int(normalize_answer(__A ) == normalize_answer(__A ) ) def _lowerCamelCase ( __A : str , __A : List[Any] ) -> str: _UpperCAmelCase : Dict = [any(compute_exact(__A , __A ) for ref in refs ) for pred, refs in zip(__A , __A )] return (sum(__A ) / len(__A )) * 100 def _lowerCamelCase ( __A : Dict , __A : Any , __A : Tuple , __A : Dict ) -> Any: _UpperCAmelCase : Optional[int] = [rgram for rgrams in rgramslist for rgram in rgrams] _UpperCAmelCase : List[Any] = Counter(__A ) _UpperCAmelCase : Union[str, Any] = Counter(__A ) _UpperCAmelCase : Tuple = Counter() for sgram, scount in sgramcounter.items(): _UpperCAmelCase : Union[str, Any] = scount * numref _UpperCAmelCase : List[str] = Counter(__A ) _UpperCAmelCase : Optional[int] = Counter() for cgram, ccount in cgramcounter.items(): _UpperCAmelCase : Optional[Any] = ccount * numref # KEEP _UpperCAmelCase : List[str] = sgramcounter_rep & cgramcounter_rep _UpperCAmelCase : Optional[int] = keepgramcounter_rep & rgramcounter _UpperCAmelCase : Union[str, Any] = sgramcounter_rep & rgramcounter _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : Union[str, Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase : Any = 1 _UpperCAmelCase : List[Any] = 1 if len(__A ) > 0: _UpperCAmelCase : List[str] = keeptmpscorea / len(__A ) if len(__A ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _UpperCAmelCase : List[str] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _UpperCAmelCase : List[str] = 0 if keepscore_precision > 0 or keepscore_recall > 0: _UpperCAmelCase : str = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _UpperCAmelCase : List[Any] = sgramcounter_rep - cgramcounter_rep _UpperCAmelCase : Optional[Any] = delgramcounter_rep - rgramcounter _UpperCAmelCase : Any = sgramcounter_rep - rgramcounter _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : List[Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase : Dict = 1 if len(__A ) > 0: _UpperCAmelCase : Optional[int] = deltmpscorea / len(__A ) # ADDITION _UpperCAmelCase : int = set(__A ) - set(__A ) _UpperCAmelCase : str = set(__A ) & set(__A ) _UpperCAmelCase : Optional[int] = set(__A ) - set(__A ) _UpperCAmelCase : List[Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Tuple = 1 if len(__A ) > 0: _UpperCAmelCase : Union[str, Any] = addtmpscore / len(__A ) if len(__A ) > 0: _UpperCAmelCase : int = addtmpscore / len(__A ) _UpperCAmelCase : Optional[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: _UpperCAmelCase : str = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _lowerCamelCase ( __A : List[str] , __A : Optional[Any] , __A : int ) -> Union[str, Any]: _UpperCAmelCase : List[str] = len(__A ) _UpperCAmelCase : Optional[Any] = ssent.split(''' ''' ) _UpperCAmelCase : Optional[int] = csent.split(''' ''' ) _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = [] for rsent in rsents: _UpperCAmelCase : Dict = rsent.split(''' ''' ) _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[Any] = [] ragramslist.append(__A ) for i in range(0 , len(__A ) - 1 ): if i < len(__A ) - 1: _UpperCAmelCase : List[Any] = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(__A ) if i < len(__A ) - 2: _UpperCAmelCase : Optional[int] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(__A ) if i < len(__A ) - 3: _UpperCAmelCase : Dict = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(__A ) ragramslist.append(__A ) ragramslist.append(__A ) ragramslist.append(__A ) for i in range(0 , len(__A ) - 1 ): if i < len(__A ) - 1: _UpperCAmelCase : Tuple = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(__A ) if i < len(__A ) - 2: _UpperCAmelCase : List[Any] = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(__A ) if i < len(__A ) - 3: _UpperCAmelCase : Any = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(__A ) for i in range(0 , len(__A ) - 1 ): if i < len(__A ) - 1: _UpperCAmelCase : Union[str, Any] = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(__A ) if i < len(__A ) - 2: _UpperCAmelCase : Dict = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(__A ) if i < len(__A ) - 3: _UpperCAmelCase : Tuple = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(__A ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : Any = SARIngram(__A , __A , __A , __A ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : List[Any] = SARIngram(__A , __A , __A , __A ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : List[str] = SARIngram(__A , __A , __A , __A ) ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : str = SARIngram(__A , __A , __A , __A ) _UpperCAmelCase : List[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _UpperCAmelCase : Optional[Any] = sum([delascore, delascore, delascore, delascore] ) / 4 _UpperCAmelCase : Optional[int] = sum([addascore, addascore, addascore, addascore] ) / 4 _UpperCAmelCase : Optional[int] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _lowerCamelCase ( __A : int , __A : bool = True , __A : str = "13a" , __A : bool = True ) -> List[str]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: _UpperCAmelCase : Union[str, Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _UpperCAmelCase : Optional[int] = sacrebleu.metrics.bleu._get_tokenizer(__A )()(__A ) else: _UpperCAmelCase : str = sacrebleu.TOKENIZERS[tokenizer]()(__A ) elif tokenizer == "moses": _UpperCAmelCase : List[str] = sacremoses.MosesTokenizer().tokenize(__A , return_str=__A , escape=__A ) elif tokenizer == "penn": _UpperCAmelCase : int = sacremoses.MosesTokenizer().penn_tokenize(__A , return_str=__A ) else: _UpperCAmelCase : Any = sentence if not return_str: _UpperCAmelCase : Union[str, Any] = normalized_sent.split() return normalized_sent def _lowerCamelCase ( __A : str , __A : List[Any] , __A : Dict ) -> Any: if not (len(__A ) == len(__A ) == len(__A )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _UpperCAmelCase : List[Any] = 0 for src, pred, refs in zip(__A , __A , __A ): sari_score += SARIsent(normalize(__A ) , normalize(__A ) , [normalize(__A ) for sent in refs] ) _UpperCAmelCase : List[str] = sari_score / len(__A ) return 100 * sari_score def _lowerCamelCase ( __A : Tuple , __A : Optional[Any] , __A : Any="exp" , __A : List[str]=None , __A : List[str]=False , __A : str=False , __A : List[str]=False , ) -> Tuple: _UpperCAmelCase : Dict = len(references[0] ) if any(len(__A ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _UpperCAmelCase : str = [[refs[i] for refs in references] for i in range(__A )] _UpperCAmelCase : Union[str, Any] = sacrebleu.corpus_bleu( __A , __A , smooth_method=__A , smooth_value=__A , force=__A , lowercase=__A , use_effective_order=__A , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): '''simple docstring''' def snake_case__ ( self) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''') , id='''references'''), }) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def snake_case__ ( self , _A , _A , _A) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Any = {} result.update({'''sari''': compute_sari(sources=_A , predictions=_A , references=_A)}) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_A , references=_A)}) result.update({'''exact''': compute_em(predictions=_A , references=_A)}) return result
186
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient SCREAMING_SNAKE_CASE = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def _lowerCamelCase ( __A : Optional[Any] ) -> int: _UpperCAmelCase : Optional[int] = test_results.split(''' ''' ) _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Union[str, Any] = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _UpperCAmelCase : Tuple = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__A ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _lowerCamelCase ( __A : List[str] ) -> int: _UpperCAmelCase : Optional[Any] = {} _UpperCAmelCase : int = None _UpperCAmelCase : Any = False for line in failures_short_lines.split('''\n''' ): if re.search(r'''_ \[doctest\]''' , __A ): _UpperCAmelCase : Tuple = True _UpperCAmelCase : Optional[Any] = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): _UpperCAmelCase : int = line _UpperCAmelCase : Optional[Any] = False return failures class A_ : '''simple docstring''' def __init__( self , _A , _A) -> Optional[int]: """simple docstring""" _UpperCAmelCase : Tuple = title _UpperCAmelCase : List[str] = doc_test_results['''time_spent'''].split(''',''')[0] _UpperCAmelCase : List[Any] = doc_test_results['''success'''] _UpperCAmelCase : Optional[Any] = doc_test_results['''failures'''] _UpperCAmelCase : Tuple = self.n_success + self.n_failures # Failures and success of the modeling tests _UpperCAmelCase : Optional[int] = doc_test_results @property def snake_case__ ( self) -> str: """simple docstring""" _UpperCAmelCase : List[str] = [self._time_spent] _UpperCAmelCase : Dict = 0 for time in time_spent: _UpperCAmelCase : Optional[int] = time.split(''':''') # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_A) == 1: _UpperCAmelCase : List[Any] = [0, 0, time_parts[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = int(time_parts[0]), int(time_parts[1]), float(time_parts[2]) total_secs += hours * 3600 + minutes * 60 + seconds _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return f'''{int(_A)}h{int(_A)}m{int(_A)}s''' @property def snake_case__ ( self) -> Dict: """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def snake_case__ ( self) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": f'''🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.''', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def snake_case__ ( self) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( f'''There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in''' f''' {self.time}.''' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } @property def snake_case__ ( self) -> Dict: """simple docstring""" _UpperCAmelCase : List[str] = 40 _UpperCAmelCase : List[str] = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_A , _A)} _UpperCAmelCase : List[Any] = '''''' for category, failures in category_failures.items(): if len(_A) == 0: continue if report != "": report += "\n\n" report += f'''*{category} failures*:'''.ljust(line_length // 2).rjust(line_length // 2) + "\n" report += "`" report += "`\n`".join(_A) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f'''The following examples had failures:\n\n\n{report}\n''', }, } @property def snake_case__ ( self) -> str: """simple docstring""" _UpperCAmelCase : int = [self.header] if self.n_failures > 0: blocks.append(self.failures) if self.n_failures > 0: blocks.extend([self.category_failures]) if self.n_failures == 0: blocks.append(self.no_failures) return json.dumps(_A) @staticmethod def snake_case__ ( ) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': f'''https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } ] print('''Sending the following payload''') print(json.dumps({'''blocks''': json.loads(_A)})) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=_A , ) def snake_case__ ( self) -> str: """simple docstring""" print('''Sending the following payload''') print(json.dumps({'''blocks''': json.loads(self.payload)})) _UpperCAmelCase : str = f'''{self.n_failures} failures out of {self.n_tests} tests,''' if self.n_failures else '''All tests passed.''' _UpperCAmelCase : Optional[Any] = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=_A , ) def snake_case__ ( self , _A , _A , _A , _A) -> Dict: """simple docstring""" _UpperCAmelCase : Optional[int] = '''''' for key, value in failures.items(): _UpperCAmelCase : str = value[:200] + ''' [Truncated]''' if len(_A) > 250 else value failures_text += f'''*{key}*\n_{value}_\n\n''' _UpperCAmelCase : Optional[Any] = job_name _UpperCAmelCase : Any = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: _UpperCAmelCase : List[Any] = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def snake_case__ ( self) -> Union[str, Any]: """simple docstring""" if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''') _UpperCAmelCase : Tuple = self.doc_test_results.pop('''job_link''') self.doc_test_results.pop('''failures''') self.doc_test_results.pop('''success''') self.doc_test_results.pop('''time_spent''') _UpperCAmelCase : Any = sorted(self.doc_test_results.items() , key=lambda _A: t[0]) for job, job_result in sorted_dict: if len(job_result['''failures''']): _UpperCAmelCase : Dict = f'''*Num failures* :{len(job_result['failed'])} \n''' _UpperCAmelCase : Tuple = job_result['''failures'''] _UpperCAmelCase : Dict = self.get_reply_blocks(_A , _A , _A , text=_A) print('''Sending the following reply''') print(json.dumps({'''blocks''': blocks})) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=f'''Results for {job}''' , blocks=_A , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1) def _lowerCamelCase ( ) -> str: _UpperCAmelCase : Any = os.environ['''GITHUB_RUN_ID'''] _UpperCAmelCase : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100''' _UpperCAmelCase : Optional[int] = requests.get(__A ).json() _UpperCAmelCase : Optional[int] = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) _UpperCAmelCase : int = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__A ): _UpperCAmelCase : int = requests.get(url + f'''&page={i + 2}''' ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , __A ) return {} def _lowerCamelCase ( __A : str ) -> Tuple: _UpperCAmelCase : Optional[Any] = {} if os.path.exists(__A ): _UpperCAmelCase : Optional[int] = os.listdir(__A ) for file in files: try: with open(os.path.join(__A , __A ) , encoding='''utf-8''' ) as f: _UpperCAmelCase : Tuple = f.read() except UnicodeDecodeError as e: raise ValueError(f'''Could not open {os.path.join(__A , __A )}.''' ) from e return _artifact def _lowerCamelCase ( ) -> List[str]: class A_ : '''simple docstring''' def __init__( self , _A) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = name _UpperCAmelCase : Union[str, Any] = [] def __str__( self) -> int: """simple docstring""" return self.name def snake_case__ ( self , _A) -> int: """simple docstring""" self.paths.append({'''name''': self.name, '''path''': path}) _UpperCAmelCase : Dict[str, Artifact] = {} _UpperCAmelCase : Dict = filter(os.path.isdir , os.listdir() ) for directory in directories: _UpperCAmelCase : List[str] = directory if artifact_name not in _available_artifacts: _UpperCAmelCase : Optional[int] = Artifact(__A ) _available_artifacts[artifact_name].add_path(__A ) return _available_artifacts if __name__ == "__main__": SCREAMING_SNAKE_CASE = get_job_links() SCREAMING_SNAKE_CASE = retrieve_available_artifacts() SCREAMING_SNAKE_CASE = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' SCREAMING_SNAKE_CASE = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job SCREAMING_SNAKE_CASE = github_actions_job_links.get('run_doctests') SCREAMING_SNAKE_CASE = available_artifacts['doc_tests_gpu_test_reports'].paths[0] SCREAMING_SNAKE_CASE = retrieve_artifact(artifact_path['name']) if "stats" in artifact: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = handle_test_results(artifact['stats']) SCREAMING_SNAKE_CASE = failed SCREAMING_SNAKE_CASE = success SCREAMING_SNAKE_CASE = time_spent[1:-1] + ', ' SCREAMING_SNAKE_CASE = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): SCREAMING_SNAKE_CASE = line.replace('FAILED ', '') SCREAMING_SNAKE_CASE = line.split()[0].replace('\n', '') if "::" in line: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = line.split('::') else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): SCREAMING_SNAKE_CASE = docs[file_regex] doc_test_results[category]["failed"].append(test) SCREAMING_SNAKE_CASE = all_failures[test] if test in all_failures else 'N/A' SCREAMING_SNAKE_CASE = failure break SCREAMING_SNAKE_CASE = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
186
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _a : Optional[int] = logging.get_logger(__name__) _a : Optional[Any] = {"""vocab_file""": """vocab.txt"""} _a : str = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } _a : Optional[int] = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } _a : Tuple = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class _UpperCAmelCase ( _A ): """simple docstring""" A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_INIT_CONFIGURATION A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ConvBertTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): '''simple docstring''' super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) lowerCAmelCase__ :Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase__ :int = getattr(_lowerCAmelCase , normalizer_state.pop("type" ) ) lowerCAmelCase__ :List[Any] = do_lower_case lowerCAmelCase__ :str = strip_accents lowerCAmelCase__ :str = tokenize_chinese_chars lowerCAmelCase__ :Tuple = normalizer_class(**_lowerCAmelCase ) lowerCAmelCase__ :str = do_lower_case def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase=None ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = [self.sep_token_id] lowerCAmelCase__ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
145
from __future__ import annotations def snake_case__ ( UpperCAmelCase : str ): return [ord(UpperCAmelCase ) - 9_6 for elem in plain] def snake_case__ ( UpperCAmelCase : list[int] ): return "".join(chr(elem + 9_6 ) for elem in encoded ) def snake_case__ ( ): lowerCAmelCase__ :Optional[int] = encode(input("-> " ).strip().lower() ) print("Encoded: " , UpperCAmelCase ) print("Decoded:" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
145
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowercase ( a__ ): """simple docstring""" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = SMALL_MODEL_IDENTIFIER _snake_case : Optional[int] = '''pt''' _snake_case : Optional[Any] = '''tf''' def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' _snake_case : List[str] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(lowercase__ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[Any] ): '''simple docstring''' _snake_case : Dict = TFAutoModel.from_pretrained(self.test_model , from_pt=lowercase__ ) model_tf.save_pretrained(lowercase__ ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = '''mock_framework''' # Framework provided - return whatever the user provides _snake_case : Tuple = FeaturesManager.determine_framework(self.test_model , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase__ ) _snake_case : Optional[Any] = FeaturesManager.determine_framework(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase__ ) _snake_case : Tuple = FeaturesManager.determine_framework(lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) def __UpperCAmelCase ( self : List[str] ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowercase__ ) _snake_case : Dict = FeaturesManager.determine_framework(lowercase__ ) self.assertEqual(lowercase__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowercase__ ) _snake_case : Optional[int] = FeaturesManager.determine_framework(lowercase__ ) self.assertEqual(lowercase__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowercase__ ): _snake_case : Union[str, Any] = FeaturesManager.determine_framework(lowercase__ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' _snake_case : Optional[int] = MagicMock(return_value=lowercase__ ) with patch('transformers.onnx.features.is_tf_available' , lowercase__ ): _snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _snake_case : Optional[Any] = MagicMock(return_value=lowercase__ ) with patch('transformers.onnx.features.is_torch_available' , lowercase__ ): _snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_tf ) # Both in environment -> use PyTorch _snake_case : Optional[int] = MagicMock(return_value=lowercase__ ) _snake_case : str = MagicMock(return_value=lowercase__ ) with patch('transformers.onnx.features.is_tf_available' , lowercase__ ), patch( 'transformers.onnx.features.is_torch_available' , lowercase__ ): _snake_case : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(lowercase__ , self.framework_pt ) # Both not in environment -> raise error _snake_case : Dict = MagicMock(return_value=lowercase__ ) _snake_case : Optional[int] = MagicMock(return_value=lowercase__ ) with patch('transformers.onnx.features.is_tf_available' , lowercase__ ), patch( 'transformers.onnx.features.is_torch_available' , lowercase__ ): with self.assertRaises(lowercase__ ): _snake_case : Optional[Any] = FeaturesManager.determine_framework(self.test_model )
703
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor lowercase_ : str = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" def __init__( self : int , *lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
652
0
class lowerCamelCase : '''simple docstring''' def __init__( self ): UpperCAmelCase_ = {} def A__ ( self ): print(self.vertex ) for i in self.vertex: print(lowerCAmelCase , " -> " , " -> ".join([str(lowerCAmelCase ) for j in self.vertex[i]] ) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCAmelCase ) else: # else make a new vertex UpperCAmelCase_ = [to_vertex] def A__ ( self ): # visited array for storing already visited nodes UpperCAmelCase_ = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCAmelCase , lowerCAmelCase ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ): # mark start vertex as visited UpperCAmelCase_ = True print(lowerCAmelCase , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
579
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for a, b in zip(lowerCAmelCase , lowerCAmelCase ): self.assertAlmostEqual(lowerCAmelCase , lowerCAmelCase , delta=lowerCAmelCase ) def A__ ( self ): UpperCAmelCase_ = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(lowerCAmelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def A__ ( self ): UpperCAmelCase_ = None ops.enable_eager_execution_internal() UpperCAmelCase_ = tf.config.list_physical_devices("CPU" ) if len(lowerCAmelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) UpperCAmelCase_ = tf.config.list_logical_devices(device_type="CPU" ) UpperCAmelCase_ = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): UpperCAmelCase_ = GradientAccumulator() UpperCAmelCase_ = tf.Variable([4.0, 3.0] ) UpperCAmelCase_ , UpperCAmelCase_ = create_optimizer(5e-5 , 10 , 5 ) UpperCAmelCase_ = tf.Variable([0.0, 0.0] , trainable=lowerCAmelCase ) def accumulate_on_replica(lowerCAmelCase ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(lowerCAmelCase , lowerCAmelCase ): with strategy.scope(): UpperCAmelCase_ = strategy.experimental_local_results(lowerCAmelCase ) local_variables[0].assign(lowerCAmelCase ) local_variables[1].assign(lowerCAmelCase ) strategy.run(lowerCAmelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowerCAmelCase ) def _check_local_values(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , lowerCAmelCase , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , lowerCAmelCase , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
579
1
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE = DebertaVaTokenizer SCREAMING_SNAKE_CASE = DebertaVaTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _UpperCamelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = DebertaVaTokenizer(A ,unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self ,A ): UpperCAmelCase = """this is a test""" UpperCAmelCase = """this is a test""" return input_text, output_text def _UpperCamelCase ( self ): UpperCAmelCase = """<pad>""" UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) ,A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) ,A ) def _UpperCamelCase ( self ): UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<pad>""" ) self.assertEqual(vocab_keys[1] ,"""<unk>""" ) self.assertEqual(vocab_keys[-1] ,"""[PAD]""" ) self.assertEqual(len(A ) ,30_001 ) def _UpperCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,30_000 ) def _UpperCamelCase ( self ): # fmt: off UpperCAmelCase = """ \tHeLLo!how \n Are yoU? """ UpperCAmelCase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on UpperCAmelCase = DebertaVaTokenizer(A ,do_lower_case=A ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) UpperCAmelCase = DebertaVaTokenizerFast(A ,do_lower_case=A ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def _UpperCamelCase ( self ): pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): # fmt: off UpperCAmelCase = """I was born in 92000, and this is falsé.""" UpperCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(A ,split_by_punct=A ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) UpperCAmelCase = DebertaVaTokenizerFast(A ,split_by_punct=A ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) def _UpperCamelCase ( self ): # fmt: off UpperCAmelCase = """I was born in 92000, and this is falsé.""" UpperCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(A ,do_lower_case=A ,split_by_punct=A ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) UpperCAmelCase = DebertaVaTokenizerFast(A ,do_lower_case=A ,split_by_punct=A ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) def _UpperCamelCase ( self ): # fmt: off UpperCAmelCase = """I was born in 92000, and this is falsé.""" UpperCAmelCase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(A ,do_lower_case=A ,split_by_punct=A ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) UpperCAmelCase = DebertaVaTokenizerFast(A ,do_lower_case=A ,split_by_punct=A ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) def _UpperCamelCase ( self ): # fmt: off UpperCAmelCase = """I was born in 92000, and this is falsé.""" UpperCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(A ,do_lower_case=A ,split_by_punct=A ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) UpperCAmelCase = DebertaVaTokenizerFast(A ,do_lower_case=A ,split_by_punct=A ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) def _UpperCamelCase ( self ): # fmt: off UpperCAmelCase = """ \tHeLLo!how \n Are yoU? """ UpperCAmelCase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on UpperCAmelCase = DebertaVaTokenizer(A ,do_lower_case=A ,split_by_punct=A ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) UpperCAmelCase = DebertaVaTokenizerFast(A ,do_lower_case=A ,split_by_punct=A ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) def _UpperCamelCase ( self ): UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = """I was born in 92000, and this is falsé.""" UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(A ,add_special_tokens=A ) ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(A ,add_special_tokens=A ) ) self.assertListEqual(A ,A ) UpperCAmelCase = tokenizer.encode(A ,add_special_tokens=A ) UpperCAmelCase = rust_tokenizer.encode(A ,add_special_tokens=A ) self.assertListEqual(A ,A ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(A ) UpperCAmelCase = rust_tokenizer.encode(A ) self.assertListEqual(A ,A ) def _UpperCamelCase ( self ): UpperCAmelCase = """This is a test""" UpperCAmelCase = [13, 1, 4_398, 25, 21, 1_289] UpperCAmelCase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] UpperCAmelCase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] UpperCAmelCase = DebertaVaTokenizer(A ,keep_accents=A ) UpperCAmelCase = DebertaVaTokenizerFast(A ,keep_accents=A ) UpperCAmelCase = tokenizer.encode(A ,add_special_tokens=A ) self.assertListEqual(A ,A ) UpperCAmelCase = tokenizer.tokenize(A ) self.assertListEqual(A ,A ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A ,A ) UpperCAmelCase = rust_tokenizer.encode(A ,add_special_tokens=A ) self.assertListEqual(A ,A ) UpperCAmelCase = rust_tokenizer.tokenize(A ) self.assertListEqual(A ,A ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A ,A ) # fmt: off UpperCAmelCase = """I was born in 92000, and this is falsé.""" UpperCAmelCase = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] UpperCAmelCase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] UpperCAmelCase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on UpperCAmelCase = tokenizer.encode(A ,add_special_tokens=A ) self.assertListEqual(A ,A ) UpperCAmelCase = tokenizer.tokenize(A ) self.assertListEqual(A ,A ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A ,A ) UpperCAmelCase = rust_tokenizer.encode(A ,add_special_tokens=A ) self.assertListEqual(A ,A ) UpperCAmelCase = rust_tokenizer.tokenize(A ) self.assertListEqual(A ,A ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(A ) self.assertListEqual(A ,A ) def _UpperCamelCase ( self ): UpperCAmelCase = DebertaVaTokenizer(A ) UpperCAmelCase = tokenizer.encode("""sequence builders""" ) UpperCAmelCase = tokenizer.encode("""multi-sequence build""" ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(A ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(A ,A ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] ,A ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] ,A ,) @slow def _UpperCamelCase ( self ): # fmt: off UpperCAmelCase = {"""input_ids""": [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A ,model_name="""microsoft/deberta-v2-xlarge""" ,revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" ,)
74
"""simple docstring""" import argparse import struct import unittest class lowerCamelCase__ : def __init__( self ,A ): UpperCAmelCase = data # Initialize hash values UpperCAmelCase = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants UpperCAmelCase = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] UpperCAmelCase = self.preprocessing(self.data ) self.final_hash() @staticmethod def _UpperCamelCase ( A ): UpperCAmelCase = b"""\x80""" + (b"""\x00""" * (63 - (len(A ) + 8) % 64)) UpperCAmelCase = struct.pack(""">Q""" ,(len(A ) * 8) ) return data + padding + big_endian_integer def _UpperCamelCase ( self ): # Convert into blocks of 64 bytes UpperCAmelCase = [ self.preprocessed_data[x : x + 64] for x in range(0 ,len(self.preprocessed_data ) ,64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCAmelCase = list(struct.unpack(""">16L""" ,A ) ) # add 48 0-ed integers words += [0] * 48 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.hashes for index in range(0 ,64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCAmelCase = ( self.ror(words[index - 15] ,7 ) ^ self.ror(words[index - 15] ,18 ) ^ (words[index - 15] >> 3) ) UpperCAmelCase = ( self.ror(words[index - 2] ,17 ) ^ self.ror(words[index - 2] ,19 ) ^ (words[index - 2] >> 10) ) UpperCAmelCase = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression UpperCAmelCase = self.ror(A ,6 ) ^ self.ror(A ,11 ) ^ self.ror(A ,25 ) UpperCAmelCase = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) UpperCAmelCase = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 UpperCAmelCase = self.ror(A ,2 ) ^ self.ror(A ,13 ) ^ self.ror(A ,22 ) UpperCAmelCase = (a & b) ^ (a & c) ^ (b & c) UpperCAmelCase = (sa + maj) % 0x1_00_00_00_00 UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) UpperCAmelCase = [a, b, c, d, e, f, g, h] # Modify final values UpperCAmelCase = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] UpperCAmelCase = """""".join([hex(A )[2:].zfill(8 ) for value in self.hashes] ) def _UpperCamelCase ( self ,A ,A ): return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ): import hashlib UpperCAmelCase = bytes("""Test String""" ,"""utf-8""" ) self.assertEqual(SHAaaa(A ).hash ,hashlib.shaaaa(A ).hexdigest() ) def _a ( ): """simple docstring""" import doctest doctest.testmod() UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """-s""" , """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument( """-f""" , """--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) UpperCAmelCase = parser.parse_args() UpperCAmelCase = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: UpperCAmelCase = f.read() else: UpperCAmelCase = bytes(_snake_case , """utf-8""" ) print(SHAaaa(_snake_case ).hash ) if __name__ == "__main__": main()
74
1
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowercase ( _UpperCAmelCase ): def lowercase__ ( self : Optional[int] ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowercase__ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : List[str] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = self._create_example_records() SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(_lowercase ): self.assertDictEqual(_lowercase , example_records[i] ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = self._create_example_records() SCREAMING_SNAKE_CASE__ : Optional[int] = Dataset.from_list(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowercase__ ( self : List[Any] ): # checks what happens with missing columns SCREAMING_SNAKE_CASE__ : List[str] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] SCREAMING_SNAKE_CASE__ : Union[str, Any] = Dataset.from_list(_lowercase ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def lowercase__ ( self : int ): # checks if the type can be inferred from the second record SCREAMING_SNAKE_CASE__ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] SCREAMING_SNAKE_CASE__ : int = Dataset.from_list(_lowercase ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : int = Dataset.from_list([] ) self.assertEqual(len(_lowercase ) , 0 ) self.assertListEqual(dset.column_names , [] )
35
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase ( unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' def snake_case__ ( self : Optional[Any] ): """simple docstring""" snake_case_ = load_tool("text-classification" ) self.tool.setup() snake_case_ = load_tool("text-classification" , remote=__lowercase ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = self.tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__lowercase , "positive" ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = self.remote_tool("That's quite cool" , ["positive", "negative"] ) self.assertEqual(__lowercase , "positive" ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = self.tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__lowercase , "positive" ) def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"] ) self.assertEqual(__lowercase , "positive" )
139
def lowerCamelCase__ ( _A = 600851475143 ): '''simple docstring''' try: snake_case_ = int(_A ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) snake_case_ = 2 snake_case_ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 snake_case_ = i while n % i == 0: snake_case_ = n // i i += 1 return int(_A ) if __name__ == "__main__": print(f'''{solution() = }''')
139
1
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ) ->List[str]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' snake_case__ = nn.Parameter(UpperCAmelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' snake_case__ = nn.Parameter(UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # set torch weights for 1-to-1 comparison snake_case__ = np.asarray(weights[0] ) snake_case__ = np.asarray(weights[1] ) snake_case__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCAmelCase_ ).view(-1 , UpperCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # set torch weights for 1-to-1 comparison snake_case__ = np.asarray(weights[0] ) snake_case__ = np.asarray(weights[1] ) snake_case__ = np.asarray(weights[2] ) snake_case__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCAmelCase_ ).view(-1 , UpperCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Dict: # layernorm 1 snake_case__ = weights[0][0][0] snake_case__ = np.asarray(layer_norm_a[0] ) snake_case__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # lsh weights + output snake_case__ = weights[0][1] if len(UpperCAmelCase_ ) < 4: set_layer_weights_in_torch_lsh(UpperCAmelCase_ , torch_block.attention , UpperCAmelCase_ ) else: set_layer_weights_in_torch_local(UpperCAmelCase_ , torch_block.attention , UpperCAmelCase_ ) # intermediate weighs snake_case__ = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCAmelCase_ ) == 4: snake_case__ = intermediate_weights[2] # layernorm 2 snake_case__ = np.asarray(intermediate_weights[0][0] ) snake_case__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # intermediate dense snake_case__ = np.asarray(intermediate_weights[1][0] ) snake_case__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) # intermediate out snake_case__ = np.asarray(intermediate_weights[4][0] ) snake_case__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Union[str, Any]: # reformer model snake_case__ = torch_model.reformer # word embeds snake_case__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCAmelCase_ ) , ) if isinstance(weights[3] , UpperCAmelCase_ ): snake_case__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' snake_case__ = nn.Parameter(torch.tensor(UpperCAmelCase_ ) ) snake_case__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCAmelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # output layer norm snake_case__ = np.asarray(weights[7][0] ) snake_case__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # output embeddings snake_case__ = np.asarray(weights[9][0] ) snake_case__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # Initialise PyTorch model snake_case__ = ReformerConfig.from_json_file(UpperCAmelCase_ ) print(f'''Building PyTorch model from configuration: {config}''' ) snake_case__ = ReformerModelWithLMHead(UpperCAmelCase_ ) with open(UpperCAmelCase_ , 'rb' ) as f: snake_case__ = pickle.load(UpperCAmelCase_ )['weights'] set_model_weights_in_torch(UpperCAmelCase_ , UpperCAmelCase_ , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a__ : Dict = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
368
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None ) ->List[str]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' snake_case__ = nn.Parameter(UpperCAmelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' snake_case__ = nn.Parameter(UpperCAmelCase_ ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # set torch weights for 1-to-1 comparison snake_case__ = np.asarray(weights[0] ) snake_case__ = np.asarray(weights[1] ) snake_case__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCAmelCase_ ).view(-1 , UpperCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # set torch weights for 1-to-1 comparison snake_case__ = np.asarray(weights[0] ) snake_case__ = np.asarray(weights[1] ) snake_case__ = np.asarray(weights[2] ) snake_case__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCAmelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCAmelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCAmelCase_ ).view(-1 , UpperCAmelCase_ ).contiguous().transpose(0 , 1 ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Dict: # layernorm 1 snake_case__ = weights[0][0][0] snake_case__ = np.asarray(layer_norm_a[0] ) snake_case__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # lsh weights + output snake_case__ = weights[0][1] if len(UpperCAmelCase_ ) < 4: set_layer_weights_in_torch_lsh(UpperCAmelCase_ , torch_block.attention , UpperCAmelCase_ ) else: set_layer_weights_in_torch_local(UpperCAmelCase_ , torch_block.attention , UpperCAmelCase_ ) # intermediate weighs snake_case__ = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCAmelCase_ ) == 4: snake_case__ = intermediate_weights[2] # layernorm 2 snake_case__ = np.asarray(intermediate_weights[0][0] ) snake_case__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # intermediate dense snake_case__ = np.asarray(intermediate_weights[1][0] ) snake_case__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) # intermediate out snake_case__ = np.asarray(intermediate_weights[4][0] ) snake_case__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->Union[str, Any]: # reformer model snake_case__ = torch_model.reformer # word embeds snake_case__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCAmelCase_ ) , ) if isinstance(weights[3] , UpperCAmelCase_ ): snake_case__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' snake_case__ = nn.Parameter(torch.tensor(UpperCAmelCase_ ) ) snake_case__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCAmelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # output layer norm snake_case__ = np.asarray(weights[7][0] ) snake_case__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCAmelCase_ ) , torch.tensor(UpperCAmelCase_ ) , ) # output embeddings snake_case__ = np.asarray(weights[9][0] ) snake_case__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCAmelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCAmelCase_ ) , ) def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->List[Any]: # Initialise PyTorch model snake_case__ = ReformerConfig.from_json_file(UpperCAmelCase_ ) print(f'''Building PyTorch model from configuration: {config}''' ) snake_case__ = ReformerModelWithLMHead(UpperCAmelCase_ ) with open(UpperCAmelCase_ , 'rb' ) as f: snake_case__ = pickle.load(UpperCAmelCase_ )['weights'] set_model_weights_in_torch(UpperCAmelCase_ , UpperCAmelCase_ , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase_ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a__ : Dict = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
368
1
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __UpperCAmelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase) class UpperCAmelCase_ ( __UpperCAmelCase): '''simple docstring''' def __init__( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(lowerCAmelCase_ ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} UpperCamelCase : Dict = {} UpperCamelCase : Any = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase : int = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: UpperCamelCase : List[Any] = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: UpperCamelCase : List[str] = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: UpperCamelCase : Any = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase : Tuple = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase : Union[str, Any] = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: UpperCamelCase : List[str] = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: UpperCamelCase : Any = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: UpperCamelCase : Union[str, Any] = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: UpperCamelCase : Dict = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: UpperCamelCase : List[str] = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: UpperCamelCase : Any = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return super().__call__(lowerCAmelCase_ , *lowerCAmelCase_ , num_workers=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = 512 / 1_500 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" UpperCamelCase : Union[str, Any] = load_image(lowerCAmelCase_ ) UpperCamelCase : Dict = self.image_processor.size['''longest_edge'''] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = self.image_processor.generate_crop_boxes( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCamelCase : str = self.image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": UpperCamelCase : Any = self.get_inference_context() with inference_context(): UpperCamelCase : Tuple = self._ensure_tensor_on_device(lowerCAmelCase_ , device=self.device ) UpperCamelCase : List[Any] = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) UpperCamelCase : int = image_embeddings UpperCamelCase : Optional[Any] = grid_points.shape[1] UpperCamelCase : List[Any] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , lowerCAmelCase_ , lowerCAmelCase_ ): UpperCamelCase : Tuple = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase : Optional[int] = input_labels[:, i : i + points_per_batch] UpperCamelCase : Any = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0.88 , __SCREAMING_SNAKE_CASE=0.95 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , ): """simple docstring""" UpperCamelCase : Union[str, Any] = model_inputs.pop('''input_boxes''' ) UpperCamelCase : Dict = model_inputs.pop('''is_last''' ) UpperCamelCase : Union[str, Any] = model_inputs.pop('''original_sizes''' ).tolist() UpperCamelCase : Union[str, Any] = model_inputs.pop('''reshaped_input_sizes''' ).tolist() UpperCamelCase : Union[str, Any] = self.model(**lowerCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase : Optional[Any] = model_outputs['''pred_masks'''] UpperCamelCase : str = self.image_processor.post_process_masks( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , binarize=lowerCAmelCase_ ) UpperCamelCase : List[Any] = model_outputs['''iou_scores'''] UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.7 , ): """simple docstring""" UpperCamelCase : str = [] UpperCamelCase : str = [] UpperCamelCase : Any = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) UpperCamelCase : Union[str, Any] = torch.cat(lowerCAmelCase_ ) UpperCamelCase : Any = torch.cat(lowerCAmelCase_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = self.image_processor.post_process_for_mask_generation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCamelCase : Dict = defaultdict(lowerCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase_ ) UpperCamelCase : Tuple = {} if output_rle_mask: UpperCamelCase : Optional[Any] = rle_mask if output_bboxes_mask: UpperCamelCase : int = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
712
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCamelCase( _a ): snake_case_ : Tuple = """openai/whisper-base""" snake_case_ : Optional[Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) snake_case_ : Dict = """transcriber""" snake_case_ : List[Any] = WhisperProcessor snake_case_ : int = WhisperForConditionalGeneration snake_case_ : int = ["""audio"""] snake_case_ : Union[str, Any] = ["""text"""] def SCREAMING_SNAKE_CASE_ ( self : Dict , SCREAMING_SNAKE_CASE : Any ) -> Optional[int]: '''simple docstring''' return self.pre_processor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_features def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: '''simple docstring''' return self.model.generate(inputs=SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Any , SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: '''simple docstring''' return self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE )[0]
371
from __future__ import annotations class UpperCamelCase: def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> str: '''simple docstring''' __snake_case , __snake_case = text, pattern __snake_case , __snake_case = len(SCREAMING_SNAKE_CASE ), len(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def SCREAMING_SNAKE_CASE_ ( self : int , SCREAMING_SNAKE_CASE : int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> list[int]: '''simple docstring''' __snake_case = [] for i in range(self.textLen - self.patLen + 1 ): __snake_case = self.mismatch_in_text(SCREAMING_SNAKE_CASE ) if mismatch_index == -1: positions.append(SCREAMING_SNAKE_CASE ) else: __snake_case = self.match_in_pattern(self.text[mismatch_index] ) __snake_case = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A : str = 'ABAABA' A : Optional[Any] = 'AB' A : Any = BoyerMooreSearch(text, pattern) A : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
371
1
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Optional[Any]: if isinstance(_A, collections.abc.Iterable ): return x return (x, x) @require_flax class __SCREAMING_SNAKE_CASE : def _UpperCamelCase ( self : Optional[Any] , snake_case : Optional[Any] , snake_case : Dict ): '''simple docstring''' pass def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' pass def _UpperCamelCase ( self : Any ): '''simple docstring''' pass def _UpperCamelCase ( self : List[str] , snake_case : Tuple , snake_case : int , snake_case : Optional[int] ): '''simple docstring''' A__ : Union[str, Any] = np.abs((a - b) ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , F'Difference between torch and flax is {diff} (>= {tol}).' ) def _UpperCamelCase ( self : List[str] , snake_case : Dict , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : List[str]=None , **snake_case : Dict ): '''simple docstring''' A__ : Any = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A__ : int = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) A__ : str = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _UpperCamelCase ( self : Optional[Any] , snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Dict , snake_case : Union[str, Any]=None , **snake_case : Tuple ): '''simple docstring''' A__ , A__ : Union[str, Any] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A__ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} A__ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE ) A__ : Optional[Any] = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _UpperCamelCase ( self : Tuple , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Optional[Any] , snake_case : Tuple , snake_case : Optional[Any]=None , **snake_case : Dict ): '''simple docstring''' A__ , A__ : Any = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A__ : Union[str, Any] = {"""vision_model""": vision_model, """text_model""": text_model} A__ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE ) A__ : Dict = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) A__ : int = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) A__ : Tuple = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A__ : Tuple = model(input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) A__ : int = after_output[0] A__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : Tuple , snake_case : Dict , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : Optional[int]=None , **snake_case : int ): '''simple docstring''' A__ , A__ : Optional[Any] = self.get_vision_text_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A__ : str = {"""vision_model""": vision_model, """text_model""": text_model} A__ : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**_SCREAMING_SNAKE_CASE ) A__ : Tuple = model( input_ids=_SCREAMING_SNAKE_CASE , pixel_values=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) A__ : List[str] = output.vision_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A__ : Any = to_atuple(vision_model.config.image_size ) A__ : int = to_atuple(vision_model.config.patch_size ) A__ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A__ : int = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A__ : List[Any] = output.text_model_output.attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _UpperCamelCase ( self : Union[str, Any] , snake_case : str , snake_case : List[str] , snake_case : str ): '''simple docstring''' pt_model.to(_SCREAMING_SNAKE_CASE ) pt_model.eval() # prepare inputs A__ : Union[str, Any] = inputs_dict A__ : Any = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): A__ : Optional[int] = pt_model(**_SCREAMING_SNAKE_CASE ).to_tuple() A__ : str = fx_model(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(_SCREAMING_SNAKE_CASE ) A__ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE ) A__ : Dict = fx_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(_SCREAMING_SNAKE_CASE ) A__ : str = VisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE , from_flax=_SCREAMING_SNAKE_CASE ) pt_model_loaded.to(_SCREAMING_SNAKE_CASE ) pt_model_loaded.eval() with torch.no_grad(): A__ : List[Any] = pt_model_loaded(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(_SCREAMING_SNAKE_CASE , pt_output_loaded.numpy() , 4e-2 ) def _UpperCamelCase ( self : str , snake_case : List[str] , snake_case : Any , snake_case : Union[str, Any] ): '''simple docstring''' A__ : Optional[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A__ : List[str] = VisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) A__ : Union[str, Any] = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) A__ : Union[str, Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , _SCREAMING_SNAKE_CASE ) A__ : int = fx_state self.check_pt_flax_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self : Tuple , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int ): '''simple docstring''' A__ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A__ : Optional[Any] = VisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) A__ : Dict = FlaxVisionTextDualEncoderModel(_SCREAMING_SNAKE_CASE ) A__ : str = load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , fx_model.params ) self.check_pt_flax_equivalence(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self : Optional[int] ): '''simple docstring''' A__ : int = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self : Tuple ): '''simple docstring''' A__ : Tuple = self.prepare_config_and_inputs() self.check_save_load(**_SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_SCREAMING_SNAKE_CASE ) @is_pt_flax_cross_test def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : Tuple = self.prepare_config_and_inputs() A__ : int = config_inputs_dict.pop("""vision_config""" ) A__ : str = config_inputs_dict.pop("""text_config""" ) A__ : Optional[int] = config_inputs_dict self.check_equivalence_pt_to_flax(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.check_equivalence_flax_to_pt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def _UpperCamelCase ( self : List[Any] ): '''simple docstring''' A__ , A__ : Tuple = self.get_pretrained_model_and_inputs() A__ : Union[str, Any] = model_a(**_SCREAMING_SNAKE_CASE ) A__ : str = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_SCREAMING_SNAKE_CASE ) A__ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(_SCREAMING_SNAKE_CASE ) A__ : str = model_a(**_SCREAMING_SNAKE_CASE ) A__ : Union[str, Any] = after_outputs[0] A__ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-5 ) @require_flax class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase ): def _UpperCamelCase ( self : int ): '''simple docstring''' A__ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=_SCREAMING_SNAKE_CASE , text_from_pt=_SCREAMING_SNAKE_CASE , ) A__ : Optional[int] = 13 A__ : Tuple = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) A__ : str = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) A__ : Optional[int] = random_attention_mask([batch_size, 4] ) A__ : Dict = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _UpperCamelCase ( self : Union[str, Any] , snake_case : List[str] , snake_case : Optional[int] ): '''simple docstring''' A__ : List[Any] = FlaxViTModel(_SCREAMING_SNAKE_CASE ) A__ : Any = FlaxBertModel(_SCREAMING_SNAKE_CASE ) return vision_model, text_model def _UpperCamelCase ( self : Dict ): '''simple docstring''' A__ : List[str] = FlaxViTModelTester(self ) A__ : Tuple = FlaxBertModelTester(self ) A__ : Optional[int] = vit_model_tester.prepare_config_and_inputs() A__ : str = bert_model_tester.prepare_config_and_inputs() A__ , A__ : Optional[Any] = vision_config_and_inputs A__ , A__ , A__ , A__ : Tuple = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase ): def _UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' A__ : int = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-clip""" , """hf-internal-testing/tiny-bert""" , vision_from_pt=_SCREAMING_SNAKE_CASE , text_from_pt=_SCREAMING_SNAKE_CASE , ) A__ : List[str] = 13 A__ : int = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) A__ : Dict = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) A__ : str = random_attention_mask([batch_size, 4] ) A__ : Any = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _UpperCamelCase ( self : Tuple , snake_case : int , snake_case : Optional[Any] ): '''simple docstring''' A__ : Optional[Any] = FlaxCLIPVisionModel(_SCREAMING_SNAKE_CASE ) A__ : List[str] = FlaxBertModel(_SCREAMING_SNAKE_CASE ) return vision_model, text_model def _UpperCamelCase ( self : Any ): '''simple docstring''' A__ : int = FlaxCLIPVisionModelTester(self ) A__ : str = FlaxBertModelTester(self ) A__ : Optional[int] = clip_model_tester.prepare_config_and_inputs() A__ : Optional[int] = bert_model_tester.prepare_config_and_inputs() A__ , A__ : List[Any] = vision_config_and_inputs A__ , A__ , A__ , A__ : Optional[Any] = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _UpperCamelCase ( self : List[str] ): '''simple docstring''' A__ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained("""clip-italian/clip-italian""" , logit_scale_init_value=1.0 ) A__ : str = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ : Any = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="""np""" ) A__ : List[str] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A__ : Optional[Any] = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , _SCREAMING_SNAKE_CASE , atol=1e-3 ) )
709
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _lowerCAmelCase ( UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Union[str, Any]=None ) ->Tuple: A__ : Dict = None if token is not None: A__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} A__ : Dict = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' A__ : Any = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__ ).json() A__ : Tuple = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) A__ : Optional[Any] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(UpperCAmelCase__ ): A__ : str = requests.get(url + f'&page={i + 2}', headers=UpperCAmelCase__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str=None ) ->List[str]: A__ : Optional[Any] = None if token is not None: A__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} A__ : str = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' A__ : Dict = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__ ).json() A__ : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) A__ : Union[str, Any] = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(UpperCAmelCase__ ): A__ : Union[str, Any] = requests.get(url + f'&page={i + 2}', headers=UpperCAmelCase__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}' ) return {} def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any ) ->Tuple: A__ : Tuple = None if token is not None: A__ : List[Any] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'Bearer {token}'} A__ : Tuple = requests.get(UpperCAmelCase__, headers=UpperCAmelCase__, allow_redirects=UpperCAmelCase__ ) A__ : Dict = result.headers["""Location"""] A__ : Union[str, Any] = requests.get(UpperCAmelCase__, allow_redirects=UpperCAmelCase__ ) A__ : int = os.path.join(UpperCAmelCase__, f'{artifact_name}.zip' ) with open(UpperCAmelCase__, """wb""" ) as fp: fp.write(response.content ) def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple=None ) ->Tuple: A__ : int = [] A__ : Union[str, Any] = [] A__ : Optional[Any] = None with zipfile.ZipFile(UpperCAmelCase__ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCAmelCase__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(UpperCAmelCase__ ) as f: for line in f: A__ : int = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs A__ : List[str] = line[: line.index(""": """ )] A__ : str = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed A__ : Any = line[len("""FAILED """ ) :] failed_tests.append(UpperCAmelCase__ ) elif filename == "job_name.txt": A__ : Any = line if len(UpperCAmelCase__ ) != len(UpperCAmelCase__ ): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(UpperCAmelCase__ )} for `errors` ' f'and {len(UpperCAmelCase__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' """ problem.""" ) A__ : List[str] = None if job_name and job_links: A__ : Any = job_links.get(UpperCAmelCase__, UpperCAmelCase__ ) # A list with elements of the form (line of error, error, failed test) A__ : str = [x + [y] + [job_link] for x, y in zip(UpperCAmelCase__, UpperCAmelCase__ )] return result def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int=None ) ->str: A__ : List[Any] = [] A__ : Dict = [os.path.join(UpperCAmelCase__, UpperCAmelCase__ ) for p in os.listdir(UpperCAmelCase__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(UpperCAmelCase__, job_links=UpperCAmelCase__ ) ) return errors def _lowerCAmelCase ( UpperCAmelCase__ : Dict, UpperCAmelCase__ : Dict=None ) ->List[Any]: A__ : Dict = Counter() counter.update([x[1] for x in logs] ) A__ : str = counter.most_common() A__ : Dict = {} for error, count in counts: if error_filter is None or error not in error_filter: A__ : Optional[int] = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} A__ : List[str] = dict(sorted(r.items(), key=lambda UpperCAmelCase__ : item[1]["count"], reverse=UpperCAmelCase__ ) ) return r def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->str: A__ : List[str] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): A__ : Union[str, Any] = test.split("""/""" )[2] else: A__ : int = None return test def _lowerCAmelCase ( UpperCAmelCase__ : str, UpperCAmelCase__ : str=None ) ->Optional[Any]: A__ : Any = [(x[0], x[1], get_model(x[2] )) for x in logs] A__ : List[Any] = [x for x in logs if x[2] is not None] A__ : Union[str, Any] = {x[2] for x in logs} A__ : int = {} for test in tests: A__ : Optional[int] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) A__ : Any = counter.most_common() A__ : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} A__ : List[str] = sum(error_counts.values() ) if n_errors > 0: A__ : str = {"""count""": n_errors, """errors""": error_counts} A__ : Dict = dict(sorted(r.items(), key=lambda UpperCAmelCase__ : item[1]["count"], reverse=UpperCAmelCase__ ) ) return r def _lowerCAmelCase ( UpperCAmelCase__ : Dict ) ->List[Any]: A__ : List[Any] = """| no. | error | status |""" A__ : Union[str, Any] = """|-:|:-|:-|""" A__ : Dict = [header, sep] for error in reduced_by_error: A__ : List[Any] = reduced_by_error[error]["""count"""] A__ : List[Any] = f'| {count} | {error[:1_0_0]} | |' lines.append(UpperCAmelCase__ ) return "\n".join(UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->int: A__ : str = """| model | no. of errors | major error | count |""" A__ : Optional[int] = """|-:|-:|-:|-:|""" A__ : Tuple = [header, sep] for model in reduced_by_model: A__ : Optional[Any] = reduced_by_model[model]["""count"""] A__ , A__ : Optional[Any] = list(reduced_by_model[model]["""errors"""].items() )[0] A__ : Optional[int] = f'| {model} | {count} | {error[:6_0]} | {_count} |' lines.append(UpperCAmelCase__ ) return "\n".join(UpperCAmelCase__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') A_ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ = get_job_links(args.workflow_run_id, token=args.token) A_ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ = k.find(''' / ''') A_ = k[index + len(''' / ''') :] A_ = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ = reduce_by_error(errors) A_ = reduce_by_model(errors) A_ = make_github_table(reduced_by_error) A_ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
498
0