code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser SCREAMING_SNAKE_CASE = logging.getLogger(__name__) torch.set_grad_enabled(False) SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu' def lowercase_ ( __A : str , __A : Union[str, Any]=1_0_0 , __A : Optional[int]=" " ) -> List[str]: """simple docstring""" lowercase : List[Any] =text.split(__A ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__A ) , __A )] def lowercase_ ( __A : dict ) -> dict: """simple docstring""" lowercase , lowercase : str =[], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(__A ): titles.append(title if title is not None else '''''' ) texts.append(__A ) return {"title": titles, "text": texts} def lowercase_ ( __A : dict , __A : DPRContextEncoder , __A : DPRContextEncoderTokenizerFast ) -> dict: """simple docstring""" lowercase : str =ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=__A , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] lowercase : Dict =ctx_encoder(input_ids.to(device=__A ) , return_dict=__A ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def lowercase_ ( __A : "RagExampleArguments" , __A : "ProcessingArguments" , __A : "IndexHnswArguments" , ) -> Optional[int]: """simple docstring""" logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase : Optional[int] =load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase : Dict =dataset.map(__A , batched=__A , num_proc=processing_args.num_proc ) # And compute the embeddings lowercase : List[Any] =DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__A ) lowercase : Tuple =DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowercase : str =Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space lowercase : List[Any] =dataset.map( partial(__A , ctx_encoder=__A , ctx_tokenizer=__A ) , batched=__A , batch_size=processing_args.batch_size , features=__A , ) # And finally save your dataset lowercase : Optional[int] =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(__A ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase : str =faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=__A ) # And save the index lowercase : List[str] =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(__A ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( default=str(Path(__A ).parent / '''test_run''' / '''dummy-kb''' / '''my_knowledge_dataset.csv''' ) , metadata={'''help''': '''Path to a tab-separated csv file with columns \'title\' and \'text\''''} , ) UpperCamelCase_ = field( default=__A , metadata={'''help''': '''Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'''} , ) UpperCamelCase_ = field( default='''facebook/rag-sequence-nq''' , metadata={'''help''': '''The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''''} , ) UpperCamelCase_ = field( default='''facebook/dpr-ctx_encoder-multiset-base''' , metadata={ '''help''': ( '''The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or''' ''' \'facebook/dpr-ctx_encoder-multiset-base\'''' ) } , ) UpperCamelCase_ = field( default=str(Path(__A ).parent / '''test_run''' / '''dummy-kb''' ) , metadata={'''help''': '''Path to a directory where the dataset passages and the index will be saved'''} , ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( default=__A , metadata={ '''help''': '''The number of processes to use to split the documents into passages. Default is single process.''' } , ) UpperCamelCase_ = field( default=16 , metadata={ '''help''': '''The batch size to use when computing the passages embeddings using the DPR context encoder.''' } , ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ = field( default=768 , metadata={'''help''': '''The dimension of the embeddings to pass to the HNSW Faiss index.'''} , ) UpperCamelCase_ = field( default=128 , metadata={ '''help''': ( '''The number of bi-directional links created for every new element during the HNSW index construction.''' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) SCREAMING_SNAKE_CASE = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
94
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
319
0
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class snake_case ( UpperCAmelCase , unittest.TestCase ): __magic_name__ = SpeechTaTokenizer __magic_name__ = False __magic_name__ = True def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing a : List[Any] = SpeechTaTokenizer(A ) a : str = AddedToken('<mask>' , lstrip=A , rstrip=A ) a : List[Any] = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self : List[Any] , A : Any ): '''simple docstring''' a : Optional[int] = 'this is a test' a : Union[str, Any] = 'this is a test' return input_text, output_text def lowerCamelCase__ ( self : Union[str, Any] , A : List[Any] , A : List[str]=False , A : int=2_0 , A : str=5 ): '''simple docstring''' a : int = self.get_input_output_texts(A ) a : Any = tokenizer.encode(A , add_special_tokens=A ) a : Union[str, Any] = tokenizer.decode(A , clean_up_tokenization_spaces=A ) return text, ids def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : str = '<pad>' a : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' a : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(A ) , 8_1 ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' a : Dict = self.get_tokenizers(do_lower_case=A ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): a : Dict = tokenizer.vocab_size a : Dict = len(A ) self.assertNotEqual(A , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a : Tuple = ['aaaaa bbbbbb', 'cccccccccdddddddd'] a : str = tokenizer.add_tokens(A ) a : Optional[int] = tokenizer.vocab_size a : Dict = len(A ) self.assertNotEqual(A , 0 ) self.assertEqual(A , A ) self.assertEqual(A , len(A ) ) self.assertEqual(A , all_size + len(A ) ) a : Union[str, Any] = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=A ) self.assertGreaterEqual(len(A ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) a : Dict = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} a : Optional[Any] = tokenizer.add_special_tokens(A ) a : int = tokenizer.vocab_size a : List[Any] = len(A ) self.assertNotEqual(A , 0 ) self.assertEqual(A , A ) self.assertEqual(A , len(A ) ) self.assertEqual(A , all_size_a + len(A ) ) a : List[str] = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=A ) self.assertGreaterEqual(len(A ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCamelCase__ ( self : int ): '''simple docstring''' pass def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' a : Tuple = self.get_tokenizer() a : Tuple = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(A , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) a : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) a : Optional[int] = tokenizer.convert_tokens_to_ids(A ) # fmt: off self.assertListEqual(A , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on a : List[Any] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' a : str = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off a : int = { 'input_ids': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=A , )
718
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case ( UpperCAmelCase ): __magic_name__ = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) __magic_name__ = '''CIDAS/clipseg-rd64-refined''' __magic_name__ = '''image_segmenter''' __magic_name__ = CLIPSegForImageSegmentation __magic_name__ = ['''image''', '''text'''] __magic_name__ = ['''image'''] def __init__( self : str , *A : Any , **A : Any ): '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*A , **A ) def lowerCamelCase__ ( self : Any , A : "Image" , A : str ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=A , return_tensors='pt' ) def lowerCamelCase__ ( self : str , A : List[Any] ): '''simple docstring''' with torch.no_grad(): a : Optional[Any] = self.model(**A ).logits return logits def lowerCamelCase__ ( self : List[Any] , A : List[str] ): '''simple docstring''' a : List[str] = outputs.cpu().detach().numpy() a : List[Any] = 0 a : str = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
118
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
91
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase : Any = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = ['''MaskFormerFeatureExtractor'''] _UpperCAmelCase : str = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] _UpperCAmelCase : int = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _UpperCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
107
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") a__ : str = parser.parse_args() if args.model_type == "roberta": a__ : List[str] = RobertaForMaskedLM.from_pretrained(args.model_name) a__ : Optional[int] = """roberta""" elif args.model_type == "gpt2": a__ : Dict = GPTaLMHeadModel.from_pretrained(args.model_name) a__ : int = """transformer""" a__ : Optional[int] = model.state_dict() a__ : Optional[Any] = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: a__ : List[Any] = state_dict[f'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: a__ : Optional[int] = f'''{prefix}.embeddings.{w}.weight''' a__ : List[Any] = state_dict[param_name] for w in ["weight", "bias"]: a__ : Any = f'''{prefix}.embeddings.LayerNorm.{w}''' a__ : str = state_dict[param_name] # Transformer Blocks # a__ : Any = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: a__ : str = state_dict[ f'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] a__ : Optional[int] = state_dict[f'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: a__ : Union[str, Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: a__ : Dict = state_dict[f'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: a__ : Optional[Any] = state_dict[f'''lm_head.dense.{w}'''] a__ : int = state_dict[f'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: a__ : Tuple = state_dict[f'''{prefix}.ln_f.{w}'''] a__ : List[str] = state_dict["""lm_head.weight"""] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
713
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a__ : Optional[Any] = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. a__ : int = direct_transformers_import(PATH_TO_TRANSFORMERS) a__ : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING a__ : Optional[Any] = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def snake_case (UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): lowerCamelCase__ = True # Deal with multi-line cases elif ( re.search( rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , UpperCamelCase , ) is not None ): lowerCamelCase__ = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowerCamelCase__ = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowerCamelCase__ = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] lowerCamelCase__ = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed lowerCamelCase__ = True if not attribute_used: lowerCamelCase__ = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowerCamelCase__ = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowerCamelCase__ = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowerCamelCase__ = True elif attribute.endswith("""_token_id""" ): lowerCamelCase__ = True # configuration class specific cases if not case_allowed: lowerCamelCase__ = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowerCamelCase__ = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def snake_case (UpperCamelCase : str ): '''simple docstring''' lowerCamelCase__ = dict(inspect.signature(config_class.__init__ ).parameters ) lowerCamelCase__ = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] lowerCamelCase__ = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowerCamelCase__ = {} if len(config_class.attribute_map ) > 0: lowerCamelCase__ = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowerCamelCase__ = inspect.getsourcefile(UpperCamelCase ) lowerCamelCase__ = os.path.dirname(UpperCamelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowerCamelCase__ = [os.path.join(UpperCamelCase , UpperCamelCase ) for fn in os.listdir(UpperCamelCase ) if fn.startswith("""modeling_""" )] # Get the source code strings lowerCamelCase__ = [] for path in modeling_paths: if os.path.isfile(UpperCamelCase ): with open(UpperCamelCase ) as fp: modeling_sources.append(fp.read() ) lowerCamelCase__ = [] for config_param, default_value in zip(UpperCamelCase , UpperCamelCase ): # `attributes` here is all the variant names for `config_param` lowerCamelCase__ = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): unused_attributes.append(attributes[0] ) return sorted(UpperCamelCase ) def snake_case (): '''simple docstring''' lowerCamelCase__ = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowerCamelCase__ = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda UpperCamelCase : inspect.isclass(UpperCamelCase ) and issubclass(UpperCamelCase , UpperCamelCase ) and inspect.getmodule(UpperCamelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowerCamelCase__ = check_config_attributes_being_used(UpperCamelCase ) if len(UpperCamelCase ) > 0: lowerCamelCase__ = unused_attributes if len(UpperCamelCase ) > 0: lowerCamelCase__ = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(UpperCamelCase ) if __name__ == "__main__": check_config_attributes()
235
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _a = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case=None ) -> List[str]: """simple docstring""" if rng is None: _UpperCamelCase = random.Random() _UpperCamelCase = 1 for dim in shape: total_dims *= dim _UpperCamelCase = [] for _ in range(__snake_case ): values.append(rng.randint(0, vocab_size - 1 ) ) _UpperCamelCase = np.array(__snake_case, dtype=jnp.intaa ).reshape(__snake_case ) return output def lowerCamelCase__ ( __snake_case, __snake_case=None ) -> Tuple: """simple docstring""" _UpperCamelCase = ids_tensor(__snake_case, vocab_size=2, rng=__snake_case ) # make sure that at least one token is attended to for each batch _UpperCamelCase = 1 return attn_mask @require_flax class _UpperCAmelCase: lowercase__ = None lowercase__ = () def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _UpperCamelCase = 2 _UpperCamelCase = inputs['''input_ids'''].shape[-1] // 2 _UpperCamelCase = inputs['''input_ids'''][:max_batch_size, :sequence_length] _UpperCamelCase = jnp.ones_like(__a) _UpperCamelCase = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _UpperCamelCase = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _UpperCamelCase = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length _UpperCamelCase = 0 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning _UpperCamelCase = getattr(__a , __a) _UpperCamelCase = pt_model_class(__a).eval() _UpperCamelCase = load_flax_weights_in_pytorch_model(__a , flax_model.params) _UpperCamelCase = flax_model.generate(__a).sequences _UpperCamelCase = pt_model.generate(torch.tensor(__a , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _UpperCamelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = True _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length _UpperCamelCase = 2 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = False _UpperCamelCase = max_length _UpperCamelCase = 2 _UpperCamelCase = 2 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = True _UpperCamelCase = max_length _UpperCamelCase = 0.8 _UpperCamelCase = 10 _UpperCamelCase = 0.3 _UpperCamelCase = 1 _UpperCamelCase = 8 _UpperCamelCase = 9 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = max_length _UpperCamelCase = 1 _UpperCamelCase = 8 _UpperCamelCase = 9 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() _UpperCamelCase = max_length _UpperCamelCase = 2 _UpperCamelCase = 1 _UpperCamelCase = 8 _UpperCamelCase = 9 for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCamelCase = attention_mask.at[(0, 0)].set(0) _UpperCamelCase = False _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a , attention_mask=__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a , attention_mask=__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCamelCase = attention_mask.at[(0, 0)].set(0) _UpperCamelCase = True _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a , attention_mask=__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a , attention_mask=__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_input_ids_and_config() # pad attention mask on the left _UpperCamelCase = attention_mask.at[(0, 0)].set(0) _UpperCamelCase = 2 _UpperCamelCase = max_length for model_class in self.all_generative_model_classes: _UpperCamelCase = model_class(__a) _UpperCamelCase = model.generate(__a , attention_mask=__a).sequences self.assertEqual(generation_outputs.shape[-1] , __a) _UpperCamelCase = jit(model.generate) _UpperCamelCase = jit_generate(__a , attention_mask=__a).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''') _UpperCamelCase = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''') _UpperCamelCase = '''Hello world''' _UpperCamelCase = tokenizer(__a , return_tensors='''np''').input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__a , '''do_samples'''): model.generate(__a , do_samples=__a) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__a , '''foo'''): _UpperCamelCase = {'''foo''': '''bar'''} model.generate(__a , **__a)
19
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['vqvae'] def __init__( self , __a , __a , __a , __a , ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=__a , scheduler=__a , mel=__a , vqvae=__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' return 50 if isinstance(self.scheduler , __a) else 10_00 @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = None , __a = 0 , __a = 0 , __a = None , __a = 0 , __a = None , __a = None , __a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCamelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__a) _UpperCamelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: _UpperCamelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCamelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__a , device=self.device , ) _UpperCamelCase = noise _UpperCamelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__a , __a) _UpperCamelCase = self.mel.audio_slice_to_image(__a) _UpperCamelCase = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) _UpperCamelCase = (input_image / 2_55) * 2 - 1 _UpperCamelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: _UpperCamelCase = self.vqvae.encode(torch.unsqueeze(__a , 0)).latent_dist.sample( generator=__a)[0] _UpperCamelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCamelCase = self.scheduler.add_noise(__a , __a , self.scheduler.timesteps[start_step - 1]) _UpperCamelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCamelCase = int(mask_start_secs * pixels_per_second) _UpperCamelCase = int(mask_end_secs * pixels_per_second) _UpperCamelCase = self.scheduler.add_noise(__a , __a , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __a): _UpperCamelCase = self.unet(__a , __a , __a)['''sample'''] else: _UpperCamelCase = self.unet(__a , __a)['''sample'''] if isinstance(self.scheduler , __a): _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , eta=__a , generator=__a , )['''prev_sample'''] else: _UpperCamelCase = self.scheduler.step( model_output=__a , timestep=__a , sample=__a , generator=__a , )['''prev_sample'''] if mask is not None: if mask_start > 0: _UpperCamelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCamelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCamelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCamelCase = self.vqvae.decode(__a)['''sample'''] _UpperCamelCase = (images / 2 + 0.5).clamp(0 , 1) _UpperCamelCase = images.cpu().permute(0 , 2 , 3 , 1).numpy() _UpperCamelCase = (images * 2_55).round().astype('''uint8''') _UpperCamelCase = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__a , mode='''RGB''').convert('''L''') for _ in images)) _UpperCamelCase = [self.mel.image_to_audio(__a) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__a)[:, np.newaxis, :]) , **ImagePipelineOutput(__a)) @torch.no_grad() def UpperCAmelCase ( self , __a , __a = 50) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __a) self.scheduler.set_timesteps(__a) _UpperCamelCase = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) _UpperCamelCase = (sample / 2_55) * 2 - 1 _UpperCamelCase = torch.Tensor(__a).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): _UpperCamelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCamelCase = self.scheduler.alphas_cumprod[t] _UpperCamelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCamelCase = 1 - alpha_prod_t _UpperCamelCase = self.unet(__a , __a)['''sample'''] _UpperCamelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCamelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCamelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase ( __a , __a , __a) -> torch.Tensor: '''simple docstring''' _UpperCamelCase = acos(torch.dot(torch.flatten(__a) , torch.flatten(__a)) / torch.norm(__a) / torch.norm(__a)) return sin((1 - alpha) * theta) * xa / sin(__a) + sin(alpha * theta) * xa / sin(__a)
19
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class __A ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase__ = 42 class __A ( lowerCamelCase__ ,lowerCamelCase__ ): """simple docstring""" @register_to_config def __init__( self , a__ = 6_5536 , a__ = None , a__ = 2 , a__ = 2 , a__ = 0 , a__ = "fourier" , a__ = True , a__ = False , a__ = 0.0 , a__ = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , a__ = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , a__ = "UNetMidBlock1D" , a__ = None , a__ = (32, 32, 64) , a__ = None , a__ = 8 , a__ = 1 , a__ = False , ): """simple docstring""" super().__init__() _lowerCamelCase : Any = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase : Optional[int] = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=a__ , log=a__ , flip_sin_to_cos=a__) _lowerCamelCase : List[str] = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase : Dict = Timesteps( block_out_channels[0] , flip_sin_to_cos=a__ , downscale_freq_shift=a__) _lowerCamelCase : Tuple = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase : Any = block_out_channels[0] * 4 _lowerCamelCase : int = TimestepEmbedding( in_channels=a__ , time_embed_dim=a__ , act_fn=a__ , out_dim=block_out_channels[0] , ) _lowerCamelCase : str = nn.ModuleList([]) _lowerCamelCase : Optional[Any] = None _lowerCamelCase : Dict = nn.ModuleList([]) _lowerCamelCase : str = None # down _lowerCamelCase : Any = in_channels for i, down_block_type in enumerate(a__): _lowerCamelCase : Any = output_channel _lowerCamelCase : str = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase : str = i == len(a__) - 1 _lowerCamelCase : List[Any] = get_down_block( a__ , num_layers=a__ , in_channels=a__ , out_channels=a__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(a__) # mid _lowerCamelCase : List[Any] = get_mid_block( a__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=a__ , add_downsample=a__ , ) # up _lowerCamelCase : str = list(reversed(a__)) _lowerCamelCase : Optional[Any] = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase : Any = out_channels else: _lowerCamelCase : Dict = block_out_channels[0] for i, up_block_type in enumerate(a__): _lowerCamelCase : int = output_channel _lowerCamelCase : int = ( reversed_block_out_channels[i + 1] if i < len(a__) - 1 else final_upsample_channels ) _lowerCamelCase : int = i == len(a__) - 1 _lowerCamelCase : Tuple = get_up_block( a__ , num_layers=a__ , in_channels=a__ , out_channels=a__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(a__) _lowerCamelCase : Union[str, Any] = output_channel # out _lowerCamelCase : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) _lowerCamelCase : str = get_out_block( out_block_type=a__ , num_groups_out=a__ , embed_dim=block_out_channels[0] , out_channels=a__ , act_fn=a__ , fc_dim=block_out_channels[-1] // 4 , ) def __snake_case ( self , a__ , a__ , a__ = True , ): """simple docstring""" _lowerCamelCase : List[str] = timestep if not torch.is_tensor(a__): _lowerCamelCase : int = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(a__) and len(timesteps.shape) == 0: _lowerCamelCase : Any = timesteps[None].to(sample.device) _lowerCamelCase : Union[str, Any] = self.time_proj(a__) if self.config.use_timestep_embedding: _lowerCamelCase : str = self.time_mlp(a__) else: _lowerCamelCase : Union[str, Any] = timestep_embed[..., None] _lowerCamelCase : Optional[Any] = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) _lowerCamelCase : int = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down _lowerCamelCase : Dict = () for downsample_block in self.down_blocks: _lowerCamelCase : Optional[Any] = downsample_block(hidden_states=a__ , temb=a__) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase : Union[str, Any] = self.mid_block(a__ , a__) # 4. up for i, upsample_block in enumerate(self.up_blocks): _lowerCamelCase : str = down_block_res_samples[-1:] _lowerCamelCase : int = down_block_res_samples[:-1] _lowerCamelCase : Tuple = upsample_block(a__ , res_hidden_states_tuple=a__ , temb=a__) # 5. post-process if self.out_block: _lowerCamelCase : Optional[int] = self.out_block(a__ , a__) if not return_dict: return (sample,) return UNetaDOutput(sample=a__)
712
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __UpperCAmelCase( lowercase_ ): # picklable for multiprocessing return x.sum() def __UpperCAmelCase( lowercase_ ): # picklable for multiprocessing return i + 1 @dataclass class __A : """simple docstring""" UpperCAmelCase__ = 42 UpperCAmelCase__ = 42 class __A ( lowerCamelCase__ ): """simple docstring""" def __snake_case ( self): """simple docstring""" _lowerCamelCase : Tuple = {} _lowerCamelCase : Dict = [] _lowerCamelCase : Optional[Any] = 1 _lowerCamelCase : Optional[int] = [1, 2] _lowerCamelCase : str = {'''a''': 1, '''b''': 2} _lowerCamelCase : Dict = {'''a''': [1, 2], '''b''': [3, 4]} _lowerCamelCase : Any = {'''a''': {'''1''': 1}, '''b''': 2} _lowerCamelCase : Optional[Any] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4} _lowerCamelCase : str = {} _lowerCamelCase : int = [] _lowerCamelCase : str = 2 _lowerCamelCase : int = [2, 3] _lowerCamelCase : str = {'''a''': 2, '''b''': 3} _lowerCamelCase : Tuple = {'''a''': [2, 3], '''b''': [4, 5]} _lowerCamelCase : List[str] = {'''a''': {'''1''': 2}, '''b''': 3} _lowerCamelCase : str = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5} self.assertEqual(map_nested(a__ , a__) , a__) self.assertEqual(map_nested(a__ , a__) , a__) self.assertEqual(map_nested(a__ , a__) , a__) self.assertEqual(map_nested(a__ , a__) , a__) self.assertEqual(map_nested(a__ , a__) , a__) self.assertEqual(map_nested(a__ , a__) , a__) self.assertEqual(map_nested(a__ , a__) , a__) self.assertEqual(map_nested(a__ , a__) , a__) _lowerCamelCase : Dict = 2 self.assertEqual(map_nested(a__ , a__ , num_proc=a__) , a__) self.assertEqual(map_nested(a__ , a__ , num_proc=a__) , a__) self.assertEqual(map_nested(a__ , a__ , num_proc=a__) , a__) self.assertEqual(map_nested(a__ , a__ , num_proc=a__) , a__) self.assertEqual(map_nested(a__ , a__ , num_proc=a__) , a__) self.assertEqual(map_nested(a__ , a__ , num_proc=a__) , a__) self.assertEqual(map_nested(a__ , a__ , num_proc=a__) , a__) self.assertEqual(map_nested(a__ , a__ , num_proc=a__) , a__) _lowerCamelCase : Any = {'''a''': np.eye(2), '''b''': np.zeros(3), '''c''': np.ones(2)} _lowerCamelCase : Optional[int] = {'''a''': 2, '''b''': 0, '''c''': 2} _lowerCamelCase : Optional[int] = { '''a''': np.eye(2).astype(a__), '''b''': np.zeros(3).astype(a__), '''c''': np.ones(2).astype(a__), } self.assertEqual(map_nested(a__ , a__ , map_numpy=a__) , a__) self.assertEqual( {k: v.tolist() for k, v in map_nested(a__ , a__ , map_numpy=a__).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(a__ , a__ , map_numpy=a__ , num_proc=a__) , a__) self.assertEqual( {k: v.tolist() for k, v in map_nested(a__ , a__ , map_numpy=a__ , num_proc=a__).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(a__): # can't pickle a local lambda map_nested(lambda a__: x + 1 , a__ , num_proc=a__) def __snake_case ( self): """simple docstring""" _lowerCamelCase : Dict = {'''a''': 1, '''b''': 2} _lowerCamelCase : Optional[int] = {'''a''': 3, '''b''': 4} _lowerCamelCase : int = {'''a''': 5, '''b''': 6} _lowerCamelCase : Optional[int] = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))]) self.assertEqual(sorted(zip_dict(a__ , a__ , a__)) , a__) def __snake_case ( self): """simple docstring""" class __A : """simple docstring""" UpperCAmelCase__ = """bar""" _lowerCamelCase : Any = Foo() self.assertEqual(foo.my_attr , '''bar''') with temporary_assignment(a__ , '''my_attr''' , '''BAR'''): self.assertEqual(foo.my_attr , '''BAR''') self.assertEqual(foo.my_attr , '''bar''') @pytest.mark.parametrize( '''iterable_length, num_proc, expected_num_proc''' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def __UpperCAmelCase( lowercase_ , lowercase_ , lowercase_ ): with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch( '''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool: _lowerCamelCase : Union[str, Any] = {F"""{i}""": i for i in range(lowercase_ )} _lowerCamelCase : List[str] = map_nested(lambda lowercase_ : x + 10 , lowercase_ , num_proc=lowercase_ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __A ( lowerCamelCase__ ): """simple docstring""" @require_tf def __snake_case ( self): """simple docstring""" import tensorflow as tf from tensorflow.keras import layers _lowerCamelCase : int = layers.Dense(2) def gen_random_output(): _lowerCamelCase : Union[str, Any] = tf.random.uniform((1, 3)) return model(a__).numpy() with temp_seed(42 , set_tensorflow=a__): _lowerCamelCase : List[str] = gen_random_output() with temp_seed(42 , set_tensorflow=a__): _lowerCamelCase : Any = gen_random_output() _lowerCamelCase : str = gen_random_output() np.testing.assert_equal(a__ , a__) self.assertGreater(np.abs(outa - outa).sum() , 0) @require_torch def __snake_case ( self): """simple docstring""" import torch def gen_random_output(): _lowerCamelCase : Union[str, Any] = torch.nn.Linear(3 , 2) _lowerCamelCase : Dict = torch.rand(1 , 3) return model(a__).detach().numpy() with temp_seed(42 , set_pytorch=a__): _lowerCamelCase : Any = gen_random_output() with temp_seed(42 , set_pytorch=a__): _lowerCamelCase : Optional[int] = gen_random_output() _lowerCamelCase : Union[str, Any] = gen_random_output() np.testing.assert_equal(a__ , a__) self.assertGreater(np.abs(outa - outa).sum() , 0) def __snake_case ( self): """simple docstring""" def gen_random_output(): return np.random.rand(1 , 3) with temp_seed(42): _lowerCamelCase : Union[str, Any] = gen_random_output() with temp_seed(42): _lowerCamelCase : List[str] = gen_random_output() _lowerCamelCase : str = gen_random_output() np.testing.assert_equal(a__ , a__) self.assertGreater(np.abs(outa - outa).sum() , 0) @pytest.mark.parametrize('''input_data''' , [{}] ) def __UpperCAmelCase( lowercase_ ): _lowerCamelCase : List[Any] = NestedDataStructure(lowercase_ ).data assert output_data == input_data @pytest.mark.parametrize( '''data, expected_output''' , [ ({}, []), ([], []), ('''foo''', ['''foo''']), (['''foo''', '''bar'''], ['''foo''', '''bar''']), ([['''foo''', '''bar''']], ['''foo''', '''bar''']), ([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']), ([[['''foo'''], '''bar''']], ['''foo''', '''bar''']), ({'''a''': 1, '''b''': 2}, [1, 2]), ({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]), ({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]), ({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]), ({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]), ] , ) def __UpperCAmelCase( lowercase_ , lowercase_ ): _lowerCamelCase : int = NestedDataStructure(lowercase_ ).flatten() assert output == expected_output def __UpperCAmelCase( ): _lowerCamelCase : Any = A(x=1 , y='''foobar''' ) _lowerCamelCase : Union[str, Any] = {'''x''': 1, '''y''': '''foobar'''} assert asdict(lowercase_ ) == expected_output _lowerCamelCase : Optional[int] = {'''a''': {'''b''': A(x=10 , y='''foo''' )}, '''c''': [A(x=20 , y='''bar''' )]} _lowerCamelCase : Union[str, Any] = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]} assert asdict(lowercase_ ) == expected_output with pytest.raises(lowercase_ ): asdict([1, A(x=10 , y='''foo''' )] ) def __UpperCAmelCase( lowercase_ ): return text.split() def __UpperCAmelCase( lowercase_ ): yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __UpperCAmelCase( ): with Pool(2 ) as pool: _lowerCamelCase : Tuple = list(iflatmap_unordered(lowercase_ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(lowercase_ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: _lowerCamelCase : Dict = list(iflatmap_unordered(lowercase_ , _split_text , kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) ) assert out.count('''hello''' ) == 10 assert out.count('''there''' ) == 10 assert len(lowercase_ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: _lowerCamelCase : str = [] for yield_time, content in iflatmap_unordered( lowercase_ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(lowercase_ ) assert out.count('''a''' ) == 2 assert out.count('''b''' ) == 2 assert len(lowercase_ ) == 4
613
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_) class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True}) __SCREAMING_SNAKE_CASE = Features({'''audio''': Audio()}) __SCREAMING_SNAKE_CASE = Features({'''labels''': ClassLabel}) __SCREAMING_SNAKE_CASE = "audio" __SCREAMING_SNAKE_CASE = "labels" def __lowerCamelCase ( self , lowercase ) -> List[str]: if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , lowercase ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) __UpperCamelCase = copy.deepcopy(self ) __UpperCamelCase = self.label_schema.copy() __UpperCamelCase = features[self.label_column] __UpperCamelCase = label_schema return task_template @property def __lowerCamelCase ( self ) -> Dict[str, str]: return { self.audio_column: "audio", self.label_column: "labels", }
601
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
601
1
'''simple docstring''' import requests def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str ) -> None: UpperCAmelCase_ : List[str] = {'''Content-Type''': '''application/json'''} UpperCAmelCase_ : Optional[Any] = requests.post(SCREAMING_SNAKE_CASE__, json={'''text''': message_body}, headers=SCREAMING_SNAKE_CASE__ ) if response.status_code != 200: UpperCAmelCase_ : str = ( '''Request to slack returned an error ''' F"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
644
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __a (lowerCamelCase ): __a : int = "dandelin/vilt-b32-finetuned-vqa" __a : Any = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __a : Any = "image_qa" __a : str = AutoProcessor __a : Any = AutoModelForVisualQuestionAnswering __a : List[Any] = ["image", "text"] __a : int = ["text"] def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*__magic_name__ , **__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple: """simple docstring""" return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' ) def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]: """simple docstring""" with torch.no_grad(): return self.model(**__magic_name__ ).logits def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
644
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase__ ( a_ ): _SCREAMING_SNAKE_CASE : Tuple = ["image_processor", "tokenizer"] _SCREAMING_SNAKE_CASE : Dict = "ViTImageProcessor" _SCREAMING_SNAKE_CASE : Union[str, Any] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self : List[str] , snake_case_ : List[Any]=None , snake_case_ : Optional[int]=None , **snake_case_ : Tuple ): __a : int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowercase_ , ) __a : Tuple = kwargs.pop('''feature_extractor''' ) __a : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowercase_ , lowercase_ ) def __call__(self : str , snake_case_ : Dict=None , snake_case_ : int=None , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None , **snake_case_ : Union[str, Any] ): if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: __a : str = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if visual_prompt is not None: __a : Optional[Any] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if images is not None: __a : Optional[Any] = self.image_processor(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) if visual_prompt is not None and images is not None: __a : Union[str, Any] = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: __a : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: __a : Union[str, Any] = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**lowercase_ ) , tensor_type=lowercase_ ) def lowerCAmelCase (self : List[str] , *snake_case_ : List[str] , **snake_case_ : Optional[int] ): return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def lowerCAmelCase (self : Optional[Any] , *snake_case_ : str , **snake_case_ : List[Any] ): return self.tokenizer.decode(*lowercase_ , **lowercase_ ) @property def lowerCAmelCase (self : List[str] ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowercase_ , ) return self.image_processor_class @property def lowerCAmelCase (self : List[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowercase_ , ) return self.image_processor
521
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( A_ ): for i in range(len(A_ ) - 1 , 0 , -1 ): lowerCAmelCase__ : Optional[Any] = False for j in range(A_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = unsorted[j - 1], unsorted[j] lowerCAmelCase__ : Dict = True for j in range(A_ ): if unsorted[j] > unsorted[j + 1]: lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = unsorted[j + 1], unsorted[j] lowerCAmelCase__ : Any = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : int = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(F'''{cocktail_shaker_sort(unsorted) = }''')
450
0
"""simple docstring""" import argparse from collections import defaultdict import yaml lowerCAmelCase_ = '''docs/source/en/_toctree.yml''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = defaultdict(lowerCAmelCase__ ) _UpperCAmelCase = [] _UpperCAmelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(lowerCAmelCase__ ) _UpperCAmelCase = new_doc_list _UpperCAmelCase = [key for key, value in counts.items() if value > 1] _UpperCAmelCase = [] for duplicate_key in duplicates: _UpperCAmelCase = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) _UpperCAmelCase = sorted(lowerCAmelCase__,key=lambda SCREAMING_SNAKE_CASE : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase__ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(lowerCAmelCase__ ) # Sort return overview_doc def __lowerCamelCase ( SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: """simple docstring""" with open(lowerCAmelCase__,encoding='utf-8' ) as f: _UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _UpperCAmelCase = content[api_idx]['sections'] # Then to the model doc _UpperCAmelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _UpperCAmelCase = api_doc[scheduler_idx]['sections'] _UpperCAmelCase = clean_doc_toc(lowerCAmelCase__ ) _UpperCAmelCase = False if new_scheduler_doc != scheduler_doc: _UpperCAmelCase = True if overwrite: _UpperCAmelCase = new_scheduler_doc if diff: if overwrite: _UpperCAmelCase = api_doc with open(lowerCAmelCase__,'w',encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase__,allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE=False ) -> Tuple: """simple docstring""" with open(lowerCAmelCase__,encoding='utf-8' ) as f: _UpperCAmelCase = yaml.safe_load(f.read() ) # Get to the API doc _UpperCAmelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _UpperCAmelCase = content[api_idx]['sections'] # Then to the model doc _UpperCAmelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _UpperCAmelCase = False _UpperCAmelCase = api_doc[pipeline_idx]['sections'] _UpperCAmelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _UpperCAmelCase = pipeline_doc['section'] _UpperCAmelCase = clean_doc_toc(lowerCAmelCase__ ) if overwrite: _UpperCAmelCase = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase__ ) # sort overall pipeline doc _UpperCAmelCase = clean_doc_toc(lowerCAmelCase__ ) if new_pipeline_docs != pipeline_docs: _UpperCAmelCase = True if overwrite: _UpperCAmelCase = new_pipeline_docs if diff: if overwrite: _UpperCAmelCase = api_doc with open(lowerCAmelCase__,'w',encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase__,allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCAmelCase_ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
721
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class lowerCAmelCase ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=18 , a__=30 , a__=4_00 , a__=True , a__=None , a__=True , a__=None , a__=True , a__=[0.48_145_466, 0.4_578_275, 0.40_821_073] , a__=[0.26_862_954, 0.26_130_258, 0.27_577_711] , a__=True , ): _UpperCAmelCase = size if size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = do_convert_rgb def __A ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __A ( self , a__=False , a__=False , a__=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _UpperCAmelCase = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _UpperCAmelCase = [] for i in range(self.batch_size ): _UpperCAmelCase , _UpperCAmelCase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _UpperCAmelCase = [Image.fromarray(np.moveaxis(a__ , 0 , -1 ) ) for x in image_inputs] if torchify: _UpperCAmelCase = [torch.from_numpy(a__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class lowerCAmelCase ( snake_case , unittest.TestCase ): lowerCAmelCase__ = ChineseCLIPImageProcessor if is_vision_available() else None def __A ( self ): _UpperCAmelCase = ChineseCLIPImageProcessingTester(self , do_center_crop=a__ ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , 'do_resize' ) ) self.assertTrue(hasattr(a__ , 'size' ) ) self.assertTrue(hasattr(a__ , 'do_center_crop' ) ) self.assertTrue(hasattr(a__ , 'center_crop' ) ) self.assertTrue(hasattr(a__ , 'do_normalize' ) ) self.assertTrue(hasattr(a__ , 'image_mean' ) ) self.assertTrue(hasattr(a__ , 'image_std' ) ) self.assertTrue(hasattr(a__ , 'do_convert_rgb' ) ) def __A ( self ): _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 2_24, 'width': 2_24} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def __A ( self ): pass def __A ( self ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(a__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __A ( self ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(a__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __A ( self ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(a__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class lowerCAmelCase ( snake_case , unittest.TestCase ): lowerCAmelCase__ = ChineseCLIPImageProcessor if is_vision_available() else None def __A ( self ): _UpperCAmelCase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=a__ ) _UpperCAmelCase = 3 @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , 'do_resize' ) ) self.assertTrue(hasattr(a__ , 'size' ) ) self.assertTrue(hasattr(a__ , 'do_center_crop' ) ) self.assertTrue(hasattr(a__ , 'center_crop' ) ) self.assertTrue(hasattr(a__ , 'do_normalize' ) ) self.assertTrue(hasattr(a__ , 'image_mean' ) ) self.assertTrue(hasattr(a__ , 'image_std' ) ) self.assertTrue(hasattr(a__ , 'do_convert_rgb' ) ) def __A ( self ): pass def __A ( self ): # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(a__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
494
0
from __future__ import annotations def __UpperCamelCase ( A , A , A ): if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def __UpperCamelCase ( A , A , A , ): if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __UpperCamelCase ( A , A , A , ): if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( A , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
415
import torch from diffusers import DiffusionPipeline class _A ( __UpperCamelCase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) def __call__(self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCamelCase__ = 1 UpperCamelCase__ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = scheduler_output - scheduler_output + torch.ones_like(SCREAMING_SNAKE_CASE_ ) return result
415
1
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Tuple = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __UpperCAmelCase ( __UpperCamelCase = 50_00 ): __lowercase : Optional[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , __UpperCamelCase )] for i, pentagonal_i in enumerate(__UpperCamelCase ): for j in range(__UpperCamelCase , len(__UpperCamelCase ) ): __lowercase : int = pentagonal_nums[j] __lowercase : List[Any] = pentagonal_i + pentagonal_j __lowercase : List[str] = pentagonal_j - pentagonal_i if is_pentagonal(__UpperCamelCase ) and is_pentagonal(__UpperCamelCase ): return b return -1 if __name__ == "__main__": print(F"{solution() = }")
523
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/markuplm-base': 'https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json', 'microsoft/markuplm-large': 'https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json', } class UpperCAmelCase_ ( snake_case ): UpperCamelCase ="markuplm" def __init__( self , UpperCamelCase_=3_05_22 , UpperCamelCase_=7_68 , UpperCamelCase_=12 , UpperCamelCase_=12 , UpperCamelCase_=30_72 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-12 , UpperCamelCase_=0 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=2_56 , UpperCamelCase_=10_24 , UpperCamelCase_=2_16 , UpperCamelCase_=10_01 , UpperCamelCase_=32 , UpperCamelCase_=50 , UpperCamelCase_="absolute" , UpperCamelCase_=True , UpperCamelCase_=None , **UpperCamelCase_ , ) -> List[str]: super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) __lowercase : Optional[int] = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : Optional[int] = num_attention_heads __lowercase : Tuple = hidden_act __lowercase : Optional[Any] = intermediate_size __lowercase : str = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Optional[int] = max_position_embeddings __lowercase : List[str] = type_vocab_size __lowercase : Dict = initializer_range __lowercase : Dict = layer_norm_eps __lowercase : Any = position_embedding_type __lowercase : int = use_cache __lowercase : str = classifier_dropout # additional properties __lowercase : List[Any] = max_depth __lowercase : List[Any] = max_xpath_tag_unit_embeddings __lowercase : List[str] = max_xpath_subs_unit_embeddings __lowercase : List[Any] = tag_pad_id __lowercase : Tuple = subs_pad_id __lowercase : Optional[int] = xpath_unit_hidden_size
523
1
import re def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> str: if len(re.findall('[ATCG]' , snake_case__ ) ) != len(snake_case__ ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
67
def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> list: _lowercase = [0] * len(snake_case__ ) for i in range(1 , len(snake_case__ ) ): # use last results for better performance - dynamic programming _lowercase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _lowercase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _lowercase = j return prefix_result def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> int: return max(prefix_function(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
67
1
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels SCREAMING_SNAKE_CASE = object() # For specifying empty leaf dict `{}` SCREAMING_SNAKE_CASE = object() def lowercase_ ( __A : str , __A : int ) -> Optional[Any]: """simple docstring""" lowercase : str =tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(__A ) - len(__A ) + 1 ): lowercase : Optional[int] =[x.match(__A ) for x, y in zip(__A , ks[i:] )] if matches and all(__A ): return True return False def lowercase_ ( __A : Optional[int] ) -> Dict: """simple docstring""" def replace(__A : str , __A : Tuple ): for rule, replacement in rules: if _match(__A , __A ): return replacement return val return replace def lowercase_ ( ) -> Dict: """simple docstring""" return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , __A )), (("transformer", "wte", "embedding"), P('''mp''' , __A )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__A , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , __A )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__A , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , __A )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def lowercase_ ( __A : Any ) -> Optional[Any]: """simple docstring""" lowercase : int =_get_partition_rules() lowercase : Optional[int] =_replacement_rules(__A ) lowercase : Dict ={k: _unmatched for k in flatten_dict(__A )} lowercase : int ={k: replace(__A , __A ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__A ) )
8
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : int ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =0 def A__ ( self : str ) -> Union[str, Any]: '''simple docstring''' lowercase : Tuple =AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : str =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : int =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : int =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : str =CLIPConfig() # Create a dummy config file with image_proceesor_type lowercase : Optional[int] =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : Optional[Any] =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ).to_dict() config_dict.pop('''image_processor_type''' ) lowercase : str =CLIPImageProcessor(**UpperCAmelCase ) # save in new folder model_config.save_pretrained(UpperCAmelCase ) config.save_pretrained(UpperCAmelCase ) lowercase : Optional[int] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) # make sure private variable is not incorrectly saved lowercase : int =json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : str ) -> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Dict =Path(UpperCAmelCase ) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) lowercase : Optional[Any] =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) def A__ ( self : int ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''clip-base is not a local folder and is not a valid model identifier''' ): lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained('''clip-base''' ) def A__ ( self : List[Any] ) -> List[str]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , revision='''aaaaaa''' ) def A__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' with self.assertRaisesRegex( UpperCAmelCase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): lowercase : Optional[int] =AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' ) def A__ ( self : List[str] ) -> str: '''simple docstring''' with self.assertRaises(UpperCAmelCase ): lowercase : Dict =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase ): lowercase : List[str] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) lowercase : Union[str, Any] =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Any =AutoImageProcessor.from_pretrained(UpperCAmelCase , trust_remote_code=UpperCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' ) def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase ): AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase : Any =Path(UpperCAmelCase ) / '''preprocessor_config.json''' lowercase : str =Path(UpperCAmelCase ) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(UpperCAmelCase , '''w''' ) , ) json.dump({'''model_type''': '''clip'''} , open(UpperCAmelCase , '''w''' ) ) lowercase : Optional[int] =CustomImageProcessor.from_pretrained(UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase ) lowercase : Dict =AutoImageProcessor.from_pretrained(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self : Any ) -> Any: '''simple docstring''' class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = True try: AutoConfig.register('''custom''' , UpperCAmelCase ) AutoImageProcessor.register(UpperCAmelCase , UpperCAmelCase ) # If remote code is not set, the default is to use local lowercase : List[str] =AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. lowercase : Tuple =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub lowercase : Dict =AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=UpperCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' ) self.assertTrue(not hasattr(UpperCAmelCase , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
8
1
"""simple docstring""" import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def UpperCAmelCase ( _lowercase : str , _lowercase : str , **_lowercase : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ = AutoConfig.from_pretrained(_lowercase , **_lowercase ) lowerCAmelCase_ = AutoModelForSeqaSeqLM.from_config(_lowercase ) model.save_pretrained(_lowercase ) AutoTokenizer.from_pretrained(_lowercase ).save_pretrained(_lowercase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
552
"""simple docstring""" import math from datetime import datetime, timedelta def UpperCAmelCase ( _lowercase : int ) -> datetime: """simple docstring""" lowerCAmelCase_ = year % 1_9 lowerCAmelCase_ = year % 4 lowerCAmelCase_ = year % 7 lowerCAmelCase_ = math.floor(year / 1_0_0 ) lowerCAmelCase_ = math.floor((1_3 + 8 * leap_day_inhibits) / 2_5 ) lowerCAmelCase_ = leap_day_inhibits / 4 lowerCAmelCase_ = ( 1_5 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 3_0 lowerCAmelCase_ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowerCAmelCase_ = (1_9 * metonic_cycle + secular_moon_shift) % 3_0 # PHM -> Paschal Full Moon lowerCAmelCase_ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 2_9 and days_from_phm_to_sunday == 6: return datetime(_lowercase , 4 , 1_9 ) elif days_to_add == 2_8 and days_from_phm_to_sunday == 6: return datetime(_lowercase , 4 , 1_8 ) else: return datetime(_lowercase , 3 , 2_2 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): lowercase_ = 'will be' if year > datetime.now().year else 'was' print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
552
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def UpperCamelCase__ ( self : str ): _a = self.dummy_uncond_unet _a = ScoreSdeVeScheduler() _a = ScoreSdeVePipeline(unet=__a , scheduler=__a ) sde_ve.to(__a ) sde_ve.set_progress_bar_config(disable=__a ) _a = torch.manual_seed(0 ) _a = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=__a ).images _a = torch.manual_seed(0 ) _a = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=__a , return_dict=__a )[ 0 ] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : int ): _a = "google/ncsnpp-church-256" _a = UNetaDModel.from_pretrained(__a ) _a = ScoreSdeVeScheduler.from_pretrained(__a ) _a = ScoreSdeVePipeline(unet=__a , scheduler=__a ) sde_ve.to(__a ) sde_ve.set_progress_bar_config(disable=__a ) _a = torch.manual_seed(0 ) _a = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=__a ).images _a = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _a = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
716
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( lowercase : str , lowercase : int , lowercase : Any , lowercase : Any ) -> Any: # Initialise PyTorch model _a = FunnelConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) _a = FunnelBaseModel(lowercase ) if base_model else FunnelModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowercase , lowercase , lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
521
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Optional[Any] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(snake_case, snake_case ) def __lowercase ( snake_case ): """simple docstring""" __magic_name__ , __magic_name__ :Tuple = emb.weight.shape __magic_name__ :int = nn.Linear(snake_case, snake_case, bias=snake_case ) __magic_name__ :str = emb.weight.data return lin_layer def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :int = torch.load(snake_case, map_location='''cpu''' ) __magic_name__ :Optional[Any] = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] __magic_name__ :List[Any] = mam_aaa['''model'''] remove_ignore_keys_(snake_case ) __magic_name__ :Tuple = state_dict['''encoder.embed_tokens.weight'''].shape[0] __magic_name__ :List[str] = MaMaaaConfig( vocab_size=snake_case, max_position_embeddings=1_0_2_4, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''relu''', ) __magic_name__ :int = state_dict['''decoder.embed_tokens.weight'''] __magic_name__ :List[str] = MaMaaaForConditionalGeneration(snake_case ) model.model.load_state_dict(snake_case, strict=snake_case ) __magic_name__ :List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE__ : int = parser.parse_args() SCREAMING_SNAKE_CASE__ : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=snake_case_ ): __magic_name__ : Dict = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : List[str] , *lowercase__ : Dict , **lowercase__ : int ): '''simple docstring''' requires_backends(self , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def lowercase_ ( cls : Dict , *lowercase__ : List[str] , **lowercase__ : str ): '''simple docstring''' requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] ) @classmethod def lowercase_ ( cls : str , *lowercase__ : Optional[int] , **lowercase__ : Any ): '''simple docstring''' requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
442
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase__ ) class _a ( lowercase__ ): a_ : List[Any] = field(default='summarization' , metadata={'include_in_asdict_even_if_is_default': True} ) a_ : Optional[int] = Features({'text': Value('string' )} ) a_ : Any = Features({'summary': Value('string' )} ) a_ : str = 'text' a_ : Optional[int] = 'summary' @property def _UpperCamelCase ( self : str ): return {self.text_column: "text", self.summary_column: "summary"}
705
"""simple docstring""" from __future__ import annotations _snake_case = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def snake_case ( _a: list[list[int]] , _a: list[int] , _a: list[int] , _a: int , _a: list[list[int]] , )-> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the reference grid lowerCamelCase__ = 1 lowerCamelCase__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_a ) ) ] # the action grid lowerCamelCase__ = init[0] lowerCamelCase__ = init[1] lowerCamelCase__ = 0 lowerCamelCase__ = g + heuristic[x][y] # cost from starting cell to destination cell lowerCamelCase__ = [[f, g, x, y]] lowerCamelCase__ = False # flag that is set when search is complete lowerCamelCase__ = False # flag set if we can't find expand while not found and not resign: if len(_a ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCamelCase__ = cell.pop() lowerCamelCase__ = next_cell[2] lowerCamelCase__ = next_cell[3] lowerCamelCase__ = next_cell[1] if x == goal[0] and y == goal[1]: lowerCamelCase__ = True else: for i in range(len(_a ) ): # to try out different valid actions lowerCamelCase__ = x + DIRECTIONS[i][0] lowerCamelCase__ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_a ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCamelCase__ = g + cost lowerCamelCase__ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCamelCase__ = 1 lowerCamelCase__ = i lowerCamelCase__ = [] lowerCamelCase__ = goal[0] lowerCamelCase__ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCamelCase__ = x - DIRECTIONS[action[x][y]][0] lowerCamelCase__ = y - DIRECTIONS[action[x][y]][1] lowerCamelCase__ = xa lowerCamelCase__ = ya invpath.append([x, y] ) lowerCamelCase__ = [] for i in range(len(_a ) ): path.append(invpath[len(_a ) - 1 - i] ) return path, action if __name__ == "__main__": _snake_case = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _snake_case = [0, 0] # all coordinates are given in format [y,x] _snake_case = [len(grid) - 1, len(grid[0]) - 1] _snake_case = 1 # the cost map which pushes the path closer to the goal _snake_case = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _snake_case = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _snake_case = 99 _snake_case , _snake_case = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
659
0
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _snake_case ( A_ : List[str] ): """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' super().__init__() a_ : Optional[Any] = module a_ : Any = nn.Sequential( nn.Linear(module.in_features , _a , bias=_a ) , nn.Linear(_a , module.out_features , bias=_a ) , ) a_ : Dict = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_a ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _lowerCAmelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): '''simple docstring''' return self.module(_a , *_a , **_a ) + self.adapter(_a ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" a_ = '''bigscience/bloom-1b7''' # Constant values a_ = 2.109659552692574 a_ = '''Hello my name is''' a_ = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) a_ = 10 def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[int] = AutoTokenizer.from_pretrained(self.model_name ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() # Models and tokenizer a_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) a_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_a , device_map="""auto""" ) def _lowerCAmelCase ( self ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = self.model_abit.config self.assertTrue(hasattr(_a , """quantization_config""" ) ) a_ : Any = config.to_dict() a_ : Optional[Any] = config.to_diff_dict() a_ : List[str] = config.to_json_string() def _lowerCAmelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit a_ : Dict = self.model_fpaa.get_memory_footprint() a_ : Optional[int] = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a_ : Tuple = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _lowerCAmelCase ( self ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_a , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : int = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_a ) , self.EXPECTED_OUTPUTS ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = BitsAndBytesConfig() a_ : Tuple = True a_ : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_a , device_map="""auto""" ) a_ : List[str] = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : List[str] = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_a ) , self.EXPECTED_OUTPUTS ) def _lowerCAmelCase ( self ): '''simple docstring''' with self.assertRaises(_a ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_a ) def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[str] = BitsAndBytesConfig() with self.assertRaises(_a ): a_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_a , load_in_abit=_a , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def _lowerCAmelCase ( self ): '''simple docstring''' with self.assertRaises(_a ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(_a ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_a ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(_a ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_a ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a_ : Any = self.tokenizer(self.input_text , return_tensors="""pt""" ) a_ : Tuple = self.model_fpaa.to(torch.floataa ) a_ : List[Any] = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a_ : List[str] = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error a_ : Optional[int] = self.model_fpaa.half() # Check this does not throw an error a_ : Dict = self.model_fpaa.float() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Tuple = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=_a , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @classmethod def _lowerCAmelCase ( cls ): '''simple docstring''' a_ : List[Any] = """t5-small""" a_ : str = """google/flan-t5-small""" # flan-t5 uses dense-act instead of dense-relu-dense a_ : int = AutoTokenizer.from_pretrained(cls.model_name ) a_ : List[Any] = """Translate in German: Hello, my dog is cute""" def _lowerCAmelCase ( self ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' from transformers import TaForConditionalGeneration a_ : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules a_ : Optional[int] = None # test with `t5-small` a_ : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_a , device_map="""auto""" ) a_ : List[Any] = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Any = model.generate(**_a ) # test with `flan-t5-small` a_ : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_a , device_map="""auto""" ) a_ : Dict = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Optional[int] = model.generate(**_a ) a_ : Optional[Any] = modules def _lowerCAmelCase ( self ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a_ : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_a , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a_ : Optional[Any] = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Optional[int] = model.generate(**_a ) # test with `flan-t5-small` a_ : str = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_a , device_map="""auto""" ) a_ : List[str] = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) a_ : Union[str, Any] = model.generate(**_a ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() # model_name a_ : int = """bigscience/bloom-560m""" a_ : Optional[Any] = """t5-small""" # Different types of model a_ : List[Any] = AutoModel.from_pretrained(self.model_name , load_in_abit=_a , device_map="""auto""" ) # Sequence classification model a_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_a , device_map="""auto""" ) # CausalLM model a_ : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_a , device_map="""auto""" ) # Seq2seq model a_ : List[Any] = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_a , device_map="""auto""" ) def _lowerCAmelCase ( self ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Any = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a_ : Optional[int] = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Optional[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_a , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a_ : int = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch a_ : Optional[Any] = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_a ) , self.EXPECTED_OUTPUTS ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowerCAmelCase ( self ): '''simple docstring''' a_ : Union[str, Any] = """facebook/opt-350m""" super().setUp() def _lowerCAmelCase ( self ): '''simple docstring''' if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters a_ : Optional[Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_a ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a_ : int = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a_ : Optional[Any] = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_a ) ): a_ : Optional[int] = LoRALayer(module.q_proj , rank=16 ) a_ : str = LoRALayer(module.k_proj , rank=16 ) a_ : Union[str, Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a_ : int = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a_ : Dict = model.forward(**_a ) out.logits.norm().backward() for module in model.modules(): if isinstance(_a , _a ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_a , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = '''gpt2-xl''' a_ = 3.3191854854152187
577
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __lowercase ( A ): '''simple docstring''' _A : Optional[Any] = '''naver-clova-ix/donut-base-finetuned-docvqa''' _A : str = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) _A : str = '''document_qa''' _A : List[str] = AutoProcessor _A : Dict = VisionEncoderDecoderModel _A : List[Any] = ['''image''', '''text'''] _A : List[Any] = ['''text'''] def __init__( self : int , *_a : Any , **_a : Optional[Any] ): if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*_a , **_a ) def A_ ( self : int , _a : "Image" , _a : str ): UpperCamelCase__ = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' UpperCamelCase__ = task_prompt.replace('''{user_input}''' , _a ) UpperCamelCase__ = self.pre_processor.tokenizer( _a , add_special_tokens=_a , return_tensors='''pt''' ).input_ids UpperCamelCase__ = self.pre_processor(_a , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def A_ ( self : Optional[Any] , _a : Any ): return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_a , ).sequences def A_ ( self : Dict , _a : Optional[int] ): UpperCamelCase__ = self.pre_processor.batch_decode(_a )[0] UpperCamelCase__ = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) UpperCamelCase__ = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) UpperCamelCase__ = re.sub(R'''<.*?>''' , '''''' , _a , count=1 ).strip() # remove first task start token UpperCamelCase__ = self.pre_processor.tokenajson(_a ) return sequence["answer"]
240
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 10**-10 ): SCREAMING_SNAKE_CASE_ :List[str] = a while True: SCREAMING_SNAKE_CASE_ :int = Decimal(SCREAMING_SNAKE_CASE ) - ( Decimal(eval(SCREAMING_SNAKE_CASE ) ) / Decimal(eval(str(diff(SCREAMING_SNAKE_CASE ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(SCREAMING_SNAKE_CASE ) ) < precision: # noqa: S307 return float(SCREAMING_SNAKE_CASE ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}""")
233
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE ): # This function is recursive SCREAMING_SNAKE_CASE_ :Union[str, Any] = len(SCREAMING_SNAKE_CASE ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE_ :Optional[int] = array[0] SCREAMING_SNAKE_CASE_ :Union[str, Any] = False SCREAMING_SNAKE_CASE_ :List[Any] = 1 SCREAMING_SNAKE_CASE_ :list[int] = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE_ :List[Any] = True SCREAMING_SNAKE_CASE_ :int = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE_ :Optional[Any] = longest_subsequence(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > len(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :int = temp_array else: i += 1 SCREAMING_SNAKE_CASE_ :List[Any] = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE_ :Optional[Any] = [pivot, *longest_subsequence(SCREAMING_SNAKE_CASE )] if len(SCREAMING_SNAKE_CASE ) > len(SCREAMING_SNAKE_CASE ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
233
1
import argparse import json from tqdm import tqdm def __UpperCAmelCase ( ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=lowerCamelCase_ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=lowerCamelCase_ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=lowerCamelCase_ , help='where to store parsed gold_data_path file' , ) SCREAMING_SNAKE_CASE_ : List[str] = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: SCREAMING_SNAKE_CASE_ : Union[str, Any] = json.load(lowerCamelCase_ ) for dpr_record in tqdm(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = dpr_record['question'] SCREAMING_SNAKE_CASE_ : List[Any] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(lowerCamelCase_ ) + '\n' ) if __name__ == "__main__": main()
105
def __UpperCAmelCase ( lowerCamelCase_ : str ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 0 for ch in input_str: SCREAMING_SNAKE_CASE_ : Union[str, Any] = ord(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = pow(2 , lowerCamelCase_ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
105
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __UpperCamelCase ( lowercase__ ): @staticmethod @abstractmethod def a__ ( _UpperCamelCase :ArgumentParser ): raise NotImplementedError() @abstractmethod def a__ ( self :Optional[Any] ): raise NotImplementedError()
710
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : Dict = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class __UpperCamelCase ( lowercase__ ): lowercase : Tuple = 'pix2struct_text_model' lowercase : int = ['past_key_values'] lowercase : int = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self :int ,_UpperCamelCase :List[str]=5_0_2_4_4 ,_UpperCamelCase :Optional[Any]=7_6_8 ,_UpperCamelCase :Dict=6_4 ,_UpperCamelCase :Dict=2_0_4_8 ,_UpperCamelCase :Optional[int]=1_2 ,_UpperCamelCase :Union[str, Any]=1_2 ,_UpperCamelCase :List[str]=3_2 ,_UpperCamelCase :Union[str, Any]=1_2_8 ,_UpperCamelCase :Tuple=0.1 ,_UpperCamelCase :List[str]=1E-6 ,_UpperCamelCase :List[Any]=1.0 ,_UpperCamelCase :Optional[int]="gelu_new" ,_UpperCamelCase :Dict=0 ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Optional[int]=0 ,_UpperCamelCase :Dict=1 ,_UpperCamelCase :List[Any]=False ,_UpperCamelCase :Tuple=True ,**_UpperCamelCase :List[Any] ,): snake_case_ : List[str] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Any = d_kv snake_case_ : List[Any] = d_ff snake_case_ : Union[str, Any] = num_layers snake_case_ : Union[str, Any] = num_heads snake_case_ : str = relative_attention_num_buckets snake_case_ : Optional[int] = relative_attention_max_distance snake_case_ : Tuple = dropout_rate snake_case_ : Tuple = layer_norm_epsilon snake_case_ : Any = initializer_factor snake_case_ : List[Any] = use_cache snake_case_ : Optional[int] = eos_token_id snake_case_ : List[Any] = decoder_start_token_id # for backwards compatibility snake_case_ : List[str] = dense_act_fn super().__init__( pad_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,decoder_start_token_id=_UpperCamelCase ,tie_word_embeddings=_UpperCamelCase ,is_decoder=_UpperCamelCase ,**_UpperCamelCase ,) @classmethod def a__ ( cls :Optional[int] ,_UpperCamelCase :Union[str, os.PathLike] ,**_UpperCamelCase :Optional[int] ): cls._set_token_in_kwargs(_UpperCamelCase ) snake_case_ , snake_case_ : Optional[Any] = cls.get_config_dict(_UpperCamelCase ,**_UpperCamelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": snake_case_ : Optional[int] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCamelCase ,**_UpperCamelCase ) class __UpperCamelCase ( lowercase__ ): lowercase : Dict = 'pix2struct_vision_model' def __init__( self :List[str] ,_UpperCamelCase :Any=7_6_8 ,_UpperCamelCase :List[str]=7_6_8 ,_UpperCamelCase :List[Any]=2_0_4_8 ,_UpperCamelCase :Union[str, Any]=6_4 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :int=1_2 ,_UpperCamelCase :Any="gelu_new" ,_UpperCamelCase :Optional[int]=1E-6 ,_UpperCamelCase :List[Any]=0.0 ,_UpperCamelCase :Union[str, Any]=0.0 ,_UpperCamelCase :int=1E-1_0 ,_UpperCamelCase :str=1.0 ,_UpperCamelCase :Optional[int]=4_0_9_6 ,_UpperCamelCase :str=3_2 ,_UpperCamelCase :Union[str, Any]=1_2_8 ,**_UpperCamelCase :Union[str, Any] ,): super().__init__(**_UpperCamelCase ) snake_case_ : str = hidden_size snake_case_ : Tuple = patch_embed_hidden_size snake_case_ : Optional[int] = d_ff snake_case_ : Dict = dropout_rate snake_case_ : Optional[int] = num_hidden_layers snake_case_ : Dict = num_attention_heads snake_case_ : Union[str, Any] = initializer_range snake_case_ : Optional[Any] = initializer_factor snake_case_ : List[str] = attention_dropout snake_case_ : List[str] = layer_norm_eps snake_case_ : List[str] = dense_act_fn snake_case_ : int = seq_len snake_case_ : str = relative_attention_num_buckets snake_case_ : Tuple = relative_attention_max_distance snake_case_ : List[str] = d_kv @classmethod def a__ ( cls :Optional[Any] ,_UpperCamelCase :Union[str, os.PathLike] ,**_UpperCamelCase :List[str] ): cls._set_token_in_kwargs(_UpperCamelCase ) snake_case_ , snake_case_ : Tuple = cls.get_config_dict(_UpperCamelCase ,**_UpperCamelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": snake_case_ : Dict = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCamelCase ,**_UpperCamelCase ) class __UpperCamelCase ( lowercase__ ): lowercase : Union[str, Any] = 'pix2struct' lowercase : int = True def __init__( self :int ,_UpperCamelCase :Tuple=None ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Dict=1.0 ,_UpperCamelCase :Optional[int]=0.02 ,_UpperCamelCase :Tuple=False ,_UpperCamelCase :List[str]=False ,_UpperCamelCase :Dict=True ,**_UpperCamelCase :Union[str, Any] ,): super().__init__(tie_word_embeddings=_UpperCamelCase ,is_encoder_decoder=_UpperCamelCase ,**_UpperCamelCase ) if text_config is None: snake_case_ : Optional[int] = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: snake_case_ : List[str] = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) snake_case_ : Optional[int] = PixaStructTextConfig(**_UpperCamelCase ) snake_case_ : List[str] = PixaStructVisionConfig(**_UpperCamelCase ) snake_case_ : Any = self.text_config.decoder_start_token_id snake_case_ : List[Any] = self.text_config.pad_token_id snake_case_ : Optional[int] = self.text_config.eos_token_id snake_case_ : Optional[int] = initializer_factor snake_case_ : List[str] = initializer_range snake_case_ : Union[str, Any] = self.initializer_range snake_case_ : str = self.initializer_range snake_case_ : Dict = is_vqa @classmethod def a__ ( cls :Any ,_UpperCamelCase :PixaStructTextConfig ,_UpperCamelCase :PixaStructVisionConfig ,**_UpperCamelCase :Any ): return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**_UpperCamelCase ) def a__ ( self :Optional[int] ): snake_case_ : int = copy.deepcopy(self.__dict__ ) snake_case_ : str = self.text_config.to_dict() snake_case_ : Tuple = self.vision_config.to_dict() snake_case_ : Any = self.__class__.model_type return output
267
0
'''simple docstring''' from functools import lru_cache def __A ( lowerCAmelCase_ ): _UpperCAmelCase : List[str] = 2 _UpperCAmelCase : Tuple = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(lowerCAmelCase_ ) if n > 1: factors.add(lowerCAmelCase_ ) return factors @lru_cache def __A ( lowerCAmelCase_ ): return len(unique_prime_factors(lowerCAmelCase_ ) ) def __A ( lowerCAmelCase_ ): return len(set(lowerCAmelCase_ ) ) in (0, 1) def __A ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = 2 while True: # Increment each value of a generated range _UpperCAmelCase : str = [base + i for i in range(lowerCAmelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. _UpperCAmelCase : str = [upf_len(lowerCAmelCase_ ) for x in group] checker.append(lowerCAmelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(lowerCAmelCase_ ): return group # Increment our base variable by 1 base += 1 def __A ( lowerCAmelCase_ = 4 ): _UpperCAmelCase : List[Any] = run(lowerCAmelCase_ ) return results[0] if len(lowerCAmelCase_ ) else None if __name__ == "__main__": print(solution())
414
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { '''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''', # See all Cvt models at https://huggingface.co/models?filter=cvt } class __lowerCAmelCase ( __a ): snake_case : str = """cvt""" def __init__(self , lowerCAmelCase__=3 , lowerCAmelCase__=[7, 3, 3] , lowerCAmelCase__=[4, 2, 2] , lowerCAmelCase__=[2, 1, 1] , lowerCAmelCase__=[6_4, 1_9_2, 3_8_4] , lowerCAmelCase__=[1, 3, 6] , lowerCAmelCase__=[1, 2, 1_0] , lowerCAmelCase__=[4.0, 4.0, 4.0] , lowerCAmelCase__=[0.0, 0.0, 0.0] , lowerCAmelCase__=[0.0, 0.0, 0.0] , lowerCAmelCase__=[0.0, 0.0, 0.1] , lowerCAmelCase__=[True, True, True] , lowerCAmelCase__=[False, False, True] , lowerCAmelCase__=["dw_bn", "dw_bn", "dw_bn"] , lowerCAmelCase__=[3, 3, 3] , lowerCAmelCase__=[1, 1, 1] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[1, 1, 1] , lowerCAmelCase__=[1, 1, 1] , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-12 , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : int = num_channels _UpperCAmelCase : Any = patch_sizes _UpperCAmelCase : Any = patch_stride _UpperCAmelCase : Optional[int] = patch_padding _UpperCAmelCase : Any = embed_dim _UpperCAmelCase : List[Any] = num_heads _UpperCAmelCase : List[Any] = depth _UpperCAmelCase : Tuple = mlp_ratio _UpperCAmelCase : Optional[Any] = attention_drop_rate _UpperCAmelCase : Dict = drop_rate _UpperCAmelCase : Union[str, Any] = drop_path_rate _UpperCAmelCase : List[Any] = qkv_bias _UpperCAmelCase : List[Any] = cls_token _UpperCAmelCase : Tuple = qkv_projection_method _UpperCAmelCase : str = kernel_qkv _UpperCAmelCase : Tuple = padding_kv _UpperCAmelCase : Dict = stride_kv _UpperCAmelCase : int = padding_q _UpperCAmelCase : Union[str, Any] = stride_q _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps
414
1
'''simple docstring''' # Lint as: python3 import itertools import os import re UpperCamelCase : Optional[int] = re.compile(R"""([A-Z]+)([A-Z][a-z])""") UpperCamelCase : List[Any] = re.compile(R"""([a-z\d])([A-Z])""") UpperCamelCase : List[Any] = re.compile(R"""(?<!_)_(?!_)""") UpperCamelCase : Optional[int] = re.compile(R"""(_{2,})""") UpperCamelCase : Union[str, Any] = R"""^\w+(\.\w+)*$""" UpperCamelCase : Tuple = R"""<>:/\|?*""" def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] ) -> List[Any]: """simple docstring""" a : Optional[int] = _uppercase_uppercase_re.sub(R'\1_\2' , snake_case ) a : List[Any] = _lowercase_uppercase_re.sub(R'\1_\2' , snake_case ) return name.lower() def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] ) -> Tuple: """simple docstring""" a : List[str] = _single_underscore_re.split(snake_case ) a : int = [_multiple_underscores_re.split(snake_case ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(snake_case ) if n != '' ) def SCREAMING_SNAKE_CASE__ ( snake_case : Any ) -> Union[str, Any]: """simple docstring""" if os.path.basename(snake_case ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(snake_case ) def SCREAMING_SNAKE_CASE__ ( snake_case : Tuple , snake_case : Optional[Any] ) -> int: """simple docstring""" if os.path.basename(snake_case ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , snake_case ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(snake_case )}-{split}""" def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : Union[str, Any]=None ) -> Any: """simple docstring""" a : Optional[Any] = filename_prefix_for_split(snake_case , snake_case ) if filetype_suffix: prefix += F""".{filetype_suffix}""" a : List[str] = os.path.join(snake_case , snake_case ) return F"""{filepath}*""" def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : List[str]=None , snake_case : List[Any]=None ) -> str: """simple docstring""" a : List[Any] = filename_prefix_for_split(snake_case , snake_case ) a : Optional[Any] = os.path.join(snake_case , snake_case ) if shard_lengths: a : Dict = len(snake_case ) a : Dict = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(snake_case )] if filetype_suffix: a : Any = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: a : Dict = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
610
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCamelCase ( a_ ): """simple docstring""" A : str = "" A : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) A : str = None # compression type in fsspec. ex: "gzip" A : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Optional[Any] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[dict] = None , **UpperCAmelCase_ : int): """simple docstring""" super().__init__(self , **UpperCAmelCase_) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode a : str = fsspec.open( UpperCAmelCase_ , mode='rb' , protocol=UpperCAmelCase_ , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) a : Dict = os.path.basename(self.file.path.split('::')[0]) a : List[str] = ( self.compressed_name[: self.compressed_name.rindex('.')] if '.' in self.compressed_name else self.compressed_name ) a : List[Any] = None @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , UpperCAmelCase_ : str): """simple docstring""" return super()._strip_protocol(UpperCAmelCase_).lstrip('/') def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" if self.dir_cache is None: a : Union[str, Any] = {**self.file.fs.info(self.file.path), 'name': self.uncompressed_name} a : Any = {f['name']: f} def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : str): """simple docstring""" return self.file.open().read() def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Dict=None , **UpperCAmelCase_ : List[str] , ): """simple docstring""" a : Dict = self._strip_protocol(UpperCAmelCase_) if mode != "rb": raise ValueError(f"""Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'""") return self.file.open() class UpperCamelCase ( a_ ): """simple docstring""" A : int = "bz2" A : Tuple = "bz2" A : Any = ".bz2" class UpperCamelCase ( a_ ): """simple docstring""" A : Dict = "gzip" A : List[Any] = "gzip" A : str = ".gz" class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = "lz4" A : Tuple = "lz4" A : List[str] = ".lz4" class UpperCamelCase ( a_ ): """simple docstring""" A : List[Any] = "xz" A : Union[str, Any] = "xz" A : str = ".xz" class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[Any] = "zstd" A : Union[str, Any] = "zstd" A : str = ".zst" def __init__( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[dict] = None , UpperCAmelCase_ : int = DEFAULT_BLOCK_SIZE , **UpperCAmelCase_ : List[Any] , ): """simple docstring""" super().__init__( fo=UpperCAmelCase_ , mode=UpperCAmelCase_ , target_protocol=UpperCAmelCase_ , target_options=UpperCAmelCase_ , block_size=UpperCAmelCase_ , **UpperCAmelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 a : List[Any] = self.file.__enter__ class UpperCamelCase : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase_ : Tuple): """simple docstring""" a : Optional[Any] = file_ def __enter__( self : int): """simple docstring""" self._file.__enter__() return self def __exit__( self : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str]): """simple docstring""" self._file.__exit__(*UpperCAmelCase_ , **UpperCAmelCase_) def __iter__( self : List[Any]): """simple docstring""" return iter(self._file) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" return next(self._file) def __getattr__( self : Dict , UpperCAmelCase_ : Optional[int]): """simple docstring""" return getattr(self._file , UpperCAmelCase_) def fixed_enter(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str]): return WrappedFile(_enter(*UpperCAmelCase_ , **UpperCAmelCase_)) a : Union[str, Any] = fixed_enter
610
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :List[str] = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : str = """realm""" def __init__( self : Any , snake_case_ : Optional[Any]=3_0_5_2_2 , snake_case_ : Dict=7_6_8 , snake_case_ : Tuple=1_2_8 , snake_case_ : Optional[Any]=1_2 , snake_case_ : Union[str, Any]=1_2 , snake_case_ : Dict=8 , snake_case_ : str=3_0_7_2 , snake_case_ : Any="gelu_new" , snake_case_ : List[str]=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[str]=5_1_2 , snake_case_ : Dict=2 , snake_case_ : Dict=0.0_2 , snake_case_ : Tuple=1e-12 , snake_case_ : Optional[int]=2_5_6 , snake_case_ : Any=1_0 , snake_case_ : Union[str, Any]=1e-3 , snake_case_ : int=5 , snake_case_ : int=3_2_0 , snake_case_ : Union[str, Any]=1_3_3_5_3_7_1_8 , snake_case_ : int=5_0_0_0 , snake_case_ : Optional[Any]=1 , snake_case_ : Optional[Any]=0 , snake_case_ : int=2 , **snake_case_ : Any , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) # Common config _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = retriever_proj_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = num_candidates _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = type_vocab_size _UpperCAmelCase = layer_norm_eps # Reader config _UpperCAmelCase = span_hidden_size _UpperCAmelCase = max_span_width _UpperCAmelCase = reader_layer_norm_eps _UpperCAmelCase = reader_beam_size _UpperCAmelCase = reader_seq_len # Retrieval config _UpperCAmelCase = num_block_records _UpperCAmelCase = searcher_beam_size
236
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def UpperCAmelCase_ ( __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : int ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = AlbertConfig.from_json_file(__lowercase ) print(f'Building PyTorch model from configuration: {config}' ) _UpperCAmelCase = AlbertForPreTraining(__lowercase ) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __SCREAMING_SNAKE_CASE :Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
236
1
def UpperCAmelCase ( _lowerCamelCase ): if num <= 0: raise ValueError("Input must be a positive integer" ) A : Dict = [True] * (num + 1) A : Dict = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , _lowerCamelCase ): A : List[Any] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
17
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: return self.get_dummy_input() @property def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : int=False , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , ) -> Dict: A : Optional[Any] = 4 A : List[str] = 32 A : Any = (32, 32) A : str = torch.manual_seed(0 ) A : int = torch.device(__lowerCamelCase ) A : List[str] = (batch_size, num_channels) + sizes A : Dict = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase ) A : int = {"hidden_states": hidden_states} if include_temb: A : Any = 1_28 A : List[str] = randn_tensor((batch_size, temb_channels) , generator=__lowerCamelCase , device=__lowerCamelCase ) if include_res_hidden_states_tuple: A : str = torch.manual_seed(1 ) A : Tuple = (randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase ),) if include_encoder_hidden_states: A : Dict = floats_tensor((batch_size, 32, 32) ).to(__lowerCamelCase ) if include_skip_sample: A : Optional[int] = randn_tensor(((batch_size, 3) + sizes) , generator=__lowerCamelCase , device=__lowerCamelCase ) return dummy_input def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: A : Dict = { "in_channels": 32, "out_channels": 32, "temb_channels": 1_28, } if self.block_type == "up": A : Dict = 32 if self.block_type == "mid": init_dict.pop("out_channels" ) A : str = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : str , __lowerCamelCase : Optional[int] ) -> Union[str, Any]: A , A : str = self.prepare_init_args_and_inputs_for_common() A : List[Any] = self.block_class(**__lowerCamelCase ) unet_block.to(__lowerCamelCase ) unet_block.eval() with torch.no_grad(): A : int = unet_block(**__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): A : Union[str, Any] = output[0] self.assertEqual(output.shape , self.output_shape ) A : Any = output[0, -1, -3:, -3:] A : Union[str, Any] = torch.tensor(__lowerCamelCase ).to(__lowerCamelCase ) assert torch_all_close(output_slice.flatten() , __lowerCamelCase , atol=5e-3 ) @unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: A , A : Tuple = self.prepare_init_args_and_inputs_for_common() A : str = self.block_class(**__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() A : Optional[int] = model(**__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ): A : Optional[Any] = output[0] A : List[str] = torch.device(__lowerCamelCase ) A : List[str] = randn_tensor(output.shape , device=__lowerCamelCase ) A : Dict = torch.nn.functional.mse_loss(__lowerCamelCase , __lowerCamelCase ) loss.backward()
17
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCamelCase :List[Any] = logging.get_logger(__name__) lowerCamelCase :Optional[Any] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCamelCase :Optional[int] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for attribute in key.split(""".""" ): A_ : Union[str, Any] = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: A_ : List[str] = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: A_ : int = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A_ : List[Any] = value elif weight_type == "weight_g": A_ : Optional[Any] = value elif weight_type == "weight_v": A_ : Any = value elif weight_type == "bias": A_ : Any = value else: A_ : int = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Any = [] A_ : int = fairseq_model.state_dict() A_ : str = hf_model.feature_extractor A_ : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): A_ : Any = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) A_ : Tuple = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : Tuple = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: A_ : int = True if "*" in mapped_key: A_ : Tuple = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] A_ : Optional[int] = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: A_ : Tuple = 'weight_g' elif "weight_v" in name: A_ : List[str] = 'weight_v' elif "bias" in name: A_ : Optional[int] = 'bias' elif "weight" in name: A_ : Tuple = 'weight' else: A_ : int = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f'Unused weights: {unused_weights}' ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : int = full_name.split("""conv_layers.""" )[-1] A_ : Dict = name.split(""".""" ) A_ : List[Any] = int(items[0] ) A_ : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A_ : Any = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A_ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) A_ : Tuple = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) A_ : Union[str, Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Dict = full_name.split("""adaptor.""" )[-1] A_ : Optional[int] = name.split(""".""" ) if items[1].isdigit(): A_ : Any = int(items[1] ) else: A_ : Any = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' A_ : Any = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' A_ : str = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' A_ : int = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' A_ : Optional[Any] = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' A_ : Union[str, Any] = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' A_ : Optional[int] = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase__ ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Tuple = emb.weight.shape A_ : Optional[int] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) A_ : int = emb.weight.data return lin_layer @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): '''simple docstring''' A_ : List[str] = WavaVecaConfig.from_pretrained( lowerCamelCase__ , add_adapter=lowerCamelCase__ , adapter_stride=lowerCamelCase__ , adapter_kernel_size=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , output_hidden_size=lowerCamelCase__ , ) A_ : Optional[Any] = MBartConfig.from_pretrained(lowerCamelCase__ ) # load model A_ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) A_ : int = model[0].eval() # load feature extractor A_ : int = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ , use_auth_token=lowerCamelCase__ ) # set weights for wav2vec2 encoder A_ : str = WavaVecaModel(lowerCamelCase__ ) recursively_load_weights_wavaveca(model.encoder , lowerCamelCase__ ) # load decoder weights A_ : Any = MBartForCausalLM(lowerCamelCase__ ) A_ : Dict = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCamelCase__ ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) A_ : List[Any] = SpeechEncoderDecoderModel(encoder=lowerCamelCase__ , decoder=lowerCamelCase__ ) A_ : int = False A_ : Tuple = MBartaaTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) A_ : List[str] = hf_wavavec.config.to_dict() A_ : List[str] = tokenizer.pad_token_id A_ : List[Any] = tokenizer.bos_token_id A_ : List[str] = tokenizer.eos_token_id A_ : int = 'mbart50' A_ : Tuple = 'wav2vec2' A_ : Optional[Any] = tokenizer.eos_token_id A_ : Optional[Any] = 25_00_04 A_ : Dict = tokenizer.eos_token_id A_ : int = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase__ ) hf_wavavec.save_pretrained(lowerCamelCase__ ) feature_extractor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :List[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1_0_2_4, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=2_5_0_0_0_4, type=int, help='''`decoder_start_token_id` of model config''') lowerCamelCase :List[str] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
667
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["ConvNextFeatureExtractor"] UpperCamelCase = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
66
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __UpperCamelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1_3 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=9_9 , SCREAMING_SNAKE_CASE=3_2 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=3_7 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=5_1_2 , SCREAMING_SNAKE_CASE=1_6 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> List[str]: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = scope a__ = self.vocab_size - 1 def _UpperCAmelCase ( self ) -> Optional[int]: a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ = ids_tensor([self.batch_size] , self.num_choices ) a__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) a__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) -> int: a__ = OpenAIGPTModel(config=_a ) model.to(_a ) model.eval() a__ = model(_a , token_type_ids=_a , head_mask=_a ) a__ = model(_a , token_type_ids=_a ) a__ = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) -> Optional[Any]: a__ = OpenAIGPTLMHeadModel(_a ) model.to(_a ) model.eval() a__ = model(_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) -> Tuple: a__ = OpenAIGPTDoubleHeadsModel(_a ) model.to(_a ) model.eval() a__ = model(_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) -> Any: a__ = self.num_labels a__ = OpenAIGPTForSequenceClassification(_a ) model.to(_a ) model.eval() a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = model(_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ) -> List[Any]: a__ = self.prepare_config_and_inputs() ( a__ ) = config_and_inputs a__ = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _lowercase : Optional[Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _lowercase : List[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _lowercase : Optional[Any] = ( { '''feature-extraction''': OpenAIGPTModel, '''text-classification''': OpenAIGPTForSequenceClassification, '''text-generation''': OpenAIGPTLMHeadModel, '''zero-shot''': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> str: a__ = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_a , ) a__ = inputs_dict["""labels"""] a__ = inputs_dict["""labels"""] a__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_a , ) a__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def _UpperCAmelCase ( self ) -> Optional[int]: a__ = OpenAIGPTModelTester(self ) a__ = ConfigTester(self , config_class=_a , n_embd=3_7 ) def _UpperCAmelCase ( self ) -> List[Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_a ) def _UpperCAmelCase ( self ) -> List[Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_a ) def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_a ) def _UpperCAmelCase ( self ) -> Any: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_a ) @slow def _UpperCAmelCase ( self ) -> Any: for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = OpenAIGPTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _UpperCAmelCase ( self ) -> str: a__ = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(_a ) a__ = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=_a ) # the president is a__ = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the a__ = model.generate(_a , do_sample=_a ) self.assertListEqual(output_ids[0].tolist() , _a )
705
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1_2 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=9_9 , SCREAMING_SNAKE_CASE=3_2 , SCREAMING_SNAKE_CASE=3_2 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=3_7 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=5_1_2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]: a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = projection_dim a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = dropout a__ = attention_dropout a__ = max_position_embeddings a__ = initializer_range a__ = scope a__ = bos_token_id def _UpperCAmelCase ( self ) -> str: a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: a__ = input_mask.numpy() a__ , a__ = input_mask.shape a__ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(SCREAMING_SNAKE_CASE ): a__ = 1 a__ = 0 a__ = self.get_config() return config, input_ids, tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Dict: return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]: a__ = TFBlipTextModel(config=SCREAMING_SNAKE_CASE ) a__ = model(SCREAMING_SNAKE_CASE , attention_mask=SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) a__ = model(SCREAMING_SNAKE_CASE , training=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self ) -> Tuple: a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( _lowercase , unittest.TestCase ): """simple docstring""" _lowercase : List[str] = (TFBlipTextModel,) if is_tf_available() else () _lowercase : Optional[int] = False _lowercase : Dict = False _lowercase : str = False def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = BlipTextModelTester(self ) a__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> int: a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def _UpperCAmelCase ( self ) -> List[Any]: pass @slow def _UpperCAmelCase ( self ) -> Any: for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = TFBlipTextModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE=True ) -> Tuple: super().test_pt_tf_model_equivalence(allow_missing_keys=SCREAMING_SNAKE_CASE )
148
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _UpperCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowercase( lowerCAmelCase__ ): """simple docstring""" def __init__( self: Optional[int] ,a: AutoencoderKL ,a: CLIPTextModel ,a: CLIPTokenizer ,a: UNetaDConditionModel ,a: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,a: StableDiffusionSafetyChecker ,a: CLIPImageProcessor ,): super().__init__() self.register_modules( vae=a ,text_encoder=a ,tokenizer=a ,unet=a ,scheduler=a ,safety_checker=a ,feature_extractor=a ,) def snake_case ( self: Any ,a: Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __UpperCAmelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def snake_case ( self: Dict ): self.enable_attention_slicing(a ) @torch.no_grad() def __call__( self: int ,a: Union[str, List[str]] ,a: int = 512 ,a: int = 512 ,a: int = 50 ,a: float = 7.5 ,a: Optional[Union[str, List[str]]] = None ,a: Optional[int] = 1 ,a: float = 0.0 ,a: Optional[torch.Generator] = None ,a: Optional[torch.FloatTensor] = None ,a: Optional[str] = "pil" ,a: bool = True ,a: Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,a: int = 1 ,a: Optional[torch.FloatTensor] = None ,**a: int ,): if isinstance(a ,a ): __UpperCAmelCase = 1 elif isinstance(a ,a ): __UpperCAmelCase = len(a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(a )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(a ,a ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(a )}.""" ) # get prompt text embeddings __UpperCAmelCase = self.tokenizer( a ,padding='max_length' ,max_length=self.tokenizer.model_max_length ,return_tensors='pt' ,) __UpperCAmelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCAmelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __UpperCAmelCase = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __UpperCAmelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase = text_embeddings.shape __UpperCAmelCase = text_embeddings.repeat(1 ,a ,1 ) __UpperCAmelCase = text_embeddings.view(bs_embed * num_images_per_prompt ,a ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __UpperCAmelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __UpperCAmelCase = 42 if negative_prompt is None: __UpperCAmelCase = [''] elif type(a ) is not type(a ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(a )} !=""" f""" {type(a )}.""" ) elif isinstance(a ,a ): __UpperCAmelCase = [negative_prompt] elif batch_size != len(a ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(a )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: __UpperCAmelCase = negative_prompt __UpperCAmelCase = text_input_ids.shape[-1] __UpperCAmelCase = self.tokenizer( a ,padding='max_length' ,max_length=a ,truncation=a ,return_tensors='pt' ,) __UpperCAmelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase = uncond_embeddings.shape[1] __UpperCAmelCase = uncond_embeddings.repeat(a ,a ,1 ) __UpperCAmelCase = uncond_embeddings.view(batch_size * num_images_per_prompt ,a ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __UpperCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __UpperCAmelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __UpperCAmelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __UpperCAmelCase = torch.randn( a ,generator=a ,device='cpu' ,dtype=a ).to(self.device ) __UpperCAmelCase = torch.randn(a ,generator=a ,device='cpu' ,dtype=a ).to( self.device ) else: __UpperCAmelCase = torch.randn( a ,generator=a ,device=self.device ,dtype=a ) __UpperCAmelCase = torch.randn(a ,generator=a ,device=self.device ,dtype=a ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __UpperCAmelCase = latents_reference.to(self.device ) __UpperCAmelCase = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __UpperCAmelCase = (latents_shape[3] - latents_shape_reference[3]) // 2 __UpperCAmelCase = (latents_shape[2] - latents_shape_reference[2]) // 2 __UpperCAmelCase = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __UpperCAmelCase = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __UpperCAmelCase = 0 if dx < 0 else dx __UpperCAmelCase = 0 if dy < 0 else dy __UpperCAmelCase = max(-dx ,0 ) __UpperCAmelCase = max(-dy ,0 ) # import pdb # pdb.set_trace() __UpperCAmelCase = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __UpperCAmelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __UpperCAmelCase = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCAmelCase = {} if accepts_eta: __UpperCAmelCase = eta for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase = self.scheduler.scale_model_input(a ,a ) # predict the noise residual __UpperCAmelCase = self.unet(a ,a ,encoder_hidden_states=a ).sample # perform guidance if do_classifier_free_guidance: __UpperCAmelCase = noise_pred.chunk(2 ) __UpperCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase = self.scheduler.step(a ,a ,a ,**a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(a ,a ,a ) __UpperCAmelCase = 1 / 0.18215 * latents __UpperCAmelCase = self.vae.decode(a ).sample __UpperCAmelCase = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if self.safety_checker is not None: __UpperCAmelCase = self.feature_extractor(self.numpy_to_pil(a ) ,return_tensors='pt' ).to( self.device ) __UpperCAmelCase = self.safety_checker( images=a ,clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __UpperCAmelCase = None if output_type == "pil": __UpperCAmelCase = self.numpy_to_pil(a ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=a ,nsfw_content_detected=a )
396
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() A = logging.get_logger(__name__) A = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any) -> List[str]: '''simple docstring''' for attribute in key.split('.'): _lowercase : Dict = getattr(lowerCAmelCase__ , lowerCAmelCase__) if weight_type is not None: _lowercase : int = getattr(lowerCAmelCase__ , lowerCAmelCase__).shape else: _lowercase : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowercase : Optional[Any] = value elif weight_type == "weight_g": _lowercase : Tuple = value elif weight_type == "weight_v": _lowercase : List[str] = value elif weight_type == "bias": _lowercase : Tuple = value else: _lowercase : Dict = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''') def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple) -> str: '''simple docstring''' _lowercase : Tuple = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : List[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : int = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : Tuple = True else: for key, mapped_key in MAPPING.items(): _lowercase : str = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.')[-1] == name.split('.')[0] and not is_finetuned): _lowercase : Dict = True if "*" in mapped_key: _lowercase : int = name.split(lowerCAmelCase__)[0].split('.')[-2] _lowercase : Optional[Any] = mapped_key.replace('*' , lowerCAmelCase__) if "weight_g" in name: _lowercase : int = 'weight_g' elif "weight_v" in name: _lowercase : Optional[int] = 'weight_v' elif "weight" in name: _lowercase : Tuple = 'weight' elif "bias" in name: _lowercase : int = 'bias' else: _lowercase : Optional[Any] = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) continue if not is_used: unused_weights.append(lowerCAmelCase__) logger.warning(F'''Unused weights: {unused_weights}''') def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple) -> int: '''simple docstring''' _lowercase : str = full_name.split('conv_layers.')[-1] _lowercase : List[str] = name.split('.') _lowercase : Optional[Any] = int(items[0]) _lowercase : Tuple = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowercase : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowercase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _lowercase : Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowercase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''') else: unused_weights.append(lowerCAmelCase__) @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Dict=True) -> Tuple: '''simple docstring''' if config_path is not None: _lowercase : List[str] = HubertConfig.from_pretrained(lowerCAmelCase__) else: _lowercase : List[str] = HubertConfig() if is_finetuned: if dict_path: _lowercase : Any = Dictionary.load(lowerCAmelCase__) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Tuple = target_dict.pad_index _lowercase : List[str] = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : Dict = len(target_dict.symbols) _lowercase : Optional[int] = os.path.join(lowerCAmelCase__ , 'vocab.json') if not os.path.isdir(lowerCAmelCase__): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCAmelCase__)) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) with open(lowerCAmelCase__ , 'w' , encoding='utf-8') as vocab_handle: json.dump(target_dict.indices , lowerCAmelCase__) _lowercase : List[Any] = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCAmelCase__ , ) _lowercase : Optional[Any] = True if config.feat_extract_norm == 'layer' else False _lowercase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) _lowercase : int = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) processor.save_pretrained(lowerCAmelCase__) _lowercase : Optional[Any] = HubertForCTC(lowerCAmelCase__) else: _lowercase : Union[str, Any] = HubertModel(lowerCAmelCase__) if is_finetuned: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])}) else: _lowercase , _lowercase , _lowercase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) _lowercase : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) hf_wavavec.save_pretrained(lowerCAmelCase__) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) A = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
125
0
"""simple docstring""" import math def lowercase_ ( _lowerCamelCase: int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase_ ( _lowerCamelCase: int = 10001 ) -> int: '''simple docstring''' try: __lowerCamelCase : Optional[int] = int(_lowerCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) __lowerCamelCase : list[int] = [] __lowerCamelCase : Tuple = 2 while len(_lowerCamelCase ) < nth: if is_prime(_lowerCamelCase ): primes.append(_lowerCamelCase ) num += 1 else: num += 1 return primes[len(_lowerCamelCase ) - 1] if __name__ == "__main__": print(F"""{solution() = }""")
702
"""simple docstring""" from functools import lru_cache def lowercase_ ( _lowerCamelCase: int ) -> set: '''simple docstring''' __lowerCamelCase : Optional[Any] = 2 __lowerCamelCase : Tuple = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_lowerCamelCase ) if n > 1: factors.add(_lowerCamelCase ) return factors @lru_cache def lowercase_ ( _lowerCamelCase: int ) -> int: '''simple docstring''' return len(unique_prime_factors(_lowerCamelCase ) ) def lowercase_ ( _lowerCamelCase: list ) -> bool: '''simple docstring''' return len(set(_lowerCamelCase ) ) in (0, 1) def lowercase_ ( _lowerCamelCase: int ) -> list: '''simple docstring''' __lowerCamelCase : str = 2 while True: # Increment each value of a generated range __lowerCamelCase : int = [base + i for i in range(_lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase : Dict = [upf_len(_lowerCamelCase ) for x in group] checker.append(_lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(_lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def lowercase_ ( _lowerCamelCase: int = 4 ) -> int: '''simple docstring''' __lowerCamelCase : Any = run(_lowerCamelCase ) return results[0] if len(_lowerCamelCase ) else None if __name__ == "__main__": print(solution())
366
0
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _SCREAMING_SNAKE_CASE = key.replace('heads.cmd.mim_head.cls.predictions' ,'mmm_image_head' ) _SCREAMING_SNAKE_CASE = key.replace('heads.cmd.mlm_head.cls.predictions' ,'mmm_text_head' ) _SCREAMING_SNAKE_CASE = key.replace('heads.cmd.itm_head.cls' ,'itm_head' ) _SCREAMING_SNAKE_CASE = key.replace('heads.cmd.itm_head.pooler' ,'itm_head.pooler' ) _SCREAMING_SNAKE_CASE = key.replace('heads.cmd.clip_head.logit_scale' ,'flava.logit_scale' ) _SCREAMING_SNAKE_CASE = key.replace('heads.fairseq_mlm.cls.predictions' ,'mlm_head' ) _SCREAMING_SNAKE_CASE = key.replace('heads.imagenet.mim_head.cls.predictions' ,'mim_head' ) _SCREAMING_SNAKE_CASE = key.replace('mm_text_projection' ,'flava.text_to_mm_projection' ) _SCREAMING_SNAKE_CASE = key.replace('mm_image_projection' ,'flava.image_to_mm_projection' ) _SCREAMING_SNAKE_CASE = key.replace('image_encoder.module' ,'flava.image_model' ) _SCREAMING_SNAKE_CASE = key.replace('text_encoder.module' ,'flava.text_model' ) _SCREAMING_SNAKE_CASE = key.replace('mm_encoder.module.encoder.cls_token' ,'flava.multimodal_model.cls_token' ) _SCREAMING_SNAKE_CASE = key.replace('mm_encoder.module' ,'flava.multimodal_model' ) _SCREAMING_SNAKE_CASE = key.replace('text_projection' ,'flava.text_projection' ) _SCREAMING_SNAKE_CASE = key.replace('image_projection' ,'flava.image_projection' ) _SCREAMING_SNAKE_CASE = value.float() for key, value in codebook_state_dict.items(): _SCREAMING_SNAKE_CASE = value return upgrade @torch.no_grad() def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__=None ): """simple docstring""" if config_path is not None: _SCREAMING_SNAKE_CASE = FlavaConfig.from_pretrained(UpperCAmelCase__ ) else: _SCREAMING_SNAKE_CASE = FlavaConfig() _SCREAMING_SNAKE_CASE = FlavaForPreTraining(UpperCAmelCase__ ).eval() _SCREAMING_SNAKE_CASE = convert_dalle_checkpoint(UpperCAmelCase__ ,UpperCAmelCase__ ,save_checkpoint=UpperCAmelCase__ ) if os.path.exists(UpperCAmelCase__ ): _SCREAMING_SNAKE_CASE = torch.load(UpperCAmelCase__ ,map_location='cpu' ) else: _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCAmelCase__ ,map_location='cpu' ) _SCREAMING_SNAKE_CASE = upgrade_state_dict(UpperCAmelCase__ ,UpperCAmelCase__ ) hf_model.load_state_dict(UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = hf_model.state_dict() _SCREAMING_SNAKE_CASE = count_parameters(UpperCAmelCase__ ) _SCREAMING_SNAKE_CASE = count_parameters(UpperCAmelCase__ ) + count_parameters(UpperCAmelCase__ ) assert torch.allclose(UpperCAmelCase__ ,UpperCAmelCase__ ,atol=1e-3 ) hf_model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') snake_case : Tuple = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
605
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = BertConfig.from_json_file(UpperCAmelCase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) _SCREAMING_SNAKE_CASE = BertForPreTraining(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(UpperCAmelCase__ ,UpperCAmelCase__ ,UpperCAmelCase__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() ,UpperCAmelCase__ ) if __name__ == "__main__": snake_case : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
605
1
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Union[str, Any] = 2 class lowerCamelCase__ : """simple docstring""" def __init__( self , *, # begin keyword-only arguments UpperCAmelCase__="<s>" , UpperCAmelCase__="<pad>" , UpperCAmelCase__="</s>" , UpperCAmelCase__="<unk>" , UpperCAmelCase__=None , ) -> List[str]: _A , _A , _A , _A : List[str] = bos, unk, pad, eos _A : Dict = [] _A : str = [] _A : List[str] = {} _A : Tuple = self.add_symbol(UpperCAmelCase__ ) _A : Tuple = self.add_symbol(UpperCAmelCase__ ) _A : Any = self.add_symbol(UpperCAmelCase__ ) _A : int = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) _A : str = len(self.symbols ) def __eq__( self , UpperCAmelCase__ ) -> int: return self.indices == other.indices def __getitem__( self , UpperCAmelCase__ ) -> List[str]: if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self ) -> Optional[int]: return len(self.symbols ) def __contains__( self , UpperCAmelCase__ ) -> Any: return sym in self.indices @classmethod def _lowerCamelCase ( cls , UpperCAmelCase__ ) -> str: _A : Optional[Any] = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__=1 , UpperCAmelCase__=False ) -> str: if word in self.indices and not overwrite: _A : List[Any] = self.indices[word] _A : List[Any] = self.count[idx] + n return idx else: _A : Any = len(self.symbols ) _A : Dict = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowerCamelCase ( self , UpperCAmelCase__ ) -> List[str]: return 0 def _lowerCamelCase ( self , UpperCAmelCase__ ) -> Optional[Any]: if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): try: with open(UpperCAmelCase__ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(UpperCAmelCase__ ) ) return _A : str = f.readlines() _A : int = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: _A , _A : Dict = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": _A : List[str] = True _A , _A : List[Any] = line.rsplit(''' ''' , 1 ) else: _A : int = False _A : str = int(UpperCAmelCase__ ) _A : Any = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__ , n=UpperCAmelCase__ , overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def lowercase ( lowerCAmelCase : Dict): """simple docstring""" _A : Optional[int] = dict((re.sub(R'''@@$''' , '''''' , lowerCAmelCase), v) if k.endswith('''@@''') else (re.sub(R'''$''' , '''</w>''' , lowerCAmelCase), v) for k, v in d.items()) _A : List[Any] = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] _A : Union[str, Any] = d[k] # restore return da def lowercase ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict): """simple docstring""" if not os.path.exists(lowerCAmelCase): raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase) print(f"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models _A : List[str] = os.path.join(lowerCAmelCase , '''checkpoint.pt''') if not os.path.isfile(lowerCAmelCase): raise ValueError(f"""path to the file {checkpoint_file} does not exist!""") _A : Dict = torch.load(lowerCAmelCase , map_location='''cpu''') _A : List[str] = chkpt['''cfg''']['''model'''] # dicts _A : List[Any] = os.path.join(lowerCAmelCase , '''dict.txt''') if not os.path.isfile(lowerCAmelCase): raise ValueError(f"""path to the file {dict_file} does not exist!""") _A : str = Dictionary.load(lowerCAmelCase) _A : str = rewrite_dict_keys(src_dict.indices) _A : int = len(lowerCAmelCase) _A : Tuple = os.path.join(lowerCAmelCase , VOCAB_FILES_NAMES['''vocab_file''']) print(f"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(lowerCAmelCase , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(lowerCAmelCase , ensure_ascii=lowerCAmelCase , indent=lowerCAmelCase)) # merges_file (bpecodes) _A : Optional[Any] = os.path.join(lowerCAmelCase , '''bpecodes''') if not os.path.isfile(lowerCAmelCase): raise ValueError(f"""path to the file {bpecodes_file} does not exist!""") _A : Dict = os.path.join(lowerCAmelCase , VOCAB_FILES_NAMES['''merges_file''']) shutil.copyfile(lowerCAmelCase , lowerCAmelCase) # model config _A : int = os.path.join(lowerCAmelCase , '''config.json''') _A : Any = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.0_2, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(f"""Generating {biogpt_model_config_file}""") with open(lowerCAmelCase , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(lowerCAmelCase , ensure_ascii=lowerCAmelCase , indent=lowerCAmelCase)) # tokenizer config _A : Tuple = os.path.join(lowerCAmelCase , lowerCAmelCase) _A : Tuple = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(f"""Generating {biogpt_tokenizer_config_file}""") with open(lowerCAmelCase , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(lowerCAmelCase , ensure_ascii=lowerCAmelCase , indent=lowerCAmelCase)) # model _A : Tuple = chkpt['''model'''] # remove unneeded keys _A : Union[str, Any] = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(lowerCAmelCase , lowerCAmelCase) _A : Optional[int] = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight'''): _A : Union[str, Any] = model_state_dict.pop(lowerCAmelCase) else: _A : str = model_state_dict.pop(lowerCAmelCase) _A : Optional[int] = BioGptConfig.from_pretrained(lowerCAmelCase) _A : List[Any] = BioGptForCausalLM(lowerCAmelCase) # check that it loads ok model_new.load_state_dict(lowerCAmelCase) # save _A : Optional[int] = os.path.join(lowerCAmelCase , lowerCAmelCase) print(f"""Generating {pytorch_weights_dump_path}""") torch.save(lowerCAmelCase , lowerCAmelCase) print('''Conversion is done!''') if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
417
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCamelCase : Union[str, Any] = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowercase ( lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict=None , lowerCAmelCase : str=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : List[str]=None , ): """simple docstring""" if attention_mask is None: _A : Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0) if decoder_attention_mask is None: _A : List[str] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0) if head_mask is None: _A : Tuple = np.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: _A : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: _A : Dict = np.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase__ : """simple docstring""" def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=1_3 , UpperCAmelCase__=7 , UpperCAmelCase__=True , UpperCAmelCase__=False , UpperCAmelCase__=9_9 , UpperCAmelCase__=1_6 , UpperCAmelCase__=2 , UpperCAmelCase__=4 , UpperCAmelCase__=4 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=3_2 , UpperCAmelCase__=2 , UpperCAmelCase__=1 , UpperCAmelCase__=0 , UpperCAmelCase__=0.0_2 , ) -> Tuple: _A : List[Any] = parent _A : Optional[Any] = batch_size _A : int = seq_length _A : Optional[int] = is_training _A : List[Any] = use_labels _A : Optional[Any] = vocab_size _A : Tuple = hidden_size _A : str = num_hidden_layers _A : Tuple = num_attention_heads _A : Optional[Any] = intermediate_size _A : Tuple = hidden_act _A : int = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Tuple = max_position_embeddings _A : Optional[int] = eos_token_id _A : Optional[Any] = pad_token_id _A : str = bos_token_id _A : Optional[Any] = initializer_range def _lowerCamelCase ( self ) -> Tuple: _A : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _A : Any = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _A : Optional[Any] = shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) _A : Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , ) _A : Dict = prepare_blenderbot_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def _lowerCamelCase ( self ) -> Optional[Any]: _A , _A : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Tuple: _A : Tuple = 2_0 _A : Tuple = model_class_name(UpperCAmelCase__ ) _A : Any = model.encode(inputs_dict['''input_ids'''] ) _A , _A : str = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _A : Tuple = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) _A : Optional[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _A : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A : Any = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _A : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _A : List[Any] = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , ) _A : List[str] = model.decode(UpperCAmelCase__ , UpperCAmelCase__ ) _A : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) def _lowerCamelCase ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[Any]: _A : Optional[Any] = 2_0 _A : Optional[int] = model_class_name(UpperCAmelCase__ ) _A : Any = model.encode(inputs_dict['''input_ids'''] ) _A , _A : Tuple = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _A : Tuple = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _A : Any = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) _A : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A : int = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _A : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _A : str = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) _A : int = model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ ) _A : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = 9_9 def _lowerCamelCase ( self ) -> List[str]: _A : str = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) _A : Optional[int] = input_ids.shape[0] _A : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowerCamelCase ( self ) -> Any: _A , _A , _A : Dict = self._get_config_and_data() _A : Dict = FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__ ) _A : int = lm_model(input_ids=UpperCAmelCase__ ) _A : Dict = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> str: _A : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) _A : Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(UpperCAmelCase__ ) _A : List[str] = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) _A : Any = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) _A : Tuple = lm_model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ) _A : List[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Optional[int]: _A : List[str] = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) _A : str = shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) _A : Optional[int] = np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() _A : Optional[int] = np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase__ ( snake_case_ , unittest.TestCase , snake_case_ ): """simple docstring""" __magic_name__ = True __magic_name__ = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __magic_name__ = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _lowerCamelCase ( self ) -> int: _A : Optional[int] = FlaxBlenderbotSmallModelTester(self ) def _lowerCamelCase ( self ) -> Union[str, Any]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Any: _A , _A : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def _lowerCamelCase ( self ) -> Optional[int]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A : List[str] = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) _A : Any = model_class(UpperCAmelCase__ ) @jax.jit def encode_jitted(UpperCAmelCase__ , UpperCAmelCase__=None , **UpperCAmelCase__ ): return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) with self.subTest('''JIT Enabled''' ): _A : Optional[int] = encode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A : int = encode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( self ) -> Union[str, Any]: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A : Any = model_class(UpperCAmelCase__ ) _A : Dict = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _A : str = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): return model.decode( decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , ) with self.subTest('''JIT Enabled''' ): _A : int = decode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _A : Any = decode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCamelCase ( self ) -> List[str]: for model_class_name in self.all_model_classes: _A : Any = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _A : Union[str, Any] = np.ones((1, 1) ) * model.config.eos_token_id _A : Optional[Any] = model(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ )
417
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowercase ( snake_case__ , snake_case__): """simple docstring""" a__ : int = 1 @register_to_config def __init__( self : Union[str, Any] , __UpperCAmelCase : int = 1_000 , __UpperCAmelCase : Optional[Union[np.ndarray, List[float]]] = None ) -> int: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__UpperCAmelCase ) # standard deviation of the initial noise distribution UpperCAmelCase_= 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCAmelCase_= 4 # running values UpperCAmelCase_= [] def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, torch.device] = None ) -> str: UpperCAmelCase_= num_inference_steps UpperCAmelCase_= torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCAmelCase_= torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCAmelCase_= torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCAmelCase_= torch.sin(steps * math.pi / 2 ) ** 2 UpperCAmelCase_= (1.0 - self.betas**2) ** 0.5 UpperCAmelCase_= (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCAmelCase_= timesteps.to(__UpperCAmelCase ) UpperCAmelCase_= [] def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : int , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) UpperCAmelCase_= (self.timesteps == timestep).nonzero().item() UpperCAmelCase_= timestep_index + 1 UpperCAmelCase_= sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__UpperCAmelCase ) if len(self.ets ) == 1: UpperCAmelCase_= self.ets[-1] elif len(self.ets ) == 2: UpperCAmelCase_= (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCAmelCase_= (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: UpperCAmelCase_= (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) UpperCAmelCase_= self._get_prev_sample(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : torch.FloatTensor , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : str ) -> torch.FloatTensor: return sample def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) -> int: UpperCAmelCase_= self.alphas[timestep_index] UpperCAmelCase_= self.betas[timestep_index] UpperCAmelCase_= self.alphas[prev_timestep_index] UpperCAmelCase_= self.betas[prev_timestep_index] UpperCAmelCase_= (sample - sigma * ets) / max(__UpperCAmelCase , 1E-8 ) UpperCAmelCase_= next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ) -> List[str]: return self.config.num_train_timesteps
593
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( snake_case__): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_= self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """width_multiplier""" ) ) class lowercase : """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : List[str]=13 , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : Any=3 , __UpperCAmelCase : List[str]="swish" , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : List[str]=0.02 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Dict=10 , __UpperCAmelCase : Dict=None , __UpperCAmelCase : List[str]=0.25 , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : Any=0.0 , ) -> List[str]: UpperCAmelCase_= parent UpperCAmelCase_= batch_size UpperCAmelCase_= image_size UpperCAmelCase_= patch_size UpperCAmelCase_= num_channels UpperCAmelCase_= make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_= hidden_act UpperCAmelCase_= conv_kernel_size UpperCAmelCase_= output_stride UpperCAmelCase_= classifier_dropout_prob UpperCAmelCase_= use_labels UpperCAmelCase_= is_training UpperCAmelCase_= num_labels UpperCAmelCase_= initializer_range UpperCAmelCase_= scope UpperCAmelCase_= width_multiplier UpperCAmelCase_= ffn_dropout UpperCAmelCase_= attn_dropout def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: UpperCAmelCase_= floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_= None UpperCAmelCase_= None if self.use_labels: UpperCAmelCase_= ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_= ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_= self.get_config() return config, pixel_values, labels, pixel_labels def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) -> Optional[int]: UpperCAmelCase_= MobileViTVaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) -> List[Any]: UpperCAmelCase_= self.num_labels UpperCAmelCase_= MobileViTVaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any ) -> str: UpperCAmelCase_= self.num_labels UpperCAmelCase_= MobileViTVaForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase_= model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_= model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Any: UpperCAmelCase_= self.prepare_config_and_inputs() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= config_and_inputs UpperCAmelCase_= {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( snake_case__ , snake_case__ , unittest.TestCase): """simple docstring""" a__ : List[str] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) a__ : str = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) a__ : Any = False a__ : int = False a__ : Optional[int] = False a__ : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: UpperCAmelCase_= MobileViTVaModelTester(self ) UpperCAmelCase_= MobileViTVaConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: pass def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_= model_class(__UpperCAmelCase ) UpperCAmelCase_= inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_= [*signature.parameters.keys()] UpperCAmelCase_= ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: def check_hidden_states_output(__UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[Any] ): UpperCAmelCase_= model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_= model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCAmelCase_= outputs.hidden_states UpperCAmelCase_= 5 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_= 2 for i in range(len(__UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_, UpperCAmelCase_= self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_= True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_= True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: UpperCAmelCase_= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) @slow def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_= MobileViTVaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __a ( ) -> Tuple: '''simple docstring''' UpperCAmelCase_= Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase): """simple docstring""" @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: UpperCAmelCase_= MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __UpperCAmelCase ) UpperCAmelCase_= self.default_image_processor UpperCAmelCase_= prepare_img() UpperCAmelCase_= image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_= model(**__UpperCAmelCase ) # verify the logits UpperCAmelCase_= torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) UpperCAmelCase_= torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: UpperCAmelCase_= MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase_= model.to(__UpperCAmelCase ) UpperCAmelCase_= MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase_= prepare_img() UpperCAmelCase_= image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_= model(**__UpperCAmelCase ) UpperCAmelCase_= outputs.logits # verify the logits UpperCAmelCase_= torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __UpperCAmelCase ) UpperCAmelCase_= torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: UpperCAmelCase_= MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase_= model.to(__UpperCAmelCase ) UpperCAmelCase_= MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) UpperCAmelCase_= prepare_img() UpperCAmelCase_= image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_= model(**__UpperCAmelCase ) UpperCAmelCase_= outputs.logits.detach().cpu() UpperCAmelCase_= image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_= torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) UpperCAmelCase_= image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) UpperCAmelCase_= torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
593
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCamelCase = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase ) -> Tuple: __A : int = state_dict.pop(_UpperCAmelCase ) __A : Optional[Any] = val def lowerCamelCase_ ( _lowercase ) -> Tuple: __A : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __A : Any = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) __A : Any = value else: __A : Union[str, Any] = value return new_state_dict def lowerCamelCase_ ( _lowercase , _lowercase=False ) -> List[Any]: __A : int = "" if is_panoptic: __A : Tuple = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __A : Any = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __A : Tuple = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __A : Union[str, Any] = in_proj_weight[:256, :] __A : List[Any] = in_proj_bias[:256] __A : Union[str, Any] = in_proj_weight[256:512, :] __A : Dict = in_proj_bias[256:512] __A : List[str] = in_proj_weight[-256:, :] __A : List[Any] = in_proj_bias[-256:] def lowerCamelCase_ ( ) -> Optional[int]: __A : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __A : Union[str, Any] = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( _lowercase , _lowercase ) -> List[str]: __A : Union[str, Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __A : Dict = "resnet101" if "dc5" in model_name: __A : Dict = True __A : Tuple = "panoptic" in model_name if is_panoptic: __A : Optional[int] = 250 else: __A : str = 91 __A : List[Any] = "huggingface/label-files" __A : List[str] = "coco-detection-id2label.json" __A : List[Any] = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) __A : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __A : List[str] = idalabel __A : Optional[Any] = {v: k for k, v in idalabel.items()} # load image processor __A : Dict = "coco_panoptic" if is_panoptic else "coco_detection" __A : Tuple = ConditionalDetrImageProcessor(format=_UpperCAmelCase ) # prepare image __A : Tuple = prepare_img() __A : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors="pt" ) __A : Tuple = encoding["pixel_values"] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub __A : Union[str, Any] = torch.hub.load("DeppMeng/ConditionalDETR" , _UpperCAmelCase , pretrained=_UpperCAmelCase ).eval() __A : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __A : int = "conditional_detr." + src rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __A : List[Any] = rename_backbone_keys(_UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCAmelCase , is_panoptic=_UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __A : Optional[Any] = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): __A : Dict = state_dict.pop(_UpperCAmelCase ) __A : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __A : Dict = state_dict.pop(_UpperCAmelCase ) __A : str = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: __A : Optional[int] = state_dict.pop(_UpperCAmelCase ) __A : List[Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __A : Dict = state_dict.pop(_UpperCAmelCase ) __A : Any = val # finally, create HuggingFace model and load state dict __A : List[Any] = ConditionalDetrForSegmentation(_UpperCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() model.push_to_hub(repo_id=_UpperCAmelCase , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion __A : Any = conditional_detr(_UpperCAmelCase ) __A : Dict = model(_UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
716
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants UpperCamelCase = Mapping[str, np.ndarray] UpperCamelCase = Mapping[str, Any] # Is a nested dict. UpperCamelCase = 0.01 @dataclasses.dataclass(frozen=lowerCAmelCase__ ) class _a : '''simple docstring''' lowerCamelCase_ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCamelCase_ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCamelCase_ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCamelCase_ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCamelCase_ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCamelCase_ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCamelCase_ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowerCamelCase_ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowerCamelCase_ : Optional[Sequence[int]] = None def lowerCamelCase_ ( _lowercase ) -> Protein: __A : Optional[int] = r"(\[[A-Z]+\]\n)" __A : List[str] = [tag.strip() for tag in re.split(_lowercase , _lowercase ) if len(_lowercase ) > 0] __A : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) __A : List[str] = ["N", "CA", "C"] __A : Any = None __A : int = None __A : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: __A : List[str] = g[1][0].strip() for i in range(len(_lowercase ) ): if seq[i] not in residue_constants.restypes: __A : Optional[int] = "X" # FIXME: strings are immutable __A : str = np.array( [residue_constants.restype_order.get(_lowercase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __A : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(_lowercase , g[1][axis].split() ) ) ) __A : str = np.array(_lowercase ) __A : Tuple = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(_lowercase ): __A : str = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __A : Dict = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) __A : List[str] = np.zeros( ( len(_lowercase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(_lowercase ): __A : int = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=_lowercase , atom_mask=_lowercase , aatype=_lowercase , residue_index=np.arange(len(_lowercase ) ) , b_factors=_lowercase , ) def lowerCamelCase_ ( _lowercase , _lowercase = 0 ) -> List[str]: __A : List[str] = [] __A : Any = prot.remark if remark is not None: pdb_headers.append(F"REMARK {remark}" ) __A : Dict = prot.parents __A : List[str] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __A : Optional[int] = [p for i, p in zip(_lowercase , _lowercase ) if i == chain_id] if parents is None or len(_lowercase ) == 0: __A : List[Any] = ["N/A"] pdb_headers.append(F"PARENT {' '.join(_lowercase )}" ) return pdb_headers def lowerCamelCase_ ( _lowercase , _lowercase ) -> str: __A : List[str] = [] __A : Optional[int] = pdb_str.split("\n" ) __A : Union[str, Any] = prot.remark if remark is not None: out_pdb_lines.append(F"REMARK {remark}" ) __A : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: __A : List[Any] = [] if prot.parents_chain_index is not None: __A : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(_lowercase ) , [] ) parent_dict[str(_lowercase )].append(_lowercase ) __A : Tuple = max([int(_lowercase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __A : List[Any] = parent_dict.get(str(_lowercase ) , ["N/A"] ) parents_per_chain.append(_lowercase ) else: parents_per_chain.append(list(prot.parents ) ) else: __A : Union[str, Any] = [["N/A"]] def make_parent_line(_lowercase ) -> str: return F"PARENT {' '.join(_lowercase )}" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __A : List[str] = 0 for i, l in enumerate(_lowercase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(_lowercase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(_lowercase ): __A : Any = parents_per_chain[chain_counter] else: __A : Any = ["N/A"] out_pdb_lines.append(make_parent_line(_lowercase ) ) return "\n".join(_lowercase ) def lowerCamelCase_ ( _lowercase ) -> str: __A : int = residue_constants.restypes + ["X"] def res_atoa(_lowercase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) __A : Dict = residue_constants.atom_types __A : List[str] = [] __A : Any = prot.atom_mask __A : Dict = prot.aatype __A : str = prot.atom_positions __A : Any = prot.residue_index.astype(np.intaa ) __A : Optional[Any] = prot.b_factors __A : Any = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) __A : Tuple = get_pdb_headers(_lowercase ) if len(_lowercase ) > 0: pdb_lines.extend(_lowercase ) __A : Any = aatype.shape[0] __A : int = 1 __A : Union[str, Any] = 0 __A : Union[str, Any] = string.ascii_uppercase __A : Dict = None # Add all atom sites. for i in range(_lowercase ): __A : Tuple = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(_lowercase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __A : Optional[Any] = "ATOM" __A : List[str] = atom_name if len(_lowercase ) == 4 else F" {atom_name}" __A : Dict = "" __A : Optional[Any] = "" __A : List[str] = 1.00 __A : str = atom_name[0] # Protein supports only C, N, O, S, this works. __A : Union[str, Any] = "" __A : str = "A" if chain_index is not None: __A : Any = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __A : str = ( F"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" F"{res_name_a:>3} {chain_tag:>1}" F"{residue_index[i]:>4}{insertion_code:>1} " F"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" F"{occupancy:>6.2f}{b_factor:>6.2f} " F"{element:>2}{charge:>2}" ) pdb_lines.append(_lowercase ) atom_index += 1 __A : Optional[Any] = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __A : List[Any] = True __A : int = chain_index[i + 1] if should_terminate: # Close the chain. __A : Any = "TER" __A : str = ( F"{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(_lowercase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(_lowercase , _lowercase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(_lowercase ) def lowerCamelCase_ ( _lowercase ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , ) -> Protein: return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=_lowercase , remark=_lowercase , parents=_lowercase , parents_chain_index=_lowercase , )
387
0
'''simple docstring''' from __future__ import annotations from random import random class UpperCamelCase__ : def __init__( self : str , lowerCamelCase : Union[str, Any] = None ): '''simple docstring''' a__ = value a__ = random() a__ = None a__ = None def __repr__( self : Optional[Any] ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {F'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self : List[str] ): '''simple docstring''' a__ = str(self.value ) + ''' ''' a__ = str(self.left or "" ) a__ = str(self.right or "" ) return value + left + right def _lowerCamelCase (__lowerCamelCase : Node | None , __lowerCamelCase : int ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: a__ = split(root.left , snake_case_ ) return left, root else: a__ = split(root.right , snake_case_ ) return root, right def _lowerCamelCase (__lowerCamelCase : Node | None , __lowerCamelCase : Node | None ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: a__ = merge(left.right , snake_case_ ) return left else: a__ = merge(snake_case_ , right.left ) return right def _lowerCamelCase (__lowerCamelCase : Node | None , __lowerCamelCase : int ) -> Node | None: a__ = Node(snake_case_ ) a__ = split(snake_case_ , snake_case_ ) return merge(merge(snake_case_ , snake_case_ ) , snake_case_ ) def _lowerCamelCase (__lowerCamelCase : Node | None , __lowerCamelCase : int ) -> Node | None: a__ = split(snake_case_ , value - 1 ) a__ = split(snake_case_ , snake_case_ ) return merge(snake_case_ , snake_case_ ) def _lowerCamelCase (__lowerCamelCase : Node | None ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end="," ) inorder(root.right ) def _lowerCamelCase (__lowerCamelCase : Node | None , __lowerCamelCase : str ) -> Node | None: for arg in args.split(): if arg[0] == "+": a__ = insert(snake_case_ , int(arg[1:] ) ) elif arg[0] == "-": a__ = erase(snake_case_ , int(arg[1:] ) ) else: print("Unknown command" ) return root def _lowerCamelCase () -> None: a__ = None print( "enter numbers to create a tree, + value to add value into treap, " "- value to erase all nodes with value. \'q\' to quit. " ) a__ = input() while args != "q": a__ = interact_treap(snake_case_ , snake_case_ ) print(snake_case_ ) a__ = input() print("good by!" ) if __name__ == "__main__": import doctest doctest.testmod() main()
489
"""simple docstring""" from collections import namedtuple import requests from lxml import html # type: ignore a_ = namedtuple("""covid_data""", """cases deaths recovered""") def __lowercase ( snake_case_ : str = "https://www.worldometers.info/coronavirus/" ) ->covid_data: '''simple docstring''' __A : List[str] = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(snake_case_ ).content ).xpath(snake_case_ ) ) a_ = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
177
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Any = StableDiffusionXLImgaImgPipeline __lowerCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __lowerCamelCase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {"latents"} __lowerCamelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCamelCase : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=_lowerCAmelCase , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _lowerCAmelCase = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) _lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=32 , ) _lowerCAmelCase = CLIPTextModel(_lowerCAmelCase ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_lowerCAmelCase ) _lowerCAmelCase = CLIPTextModelWithProjection(_lowerCAmelCase ) _lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_lowerCAmelCase ) _lowerCAmelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> List[Any]: _lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) _lowerCAmelCase = image / 2 + 0.5 if str(_lowerCAmelCase ).startswith("mps" ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**_lowerCAmelCase ) _lowerCAmelCase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = sd_pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCAmelCase = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _snake_case ( self ) -> Dict: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _snake_case ( self ) -> Any: pass def _snake_case ( self ) -> Any: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = StableDiffusionXLImgaImgPipeline(**_lowerCAmelCase ) _lowerCAmelCase = sd_pipe.to(_lowerCAmelCase ) _lowerCAmelCase = sd_pipe.to(_lowerCAmelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) # forward without prompt embeds _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = 3 * ["this is a negative prompt"] _lowerCAmelCase = negative_prompt _lowerCAmelCase = 3 * [inputs["prompt"]] _lowerCAmelCase = sd_pipe(**_lowerCAmelCase ) _lowerCAmelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = 3 * ["this is a negative prompt"] _lowerCAmelCase = 3 * [inputs.pop("prompt" )] ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = sd_pipe.encode_prompt(_lowerCAmelCase , negative_prompt=_lowerCAmelCase ) _lowerCAmelCase = sd_pipe( **_lowerCAmelCase , prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , pooled_prompt_embeds=_lowerCAmelCase , negative_pooled_prompt_embeds=_lowerCAmelCase , ) _lowerCAmelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def _snake_case ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase="cpu" , _lowerCAmelCase=torch.floataa , _lowerCAmelCase=0 ) -> Union[str, Any]: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = np.random.RandomState(_lowerCAmelCase ).standard_normal((1, 4, 64, 64) ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase ) _lowerCAmelCase = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _snake_case ( self ) -> Any: _lowerCAmelCase = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _lowerCAmelCase = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
708
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : str = "speech_to_text_2" __lowerCamelCase : Union[str, Any] = ["past_key_values"] __lowerCamelCase : Tuple = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _lowerCAmelCase=10000 , _lowerCAmelCase=6 , _lowerCAmelCase=2048 , _lowerCAmelCase=4 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase="relu" , _lowerCAmelCase=256 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase=1024 , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = vocab_size _lowerCAmelCase = d_model _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = decoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase = max_target_positions super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
489
0
import argparse from collections import defaultdict import yaml UpperCAmelCase_ : List[str] = '''docs/source/en/_toctree.yml''' def __SCREAMING_SNAKE_CASE ( a__ : int ) -> Union[str, Any]: __A : Union[str, Any] = defaultdict(a__ ) __A : Dict = [] __A : Dict = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(a__ ) __A : Optional[int] = new_doc_list __A : Optional[int] = [key for key, value in counts.items() if value > 1] __A : Tuple = [] for duplicate_key in duplicates: __A : Union[str, Any] = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(a__ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) __A : str = sorted(a__ ,key=lambda a__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(a__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(a__ ) # Sort return overview_doc def __SCREAMING_SNAKE_CASE ( a__ : Tuple=False ) -> List[str]: with open(a__ ,encoding="""utf-8""" ) as f: __A : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc __A : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __A : Tuple = content[api_idx]["""sections"""] # Then to the model doc __A : List[Any] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __A : List[Any] = api_doc[scheduler_idx]["""sections"""] __A : Tuple = clean_doc_toc(a__ ) __A : Tuple = False if new_scheduler_doc != scheduler_doc: __A : List[str] = True if overwrite: __A : List[str] = new_scheduler_doc if diff: if overwrite: __A : Optional[int] = api_doc with open(a__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(yaml.dump(a__ ,allow_unicode=a__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def __SCREAMING_SNAKE_CASE ( a__ : Any=False ) -> Any: with open(a__ ,encoding="""utf-8""" ) as f: __A : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc __A : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __A : Dict = content[api_idx]["""sections"""] # Then to the model doc __A : Dict = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __A : Optional[Any] = False __A : List[str] = api_doc[pipeline_idx]["""sections"""] __A : Optional[int] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __A : List[Any] = pipeline_doc["""section"""] __A : int = clean_doc_toc(a__ ) if overwrite: __A : Dict = new_sub_pipeline_doc new_pipeline_docs.append(a__ ) # sort overall pipeline doc __A : Tuple = clean_doc_toc(a__ ) if new_pipeline_docs != pipeline_docs: __A : List[str] = True if overwrite: __A : List[Any] = new_pipeline_docs if diff: if overwrite: __A : Optional[Any] = api_doc with open(a__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(yaml.dump(a__ ,allow_unicode=a__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase_ : Tuple = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
17
'''simple docstring''' import random def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[Any] = a[left_index] A : List[str] = left_index + 1 for j in range(left_index + 1 , snake_case__ ): if a[j] < pivot: A, A : Optional[int] = a[i], a[j] i += 1 A, A : str = a[i - 1], a[left_index] return i - 1 def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if left < right: A : Optional[Any] = random.randint(snake_case__ , right - 1 ) A, A : List[str] = ( a[left], a[pivot], ) # switches the pivot with the left most bound A : Any = partition(snake_case__ , snake_case__ , snake_case__ ) quick_sort_random( snake_case__ , snake_case__ , snake_case__ ) # recursive quicksort to the left of the pivot point quick_sort_random( snake_case__ , pivot_index + 1 , snake_case__ ) # recursive quicksort to the right of the pivot point def lowerCAmelCase_ ( ): '''simple docstring''' A : Any = input('''Enter numbers separated by a comma:\n''' ).strip() A : List[str] = [int(snake_case__ ) for item in user_input.split(''',''' )] quick_sort_random(snake_case__ , 0 , len(snake_case__ ) ) print(snake_case__ ) if __name__ == "__main__": main()
634
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowercase_ (A : List[str] , A : Dict=False ): snake_case__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase_ (A : Any , A : Dict , A : List[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Any = '' else: snake_case__ : Union[str, Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Dict = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''' ) snake_case__ : int = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : List[Any] = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Dict = in_proj_bias[: config.hidden_size] snake_case__ : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Dict = in_proj_bias[-config.hidden_size :] def lowercase_ (A : Any ): snake_case__ : Dict = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(A , A ) def lowercase_ (A : Dict ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. snake_case__ : Dict = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(A , A ) def lowercase_ (A : Tuple , A : Optional[Any] , A : int ): snake_case__ : str = dct.pop(A ) snake_case__ : Optional[int] = val def lowercase_ (A : List[Any] , A : Tuple ): snake_case__ : List[str] = ViTMSNConfig() snake_case__ : int = 1_0_0_0 snake_case__ : Optional[int] = 'datasets/huggingface/label-files' snake_case__ : int = 'imagenet-1k-id2label.json' snake_case__ : Union[str, Any] = json.load(open(hf_hub_download(A , A ) , 'r' ) ) snake_case__ : Dict = {int(A ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : Any = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: snake_case__ : Optional[int] = 3_8_4 snake_case__ : Tuple = 1_5_3_6 snake_case__ : List[str] = 6 elif "l16" in checkpoint_url: snake_case__ : Any = 1_0_2_4 snake_case__ : Optional[Any] = 4_0_9_6 snake_case__ : Tuple = 2_4 snake_case__ : Optional[Any] = 1_6 snake_case__ : List[Any] = 0.1 elif "b4" in checkpoint_url: snake_case__ : List[str] = 4 elif "l7" in checkpoint_url: snake_case__ : str = 7 snake_case__ : Tuple = 1_0_2_4 snake_case__ : Dict = 4_0_9_6 snake_case__ : Dict = 2_4 snake_case__ : Dict = 1_6 snake_case__ : List[str] = 0.1 snake_case__ : List[Any] = ViTMSNModel(A ) snake_case__ : Optional[Any] = torch.hub.load_state_dict_from_url(A , map_location='cpu' )['target_encoder'] snake_case__ : Any = ViTImageProcessor(size=config.image_size ) remove_projection_head(A ) snake_case__ : Optional[int] = create_rename_keys(A , base_model=A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , A , base_model=A ) model.load_state_dict(A ) model.eval() snake_case__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Optional[int] = Image.open(requests.get(A , stream=A ).raw ) snake_case__ : Optional[int] = ViTImageProcessor( size=config.image_size , image_mean=A , image_std=A ) snake_case__ : Optional[int] = image_processor(images=A , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) snake_case__ : Dict = model(**A ) snake_case__ : Any = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: snake_case__ : List[Any] = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: snake_case__ : Any = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: snake_case__ : Optional[int] = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: snake_case__ : List[str] = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: snake_case__ : str = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , A , atol=1e-4 ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A ) if __name__ == "__main__": a_ :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) a_ :Optional[Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
243
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa a_ :Dict = logging.getLogger(__name__) class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """summarization""" _SCREAMING_SNAKE_CASE = ["""loss"""] _SCREAMING_SNAKE_CASE = ROUGE_KEYS _SCREAMING_SNAKE_CASE = """rouge2""" def __init__( self : Dict, _snake_case : Dict, **_snake_case : str ) ->List[Any]: if hparams.sortish_sampler and hparams.gpus > 1: snake_case__ : Union[str, Any] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(_snake_case, num_labels=_snake_case, mode=self.mode, **_snake_case ) use_task_specific_params(self.model, 'summarization' ) save_git_info(self.hparams.output_dir ) snake_case__ : List[str] = Path(self.output_dir ) / 'metrics.json' snake_case__ : Tuple = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams, self.hparams_save_path ) snake_case__ : List[str] = 0 snake_case__ : int = defaultdict(_snake_case ) snake_case__ : Optional[Any] = self.config.model_type snake_case__ : int = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size snake_case__ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } snake_case__ : Union[str, Any] = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } snake_case__ : int = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} snake_case__ : Union[str, Any] = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) snake_case__ : Optional[Any] = get_git_info()['repo_sha'] snake_case__ : Any = hparams.num_workers snake_case__ : str = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, _snake_case ): snake_case__ : int = self.tokenizer.lang_code_to_id[hparams.tgt_lang] snake_case__ : Optional[Any] = self.decoder_start_token_id snake_case__ : int = ( SeqaSeqDataset if hasattr(self.tokenizer, 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) snake_case__ : Tuple = False snake_case__ : Tuple = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: snake_case__ : Any = self.hparams.eval_max_gen_length else: snake_case__ : List[Any] = self.model.config.max_length snake_case__ : List[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowercase_ ( self : Tuple, _snake_case : Dict[str, torch.Tensor] ) ->Dict[str, List[str]]: snake_case__ : List[str] = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(_snake_case, Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()}, Path(self.output_dir ) / 'tok_batch.json' ) snake_case__ : Optional[int] = True return readable_batch def lowercase_ ( self : List[Any], _snake_case : Dict, **_snake_case : str ) ->int: return self.model(_snake_case, **_snake_case ) def lowercase_ ( self : str, _snake_case : List[int] ) ->List[str]: snake_case__ : int = self.tokenizer.batch_decode( _snake_case, skip_special_tokens=_snake_case, clean_up_tokenization_spaces=_snake_case ) return lmap(str.strip, _snake_case ) def lowercase_ ( self : List[str], _snake_case : dict ) ->Tuple: snake_case__ : List[str] = self.tokenizer.pad_token_id snake_case__ , snake_case__ : Any = batch['input_ids'], batch['attention_mask'] snake_case__ : Optional[int] = batch['labels'] if isinstance(self.model, _snake_case ): snake_case__ : Union[str, Any] = self.model._shift_right(_snake_case ) else: snake_case__ : List[Any] = shift_tokens_right(_snake_case, _snake_case ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero snake_case__ : Optional[int] = decoder_input_ids self.save_readable_batch(_snake_case ) snake_case__ : List[str] = self(_snake_case, attention_mask=_snake_case, decoder_input_ids=_snake_case, use_cache=_snake_case ) snake_case__ : Dict = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id snake_case__ : Any = nn.CrossEntropyLoss(ignore_index=_snake_case ) assert lm_logits.shape[-1] == self.vocab_size snake_case__ : Optional[Any] = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1] ), tgt_ids.view(-1 ) ) else: snake_case__ : str = nn.functional.log_softmax(_snake_case, dim=-1 ) snake_case__ , snake_case__ : Union[str, Any] = label_smoothed_nll_loss( _snake_case, _snake_case, self.hparams.label_smoothing, ignore_index=_snake_case ) return (loss,) @property def lowercase_ ( self : Dict ) ->int: return self.tokenizer.pad_token_id def lowercase_ ( self : Union[str, Any], _snake_case : List[str], _snake_case : Any ) ->Dict: snake_case__ : Dict = self._step(_snake_case ) snake_case__ : Optional[int] = dict(zip(self.loss_names, _snake_case ) ) # tokens per batch snake_case__ : Optional[Any] = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() snake_case__ : List[str] = batch['input_ids'].shape[0] snake_case__ : List[str] = batch['input_ids'].eq(self.pad ).sum() snake_case__ : Optional[Any] = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowercase_ ( self : Union[str, Any], _snake_case : Union[str, Any], _snake_case : List[str] ) ->Dict: return self._generative_step(_snake_case ) def lowercase_ ( self : int, _snake_case : Dict, _snake_case : List[Any]="val" ) ->Dict: self.step_count += 1 snake_case__ : str = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} snake_case__ : Optional[int] = losses['loss'] snake_case__ : Optional[int] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } snake_case__ : Optional[int] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) snake_case__ : torch.FloatTensor = torch.tensor(_snake_case ).type_as(_snake_case ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_snake_case ) snake_case__ : Optional[int] = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} snake_case__ : List[str] = self.step_count self.metrics[prefix].append(_snake_case ) # callback writes this to self.metrics_save_path snake_case__ : List[str] = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def lowercase_ ( self : Optional[int], _snake_case : Optional[Any], _snake_case : Optional[int] ) ->Dict: return calculate_rouge(_snake_case, _snake_case ) def lowercase_ ( self : Optional[int], _snake_case : dict ) ->dict: snake_case__ : Tuple = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') snake_case__ : List[str] = self.model.generate( batch['input_ids'], attention_mask=batch['attention_mask'], use_cache=_snake_case, decoder_start_token_id=self.decoder_start_token_id, num_beams=self.eval_beams, max_length=self.eval_max_length, ) snake_case__ : str = (time.time() - ta) / batch['input_ids'].shape[0] snake_case__ : List[str] = self.ids_to_clean_text(_snake_case ) snake_case__ : List[str] = self.ids_to_clean_text(batch['labels'] ) snake_case__ : List[Any] = self._step(_snake_case ) snake_case__ : Any = dict(zip(self.loss_names, _snake_case ) ) snake_case__ : Dict = self.calc_generative_metrics(_snake_case, _snake_case ) snake_case__ : int = np.mean(lmap(_snake_case, _snake_case ) ) base_metrics.update(gen_time=_snake_case, gen_len=_snake_case, preds=_snake_case, target=_snake_case, **_snake_case ) return base_metrics def lowercase_ ( self : Tuple, _snake_case : Dict, _snake_case : Union[str, Any] ) ->Tuple: return self._generative_step(_snake_case ) def lowercase_ ( self : Dict, _snake_case : Union[str, Any] ) ->str: return self.validation_epoch_end(_snake_case, prefix='test' ) def lowercase_ ( self : Union[str, Any], _snake_case : Any ) ->SeqaSeqDataset: snake_case__ : Optional[int] = self.n_obs[type_path] snake_case__ : str = self.target_lens[type_path] snake_case__ : Optional[int] = self.dataset_class( self.tokenizer, type_path=_snake_case, n_obs=_snake_case, max_target_length=_snake_case, **self.dataset_kwargs, ) return dataset def lowercase_ ( self : Any, _snake_case : str, _snake_case : int, _snake_case : bool = False ) ->DataLoader: snake_case__ : Union[str, Any] = self.get_dataset(_snake_case ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": snake_case__ : str = dataset.make_sortish_sampler(_snake_case, distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case, batch_size=_snake_case, collate_fn=dataset.collate_fn, shuffle=_snake_case, num_workers=self.num_workers, sampler=_snake_case, ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": snake_case__ : Dict = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case, batch_sampler=_snake_case, collate_fn=dataset.collate_fn, num_workers=self.num_workers, ) else: return DataLoader( _snake_case, batch_size=_snake_case, collate_fn=dataset.collate_fn, shuffle=_snake_case, num_workers=self.num_workers, sampler=_snake_case, ) def lowercase_ ( self : int ) ->DataLoader: snake_case__ : Union[str, Any] = self.get_dataloader('train', batch_size=self.hparams.train_batch_size, shuffle=_snake_case ) return dataloader def lowercase_ ( self : str ) ->DataLoader: return self.get_dataloader('val', batch_size=self.hparams.eval_batch_size ) def lowercase_ ( self : List[Any] ) ->DataLoader: return self.get_dataloader('test', batch_size=self.hparams.eval_batch_size ) @staticmethod def lowercase_ ( _snake_case : Dict, _snake_case : str ) ->str: BaseTransformer.add_model_specific_args(_snake_case, _snake_case ) add_generic_args(_snake_case, _snake_case ) parser.add_argument( '--max_source_length', default=1_0_2_4, type=_snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument( '--max_target_length', default=5_6, type=_snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument( '--val_max_target_length', default=1_4_2, type=_snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument( '--test_max_target_length', default=1_4_2, type=_snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument('--freeze_encoder', action='store_true' ) parser.add_argument('--freeze_embeds', action='store_true' ) parser.add_argument('--sortish_sampler', action='store_true', default=_snake_case ) parser.add_argument('--overwrite_output_dir', action='store_true', default=_snake_case ) parser.add_argument('--max_tokens_per_batch', type=_snake_case, default=_snake_case ) parser.add_argument('--logger_name', type=_snake_case, choices=['default', 'wandb', 'wandb_shared'], default='default' ) parser.add_argument('--n_train', type=_snake_case, default=-1, required=_snake_case, help='# examples. -1 means use all.' ) parser.add_argument('--n_val', type=_snake_case, default=5_0_0, required=_snake_case, help='# examples. -1 means use all.' ) parser.add_argument('--n_test', type=_snake_case, default=-1, required=_snake_case, help='# examples. -1 means use all.' ) parser.add_argument( '--task', type=_snake_case, default='summarization', required=_snake_case, help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing', type=_snake_case, default=0.0, required=_snake_case ) parser.add_argument('--src_lang', type=_snake_case, default='', required=_snake_case ) parser.add_argument('--tgt_lang', type=_snake_case, default='', required=_snake_case ) parser.add_argument('--eval_beams', type=_snake_case, default=_snake_case, required=_snake_case ) parser.add_argument( '--val_metric', type=_snake_case, default=_snake_case, required=_snake_case, choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length', type=_snake_case, default=_snake_case, help='never generate more than n tokens' ) parser.add_argument('--save_top_k', type=_snake_case, default=1, required=_snake_case, help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience', type=_snake_case, default=-1, required=_snake_case, help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ), ) return parser class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """translation""" _SCREAMING_SNAKE_CASE = ["""loss"""] _SCREAMING_SNAKE_CASE = ["""bleu"""] _SCREAMING_SNAKE_CASE = """bleu""" def __init__( self : List[Any], _snake_case : str, **_snake_case : Tuple ) ->List[str]: super().__init__(_snake_case, **_snake_case ) snake_case__ : Any = hparams.src_lang snake_case__ : int = hparams.tgt_lang def lowercase_ ( self : Union[str, Any], _snake_case : List[Any], _snake_case : List[Any] ) ->dict: return calculate_bleu(_snake_case, _snake_case ) def lowercase_ (A : str , A : List[Any]=None ): Path(args.output_dir ).mkdir(exist_ok=A ) check_output_dir(A , expected_items=3 ) if model is None: if "summarization" in args.task: snake_case__ : SummarizationModule = SummarizationModule(A ) else: snake_case__ : SummarizationModule = TranslationModule(A ) snake_case__ : Dict = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): snake_case__ : List[Any] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger snake_case__ : Dict = os.environ.get('WANDB_PROJECT' , A ) snake_case__ : Union[str, Any] = WandbLogger(name=model.output_dir.name , project=A ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger snake_case__ : List[Any] = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: snake_case__ : Union[str, Any] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: snake_case__ : List[str] = False snake_case__ : List[Any] = args.val_metric == 'loss' snake_case__ : pl.Trainer = generic_train( A , A , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , A ) , early_stopping_callback=A , logger=A , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model snake_case__ : int = '' snake_case__ : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=A ) ) if checkpoints: snake_case__ : Any = checkpoints[-1] snake_case__ : List[str] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": a_ :Any = argparse.ArgumentParser() a_ :Dict = pl.Trainer.add_argparse_args(parser) a_ :Optional[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) a_ :Dict = parser.parse_args() main(args)
243
1
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) UpperCamelCase__ :Optional[int] = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class A( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> List[Any]: """simple docstring""" _UpperCamelCase :Any = None _UpperCamelCase :Optional[int] = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) _UpperCamelCase :Union[str, Any] = os.path.abspath('''examples''' ) for item in os.listdir(SCREAMING_SNAKE_CASE__ ): if item not in EXCLUDE_EXAMPLES: _UpperCamelCase :Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ) and ".py" in item_path: with self.subTest( tested_script=SCREAMING_SNAKE_CASE__ , feature_script=SCREAMING_SNAKE_CASE__ , tested_section='''main()''' if parser_only else '''training_function()''' , ): _UpperCamelCase :List[str] = compare_against_test( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Optional[Any] = '''\n'''.join(SCREAMING_SNAKE_CASE__ ) if special_strings is not None: for string in special_strings: _UpperCamelCase :List[Any] = diff.replace(SCREAMING_SNAKE_CASE__ , '''''' ) self.assertEqual(SCREAMING_SNAKE_CASE__ , '''''' ) def _UpperCamelCase( self ) -> Union[str, Any]: """simple docstring""" self.one_complete_example('''complete_nlp_example.py''' , SCREAMING_SNAKE_CASE__ ) self.one_complete_example('''complete_nlp_example.py''' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :int = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) _UpperCamelCase :List[str] = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.one_complete_example('''complete_cv_example.py''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class A( lowerCamelCase__ ): """simple docstring""" A = False @classmethod def _UpperCamelCase( cls ) -> List[Any]: """simple docstring""" super().setUpClass() _UpperCamelCase :Optional[Any] = tempfile.mkdtemp() _UpperCamelCase :Optional[Any] = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCamelCase :Optional[int] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def _UpperCamelCase( cls ) -> Tuple: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _UpperCamelCase( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :Any = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def _UpperCamelCase( self ) -> Dict: """simple docstring""" _UpperCamelCase :List[Any] = f"\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n ".split() _UpperCamelCase :Any = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :Any = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}\n ".split() _UpperCamelCase :Any = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE__ ) self.assertNotIn('''epoch 0:''' , SCREAMING_SNAKE_CASE__ ) self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :Dict = f"\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}\n ".split() _UpperCamelCase :str = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE__ ) if torch.cuda.is_available(): _UpperCamelCase :Tuple = torch.cuda.device_count() else: _UpperCamelCase :str = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , SCREAMING_SNAKE_CASE__ ) self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE__ ) else: self.assertIn('''epoch 0:''' , SCREAMING_SNAKE_CASE__ ) self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase( self ) -> Any: """simple docstring""" _UpperCamelCase :Optional[int] = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): _UpperCamelCase :Optional[int] = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Dict = re.findall('''({.+})''' , SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Optional[Any] = [r for r in results if '''accuracy''' in r][-1] _UpperCamelCase :Tuple = ast.literal_eval(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(results['''accuracy'''] , 0.7_5 ) def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :List[str] = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def _UpperCamelCase( self ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: _UpperCamelCase :Optional[int] = f"\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n ".split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , '''tracking''' ) ) ) def _UpperCamelCase( self ) -> Any: """simple docstring""" _UpperCamelCase :Optional[Any] = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def _UpperCamelCase( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase :Optional[Any] = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
355
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase__ :Dict = logging.get_logger(__name__) UpperCamelCase__ :int = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class A( lowerCamelCase__ ): """simple docstring""" A = "bart" A = ["past_key_values"] A = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , SCREAMING_SNAKE_CASE__=5_02_65 , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=40_96 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=40_96 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=10_24 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=2 , **SCREAMING_SNAKE_CASE__ , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] = vocab_size _UpperCamelCase :Union[str, Any] = max_position_embeddings _UpperCamelCase :int = d_model _UpperCamelCase :Any = encoder_ffn_dim _UpperCamelCase :str = encoder_layers _UpperCamelCase :str = encoder_attention_heads _UpperCamelCase :Optional[int] = decoder_ffn_dim _UpperCamelCase :Any = decoder_layers _UpperCamelCase :Dict = decoder_attention_heads _UpperCamelCase :str = dropout _UpperCamelCase :Tuple = attention_dropout _UpperCamelCase :Optional[Any] = activation_dropout _UpperCamelCase :Optional[Any] = activation_function _UpperCamelCase :int = init_std _UpperCamelCase :Any = encoder_layerdrop _UpperCamelCase :List[Any] = decoder_layerdrop _UpperCamelCase :Union[str, Any] = classifier_dropout _UpperCamelCase :List[Any] = use_cache _UpperCamelCase :str = encoder_layers _UpperCamelCase :int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , is_encoder_decoder=SCREAMING_SNAKE_CASE__ , decoder_start_token_id=SCREAMING_SNAKE_CASE__ , forced_eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , SCREAMING_SNAKE_CASE__ ): _UpperCamelCase :Any = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " '''The config can simply be saved and uploaded again to be fixed.''' ) class A( lowerCamelCase__ ): """simple docstring""" @property def _UpperCamelCase( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCamelCase :List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _UpperCamelCase :Optional[Any] = {0: '''batch'''} _UpperCamelCase :int = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _UpperCamelCase :Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} _UpperCamelCase :Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE__ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _UpperCamelCase :Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _UpperCamelCase , _UpperCamelCase :List[str] = self.num_layers for i in range(SCREAMING_SNAKE_CASE__ ): _UpperCamelCase :int = {0: '''batch''', 2: '''past_sequence + sequence'''} _UpperCamelCase :List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _UpperCamelCase :List[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _UpperCamelCase( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCamelCase :Optional[int] = super().outputs else: _UpperCamelCase :List[str] = super(SCREAMING_SNAKE_CASE__ , self ).outputs if self.use_past: _UpperCamelCase , _UpperCamelCase :int = self.num_layers for i in range(SCREAMING_SNAKE_CASE__ ): _UpperCamelCase :Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} _UpperCamelCase :Optional[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCamelCase :str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Generate decoder inputs _UpperCamelCase :List[Any] = seq_length if not self.use_past else 1 _UpperCamelCase :Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Union[str, Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} _UpperCamelCase :str = dict(**SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _UpperCamelCase , _UpperCamelCase :Any = common_inputs['''input_ids'''].shape _UpperCamelCase :Dict = common_inputs['''decoder_input_ids'''].shape[1] _UpperCamelCase , _UpperCamelCase :Any = self.num_attention_heads _UpperCamelCase :Dict = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCamelCase :Tuple = decoder_seq_length + 3 _UpperCamelCase :Optional[int] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _UpperCamelCase :Optional[int] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] , dim=1 ) _UpperCamelCase :Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _UpperCamelCase , _UpperCamelCase :int = self.num_layers _UpperCamelCase :Any = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Optional[int] = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) - min_num_layers _UpperCamelCase :int = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(SCREAMING_SNAKE_CASE__ ): common_inputs["past_key_values"].append( ( torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ ), ) ) # TODO: test this. _UpperCamelCase :Optional[int] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): common_inputs["past_key_values"].append((torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) ) return common_inputs def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCamelCase :Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _UpperCamelCase , _UpperCamelCase :List[Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _UpperCamelCase :str = seqlen + 2 _UpperCamelCase , _UpperCamelCase :Dict = self.num_layers _UpperCamelCase , _UpperCamelCase :Union[str, Any] = self.num_attention_heads _UpperCamelCase :List[Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _UpperCamelCase :Tuple = common_inputs['''attention_mask'''].dtype _UpperCamelCase :List[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ )] , dim=1 ) _UpperCamelCase :int = [ (torch.zeros(SCREAMING_SNAKE_CASE__ ), torch.zeros(SCREAMING_SNAKE_CASE__ )) for _ in range(SCREAMING_SNAKE_CASE__ ) ] return common_inputs def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ) -> Mapping[str, Any]: """simple docstring""" _UpperCamelCase :List[str] = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _UpperCamelCase :str = tokenizer.num_special_tokens_to_add(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :str = compute_effective_axis_dimension( SCREAMING_SNAKE_CASE__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=SCREAMING_SNAKE_CASE__ ) # Generate dummy inputs according to compute batch and sequence _UpperCamelCase :List[Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _UpperCamelCase :Optional[Any] = dict(tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) ) return common_inputs def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = -1 , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCamelCase :str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) elif self.task == "causal-lm": _UpperCamelCase :Optional[Any] = self._generate_dummy_inputs_for_causal_lm( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) else: _UpperCamelCase :Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , seq_length=SCREAMING_SNAKE_CASE__ , is_pair=SCREAMING_SNAKE_CASE__ , framework=SCREAMING_SNAKE_CASE__ ) return common_inputs def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: _UpperCamelCase :Union[str, Any] = super()._flatten_past_key_values_(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: _UpperCamelCase :Tuple = super(SCREAMING_SNAKE_CASE__ , self )._flatten_past_key_values_( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
355
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging SCREAMING_SNAKE_CASE__ : List[Any] =logging.get_logger(__name__) # TODO: upload to AWS SCREAMING_SNAKE_CASE__ : List[str] ={ 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """retribert""" def __init__( self , _lowercase=30522 , _lowercase=768 , _lowercase=8 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-12 , _lowercase=True , _lowercase=128 , _lowercase=0 , **_lowercase , ) -> Optional[int]: super().__init__(pad_token_id=_lowercase , **_lowercase ) _lowerCamelCase : Tuple = vocab_size _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : Any = num_hidden_layers _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : Optional[Any] = hidden_dropout_prob _lowerCamelCase : Optional[Any] = attention_probs_dropout_prob _lowerCamelCase : int = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Optional[Any] = initializer_range _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : int = share_encoders _lowerCamelCase : Optional[int] = projection_dim
558
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] ={ 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = """sew-d""" def __init__( self , _lowercase=32 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase=2 , _lowercase=512 , _lowercase=256 , _lowercase=True , _lowercase=True , _lowercase=("p2c", "c2p") , _lowercase="layer_norm" , _lowercase="gelu_python" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.1 , _lowercase=0.02 , _lowercase=1E-7 , _lowercase=1E-5 , _lowercase="group" , _lowercase="gelu" , _lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _lowercase=False , _lowercase=128 , _lowercase=16 , _lowercase=True , _lowercase=0.05 , _lowercase=10 , _lowercase=2 , _lowercase=0.0 , _lowercase=10 , _lowercase=0 , _lowercase="mean" , _lowercase=False , _lowercase=False , _lowercase=256 , _lowercase=0 , _lowercase=1 , _lowercase=2 , **_lowercase , ) -> str: super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : str = feat_extract_norm _lowerCamelCase : int = feat_extract_activation _lowerCamelCase : Optional[int] = list(_lowercase ) _lowerCamelCase : Any = list(_lowercase ) _lowerCamelCase : Dict = list(_lowercase ) _lowerCamelCase : List[Any] = conv_bias _lowerCamelCase : Dict = num_conv_pos_embeddings _lowerCamelCase : Optional[int] = num_conv_pos_embedding_groups _lowerCamelCase : Dict = len(self.conv_dim ) _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : Optional[int] = squeeze_factor _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Any = position_buckets _lowerCamelCase : str = share_att_key _lowerCamelCase : Optional[int] = relative_attention _lowerCamelCase : Tuple = norm_rel_ebd _lowerCamelCase : Union[str, Any] = list(_lowercase ) _lowerCamelCase : int = hidden_act _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : str = hidden_dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Union[str, Any] = feat_proj_dropout _lowerCamelCase : int = final_dropout _lowerCamelCase : int = layer_norm_eps _lowerCamelCase : Dict = feature_layer_norm_eps _lowerCamelCase : Any = initializer_range _lowerCamelCase : str = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Union[str, Any] = apply_spec_augment _lowerCamelCase : Optional[Any] = mask_time_prob _lowerCamelCase : List[Any] = mask_time_length _lowerCamelCase : List[str] = mask_time_min_masks _lowerCamelCase : Optional[int] = mask_feature_prob _lowerCamelCase : List[str] = mask_feature_length _lowerCamelCase : int = mask_feature_min_masks # ctc loss _lowerCamelCase : int = ctc_loss_reduction _lowerCamelCase : List[Any] = ctc_zero_infinity # sequence classification _lowerCamelCase : Optional[int] = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size @property def a__ ( self ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
558
1
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" @property def lowerCAmelCase__ ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = ort.SessionOptions() UpperCamelCase__ :str = False return options def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCamelCase__ :List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCamelCase__ :List[Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = "A red cat sitting on a park bench" UpperCamelCase__ :List[str] = np.random.RandomState(0 ) UpperCamelCase__ :Optional[Any] = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase_ , output_type='''np''' , ) UpperCamelCase__ :Optional[int] = output.images UpperCamelCase__ :List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase__ :Dict = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) UpperCamelCase__ :Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) UpperCamelCase__ :Optional[Any] = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCamelCase__ :str = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = "A red cat sitting on a park bench" UpperCamelCase__ :Optional[int] = np.random.RandomState(0 ) UpperCamelCase__ :Tuple = pipe( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCamelCase_ , output_type='''np''' , ) UpperCamelCase__ :List[Any] = output.images UpperCamelCase__ :List[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
189
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''roberta''' def __init__( self , lowerCamelCase=5_02_65 , lowerCamelCase=7_68 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=30_72 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=5_12 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1e-12 , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase="absolute" , lowerCamelCase=True , lowerCamelCase=None , **lowerCamelCase , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) UpperCamelCase : Any = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Optional[int] = intermediate_size UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : List[str] = type_vocab_size UpperCamelCase : Tuple = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Tuple = use_cache UpperCamelCase : Any = classifier_dropout class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
173
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = list(range(len(_A ) ) ) __SCREAMING_SNAKE_CASE = [v / w for v, w in zip(_A , _A )] index.sort(key=lambda lowerCAmelCase_ : ratio[i] , reverse=_A ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = [0] * len(_A ) for i in index: if weight[i] <= capacity: __SCREAMING_SNAKE_CASE = 1 max_value += value[i] capacity -= weight[i] else: __SCREAMING_SNAKE_CASE = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
719
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') a__ : str = logging.getLogger(__name__) @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case__ : bool = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) snake_case__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case__ : bool = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : Optional[str] = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) snake_case__ : Optional[str] = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) snake_case__ : bool = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) snake_case__ : Optional[int] = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) snake_case__ : Optional[int] = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ : bool = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) snake_case__ : Optional[int] = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case__ : Optional[int] = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCAmelCase_ ( self : Any ) -> Optional[int]: if self.train_file is not None: __SCREAMING_SNAKE_CASE = self.train_file.split("." )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __SCREAMING_SNAKE_CASE = self.validation_file.split("." )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCamelCase_ : """simple docstring""" snake_case__ : PreTrainedTokenizerBase snake_case__ : Union[bool, str, PaddingStrategy] = True snake_case__ : Optional[int] = None snake_case__ : Optional[int] = None def __call__( self : Dict , UpperCAmelCase__ : Dict ) -> Tuple: __SCREAMING_SNAKE_CASE = "label" if "label" in features[0].keys() else "labels" __SCREAMING_SNAKE_CASE = [feature.pop(UpperCAmelCase__ ) for feature in features] __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = len(features[0]["input_ids"] ) __SCREAMING_SNAKE_CASE = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCAmelCase__ )] for feature in features ] __SCREAMING_SNAKE_CASE = list(chain(*UpperCAmelCase__ ) ) __SCREAMING_SNAKE_CASE = self.tokenizer.pad( UpperCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten __SCREAMING_SNAKE_CASE = {k: v.view(UpperCAmelCase__ , UpperCAmelCase__ , -1 ) for k, v in batch.items()} # Add back labels __SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase__ , dtype=torch.intaa ) return batch def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) datasets.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __SCREAMING_SNAKE_CASE = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __SCREAMING_SNAKE_CASE = {} if data_args.train_file is not None: __SCREAMING_SNAKE_CASE = data_args.train_file if data_args.validation_file is not None: __SCREAMING_SNAKE_CASE = data_args.validation_file __SCREAMING_SNAKE_CASE = data_args.train_file.split("." )[-1] __SCREAMING_SNAKE_CASE = load_dataset( lowerCAmelCase_ , data_files=lowerCAmelCase_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __SCREAMING_SNAKE_CASE = load_dataset( "swag" , "regular" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __SCREAMING_SNAKE_CASE = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __SCREAMING_SNAKE_CASE = [f"""ending{i}""" for i in range(4 )] __SCREAMING_SNAKE_CASE = "sent1" __SCREAMING_SNAKE_CASE = "sent2" if data_args.max_seq_length is None: __SCREAMING_SNAKE_CASE = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) __SCREAMING_SNAKE_CASE = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = [[context] * 4 for context in examples[context_name]] __SCREAMING_SNAKE_CASE = examples[question_header_name] __SCREAMING_SNAKE_CASE = [ [f"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(lowerCAmelCase_ ) ] # Flatten out __SCREAMING_SNAKE_CASE = list(chain(*lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = list(chain(*lowerCAmelCase_ ) ) # Tokenize __SCREAMING_SNAKE_CASE = tokenizer( lowerCAmelCase_ , lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="max_length" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(lowerCAmelCase_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) __SCREAMING_SNAKE_CASE = raw_datasets["train"] if data_args.max_train_samples is not None: __SCREAMING_SNAKE_CASE = min(len(lowerCAmelCase_ ) , data_args.max_train_samples ) __SCREAMING_SNAKE_CASE = train_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): __SCREAMING_SNAKE_CASE = train_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) __SCREAMING_SNAKE_CASE = raw_datasets["validation"] if data_args.max_eval_samples is not None: __SCREAMING_SNAKE_CASE = min(len(lowerCAmelCase_ ) , data_args.max_eval_samples ) __SCREAMING_SNAKE_CASE = eval_dataset.select(range(lowerCAmelCase_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): __SCREAMING_SNAKE_CASE = eval_dataset.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __SCREAMING_SNAKE_CASE = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowerCAmelCase_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = eval_predictions __SCREAMING_SNAKE_CASE = np.argmax(lowerCAmelCase_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __SCREAMING_SNAKE_CASE = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , ) # Training if training_args.do_train: __SCREAMING_SNAKE_CASE = None if training_args.resume_from_checkpoint is not None: __SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint elif last_checkpoint is not None: __SCREAMING_SNAKE_CASE = last_checkpoint __SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __SCREAMING_SNAKE_CASE = train_result.metrics __SCREAMING_SNAKE_CASE = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("train" , lowerCAmelCase_ ) trainer.save_metrics("train" , lowerCAmelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) __SCREAMING_SNAKE_CASE = trainer.evaluate() __SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = min(lowerCAmelCase_ , len(lowerCAmelCase_ ) ) trainer.log_metrics("eval" , lowerCAmelCase_ ) trainer.save_metrics("eval" , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' main() if __name__ == "__main__": main()
553
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCamelCase( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=7 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : Any=3_0 , SCREAMING_SNAKE_CASE : List[str]=4_0_0 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : int=0.9 , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Union[str, Any]=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE : Optional[Any]=[0.5, 0.5, 0.5] , ) -> Union[str, Any]: '''simple docstring''' __snake_case = size if size is not None else {"shortest_edge": 3_0} __snake_case = crop_size if crop_size is not None else {"height": 3_0, "width": 3_0} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize_and_center_crop __snake_case = size __snake_case = crop_pct __snake_case = crop_size __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std def SCREAMING_SNAKE_CASE_ ( self : str ) -> Any: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCamelCase( _a , unittest.TestCase ): snake_case_ : List[str] = PoolFormerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: '''simple docstring''' __snake_case = PoolFormerImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : int ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "crop_pct" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_std" ) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any: '''simple docstring''' __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 3_0} ) self.assertEqual(image_processor.crop_size , {"height": 3_0, "width": 3_0} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
371
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[str] = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
1
"""simple docstring""" import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _snake_case ( a__ , unittest.TestCase ): # TODO: is there an appropriate internal test set? snake_case__ = "ssube/stable-diffusion-x4-upscaler-onnx" def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : Dict=0 ): __lowerCamelCase : int = floats_tensor((1, 3, 128, 128) , rng=random.Random(UpperCAmelCase ) ) __lowerCamelCase : Any = torch.manual_seed(UpperCAmelCase ) __lowerCamelCase : Any = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : List[Any] = self.get_dummy_inputs() __lowerCamelCase : Optional[Any] = pipe(**UpperCAmelCase ).images __lowerCamelCase : str = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) __lowerCamelCase : Any = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowerCamelCase : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : int = self.get_dummy_inputs() __lowerCamelCase : Any = pipe(**UpperCAmelCase ).images __lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase : int = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowerCamelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Dict = self.get_dummy_inputs() __lowerCamelCase : str = pipe(**UpperCAmelCase ).images __lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase : Optional[Any] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowerCamelCase : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : List[str] = self.get_dummy_inputs() __lowerCamelCase : List[Any] = pipe(**UpperCAmelCase ).images __lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase : Any = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowerCamelCase : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : str = self.get_dummy_inputs() __lowerCamelCase : Any = pipe(**UpperCAmelCase ).images __lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase : Union[str, Any] = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _snake_case ( unittest.TestCase ): @property def lowerCamelCase__ ( self : Optional[int] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : Optional[Any] = ort.SessionOptions() __lowerCamelCase : int = False return options def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowerCamelCase : Union[str, Any] = init_image.resize((128, 128) ) # using the PNDM scheduler by default __lowerCamelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Tuple = "A fantasy landscape, trending on artstation" __lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCAmelCase , output_type="np" , ) __lowerCamelCase : Dict = output.images __lowerCamelCase : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __lowerCamelCase : Any = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowerCamelCase : int = init_image.resize((128, 128) ) __lowerCamelCase : Tuple = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) __lowerCamelCase : int = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : Any = "A fantasy landscape, trending on artstation" __lowerCamelCase : str = torch.manual_seed(0 ) __lowerCamelCase : str = pipe( prompt=UpperCAmelCase , image=UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=UpperCAmelCase , output_type="np" , ) __lowerCamelCase : List[Any] = output.images __lowerCamelCase : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __lowerCamelCase : Optional[Any] = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
702
"""simple docstring""" from functools import lru_cache def lowercase_ ( _lowerCamelCase: int ) -> set: '''simple docstring''' __lowerCamelCase : Optional[Any] = 2 __lowerCamelCase : Tuple = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_lowerCamelCase ) if n > 1: factors.add(_lowerCamelCase ) return factors @lru_cache def lowercase_ ( _lowerCamelCase: int ) -> int: '''simple docstring''' return len(unique_prime_factors(_lowerCamelCase ) ) def lowercase_ ( _lowerCamelCase: list ) -> bool: '''simple docstring''' return len(set(_lowerCamelCase ) ) in (0, 1) def lowercase_ ( _lowerCamelCase: int ) -> list: '''simple docstring''' __lowerCamelCase : str = 2 while True: # Increment each value of a generated range __lowerCamelCase : int = [base + i for i in range(_lowerCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowerCamelCase : Dict = [upf_len(_lowerCamelCase ) for x in group] checker.append(_lowerCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(_lowerCamelCase ): return group # Increment our base variable by 1 base += 1 def lowercase_ ( _lowerCamelCase: int = 4 ) -> int: '''simple docstring''' __lowerCamelCase : Any = run(_lowerCamelCase ) return results[0] if len(_lowerCamelCase ) else None if __name__ == "__main__": print(solution())
366
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer A = logging.get_logger(__name__) A = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } A = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } A = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_INIT_CONFIGURATION lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = BertTokenizer def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Union[str, Any]="[UNK]" , UpperCamelCase_ : Union[str, Any]="[SEP]" , UpperCamelCase_ : List[Any]="[PAD]" , UpperCamelCase_ : List[Any]="[CLS]" , UpperCamelCase_ : Tuple="[MASK]" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Optional[int] , ): """simple docstring""" super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , UpperCamelCase_) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase_) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase_) != tokenize_chinese_chars ): __UpperCAmelCase : Dict = getattr(UpperCamelCase_ , normalizer_state.pop("type")) __UpperCAmelCase : Any = do_lower_case __UpperCAmelCase : List[str] = strip_accents __UpperCAmelCase : Any = tokenize_chinese_chars __UpperCAmelCase : Union[str, Any] = normalizer_class(**UpperCamelCase_) __UpperCAmelCase : List[Any] = do_lower_case def a_ ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any]=None): """simple docstring""" __UpperCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a_ ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None): """simple docstring""" __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def a_ ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" __UpperCAmelCase : int = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_) return tuple(UpperCamelCase_)
77
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _a (lowercase__ : str , lowercase__ : str , lowercase__ : Optional[str] = None ) -> str: """simple docstring""" if version.parse(hfh.__version__ ).release < version.parse('0.11.0' ).release: # old versions of hfh don't url-encode the file path __snake_case = quote(lowercase__ ) return hfh.hf_hub_url(lowercase__ , lowercase__ , repo_type='dataset' , revision=lowercase__ )
56
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a__ : int = None a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Optional[Any] = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } a__ : int = { '''moussaKam/mbarthez''': 1_0_2_4, '''moussaKam/barthez''': 1_0_2_4, '''moussaKam/barthez-orangesum-title''': 1_0_2_4, } a__ : Optional[Any] = '''▁''' class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Union[str, Any] = VOCAB_FILES_NAMES snake_case__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : List[str] = ["input_ids", "attention_mask"] snake_case__ : int = BarthezTokenizer def __init__( self : List[str] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Dict="<s>" , UpperCAmelCase__ : Dict="</s>" , UpperCAmelCase__ : Optional[Any]="</s>" , UpperCAmelCase__ : Any="<s>" , UpperCAmelCase__ : Tuple="<unk>" , UpperCAmelCase__ : Any="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , **UpperCAmelCase__ : Tuple , ) -> Any: # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token super().__init__( UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , **UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] __SCREAMING_SNAKE_CASE = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase_ ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( UpperCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ): copyfile(self.vocab_file , UpperCAmelCase__ ) return (out_vocab_file,)
703
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , ): '''simple docstring''' if attention_mask is None: __SCREAMING_SNAKE_CASE = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __SCREAMING_SNAKE_CASE = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=lowerCAmelCase_ ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCAmelCase_ ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=lowerCAmelCase_ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class UpperCamelCase_ : """simple docstring""" def __init__( self : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict=1_3 , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Any=False , UpperCAmelCase__ : Optional[int]=9_9 , UpperCAmelCase__ : Dict=1_6 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : Optional[int]="relu" , UpperCAmelCase__ : int=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : List[str]=2_0 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Any=1 , UpperCAmelCase__ : Union[str, Any]=0 , ) -> Any: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = encoder_layerdrop __SCREAMING_SNAKE_CASE = decoder_layerdrop __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = pad_token_id __SCREAMING_SNAKE_CASE = bos_token_id def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = self.eos_token_id # Eos Token __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __SCREAMING_SNAKE_CASE = input_ids.clamp(self.pad_token_id + 1 ) __SCREAMING_SNAKE_CASE = decoder_input_ids.clamp(self.pad_token_id + 1 ) __SCREAMING_SNAKE_CASE = self.get_config() __SCREAMING_SNAKE_CASE = prepare_mam_aaa_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = MaMaaaModel(config=UpperCAmelCase__ ).get_decoder().to(UpperCAmelCase__ ).eval() __SCREAMING_SNAKE_CASE = inputs_dict["input_ids"] __SCREAMING_SNAKE_CASE = inputs_dict["attention_mask"] __SCREAMING_SNAKE_CASE = inputs_dict["head_mask"] # first forward pass __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , head_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )["last_hidden_state"] __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ )[ "last_hidden_state" ] # select random slice __SCREAMING_SNAKE_CASE = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-2 ) ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = MaMaaaModel(config=UpperCAmelCase__ ).to(UpperCAmelCase__ ).eval() __SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = outputs.encoder_last_hidden_state __SCREAMING_SNAKE_CASE = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = model.get_encoder() encoder.save_pretrained(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = MaMaaaEncoder.from_pretrained(UpperCAmelCase__ ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = encoder(inputs_dict["input_ids"] , attention_mask=inputs_dict["attention_mask"] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE = model.get_decoder() decoder.save_pretrained(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = MaMaaaDecoder.from_pretrained(UpperCAmelCase__ ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = decoder( input_ids=inputs_dict["decoder_input_ids"] , attention_mask=inputs_dict["decoder_attention_mask"] , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=inputs_dict["attention_mask"] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : List[str] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) snake_case__ : Tuple = (MaMaaaForConditionalGeneration,) if is_torch_available() else () snake_case__ : Dict = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) snake_case__ : Optional[int] = True snake_case__ : Optional[Any] = True snake_case__ : Union[str, Any] = False snake_case__ : Tuple = False def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict ) -> Optional[Any]: if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCAmelCase_ ( self : Dict ) -> List[str]: __SCREAMING_SNAKE_CASE = MaMaaaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Dict ) -> Tuple: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = model_class.from_pretrained(UpperCAmelCase__ , output_loading_info=UpperCAmelCase__ ) self.assertEqual(info["missing_keys"] , [] ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> Optional[int]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = copy.deepcopy(self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) if not self.is_encoder_decoder: __SCREAMING_SNAKE_CASE = inputs["input_ids"] del inputs["input_ids"] else: __SCREAMING_SNAKE_CASE = inputs["input_ids"] __SCREAMING_SNAKE_CASE = inputs.get("decoder_input_ids" , UpperCAmelCase__ ) del inputs["input_ids"] inputs.pop("decoder_input_ids" , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model.get_input_embeddings() if not self.is_encoder_decoder: __SCREAMING_SNAKE_CASE = wte(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = wte(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = wte(UpperCAmelCase__ ) with torch.no_grad(): model(**UpperCAmelCase__ )[0] def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = input_dict["input_ids"] __SCREAMING_SNAKE_CASE = input_ids.ne(1 ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(UpperCAmelCase__ ).eval().to(UpperCAmelCase__ ) if torch_device == "cuda": model.half() model.generate(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) model.generate(num_beams=4 , do_sample=UpperCAmelCase__ , early_stopping=UpperCAmelCase__ , num_return_sequences=3 ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return torch.tensor(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_ ) a__ : Union[str, Any] = 1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: return MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE = MaMaaaModel.from_pretrained("facebook/m2m100_418M" ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) __SCREAMING_SNAKE_CASE = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) __SCREAMING_SNAKE_CASE = prepare_mam_aaa_inputs_dict(model.config , UpperCAmelCase__ , UpperCAmelCase__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , UpperCAmelCase__ ) # change to expected output here __SCREAMING_SNAKE_CASE = torch.tensor( [[-0.7_780, -0.1_676, 0.1_038], [-6.7_556, -1.3_992, 0.0_567], [-7.5_383, -0.5_920, -0.2_779]] , device=UpperCAmelCase__ ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) def UpperCAmelCase_ ( self : Tuple ) -> str: __SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(UpperCAmelCase__ ) # change to intended input __SCREAMING_SNAKE_CASE = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) __SCREAMING_SNAKE_CASE = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) __SCREAMING_SNAKE_CASE = prepare_mam_aaa_inputs_dict(model.config , UpperCAmelCase__ , UpperCAmelCase__ ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase__ ) # change to expected output here __SCREAMING_SNAKE_CASE = torch.tensor( [[-1.0_448, -1.0_411, 3.7_992], [-3.2_191, -3.2_386, -1.3_451], [-3.6_210, -3.5_993, 0.4_925]] , device=UpperCAmelCase__ ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=UpperCAmelCase__ ) ) def UpperCAmelCase_ ( self : Tuple ) -> Any: __SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration.from_pretrained("facebook/m2m100_418M" ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = MaMaaaTokenizer.from_pretrained("facebook/m2m100_418M" , src_lang="fr" , tgt_lang="en" ) __SCREAMING_SNAKE_CASE = [ "L'affaire NSA souligne l'absence totale de débat sur le renseignement", "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent" " Fabius convoque l'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de" " l'ampleur de la surveillance américaine sur l'ensemble des communications en France.", ] # The below article tests that we don't add any hypotheses outside of the top n_beams __SCREAMING_SNAKE_CASE = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="pt" ) __SCREAMING_SNAKE_CASE = model.generate( input_ids=dct["input_ids"].to(UpperCAmelCase__ ) , attention_mask=dct["attention_mask"].to(UpperCAmelCase__ ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id("en" ) , ) __SCREAMING_SNAKE_CASE = [ "The NSA case highlights the total absence of intelligence debate", "I think there are two levels of response from the French government.", "When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S." " Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all" " communications in France.", ] __SCREAMING_SNAKE_CASE = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) assert generated == expected_en
553
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class _UpperCAmelCase ( __A ): __lowerCamelCase: str = 'marian' __lowerCamelCase: Optional[int] = ['past_key_values'] __lowerCamelCase: Dict = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Dict , a : List[Any]=5_8_1_0_1 , a : Optional[Any]=None , a : Optional[Any]=1_0_2_4 , a : Dict=1_2 , a : int=4_0_9_6 , a : Optional[Any]=1_6 , a : Any=1_2 , a : str=4_0_9_6 , a : int=1_6 , a : Union[str, Any]=0.0 , a : Any=0.0 , a : List[Any]=True , a : Any=True , a : Optional[Any]="gelu" , a : int=1_0_2_4 , a : Optional[Any]=0.1 , a : Optional[Any]=0.0 , a : Optional[Any]=0.0 , a : str=0.02 , a : Any=5_8_1_0_0 , a : Dict=False , a : Optional[Any]=5_8_1_0_0 , a : Optional[int]=0 , a : Tuple=0 , a : List[Any]=True , **a : str , ): '''simple docstring''' lowercase_ : Optional[int] = vocab_size lowercase_ : Tuple = decoder_vocab_size or vocab_size lowercase_ : Tuple = max_position_embeddings lowercase_ : Union[str, Any] = d_model lowercase_ : Union[str, Any] = encoder_ffn_dim lowercase_ : Optional[Any] = encoder_layers lowercase_ : List[str] = encoder_attention_heads lowercase_ : Tuple = decoder_ffn_dim lowercase_ : Optional[Any] = decoder_layers lowercase_ : Optional[int] = decoder_attention_heads lowercase_ : str = dropout lowercase_ : str = attention_dropout lowercase_ : Dict = activation_dropout lowercase_ : str = activation_function lowercase_ : Tuple = init_std lowercase_ : Optional[Any] = encoder_layerdrop lowercase_ : int = decoder_layerdrop lowercase_ : Optional[Any] = use_cache lowercase_ : str = encoder_layers lowercase_ : int = scale_embedding # scale factor will be sqrt(d_model) if True lowercase_ : Optional[Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=a , eos_token_id=a , is_encoder_decoder=a , decoder_start_token_id=a , forced_eos_token_id=a , **a , ) class _UpperCAmelCase ( __A ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase_ : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowercase_ : Dict = {0: 'batch'} lowercase_ : str = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase_ : Tuple = {0: 'batch', 1: 'decoder_sequence'} lowercase_ : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(a , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowercase_ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowercase_ : str = self.num_layers for i in range(a ): lowercase_ : Optional[int] = {0: 'batch', 2: 'past_sequence + sequence'} lowercase_ : Union[str, Any] = {0: 'batch', 2: 'past_sequence + sequence'} else: lowercase_ : Optional[int] = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase_ : str = super().outputs else: lowercase_ : Union[str, Any] = super(a , self ).outputs if self.use_past: lowercase_ : Optional[Any] = self.num_layers for i in range(a ): lowercase_ : List[str] = {0: 'batch', 2: 'past_sequence + sequence'} lowercase_ : Any = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def lowerCAmelCase__ ( self : Optional[Any] , a : Optional[Any] , a : Optional[Any] = -1 , a : Optional[int] = -1 , a : int = False , a : List[str] = None , ): '''simple docstring''' lowercase_ : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( a , a , a , a , a ) # Generate decoder inputs lowercase_ : List[str] = seq_length if not self.use_past else 1 lowercase_ : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( a , a , a , a , a ) lowercase_ : Tuple = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} lowercase_ : List[str] = dict(**a , **a ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowercase_ : Optional[int] = common_inputs['input_ids'].shape lowercase_ : Any = common_inputs['decoder_input_ids'].shape[1] lowercase_ : List[str] = self.num_attention_heads lowercase_ : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase_ : Union[str, Any] = decoder_seq_length + 3 lowercase_ : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowercase_ : List[str] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(a , a )] , dim=1 ) lowercase_ : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowercase_ : List[Any] = self.num_layers lowercase_ : Union[str, Any] = min(a , a ) lowercase_ : Optional[Any] = max(a , a ) - min_num_layers lowercase_ : Dict = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(a ): common_inputs["past_key_values"].append( ( torch.zeros(a ), torch.zeros(a ), torch.zeros(a ), torch.zeros(a ), ) ) # TODO: test this. lowercase_ : Optional[int] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(a , a ): common_inputs["past_key_values"].append((torch.zeros(a ), torch.zeros(a )) ) return common_inputs def lowerCAmelCase__ ( self : Tuple , a : str , a : Optional[int] = -1 , a : Dict = -1 , a : List[Any] = False , a : str = None , ): '''simple docstring''' lowercase_ : Any = self._generate_dummy_inputs_for_encoder_and_decoder( a , a , a , a , a ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowercase_ : List[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values lowercase_ : List[str] = seqlen + 2 lowercase_ : Union[str, Any] = self.num_layers lowercase_ : List[Any] = self.num_attention_heads lowercase_ : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowercase_ : Tuple = common_inputs['attention_mask'].dtype lowercase_ : Union[str, Any] = torch.cat( [common_inputs["attention_mask"], torch.ones(a , a , dtype=a )] , dim=1 ) lowercase_ : Optional[Any] = [ (torch.zeros(a ), torch.zeros(a )) for _ in range(a ) ] return common_inputs def lowerCAmelCase__ ( self : int , a : Optional[Any] , a : Union[str, Any] = -1 , a : Any = -1 , a : int = False , a : Tuple = None , ): '''simple docstring''' lowercase_ : Union[str, Any] = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase_ : List[str] = tokenizer.num_special_tokens_to_add(a ) lowercase_ : List[Any] = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a ) # Generate dummy inputs according to compute batch and sequence lowercase_ : Tuple = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size lowercase_ : Optional[Any] = dict(tokenizer(a , return_tensors=a ) ) return common_inputs def lowerCAmelCase__ ( self : List[Any] , a : Optional[Any] , a : str = -1 , a : List[str] = -1 , a : List[str] = False , a : List[Any] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase_ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) else: lowercase_ : str = self._generate_dummy_inputs_for_causal_lm( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) return common_inputs def lowerCAmelCase__ ( self : Union[str, Any] , a : Dict , a : List[Any] , a : Tuple , a : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowercase_ : Any = super()._flatten_past_key_values_(a , a , a , a ) else: lowercase_ : Optional[int] = super(a , self )._flatten_past_key_values_( a , a , a , a ) @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return 1e-4
620
# flake8: noqa # Lint as: python3 _UpperCAmelCase = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
558
0
"""simple docstring""" import os def snake_case__ ( __lowerCamelCase : str = "matrix.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(__lowerCamelCase ) , __lowerCamelCase ) ) as in_file: lowerCamelCase__ : str =in_file.read() lowerCamelCase__ : List[str] =[[int(__lowerCamelCase ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] lowerCamelCase__ : Optional[Any] =[[0 for cell in row] for row in grid] lowerCamelCase__ : Union[str, Any] =len(grid[0] ) lowerCamelCase__ : Union[str, Any] =[[0 for i in range(__lowerCamelCase )] for j in range(__lowerCamelCase )] lowerCamelCase__ : Optional[Any] =grid[0][0] for i in range(1 , __lowerCamelCase ): lowerCamelCase__ : Dict =grid[0][i] + dp[0][i - 1] for i in range(1 , __lowerCamelCase ): lowerCamelCase__ : Dict =grid[i][0] + dp[i - 1][0] for i in range(1 , __lowerCamelCase ): for j in range(1 , __lowerCamelCase ): lowerCamelCase__ : Optional[Any] =grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(f'{solution() = }')
625
"""simple docstring""" _lowercase : Optional[Any] = { "Pillow": "Pillow<10.0.0", "accelerate": "accelerate>=0.20.3", "av": "av==9.2.0", "beautifulsoup4": "beautifulsoup4", "black": "black~=23.1", "codecarbon": "codecarbon==1.2.0", "cookiecutter": "cookiecutter==1.7.3", "dataclasses": "dataclasses", "datasets": "datasets!=2.5.0", "decord": "decord==0.6.0", "deepspeed": "deepspeed>=0.9.3", "diffusers": "diffusers", "dill": "dill<0.3.5", "evaluate": "evaluate>=0.2.0", "fairscale": "fairscale>0.3", "faiss-cpu": "faiss-cpu", "fastapi": "fastapi", "filelock": "filelock", "flax": "flax>=0.4.1,<=0.7.0", "ftfy": "ftfy", "fugashi": "fugashi>=1.0", "GitPython": "GitPython<3.1.19", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.14.1,<1.0", "importlib_metadata": "importlib_metadata", "ipadic": "ipadic>=1.0.0,<2.0", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2,<=0.4.13", "jaxlib": "jaxlib>=0.1.65,<=0.4.13", "jieba": "jieba", "kenlm": "kenlm", "keras-nlp": "keras-nlp>=0.3.1", "librosa": "librosa", "nltk": "nltk", "natten": "natten>=0.14.6", "numpy": "numpy>=1.17", "onnxconverter-common": "onnxconverter-common", "onnxruntime-tools": "onnxruntime-tools>=1.4.2", "onnxruntime": "onnxruntime>=1.4.0", "opencv-python": "opencv-python", "optuna": "optuna", "optax": "optax>=0.0.8,<=0.1.4", "packaging": "packaging>=20.0", "parameterized": "parameterized", "phonemizer": "phonemizer", "protobuf": "protobuf", "psutil": "psutil", "pyyaml": "pyyaml>=5.1", "pydantic": "pydantic<2", "pytest": "pytest>=7.2.0", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "python": "python>=3.8.0", "ray[tune]": "ray[tune]", "regex": "regex!=2019.12.17", "requests": "requests", "rhoknp": "rhoknp>=1.1.0,<1.3.1", "rjieba": "rjieba", "rouge-score": "rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1", "ruff": "ruff>=0.0.241,<=0.0.259", "sacrebleu": "sacrebleu>=1.4.12,<2.0.0", "sacremoses": "sacremoses", "safetensors": "safetensors>=0.3.1", "sagemaker": "sagemaker>=2.31.0", "scikit-learn": "scikit-learn", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "sigopt": "sigopt", "starlette": "starlette", "sudachipy": "sudachipy>=0.6.6", "sudachidict_core": "sudachidict_core>=20220729", "tensorflow-cpu": "tensorflow-cpu>=2.6,<2.14", "tensorflow": "tensorflow>=2.6,<2.14", "tensorflow-text": "tensorflow-text<2.14", "tf2onnx": "tf2onnx", "timeout-decorator": "timeout-decorator", "timm": "timm", "tokenizers": "tokenizers>=0.11.1,!=0.11.3,<0.14", "torch": "torch>=1.9,!=1.12.0", "torchaudio": "torchaudio", "torchvision": "torchvision", "pyctcdecode": "pyctcdecode>=0.4.0", "tqdm": "tqdm>=4.27", "unidic": "unidic>=1.0.2", "unidic_lite": "unidic_lite>=1.0.7", "urllib3": "urllib3<2.0.0", "uvicorn": "uvicorn", }
625
1
"""simple docstring""" __A = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
346
'''simple docstring''' from __future__ import annotations def __a(SCREAMING_SNAKE_CASE_ : list ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=8 ): """simple docstring""" lowerCAmelCase__ : Any = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowerCAmelCase__ : List[str] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> int: super().__init__() self.register_modules( text_encoder=__UpperCAmelCase ,tokenizer=__UpperCAmelCase ,unet=__UpperCAmelCase ,scheduler=__UpperCAmelCase ,movq=__UpperCAmelCase ,) lowerCAmelCase__ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: if latents is None: lowerCAmelCase__ : Optional[int] = randn_tensor(__UpperCAmelCase ,generator=__UpperCAmelCase ,device=__UpperCAmelCase ,dtype=__UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCAmelCase__ : int = latents.to(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,) -> Any: lowerCAmelCase__ : List[str] = len(__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else 1 # get prompt text embeddings lowerCAmelCase__ : Any = self.tokenizer( __UpperCAmelCase ,padding="""max_length""" ,truncation=__UpperCAmelCase ,max_length=77 ,return_attention_mask=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors="""pt""" ,) lowerCAmelCase__ : Tuple = text_inputs.input_ids lowerCAmelCase__ : Optional[int] = self.tokenizer(__UpperCAmelCase ,padding="""longest""" ,return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowerCAmelCase__ : List[Any] = text_input_ids.to(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = text_inputs.attention_mask.to(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Any = self.text_encoder( input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = prompt_embeds.repeat_interleave(__UpperCAmelCase ,dim=0 ) lowerCAmelCase__ : Optional[int] = text_encoder_hidden_states.repeat_interleave(__UpperCAmelCase ,dim=0 ) lowerCAmelCase__ : Union[str, Any] = text_mask.repeat_interleave(__UpperCAmelCase ,dim=0 ) if do_classifier_free_guidance: lowerCAmelCase__ : List[str] if negative_prompt is None: lowerCAmelCase__ : Tuple = [""""""] * batch_size elif type(__UpperCAmelCase ) is not type(__UpperCAmelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCAmelCase )} !=""" F""" {type(__UpperCAmelCase )}.""" ) elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = [negative_prompt] elif batch_size != len(__UpperCAmelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(__UpperCAmelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: lowerCAmelCase__ : int = negative_prompt lowerCAmelCase__ : List[str] = self.tokenizer( __UpperCAmelCase ,padding="""max_length""" ,max_length=77 ,truncation=__UpperCAmelCase ,return_attention_mask=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors="""pt""" ,) lowerCAmelCase__ : Dict = uncond_input.input_ids.to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = uncond_input.attention_mask.to(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : int = self.text_encoder( input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ : Optional[int] = negative_prompt_embeds.shape[1] lowerCAmelCase__ : Optional[Any] = negative_prompt_embeds.repeat(1 ,__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = uncond_text_encoder_hidden_states.shape[1] lowerCAmelCase__ : Tuple = uncond_text_encoder_hidden_states.repeat(1 ,__UpperCAmelCase ,1 ) lowerCAmelCase__ : Optional[int] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt ,__UpperCAmelCase ,-1 ) lowerCAmelCase__ : List[str] = uncond_text_mask.repeat_interleave(__UpperCAmelCase ,dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ : Union[str, Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowerCAmelCase__ : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowerCAmelCase__ : Tuple = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def UpperCAmelCase_ ( self ,__UpperCAmelCase=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase__ : Any = torch.device(F"""cuda:{gpu_id}""" ) lowerCAmelCase__ : Union[str, Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase=0 ) -> Optional[int]: if is_accelerate_available() and is_accelerate_version(""">=""" ,"""0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCAmelCase__ : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" ,silence_dtype_warnings=__UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase__ : Optional[int] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = cpu_offload_with_hook(__UpperCAmelCase ,__UpperCAmelCase ,prev_module_hook=__UpperCAmelCase ) if self.safety_checker is not None: lowerCAmelCase__ , lowerCAmelCase__ : Dict = cpu_offload_with_hook(self.safety_checker ,__UpperCAmelCase ,prev_module_hook=__UpperCAmelCase ) # We'll offload the last model manually. lowerCAmelCase__ : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase_ ( self ) -> Optional[int]: if not hasattr(self.unet ,"""_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCAmelCase ,"""_hf_hook""" ) and hasattr(module._hf_hook ,"""execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = 512 ,__UpperCAmelCase = 512 ,__UpperCAmelCase = 100 ,__UpperCAmelCase = 4.0 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = "pil" ,__UpperCAmelCase = True ,) -> Tuple: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Dict = 1 elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Dict = len(__UpperCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}""" ) lowerCAmelCase__ : str = self._execution_device lowerCAmelCase__ : List[Any] = batch_size * num_images_per_prompt lowerCAmelCase__ : int = guidance_scale > 1.0 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = self._encode_prompt( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : List[str] = torch.cat(__UpperCAmelCase ,dim=0 ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = torch.cat(__UpperCAmelCase ,dim=0 ) if do_classifier_free_guidance: lowerCAmelCase__ : Union[str, Any] = image_embeds.repeat_interleave(__UpperCAmelCase ,dim=0 ) lowerCAmelCase__ : Optional[Any] = negative_image_embeds.repeat_interleave(__UpperCAmelCase ,dim=0 ) lowerCAmelCase__ : Any = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to( dtype=prompt_embeds.dtype ,device=__UpperCAmelCase ) self.scheduler.set_timesteps(__UpperCAmelCase ,device=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = self.scheduler.timesteps lowerCAmelCase__ : Dict = self.unet.config.in_channels lowerCAmelCase__ , lowerCAmelCase__ : Any = get_new_h_w(__UpperCAmelCase ,__UpperCAmelCase ,self.movq_scale_factor ) # create initial latent lowerCAmelCase__ : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,text_encoder_hidden_states.dtype ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,self.scheduler ,) for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase__ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase__ : Optional[Any] = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} lowerCAmelCase__ : Any = self.unet( sample=__UpperCAmelCase ,timestep=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,added_cond_kwargs=__UpperCAmelCase ,return_dict=__UpperCAmelCase ,)[0] if do_classifier_free_guidance: lowerCAmelCase__ , lowerCAmelCase__ : Any = noise_pred.split(latents.shape[1] ,dim=1 ) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = noise_pred.chunk(2 ) lowerCAmelCase__ , lowerCAmelCase__ : int = variance_pred.chunk(2 ) lowerCAmelCase__ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase__ : str = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"""variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase__ , lowerCAmelCase__ : Any = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ : Optional[int] = self.scheduler.step( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,generator=__UpperCAmelCase ,).prev_sample # post-processing lowerCAmelCase__ : int = self.movq.decode(__UpperCAmelCase ,force_not_quantize=__UpperCAmelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowerCAmelCase__ : Tuple = image * 0.5 + 0.5 lowerCAmelCase__ : str = image.clamp(0 ,1 ) lowerCAmelCase__ : List[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": lowerCAmelCase__ : int = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
160
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=32 ,__UpperCAmelCase=5 ,__UpperCAmelCase=4 ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=512 ,__UpperCAmelCase=16 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,__UpperCAmelCase="None" ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,) -> List[Any]: lowerCAmelCase__ : int = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : int = seq_length lowerCAmelCase__ : Dict = is_training lowerCAmelCase__ : List[str] = use_input_mask lowerCAmelCase__ : Optional[Any] = use_token_type_ids lowerCAmelCase__ : Dict = use_labels lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Optional[Any] = hidden_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : List[str] = intermediate_size lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : int = attention_probs_dropout_prob lowerCAmelCase__ : List[Any] = max_position_embeddings lowerCAmelCase__ : Tuple = type_vocab_size lowerCAmelCase__ : Tuple = type_sequence_label_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : int = num_labels lowerCAmelCase__ : Dict = num_choices lowerCAmelCase__ : List[str] = relative_attention lowerCAmelCase__ : Any = position_biased_input lowerCAmelCase__ : str = pos_att_type lowerCAmelCase__ : Optional[int] = scope def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : Union[str, Any] = None if self.use_input_mask: lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) lowerCAmelCase__ : List[Any] = None if self.use_token_type_ids: lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : Optional[Any] = None if self.use_labels: lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices ) lowerCAmelCase__ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ) -> Any: return DebertaVaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,pos_att_type=self.pos_att_type ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[Any]: self.parent.assertListEqual(list(result.loss.size() ) ,[] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Optional[int] = DebertaVaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : Optional[Any] = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ : List[str] = model(__UpperCAmelCase ,token_type_ids=__UpperCAmelCase )[0] lowerCAmelCase__ : Optional[Any] = model(__UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) ,[self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : Dict = DebertaVaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : Any = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Optional[int] = self.num_labels lowerCAmelCase__ : Dict = DebertaVaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : List[str] = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) ,[self.batch_size, self.num_labels] ) self.check_loss_output(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : str = self.num_labels lowerCAmelCase__ : Any = DebertaVaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : List[Any] = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: lowerCAmelCase__ : Dict = DebertaVaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : List[str] = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,start_positions=__UpperCAmelCase ,end_positions=__UpperCAmelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[Any]: lowerCAmelCase__ : List[str] = DebertaVaForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : str = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCAmelCase__ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCAmelCase__ : Any = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCAmelCase__ : Any = model( __UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ,labels=__UpperCAmelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self ) -> int: lowerCAmelCase__ : Dict = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCAmelCase__ : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' __lowercase : int = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __lowercase : int = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __lowercase : Any = True __lowercase : Tuple = False __lowercase : int = False __lowercase : List[Any] = False __lowercase : Any = False def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : List[Any] = DebertaVaModelTester(self ) lowerCAmelCase__ : Union[str, Any] = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=37 ) def UpperCAmelCase_ ( self ) -> int: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Tuple: lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> Any: lowerCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Dict = DebertaVaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def UpperCAmelCase_ ( self ) -> List[str]: pass @slow def UpperCAmelCase_ ( self ) -> Union[str, Any]: lowerCAmelCase__ : Optional[int] = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) lowerCAmelCase__ : List[Any] = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowerCAmelCase__ : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Tuple = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase )[0] # compare the actual values for a slice. lowerCAmelCase__ : List[str] = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,__UpperCAmelCase ,atol=1E-4 ) ,F"""{output[:, 1:4, 1:4]}""" )
160
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _UpperCamelCase( yaml.SafeLoader ): def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Dict = [self.constructed_objects[key_node] for key_node, _ in node.value] __a : Dict = [tuple(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else key for key in keys] __a : Optional[int] = Counter(SCREAMING_SNAKE_CASE__ ) __a : Dict = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=False ): '''simple docstring''' __a : List[Any] = super().construct_mapping(SCREAMING_SNAKE_CASE__ , deep=SCREAMING_SNAKE_CASE__ ) self._check_no_duplicates_on_constructed_node(SCREAMING_SNAKE_CASE__ ) return mapping def UpperCAmelCase__ ( lowerCamelCase_ : str ): __a : List[str] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: __a : int = full_content[1:].index('---' ) + 1 __a : Any = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCamelCase_ ) class _UpperCamelCase( __lowerCamelCase ): # class attributes __SCREAMING_SNAKE_CASE : List[Any] = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def __lowerCAmelCase ( cls : Dict , SCREAMING_SNAKE_CASE__ : Path ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as readme_file: __a , __a : Optional[Any] = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(SCREAMING_SNAKE_CASE__ ) else: return cls() def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Path ): '''simple docstring''' if path.exists(): with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as readme_file: __a : Optional[Any] = readme_file.read() else: __a : str = None __a : Optional[int] = self._to_readme(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if readme_content is not None: __a , __a : str = _split_yaml_from_readme(SCREAMING_SNAKE_CASE__ ) __a : List[str] = '---\n' + self.to_yaml_string() + '---\n' + content else: __a : Tuple = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def __lowerCAmelCase ( cls : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : Any = yaml.load(SCREAMING_SNAKE_CASE__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields __a : str = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str ): '''simple docstring''' return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=SCREAMING_SNAKE_CASE__ , allow_unicode=SCREAMING_SNAKE_CASE__ , encoding='utf-8' , ).decode('utf-8' ) SCREAMING_SNAKE_CASE__ = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser SCREAMING_SNAKE_CASE__ = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') SCREAMING_SNAKE_CASE__ = ap.parse_args() SCREAMING_SNAKE_CASE__ = Path(args.readme_filepath) SCREAMING_SNAKE_CASE__ = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
47
'''simple docstring''' from __future__ import annotations def A_ ( _lowerCamelCase : int , _lowerCamelCase : int ): if b == 0: return (1, 0) ((_lowerCAmelCase) , (_lowerCAmelCase)) = extended_euclid(_lowerCamelCase , a % b ) _lowerCAmelCase = a // b return (y, x - k * y) def A_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): ((_lowerCAmelCase) , (_lowerCAmelCase)) = extended_euclid(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase = na * na _lowerCAmelCase = ra * x * na + ra * y * na return (n % m + m) % m def A_ ( _lowerCamelCase : int , _lowerCamelCase : int ): ((_lowerCAmelCase) , (_lowerCAmelCase)) = extended_euclid(_lowerCamelCase , _lowerCamelCase ) if b < 0: _lowerCAmelCase = (b % n + n) % n return b def A_ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): _lowerCAmelCase , _lowerCAmelCase = invert_modulo(_lowerCamelCase , _lowerCamelCase ), invert_modulo(_lowerCamelCase , _lowerCamelCase ) _lowerCAmelCase = na * na _lowerCAmelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
309
0
'''simple docstring''' def _lowerCAmelCase( UpperCAmelCase_ : str ) -> int: assert column_title.isupper() lowerCAmelCase__ = 0 lowerCAmelCase__ = len(UpperCAmelCase_ ) - 1 lowerCAmelCase__ = 0 while index >= 0: lowerCAmelCase__ = (ord(column_title[index] ) - 64) * pow(26 , UpperCAmelCase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
702
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """T5Config""" class lowerCamelCase__ ( _A ): '''simple docstring''' A__ = '''mt5''' A__ = MTaConfig class lowerCamelCase__ ( _A ): '''simple docstring''' A__ = '''mt5''' A__ = MTaConfig class lowerCamelCase__ ( _A ): '''simple docstring''' A__ = '''mt5''' A__ = MTaConfig
211
0
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _a : List[str] = logging.get_logger(__name__) def snake_case__ ( UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : str ): return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def snake_case__ ( UpperCAmelCase : np.ndarray , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] ): lowerCAmelCase__ :int = to_pil_image(UpperCAmelCase ) lowerCAmelCase__ ,lowerCAmelCase__ :List[str] = pil_image.size lowerCAmelCase__ :str = pytesseract.image_to_data(UpperCAmelCase , lang=UpperCAmelCase , output_type="dict" , config=UpperCAmelCase ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :Optional[int] = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates lowerCAmelCase__ :Dict = [idx for idx, word in enumerate(UpperCAmelCase ) if not word.strip()] lowerCAmelCase__ :Any = [word for idx, word in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] lowerCAmelCase__ :Tuple = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] lowerCAmelCase__ :str = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] lowerCAmelCase__ :Optional[Any] = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] lowerCAmelCase__ :List[str] = [coord for idx, coord in enumerate(UpperCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ :List[str] = [] for x, y, w, h in zip(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase__ :Optional[int] = [x, y, x + w, y + h] actual_boxes.append(UpperCAmelCase ) # finally, normalize the bounding boxes lowerCAmelCase__ :str = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _UpperCAmelCase ( _A ): """simple docstring""" A = ['''pixel_values'''] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = "" , **_lowerCAmelCase , ): '''simple docstring''' super().__init__(**_lowerCAmelCase ) lowerCAmelCase__ :int = size if size is not None else {"height": 224, "width": 224} lowerCAmelCase__ :str = get_size_dict(_lowerCAmelCase ) lowerCAmelCase__ :List[Any] = do_resize lowerCAmelCase__ :List[str] = size lowerCAmelCase__ :Any = resample lowerCAmelCase__ :Union[str, Any] = do_rescale lowerCAmelCase__ :int = rescale_value lowerCAmelCase__ :Optional[int] = do_normalize lowerCAmelCase__ :Any = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase__ :Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD lowerCAmelCase__ :Union[str, Any] = apply_ocr lowerCAmelCase__ :Any = ocr_lang lowerCAmelCase__ :Tuple = tesseract_config def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BILINEAR , _lowerCAmelCase = None , **_lowerCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Tuple = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) lowerCAmelCase__ :int = (size["height"], size["width"]) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ): '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase=None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ): '''simple docstring''' lowerCAmelCase__ :Dict = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ :Dict = size if size is not None else self.size lowerCAmelCase__ :int = get_size_dict(_lowerCAmelCase ) lowerCAmelCase__ :List[str] = resample if resample is not None else self.resample lowerCAmelCase__ :Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ :int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ :Any = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ :Union[str, Any] = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ :Tuple = image_std if image_std is not None else self.image_std lowerCAmelCase__ :List[str] = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ :List[Any] = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ :Tuple = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ :Dict = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. lowerCAmelCase__ :List[str] = [to_numpy_array(_lowerCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , "pytesseract" ) lowerCAmelCase__ :List[Any] = [] lowerCAmelCase__ :Tuple = [] for image in images: lowerCAmelCase__ ,lowerCAmelCase__ :List[Any] = apply_tesseract(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) words_batch.append(_lowerCAmelCase ) boxes_batch.append(_lowerCAmelCase ) if do_resize: lowerCAmelCase__ :Tuple = [self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_rescale: lowerCAmelCase__ :Dict = [self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: lowerCAmelCase__ :List[Any] = [self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] lowerCAmelCase__ :List[str] = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] lowerCAmelCase__ :Optional[int] = BatchFeature(data={"pixel_values": images} , tensor_type=_lowerCAmelCase ) if apply_ocr: lowerCAmelCase__ :Dict = words_batch lowerCAmelCase__ :Union[str, Any] = boxes_batch return data
145
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _A ): """simple docstring""" A = '''EncodecFeatureExtractor''' A = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = self.feature_extractor lowerCAmelCase__ :Tuple = False def snake_case_ ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=_lowerCAmelCase , language=_lowerCAmelCase , no_timestamps=_lowerCAmelCase ) def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCAmelCase , **_lowerCAmelCase ) lowerCAmelCase__ :Optional[Any] = kwargs.pop("audio" , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = kwargs.pop("sampling_rate" , _lowerCAmelCase ) lowerCAmelCase__ :Dict = kwargs.pop("text" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowerCAmelCase__ :Optional[int] = args[0] lowerCAmelCase__ :Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: lowerCAmelCase__ :Any = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) if audio is not None: lowerCAmelCase__ :Tuple = self.feature_extractor(_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCAmelCase__ :List[str] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: lowerCAmelCase__ :int = audio_inputs["padding_mask"] return inputs def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = kwargs.pop("audio" , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = kwargs.pop("padding_mask" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowerCAmelCase__ :int = args[0] lowerCAmelCase__ :List[str] = args[1:] if audio_values is not None: return self._decode_audio(_lowerCAmelCase , padding_mask=_lowerCAmelCase ) else: return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = to_numpy(_lowerCAmelCase ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :Optional[Any] = audio_values.shape if padding_mask is None: return list(_lowerCAmelCase ) lowerCAmelCase__ :List[str] = to_numpy(_lowerCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCAmelCase__ :str = seq_len - padding_mask.shape[-1] lowerCAmelCase__ :Union[str, Any] = 1 - self.feature_extractor.padding_value lowerCAmelCase__ :Optional[Any] = np.pad(_lowerCAmelCase , ((0, 0), (0, difference)) , "constant" , constant_values=_lowerCAmelCase ) lowerCAmelCase__ :Union[str, Any] = audio_values.tolist() for i in range(_lowerCAmelCase ): lowerCAmelCase__ :str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCAmelCase__ :List[Any] = sliced_audio.reshape(_lowerCAmelCase , -1 ) return audio_values
145
1
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Any = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase=1_25 , lowerCamelCase=None , **lowerCamelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case__ = [F"""<extra_id_{i}>""" for i in range(lowerCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case__ = len(set(filter(lambda lowerCamelCase : bool("extra_id" in str(lowerCamelCase ) ) , lowerCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to ByT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) snake_case__ = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else pad_token snake_case__ = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else eos_token snake_case__ = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else unk_token super().__init__( eos_token=lowerCamelCase , unk_token=lowerCamelCase , pad_token=lowerCamelCase , extra_ids=lowerCamelCase , additional_special_tokens=lowerCamelCase , **lowerCamelCase , ) snake_case__ = extra_ids snake_case__ = 2**8 # utf is 8 bits # define special tokens dict snake_case__ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } snake_case__ = len(self.special_tokens_encoder ) snake_case__ = len(lowerCamelCase ) for i, token in enumerate(lowerCamelCase ): snake_case__ = self.vocab_size + i - n snake_case__ = {v: k for k, v in self.special_tokens_encoder.items()} @property def A_ ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def A_ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCamelCase )) + [1] return ([0] * len(lowerCamelCase )) + [1] + ([0] * len(lowerCamelCase )) + [1] def A_ ( self , lowerCamelCase ): if len(lowerCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def A_ ( self , lowerCamelCase , lowerCamelCase = None ): snake_case__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A_ ( self , lowerCamelCase , lowerCamelCase = None ): snake_case__ = self._add_eos_if_not_present(lowerCamelCase ) if token_ids_a is None: return token_ids_a else: snake_case__ = self._add_eos_if_not_present(lowerCamelCase ) return token_ids_a + token_ids_a def A_ ( self , lowerCamelCase ): snake_case__ = [chr(lowerCamelCase ) for i in text.encode("utf-8" )] return tokens def A_ ( self , lowerCamelCase ): if token in self.special_tokens_encoder: snake_case__ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: snake_case__ = self.added_tokens_encoder[token] elif len(lowerCamelCase ) != 1: snake_case__ = self.unk_token_id else: snake_case__ = ord(lowerCamelCase ) + self._num_special_tokens return token_id def A_ ( self , lowerCamelCase ): if index in self.special_tokens_decoder: snake_case__ = self.special_tokens_decoder[index] else: snake_case__ = chr(index - self._num_special_tokens ) return token def A_ ( self , lowerCamelCase ): snake_case__ = B"" for token in tokens: if token in self.special_tokens_decoder: snake_case__ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.added_tokens_decoder: snake_case__ = self.special_tokens_decoder[token].encode("utf-8" ) elif token in self.special_tokens_encoder: snake_case__ = token.encode("utf-8" ) elif token in self.added_tokens_encoder: snake_case__ = token.encode("utf-8" ) else: snake_case__ = bytes([ord(lowerCamelCase )] ) bstring += tok_string snake_case__ = bstring.decode("utf-8" , errors="ignore" ) return string def A_ ( self , lowerCamelCase , lowerCamelCase = None ): return ()
530
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
530
1
"""simple docstring""" from math import sqrt def a__ ( lowerCAmelCase ) -> int: UpperCAmelCase__ : str = 0 for i in range(1 , int(sqrt(lowerCAmelCase ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCAmelCase ): total += i + n // i elif i == sqrt(lowerCAmelCase ): total += i return total - n def a__ ( lowerCAmelCase = 1_00_00 ) -> int: UpperCAmelCase__ : Union[str, Any] = sum( i for i in range(1 , lowerCAmelCase ) if sum_of_divisors(sum_of_divisors(lowerCAmelCase ) ) == i and sum_of_divisors(lowerCAmelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
182
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def lowercase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = FunnelConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(F'Building PyTorch model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ = FunnelBaseModel(SCREAMING_SNAKE_CASE ) if base_model else FunnelModel(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_funnel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
205
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def snake_case_ (_a : int , _a : Optional[int] , _a : Any , _a : int , _a : List[str] ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file UpperCAmelCase = TapasConfig.from_json_file(__A ) # set absolute/relative position embeddings parameter UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": UpperCAmelCase = TapasForQuestionAnswering(config=__A ) elif task == "WTQ": # run_task_main.py hparams UpperCAmelCase = 4 UpperCAmelCase = True # hparam_utils.py hparams UpperCAmelCase = 0.66_4694 UpperCAmelCase = 0.20_7951 UpperCAmelCase = 0.12_1194 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = 0.035_2513 UpperCAmelCase = TapasForQuestionAnswering(config=__A ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams UpperCAmelCase = 4 UpperCAmelCase = False # hparam_utils.py hparams UpperCAmelCase = 36.4519 UpperCAmelCase = 0.90_3421 UpperCAmelCase = 222.088 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 0.76_3141 UpperCAmelCase = TapasForQuestionAnswering(config=__A ) elif task == "TABFACT": UpperCAmelCase = TapasForSequenceClassification(config=__A ) elif task == "MLM": UpperCAmelCase = TapasForMaskedLM(config=__A ) elif task == "INTERMEDIATE_PRETRAINING": UpperCAmelCase = TapasModel(config=__A ) else: raise ValueError(F"Task {task} not supported." ) print(F"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__A , __A , __A ) # Save pytorch-model (weights and configuration) print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(__A ) # Save tokenizer files print(F"Save tokenizer files to {pytorch_dump_path}" ) UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-1_0] + '''vocab.txt''' , model_max_length=5_1_2 ) tokenizer.save_pretrained(__A ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
701
'''simple docstring''' def snake_case_ (_a : list[list[int]] , _a : int , _a : int , _a : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case_ (_a : list[list[int]] , _a : list[int] , _a : int ): # Base Case if curr_ind == len(_a ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_a ) ): if valid_connection(_a , _a , _a , _a ): # Insert current vertex into path as next transition UpperCAmelCase = next_ver # Validate created path if util_hamilton_cycle(_a , _a , curr_ind + 1 ): return True # Backtrack UpperCAmelCase = -1 return False def snake_case_ (_a : list[list[int]] , _a : int = 0 ): UpperCAmelCase = [-1] * (len(_a ) + 1) # initialize start and end of path with starting index UpperCAmelCase = UpperCAmelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_a , _a , 1 ) else []
358
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = ["""pixel_values"""] def __init__( self , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = PILImageResampling.BICUBIC , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = 1 / 255 , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = True , **UpperCAmelCase__ , ): super().__init__(**UpperCAmelCase__ ) A__ = size if size is not None else {"shortest_edge": 224} A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) A__ = crop_size if crop_size is not None else {"height": 224, "width": 224} A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ , param_name="crop_size" ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ = image_std if image_std is not None else OPENAI_CLIP_STD A__ = do_convert_rgb def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = PILImageResampling.BICUBIC , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) A__ = get_resize_output_image_size(UpperCAmelCase__ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): A__ = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(UpperCAmelCase__ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = ChannelDimension.FIRST , **UpperCAmelCase__ , ): A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(UpperCAmelCase__ , param_name="size" , default_to_square=UpperCAmelCase__ ) A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(UpperCAmelCase__ , param_name="crop_size" , default_to_square=UpperCAmelCase__ ) A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(UpperCAmelCase__ ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: A__ = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: A__ = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: A__ = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: A__ = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] A__ = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] A__ = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
491
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCAmelCase_ : List[str] = logging.getLogger(__name__) class UpperCamelCase : def __init__( self ): A__ = False def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if not self.initialized: A__ = RagRetriever( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , index=UpperCAmelCase__ , init_retrieval=UpperCAmelCase__ , ) A__ = True def __A ( self ): self.retriever.index.init_index() def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): A__ , A__ = self.retriever._main_retrieve(UpperCAmelCase__ , UpperCAmelCase__ ) return doc_ids, retrieved_doc_embeds class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ): if index is not None and index.is_initialized() and len(UpperCAmelCase__ ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , index=UpperCAmelCase__ , init_retrieval=UpperCAmelCase__ , ) A__ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) for worker in self.retrieval_workers ] ) def __A ( self ): logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A__ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] A__ , A__ = ray.get(random_worker.retrieve.remote(UpperCAmelCase__ , UpperCAmelCase__ ) ) else: A__ , A__ = self._main_retrieve(UpperCAmelCase__ , UpperCAmelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase__ ) @classmethod def __A ( cls , UpperCAmelCase__ , UpperCAmelCase__=None , **UpperCAmelCase__ ): return super(UpperCAmelCase__ , cls ).get_tokenizers(UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def __A ( cls , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , **UpperCAmelCase__ ): A__ = kwargs.pop("config" , UpperCAmelCase__ ) or RagConfig.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = RagTokenizer.from_pretrained(UpperCAmelCase__ , config=UpperCAmelCase__ ) A__ = rag_tokenizer.question_encoder A__ = rag_tokenizer.generator if indexed_dataset is not None: A__ = "custom" A__ = CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase__ ) else: A__ = cls._build_index(UpperCAmelCase__ ) return cls( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , retrieval_workers=UpperCAmelCase__ , index=UpperCAmelCase__ , )
491
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCamelCase__ = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' UpperCamelCase__ = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' UpperCamelCase__ = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def UpperCAmelCase__ ( _A , _A ): """simple docstring""" return float((preds == labels).mean() ) def UpperCAmelCase__ ( _A , _A ): """simple docstring""" a_ = simple_accuracy(_A , _A ) a_ = float(fa_score(y_true=_A , y_pred=_A ) ) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase__ ( _A , _A ): """simple docstring""" a_ = np.array(_A ) a_ = np.array(_A ) a_ = en_sentvecs.shape[0] # mean centering a_ = en_sentvecs - np.mean(_A , axis=0 ) a_ = in_sentvecs - np.mean(_A , axis=0 ) a_ = cdist(_A , _A , '''cosine''' ) a_ = np.array(range(_A ) ) a_ = sim.argsort(axis=1 )[:, :10] a_ = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): def __magic_name__ ( self : Union[str, Any] ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), '''references''': datasets.Value('''int64''' ) if self.config_name != '''cvit-mkb-clsr''' else datasets.Sequence(datasets.Value('''float32''' ) ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , ) def __magic_name__ ( self : str , lowercase__ : str , lowercase__ : int ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowercase__ , lowercase__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowercase__ , lowercase__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowercase__ , lowercase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", ''' '''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", ''' '''"wiki-ner"]''' )
703
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = '''▁''' UpperCamelCase__ = {'''vocab_file''': '''spiece.model'''} UpperCamelCase__ = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } UpperCamelCase__ = { '''google/pegasus-xsum''': 512, } UpperCamelCase__ = logging.get_logger(__name__) class __lowercase ( a__ ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self : Tuple , lowercase__ : Tuple , lowercase__ : List[str]="<pad>" , lowercase__ : Any="</s>" , lowercase__ : Union[str, Any]="<unk>" , lowercase__ : Any="<mask_2>" , lowercase__ : int="<mask_1>" , lowercase__ : List[Any]=None , lowercase__ : List[str]=1_0_3 , lowercase__ : Optional[Dict[str, Any]] = None , **lowercase__ : List[Any] , ): a_ = offset if additional_special_tokens is not None: if not isinstance(lowercase__ , lowercase__ ): raise TypeError( f"additional_special_tokens should be of type {type(lowercase__ )}, but is" f" {type(lowercase__ )}" ) a_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(lowercase__ ) , self.offset - 1 ) ] if len(set(lowercase__ ) ) != len(lowercase__ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) a_ = additional_special_tokens_extended else: a_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] a_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase__ , unk_token=lowercase__ , mask_token=lowercase__ , pad_token=lowercase__ , mask_token_sent=lowercase__ , offset=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) a_ = mask_token_sent a_ = vocab_file a_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) # add special tokens to encoder dict a_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) a_ = {v: k for k, v in self.encoder.items()} @property def __magic_name__ ( self : Optional[Any] ): return len(self.sp_model ) + self.offset def __magic_name__ ( self : Dict ): a_ = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): a_ = self.__dict__.copy() a_ = None return state def __setstate__( self : Tuple , lowercase__ : str ): a_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ = {} a_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self : Tuple , lowercase__ : str ): return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def __magic_name__ ( self : List[Any] , lowercase__ : str ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] a_ = self.sp_model.piece_to_id(lowercase__ ) return sp_id + self.offset def __magic_name__ ( self : str , lowercase__ : int ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: a_ = self.sp_model.IdToPiece(index - self.offset ) return token def __magic_name__ ( self : Optional[int] , lowercase__ : List[str] ): a_ = [] a_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase__ ) + token a_ = [] else: current_sub_tokens.append(lowercase__ ) out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def __magic_name__ ( self : Tuple , lowercase__ : Optional[int]=False ): return 1 def __magic_name__ ( self : Any , lowercase__ : Any ): a_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __magic_name__ ( self : Union[str, Any] , lowercase__ : List , lowercase__ : Optional[List] = None , lowercase__ : bool = False ): if already_has_special_tokens: return self._special_token_mask(lowercase__ ) elif token_ids_a is None: return self._special_token_mask(lowercase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __magic_name__ ( self : Union[str, Any] , lowercase__ : Any , lowercase__ : Optional[Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __magic_name__ ( self : Union[str, Any] , lowercase__ : str , lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return a_ = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , '''wb''' ) as fi: a_ = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
143
0
__SCREAMING_SNAKE_CASE : int = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ __SCREAMING_SNAKE_CASE : Dict = [{"""type""": """code""", """content""": INSTALL_CONTENT}] __SCREAMING_SNAKE_CASE : Tuple = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
670
def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : list , UpperCamelCase__ : int ) -> list: """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = len(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: Optional[int] = [[0] * n for i in range(UpperCamelCase__ )] for i in range(UpperCamelCase__ ): __SCREAMING_SNAKE_CASE: str = y_points[i] for i in range(2 , UpperCamelCase__ ): for j in range(UpperCamelCase__ , UpperCamelCase__ ): __SCREAMING_SNAKE_CASE: Optional[int] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
202
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase ( _lowercase ): """simple docstring""" @staticmethod @abstractmethod def A__ ( __snake_case): raise NotImplementedError() @abstractmethod def A__ ( self): raise NotImplementedError()
648
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase__ = numpy.array([0, 0]) lowerCAmelCase__ = numpy.array([0.5, 0.8_66_02_54]) lowerCAmelCase__ = numpy.array([1, 0]) lowerCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] , UpperCAmelCase_ : int ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : Tuple = initial_vectors for _ in range(UpperCAmelCase_ ): _UpperCamelCase : str = iteration_step(UpperCAmelCase_ ) return vectors def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' _UpperCamelCase : int = [] for i, start_vector in enumerate(vectors[:-1] ): _UpperCamelCase : Union[str, Any] = vectors[i + 1] new_vectors.append(UpperCAmelCase_ ) _UpperCamelCase : Tuple = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def lowerCamelCase_ ( UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : float ) -> numpy.ndarray: '''simple docstring''' _UpperCamelCase : str = numpy.radians(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = numpy.cos(UpperCAmelCase_ ), numpy.sin(UpperCAmelCase_ ) _UpperCamelCase : Any = numpy.array(((c, -s), (s, c)) ) return numpy.dot(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : list[numpy.ndarray] ) -> None: '''simple docstring''' _UpperCamelCase : str = plt.gca() axes.set_aspect('equal' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _UpperCamelCase , _UpperCamelCase : Dict = zip(*UpperCAmelCase_ ) plt.plot(UpperCAmelCase_ , UpperCAmelCase_ ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
648
1
from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = False ): """simple docstring""" if radian_mode: return [magnitude * cos(UpperCamelCase__ ), magnitude * sin(UpperCamelCase__ )] return [magnitude * cos(radians(UpperCamelCase__ ) ), magnitude * sin(radians(UpperCamelCase__ ) )] def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = 10**-1 ): """simple docstring""" a_ = cross(UpperCamelCase__ , UpperCamelCase__ ) a_ = sum(UpperCamelCase__ ) return abs(UpperCamelCase__ ) < eps if __name__ == "__main__": # Test to check if it works A_ : List[str] =array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) A_ : NDArray[floataa] =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg A_ : int =array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) A_ : int =array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg A_ : str =array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) A_ : Optional[Any] =array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
483
'''simple docstring''' import argparse import struct import unittest class _snake_case : '''simple docstring''' def __init__( self: Optional[int] , __UpperCamelCase: bytes ) -> None: __magic_name__ : str = data # Initialize hash values __magic_name__ : List[str] = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants __magic_name__ : Dict = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] __magic_name__ : str = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCAmelCase__ ( __UpperCamelCase: bytes ) -> bytes: __magic_name__ : List[Any] = b"\x80" + (b"\x00" * (63 - (len(__UpperCamelCase ) + 8) % 64)) __magic_name__ : str = struct.pack(">Q" , (len(__UpperCamelCase ) * 8) ) return data + padding + big_endian_integer def lowerCAmelCase__ ( self: int ) -> None: # Convert into blocks of 64 bytes __magic_name__ : Any = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __magic_name__ : Tuple = list(struct.unpack(">16L" , __UpperCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __magic_name__ : Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __magic_name__ : Tuple = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __magic_name__ : Any = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression __magic_name__ : Union[str, Any] = self.ror(__UpperCamelCase , 6 ) ^ self.ror(__UpperCamelCase , 11 ) ^ self.ror(__UpperCamelCase , 25 ) __magic_name__ : Tuple = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) __magic_name__ : Dict = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 __magic_name__ : int = self.ror(__UpperCamelCase , 2 ) ^ self.ror(__UpperCamelCase , 13 ) ^ self.ror(__UpperCamelCase , 22 ) __magic_name__ : Optional[int] = (a & b) ^ (a & c) ^ (b & c) __magic_name__ : int = (sa + maj) % 0x1_0000_0000 __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) __magic_name__ : Optional[Any] = [a, b, c, d, e, f, g, h] # Modify final values __magic_name__ : int = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] __magic_name__ : List[str] = "".join([hex(__UpperCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def lowerCAmelCase__ ( self: List[Any] , __UpperCamelCase: int , __UpperCamelCase: int ) -> int: return 0xFFFF_FFFF & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self: Dict ) -> None: import hashlib __magic_name__ : Tuple = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__UpperCamelCase ).hash , hashlib.shaaaa(__UpperCamelCase ).hexdigest() ) def _UpperCamelCase ( ): """simple docstring""" import doctest doctest.testmod() __magic_name__ : Dict = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) __magic_name__ : Any = parser.parse_args() __magic_name__ : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: __magic_name__ : Union[str, Any] = f.read() else: __magic_name__ : List[str] = bytes(UpperCamelCase__ , "utf-8" ) print(SHAaaa(UpperCamelCase__ ).hash ) if __name__ == "__main__": main()
436
0
"""simple docstring""" def _A (__a ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] SCREAMING_SNAKE_CASE_ : str = grid[0] for row_n in range(1 , len(__a ) ): SCREAMING_SNAKE_CASE_ : Tuple = grid[row_n] SCREAMING_SNAKE_CASE_ : int = fill_row(__a , __a ) SCREAMING_SNAKE_CASE_ : List[str] = grid[row_n] return grid[-1][-1] def _A (__a , __a ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(__a ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
176
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCAmelCase__ : '''simple docstring''' def __init__( self : int , lowercase_ : List[Any] , lowercase_ : int=14 , lowercase_ : Tuple=7 , lowercase_ : int=True , lowercase_ : int=True , lowercase_ : int=False , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=99 , lowercase_ : Optional[int]=32 , lowercase_ : List[Any]=4 , lowercase_ : Optional[int]=4 , lowercase_ : List[str]=4 , lowercase_ : Tuple=37 , lowercase_ : Any="gelu" , lowercase_ : Dict=0.1 , lowercase_ : str=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Dict=0.02 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Tuple = seq_length SCREAMING_SNAKE_CASE_ : Any = is_training SCREAMING_SNAKE_CASE_ : int = use_input_mask SCREAMING_SNAKE_CASE_ : Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE_ : Tuple = use_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Tuple = rotary_dim SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : int = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act SCREAMING_SNAKE_CASE_ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : str = vocab_size - 1 SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size - 1 SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size - 1 def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : str = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : str = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowercase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Tuple , lowercase_ : Any , lowercase_ : Any , lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 20 SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class_name(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model.init_cache(input_ids.shape[0] , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''') SCREAMING_SNAKE_CASE_ : Any = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) SCREAMING_SNAKE_CASE_ : Any = model( input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , ) SCREAMING_SNAKE_CASE_ : str = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''') SCREAMING_SNAKE_CASE_ : int = model( input_ids[:, -1:] , attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowercase_ , ) SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_) SCREAMING_SNAKE_CASE_ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}') def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = 20 SCREAMING_SNAKE_CASE_ : List[str] = model_class_name(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) SCREAMING_SNAKE_CASE_ : Tuple = model.init_cache(input_ids.shape[0] , lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) SCREAMING_SNAKE_CASE_ : Dict = model( input_ids[:, :-1] , attention_mask=lowercase_ , past_key_values=lowercase_ , position_ids=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowercase_ , position_ids=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Any = model(lowercase_ , attention_mask=lowercase_) SCREAMING_SNAKE_CASE_ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}') @require_flax class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __UpperCamelCase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = FlaxGPTJModelTester(self) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowercase_ , lowercase_ , lowercase_ , lowercase_) @tooslow def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''') SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=lowercase_ , truncation=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''') SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : str = model.config.eos_token_id SCREAMING_SNAKE_CASE_ : Optional[Any] = jax.jit(model.generate) SCREAMING_SNAKE_CASE_ : Tuple = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id).sequences SCREAMING_SNAKE_CASE_ : int = tokenizer.batch_decode(lowercase_ , skip_special_tokens=lowercase_) SCREAMING_SNAKE_CASE_ : int = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(lowercase_ , lowercase_) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._prepare_for_class(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Any = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ : Tuple = getattr(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = pt_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE_ : List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(lowercase_): SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : List[Any] = pt_model_class(lowercase_).eval() SCREAMING_SNAKE_CASE_ : Any = model_class(lowercase_ , dtype=jnp.floataa) SCREAMING_SNAKE_CASE_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = pt_model(**lowercase_).to_tuple() SCREAMING_SNAKE_CASE_ : List[Any] = fx_model(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(lowercase_ , lowercase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : int = model_class.from_pretrained(lowercase_ , from_pt=lowercase_) SCREAMING_SNAKE_CASE_ : str = fx_model_loaded(**lowercase_).to_tuple() self.assertEqual( len(lowercase_) , len(lowercase_) , '''Output lengths differ between Flax and PyTorch''') for fx_output_loaded, pt_output in zip(lowercase_ , lowercase_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2) @is_pt_flax_cross_test def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs SCREAMING_SNAKE_CASE_ : Tuple = self._prepare_for_class(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ : Dict = getattr(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : int = pt_model_class(lowercase_).eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(lowercase_ , dtype=jnp.floataa) SCREAMING_SNAKE_CASE_ : int = load_flax_weights_in_pytorch_model(lowercase_ , fx_model.params) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = pt_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE_ : Any = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(lowercase_): SCREAMING_SNAKE_CASE_ : int = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : List[str] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = pt_model(**lowercase_).to_tuple() SCREAMING_SNAKE_CASE_ : str = fx_model(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(lowercase_ , lowercase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = pt_model_class.from_pretrained(lowercase_ , from_flax=lowercase_) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = pt_model_loaded(**lowercase_).to_tuple() self.assertEqual( len(lowercase_) , len(lowercase_) , '''Output lengths differ between Flax and PyTorch''') for fx_output, pt_output in zip(lowercase_ , lowercase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) @tooslow def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Any = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''') SCREAMING_SNAKE_CASE_ : List[str] = model(np.ones((1, 1))) self.assertIsNotNone(lowercase_)
176
1
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[str]: """simple docstring""" if height >= 1: move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) move_disk(lowercase_ , lowercase_ ) move_tower(height - 1 , lowercase_ , lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: """simple docstring""" print('''moving disk from''' , lowercase_ , '''to''' , lowercase_ ) def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" A__ = int(input('''Height of hanoi: ''' ).strip() ) move_tower(lowercase_ , '''A''' , '''B''' , '''C''' ) if __name__ == "__main__": main()
87
'''simple docstring''' def __UpperCAmelCase ( a_: int, a_: int ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) _UpperCAmelCase : Any = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : Optional[Any] = str(bin(a_ ) )[2:] # remove the leading "0b" _UpperCAmelCase : List[Any] = max(len(a_ ), len(a_ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(a_ ), b_binary.zfill(a_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
494
0
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowerCamelCase = "\\n Text data.\n Second line of data." __lowerCamelCase = "file" @pytest.fixture(scope='session' ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') A__ = bytes(UpperCamelCase__ , 'utf-8' ) with zstd.open(UpperCamelCase__ , 'wb' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , UpperCamelCase__ ) , 'w' ) as f: f.write(UpperCamelCase__ ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} A__ = input_paths[compression_format] A__ = tmp_path / 'cache' A__ = DownloadConfig(cache_dir=UpperCamelCase__ , extract_compressed_file=UpperCamelCase__ ) A__ = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) with open(UpperCamelCase__ ) as f: A__ = f.read() with open(UpperCamelCase__ ) as f: A__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" A__ = 'custom_cache' A__ = 'custom_extracted_dir' A__ = tmp_path / 'custom_extracted_path' if default_extracted: A__ = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , UpperCamelCase__ ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(UpperCamelCase__ ) ) A__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) A__ = xz_file A__ = ( DownloadConfig(extract_compressed_file=UpperCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=UpperCamelCase__ ) ) A__ = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) assert Path(UpperCamelCase__ ).parent.parts[-2:] == expected def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = str(Path(UpperCamelCase__ ).resolve() ) assert cached_path(UpperCamelCase__ ) == text_file # relative path A__ = str(Path(UpperCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(UpperCamelCase__ ) == text_file def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) # relative path A__ = './__missing_file__.txt' with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(UpperCamelCase__ ) as f: A__ = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , UpperCamelCase__ ) def UpperCAmelCase ( ): """simple docstring""" with pytest.raises(UpperCamelCase__ ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(UpperCamelCase__ ): http_get('https://huggingface.co' , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(UpperCamelCase__ ): ftp_get('ftp://huggingface.co' , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , UpperCamelCase__ ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(UpperCamelCase__ ): fsspec_get('s3://huggingface.co' , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): fsspec_head('s3://huggingface.co' )
536
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class UpperCamelCase__( __A ): lowerCAmelCase__ : Union[str, Any] = 'M-CLIP' def __init__( self ,__UpperCAmelCase=10_24 ,__UpperCAmelCase=7_68 ,**__UpperCAmelCase ) -> List[str]: A__ = transformerDimSize A__ = imageDimSize super().__init__(**__UpperCAmelCase ) class UpperCamelCase__( __A ): lowerCAmelCase__ : Union[str, Any] = MCLIPConfig def __init__( self ,__UpperCAmelCase ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: super().__init__(__UpperCAmelCase ,*__UpperCAmelCase ,**__UpperCAmelCase ) A__ = XLMRobertaModel(__UpperCAmelCase ) A__ = torch.nn.Linear( in_features=config.transformerDimensions ,out_features=config.numDims ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: A__ = self.transformer(input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase )[0] A__ = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(__UpperCAmelCase ), embs
536
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase__ ( UpperCAmelCase_ ): lowercase__ : Dict = """naver-clova-ix/donut-base-finetuned-docvqa""" lowercase__ : Optional[Any] = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) lowercase__ : Optional[int] = """document_qa""" lowercase__ : Optional[Any] = AutoProcessor lowercase__ : Any = VisionEncoderDecoderModel lowercase__ : Dict = ["""image""", """text"""] lowercase__ : Any = ["""text"""] def __init__( self , *UpperCamelCase__ , **UpperCamelCase__ ): '''simple docstring''' if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" A__ = task_prompt.replace("{user_input}" , UpperCamelCase__ ) A__ = self.pre_processor.tokenizer( UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="pt" ).input_ids A__ = self.pre_processor(UpperCamelCase__ , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=UpperCamelCase__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=UpperCamelCase__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=UpperCamelCase__ , ).sequences def lowercase_ ( self , UpperCamelCase__ ): '''simple docstring''' A__ = self.pre_processor.batch_decode(UpperCamelCase__ )[0] A__ = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) A__ = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) A__ = re.sub(R"<.*?>" , "" , UpperCamelCase__ , count=1 ).strip() # remove first task start token A__ = self.pre_processor.tokenajson(UpperCamelCase__ ) return sequence["answer"]
337
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase ="""▁""" __UpperCAmelCase =get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowercase__ : str = BertGenerationTokenizer lowercase__ : int = False lowercase__ : Optional[Any] = True def lowercase_ ( self ): '''simple docstring''' super().setUp() A__ = BertGenerationTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ): '''simple docstring''' A__ = "<s>" A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(UpperCamelCase__ ) , 10_02 ) def lowercase_ ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def lowercase_ ( self ): '''simple docstring''' A__ = BertGenerationTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) A__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(UpperCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [2_85, 46, 10, 1_70, 3_82] , ) A__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) A__ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A__ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase_ ( self ): '''simple docstring''' return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = "Hello World!" A__ = [1_85_36, 22_60, 1_01] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) A__ = [ 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, ] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @require_torch @slow def lowercase_ ( self ): '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence A__ = list(self.big_tokenizer.get_vocab().keys() )[:10] A__ = " ".join(UpperCamelCase__ ) A__ = self.big_tokenizer.encode_plus(UpperCamelCase__ , return_tensors="pt" , return_token_type_ids=UpperCamelCase__ ) A__ = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=UpperCamelCase__ ) A__ = BertGenerationConfig() A__ = BertGenerationEncoder(UpperCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCamelCase__ ) model(**UpperCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' A__ = {"input_ids": [[3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14], [4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
337
1
'''simple docstring''' import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase = "\nHuman: <<task>>\n\nAssistant: " _lowerCAmelCase = "huggingface-tools/default-prompts" _lowerCAmelCase = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def UpperCamelCase ( a , a , a="run" ) -> str: '''simple docstring''' if prompt_or_repo_id is None: __magic_name__ = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , a ) is not None: return prompt_or_repo_id __magic_name__ = cached_file( a , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(a , '''r''' , encoding='''utf-8''' ) as f: return f.read()
716
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self : Any , a__ : Optional[int] , a__ : Any=13 , a__ : int=30 , a__ : List[Any]=2 , a__ : Any=3 , a__ : str=True , a__ : Optional[int]=True , a__ : Any=32 , a__ : Union[str, Any]=5 , a__ : Union[str, Any]=4 , a__ : List[Any]=37 , a__ : Optional[int]="gelu" , a__ : List[Any]=0.1 , a__ : Union[str, Any]=0.1 , a__ : List[Any]=10 , a__ : Any=0.02 , a__ : int=None , a__ : List[str]=2 , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = image_size __magic_name__ = patch_size __magic_name__ = num_channels __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = scope __magic_name__ = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ = (image_size // patch_size) ** 2 __magic_name__ = num_patches + 1 def snake_case__ ( self : Optional[Any] ): __magic_name__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Optional[int] ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def snake_case__ ( self : Tuple , a__ : Tuple , a__ : int , a__ : Any ): __magic_name__ = ViTModel(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : Optional[Any] , a__ : Optional[Any] , a__ : List[Any] , a__ : str ): __magic_name__ = ViTForMaskedImageModeling(config=a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ = 1 __magic_name__ = ViTForMaskedImageModeling(a__ ) model.to(a__ ) model.eval() __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(a__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def snake_case__ ( self : List[Any] , a__ : List[str] , a__ : int , a__ : Dict ): __magic_name__ = self.type_sequence_label_size __magic_name__ = ViTForImageClassification(a__ ) model.to(a__ ) model.eval() __magic_name__ = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ = 1 __magic_name__ = ViTForImageClassification(a__ ) model.to(a__ ) model.eval() __magic_name__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case__ ( self : List[Any] ): __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __a ,__a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Union[str, Any] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE :List[Any] = ( {"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE :str = True __SCREAMING_SNAKE_CASE :Optional[int] = False __SCREAMING_SNAKE_CASE :int = False __SCREAMING_SNAKE_CASE :Optional[int] = False def snake_case__ ( self : List[Any] ): __magic_name__ = ViTModelTester(self ) __magic_name__ = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def snake_case__ ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def snake_case__ ( self : Optional[int] ): pass def snake_case__ ( self : Dict ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def snake_case__ ( self : Union[str, Any] ): __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ = model_class(a__ ) __magic_name__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ = [*signature.parameters.keys()] __magic_name__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def snake_case__ ( self : List[str] ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a__ ) def snake_case__ ( self : Optional[int] ): __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def snake_case__ ( self : Optional[Any] ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = ViTModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def UpperCamelCase ( ) -> Tuple: '''simple docstring''' __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def snake_case__ ( self : List[str] ): return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def snake_case__ ( self : List[str] ): __magic_name__ = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(a__ ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): __magic_name__ = model(**a__ ) # verify the logits __magic_name__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) __magic_name__ = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @slow def snake_case__ ( self : Optional[int] ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. __magic_name__ = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(a__ ) __magic_name__ = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=480 ) __magic_name__ = prepare_img() __magic_name__ = image_processor(images=a__ , return_tensors='''pt''' ) __magic_name__ = inputs.pixel_values.to(a__ ) # forward pass with torch.no_grad(): __magic_name__ = model(a__ , interpolate_pos_encoding=a__ ) # verify the logits __magic_name__ = torch.Size((1, 3601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , a__ ) __magic_name__ = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def snake_case__ ( self : str ): __magic_name__ = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) __magic_name__ = self.default_image_processor __magic_name__ = prepare_img() __magic_name__ = image_processor(images=a__ , return_tensors='''pt''' ) __magic_name__ = inputs.pixel_values.to(a__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __magic_name__ = model(a__ )
245
0
"""simple docstring""" UpperCamelCase__ = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) UpperCamelCase__ = frozenset(['''prompt''', '''negative_prompt''']) UpperCamelCase__ = frozenset([]) UpperCamelCase__ = frozenset(['''image''']) UpperCamelCase__ = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) UpperCamelCase__ = frozenset(['''image''']) UpperCamelCase__ = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) UpperCamelCase__ = frozenset(['''prompt''', '''image''', '''negative_prompt''']) UpperCamelCase__ = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) UpperCamelCase__ = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) UpperCamelCase__ = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) UpperCamelCase__ = frozenset(['''image''', '''mask_image''']) UpperCamelCase__ = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) UpperCamelCase__ = frozenset(['''example_image''', '''image''', '''mask_image''']) UpperCamelCase__ = frozenset(['''class_labels''']) UpperCamelCase__ = frozenset(['''class_labels''']) UpperCamelCase__ = frozenset(['''batch_size''']) UpperCamelCase__ = frozenset([]) UpperCamelCase__ = frozenset(['''batch_size''']) UpperCamelCase__ = frozenset([]) UpperCamelCase__ = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) UpperCamelCase__ = frozenset(['''prompt''', '''negative_prompt''']) UpperCamelCase__ = frozenset(['''input_tokens''']) UpperCamelCase__ = frozenset(['''input_tokens'''])
227
"""simple docstring""" from __future__ import annotations from fractions import Fraction def UpperCAmelCase ( snake_case : int , snake_case : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCAmelCase ( snake_case : int ): _lowerCAmelCase:Optional[Any] = [] _lowerCAmelCase:Dict = 11 _lowerCAmelCase:int = int('''1''' + '''0''' * digit_len ) for num in range(snake_case , snake_case ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(snake_case , snake_case ): solutions.append(F'{num}/{den}' ) den += 1 num += 1 _lowerCAmelCase:Optional[Any] = 10 return solutions def UpperCAmelCase ( snake_case : int = 2 ): _lowerCAmelCase:Optional[int] = 1.0 for fraction in fraction_list(snake_case ): _lowerCAmelCase:Any = Fraction(snake_case ) result *= frac.denominator / frac.numerator return int(snake_case ) if __name__ == "__main__": print(solution())
227
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { """configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""], """tokenization_roc_bert""": ["""RoCBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoCBertForCausalLM""", """RoCBertForMaskedLM""", """RoCBertForMultipleChoice""", """RoCBertForPreTraining""", """RoCBertForQuestionAnswering""", """RoCBertForSequenceClassification""", """RoCBertForTokenClassification""", """RoCBertLayer""", """RoCBertModel""", """RoCBertPreTrainedModel""", """load_tf_weights_in_roc_bert""", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
703
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {'''configuration_ibert''': ['''IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''IBertConfig''', '''IBertOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''IBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''IBertForMaskedLM''', '''IBertForMultipleChoice''', '''IBertForQuestionAnswering''', '''IBertForSequenceClassification''', '''IBertForTokenClassification''', '''IBertModel''', '''IBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
115
0
def _snake_case (_snake_case : Optional[Any]) -> bool: if p < 2: raise ValueError('p should not be less than 2!') elif p == 2: return True _lowercase =4 _lowercase =(1 << p) - 1 for _ in range(p - 2): _lowercase =((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
181
import unittest import numpy as np def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , ) -> np.ndarray: UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: str = np.shape(UpperCAmelCase__ ) UpperCamelCase_: List[Any] = np.shape(UpperCAmelCase__ ) if shape_a[0] != shape_b[0]: UpperCamelCase_: Any = ( 'Expected the same number of rows for A and B. ' F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCAmelCase__ ) if shape_b[1] != shape_c[1]: UpperCamelCase_: int = ( 'Expected the same number of columns for B and C. ' F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCAmelCase__ ) UpperCamelCase_: Dict = pseudo_inv if a_inv is None: try: UpperCamelCase_: Optional[Any] = np.linalg.inv(UpperCAmelCase__ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: Dict = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: Tuple = np.array([[2, 1], [6, 3]] ) UpperCamelCase_: Tuple = schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Optional[Any] = np.block([[a, b], [b.T, c]] ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: List[str] = np.linalg.det(_lowerCamelCase ) UpperCamelCase_: Dict = np.linalg.det(_lowerCamelCase ) self.assertAlmostEqual(_lowerCamelCase , det_a * det_s ) def _a ( self ): UpperCamelCase_: int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[str] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: List[Any] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_: str = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_: List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_lowerCamelCase ): schur_complement(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
57
0
"""simple docstring""" import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __magic_name__ ( __UpperCAmelCase ): __A : int = ComputeEnvironment.AMAZON_SAGEMAKER __A : Optional[int] = True __A : List[Any] = "ml.p3.2xlarge" __A : Optional[Any] = "accelerate_sagemaker_execution_role" __A : str = "hf-sm" __A : Tuple = "us-east-1" __A : Optional[int] = 1 __A : List[str] = "accelerate-sagemaker-1" __A : Optional[int] = "1.6" __A : Dict = "4.4" __A : str = "train.py" __A : int = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] __A : Any = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : Dict ): '''simple docstring''' lowercase :List[Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , snake_case__ ) assert isinstance(converted_args['''do_train'''] , snake_case__ ) assert isinstance(converted_args['''epochs'''] , snake_case__ ) assert isinstance(converted_args['''learning_rate'''] , snake_case__ ) assert isinstance(converted_args['''max_steps'''] , snake_case__ ) with pytest.raises(snake_case__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
475
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class __magic_name__ ( __UpperCAmelCase ): __A : torch.FloatTensor __A : torch.FloatTensor class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ): __A : Any = 1 @register_to_config def __init__( self : int , snake_case__ : int = 2_0_0_0 , snake_case__ : float = 0.15 , snake_case__ : float = 0.01 , snake_case__ : float = 13_48.0 , snake_case__ : float = 1e-5 , snake_case__ : int = 1 , ): '''simple docstring''' lowercase :List[Any] = sigma_max # setable values lowercase :List[str] = None self.set_sigmas(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def __snake_case ( self : Optional[Any] , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ): '''simple docstring''' return sample def __snake_case ( self : Optional[int] , snake_case__ : int , snake_case__ : float = None , snake_case__ : Union[str, torch.device] = None ): '''simple docstring''' lowercase :Optional[int] = sampling_eps if sampling_eps is not None else self.config.sampling_eps lowercase :Tuple = torch.linspace(1 , snake_case__ , snake_case__ , device=snake_case__ ) def __snake_case ( self : List[str] , snake_case__ : int , snake_case__ : float = None , snake_case__ : float = None , snake_case__ : float = None ): '''simple docstring''' lowercase :int = sigma_min if sigma_min is not None else self.config.sigma_min lowercase :Any = sigma_max if sigma_max is not None else self.config.sigma_max lowercase :Tuple = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(snake_case__ , snake_case__ ) lowercase :Union[str, Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) lowercase :str = torch.exp(torch.linspace(math.log(snake_case__ ) , math.log(snake_case__ ) , snake_case__ ) ) lowercase :List[str] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def __snake_case ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : int ): '''simple docstring''' return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def __snake_case ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : int , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.Generator] = None , snake_case__ : bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) lowercase :Optional[int] = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) lowercase :Optional[int] = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda lowercase :Union[str, Any] = timesteps.to(self.discrete_sigmas.device ) lowercase :List[Any] = self.discrete_sigmas[timesteps].to(sample.device ) lowercase :str = self.get_adjacent_sigma(snake_case__ , snake_case__ ).to(sample.device ) lowercase :Optional[Any] = torch.zeros_like(snake_case__ ) lowercase :List[Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods lowercase :Union[str, Any] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): lowercase :Dict = diffusion.unsqueeze(-1 ) lowercase :List[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of lowercase :List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=snake_case__ , device=sample.device , dtype=sample.dtype ) lowercase :int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? lowercase :Any = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=snake_case__ , prev_sample_mean=snake_case__ ) def __snake_case ( self : Union[str, Any] , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : Optional[torch.Generator] = None , snake_case__ : bool = True , ): '''simple docstring''' if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction lowercase :Tuple = randn_tensor(sample.shape , layout=sample.layout , generator=snake_case__ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr lowercase :List[Any] = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() lowercase :List[str] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() lowercase :int = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 lowercase :Optional[Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term lowercase :Union[str, Any] = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): lowercase :Union[str, Any] = step_size.unsqueeze(-1 ) lowercase :Union[str, Any] = sample + step_size * model_output lowercase :Any = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case__ ) def __snake_case ( self : List[str] , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , ): '''simple docstring''' lowercase :List[Any] = timesteps.to(original_samples.device ) lowercase :str = self.discrete_sigmas.to(original_samples.device )[timesteps] lowercase :Optional[int] = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(snake_case__ ) * sigmas[:, None, None, None] ) lowercase :str = noise + original_samples return noisy_samples def __len__( self : Optional[Any] ): '''simple docstring''' return self.config.num_train_timesteps
475
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __A ( a_ : int=None )-> Tuple: '''simple docstring''' if subparsers is not None: SCREAMING_SNAKE_CASE : List[str] = subparsers.add_parser('''test''' ) else: SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=a_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def __A ( a_ : Any )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: SCREAMING_SNAKE_CASE : Tuple = script_name else: SCREAMING_SNAKE_CASE : Optional[Any] = F"--config_file={args.config_file} {script_name}" SCREAMING_SNAKE_CASE : str = ['''accelerate-launch'''] + test_args.split() SCREAMING_SNAKE_CASE : List[str] = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def __A ( )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = test_command_parser() SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
698
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """nllb-moe""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[str] , lowerCamelCase_ :Optional[int]=12_81_12 , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :Any=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :List[str]=12 , lowerCamelCase_ :Optional[int]=40_96 , lowerCamelCase_ :int=16 , lowerCamelCase_ :Union[str, Any]=0.0_5 , lowerCamelCase_ :Optional[int]=0.0_5 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :str=10_24 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[Any]="float32" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Any=64 , lowerCamelCase_ :Optional[int]=4 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Union[str, Any]=0.0_0_1 , lowerCamelCase_ :Optional[int]=0.0_0_1 , lowerCamelCase_ :List[str]="all" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :Any=False , lowerCamelCase_ :Tuple=1.0 , lowerCamelCase_ :Union[str, Any]=0.2 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :int=2 , lowerCamelCase_ :List[str]=False , **lowerCamelCase_ :int , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : str = d_model SCREAMING_SNAKE_CASE : Optional[int] = encoder_ffn_dim SCREAMING_SNAKE_CASE : Any = encoder_layers SCREAMING_SNAKE_CASE : Any = encoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : str = activation_dropout SCREAMING_SNAKE_CASE : Any = activation_function SCREAMING_SNAKE_CASE : Tuple = init_std SCREAMING_SNAKE_CASE : str = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Optional[int] = encoder_layers SCREAMING_SNAKE_CASE : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : int = router_z_loss_coef SCREAMING_SNAKE_CASE : Any = router_aux_loss_coef SCREAMING_SNAKE_CASE : str = decoder_sparse_step SCREAMING_SNAKE_CASE : str = encoder_sparse_step SCREAMING_SNAKE_CASE : List[str] = num_experts SCREAMING_SNAKE_CASE : Union[str, Any] = expert_capacity SCREAMING_SNAKE_CASE : Tuple = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : Union[str, Any] = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : int = batch_prioritized_routing SCREAMING_SNAKE_CASE : Optional[int] = second_expert_policy SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : Any = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : Optional[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : Tuple = output_router_logits super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , **lowerCamelCase_ , )
698
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowercase : Union[str, Any] =logging.get_logger(__name__) _lowercase : Dict ={ """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE_ ( UpperCamelCase_ ): '''simple docstring''' lowercase : Dict = "deberta-v2" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Dict=12_81_00 , SCREAMING_SNAKE_CASE__ : Any=15_36 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=24 , SCREAMING_SNAKE_CASE__ : Optional[int]=24 , SCREAMING_SNAKE_CASE__ : Any=61_44 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_12 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE__ : str=1e-7 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : str=-1 , SCREAMING_SNAKE_CASE__ : str=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Any=0 , SCREAMING_SNAKE_CASE__ : Any="gelu" , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> Any: super().__init__(**__A ) A : Optional[int] =hidden_size A : Union[str, Any] =num_hidden_layers A : Optional[int] =num_attention_heads A : Tuple =intermediate_size A : Union[str, Any] =hidden_act A : Any =hidden_dropout_prob A : Tuple =attention_probs_dropout_prob A : Tuple =max_position_embeddings A : List[Any] =type_vocab_size A : int =initializer_range A : List[Any] =relative_attention A : Dict =max_relative_positions A : Any =pad_token_id A : Any =position_biased_input # Backwards compatibility if type(__A ) == str: A : List[Any] =[x.strip() for x in pos_att_type.lower().split('|' )] A : List[str] =pos_att_type A : Tuple =vocab_size A : List[str] =layer_norm_eps A : List[str] =kwargs.get('pooler_hidden_size' , __A ) A : Tuple =pooler_dropout A : str =pooler_hidden_act class SCREAMING_SNAKE_CASE_ ( UpperCamelCase_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Union[str, Any]: if self.task == "multiple-choice": A : int ={0: "batch", 1: "choice", 2: "sequence"} else: A : List[Any] ={0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int: return 12 def SCREAMING_SNAKE_CASE_ ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : int = -1 , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional["TensorType"] = None , SCREAMING_SNAKE_CASE__ : int = 3 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : int = 40 , SCREAMING_SNAKE_CASE__ : "PreTrainedTokenizerBase" = None , ) -> int: A : int =super().generate_dummy_inputs(preprocessor=__A , framework=__A ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
703
import heapq def A__ ( lowercase: dict ) -> set[int]: A : list[list] =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(lowercase, [-1 * len(lowercase ), (key, value)] ) # chosen_vertices = set of chosen vertices A : Dict =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices A : List[str] =heapq.heappop(lowercase )[1][0] chosen_vertices.add(lowercase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: A : str =elem[1][1].index(lowercase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(lowercase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _lowercase : List[Any] ={0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
661
0
import numpy # List of input, output pairs lowercase = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) lowercase = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) lowercase = [2, 4, 1, 5] lowercase = len(train_data) lowercase = 0.009 def __lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]="train" ) -> Optional[int]: return calculate_hypothesis_value(UpperCAmelCase__ , UpperCAmelCase__ ) - output( UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) -> Optional[int]: lowerCamelCase_ = 0 for i in range(len(UpperCAmelCase__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __lowerCAmelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __lowerCAmelCase ( UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ) -> Union[str, Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __lowerCAmelCase ( UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str]=m ) -> Optional[int]: lowerCamelCase_ = 0 for i in range(UpperCAmelCase__ ): if index == -1: summation_value += _error(UpperCAmelCase__ ) else: summation_value += _error(UpperCAmelCase__ ) * train_data[i][0][index] return summation_value def __lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) -> Tuple: lowerCamelCase_ = summation_of_cost_derivative(UpperCAmelCase__ , UpperCAmelCase__ ) / m return cost_derivative_value def __lowerCAmelCase ( ) -> Any: global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase_ = 0.0_0_0_0_0_2 lowerCamelCase_ = 0 lowerCamelCase_ = 0 while True: j += 1 lowerCamelCase_ = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase__ ) ): lowerCamelCase_ = get_cost_derivative(i - 1 ) lowerCamelCase_ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase__ , UpperCAmelCase__ , atol=UpperCAmelCase__ , rtol=UpperCAmelCase__ , ): break lowerCamelCase_ = temp_parameter_vector print(("""Number of iterations:""", j) ) def __lowerCAmelCase ( ) -> str: for i in range(len(UpperCAmelCase__ ) ): print(("""Actual output value:""", output(UpperCAmelCase__ , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(UpperCAmelCase__ , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
272
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __lowerCAmelCase ( UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[int]=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Dict=None , ) -> List[Any]: if attention_mask is None: lowerCamelCase_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __A: def __init__( self : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : str=1_3 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : Tuple=True , __UpperCamelCase : List[Any]=False , __UpperCamelCase : Dict=9_9 , __UpperCamelCase : Tuple=1_6 , __UpperCamelCase : Any=2 , __UpperCamelCase : Dict=4 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : str=0.1 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : str=2 , __UpperCamelCase : Tuple=1 , __UpperCamelCase : Optional[Any]=0 , __UpperCamelCase : str=0.02 , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = eos_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = bos_token_id lowerCamelCase_ = initializer_range def lowercase__ ( self : str ): lowerCamelCase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCamelCase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCamelCase_ = shift_tokens_right(__UpperCamelCase , 1 , 2 ) lowerCamelCase_ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__UpperCamelCase , ) lowerCamelCase_ = prepare_blenderbot_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def lowercase__ ( self : List[str] ): lowerCamelCase_ , lowerCamelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self : Tuple , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : str ): lowerCamelCase_ = 2_0 lowerCamelCase_ = model_class_name(__UpperCamelCase ) lowerCamelCase_ = model.encode(inputs_dict["""input_ids"""] ) lowerCamelCase_ , lowerCamelCase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase_ = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) lowerCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCamelCase_ = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , ) lowerCamelCase_ = model.decode(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] ): lowerCamelCase_ = 2_0 lowerCamelCase_ = model_class_name(__UpperCamelCase ) lowerCamelCase_ = model.encode(inputs_dict["""input_ids"""] ) lowerCamelCase_ , lowerCamelCase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowerCamelCase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase_ = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase_ = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) lowerCamelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCamelCase_ = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) lowerCamelCase_ = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase ) lowerCamelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class __A( unittest.TestCase ): SCREAMING_SNAKE_CASE = 9_9 def lowercase__ ( self : Dict ): lowerCamelCase_ = np.array( [ [7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2], [5, 9_7, 1_7, 3_9, 9_4, 4_0, 2], [7_6, 8_3, 9_4, 2_5, 7_0, 7_8, 2], [8_7, 5_9, 4_1, 3_5, 4_8, 6_6, 2], [5_5, 1_3, 1_6, 5_8, 5, 2, 1], # note padding [6_4, 2_7, 3_1, 5_1, 1_2, 7_5, 2], [5_2, 6_4, 8_6, 1_7, 8_3, 3_9, 2], [4_8, 6_1, 9, 2_4, 7_1, 8_2, 2], [2_6, 1, 6_0, 4_8, 2_2, 1_3, 2], [2_1, 5, 6_2, 2_8, 1_4, 7_6, 2], [4_5, 9_8, 3_7, 8_6, 5_9, 4_8, 2], [7_0, 7_0, 5_0, 9, 2_8, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase_ = input_ids.shape[0] lowerCamelCase_ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=2_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=3_2 , decoder_ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase__ ( self : List[Any] ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_config_and_data() lowerCamelCase_ = FlaxBlenderbotSmallForConditionalGeneration(__UpperCamelCase ) lowerCamelCase_ = lm_model(input_ids=__UpperCamelCase ) lowerCamelCase_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , __UpperCamelCase ) def lowercase__ ( self : Tuple ): lowerCamelCase_ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=1_4 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=4_8 , ) lowerCamelCase_ = FlaxBlenderbotSmallForConditionalGeneration(__UpperCamelCase ) lowerCamelCase_ = np.array([[7_1, 8_2, 1_8, 3_3, 4_6, 9_1, 2], [6_8, 3_4, 2_6, 5_8, 3_0, 2, 1]] , dtype=np.intaa ) lowerCamelCase_ = np.array([[8_2, 7_1, 8_2, 1_8, 2], [5_8, 6_8, 2, 1, 1]] , dtype=np.intaa ) lowerCamelCase_ = lm_model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ) lowerCamelCase_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , __UpperCamelCase ) def lowercase__ ( self : int ): lowerCamelCase_ = np.array([[7_1, 8_2, 1_8, 3_3, 2, 1, 1], [6_8, 3_4, 2_6, 5_8, 3_0, 8_2, 2]] , dtype=np.intaa ) lowerCamelCase_ = shift_tokens_right(__UpperCamelCase , 1 , 2 ) lowerCamelCase_ = np.equal(__UpperCamelCase , 1 ).astype(np.floataa ).sum() lowerCamelCase_ = np.equal(__UpperCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__UpperCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __A( UpperCAmelCase , unittest.TestCase , UpperCAmelCase ): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ = FlaxBlenderbotSmallModelTester(self ) def lowercase__ ( self : str ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Optional[int] ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : List[str] ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = model_class(__UpperCamelCase ) @jax.jit def encode_jitted(__UpperCamelCase : List[Any] , __UpperCamelCase : Dict=None , **__UpperCamelCase : Tuple ): return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase ) with self.subTest("""JIT Enabled""" ): lowerCamelCase_ = encode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase_ = encode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self : Any ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase_ = model_class(__UpperCamelCase ) lowerCamelCase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) lowerCamelCase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(__UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] ): return model.decode( decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , ) with self.subTest("""JIT Enabled""" ): lowerCamelCase_ = decode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): lowerCamelCase_ = decode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase__ ( self : str ): for model_class_name in self.all_model_classes: lowerCamelCase_ = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase_ = np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase_ = model(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase )
272
1
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): _lowercase =42 _lowercase =None def lowerCamelCase__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict=0.999 , __lowerCAmelCase : Optional[Any]="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__lowerCAmelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowerCAmelCase : Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowerCAmelCase_ = [] for i in range(__UpperCamelCase ): lowerCAmelCase_ = i / num_diffusion_timesteps lowerCAmelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) , __UpperCamelCase ) ) return torch.tensor(__UpperCamelCase , dtype=torch.floataa ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): @register_to_config def __init__( self , _UpperCamelCase = 1_000 , _UpperCamelCase = "fixed_small_log" , _UpperCamelCase = True , _UpperCamelCase = 1.0 , _UpperCamelCase = "epsilon" , _UpperCamelCase = "squaredcos_cap_v2" , ) -> Tuple: if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) lowerCAmelCase_ = betas_for_alpha_bar(_lowercase ) lowerCAmelCase_ = 1.0 - self.betas lowerCAmelCase_ = torch.cumprod(self.alphas , dim=0 ) lowerCAmelCase_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCAmelCase_ = 1.0 # setable values lowerCAmelCase_ = None lowerCAmelCase_ = torch.from_numpy(np.arange(0 , _lowercase )[::-1].copy() ) lowerCAmelCase_ = variance_type def __a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> torch.FloatTensor: return sample def __a ( self , _UpperCamelCase , _UpperCamelCase = None ) -> Union[str, Any]: lowerCAmelCase_ = num_inference_steps lowerCAmelCase_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCAmelCase_ = (np.arange(0 , _lowercase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCAmelCase_ = torch.from_numpy(_lowercase ).to(_lowercase ) def __a ( self , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None ) -> Any: if prev_timestep is None: lowerCAmelCase_ = t - 1 lowerCAmelCase_ = self.alphas_cumprod[t] lowerCAmelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase_ = self.betas[t] else: lowerCAmelCase_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCAmelCase_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCAmelCase_ = torch.log(torch.clamp(_lowercase , min=1e-2_0 ) ) lowerCAmelCase_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCAmelCase_ = variance.log() lowerCAmelCase_ = beta.log() lowerCAmelCase_ = (predicted_variance + 1) / 2 lowerCAmelCase_ = frac * max_log + (1 - frac) * min_log return variance def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase=None , _UpperCamelCase = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: lowerCAmelCase_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCAmelCase_ = torch.split(_lowercase , sample.shape[1] , dim=1 ) else: lowerCAmelCase_ = None # 1. compute alphas, betas if prev_timestep is None: lowerCAmelCase_ = t - 1 lowerCAmelCase_ = self.alphas_cumprod[t] lowerCAmelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase_ = 1 - alpha_prod_t lowerCAmelCase_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase_ = self.betas[t] lowerCAmelCase_ = self.alphas[t] else: lowerCAmelCase_ = 1 - alpha_prod_t / alpha_prod_t_prev lowerCAmelCase_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase_ = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase_ = torch.clamp( _lowercase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCAmelCase_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase_ = 0 if t > 0: lowerCAmelCase_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=_lowercase , device=model_output.device ) lowerCAmelCase_ = self._get_variance( _lowercase , predicted_variance=_lowercase , prev_timestep=_lowercase , ) if self.variance_type == "fixed_small_log": lowerCAmelCase_ = variance elif self.variance_type == "learned_range": lowerCAmelCase_ = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) lowerCAmelCase_ = variance * variance_noise lowerCAmelCase_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=_lowercase , pred_original_sample=_lowercase ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> torch.FloatTensor: lowerCAmelCase_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCAmelCase_ = timesteps.to(original_samples.device ) lowerCAmelCase_ = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase_ = sqrt_alpha_prod.unsqueeze(-1 ) lowerCAmelCase_ = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCAmelCase_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
721
from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( __a ): _lowercase ='''SpeechT5FeatureExtractor''' _lowercase ='''SpeechT5Tokenizer''' def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> int: super().__init__(_UpperCamelCase , _UpperCamelCase ) def __call__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: lowerCAmelCase_ = kwargs.pop("audio" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("text" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("text_target" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("audio_target" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("sampling_rate" , _UpperCamelCase ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: lowerCAmelCase_ = self.feature_extractor(_UpperCamelCase , *_UpperCamelCase , sampling_rate=_UpperCamelCase , **_UpperCamelCase ) elif text is not None: lowerCAmelCase_ = self.tokenizer(_UpperCamelCase , **_UpperCamelCase ) else: lowerCAmelCase_ = None if audio_target is not None: lowerCAmelCase_ = self.feature_extractor(audio_target=_UpperCamelCase , *_UpperCamelCase , sampling_rate=_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = targets["input_values"] elif text_target is not None: lowerCAmelCase_ = self.tokenizer(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = targets["input_ids"] else: lowerCAmelCase_ = None if inputs is None: return targets if targets is not None: lowerCAmelCase_ = labels lowerCAmelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCAmelCase_ = decoder_attention_mask return inputs def __a ( self , *_UpperCamelCase , **_UpperCamelCase ) -> str: lowerCAmelCase_ = kwargs.pop("input_values" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("input_ids" , _UpperCamelCase ) lowerCAmelCase_ = kwargs.pop("labels" , _UpperCamelCase ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: lowerCAmelCase_ = self.feature_extractor.pad(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) elif input_ids is not None: lowerCAmelCase_ = self.tokenizer.pad(_UpperCamelCase , **_UpperCamelCase ) else: lowerCAmelCase_ = None if labels is not None: if "input_ids" in labels or (isinstance(_UpperCamelCase , _UpperCamelCase ) and "input_ids" in labels[0]): lowerCAmelCase_ = self.tokenizer.pad(_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = targets["input_ids"] else: lowerCAmelCase_ = self.feature_extractor.feature_size lowerCAmelCase_ = self.feature_extractor.num_mel_bins lowerCAmelCase_ = self.feature_extractor.pad(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) lowerCAmelCase_ = feature_size_hack lowerCAmelCase_ = targets["input_values"] else: lowerCAmelCase_ = None if inputs is None: return targets if targets is not None: lowerCAmelCase_ = labels lowerCAmelCase_ = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCAmelCase_ = decoder_attention_mask return inputs def __a ( self , *_UpperCamelCase , **_UpperCamelCase ) -> List[Any]: return self.tokenizer.batch_decode(*_UpperCamelCase , **_UpperCamelCase ) def __a ( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: return self.tokenizer.decode(*_UpperCamelCase , **_UpperCamelCase )
279
0
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _SCREAMING_SNAKE_CASE = 0 for i in range(1 , 10_01 ): total += i**i return str(__A )[-10:] if __name__ == "__main__": print(solution())
418
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowercase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : int = 3_2 , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 2_5_5 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowerCamelCase : bool = True , __lowerCamelCase : str=7 , __lowerCamelCase : Union[str, Any]=3_0 , __lowerCamelCase : Tuple=4_0_0 , __lowerCamelCase : List[Any]=3 , ): """simple docstring""" _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = do_resize _SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 2_8_8} _SCREAMING_SNAKE_CASE = size_divisor _SCREAMING_SNAKE_CASE = do_rescale _SCREAMING_SNAKE_CASE = rescale_factor _SCREAMING_SNAKE_CASE = do_normalize _SCREAMING_SNAKE_CASE = do_center_crop _SCREAMING_SNAKE_CASE = image_mean _SCREAMING_SNAKE_CASE = image_std _SCREAMING_SNAKE_CASE = do_pad _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = min_resolution _SCREAMING_SNAKE_CASE = max_resolution def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def lowerCAmelCase_ ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : int=False ): """simple docstring""" if not batched: _SCREAMING_SNAKE_CASE = self.size["shortest_edge"] _SCREAMING_SNAKE_CASE = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = image.size else: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2] _SCREAMING_SNAKE_CASE = size / min(__lowerCamelCase , __lowerCamelCase ) if h < w: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = size, scale * w else: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = scale * h, size _SCREAMING_SNAKE_CASE = int((1_3_3_3 / 8_0_0) * size ) if max(__lowerCamelCase , __lowerCamelCase ) > max_size: _SCREAMING_SNAKE_CASE = max_size / max(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = newh * scale _SCREAMING_SNAKE_CASE = neww * scale _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = int(newh + 0.5 ), int(neww + 0.5 ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: _SCREAMING_SNAKE_CASE = [] for image in image_inputs: _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _SCREAMING_SNAKE_CASE = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] _SCREAMING_SNAKE_CASE = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( A , unittest.TestCase ): """simple docstring""" lowerCamelCase_ = BridgeTowerImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = BridgeTowerImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size_divisor" ) ) def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Optional[int] ): """simple docstring""" # Initialize image processor _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : str ): """simple docstring""" # Initialize image processor _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : str ): """simple docstring""" # Initialize image processor _SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
418
1
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def _UpperCamelCase ( _a : Optional[int] , _a : str ): """simple docstring""" __UpperCamelCase : Tuple = int(_a ) assert noofclusters < len(_a ) # Find out the dimensionality __UpperCamelCase : Dict = len(vectors[0] ) # Will help select random centroids from among the available vectors __UpperCamelCase : List[Any] = list(range(len(_a ) ) ) shuffle(_a ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __UpperCamelCase : int = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __UpperCamelCase : Optional[int] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __UpperCamelCase : Optional[int] = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_a ) ] ##These nodes will assign the centroid Variables the appropriate ##values __UpperCamelCase : Dict = tf.placeholder('float64' , [dim] ) __UpperCamelCase : Tuple = [] for centroid in centroids: cent_assigns.append(tf.assign(_a , _a ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __UpperCamelCase : int = [tf.Variable(0 ) for i in range(len(_a ) )] ##These nodes will assign an assignment Variable the appropriate ##value __UpperCamelCase : List[Any] = tf.placeholder('int32' ) __UpperCamelCase : Optional[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(_a , _a ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __UpperCamelCase : List[Any] = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __UpperCamelCase : Union[str, Any] = tf.reduce_mean(_a , 0 ) ##Node for computing Euclidean distances # Placeholders for input __UpperCamelCase : Any = tf.placeholder('float' , [dim] ) __UpperCamelCase : Union[str, Any] = tf.placeholder('float' , [dim] ) __UpperCamelCase : str = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_a , _a ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __UpperCamelCase : List[Any] = tf.placeholder('float' , [noofclusters] ) __UpperCamelCase : Dict = tf.argmin(_a , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __UpperCamelCase : Any = tf.initialize_all_variables() # Initialize all variables sess.run(_a ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __UpperCamelCase : Dict = 1_0_0 for _ in range(_a ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_a ) ): __UpperCamelCase : str = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __UpperCamelCase : Optional[int] = [ sess.run(_a , feed_dict={va: vect, va: sess.run(_a )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __UpperCamelCase : Optional[int] = sess.run( _a , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_a ): # Collect all the vectors assigned to this cluster __UpperCamelCase : Tuple = [ vectors[i] for i in range(len(_a ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __UpperCamelCase : Optional[int] = sess.run( _a , feed_dict={mean_input: array(_a )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __UpperCamelCase : Optional[Any] = sess.run(_a ) __UpperCamelCase : Optional[Any] = sess.run(_a ) return centroids, assignments
710
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def lowerCAmelCase ( self ): __UpperCamelCase : List[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) __UpperCamelCase : Optional[int] = BertTokenizer.from_pretrained('bert-base-uncased' ) __UpperCamelCase : str = bertabert.config.encoder.vocab_size __UpperCamelCase : Optional[Any] = tokenizer.sep_token_id __UpperCamelCase : Any = tokenizer.cls_token_id __UpperCamelCase : Optional[Any] = 1_2_8 __UpperCamelCase : str = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) __UpperCamelCase : Tuple = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) __UpperCamelCase : Dict = train_dataset.select(range(3_2 ) ) __UpperCamelCase : List[Any] = val_dataset.select(range(1_6 ) ) __UpperCamelCase : Optional[int] = 4 def _map_to_encoder_decoder_inputs(_lowerCamelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] __UpperCamelCase : Union[str, Any] = tokenizer(batch['article'] , padding='max_length' , truncation=_lowerCamelCase , max_length=5_1_2 ) __UpperCamelCase : Optional[int] = tokenizer(batch['highlights'] , padding='max_length' , truncation=_lowerCamelCase , max_length=1_2_8 ) __UpperCamelCase : Any = inputs.input_ids __UpperCamelCase : Optional[Any] = inputs.attention_mask __UpperCamelCase : Optional[Any] = outputs.input_ids __UpperCamelCase : List[Any] = outputs.input_ids.copy() __UpperCamelCase : Optional[Any] = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __UpperCamelCase : Union[str, Any] = outputs.attention_mask assert all(len(_lowerCamelCase ) == 5_1_2 for x in inputs.input_ids ) assert all(len(_lowerCamelCase ) == 1_2_8 for x in outputs.input_ids ) return batch def _compute_metrics(_lowerCamelCase ): __UpperCamelCase : str = pred.label_ids __UpperCamelCase : Dict = pred.predictions # all unnecessary tokens are removed __UpperCamelCase : Tuple = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) __UpperCamelCase : Optional[Any] = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) __UpperCamelCase : Dict = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_lowerCamelCase ) )] ) / len(_lowerCamelCase ) return {"accuracy": accuracy} # map train dataset __UpperCamelCase : str = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCamelCase , batch_size=_lowerCamelCase , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset __UpperCamelCase : Any = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_lowerCamelCase , batch_size=_lowerCamelCase , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = SeqaSeqTrainingArguments( output_dir=_lowerCamelCase , per_device_train_batch_size=_lowerCamelCase , per_device_eval_batch_size=_lowerCamelCase , predict_with_generate=_lowerCamelCase , evaluation_strategy='steps' , do_train=_lowerCamelCase , do_eval=_lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __UpperCamelCase : str = SeqaSeqTrainer( model=_lowerCamelCase , args=_lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , tokenizer=_lowerCamelCase , ) # start training trainer.train()
287
0
import itertools import math def lowerCAmelCase ( UpperCamelCase__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase ( ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = 2 while True: if is_prime(UpperCamelCase__ ): yield num num += 1 def lowerCAmelCase ( UpperCamelCase__ : int = 10_001 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , UpperCamelCase__ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
202
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : Any = ComputeEnvironment.AMAZON_SAGEMAKER SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : int = '''ml.p3.2xlarge''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''accelerate_sagemaker_execution_role''' SCREAMING_SNAKE_CASE__ : List[Any] = '''hf-sm''' SCREAMING_SNAKE_CASE__ : Any = '''us-east-1''' SCREAMING_SNAKE_CASE__ : Any = 1 SCREAMING_SNAKE_CASE__ : Dict = '''accelerate-sagemaker-1''' SCREAMING_SNAKE_CASE__ : Dict = '''1.6''' SCREAMING_SNAKE_CASE__ : int = '''4.4''' SCREAMING_SNAKE_CASE__ : int = '''train.py''' SCREAMING_SNAKE_CASE__ : Tuple = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''False''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] SCREAMING_SNAKE_CASE__ : List[str] = [ '''--model_name_or_path''', '''bert''', '''--do_train''', '''--do_test''', '''False''', '''--do_predict''', '''--epochs''', '''3''', '''--learning_rate''', '''5e-5''', '''--max_steps''', '''50.5''', ] class a ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , _lowerCAmelCase ) assert isinstance(converted_args['''do_train'''] , _lowerCAmelCase ) assert isinstance(converted_args['''epochs'''] , _lowerCAmelCase ) assert isinstance(converted_args['''learning_rate'''] , _lowerCAmelCase ) assert isinstance(converted_args['''max_steps'''] , _lowerCAmelCase ) with pytest.raises(_lowerCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
202
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _lowercase ( __a , __a , unittest.TestCase ): _UpperCAmelCase = StableDiffusionPanoramaPipeline _UpperCAmelCase = TEXT_TO_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) snake_case = DDIMScheduler() torch.manual_seed(0 ) snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) snake_case = CLIPTextModel(A__ ) snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) snake_case = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def UpperCamelCase ( self , A__ , A__=0 ) -> Optional[Any]: snake_case = torch.manual_seed(A__ ) snake_case = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def UpperCamelCase ( self ) -> List[str]: snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = StableDiffusionPanoramaPipeline(**A__ ) snake_case = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) snake_case = self.get_dummy_inputs(A__ ) snake_case = sd_pipe(**A__ ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array([0.6_1_8_6, 0.5_3_7_4, 0.4_9_1_5, 0.4_1_3_5, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_7, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> List[Any]: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase ( self ) -> Optional[int]: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = StableDiffusionPanoramaPipeline(**A__ ) snake_case = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) snake_case = self.get_dummy_inputs(A__ ) snake_case = '''french fries''' snake_case = sd_pipe(**A__ , negative_prompt=A__ ) snake_case = output.images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> str: snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = StableDiffusionPanoramaPipeline(**A__ ) snake_case = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) snake_case = self.get_dummy_inputs(A__ ) snake_case = sd_pipe(**A__ , view_batch_size=2 ) snake_case = output.images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array([0.6_1_8_7, 0.5_3_7_5, 0.4_9_1_5, 0.4_1_3_6, 0.4_1_1_4, 0.4_5_6_3, 0.5_1_2_8, 0.4_9_7_6, 0.4_7_5_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' ) snake_case = StableDiffusionPanoramaPipeline(**A__ ) snake_case = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) snake_case = self.get_dummy_inputs(A__ ) snake_case = sd_pipe(**A__ ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array([0.4_0_2_4, 0.6_5_1_0, 0.4_9_0_1, 0.5_3_7_8, 0.5_8_1_3, 0.5_6_2_2, 0.4_7_9_5, 0.4_4_6_7, 0.4_9_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> int: snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case = self.get_dummy_components() snake_case = PNDMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , skip_prk_steps=A__ ) snake_case = StableDiffusionPanoramaPipeline(**A__ ) snake_case = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) snake_case = self.get_dummy_inputs(A__ ) snake_case = sd_pipe(**A__ ).images snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case = np.array([0.6_3_9_1, 0.6_2_9_1, 0.4_8_6_1, 0.5_1_3_4, 0.5_5_5_2, 0.4_5_7_8, 0.5_0_3_2, 0.5_0_2_3, 0.4_5_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def UpperCamelCase ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self , A__=0 ) -> str: snake_case = torch.manual_seed(A__ ) snake_case = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def UpperCamelCase ( self ) -> Any: snake_case = '''stabilityai/stable-diffusion-2-base''' snake_case = DDIMScheduler.from_pretrained(A__ , subfolder='''scheduler''' ) snake_case = StableDiffusionPanoramaPipeline.from_pretrained(A__ , scheduler=A__ , safety_checker=A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() snake_case = self.get_inputs() snake_case = pipe(**A__ ).images snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case = np.array( [ 0.3_6_9_6_8_3_9_2, 0.2_7_0_2_5_3_7_2, 0.3_2_4_4_6_7_6_6, 0.2_8_3_7_9_3_8_7, 0.3_6_3_6_3_2_7_4, 0.3_0_7_3_3_3_4_7, 0.2_7_1_0_0_0_2_7, 0.2_7_0_5_4_1_2_5, 0.2_5_5_3_6_0_9_6, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def UpperCamelCase ( self ) -> Tuple: snake_case = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=A__ ) snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() snake_case = self.get_inputs() snake_case = pipe(**A__ ).images snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) snake_case = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCamelCase ( self ) -> Union[str, Any]: snake_case = 0 def callback_fn(A__ , A__ , A__ ) -> None: snake_case = True nonlocal number_of_steps number_of_steps += 1 if step == 1: snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case = latents[0, -3:, -3:, -1] snake_case = np.array( [ 0.1_8_6_8_1_8_6_9, 0.3_3_9_0_7_8_1_6, 0.5_3_6_1_2_7_6, 0.1_4_4_3_2_8_6_5, -0.0_2_8_5_6_6_1_1, -0.7_3_9_4_1_1_2_3, 0.2_3_3_9_7_9_8_7, 0.4_7_3_2_2_6_8_2, -0.3_7_8_2_3_1_6_4, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: snake_case = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) snake_case = latents[0, -3:, -3:, -1] snake_case = np.array( [ 0.1_8_5_3_9_6_4_5, 0.3_3_9_8_7_2_4_8, 0.5_3_7_8_5_5_9, 0.1_4_4_3_7_1_4_2, -0.0_2_4_5_5_2_6_1, -0.7_3_3_8_3_1_7, 0.2_3_9_9_0_7_5_5, 0.4_7_3_5_6_2_7_2, -0.3_7_8_6_5_0_5, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 snake_case = False snake_case = '''stabilityai/stable-diffusion-2-base''' snake_case = DDIMScheduler.from_pretrained(A__ , subfolder='''scheduler''' ) snake_case = StableDiffusionPanoramaPipeline.from_pretrained(A__ , scheduler=A__ , safety_checker=A__ ) snake_case = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() snake_case = self.get_inputs() pipe(**A__ , callback=A__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCamelCase ( self ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case = '''stabilityai/stable-diffusion-2-base''' snake_case = DDIMScheduler.from_pretrained(A__ , subfolder='''scheduler''' ) snake_case = StableDiffusionPanoramaPipeline.from_pretrained(A__ , scheduler=A__ , safety_checker=A__ ) snake_case = pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() snake_case = self.get_inputs() snake_case = pipe(**A__ ) snake_case = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
44
'''simple docstring''' import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __UpperCamelCase ( a : List[str] ) ->str: snake_case = [] for line in lines: snake_case = re.sub(R'''#.*''' , '''''' , a ) # remove comments if line: filtered_lines.append(a ) snake_case = '''\n'''.join(a ) # Make a hash from all this code snake_case = full_str.encode('''utf-8''' ) return shaaaa(a ).hexdigest() # get importable module names and hash for caching _lowercase = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions _lowercase = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _lowercase = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name _lowercase = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
44
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = '''convbert''' def __init__( self : str , lowerCAmelCase__ : Dict=3_0522 , lowerCAmelCase__ : Union[str, Any]=768 , lowerCAmelCase__ : Tuple=12 , lowerCAmelCase__ : Dict=12 , lowerCAmelCase__ : Optional[Any]=3072 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Dict=1E-12 , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : str=0 , lowerCAmelCase__ : Any=2 , lowerCAmelCase__ : Dict=768 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : Union[str, Any]=9 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : int=None , **lowerCAmelCase__ : str , ): super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Tuple = vocab_size SCREAMING_SNAKE_CASE_: Optional[int] = hidden_size SCREAMING_SNAKE_CASE_: List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_: str = num_attention_heads SCREAMING_SNAKE_CASE_: int = intermediate_size SCREAMING_SNAKE_CASE_: Dict = hidden_act SCREAMING_SNAKE_CASE_: Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_: Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[str] = max_position_embeddings SCREAMING_SNAKE_CASE_: List[str] = type_vocab_size SCREAMING_SNAKE_CASE_: str = initializer_range SCREAMING_SNAKE_CASE_: Dict = layer_norm_eps SCREAMING_SNAKE_CASE_: Optional[Any] = embedding_size SCREAMING_SNAKE_CASE_: int = head_ratio SCREAMING_SNAKE_CASE_: Tuple = conv_kernel_size SCREAMING_SNAKE_CASE_: Optional[int] = num_groups SCREAMING_SNAKE_CASE_: Union[str, Any] = classifier_dropout class __lowercase ( UpperCAmelCase_ ): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self : str): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_: str = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE_: Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
671
import re def A_ ( _UpperCAmelCase ): return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): try: SCREAMING_SNAKE_CASE_: List[Any] = split_input(_UpperCAmelCase ) if upper: SCREAMING_SNAKE_CASE_: List[str] = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: SCREAMING_SNAKE_CASE_: Optional[int] = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def A_ ( _UpperCAmelCase ): return to_simple_case(_UpperCAmelCase ) def A_ ( _UpperCAmelCase ): try: SCREAMING_SNAKE_CASE_: Optional[int] = to_simple_case(_UpperCAmelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return to_complex_case(_UpperCAmelCase , _UpperCAmelCase , "_" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): return to_complex_case(_UpperCAmelCase , _UpperCAmelCase , "-" ) if __name__ == "__main__": __import__("""doctest""").testmod()
671
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class __A ( a ): """simple docstring""" A_ = 'levit' def __init__( self , _lowerCamelCase=2_2_4 , _lowerCamelCase=3 , _lowerCamelCase=3 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1_6 , _lowerCamelCase=[1_2_8, 2_5_6, 3_8_4] , _lowerCamelCase=[4, 8, 1_2] , _lowerCamelCase=[4, 4, 4] , _lowerCamelCase=[1_6, 1_6, 1_6] , _lowerCamelCase=0 , _lowerCamelCase=[2, 2, 2] , _lowerCamelCase=[2, 2, 2] , _lowerCamelCase=0.0_2 , **_lowerCamelCase , )-> List[Any]: super().__init__(**_lowerCamelCase ) lowercase__ = image_size lowercase__ = num_channels lowercase__ = kernel_size lowercase__ = stride lowercase__ = padding lowercase__ = hidden_sizes lowercase__ = num_attention_heads lowercase__ = depths lowercase__ = key_dim lowercase__ = drop_path_rate lowercase__ = patch_size lowercase__ = attention_ratio lowercase__ = mlp_ratio lowercase__ = initializer_range lowercase__ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __A ( a ): """simple docstring""" A_ = version.parse('1.11' ) @property def snake_case_( self )-> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case_( self )-> float: return 1e-4
707
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __A ( a ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , )-> Tuple: super().__init__( features=_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase , streaming=_lowerCamelCase , num_proc=_lowerCamelCase , **_lowerCamelCase , ) lowercase__ = Generator( cache_dir=_lowerCamelCase , features=_lowerCamelCase , generator=_lowerCamelCase , gen_kwargs=_lowerCamelCase , **_lowerCamelCase , ) def snake_case_( self )-> Optional[Any]: # Build iterable dataset if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_lowerCamelCase , download_mode=_lowerCamelCase , verification_mode=_lowerCamelCase , base_path=_lowerCamelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split='''train''' , verification_mode=_lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
318
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py A : List[Any] = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' A : Tuple = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' A : Optional[Any] = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A ( self : Tuple): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def A ( self : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str=4 , SCREAMING_SNAKE_CASE : Union[str, Any]=False): _A : Dict = compute_bleu( reference_corpus=lowerCAmelCase__ , translation_corpus=lowerCAmelCase__ , max_order=lowerCAmelCase__ , smooth=lowerCAmelCase__) (_A) : List[Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
128
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Tuple = '''''' _A : Dict = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : List[Any] , lowerCAmelCase__ : Optional[DatasetInfo] = None , lowerCAmelCase__ : Optional[str] = None , **lowerCAmelCase__ : str , ): """simple docstring""" super().__init__(self , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = repo_info __SCREAMING_SNAKE_CASE : Dict = token __SCREAMING_SNAKE_CASE : Dict = None def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" if self.dir_cache is None: __SCREAMING_SNAKE_CASE : Optional[int] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __SCREAMING_SNAKE_CASE : str = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(lowerCAmelCase__ ): {"""name""": str(lowerCAmelCase__ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str = "rb" , **lowerCAmelCase__ : Optional[Any] , ): """simple docstring""" if not isinstance(self.repo_info , lowerCAmelCase__ ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) __SCREAMING_SNAKE_CASE : Tuple = hf_hub_url(self.repo_info.id , lowerCAmelCase__ , revision=self.repo_info.sha ) return fsspec.open( lowerCAmelCase__ , mode=lowerCAmelCase__ , headers=get_authentication_headers_for_url(lowerCAmelCase__ , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Any ): """simple docstring""" self._get_dirs() __SCREAMING_SNAKE_CASE : Dict = self._strip_protocol(lowerCAmelCase__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCAmelCase__ ) def UpperCamelCase__ ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any]=False , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" self._get_dirs() __SCREAMING_SNAKE_CASE : Union[str, Any] = PurePosixPath(path.strip("""/""" ) ) __SCREAMING_SNAKE_CASE : Dict = {} for p, f in self.dir_cache.items(): __SCREAMING_SNAKE_CASE : str = PurePosixPath(p.strip("""/""" ) ) __SCREAMING_SNAKE_CASE : Dict = p.parent if root == path: __SCREAMING_SNAKE_CASE : int = f __SCREAMING_SNAKE_CASE : int = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
578
0
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowerCAmelCase ( snake_case ): '''simple docstring''' lowerCAmelCase__ = """efficientformer""" def __init__( self , a__ = [3, 2, 6, 4] , a__ = [48, 96, 2_24, 4_48] , a__ = [True, True, True, True] , a__ = 4_48 , a__ = 32 , a__ = 4 , a__ = 7 , a__ = 5 , a__ = 8 , a__ = 4 , a__ = 0.0 , a__ = 16 , a__ = 3 , a__ = 3 , a__ = 3 , a__ = 2 , a__ = 1 , a__ = 0.0 , a__ = 1 , a__ = True , a__ = True , a__ = 1E-5 , a__ = "gelu" , a__ = 0.02 , a__ = 1E-12 , a__ = 2_24 , a__ = 1E-05 , **a__ , ): super().__init__(**a__ ) _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = hidden_sizes _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = depths _UpperCAmelCase = mlp_expansion_ratio _UpperCAmelCase = downsamples _UpperCAmelCase = dim _UpperCAmelCase = key_dim _UpperCAmelCase = attention_ratio _UpperCAmelCase = resolution _UpperCAmelCase = pool_size _UpperCAmelCase = downsample_patch_size _UpperCAmelCase = downsample_stride _UpperCAmelCase = downsample_pad _UpperCAmelCase = drop_path_rate _UpperCAmelCase = num_metaad_blocks _UpperCAmelCase = distillation _UpperCAmelCase = use_layer_scale _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = image_size _UpperCAmelCase = batch_norm_eps
710
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
494
0
import os import sys import unittest lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase_ = os.path.join("""tests""", """models""", """bert""", """test_modeling_bert.py""") lowercase_ = os.path.join("""tests""", """models""", """blip""", """test_modeling_blip.py""") class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = get_test_to_tester_mapping(_A ) __SCREAMING_SNAKE_CASE : int = get_test_to_tester_mapping(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''BertModelTest''': '''BertModelTester'''} __SCREAMING_SNAKE_CASE : List[str] = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = get_model_to_test_mapping(_A ) __SCREAMING_SNAKE_CASE : Dict = get_model_to_test_mapping(_A ) __SCREAMING_SNAKE_CASE : Dict = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } __SCREAMING_SNAKE_CASE : Optional[Any] = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = get_model_to_tester_mapping(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = get_model_to_tester_mapping(_A ) __SCREAMING_SNAKE_CASE : int = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(_A ) , _A ) self.assertEqual(get_test_info.to_json(_A ) , _A )
74
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class __UpperCamelCase : def __init__( self : Union[str, Any] , UpperCAmelCase : List[Any] ) -> List[str]: lowerCAmelCase :Dict = str(id_ ) lowerCAmelCase :str = None lowerCAmelCase :Any = None lowerCAmelCase :List[str] = [] lowerCAmelCase :List[Any] = {} # {vertex:distance} def __lt__( self : Union[str, Any] , UpperCAmelCase : Any ) -> str: return self.key < other.key def __repr__( self : Union[str, Any] ) -> Dict: return self.id def UpperCAmelCase__ ( self : Any , UpperCAmelCase : Tuple ) -> List[str]: self.neighbors.append(UpperCAmelCase ) def UpperCAmelCase__ ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ) -> Optional[int]: lowerCAmelCase :str = weight def UpperCAmelCase ( a__ , a__ , a__ , a__ ): '''simple docstring''' graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , a__ ) graph[b - 1].add_edge(graph[a - 1] , a__ ) def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' lowerCAmelCase :List[str] = [] for u in graph: lowerCAmelCase :Tuple = math.inf lowerCAmelCase :Any = None lowerCAmelCase :Dict = 0 lowerCAmelCase :int = graph[:] while q: lowerCAmelCase :str = min(a__ ) q.remove(a__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowerCAmelCase :List[str] = u lowerCAmelCase :List[Any] = u.edges[v.id] for i in range(1 , len(a__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' for u in graph: lowerCAmelCase :List[str] = math.inf lowerCAmelCase :str = None lowerCAmelCase :Optional[int] = 0 lowerCAmelCase :Dict = list(a__ ) hq.heapify(a__ ) while h: lowerCAmelCase :Union[str, Any] = hq.heappop(a__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowerCAmelCase :int = u lowerCAmelCase :List[Any] = u.edges[v.id] hq.heapify(a__ ) for i in range(1 , len(a__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
553
0
import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] ): __lowercase : Dict = multiprocessing.Manager() __lowercase : List[str] = manager.list() __lowercase : Union[str, Any] = multiprocessing.Process(target=lowerCAmelCase_ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __lowercase : Tuple = shutil.rmtree __lowercase : Optional[Any] = os.rmdir __lowercase : Optional[int] = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __lowercase : List[str] = {} with swallow_io(): with time_limit(lowerCAmelCase_ ): exec(lowerCAmelCase_ , lowerCAmelCase_ ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(F"failed: {e}" ) # Needed for cleaning up. __lowercase : List[str] = rmtree __lowercase : Optional[Any] = rmdir __lowercase : List[str] = chdir @contextlib.contextmanager def snake_case_ ( lowerCAmelCase_ : Dict ): def signal_handler(lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL , lowerCAmelCase_ ) signal.signal(signal.SIGALRM , lowerCAmelCase_ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): __lowercase : List[str] = WriteOnlyStringIO() with contextlib.redirect_stdout(lowerCAmelCase_ ): with contextlib.redirect_stderr(lowerCAmelCase_ ): with redirect_stdin(lowerCAmelCase_ ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(lowerCAmelCase_ ): yield dirname class lowerCAmelCase ( __a ): '''simple docstring''' pass class lowerCAmelCase ( io.StringIO ): '''simple docstring''' def lowerCAmelCase ( self : int , *__a : int , **__a : Union[str, Any] ) -> int: """simple docstring""" raise OSError def lowerCAmelCase ( self : int , *__a : Tuple , **__a : int ) -> str: """simple docstring""" raise OSError def lowerCAmelCase ( self : Any , *__a : Union[str, Any] , **__a : Any ) -> Dict: """simple docstring""" raise OSError def lowerCAmelCase ( self : Tuple , *__a : Any , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return False class lowerCAmelCase ( contextlib._RedirectStream ): # type: ignore '''simple docstring''' _A : List[str] = "stdin" @contextlib.contextmanager def snake_case_ ( lowerCAmelCase_ : int ): if root == ".": yield return __lowercase : Any = os.getcwd() os.chdir(lowerCAmelCase_ ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ : Union[str, Any]=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins __lowercase : Dict = None __lowercase : Any = None import os __lowercase : Optional[int] = """1""" __lowercase : List[Any] = None __lowercase : Dict = None __lowercase : Optional[int] = None __lowercase : Union[str, Any] = None __lowercase : Union[str, Any] = None __lowercase : List[str] = None __lowercase : List[str] = None __lowercase : Dict = None __lowercase : Optional[Any] = None __lowercase : int = None __lowercase : Union[str, Any] = None __lowercase : Dict = None __lowercase : Dict = None __lowercase : Optional[int] = None __lowercase : Optional[Any] = None __lowercase : List[str] = None __lowercase : Dict = None __lowercase : Optional[Any] = None __lowercase : List[str] = None __lowercase : Union[str, Any] = None __lowercase : Union[str, Any] = None __lowercase : Optional[Any] = None __lowercase : Tuple = None __lowercase : Optional[Any] = None __lowercase : str = None __lowercase : Any = None __lowercase : Union[str, Any] = None import shutil __lowercase : Any = None __lowercase : Union[str, Any] = None __lowercase : Union[str, Any] = None import subprocess __lowercase : List[str] = None # type: ignore __lowercase : Any = None import sys __lowercase : Dict = None __lowercase : Optional[int] = None __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : Dict = None
706
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[int] = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() __lowercase : List[str] = dict(zip(__a , range(len(__a ) ) ) ) __lowercase : Dict = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } __lowercase : List[str] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 16000, """return_attention_mask""": False, """do_normalize""": True, } __lowercase : Tuple = tempfile.mkdtemp() __lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowercase : str = os.path.join(self.tmpdirname , __a ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__a ) + """\n""" ) # load decoder from hub __lowercase : Optional[int] = """hf-internal-testing/ngram-beam-search-decoder""" def lowerCAmelCase ( self : Optional[Any] , **__a : Dict ) -> Tuple: """simple docstring""" __lowercase : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(__a ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : str , **__a : int ) -> Tuple: """simple docstring""" return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__a ) def lowerCAmelCase ( self : Union[str, Any] , **__a : Union[str, Any] ) -> List[Any]: """simple docstring""" return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__a ) def lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Optional[Any] = self.get_tokenizer() __lowercase : Any = self.get_feature_extractor() __lowercase : str = self.get_decoder() __lowercase : Tuple = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) processor.save_pretrained(self.tmpdirname ) __lowercase : Tuple = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __a ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __a ) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowercase : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" __lowercase : List[str] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__a , """include""" ): WavaVecaProcessorWithLM( tokenizer=__a , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : int = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[int] = floats_list((3, 1000) ) __lowercase : List[Any] = feature_extractor(__a , return_tensors="""np""" ) __lowercase : List[str] = processor(__a , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : List[Any] = self.get_feature_extractor() __lowercase : int = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = """This is a test string""" __lowercase : Any = processor(text=__a ) __lowercase : Dict = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase ( self : str , __a : Tuple=(2, 10, 16) , __a : int=77 ) -> Optional[Any]: """simple docstring""" np.random.seed(__a ) return np.random.rand(*__a ) def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase : List[str] = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : str = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowercase : Optional[Any] = processor.decode(__a ) __lowercase : Any = decoder.decode_beams(__a )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def lowerCAmelCase ( self : List[str] , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : Optional[int] = self.get_decoder() __lowercase : Any = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowercase : Union[str, Any] = processor.batch_decode(__a ) else: with get_context(__a ).Pool() as pool: __lowercase : Optional[Any] = processor.batch_decode(__a , __a ) __lowercase : Union[str, Any] = list(__a ) with get_context("""fork""" ).Pool() as p: __lowercase : Optional[Any] = decoder.decode_beams_batch(__a , __a ) __lowercase , __lowercase , __lowercase : Any = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__a , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__a , decoded_processor.logit_score ) self.assertListEqual(__a , decoded_processor.lm_score ) def lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase : int = self.get_feature_extractor() __lowercase : Dict = self.get_tokenizer() __lowercase : List[str] = self.get_decoder() __lowercase : int = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : Dict = self._get_dummy_logits() __lowercase : Tuple = 15 __lowercase : Tuple = -20.0 __lowercase : Dict = -4.0 __lowercase : Dict = processor.batch_decode( __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Tuple = decoded_processor_out.text __lowercase : List[Any] = list(__a ) with get_context("""fork""" ).Pool() as pool: __lowercase : Any = decoder.decode_beams_batch( __a , __a , beam_width=__a , beam_prune_logp=__a , token_min_logp=__a , ) __lowercase : Optional[Any] = [d[0][0] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][2] for d in decoded_decoder_out] __lowercase : Optional[int] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __a ) self.assertTrue(np.array_equal(__a , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , __a , atol=1E-3 ) ) self.assertTrue(np.array_equal(__a , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474] , __a , atol=1E-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase : str = self.get_feature_extractor() __lowercase : List[Any] = self.get_tokenizer() __lowercase : List[Any] = self.get_decoder() __lowercase : Dict = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) __lowercase : List[Any] = self._get_dummy_logits() __lowercase : Optional[int] = 2.0 __lowercase : Tuple = 5.0 __lowercase : Optional[Any] = -20.0 __lowercase : Tuple = True __lowercase : Union[str, Any] = processor.batch_decode( __a , alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) __lowercase : Any = decoded_processor_out.text __lowercase : List[Any] = list(__a ) decoder.reset_params( alpha=__a , beta=__a , unk_score_offset=__a , lm_score_boundary=__a , ) with get_context("""fork""" ).Pool() as pool: __lowercase : Tuple = decoder.decode_beams_batch( __a , __a , ) __lowercase : int = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__a , __a ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __a ) __lowercase : str = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __a ) def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = processor.decoder.model_container[processor.decoder._model_key] __lowercase : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : int = os.listdir(__a ) __lowercase : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" __lowercase : List[str] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) __lowercase : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__a ) __lowercase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowercase : List[Any] = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() __lowercase : Dict = os.listdir(__a ) __lowercase : List[Any] = os.listdir(__a ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__a , __a ) def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Dict = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = floats_list((3, 1000) ) __lowercase : List[str] = processor_wavaveca(__a , return_tensors="""np""" ) __lowercase : List[Any] = processor_auto(__a , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowercase : List[str] = self._get_dummy_logits() __lowercase : List[str] = processor_wavaveca.batch_decode(__a ) __lowercase : Optional[int] = processor_auto.batch_decode(__a ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase : Any = self.get_feature_extractor() __lowercase : Union[str, Any] = self.get_tokenizer() __lowercase : Dict = self.get_decoder() __lowercase : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__a , feature_extractor=__a , decoder=__a ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def lowerCAmelCase ( __a : Union[str, Any] , __a : List[Any] ) -> Dict: """simple docstring""" __lowercase : Any = [d[key] for d in offsets] return retrieved_list def lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" __lowercase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Optional[Any] = self._get_dummy_logits()[0] __lowercase : Dict = processor.decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" __lowercase : List[str] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) __lowercase : Any = self._get_dummy_logits() __lowercase : Dict = processor.batch_decode(__a , output_word_offsets=__a ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__a , __a ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__a , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" import torch __lowercase : Any = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__a ) __lowercase : str = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=16000 ) ) __lowercase : Tuple = iter(__a ) __lowercase : Union[str, Any] = next(__a ) __lowercase : int = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) __lowercase : int = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowercase : Union[str, Any] = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): __lowercase : List[Any] = model(__a ).logits.cpu().numpy() __lowercase : Tuple = processor.decode(logits[0] , output_word_offsets=__a ) __lowercase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowercase : Optional[Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] __lowercase : str = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , __a ) self.assertEqual(""" """.join(self.get_from_offsets(__a , """word""" ) ) , output.text ) # output times __lowercase : Tuple = torch.tensor(self.get_from_offsets(__a , """start_time""" ) ) __lowercase : Dict = torch.tensor(self.get_from_offsets(__a , """end_time""" ) ) # fmt: off __lowercase : List[Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) __lowercase : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) ) self.assertTrue(torch.allclose(__a , __a , atol=0.01 ) )
649
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = 1.5 UpperCAmelCase_ : Union[str, Any] = int(factor * num_class_images ) UpperCAmelCase_ : Optional[Any] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_lowercase , aesthetic_weight=0.1 ) os.makedirs(f'''{class_data_dir}/images''' , exist_ok=_lowercase ) if len(list(Path(f'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: UpperCAmelCase_ : List[Any] = client.query(text=_lowercase ) if len(_lowercase ) >= factor * num_class_images or num_images > 1E4: break else: UpperCAmelCase_ : List[str] = int(factor * num_images ) UpperCAmelCase_ : Optional[int] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_lowercase , aesthetic_weight=0.1 , ) UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : List[Any] = tqdm(desc='''downloading real regularization images''' , total=_lowercase ) with open(f'''{class_data_dir}/caption.txt''' , '''w''' ) as fa, open(f'''{class_data_dir}/urls.txt''' , '''w''' ) as fa, open( f'''{class_data_dir}/images.txt''' , '''w''' ) as fa: while total < num_class_images: UpperCAmelCase_ : Tuple = class_images[count] count += 1 try: UpperCAmelCase_ : Optional[Any] = requests.get(images['''url'''] ) if img.status_code == 200: UpperCAmelCase_ : Dict = Image.open(BytesIO(img.content ) ) with open(f'''{class_data_dir}/images/{total}.jpg''' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(f'''{class_data_dir}/images/{total}.jpg''' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = argparse.ArgumentParser('''''' , add_help=_lowercase ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=_lowercase , type=_lowercase ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=_lowercase , type=_lowercase ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=200 , type=_lowercase ) return parser.parse_args() if __name__ == "__main__": __a = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
30
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 42 __snake_case = 42 class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' __snake_case = 1 @register_to_config def __init__( self , __lowerCamelCase = 2_0_0_0 , __lowerCamelCase = 0.15 , __lowerCamelCase = 0.01 , __lowerCamelCase = 1348.0 , __lowerCamelCase = 1E-5 , __lowerCamelCase = 1 , ) -> List[Any]: # standard deviation of the initial noise distribution _SCREAMING_SNAKE_CASE : List[str] = sigma_max # setable values _SCREAMING_SNAKE_CASE : Optional[int] = None self.set_sigmas(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None ) -> torch.FloatTensor: return sample def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[str] = sampling_eps if sampling_eps is not None else self.config.sampling_eps _SCREAMING_SNAKE_CASE : Optional[Any] = torch.linspace(1 , __lowerCamelCase , __lowerCamelCase , device=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase = None ) -> Any: _SCREAMING_SNAKE_CASE : List[str] = sigma_min if sigma_min is not None else self.config.sigma_min _SCREAMING_SNAKE_CASE : int = sigma_max if sigma_max is not None else self.config.sigma_max _SCREAMING_SNAKE_CASE : Any = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _SCREAMING_SNAKE_CASE : Tuple = torch.exp(torch.linspace(math.log(__lowerCamelCase ) , math.log(__lowerCamelCase ) , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) _SCREAMING_SNAKE_CASE : int = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _SCREAMING_SNAKE_CASE : Tuple = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _SCREAMING_SNAKE_CASE : List[Any] = timesteps.to(self.discrete_sigmas.device ) _SCREAMING_SNAKE_CASE : Any = self.discrete_sigmas[timesteps].to(sample.device ) _SCREAMING_SNAKE_CASE : Optional[int] = self.get_adjacent_sigma(__lowerCamelCase , __lowerCamelCase ).to(sample.device ) _SCREAMING_SNAKE_CASE : Tuple = torch.zeros_like(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _SCREAMING_SNAKE_CASE : Optional[int] = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _SCREAMING_SNAKE_CASE : Dict = diffusion.unsqueeze(-1 ) _SCREAMING_SNAKE_CASE : List[str] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _SCREAMING_SNAKE_CASE : List[Any] = randn_tensor( sample.shape , layout=sample.layout , generator=__lowerCamelCase , device=sample.device , dtype=sample.dtype ) _SCREAMING_SNAKE_CASE : int = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _SCREAMING_SNAKE_CASE : Optional[Any] = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__lowerCamelCase , prev_sample_mean=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _SCREAMING_SNAKE_CASE : Dict = randn_tensor(sample.shape , layout=sample.layout , generator=__lowerCamelCase ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _SCREAMING_SNAKE_CASE : Any = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _SCREAMING_SNAKE_CASE : Any = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _SCREAMING_SNAKE_CASE : List[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _SCREAMING_SNAKE_CASE : List[Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _SCREAMING_SNAKE_CASE : Dict = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _SCREAMING_SNAKE_CASE : Any = step_size.unsqueeze(-1 ) _SCREAMING_SNAKE_CASE : List[str] = sample + step_size * model_output _SCREAMING_SNAKE_CASE : Any = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _SCREAMING_SNAKE_CASE : int = timesteps.to(original_samples.device ) _SCREAMING_SNAKE_CASE : Optional[Any] = self.discrete_sigmas.to(original_samples.device )[timesteps] _SCREAMING_SNAKE_CASE : Any = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__lowerCamelCase ) * sigmas[:, None, None, None] ) _SCREAMING_SNAKE_CASE : List[str] = noise + original_samples return noisy_samples def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
249
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCamelCase : List[str] = '''Create a default config file for Accelerate with only a few flags set.''' def __lowerCAmelCase ( __snake_case="no" , __snake_case = default_json_config_file , __snake_case = False ): __lowerCAmelCase = Path(__snake_case ) path.parent.mkdir(parents=__snake_case , exist_ok=__snake_case ) if path.exists(): print( F"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False __lowerCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) __lowerCAmelCase = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): __lowerCAmelCase = torch.cuda.device_count() __lowerCAmelCase = num_gpus __lowerCAmelCase = False if num_gpus > 1: __lowerCAmelCase = "MULTI_GPU" else: __lowerCAmelCase = "NO" elif is_xpu_available() and use_xpu: __lowerCAmelCase = torch.xpu.device_count() __lowerCAmelCase = num_xpus __lowerCAmelCase = False if num_xpus > 1: __lowerCAmelCase = "MULTI_XPU" else: __lowerCAmelCase = "NO" elif is_npu_available(): __lowerCAmelCase = torch.npu.device_count() __lowerCAmelCase = num_npus __lowerCAmelCase = False if num_npus > 1: __lowerCAmelCase = "MULTI_NPU" else: __lowerCAmelCase = "NO" else: __lowerCAmelCase = 0 __lowerCAmelCase = True __lowerCAmelCase = 1 __lowerCAmelCase = "NO" __lowerCAmelCase = ClusterConfig(**__snake_case ) config.to_json_file(__snake_case ) return path def __lowerCAmelCase ( __snake_case , __snake_case ): __lowerCAmelCase = parser.add_parser("default" , parents=__snake_case , help=__snake_case , formatter_class=__snake_case ) parser.add_argument( "--config_file" , default=__snake_case , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=__snake_case , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=__snake_case ) return parser def __lowerCAmelCase ( __snake_case ): __lowerCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F"""accelerate configuration saved at {config_file}""" )
290
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function lowerCamelCase : int = 1.0_5457_1817E-34 # unit of ℏ : J * s lowerCamelCase : Union[str, Any] = 3E8 # unit of c : m * s^-1 def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: __lowerCAmelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __lowerCAmelCase = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __lowerCAmelCase = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
290
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class a_ ( _a ): def UpperCamelCase_ ( self ): _lowercase = SMALL_MODEL_IDENTIFIER _lowercase = """pt""" _lowercase = """tf""" def UpperCamelCase_ ( self , __UpperCamelCase ): _lowercase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__UpperCamelCase ) def UpperCamelCase_ ( self , __UpperCamelCase ): _lowercase = TFAutoModel.from_pretrained(self.test_model , from_pt=__UpperCamelCase ) model_tf.save_pretrained(__UpperCamelCase ) def UpperCamelCase_ ( self ): _lowercase = """mock_framework""" # Framework provided - return whatever the user provides _lowercase = FeaturesManager.determine_framework(self.test_model , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCamelCase ) _lowercase = FeaturesManager.determine_framework(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCamelCase ) _lowercase = FeaturesManager.determine_framework(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCamelCase_ ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__UpperCamelCase ) _lowercase = FeaturesManager.determine_framework(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__UpperCamelCase ) _lowercase = FeaturesManager.determine_framework(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__UpperCamelCase ): _lowercase = FeaturesManager.determine_framework(__UpperCamelCase ) def UpperCamelCase_ ( self ): _lowercase = MagicMock(return_value=__UpperCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , __UpperCamelCase ): _lowercase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCamelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowercase = MagicMock(return_value=__UpperCamelCase ) with patch("""transformers.onnx.features.is_torch_available""" , __UpperCamelCase ): _lowercase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCamelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowercase = MagicMock(return_value=__UpperCamelCase ) _lowercase = MagicMock(return_value=__UpperCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , __UpperCamelCase ), patch( """transformers.onnx.features.is_torch_available""" , __UpperCamelCase ): _lowercase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__UpperCamelCase , self.framework_pt ) # Both not in environment -> raise error _lowercase = MagicMock(return_value=__UpperCamelCase ) _lowercase = MagicMock(return_value=__UpperCamelCase ) with patch("""transformers.onnx.features.is_tf_available""" , __UpperCamelCase ), patch( """transformers.onnx.features.is_torch_available""" , __UpperCamelCase ): with self.assertRaises(__UpperCamelCase ): _lowercase = FeaturesManager.determine_framework(self.test_model )
287
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class a_ ( unittest.TestCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=10 , __UpperCamelCase=18 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=None , ): _lowercase = size if size is not None else {"""shortest_edge""": 18} _lowercase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _lowercase = parent _lowercase = batch_size _lowercase = num_channels _lowercase = num_frames _lowercase = image_size _lowercase = min_resolution _lowercase = max_resolution _lowercase = do_resize _lowercase = size _lowercase = do_normalize _lowercase = image_mean _lowercase = image_std _lowercase = crop_size def UpperCamelCase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class a_ ( _a , unittest.TestCase ): a : str = VivitImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self ): _lowercase = VivitImageProcessingTester(self ) @property def UpperCamelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ): _lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) def UpperCamelCase_ ( self ): _lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _lowercase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def UpperCamelCase_ ( self ): # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowercase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for video in video_inputs: self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowercase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for video in video_inputs: self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowercase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self ): # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for video in video_inputs: self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowercase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowercase = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
287
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self : str ): _A = 1 _A = 3 _A = (32, 32) _A = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_UpperCAmelCase ) return image @property def lowerCAmelCase_ ( self : Optional[int] ): torch.manual_seed(0 ) _A = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=_UpperCAmelCase , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def lowerCAmelCase_ ( self : List[Any] ): torch.manual_seed(0 ) _A = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self : str ): torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.dummy_cond_unet_upscale _A = DDPMScheduler() _A = DDIMScheduler(prediction_type='v_prediction' ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _A = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _A = StableDiffusionUpscalePipeline( unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , ) _A = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = 'A painting of a squirrel eating a burger' _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) _A = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) _A = output.images _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) _A = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=_UpperCAmelCase , )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] _A = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) _A = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self : Dict ): _A = 'cpu' # ensure determinism for the device-dependent torch.Generator _A = self.dummy_cond_unet_upscale _A = DDPMScheduler() _A = DDIMScheduler(prediction_type='v_prediction' ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _A = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk _A = StableDiffusionUpscalePipeline( unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , ) _A = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = 'A painting of a squirrel eating a burger' _A = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) _A = output.images assert image.shape[0] == 2 _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) _A = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) _A = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowerCAmelCase_ ( self : int ): _A = self.dummy_cond_unet_upscale _A = DDPMScheduler() _A = DDIMScheduler(prediction_type='v_prediction' ) _A = self.dummy_vae _A = self.dummy_text_encoder _A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _A = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] _A = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 _A = unet.half() _A = text_encoder.half() # make sure here that pndm scheduler skips prk _A = StableDiffusionUpscalePipeline( unet=_UpperCAmelCase , low_res_scheduler=_UpperCAmelCase , scheduler=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , max_noise_level=350 , ) _A = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = 'A painting of a squirrel eating a burger' _A = torch.manual_seed(0 ) _A = sd_pipe( [prompt] , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type='np' , ).images _A = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Optional[int] ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) _A = 'stabilityai/stable-diffusion-x4-upscaler' _A = StableDiffusionUpscalePipeline.from_pretrained(_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() _A = 'a cat sitting on a park bench' _A = torch.manual_seed(0 ) _A = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='np' , ) _A = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def lowerCAmelCase_ ( self : Tuple ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) _A = 'stabilityai/stable-diffusion-x4-upscaler' _A = StableDiffusionUpscalePipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() _A = 'a cat sitting on a park bench' _A = torch.manual_seed(0 ) _A = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='np' , ) _A = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCAmelCase_ ( self : Tuple ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) _A = 'stabilityai/stable-diffusion-x4-upscaler' _A = StableDiffusionUpscalePipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A = 'a cat sitting on a park bench' _A = torch.manual_seed(0 ) _A = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , output_type='np' , ) _A = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
505
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = {'''vocab_file''': '''spiece.model'''} a = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } a = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } a = '''▁''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = VOCAB_FILES_NAMES UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : int="[CLS]" , _UpperCAmelCase : Dict="[SEP]" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : int="[SEP]" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="[CLS]" , _UpperCAmelCase : Dict="[MASK]" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A = ( AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token ) _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) _A = do_lower_case _A = remove_space _A = keep_accents _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.sp_model ) def lowerCAmelCase_ ( self : Optional[int] ): _A = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): _A = self.__dict__.copy() _A = None return state def __setstate__( self : str , _UpperCAmelCase : Optional[Any] ): _A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[str] ): if self.remove_space: _A = ' '.join(inputs.strip().split() ) else: _A = inputs _A = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _A = unicodedata.normalize('NFKD' , _UpperCAmelCase ) _A = ''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: _A = outputs.lower() return outputs def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str ): _A = self.preprocess_text(_UpperCAmelCase ) _A = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) _A = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _A = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _A = cur_pieces[1:] else: _A = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] ): return self.sp_model.PieceToId(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : List[Any] ): return self.sp_model.IdToPiece(_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Any] ): _A = [] _A = '' _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token _A = True _A = [] else: current_sub_tokens.append(_UpperCAmelCase ) _A = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , 'wb' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
505
1
UpperCAmelCase = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): assert type(__SCREAMING_SNAKE_CASE ) in (int, float) and decimal == int(__SCREAMING_SNAKE_CASE ) lowercase = int(__SCREAMING_SNAKE_CASE ) lowercase = '' lowercase = False if decimal < 0: lowercase = True decimal *= -1 while decimal > 0: lowercase , lowercase = divmod(__SCREAMING_SNAKE_CASE , 16 ) lowercase = values[remainder] + hexadecimal lowercase = '0x' + hexadecimal if negative: lowercase = '-' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
84
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version UpperCAmelCase = get_logger(__name__) class A_ : '''simple docstring''' _UpperCamelCase : Dict = """dummy_data""" _UpperCamelCase : Optional[int] = """datasets""" _UpperCamelCase : Tuple = False def __init__( self , snake_case , snake_case , snake_case , snake_case = None , snake_case = False , snake_case = True , snake_case = None , ): lowercase = 0 lowercase = dataset_name lowercase = cache_dir lowercase = use_local_dummy_data lowercase = config # download_callbacks take a single url as input lowercase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase = str(snake_case ) # to be downloaded lowercase = None lowercase = None @property def SCREAMING_SNAKE_CASE__ ( self ): if self._dummy_file is None: lowercase = self.download_dummy_data() return self._dummy_file @property def SCREAMING_SNAKE_CASE__ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('dummy' , self.version_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): return os.path.join(self.dummy_data_folder , 'dummy_data.zip' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase = cached_path( snake_case , cache_dir=self.cache_dir , extract_compressed_file=snake_case , force_extract=snake_case ) return os.path.join(snake_case , self.dummy_file_name ) @property def SCREAMING_SNAKE_CASE__ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def SCREAMING_SNAKE_CASE__ ( self ): if self._bucket_url is None: lowercase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) ) return self._bucket_url @property def SCREAMING_SNAKE_CASE__ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case ): if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase = self.dummy_file_name # special case when data_url is a dict if isinstance(snake_case , snake_case ): return self.create_dummy_data_dict(snake_case , snake_case ) elif isinstance(snake_case , (list, tuple) ): return self.create_dummy_data_list(snake_case , snake_case ) else: return self.create_dummy_data_single(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case ): return self.download_and_extract(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): return self.download_and_extract(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case , **snake_case ): return path def SCREAMING_SNAKE_CASE__ ( self ): return {} def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(snake_case , snake_case ): for single_url in single_urls: download_callback(snake_case ) else: lowercase = single_urls download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(snake_case , snake_case ): lowercase = [os.path.join(snake_case , urllib.parse.quote_plus(Path(snake_case ).name ) ) for x in single_urls] else: lowercase = single_urls lowercase = os.path.join(snake_case , urllib.parse.quote_plus(Path(snake_case ).name ) ) lowercase = value # make sure that values are unique if all(isinstance(snake_case , snake_case ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , snake_case ) ) for url in data_url ) lowercase = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase = [data_url[0]] * len(snake_case ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase = os.path.join(snake_case , urllib.parse.quote_plus(single_url.split('/' )[-1] ) ) dummy_data_list.append(snake_case ) return dummy_data_list def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): for download_callback in self.download_callbacks: download_callback(snake_case ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase = os.path.join(snake_case , urllib.parse.quote_plus(data_url.split('/' )[-1] ) ) if os.path.exists(snake_case ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self , snake_case ): def _iter_archive_members(snake_case ): # this preserves the order of the members inside the ZIP archive lowercase = Path(self.dummy_file ).parent lowercase = path.relative_to(snake_case ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(snake_case ) lowercase = Path(snake_case ) lowercase = _iter_archive_members(snake_case ) if self.use_local_dummy_data else path.rglob('*' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__') ): yield file_path.relative_to(snake_case ).as_posix(), file_path.open('rb' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if not isinstance(snake_case , snake_case ): lowercase = [paths] for path in paths: if os.path.isfile(snake_case ): if os.path.basename(snake_case ).startswith(('.', '__') ): return yield path else: for dirpath, dirnames, filenames in os.walk(snake_case ): if os.path.basename(snake_case ).startswith(('.', '__') ): continue dirnames.sort() for filename in sorted(snake_case ): if filename.startswith(('.', '__') ): continue yield os.path.join(snake_case , snake_case )
84
1
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a_ ( _UpperCAmelCase ): def __init__( self : int , __UpperCamelCase : int , __UpperCamelCase : Any=13 , __UpperCamelCase : Tuple=7 , __UpperCamelCase : str=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : Dict=False , __UpperCamelCase : List[str]=False , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : List[str]=32 , __UpperCamelCase : List[Any]=5 , __UpperCamelCase : Dict=4 , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Optional[Any]=5_12 , __UpperCamelCase : Optional[int]=12 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : str=0.0_2 , __UpperCamelCase : Any=3 , __UpperCamelCase : Dict=4 , __UpperCamelCase : Tuple="last" , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Dict=None , ) ->Dict: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_lengths _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = gelu_activation _UpperCAmelCase = sinusoidal_embeddings _UpperCAmelCase = causal _UpperCAmelCase = asm _UpperCAmelCase = n_langs _UpperCAmelCase = vocab_size _UpperCAmelCase = n_special _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = summary_type _UpperCAmelCase = use_proj _UpperCAmelCase = scope def _snake_case ( self : Any ) ->str: '''simple docstring''' _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_input_lengths: _UpperCAmelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , 2 ).float() _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _snake_case ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : int , ) ->Tuple: '''simple docstring''' _UpperCAmelCase = FlaubertModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , lengths=__UpperCamelCase , langs=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , langs=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : str , ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = FlaubertWithLMHeadModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , ) ->Any: '''simple docstring''' _UpperCAmelCase = FlaubertForQuestionAnsweringSimple(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , ) ->Any: '''simple docstring''' _UpperCAmelCase = FlaubertForQuestionAnswering(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model( __UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , cls_index=__UpperCamelCase , is_impossible=__UpperCamelCase , p_mask=__UpperCamelCase , ) _UpperCAmelCase = model( __UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , cls_index=__UpperCamelCase , is_impossible=__UpperCamelCase , ) ((_UpperCAmelCase) ,) = result_with_labels.to_tuple() _UpperCAmelCase = model(__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase ) ((_UpperCAmelCase) ,) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _snake_case ( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , ) ->Dict: '''simple docstring''' _UpperCAmelCase = FlaubertForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , ) ->Any: '''simple docstring''' _UpperCAmelCase = self.num_labels _UpperCAmelCase = FlaubertForTokenClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.num_choices _UpperCAmelCase = FlaubertForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : Dict = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) a : Tuple = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str ) ->Union[str, Any]: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple=False ) ->List[str]: '''simple docstring''' _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def _snake_case ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = FlaubertModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , emb_dim=37 ) def _snake_case ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Any ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCamelCase ) def _snake_case ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCamelCase ) def _snake_case ( self : Optional[Any] ) ->str: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__UpperCamelCase ) def _snake_case ( self : Optional[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCamelCase ) def _snake_case ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCamelCase ) def _snake_case ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__UpperCamelCase ) def _snake_case ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__UpperCamelCase ) @slow def _snake_case ( self : Any ) ->List[Any]: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = FlaubertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow @require_torch_gpu def _snake_case ( self : Tuple ) ->int: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _UpperCAmelCase = True _UpperCAmelCase = model_class(config=__UpperCamelCase ) _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = torch.jit.trace( __UpperCamelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCamelCase , os.path.join(__UpperCamelCase , """traced_model.pt""" ) ) _UpperCAmelCase = torch.jit.load(os.path.join(__UpperCamelCase , """traced_model.pt""" ) , map_location=__UpperCamelCase ) loaded(inputs_dict["""input_ids"""].to(__UpperCamelCase ) , inputs_dict["""attention_mask"""].to(__UpperCamelCase ) ) @require_torch class a_ ( unittest.TestCase ): @slow def _snake_case ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) _UpperCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase )[0] _UpperCAmelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) )
19
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): @property def _snake_case ( self : Dict ) ->int: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def _snake_case ( self : Optional[Any] ) ->str: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def _snake_case ( self : List[Any] ) ->Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__UpperCamelCase ) def _snake_case ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.dummy_uncond_unet _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = self.dummy_vq_model _UpperCAmelCase = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" ).images _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=__UpperCamelCase )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) _UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class a_ ( unittest.TestCase ): def _snake_case ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type="""numpy""" ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCAmelCase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) _UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
19
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
91
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' @property def _snake_case ( self: int ): torch.manual_seed(0 ) __lowerCamelCase : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def _snake_case ( self: str ): torch.manual_seed(0 ) __lowerCamelCase : Any = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def _snake_case ( self: Dict ): torch.manual_seed(0 ) __lowerCamelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(a ) def _snake_case ( self: List[str] ): __lowerCamelCase : Union[str, Any] = self.dummy_uncond_unet __lowerCamelCase : List[str] = DDIMScheduler() __lowerCamelCase : str = self.dummy_vq_model __lowerCamelCase : Optional[int] = LDMPipeline(unet=a , vqvae=a , scheduler=a ) ldm.to(a ) ldm.set_progress_bar_config(disable=a ) __lowerCamelCase : Optional[int] = torch.manual_seed(0 ) __lowerCamelCase : Any = ldm(generator=a , num_inference_steps=2 , output_type='numpy' ).images __lowerCamelCase : Tuple = torch.manual_seed(0 ) __lowerCamelCase : Dict = ldm(generator=a , num_inference_steps=2 , output_type='numpy' , return_dict=a )[0] __lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] __lowerCamelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Optional[int] = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) __lowerCamelCase : str = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: Optional[int] ): __lowerCamelCase : int = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(a ) ldm.set_progress_bar_config(disable=a ) __lowerCamelCase : Dict = torch.manual_seed(0 ) __lowerCamelCase : int = ldm(generator=a , num_inference_steps=5 , output_type='numpy' ).images __lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __lowerCamelCase : List[Any] = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) __lowerCamelCase : Union[str, Any] = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
669
0
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __A = sys.version_info >= (3, 10) def lowercase_ ( _lowerCamelCase: Tuple=None , _lowerCamelCase: List[str]=None ) -> Dict: '''simple docstring''' return field(default_factory=lambda: default , metadata=_lowerCamelCase ) @dataclass class _snake_case : snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 snake_case__ = 42 @dataclass class _snake_case : snake_case__ = 42 snake_case__ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class _snake_case : snake_case__ = False snake_case__ = True snake_case__ = None class _snake_case ( UpperCAmelCase_ ): snake_case__ = 'titi' snake_case__ = 'toto' class _snake_case ( UpperCAmelCase_ ): snake_case__ = 'titi' snake_case__ = 'toto' snake_case__ = 42 @dataclass class _snake_case : snake_case__ = "toto" def lowerCamelCase__ ( self : int ): __lowerCamelCase : str = BasicEnum(self.foo ) @dataclass class _snake_case : snake_case__ = "toto" def lowerCamelCase__ ( self : str ): __lowerCamelCase : Dict = MixedTypeEnum(self.foo ) @dataclass class _snake_case : snake_case__ = None snake_case__ = field(default=UpperCAmelCase_ , metadata={"help": "help message"} ) snake_case__ = None snake_case__ = list_field(default=[] ) snake_case__ = list_field(default=[] ) @dataclass class _snake_case : snake_case__ = list_field(default=[] ) snake_case__ = list_field(default=[1, 2, 3] ) snake_case__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) snake_case__ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _snake_case : snake_case__ = field() snake_case__ = field() snake_case__ = field() def lowerCamelCase__ ( self : str ): __lowerCamelCase : Dict = BasicEnum(self.required_enum ) @dataclass class _snake_case : snake_case__ = 42 snake_case__ = field() snake_case__ = None snake_case__ = field(default="toto" , metadata={"help": "help message"} ) snake_case__ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class _snake_case : snake_case__ = False snake_case__ = True snake_case__ = None @dataclass class _snake_case : snake_case__ = None snake_case__ = field(default=UpperCAmelCase_ , metadata={"help": "help message"} ) snake_case__ = None snake_case__ = list_field(default=[] ) snake_case__ = list_field(default=[] ) class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __lowerCamelCase : List[str] = {k: v for k, v in vars(_lowercase ).items() if k != 'container'} __lowerCamelCase : List[str] = {k: v for k, v in vars(_lowercase ).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , _lowercase ) and yy.get("choices" , _lowercase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](_lowercase ) , yy["type"](_lowercase ) ) del xx["type"], yy["type"] self.assertEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Optional[int] = HfArgumentParser(_lowercase ) __lowerCamelCase : List[str] = argparse.ArgumentParser() expected.add_argument("--foo" , type=_lowercase , required=_lowercase ) expected.add_argument("--bar" , type=_lowercase , required=_lowercase ) expected.add_argument("--baz" , type=_lowercase , required=_lowercase ) expected.add_argument("--flag" , type=_lowercase , default=_lowercase , const=_lowercase , nargs="?" ) self.argparsersEqual(_lowercase , _lowercase ) __lowerCamelCase : List[Any] = ['--foo', '1', '--baz', 'quux', '--bar', '0.5'] (__lowerCamelCase ) : Any = parser.parse_args_into_dataclasses(_lowercase , look_for_args_file=_lowercase ) self.assertFalse(example.flag ) def lowerCamelCase__ ( self : int ): __lowerCamelCase : Union[str, Any] = HfArgumentParser(_lowercase ) __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=_lowercase ) expected.add_argument("--baz" , default="toto" , type=_lowercase , help="help message" ) self.argparsersEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Any = argparse.ArgumentParser() expected.add_argument("--foo" , type=_lowercase , default=_lowercase , const=_lowercase , nargs="?" ) expected.add_argument("--baz" , type=_lowercase , default=_lowercase , const=_lowercase , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=_lowercase , dest="baz" ) expected.add_argument("--opt" , type=_lowercase , default=_lowercase ) __lowerCamelCase : Any = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase ) for dataclass_type in dataclass_types: __lowerCamelCase : List[str] = HfArgumentParser(_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) __lowerCamelCase : Dict = parser.parse_args([] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) __lowerCamelCase : Any = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) __lowerCamelCase : Optional[Any] = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) __lowerCamelCase : Any = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) __lowerCamelCase : str = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , baz=_lowercase , opt=_lowercase ) ) def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Any = HfArgumentParser(_lowercase ) __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(_lowercase , _lowercase ) __lowerCamelCase : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) __lowerCamelCase : List[str] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __lowerCamelCase : Any = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) __lowerCamelCase : List[str] = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __lowerCamelCase : Optional[Any] = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) __lowerCamelCase : Any = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCamelCase__ ( self : Any ): @dataclass class _snake_case : snake_case__ = "toto" __lowerCamelCase : Tuple = HfArgumentParser(_lowercase ) __lowerCamelCase : Dict = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(_lowercase , _lowercase ) __lowerCamelCase : Any = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) __lowerCamelCase : Dict = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) __lowerCamelCase : int = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : Union[str, Any] = HfArgumentParser(_lowercase ) __lowerCamelCase : Optional[int] = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=_lowercase ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=_lowercase ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=_lowercase ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) __lowerCamelCase : int = parser.parse_args([] ) self.assertEqual( _lowercase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) __lowerCamelCase : Any = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(_lowercase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("--foo" , default=_lowercase , type=_lowercase ) expected.add_argument("--bar" , default=_lowercase , type=_lowercase , help="help message" ) expected.add_argument("--baz" , default=_lowercase , type=_lowercase ) expected.add_argument("--ces" , nargs="+" , default=[] , type=_lowercase ) expected.add_argument("--des" , nargs="+" , default=[] , type=_lowercase ) __lowerCamelCase : Any = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowercase ) for dataclass_type in dataclass_types: __lowerCamelCase : List[Any] = HfArgumentParser(_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) __lowerCamelCase : Any = parser.parse_args([] ) self.assertEqual(_lowercase , Namespace(foo=_lowercase , bar=_lowercase , baz=_lowercase , ces=[] , des=[] ) ) __lowerCamelCase : Optional[Any] = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(_lowercase , Namespace(foo=12 , bar=3.1_4 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : List[str] = HfArgumentParser(_lowercase ) __lowerCamelCase : Dict = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=_lowercase , required=_lowercase ) expected.add_argument("--required_str" , type=_lowercase , required=_lowercase ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=_lowercase , ) self.argparsersEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Tuple = HfArgumentParser(_lowercase ) __lowerCamelCase : List[Any] = argparse.ArgumentParser() expected.add_argument("--foo" , type=_lowercase , required=_lowercase ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=_lowercase , ) expected.add_argument("--opt" , type=_lowercase , default=_lowercase ) expected.add_argument("--baz" , default="toto" , type=_lowercase , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=_lowercase ) self.argparsersEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Optional[int] = HfArgumentParser(_lowercase ) __lowerCamelCase : Dict = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } __lowerCamelCase : List[str] = parser.parse_dict(_lowercase )[0] __lowerCamelCase : List[Any] = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : Dict = HfArgumentParser(_lowercase ) __lowerCamelCase : Optional[int] = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(_lowercase , parser.parse_dict , _lowercase , allow_extra_keys=_lowercase ) def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Dict = HfArgumentParser(_lowercase ) __lowerCamelCase : List[str] = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : Any = os.path.join(_lowercase , "temp_json" ) os.mkdir(_lowercase ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(_lowercase , _lowercase ) __lowerCamelCase : int = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] __lowerCamelCase : List[str] = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : List[str] = HfArgumentParser(_lowercase ) __lowerCamelCase : List[Any] = { 'foo': 12, 'bar': 3.1_4, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase : str = os.path.join(_lowercase , "temp_yaml" ) os.mkdir(_lowercase ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(_lowercase , _lowercase ) __lowerCamelCase : List[Any] = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] __lowerCamelCase : Optional[Any] = BasicExample(**_lowercase ) self.assertEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self : str ): __lowerCamelCase : str = HfArgumentParser(_lowercase ) self.assertIsNotNone(_lowercase )
707
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule __A = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
366
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowercase = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } _lowercase = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } _lowercase = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } _lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowercase = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } _lowercase = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class UpperCAmelCase_ ( snake_case__ ): '''simple docstring''' _lowercase : List[Any] = VOCAB_FILES_NAMES _lowercase : Optional[int] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : int = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Tuple = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowercase : Any = DPRContextEncoderTokenizer class UpperCAmelCase_ ( snake_case__ ): '''simple docstring''' _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : str = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : Dict = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowercase : List[str] = DPRQuestionEncoderTokenizer _lowercase = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) _lowercase = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) _lowercase = R""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(snake_case__ ) class UpperCAmelCase_ : '''simple docstring''' def __call__( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" if titles is None and texts is None: return super().__call__( _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) elif titles is None or texts is None: _lowerCAmelCase = titles if texts is None else texts return super().__call__( _lowercase , _lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , return_tensors=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) _lowerCAmelCase = titles if not isinstance(_lowercase , _lowercase ) else [titles] _lowerCAmelCase = texts if not isinstance(_lowercase , _lowercase ) else [texts] _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = questions if not isinstance(_lowercase , _lowercase ) else [questions] * n_passages assert len(_lowercase ) == len( _lowercase ), F'There should be as many titles than texts but got {len(_lowercase )} titles and {len(_lowercase )} texts.' _lowerCAmelCase = super().__call__(_lowercase , _lowercase , padding=_lowercase , truncation=_lowercase )["""input_ids"""] _lowerCAmelCase = super().__call__(_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase )["""input_ids"""] _lowerCAmelCase = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_lowercase , _lowercase ) ] } if return_attention_mask is not False: _lowerCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _lowerCAmelCase = attention_mask return self.pad(_lowercase , padding=_lowercase , max_length=_lowercase , return_tensors=_lowercase ) def _lowercase ( self , _lowercase , _lowercase , _lowercase = 16 , _lowercase = 64 , _lowercase = 4 , ): """simple docstring""" _lowerCAmelCase = reader_input["""input_ids"""] _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = reader_output[:3] _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = sorted(range(_lowercase ) , reverse=_lowercase , key=relevance_logits.__getitem__ ) _lowerCAmelCase = [] for doc_id in sorted_docs: _lowerCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _lowerCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _lowerCAmelCase = sequence_ids.index(self.pad_token_id ) else: _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_lowercase , top_spans=_lowercase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_lowercase , start_index=_lowercase , end_index=_lowercase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_lowercase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , ): """simple docstring""" _lowerCAmelCase = [] for start_index, start_score in enumerate(_lowercase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _lowerCAmelCase = sorted(_lowercase , key=lambda _lowercase : x[1] , reverse=_lowercase ) _lowerCAmelCase = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' _lowerCAmelCase = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_lowercase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(snake_case__ ) class UpperCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' _lowercase : Tuple = VOCAB_FILES_NAMES _lowercase : Tuple = READER_PRETRAINED_VOCAB_FILES_MAP _lowercase : str = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Union[str, Any] = READER_PRETRAINED_INIT_CONFIGURATION _lowercase : Tuple = ['''input_ids''', '''attention_mask'''] _lowercase : int = DPRReaderTokenizer
5
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING __a : List[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) requires_backends(self , "decord" ) self.check_model_type(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None ) -> List[str]: """simple docstring""" UpperCamelCase = {} if frame_sampling_rate is not None: UpperCamelCase = frame_sampling_rate if num_frames is not None: UpperCamelCase = num_frames UpperCamelCase = {} if top_k is not None: UpperCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=1 ) -> List[Any]: """simple docstring""" if num_frames is None: UpperCamelCase = self.model.config.num_frames if video.startswith("http://" ) or video.startswith("https://" ): UpperCamelCase = BytesIO(requests.get(SCREAMING_SNAKE_CASE ).content ) UpperCamelCase = VideoReader(SCREAMING_SNAKE_CASE ) videoreader.seek(0 ) UpperCamelCase = 0 UpperCamelCase = num_frames * frame_sampling_rate - 1 UpperCamelCase = np.linspace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num=SCREAMING_SNAKE_CASE , dtype=np.intaa ) UpperCamelCase = videoreader.get_batch(SCREAMING_SNAKE_CASE ).asnumpy() UpperCamelCase = list(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processor(SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = self.model(**SCREAMING_SNAKE_CASE ) return model_outputs def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ) -> Optional[Any]: """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase = self.model.config.num_labels if self.framework == "pt": UpperCamelCase = model_outputs.logits.softmax(-1 )[0] UpperCamelCase , UpperCamelCase = probs.topk(SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCamelCase = scores.tolist() UpperCamelCase = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
606
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> List[str]: A_ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def UpperCAmelCase__ ( UpperCAmelCase__ = 50_00 ) -> Optional[int]: A_ = [(i * (3 * i - 1)) // 2 for i in range(1, _lowerCamelCase )] for i, pentagonal_i in enumerate(_lowerCamelCase ): for j in range(_lowerCamelCase, len(_lowerCamelCase ) ): A_ = pentagonal_nums[j] A_ = pentagonal_i + pentagonal_j A_ = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase ) and is_pentagonal(_lowerCamelCase ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
704
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Tuple: return EnvironmentCommand() def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return EnvironmentCommand(args.accelerate_config_file ) class A__ ( _snake_case ): @staticmethod def snake_case_ ( UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' A_ = parser.add_parser("""env""" ) download_parser.set_defaults(func=UpperCamelCase__ ) download_parser.add_argument( """--accelerate-config_file""" , default=UpperCamelCase__ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=UpperCamelCase__ ) def __init__( self , UpperCamelCase__ , *UpperCamelCase__ ) -> None: '''simple docstring''' A_ = accelerate_config_file def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = """not installed""" if is_safetensors_available(): import safetensors A_ = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors A_ = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' A_ = """not installed""" A_ = A_ = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file A_ = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(UpperCamelCase__ ): A_ = load_config_from_file(self._accelerate_config_file ).to_dict() A_ = ( """\n""".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else f'''\t{accelerate_config}''' ) A_ = """not installed""" A_ = """NA""" if is_torch_available(): import torch A_ = torch.__version__ A_ = torch.cuda.is_available() A_ = """not installed""" A_ = """NA""" if is_tf_available(): import tensorflow as tf A_ = tf.__version__ try: # deprecated in v2.1 A_ = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool A_ = bool(tf.config.list_physical_devices("""GPU""" ) ) A_ = """not installed""" A_ = """not installed""" A_ = """not installed""" A_ = """NA""" if is_flax_available(): import flax import jax import jaxlib A_ = flax.__version__ A_ = jax.__version__ A_ = jaxlib.__version__ A_ = jax.lib.xla_bridge.get_backend().platform A_ = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": f'''{safetensors_version}''', """Accelerate version""": f'''{accelerate_version}''', """Accelerate config""": f'''{accelerate_config_str}''', """PyTorch version (GPU?)""": f'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": f'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": f'''{flax_version} ({jax_backend})''', """Jax version""": f'''{jax_version}''', """JaxLib version""": f'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def snake_case_ ( UpperCamelCase__ ) -> List[str]: '''simple docstring''' return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
667
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) < k or k < 0: raise ValueError('''Invalid Input''' ) snake_case_ = snake_case_ = sum(array[:k] ) for i in range(len(SCREAMING_SNAKE_CASE__ ) - k ): snake_case_ = current_sum - array[i] + array[i + k] snake_case_ = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCAmelCase_ = [randint(-10_00, 10_00) for i in range(1_00)] lowerCAmelCase_ = randint(0, 1_10) print(f"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
39
_A = '''Alexander Joslin''' import operator as op from .stack import Stack def __UpperCamelCase ( _A ): lowerCAmelCase_ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} lowerCAmelCase_ = Stack() lowerCAmelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_A ) ) elif i in operators: # RULE 2 operator_stack.push(_A ) elif i == ")": # RULE 4 lowerCAmelCase_ = operator_stack.peek() operator_stack.pop() lowerCAmelCase_ = operand_stack.peek() operand_stack.pop() lowerCAmelCase_ = operand_stack.peek() operand_stack.pop() lowerCAmelCase_ = operators[opr](_A , _A ) operand_stack.push(_A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _A = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(f"{equation} = {dijkstras_two_stack_algorithm(equation)}")
431
0
"""simple docstring""" from __future__ import annotations def a__ ( __lowercase ) -> bool: _A = str(__lowercase ) return n == n[::-1] def a__ ( __lowercase = 100_0000 ) -> Dict: _A = 0 for i in range(1 , __lowercase ): if is_palindrome(__lowercase ) and is_palindrome(bin(__lowercase ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
621
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a__ ( __lowercase ) -> Optional[int]: _A = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a__ ( __lowercase ) -> List[Any]: _A , _A = emb.weight.shape _A = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _A = emb.weight.data return lin_layer def a__ ( __lowercase , __lowercase="facebook/mbart-large-en-ro" , __lowercase=False , __lowercase=False ) -> List[str]: _A = torch.load(__lowercase , map_location="cpu" )["model"] remove_ignore_keys_(__lowercase ) _A = state_dict["encoder.embed_tokens.weight"].shape[0] _A = MBartConfig.from_pretrained(__lowercase , vocab_size=__lowercase ) if mbart_aa and finetuned: _A = "relu" _A = state_dict["decoder.embed_tokens.weight"] _A = MBartForConditionalGeneration(__lowercase ) model.model.load_state_dict(__lowercase ) if finetuned: _A = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") a_ = parser.parse_args() a_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
621
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE( nn.Module ): """simple docstring""" def __init__( self : List[str] , __snake_case : int = 16 , __snake_case : int = 88 , __snake_case : Optional[int] = None , __snake_case : int = 1 , __snake_case : float = 0.0 , __snake_case : int = 32 , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "geglu" , __snake_case : Optional[int] = None , ) -> Optional[int]: super().__init__() UpperCAmelCase : str = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_snake_case , attention_head_dim=_snake_case , in_channels=_snake_case , num_layers=_snake_case , dropout=_snake_case , norm_num_groups=_snake_case , cross_attention_dim=_snake_case , attention_bias=_snake_case , sample_size=_snake_case , num_vector_embeds=_snake_case , activation_fn=_snake_case , num_embeds_ada_norm=_snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference UpperCAmelCase : Tuple = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` UpperCAmelCase : Optional[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` UpperCAmelCase : Any = [1, 0] def A ( self : Union[str, Any] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=None , __snake_case : List[str]=None , __snake_case : Optional[int]=None , __snake_case : bool = True , ) -> Any: UpperCAmelCase : str = hidden_states UpperCAmelCase : int = [] UpperCAmelCase : Dict = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens UpperCAmelCase : str = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] UpperCAmelCase : List[Any] = self.transformer_index_for_condition[i] UpperCAmelCase : int = self.transformers[transformer_index]( _snake_case , encoder_hidden_states=_snake_case , timestep=_snake_case , cross_attention_kwargs=_snake_case , return_dict=_snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] UpperCAmelCase : Optional[int] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) UpperCAmelCase : Optional[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_snake_case )
127
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def _lowerCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' a__ = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) a__ = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(_snake_case ) from datasets import load_dataset a__ = load_dataset('nielsr/rvlcdip-demo' ) a__ = dataset['train'][0]['image'].convert('RGB' ) a__ = image_processor(_snake_case , return_tensors='pt' ).to(_snake_case ) # forward pass with torch.no_grad(): a__ = model(**_snake_case ) a__ = outputs.logits a__ = torch.Size((1, 16) ) self.assertEqual(logits.shape , _snake_case ) a__ = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=_snake_case , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _snake_case , atol=1E-4 ) )
232
0
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase ) -> list: lowercase__ : int = int(__lowerCamelCase ) if n_element < 1: lowercase__ : List[str] = ValueError('''a should be a positive number''' ) raise my_error lowercase__ : int = [1] lowercase__ , lowercase__ , lowercase__ : int = (0, 0, 0) lowercase__ : Dict = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase_ = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') lowerCAmelCase_ = hamming(int(n)) print('-----------------------------------------------------') print(F'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
122
"""simple docstring""" import cmath import math def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> complex: lowercase__ : str = math.radians(__lowerCamelCase ) lowercase__ : Union[str, Any] = math.radians(__lowerCamelCase ) # Convert voltage and current to rectangular form lowercase__ : Tuple = cmath.rect(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Union[str, Any] = cmath.rect(__lowerCamelCase , __lowerCamelCase ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
122
1
import os def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: with open(os.path.dirname(snake_case__ ) + '/grid.txt' ) as f: _lowercase = [] # noqa: E741 for _ in range(20 ): l.append([int(snake_case__ ) for x in f.readline().split()] ) _lowercase = 0 # right for i in range(20 ): for j in range(17 ): _lowercase = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _lowercase = temp # down for i in range(17 ): for j in range(20 ): _lowercase = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _lowercase = temp # diagonal 1 for i in range(17 ): for j in range(17 ): _lowercase = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _lowercase = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): _lowercase = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _lowercase = temp return maximum if __name__ == "__main__": print(solution())
67
"""simple docstring""" class _lowerCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = data _SCREAMING_SNAKE_CASE : Tuple = previous _SCREAMING_SNAKE_CASE : Any = next_node def __str__( self ) -> str: return F"""{self.data}""" def A ( self ) -> int: return self.data def A ( self ) -> Dict: return self.next def A ( self ) -> Union[str, Any]: return self.previous class _lowerCAmelCase : def __init__( self , lowerCAmelCase_ ) -> List[str]: _SCREAMING_SNAKE_CASE : List[Any] = head def __iter__( self ) -> Any: return self def A ( self ) -> Dict: if not self.current: raise StopIteration else: _SCREAMING_SNAKE_CASE : Any = self.current.get_data() _SCREAMING_SNAKE_CASE : Dict = self.current.get_next() return value class _lowerCAmelCase : def __init__( self ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = None # First node in list _SCREAMING_SNAKE_CASE : Union[str, Any] = None # Last node in list def __str__( self ) -> Any: _SCREAMING_SNAKE_CASE : str = self.head _SCREAMING_SNAKE_CASE : int = [] while current is not None: nodes.append(current.get_data() ) _SCREAMING_SNAKE_CASE : List[Any] = current.get_next() return " ".join(str(lowerCAmelCase_ ) for node in nodes ) def __contains__( self , lowerCAmelCase_ ) -> Any: _SCREAMING_SNAKE_CASE : Any = self.head while current: if current.get_data() == value: return True _SCREAMING_SNAKE_CASE : int = current.get_next() return False def __iter__( self ) -> str: return LinkedListIterator(self.head ) def A ( self ) -> Dict: if self.head: return self.head.get_data() return None def A ( self ) -> List[Any]: if self.tail: return self.tail.get_data() return None def A ( self , lowerCAmelCase_ ) -> None: if self.head is None: _SCREAMING_SNAKE_CASE : List[Any] = node _SCREAMING_SNAKE_CASE : Dict = node else: self.insert_before_node(self.head , lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ ) -> None: if self.head is None: self.set_head(lowerCAmelCase_ ) else: self.insert_after_node(self.tail , lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ ) -> None: _SCREAMING_SNAKE_CASE : Any = Node(lowerCAmelCase_ ) if self.head is None: self.set_head(lowerCAmelCase_ ) else: self.set_tail(lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _SCREAMING_SNAKE_CASE : Optional[Any] = node _SCREAMING_SNAKE_CASE : List[Any] = node.previous if node.get_previous() is None: _SCREAMING_SNAKE_CASE : List[Any] = node_to_insert else: _SCREAMING_SNAKE_CASE : Optional[int] = node_to_insert _SCREAMING_SNAKE_CASE : Any = node_to_insert def A ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _SCREAMING_SNAKE_CASE : Optional[Any] = node _SCREAMING_SNAKE_CASE : Optional[int] = node.next if node.get_next() is None: _SCREAMING_SNAKE_CASE : Tuple = node_to_insert else: _SCREAMING_SNAKE_CASE : Any = node_to_insert _SCREAMING_SNAKE_CASE : List[str] = node_to_insert def A ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: _SCREAMING_SNAKE_CASE : List[Any] = 1 _SCREAMING_SNAKE_CASE : str = Node(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.head while node: if current_position == position: self.insert_before_node(lowerCAmelCase_ , lowerCAmelCase_ ) return current_position += 1 _SCREAMING_SNAKE_CASE : List[str] = node.next self.insert_after_node(self.tail , lowerCAmelCase_ ) def A ( self , lowerCAmelCase_ ) -> Node: _SCREAMING_SNAKE_CASE : Tuple = self.head while node: if node.get_data() == item: return node _SCREAMING_SNAKE_CASE : Dict = node.get_next() raise Exception('Node not found' ) def A ( self , lowerCAmelCase_ ) -> int: if (node := self.get_node(lowerCAmelCase_ )) is not None: if node == self.head: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.head.get_next() if node == self.tail: _SCREAMING_SNAKE_CASE : int = self.tail.get_previous() self.remove_node_pointers(lowerCAmelCase_ ) @staticmethod def A ( lowerCAmelCase_ ) -> None: if node.get_next(): _SCREAMING_SNAKE_CASE : List[Any] = node.previous if node.get_previous(): _SCREAMING_SNAKE_CASE : str = node.next _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : List[Any] = None def A ( self ) -> List[str]: return self.head is None def lowercase__ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
621
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = SwinConfig.from_pretrained( """microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __lowercase = MaskFormerConfig(backbone_config=lowerCamelCase ) __lowercase = """huggingface/label-files""" if "ade20k-full" in model_name: # this should be ok __lowercase = 847 __lowercase = """maskformer-ade20k-full-id2label.json""" elif "ade" in model_name: # this should be ok __lowercase = 150 __lowercase = """ade20k-id2label.json""" elif "coco-stuff" in model_name: # this should be ok __lowercase = 171 __lowercase = """maskformer-coco-stuff-id2label.json""" elif "coco" in model_name: # TODO __lowercase = 133 __lowercase = """coco-panoptic-id2label.json""" elif "cityscapes" in model_name: # this should be ok __lowercase = 19 __lowercase = """cityscapes-id2label.json""" elif "vistas" in model_name: # this should be ok __lowercase = 65 __lowercase = """mapillary-vistas-id2label.json""" __lowercase = json.load(open(hf_hub_download(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __lowercase = {int(lowerCamelCase ): v for k, v in idalabel.items()} return config def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = [] # stem # fmt: off rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.attn.proj.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.norm2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((F'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((F'backbone.layers.{i}.downsample.reduction.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.weight', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((F'backbone.layers.{i}.downsample.norm.bias', F'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias') ) # FPN rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") ) rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'sem_seg_head.adapter_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight') ) rename_keys.append((F'sem_seg_head.adapter_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.weight', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight') ) rename_keys.append((F'sem_seg_head.layer_{source_index}.norm.bias', F'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias') ) rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") ) rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias') ) # cross-attention out projection rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias') ) # MLP 1 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', F'model.transformer_module.decoder.layers.{idx}.fc1.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', F'model.transformer_module.decoder.layers.{idx}.fc1.bias') ) # MLP 2 rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', F'model.transformer_module.decoder.layers.{idx}.fc2.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', F'model.transformer_module.decoder.layers.{idx}.fc2.bias') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', F'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', F'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias') ) # layernorm 3 (final layernorm) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight') ) rename_keys.append((F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', F'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias') ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") ) rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") ) # heads on top rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") ) rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") ) rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") ) for i in range(3 ): rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.weight', F'mask_embedder.{i}.0.weight') ) rename_keys.append((F'sem_seg_head.predictor.mask_embed.layers.{i}.bias', F'mask_embedder.{i}.0.bias') ) # fmt: on return rename_keys def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = dct.pop(lowerCamelCase ) __lowercase = val def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowercase = state_dict.pop(F'backbone.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[:dim, :] __lowercase = in_proj_bias[: dim] __lowercase = in_proj_weight[ dim : dim * 2, : ] __lowercase = in_proj_bias[ dim : dim * 2 ] __lowercase = in_proj_weight[ -dim :, : ] __lowercase = in_proj_bias[-dim :] # fmt: on def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight' ) __lowercase = state_dict.pop(F'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: hidden_size, :] __lowercase = in_proj_bias[:config.hidden_size] __lowercase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowercase = in_proj_bias[hidden_size : hidden_size * 2] __lowercase = in_proj_weight[-hidden_size :, :] __lowercase = in_proj_bias[-hidden_size :] # fmt: on def snake_case ( ): '''simple docstring''' __lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = False ): '''simple docstring''' __lowercase = get_maskformer_config(lowerCamelCase ) # load original state_dict with open(lowerCamelCase , """rb""" ) as f: __lowercase = pickle.load(lowerCamelCase ) __lowercase = data["""model"""] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowercase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # update to torch tensors for key, value in state_dict.items(): __lowercase = torch.from_numpy(lowerCamelCase ) # load 🤗 model __lowercase = MaskFormerForInstanceSegmentation(lowerCamelCase ) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase , param.shape ) __lowercase , __lowercase = model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase ) == 0, F'Unexpected keys: {unexpected_keys}' # verify results __lowercase = prepare_img() if "vistas" in model_name: __lowercase = 65 elif "cityscapes" in model_name: __lowercase = 65_535 else: __lowercase = 255 __lowercase = True if """ade""" in model_name else False __lowercase = MaskFormerImageProcessor(ignore_index=lowerCamelCase , reduce_labels=lowerCamelCase ) __lowercase = image_processor(lowerCamelCase , return_tensors="""pt""" ) __lowercase = model(**lowerCamelCase ) print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowercase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) image_processor.save_pretrained(lowerCamelCase ) if push_to_hub: print("""Pushing model and image processor to the hub...""" ) model.push_to_hub(F'nielsr/{model_name}' ) image_processor.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you'd like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
706
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __UpperCamelCase : Tuple = 2 class __UpperCamelCase : def __init__( self : List[str] , *, # begin keyword-only arguments _lowerCAmelCase : Optional[int]="<s>" , _lowerCAmelCase : Optional[int]="<pad>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]=None , ) -> Tuple: """simple docstring""" __lowercase , __lowercase , __lowercase , __lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) __lowercase = self.add_symbol(_lowerCAmelCase ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_lowerCAmelCase ) __lowercase = len(self.symbols ) def __eq__( self : Dict , _lowerCAmelCase : List[str] ) -> Any: """simple docstring""" return self.indices == other.indices def __getitem__( self : Any , _lowerCAmelCase : str ) -> Dict: """simple docstring""" if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ) -> List[str]: """simple docstring""" return len(self.symbols ) def __contains__( self : Union[str, Any] , _lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return sym in self.indices @classmethod def _a ( cls : Dict , _lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase = cls() d.add_from_file(_lowerCAmelCase ) return d def _a ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=1 , _lowerCAmelCase : Optional[int]=False ) -> Union[str, Any]: """simple docstring""" if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(_lowerCAmelCase ) self.count.append(_lowerCAmelCase ) return idx def _a ( self : List[str] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: """simple docstring""" return 0 def _a ( self : Optional[Any] , _lowerCAmelCase : Dict ) -> str: """simple docstring""" if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(_lowerCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(_lowerCAmelCase ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(_lowerCAmelCase ) for line in lines[indices_start_line:]: try: __lowercase , __lowercase = line.rstrip().rsplit(""" """ , 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase , __lowercase = line.rsplit(""" """ , 1 ) else: __lowercase = False __lowercase = int(_lowerCAmelCase ) __lowercase = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(_lowerCAmelCase ) ) self.add_symbol(_lowerCAmelCase , n=_lowerCAmelCase , overwrite=_lowerCAmelCase ) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = dict((re.sub(r"""@@$""" , """""" , lowerCamelCase ), v) if k.endswith("""@@""" ) else (re.sub(r"""$""" , """</w>""" , lowerCamelCase ), v) for k, v in d.items() ) __lowercase = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] __lowercase = d[k] # restore return da def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if not os.path.exists(lowerCamelCase ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models __lowercase = os.path.join(lowerCamelCase , """checkpoint.pt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) __lowercase = torch.load(lowerCamelCase , map_location="""cpu""" ) __lowercase = chkpt["""cfg"""]["""model"""] # dicts __lowercase = os.path.join(lowerCamelCase , """dict.txt""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {dict_file} does not exist!' ) __lowercase = Dictionary.load(lowerCamelCase ) __lowercase = rewrite_dict_keys(src_dict.indices ) __lowercase = len(lowerCamelCase ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # merges_file (bpecodes) __lowercase = os.path.join(lowerCamelCase , """bpecodes""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) __lowercase = os.path.join(lowerCamelCase , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(lowerCamelCase , lowerCamelCase ) # model config __lowercase = os.path.join(lowerCamelCase , """config.json""" ) __lowercase = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1e-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # tokenizer config __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) __lowercase = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 1_024, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(lowerCamelCase , ensure_ascii=lowerCamelCase , indent=lowerCamelCase ) ) # model __lowercase = chkpt["""model"""] # remove unneeded keys __lowercase = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(lowerCamelCase , lowerCamelCase ) __lowercase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): __lowercase = model_state_dict.pop(lowerCamelCase ) else: __lowercase = model_state_dict.pop(lowerCamelCase ) __lowercase = BioGptConfig.from_pretrained(lowerCamelCase ) __lowercase = BioGptForCausalLM(lowerCamelCase ) # check that it loads ok model_new.load_state_dict(lowerCamelCase ) # save __lowercase = os.path.join(lowerCamelCase , lowerCamelCase ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(lowerCamelCase , lowerCamelCase ) print("""Conversion is done!""" ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
53
0