code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
1
"""simple docstring""" import math def lowerCAmelCase_ ( lowercase_ : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : Tuple = 2 __SCREAMING_SNAKE_CASE : Optional[int] = int(math.sqrt(_A ) ) # Size of every segment __SCREAMING_SNAKE_CASE : List[str] = [True] * (end + 1) __SCREAMING_SNAKE_CASE : Optional[Any] = [] while start <= end: if temp[start] is True: in_prime.append(_A ) for i in range(start * start , end + 1 , _A ): __SCREAMING_SNAKE_CASE : Tuple = False start += 1 prime += in_prime __SCREAMING_SNAKE_CASE : List[Any] = end + 1 __SCREAMING_SNAKE_CASE : Optional[Any] = min(2 * end , _A ) while low <= n: __SCREAMING_SNAKE_CASE : int = [True] * (high - low + 1) for each in in_prime: __SCREAMING_SNAKE_CASE : List[Any] = math.floor(low / each ) * each if t < low: t += each for j in range(_A , high + 1 , _A ): __SCREAMING_SNAKE_CASE : List[Any] = False for j in range(len(_A ) ): if temp[j] is True: prime.append(j + low ) __SCREAMING_SNAKE_CASE : Optional[Any] = high + 1 __SCREAMING_SNAKE_CASE : Dict = min(high + end , _A ) return prime print(sieve(10**6))
709
"""simple docstring""" _lowerCamelCase = ''' # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git ''' _lowerCamelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _lowerCamelCase = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
401
0
from __future__ import annotations A : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] A : Union[str, Any] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def _lowerCAmelCase ( _lowerCAmelCase ) -> list[float]: '''simple docstring''' __snake_case = [] __snake_case = len(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): __snake_case = -1 for j in range(i + 1 , _lowerCAmelCase ): if arr[i] < arr[j]: __snake_case = arr[j] break result.append(_lowerCAmelCase ) return result def _lowerCAmelCase ( _lowerCAmelCase ) -> list[float]: '''simple docstring''' __snake_case = [] for i, outer in enumerate(_lowerCAmelCase ): __snake_case = -1 for inner in arr[i + 1 :]: if outer < inner: __snake_case = inner break result.append(_lowerCAmelCase ) return result def _lowerCAmelCase ( _lowerCAmelCase ) -> list[float]: '''simple docstring''' __snake_case = len(_lowerCAmelCase ) __snake_case = [] __snake_case = [-1] * arr_size for index in reversed(range(_lowerCAmelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __snake_case = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) A : int = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
371
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() A : int = logging.get_logger() @dataclass class UpperCamelCase: snake_case_ : nn.Module snake_case_ : List[nn.Module] = field(default_factory=_a ) snake_case_ : list = field(default_factory=_a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tensor , SCREAMING_SNAKE_CASE : Tensor ) -> Tuple: '''simple docstring''' __snake_case = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE , nn.BatchNormad ) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE ) def __call__( self : int , SCREAMING_SNAKE_CASE : Tensor ) -> List[str]: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(SCREAMING_SNAKE_CASE ) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: '''simple docstring''' return list(filter(lambda SCREAMING_SNAKE_CASE : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class UpperCamelCase: snake_case_ : nn.Module snake_case_ : nn.Module snake_case_ : int = 0 snake_case_ : List = field(default_factory=_a ) snake_case_ : List = field(default_factory=_a ) def __call__( self : List[Any] , SCREAMING_SNAKE_CASE : Tensor ) -> Dict: '''simple docstring''' __snake_case = Tracker(self.dest )(SCREAMING_SNAKE_CASE ).parametrized __snake_case = Tracker(self.src )(SCREAMING_SNAKE_CASE ).parametrized __snake_case = list(filter(lambda SCREAMING_SNAKE_CASE : type(SCREAMING_SNAKE_CASE ) not in self.src_skip , SCREAMING_SNAKE_CASE ) ) __snake_case = list(filter(lambda SCREAMING_SNAKE_CASE : type(SCREAMING_SNAKE_CASE ) not in self.dest_skip , SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) != len(SCREAMING_SNAKE_CASE ): raise Exception( f'''Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE )} operations while''' f''' destination module has {len(SCREAMING_SNAKE_CASE )}.''' ) for dest_m, src_m in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True ) -> Dict: '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): __snake_case = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ).eval() __snake_case = ResNetForImageClassification(_lowerCAmelCase ).eval() __snake_case = ModuleTransfer(src=_lowerCAmelCase , dest=_lowerCAmelCase ) __snake_case = torch.randn((1, 3, 224, 224) ) module_transfer(_lowerCAmelCase ) assert torch.allclose(from_model(_lowerCAmelCase ) , our_model(_lowerCAmelCase ).logits ), "The model logits don't match the original one." __snake_case = F'''resnet{'-'.join(name.split('resnet' ) )}''' print(_lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=_lowerCAmelCase , ) # we can use the convnext one __snake_case = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=_lowerCAmelCase , ) print(F'''Pushed {checkpoint_name}''' ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = True ) -> Dict: '''simple docstring''' __snake_case = "imagenet-1k-id2label.json" __snake_case = 1000 __snake_case = (1, num_labels) __snake_case = "huggingface/label-files" __snake_case = num_labels __snake_case = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) __snake_case = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = partial(_lowerCAmelCase , num_labels=_lowerCAmelCase , idalabel=_lowerCAmelCase , labelaid=_lowerCAmelCase ) __snake_case = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type="bottleneck" ), } if model_name: convert_weight_and_push(_lowerCAmelCase , names_to_config[model_name] , _lowerCAmelCase , _lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) A : Union[str, Any] = parser.parse_args() A : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
371
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __snake_case = logging.get_logger(__name__) __snake_case = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _a : """simple docstring""" A_ = field( default=__a , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(__a )} ) A_ = field( default=__a , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) A_ = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A_ = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) A_ = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) A_ = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) A_ = field( default=__a , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) A_ = field( default=__a , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) A_ = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) A_ = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) A_ = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) A_ = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class _a ( __a ): """simple docstring""" A_ = '''train''' A_ = '''dev''' class _a ( __a ): """simple docstring""" A_ = 4_2 A_ = 4_2 A_ = 4_2 A_ = 4_2 def __init__( self : Optional[Any] , lowercase_ : SquadDataTrainingArguments , lowercase_ : PreTrainedTokenizer , lowercase_ : Optional[int] = None , lowercase_ : Union[str, Split] = Split.train , lowercase_ : Optional[bool] = False , lowercase_ : Optional[str] = None , lowercase_ : Optional[str] = "pt" , ): '''simple docstring''' lowercase_ = args lowercase_ = is_language_sensitive lowercase_ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowercase_ , lowercase_ ): try: lowercase_ = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) lowercase_ = mode # Load data features from cache or dataset file lowercase_ = """v2""" if args.version_2_with_negative else """v1""" lowercase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase_ = cached_features_file + """.lock""" with FileLock(lowercase_ ): if os.path.exists(lowercase_ ) and not args.overwrite_cache: lowercase_ = time.time() lowercase_ = torch.load(lowercase_ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowercase_ = self.old_features["""features"""] lowercase_ = self.old_features.get("""dataset""" , lowercase_ ) lowercase_ = self.old_features.get("""examples""" , lowercase_ ) logger.info( F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" """ future run""" ) else: if mode == Split.dev: lowercase_ = self.processor.get_dev_examples(args.data_dir ) else: lowercase_ = self.processor.get_train_examples(args.data_dir ) lowercase_ , lowercase_ = squad_convert_examples_to_features( examples=self.examples , tokenizer=lowercase_ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=lowercase_ , ) lowercase_ = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , lowercase_ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : List[str] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Tuple , lowercase_ : Tuple ): '''simple docstring''' lowercase_ = self.features[i] lowercase_ = torch.tensor(feature.input_ids , dtype=torch.long ) lowercase_ = torch.tensor(feature.attention_mask , dtype=torch.long ) lowercase_ = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowercase_ = torch.tensor(feature.cls_index , dtype=torch.long ) lowercase_ = torch.tensor(feature.p_mask , dtype=torch.float ) lowercase_ = torch.tensor(feature.is_impossible , dtype=torch.float ) lowercase_ = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowercase_ = torch.tensor(feature.start_position , dtype=torch.long ) lowercase_ = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
700
'''simple docstring''' def A_ ( SCREAMING_SNAKE_CASE_ ) ->int: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) lowercase_ = 0 lowercase_ = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: lowercase_ = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] lowercase_ = 1 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total *= numbers[i] lowercase_ = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps def A_ ( SCREAMING_SNAKE_CASE_ ) ->int: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) lowercase_ = 0 lowercase_ = str(SCREAMING_SNAKE_CASE_ ) while len(SCREAMING_SNAKE_CASE_ ) != 1: lowercase_ = [int(SCREAMING_SNAKE_CASE_ ) for i in num_string] lowercase_ = 0 for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): total += numbers[i] lowercase_ = str(SCREAMING_SNAKE_CASE_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
603
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def a__ ( _UpperCamelCase : Optional[int] ): if "resnet-50" in model_name: __lowerCamelCase = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: __lowerCamelCase = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) __lowerCamelCase = DetrConfig(use_timm_backbone=__lowercase ,backbone_config=__lowercase ) # set label attributes __lowerCamelCase = '''panoptic''' in model_name if is_panoptic: __lowerCamelCase = 2_50 else: __lowerCamelCase = 91 __lowerCamelCase = '''huggingface/label-files''' __lowerCamelCase = '''coco-detection-id2label.json''' __lowerCamelCase = json.load(open(hf_hub_download(__lowercase ,__lowercase ,repo_type='''dataset''' ) ,'''r''' ) ) __lowerCamelCase = {int(__lowercase ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def a__ ( _UpperCamelCase : int ): __lowerCamelCase = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def a__ ( _UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[int] ,_UpperCamelCase : List[str] ): __lowerCamelCase = state_dict.pop(__lowercase ) __lowerCamelCase = val def a__ ( _UpperCamelCase : Tuple ,_UpperCamelCase : Optional[Any]=False ): __lowerCamelCase = '''''' if is_panoptic: __lowerCamelCase = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:2_56, :] __lowerCamelCase = in_proj_bias[:2_56] __lowerCamelCase = in_proj_weight[2_56:5_12, :] __lowerCamelCase = in_proj_bias[2_56:5_12] __lowerCamelCase = in_proj_weight[-2_56:, :] __lowerCamelCase = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:2_56, :] __lowerCamelCase = in_proj_bias[:2_56] __lowerCamelCase = in_proj_weight[2_56:5_12, :] __lowerCamelCase = in_proj_bias[2_56:5_12] __lowerCamelCase = in_proj_weight[-2_56:, :] __lowerCamelCase = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention __lowerCamelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __lowerCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowerCamelCase = in_proj_weight_cross_attn[:2_56, :] __lowerCamelCase = in_proj_bias_cross_attn[:2_56] __lowerCamelCase = in_proj_weight_cross_attn[2_56:5_12, :] __lowerCamelCase = in_proj_bias_cross_attn[2_56:5_12] __lowerCamelCase = in_proj_weight_cross_attn[-2_56:, :] __lowerCamelCase = in_proj_bias_cross_attn[-2_56:] def a__ ( ): __lowerCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowerCamelCase = Image.open(requests.get(__lowercase ,stream=__lowercase ).raw ) return im @torch.no_grad() def a__ ( _UpperCamelCase : Optional[int] ,_UpperCamelCase : List[Any]=None ,_UpperCamelCase : Dict=False ): __lowerCamelCase ,__lowerCamelCase = get_detr_config(__lowercase ) # load original model from torch hub __lowerCamelCase = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F"""Converting model {model_name}...""" ) __lowerCamelCase = torch.hub.load('''facebookresearch/detr''' ,model_name_to_original_name[model_name] ,pretrained=__lowercase ).eval() __lowerCamelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(__lowercase ): if is_panoptic: __lowerCamelCase = '''detr.''' + src rename_key(__lowercase ,__lowercase ,__lowercase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowercase ,is_panoptic=__lowercase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCamelCase = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __lowerCamelCase = state_dict.pop(__lowercase ) __lowerCamelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCamelCase = state_dict.pop(__lowercase ) __lowerCamelCase = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __lowerCamelCase = state_dict.pop(__lowercase ) __lowerCamelCase = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __lowerCamelCase = state_dict.pop(__lowercase ) __lowerCamelCase = val # finally, create HuggingFace model and load state dict __lowerCamelCase = DetrForSegmentation(__lowercase ) if is_panoptic else DetrForObjectDetection(__lowercase ) model.load_state_dict(__lowercase ) model.eval() # verify our conversion on an image __lowerCamelCase = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __lowerCamelCase = DetrImageProcessor(format=__lowercase ) __lowerCamelCase = processor(images=prepare_img() ,return_tensors='''pt''' ) __lowerCamelCase = encoding['''pixel_values'''] __lowerCamelCase = detr(__lowercase ) __lowerCamelCase = model(__lowercase ) assert torch.allclose(outputs.logits ,original_outputs['''pred_logits'''] ,atol=1e-3 ) assert torch.allclose(outputs.pred_boxes ,original_outputs['''pred_boxes'''] ,atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs['''pred_masks'''] ,atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") a_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
175
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class _UpperCAmelCase : """simple docstring""" def __init__( self : str , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any]=13 , __UpperCAmelCase : Optional[Any]=7 , __UpperCAmelCase : List[str]=False , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Union[str, Any]=False , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : List[Any]=19 , __UpperCAmelCase : str=32 , __UpperCAmelCase : Tuple=5 , __UpperCAmelCase : Tuple=4 , __UpperCAmelCase : Dict=37 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : List[str]=0.1 , __UpperCAmelCase : Optional[int]=0.1 , __UpperCAmelCase : Union[str, Any]=512 , __UpperCAmelCase : List[str]=16 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : int=3 , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : Tuple=None , ): '''simple docstring''' _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def lowerCAmelCase ( self : Dict ): '''simple docstring''' _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : int ): '''simple docstring''' _A = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__UpperCAmelCase , esmfold_config={"trunk": {"num_blocks": 2}, "fp16_esm": False} , ) return config def lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int ): '''simple docstring''' _A = EsmForProteinFolding(config=__UpperCAmelCase ).float() model.to(__UpperCAmelCase ) model.eval() _A = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) _A = model(__UpperCAmelCase ) _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = False snake_case = (EsmForProteinFolding,) if is_torch_available() else () snake_case = () snake_case = {} if is_torch_available() else {} snake_case = False def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = EsmFoldModelTester(self ) _A = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip("Does not support attention outputs" ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip def lowerCAmelCase ( self : str ): '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass @unittest.skip("Esm does not support embedding resizing" ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("ESMFold does not support passing input embeds!" ) def lowerCAmelCase ( self : str ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCAmelCase ( self : int ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip("ESMFold does not support head pruning." ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip("ESMFold does not output hidden states in the normal way." ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip("ESMfold does not output hidden states in the normal way." ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass @unittest.skip("ESMFold only has one output format." ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip("This test doesn't work for ESMFold and doesn't test core functionality" ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip("ESMFold does not support input chunking." ) def lowerCAmelCase ( self : str ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't respect you and it certainly doesn't respect your initialization arguments." ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support torchscript compilation." ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip("ESMFold doesn't support data parallel." ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase ( self : str ): '''simple docstring''' pass @require_torch class _UpperCAmelCase ( snake_case_ ): """simple docstring""" @slow def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1" ).float() model.eval() _A = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(__UpperCAmelCase )["positions"] _A = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __UpperCAmelCase , atol=1E-4 ) )
330
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowercase_ ( _A : NDArray[floataa] , _A : NDArray[floataa] , _A : list[int] , _A : int , ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Optional[int] = coefficient_matrix.shape lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = constant_matrix.shape if rowsa != colsa: lowerCamelCase__ : Dict = F"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}" raise ValueError(_A ) if colsa != 1: lowerCamelCase__ : Optional[Any] = F"Constant matrix must be nx1 but received {rowsa}x{colsa}" raise ValueError(_A ) if rowsa != rowsa: lowerCamelCase__ : Union[str, Any] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"received {rowsa}x{colsa} and {rowsa}x{colsa}" ) raise ValueError(_A ) if len(_A ) != rowsa: lowerCamelCase__ : Union[str, Any] = ( "Number of initial values must be equal to number of rows in coefficient " F"matrix but received {len(_A )} and {rowsa}" ) raise ValueError(_A ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) lowerCamelCase__ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = table.shape strictly_diagonally_dominant(_A ) # Iterates the whole matrix for given number of times for _ in range(_A ): lowerCamelCase__ : Tuple = [] for row in range(_A ): lowerCamelCase__ : List[str] = 0 for col in range(_A ): if col == row: lowerCamelCase__ : Union[str, Any] = table[row][col] elif col == cols - 1: lowerCamelCase__ : Tuple = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase__ : str = (temp + val) / denom new_val.append(_A ) lowerCamelCase__ : Optional[Any] = new_val return [float(_A ) for i in new_val] def lowercase_ ( _A : NDArray[floataa] ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = table.shape lowerCamelCase__ : List[str] = True for i in range(0 , _A ): lowerCamelCase__ : Dict = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
5
def lowercase_ ( _A : int ): """simple docstring""" if not isinstance(_A , _A ): lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(_A ) if number < 0: return False lowerCamelCase__ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
5
1
import argparse import math import traceback import dateutil.parser as date_parser import requests def snake_case (__lowercase ) -> str: '''simple docstring''' _snake_case : List[Any] = {} _snake_case : Any = job['started_at'] _snake_case : List[str] = job['completed_at'] _snake_case : Union[str, Any] = date_parser.parse(__lowercase ) _snake_case : List[Any] = date_parser.parse(__lowercase ) _snake_case : Dict = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _snake_case : List[str] = start _snake_case : Dict = end _snake_case : List[Any] = duration_in_min return job_info def snake_case (__lowercase , __lowercase=None ) -> Union[str, Any]: '''simple docstring''' _snake_case : List[str] = None if token is not None: _snake_case : Optional[int] = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""} _snake_case : Any = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _snake_case : List[str] = requests.get(__lowercase , headers=__lowercase ).json() _snake_case : List[str] = {} try: job_time.update({job["name"]: extract_time_from_single_job(__lowercase ) for job in result["jobs"]} ) _snake_case : Union[str, Any] = math.ceil((result["total_count"] - 100) / 100 ) for i in range(__lowercase ): _snake_case : Dict = requests.get(url + F"""&page={i + 2}""" , headers=__lowercase ).json() job_time.update({job["name"]: extract_time_from_single_job(__lowercase ) for job in result["jobs"]} ) return job_time except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": __SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') __SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() __SCREAMING_SNAKE_CASE : Union[str, Any] = get_job_time(args.workflow_run_id) __SCREAMING_SNAKE_CASE : str = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v['duration']}''')
670
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : str = """vivit""" def __init__( self , lowerCamelCase_=2_2_4 , lowerCamelCase_=3_2 , lowerCamelCase_=[2, 1_6, 1_6] , lowerCamelCase_=3 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu_fast" , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-06 , lowerCamelCase_=True , **lowerCamelCase_ , ) -> int: _a : Tuple = hidden_size _a : Dict = num_hidden_layers _a : List[str] = num_attention_heads _a : int = intermediate_size _a : Optional[int] = hidden_act _a : Dict = hidden_dropout_prob _a : List[str] = attention_probs_dropout_prob _a : List[str] = initializer_range _a : List[str] = layer_norm_eps _a : Any = image_size _a : Optional[Any] = num_frames _a : Dict = tubelet_size _a : Union[str, Any] = num_channels _a : Optional[int] = qkv_bias super().__init__(**lowerCamelCase_ )
120
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Tuple=99 , UpperCAmelCase_ : Tuple=64 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : List[Any]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Dict=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : Dict=16 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : List[Any]=None , ): SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : int = seq_length SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : Tuple = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = embedding_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : str = type_vocab_size SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : int = num_labels SCREAMING_SNAKE_CASE : int = num_choices SCREAMING_SNAKE_CASE : Tuple = scope def _A ( self : Dict ): SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Any = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Dict = None SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Any = None if self.use_labels: SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _A ( self : Tuple ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , ) def _A ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : int = MegatronBertModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _A ( self : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Dict = MegatronBertForMaskedLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = MegatronBertForCausalLM(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : int = MegatronBertForNextSentencePrediction(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _A ( self : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : int = MegatronBertForPreTraining(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : str = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , next_sentence_label=UpperCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _A ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Union[str, Any] = MegatronBertForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Any = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Tuple = self.num_labels SCREAMING_SNAKE_CASE : Dict = MegatronBertForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = MegatronBertForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = self.num_choices SCREAMING_SNAKE_CASE : Dict = MegatronBertForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() SCREAMING_SNAKE_CASE : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE : Union[str, Any] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE ) : int = config_and_inputs SCREAMING_SNAKE_CASE : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) UpperCamelCase_ : int = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Optional[Any] = True # test_resize_embeddings = False UpperCamelCase_ : Any = False def _A ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str=False ): SCREAMING_SNAKE_CASE : Union[str, Any] = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_ ) if return_labels: if model_class in get_values(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_ ) return inputs_dict def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = MegatronBertModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def _A ( self : List[str] ): self.config_tester.run_common_tests() def _A ( self : int ): SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*UpperCAmelCase_ ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCAmelCase_ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCAmelCase_ ) def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCAmelCase_ ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCAmelCase_ ) def _A ( self : Optional[int] ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCAmelCase_ ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCAmelCase_ ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCAmelCase_ ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return torch.tensor( lowercase , dtype=torch.long , device=lowercase , ) snake_case = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("Model is not available." ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Any = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: SCREAMING_SNAKE_CASE : Tuple = os.path.join(os.environ["MYDIR"] , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = MegatronBertModel.from_pretrained(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.half() SCREAMING_SNAKE_CASE : Optional[int] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model(UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): SCREAMING_SNAKE_CASE : Any = output[0, ii, jj] SCREAMING_SNAKE_CASE : Dict = expected[3 * ii + jj] SCREAMING_SNAKE_CASE : Any = "ii={} jj={} a={} b={}".format(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.assertTrue(math.isclose(UpperCAmelCase_ , UpperCAmelCase_ , rel_tol=UpperCAmelCase_ , abs_tol=UpperCAmelCase_ ) , msg=UpperCAmelCase_ )
706
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask snake_case = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : str , UpperCAmelCase_ : Union[str, Any]=-1 ): # in NER datasets, the last column is usually reserved for NER label SCREAMING_SNAKE_CASE : int = label_idx def _A ( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[Split, str] ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Optional[Any] = mode.value SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(UpperCAmelCase_ , f'''{mode}.txt''' ) SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : Any = [] with open(UpperCAmelCase_ , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : List[str] = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=UpperCAmelCase_ , labels=UpperCAmelCase_ ) ) guid_index += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = [] else: SCREAMING_SNAKE_CASE : str = line.split(" " ) words.append(splits[0] ) if len(UpperCAmelCase_ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=UpperCAmelCase_ , labels=UpperCAmelCase_ ) ) return examples def _A ( self : Tuple , UpperCAmelCase_ : TextIO , UpperCAmelCase_ : TextIO , UpperCAmelCase_ : List ): SCREAMING_SNAKE_CASE : List[str] = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(UpperCAmelCase_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: SCREAMING_SNAKE_CASE : Optional[int] = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(UpperCAmelCase_ ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def _A ( self : Optional[Any] , UpperCAmelCase_ : str ): if path: with open(UpperCAmelCase_ , "r" ) as f: SCREAMING_SNAKE_CASE : List[Any] = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE : Tuple = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def _A ( self : Optional[int] , UpperCAmelCase_ : str ): if path: with open(UpperCAmelCase_ , "r" ) as f: SCREAMING_SNAKE_CASE : Dict = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE : str = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def _A ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[Split, str] ): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : str = mode.value SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(UpperCAmelCase_ , f'''{mode}.txt''' ) SCREAMING_SNAKE_CASE : Optional[Any] = 1 SCREAMING_SNAKE_CASE : str = [] with open(UpperCAmelCase_ , encoding="utf-8" ) as f: for sentence in parse_incr(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[str] = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=UpperCAmelCase_ , labels=UpperCAmelCase_ ) ) guid_index += 1 return examples def _A ( self : str , UpperCAmelCase_ : TextIO , UpperCAmelCase_ : TextIO , UpperCAmelCase_ : List ): SCREAMING_SNAKE_CASE : Dict = 0 for sentence in parse_incr(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = preds_list[example_id] SCREAMING_SNAKE_CASE : Any = "" for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(UpperCAmelCase_ ) example_id += 1 def _A ( self : Dict , UpperCAmelCase_ : str ): if path: with open(UpperCAmelCase_ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
488
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ImageGPTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=0) -> int: UpperCamelCase = 1.0 if scale is None else scale UpperCamelCase = 0.0 if loc is None else loc super().__init__(lowerCamelCase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowerCamelCase_)]) @property def UpperCAmelCase__ ( self) -> List[Any]: return self.base_dist.mean * self.scale + self.loc @property def UpperCAmelCase__ ( self) -> List[str]: return self.base_dist.variance * self.scale**2 @property def UpperCAmelCase__ ( self) -> Any: return self.variance.sqrt() class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) -> None: super().__init__(**lowerCamelCase_) UpperCamelCase = args_dim UpperCamelCase = nn.ModuleList([nn.Linear(lowerCamelCase_ , lowerCamelCase_) for dim in args_dim.values()]) UpperCamelCase = domain_map def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple[torch.Tensor]: UpperCamelCase = [proj(lowerCamelCase_) for proj in self.proj] return self.domain_map(*lowerCamelCase_) class snake_case_ ( nn.Module ): """simple docstring""" def __init__( self , lowerCamelCase_) -> int: super().__init__() UpperCamelCase = function def UpperCAmelCase__ ( self , lowerCamelCase_ , *lowerCamelCase_) -> Tuple: return self.function(lowerCamelCase_ , *lowerCamelCase_) class snake_case_ : """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , lowerCamelCase_ = 1) -> None: UpperCamelCase = dim UpperCamelCase = {k: dim * self.args_dim[k] for k in self.args_dim} def UpperCAmelCase__ ( self , lowerCamelCase_) -> str: if self.dim == 1: return self.distribution_class(*lowerCamelCase_) else: return Independent(self.distribution_class(*lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> Distribution: UpperCamelCase = self._base_distribution(lowerCamelCase_) if loc is None and scale is None: return distr else: return AffineTransformed(lowerCamelCase_ , loc=lowerCamelCase_ , scale=lowerCamelCase_ , event_dim=self.event_dim) @property def UpperCAmelCase__ ( self) -> Tuple: return () if self.dim == 1 else (self.dim,) @property def UpperCAmelCase__ ( self) -> int: return len(self.event_shape) @property def UpperCAmelCase__ ( self) -> float: return 0.0 def UpperCAmelCase__ ( self , lowerCamelCase_) -> nn.Module: return ParameterProjection( in_features=lowerCamelCase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map) , ) def UpperCAmelCase__ ( self , *lowerCamelCase_) -> List[str]: raise NotImplementedError() @staticmethod def UpperCAmelCase__ ( lowerCamelCase_) -> torch.Tensor: return (x + torch.sqrt(torch.square(lowerCamelCase_) + 4.0)) / 2.0 class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"df": 1, "loc": 1, "scale": 1} A_ = StudentT @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) UpperCamelCase = 2.0 + cls.squareplus(lowerCamelCase_) return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"loc": 1, "scale": 1} A_ = Normal @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = cls.squareplus(lowerCamelCase_).clamp_min(torch.finfo(scale.dtype).eps) return loc.squeeze(-1), scale.squeeze(-1) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = {"total_count": 1, "logits": 1} A_ = NegativeBinomial @classmethod def UpperCAmelCase__ ( cls , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase = cls.squareplus(lowerCamelCase_) return total_count.squeeze(-1), logits.squeeze(-1) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if self.dim == 1: return self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) else: return Independent(self.distribution_class(total_count=lowerCamelCase_ , logits=lowerCamelCase_) , 1) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Distribution: UpperCamelCase , UpperCamelCase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits))
34
1
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = """https://openaipublic.azureedge.net/jukebox/models/""" SCREAMING_SNAKE_CASE : Dict = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def __A ( _A ): """simple docstring""" if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: __a = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: __a = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: __a = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: __a = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: __a = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: __a = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __a = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: __a = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def __A ( _A , _A , _A , _A ): """simple docstring""" __a = {} import re __a = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) __a = re.compile( r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __a = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) __a = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) __a = re.compile( r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __a = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) __a = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) __a = re.compile( r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) __a = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_A ): __a = re_encoder_block_conv_in.match(_A ) __a = regex_match.groups() __a = int(groups[2] ) * 2 + int(groups[3] ) __a = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" __a = re_encoder_block_conv_in.sub(_A , _A ) elif re_encoder_block_resnet.fullmatch(_A ): __a = re_encoder_block_resnet.match(_A ) __a = regex_match.groups() __a = int(groups[2] ) * 2 + int(groups[3] ) __a = {"1": 1, "3": 2}[groups[-2]] __a = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" __a = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __a = prefix + resnet_block __a = re_encoder_block_resnet.sub(_A , _A ) elif re_encoder_block_proj_out.fullmatch(_A ): __a = re_encoder_block_proj_out.match(_A ) __a = regex_match.groups() __a = f"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" __a = re_encoder_block_proj_out.sub(_A , _A ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_A ): __a = re_decoder_block_conv_out.match(_A ) __a = regex_match.groups() __a = int(groups[2] ) * 2 + int(groups[3] ) - 2 __a = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" __a = re_decoder_block_conv_out.sub(_A , _A ) elif re_decoder_block_resnet.fullmatch(_A ): __a = re_decoder_block_resnet.match(_A ) __a = regex_match.groups() __a = int(groups[2] ) * 2 + int(groups[3] ) - 2 __a = {"1": 1, "3": 2}[groups[-2]] __a = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" __a = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __a = prefix + resnet_block __a = re_decoder_block_resnet.sub(_A , _A ) elif re_decoder_block_proj_in.fullmatch(_A ): __a = re_decoder_block_proj_in.match(_A ) __a = regex_match.groups() __a = f"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" __a = re_decoder_block_proj_in.sub(_A , _A ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_A ): __a = re_prior_cond_conv_out.match(_A ) __a = regex_match.groups() __a = int(groups[1] ) * 2 + int(groups[2] ) - 2 __a = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" __a = re_prior_cond_conv_out.sub(_A , _A ) elif re_prior_cond_resnet.fullmatch(_A ): __a = re_prior_cond_resnet.match(_A ) __a = regex_match.groups() __a = int(groups[1] ) * 2 + int(groups[2] ) - 2 __a = {"1": 1, "3": 2}[groups[-2]] __a = f"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" __a = f"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __a = prefix + resnet_block __a = re_prior_cond_resnet.sub(_A , _A ) elif re_prior_cond_proj_in.fullmatch(_A ): __a = re_prior_cond_proj_in.match(_A ) __a = regex_match.groups() __a = f"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" __a = re_prior_cond_proj_in.sub(_A , _A ) # keep original key else: __a = original_key __a = replace_key(_A ) if f"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(f"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[f"""{key_prefix}.{key}"""].shape: __a = model_state_dict[f"""{key_prefix}.{key}"""] print(f"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) __a = original_key __a = original_key __a = value return new_dict @torch.no_grad() def __A ( _A=None , _A=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): __a = requests.get(f"""{PREFIX}{file}""" , allow_redirects=_A ) os.makedirs(f"""{pytorch_dump_folder_path}/""" , exist_ok=_A ) open(f"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , "wb" ).write(r.content ) __a = MODEL_MAPPING[model_name.split("/" )[-1]] __a = JukeboxConfig.from_pretrained(_A ) __a = JukeboxModel(_A ) __a = [] __a = {} for i, dict_name in enumerate(_A ): __a = torch.load(f"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )["model"] __a = {} for k in old_dic.keys(): if k.endswith(".b" ): __a = old_dic[k] elif k.endswith(".w" ): __a = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __a = old_dic[k] else: __a = old_dic[k] __a = "vqvae" if i == 0 else f"""priors.{3 - i}""" __a = fix_jukebox_keys(_A , model.state_dict() , _A , _A ) weight_dict.append(_A ) __a = weight_dict.pop(0 ) model.vqvae.load_state_dict(_A ) for i in range(len(_A ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_A ).mkdir(exist_ok=_A ) with open(f"""{pytorch_dump_folder_path}/mapping.json""" , "w" ) as txtfile: json.dump(_A , _A ) print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) return weight_dict if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
719
# Function to print upper half of diamond (pyramid) def __A ( _A ): """simple docstring""" for i in range(0 , _A ): for _ in range(0 , n - i - 1 ): # printing spaces print(" " , end="" ) for _ in range(0 , i + 1 ): # printing stars print("* " , end="" ) print() def __A ( _A ): """simple docstring""" for i in range(_A , 0 , -1 ): for _ in range(_A , 0 , -1 ): # printing stars print("* " , end="" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(" " , end="" ) def __A ( _A ): """simple docstring""" if n <= 0: print(" ... .... nothing printing :(" ) return floyd(_A ) # upper half reverse_floyd(_A ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") SCREAMING_SNAKE_CASE : Tuple = 1 while K: SCREAMING_SNAKE_CASE : Tuple = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) SCREAMING_SNAKE_CASE : Optional[int] = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
525
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase ( a_ , a_ , a_ , unittest.TestCase ): __UpperCAmelCase = AltDiffusionPipeline __UpperCAmelCase = TEXT_TO_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def _a ( self) -> Any: torch.manual_seed(0) __snake_case = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) __snake_case = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0) __snake_case = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_2 , ) __snake_case = CLIPTextModel(lowercase_) __snake_case = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') __snake_case = 7_7 __snake_case = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _a ( self , lowercase_ , lowercase_=0) -> Tuple: if str(lowercase_).startswith('mps'): __snake_case = torch.manual_seed(lowercase_) else: __snake_case = torch.Generator(device=lowercase_).manual_seed(lowercase_) __snake_case = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _a ( self) -> Tuple: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def _a ( self) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3) def _a ( self) -> Optional[int]: __snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() torch.manual_seed(0) __snake_case = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder __snake_case = RobertaSeriesModelWithTransformation(lowercase_) __snake_case = text_encoder __snake_case = AltDiffusionPipeline(**lowercase_) __snake_case = alt_pipe.to(lowercase_) alt_pipe.set_progress_bar_config(disable=lowercase_) __snake_case = self.get_dummy_inputs(lowercase_) __snake_case = 'A photo of an astronaut' __snake_case = alt_pipe(**lowercase_) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __snake_case = np.array( [0.574_8162, 0.6044_7145, 0.4882_1217, 0.5010_0636, 0.543_1185, 0.4576_3683, 0.4965_7696, 0.4813_2733, 0.4757_3093]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _a ( self) -> Tuple: __snake_case = 'cpu' # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = PNDMScheduler(skip_prk_steps=lowercase_) torch.manual_seed(0) __snake_case = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_0_0_2 , ) # TODO: remove after fixing the non-deterministic text encoder __snake_case = RobertaSeriesModelWithTransformation(lowercase_) __snake_case = text_encoder __snake_case = AltDiffusionPipeline(**lowercase_) __snake_case = alt_pipe.to(lowercase_) alt_pipe.set_progress_bar_config(disable=lowercase_) __snake_case = self.get_dummy_inputs(lowercase_) __snake_case = alt_pipe(**lowercase_) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __snake_case = np.array( [0.5160_5093, 0.570_7241, 0.4736_5507, 0.5057_8886, 0.563_3877, 0.464_2503, 0.518_2081, 0.4876_3484, 0.4908_4237]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def _a ( self) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self) -> int: # make sure here that pndm scheduler skips prk __snake_case = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=lowercase_) __snake_case = alt_pipe.to(lowercase_) alt_pipe.set_progress_bar_config(disable=lowercase_) __snake_case = 'A painting of a squirrel eating a burger' __snake_case = torch.manual_seed(0) __snake_case = alt_pipe([prompt] , generator=lowercase_ , guidance_scale=6.0 , num_inference_steps=2_0 , output_type='np') __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __snake_case = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def _a ( self) -> Union[str, Any]: __snake_case = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler') __snake_case = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=lowercase_ , safety_checker=lowercase_) __snake_case = alt_pipe.to(lowercase_) alt_pipe.set_progress_bar_config(disable=lowercase_) __snake_case = 'A painting of a squirrel eating a burger' __snake_case = torch.manual_seed(0) __snake_case = alt_pipe([prompt] , generator=lowercase_ , num_inference_steps=2 , output_type='numpy') __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __snake_case = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
313
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : Tuple = '''▁''' A : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''} A : str = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } A : Any = { '''facebook/mbart-large-50-one-to-many-mmt''': 1024, } # fmt: off A : Dict = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class __lowerCamelCase ( a_ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = PRETRAINED_VOCAB_FILES_MAP a = ["input_ids", "attention_mask"] a = [] a = [] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]="</s>" , SCREAMING_SNAKE_CASE : Optional[Any]="</s>" , SCREAMING_SNAKE_CASE : Dict="<s>" , SCREAMING_SNAKE_CASE : int="<unk>" , SCREAMING_SNAKE_CASE : Tuple="<pad>" , SCREAMING_SNAKE_CASE : List[str]="<mask>" , SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE : str , ): # Mask token behave like a normal word, i.e. include the space before it _A : Tuple = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) else mask_token _A : Dict = {} if sp_model_kwargs is None else sp_model_kwargs _A : Optional[int] = kwargs.get('additional_special_tokens' , []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=SCREAMING_SNAKE_CASE , tgt_lang=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) _A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(SCREAMING_SNAKE_CASE)) _A : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _A : Tuple = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _A : List[Any] = 1 _A : List[Any] = len(self.sp_model) _A : Union[str, Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(SCREAMING_SNAKE_CASE) } _A : Dict = {v: k for k, v in self.lang_code_to_id.items()} _A : List[str] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) _A : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _A : str = src_lang if src_lang is not None else 'en_XX' _A : Any = self.lang_code_to_id[self._src_lang] _A : int = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def A ( self : Optional[Any]): return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A ( self : Union[str, Any]): return self._src_lang @src_lang.setter def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): _A : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self : Dict): _A : int = self.__dict__.copy() _A : Optional[Any] = None return state def __setstate__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict): _A : Tuple = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _A : Any = {} _A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A ( self : Any): _A : str = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A ( self : int , SCREAMING_SNAKE_CASE : str): return self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE) def A ( self : List[str] , SCREAMING_SNAKE_CASE : str): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A : str = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : int): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any]): _A : Tuple = [] _A : Any = '' _A : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) + token _A : Any = True _A : Dict = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE) _A : Tuple = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE) return out_string.strip() def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None): if not os.path.isdir(SCREAMING_SNAKE_CASE): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return _A : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE) elif not os.path.isfile(self.vocab_file): with open(SCREAMING_SNAKE_CASE , 'wb') as fi: _A : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE) return (out_vocab_file,) def A ( self : int , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE) _A : str = [1] * len(self.prefix_tokens) _A : Optional[Any] = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE)) + suffix_ones return prefix_ones + ([0] * len(SCREAMING_SNAKE_CASE)) + ([0] * len(SCREAMING_SNAKE_CASE)) + suffix_ones def A ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] , SCREAMING_SNAKE_CASE : Optional[str] , **SCREAMING_SNAKE_CASE : str): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') _A : Optional[Any] = src_lang _A : Optional[int] = self(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _A : List[str] = self.convert_tokens_to_ids(SCREAMING_SNAKE_CASE) _A : List[str] = tgt_lang_id return inputs def A ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str = "en_XX" , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : str = "ro_RO" , **SCREAMING_SNAKE_CASE : Optional[Any] , ): _A : Any = src_lang _A : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) def A ( self : List[Any]): return self.set_src_lang_special_tokens(self.src_lang) def A ( self : Any): return self.set_tgt_lang_special_tokens(self.tgt_lang) def A ( self : Tuple , SCREAMING_SNAKE_CASE : str): _A : Optional[int] = self.lang_code_to_id[src_lang] _A : Dict = [self.cur_lang_code_id] _A : List[str] = [self.eos_token_id] def A ( self : int , SCREAMING_SNAKE_CASE : str): _A : str = self.lang_code_to_id[tgt_lang] _A : int = [self.cur_lang_code_id] _A : str = [self.eos_token_id]
128
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __a (UpperCamelCase_): '''simple docstring''' def _a ( self , _a ) -> Union[str, Any]: """simple docstring""" with open(_a , encoding="""utf-8""" ) as input_file: SCREAMING_SNAKE_CASE__ : str = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = input_file.read() SCREAMING_SNAKE_CASE__ : str = regexp.search(_a ) return match def _a ( self , _a ) -> Optional[Any]: """simple docstring""" with open(_a , encoding="""utf-8""" ) as input_file: SCREAMING_SNAKE_CASE__ : Tuple = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) SCREAMING_SNAKE_CASE__ : List[Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` SCREAMING_SNAKE_CASE__ : Dict = regexp.finditer(_a ) SCREAMING_SNAKE_CASE__ : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = Path("""./datasets""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_a ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path("""./datasets""" ) SCREAMING_SNAKE_CASE__ : List[str] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(_a ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
12
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a :Any = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Union[str, Any] = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :Optional[Any] = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :List[Any] = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys a :Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
12
1
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): _A = ["image_processor"] _A = "SamImageProcessor" def __init__( self , lowercase__ ): """simple docstring""" super().__init__(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.image_processor SCREAMING_SNAKE_CASE_ : List[Any] = -10 SCREAMING_SNAKE_CASE_ : Any = self.image_processor.size["longest_edge"] def __call__( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__ = None , **lowercase__ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.image_processor( lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # pop arguments that are not used in the foward but used nevertheless SCREAMING_SNAKE_CASE_ : Any = encoding_image_processor["original_sizes"] if hasattr(lowercase__ , "numpy" ): # Checks if Torch or TF tensor SCREAMING_SNAKE_CASE_ : Optional[Any] = original_sizes.numpy() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[Any] = self._check_and_preprocess_points( input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , ) SCREAMING_SNAKE_CASE_ : str = self._normalize_and_convert( lowercase__ , lowercase__ , input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , return_tensors=lowercase__ , ) return encoding_image_processor def __lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__="pt" , ): """simple docstring""" if input_points is not None: if len(lowercase__ ) != len(lowercase__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0] ) for point in input_points ] else: SCREAMING_SNAKE_CASE_ : Optional[Any] = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__ ) for point, original_size in zip(lowercase__ , lowercase__ ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = self._pad_points_and_labels(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = np.array(lowercase__ ) if input_labels is not None: SCREAMING_SNAKE_CASE_ : Any = np.array(lowercase__ ) if input_boxes is not None: if len(lowercase__ ) != len(lowercase__ ): SCREAMING_SNAKE_CASE_ : Any = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0] , is_bounding_box=lowercase__ ) for box in input_boxes ] else: SCREAMING_SNAKE_CASE_ : Any = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__ , is_bounding_box=lowercase__ ) for box, original_size in zip(lowercase__ , lowercase__ ) ] SCREAMING_SNAKE_CASE_ : Tuple = np.array(lowercase__ ) if input_boxes is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE_ : Any = torch.from_numpy(lowercase__ ) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE_ : Union[str, Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": SCREAMING_SNAKE_CASE_ : Dict = tf.convert_to_tensor(lowercase__ ) # boxes batch size of 1 by default SCREAMING_SNAKE_CASE_ : Any = tf.expand_dims(lowercase__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE_ : Optional[int] = torch.from_numpy(lowercase__ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE_ : int = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": SCREAMING_SNAKE_CASE_ : List[str] = tf.convert_to_tensor(lowercase__ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE_ : int = tf.expand_dims(lowercase__ , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": SCREAMING_SNAKE_CASE_ : List[str] = torch.from_numpy(lowercase__ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE_ : Any = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": SCREAMING_SNAKE_CASE_ : List[str] = tf.convert_to_tensor(lowercase__ ) # point batch size of 1 by default SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.expand_dims(lowercase__ , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def __lowerCamelCase ( self , lowercase__ , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = max([point.shape[0] for point in input_points] ) SCREAMING_SNAKE_CASE_ : Any = [] for i, point in enumerate(lowercase__ ): if point.shape[0] != expected_nb_points: SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) SCREAMING_SNAKE_CASE_ : List[Any] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = processed_input_points return input_points, input_labels def __lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__=False ): """simple docstring""" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Any = original_size SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.image_processor._get_preprocess_shape(lowercase__ , longest_edge=lowercase__ ) SCREAMING_SNAKE_CASE_ : int = deepcopy(lowercase__ ).astype(lowercase__ ) if is_bounding_box: SCREAMING_SNAKE_CASE_ : Union[str, Any] = coords.reshape(-1 , 2 , 2 ) SCREAMING_SNAKE_CASE_ : Any = coords[..., 0] * (new_w / old_w) SCREAMING_SNAKE_CASE_ : Optional[int] = coords[..., 1] * (new_h / old_h) if is_bounding_box: SCREAMING_SNAKE_CASE_ : Dict = coords.reshape(-1 , 4 ) return coords def __lowerCamelCase ( self , lowercase__=None , lowercase__=None , lowercase__=None , ): """simple docstring""" if input_points is not None: if hasattr(lowercase__ , "numpy" ): # Checks for TF or Torch tensor SCREAMING_SNAKE_CASE_ : Optional[Any] = input_points.numpy().tolist() if not isinstance(lowercase__ , lowercase__ ) or not isinstance(input_points[0] , lowercase__ ): raise ValueError("Input points must be a list of list of floating points." ) SCREAMING_SNAKE_CASE_ : str = [np.array(lowercase__ ) for input_point in input_points] else: SCREAMING_SNAKE_CASE_ : Optional[Any] = None if input_labels is not None: if hasattr(lowercase__ , "numpy" ): SCREAMING_SNAKE_CASE_ : Any = input_labels.numpy().tolist() if not isinstance(lowercase__ , lowercase__ ) or not isinstance(input_labels[0] , lowercase__ ): raise ValueError("Input labels must be a list of list integers." ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.array(lowercase__ ) for label in input_labels] else: SCREAMING_SNAKE_CASE_ : Dict = None if input_boxes is not None: if hasattr(lowercase__ , "numpy" ): SCREAMING_SNAKE_CASE_ : Optional[int] = input_boxes.numpy().tolist() if ( not isinstance(lowercase__ , lowercase__ ) or not isinstance(input_boxes[0] , lowercase__ ) or not isinstance(input_boxes[0][0] , lowercase__ ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) SCREAMING_SNAKE_CASE_ : List[Any] = [np.array(lowercase__ ).astype(np.floataa ) for box in input_boxes] else: SCREAMING_SNAKE_CASE_ : str = None return input_points, input_labels, input_boxes @property def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(lowercase__ ) ) def __lowerCamelCase ( self , *lowercase__ , **lowercase__ ): """simple docstring""" return self.image_processor.post_process_masks(*lowercase__ , **lowercase__ )
421
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ = { 'configuration_albert': ['ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AlbertConfig', 'AlbertOnnxConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['AlbertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['AlbertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'AlbertForMaskedLM', 'AlbertForMultipleChoice', 'AlbertForPreTraining', 'AlbertForQuestionAnswering', 'AlbertForSequenceClassification', 'AlbertForTokenClassification', 'AlbertModel', 'AlbertPreTrainedModel', 'load_tf_weights_in_albert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAlbertForMaskedLM', 'TFAlbertForMultipleChoice', 'TFAlbertForPreTraining', 'TFAlbertForQuestionAnswering', 'TFAlbertForSequenceClassification', 'TFAlbertForTokenClassification', 'TFAlbertMainLayer', 'TFAlbertModel', 'TFAlbertPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'FlaxAlbertForMaskedLM', 'FlaxAlbertForMultipleChoice', 'FlaxAlbertForPreTraining', 'FlaxAlbertForQuestionAnswering', 'FlaxAlbertForSequenceClassification', 'FlaxAlbertForTokenClassification', 'FlaxAlbertModel', 'FlaxAlbertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
421
1
'''simple docstring''' import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case : def __init__( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[str]=13 ,SCREAMING_SNAKE_CASE__ : Tuple=30 ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,SCREAMING_SNAKE_CASE__ : Optional[int]=3 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=True ,SCREAMING_SNAKE_CASE__ : List[str]=True ,SCREAMING_SNAKE_CASE__ : Optional[int]=32 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=5 ,SCREAMING_SNAKE_CASE__ : int=4 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=37 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="gelu" ,SCREAMING_SNAKE_CASE__ : List[Any]=0.1 ,SCREAMING_SNAKE_CASE__ : Tuple=0.1 ,SCREAMING_SNAKE_CASE__ : List[str]=10 ,SCREAMING_SNAKE_CASE__ : Any=0.02 ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,): SCREAMING_SNAKE_CASE:int = parent SCREAMING_SNAKE_CASE:Union[str, Any] = batch_size SCREAMING_SNAKE_CASE:Dict = image_size SCREAMING_SNAKE_CASE:int = patch_size SCREAMING_SNAKE_CASE:Any = num_channels SCREAMING_SNAKE_CASE:List[Any] = is_training SCREAMING_SNAKE_CASE:Optional[Any] = use_labels SCREAMING_SNAKE_CASE:str = hidden_size SCREAMING_SNAKE_CASE:int = num_hidden_layers SCREAMING_SNAKE_CASE:Tuple = num_attention_heads SCREAMING_SNAKE_CASE:Tuple = intermediate_size SCREAMING_SNAKE_CASE:str = hidden_act SCREAMING_SNAKE_CASE:Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE:Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:str = type_sequence_label_size SCREAMING_SNAKE_CASE:Optional[int] = initializer_range SCREAMING_SNAKE_CASE:Optional[int] = scope SCREAMING_SNAKE_CASE:str = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE:List[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE:Optional[int] = num_patches + 1 def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE:str = None if self.use_labels: SCREAMING_SNAKE_CASE:Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE:Tuple = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Optional[Any] ): return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCamelCase__ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def __UpperCamelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Union[str, Any] ): SCREAMING_SNAKE_CASE:Optional[Any] = ViTModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE:int = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : int ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Dict ): SCREAMING_SNAKE_CASE:List[Any] = ViTForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE:Any = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE:Optional[Any] = 1 SCREAMING_SNAKE_CASE:str = ViTForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE:Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE:Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCamelCase ( self : Union[str, Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[Any] ,SCREAMING_SNAKE_CASE__ : Dict ): SCREAMING_SNAKE_CASE:str = self.type_sequence_label_size SCREAMING_SNAKE_CASE:str = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE:Any = model(UpperCamelCase__ ,labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images SCREAMING_SNAKE_CASE:Union[str, Any] = 1 SCREAMING_SNAKE_CASE:int = ViTForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE:Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE:List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:List[Any] = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE ):Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE:Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _A : List[str] = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) _A : Tuple = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) _A : Optional[Any] = True _A : Dict = False _A : Union[str, Any] = False _A : Tuple = False def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:Union[str, Any] = ViTModelTester(self ) SCREAMING_SNAKE_CASE:Optional[Any] = ConfigTester(self ,config_class=UpperCamelCase__ ,has_text_modality=UpperCamelCase__ ,hidden_size=37 ) def __UpperCamelCase ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __UpperCamelCase ( self : Dict ): pass def __UpperCamelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE:Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE:str = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) SCREAMING_SNAKE_CASE:int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ ,nn.Linear ) ) def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE:Optional[int] = model_class(UpperCamelCase__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE:Any = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE:Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,UpperCamelCase__ ) def __UpperCamelCase ( self : Dict ): SCREAMING_SNAKE_CASE:int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def __UpperCamelCase ( self : Tuple ): SCREAMING_SNAKE_CASE:Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def __UpperCamelCase ( self : Any ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE:Tuple = ViTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def A_ ( ): SCREAMING_SNAKE_CASE:Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Optional[int] ): return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224" ) if is_vision_available() else None @slow def __UpperCamelCase ( self : List[str] ): SCREAMING_SNAKE_CASE:Any = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224" ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE:List[str] = self.default_image_processor SCREAMING_SNAKE_CASE:Dict = prepare_img() SCREAMING_SNAKE_CASE:Dict = image_processor(images=UpperCamelCase__ ,return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE:Optional[int] = model(**UpperCamelCase__ ) # verify the logits SCREAMING_SNAKE_CASE:Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape ,UpperCamelCase__ ) SCREAMING_SNAKE_CASE:Optional[int] = torch.tensor([-0.2_744, 0.8_215, -0.0_836] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,UpperCamelCase__ ,atol=1e-4 ) ) @slow def __UpperCamelCase ( self : Any ): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. SCREAMING_SNAKE_CASE:Optional[Any] = ViTModel.from_pretrained("facebook/dino-vits8" ).to(UpperCamelCase__ ) SCREAMING_SNAKE_CASE:List[str] = ViTImageProcessor.from_pretrained("facebook/dino-vits8" ,size=480 ) SCREAMING_SNAKE_CASE:Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE:int = image_processor(images=UpperCamelCase__ ,return_tensors="pt" ) SCREAMING_SNAKE_CASE:str = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE:int = model(UpperCamelCase__ ,interpolate_pos_encoding=UpperCamelCase__ ) # verify the logits SCREAMING_SNAKE_CASE:Dict = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape ,UpperCamelCase__ ) SCREAMING_SNAKE_CASE:int = torch.tensor( [[4.2_340, 4.3_906, -6.6_692], [4.5_463, 1.8_928, -6.7_257], [4.4_429, 0.8_496, -5.8_585]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,UpperCamelCase__ ,atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:Any = ViTModel.from_pretrained("facebook/dino-vits8" ,torch_dtype=torch.floataa ,device_map="auto" ) SCREAMING_SNAKE_CASE:Any = self.default_image_processor SCREAMING_SNAKE_CASE:Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE:Tuple = image_processor(images=UpperCamelCase__ ,return_tensors="pt" ) SCREAMING_SNAKE_CASE:Dict = inputs.pixel_values.to(UpperCamelCase__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE:List[Any] = model(UpperCamelCase__ )
711
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( _a , unittest.TestCase ): _A : str = KandinskyVaaInpaintPipeline _A : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _A : List[str] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _A : Optional[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _A : int = False @property def __UpperCamelCase ( self : Any ): return 32 @property def __UpperCamelCase ( self : Tuple ): return 32 @property def __UpperCamelCase ( self : Union[str, Any] ): return self.time_input_dim @property def __UpperCamelCase ( self : Any ): return self.time_input_dim * 4 @property def __UpperCamelCase ( self : Any ): return 100 @property def __UpperCamelCase ( self : Any ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE:Optional[Any] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE:Dict = UNetaDConditionModel(**SCREAMING_SNAKE_CASE__ ) return model @property def __UpperCamelCase ( self : Dict ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self : int ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE:str = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self : List[Any] ): SCREAMING_SNAKE_CASE:Tuple = self.dummy_unet SCREAMING_SNAKE_CASE:Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE:Any = DDIMScheduler( num_train_timesteps=1_000 ,beta_schedule="linear" ,beta_start=0.00_085 ,beta_end=0.012 ,clip_sample=SCREAMING_SNAKE_CASE__ ,set_alpha_to_one=SCREAMING_SNAKE_CASE__ ,steps_offset=1 ,prediction_type="epsilon" ,thresholding=SCREAMING_SNAKE_CASE__ ,) SCREAMING_SNAKE_CASE:Any = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __UpperCamelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ): SCREAMING_SNAKE_CASE:Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Any = floats_tensor((1, self.text_embedder_hidden_size) ,rng=random.Random(seed + 1 ) ).to( SCREAMING_SNAKE_CASE__ ) # create init_image SCREAMING_SNAKE_CASE:Any = floats_tensor((1, 3, 64, 64) ,rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] SCREAMING_SNAKE_CASE:Union[str, Any] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE__ ) ).convert("RGB" ).resize((256, 256) ) # create mask SCREAMING_SNAKE_CASE:int = np.ones((64, 64) ,dtype=np.floataa ) SCREAMING_SNAKE_CASE:Optional[Any] = 0 if str(SCREAMING_SNAKE_CASE__ ).startswith("mps" ): SCREAMING_SNAKE_CASE:Tuple = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE:List[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Tuple = { "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __UpperCamelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE:List[Any] = "cpu" SCREAMING_SNAKE_CASE:Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE:List[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:int = pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:str = pipe(**self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE:List[Any] = output.images SCREAMING_SNAKE_CASE:int = pipe( **self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) ,return_dict=SCREAMING_SNAKE_CASE__ ,)[0] SCREAMING_SNAKE_CASE:Union[str, Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE:Optional[Any] = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE:Union[str, Any] = np.array( [0.50_775_903, 0.49_527_195, 0.48_824_543, 0.50_192_237, 0.48_644_906, 0.49_373_814, 0.4_780_598, 0.47_234_827, 0.48_327_848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def __UpperCamelCase ( self : Any ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def __UpperCamelCase ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any ): SCREAMING_SNAKE_CASE:Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" ) SCREAMING_SNAKE_CASE:str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) SCREAMING_SNAKE_CASE:List[Any] = np.ones((768, 768) ,dtype=np.floataa ) SCREAMING_SNAKE_CASE:Union[str, Any] = 0 SCREAMING_SNAKE_CASE:Optional[int] = "a hat" SCREAMING_SNAKE_CASE:Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" ,torch_dtype=torch.floataa ) pipe_prior.to(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Optional[int] = KandinskyVaaInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder-inpaint" ,torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE:List[str] = pipeline.to(SCREAMING_SNAKE_CASE__ ) pipeline.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE:List[str] = pipe_prior( SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,num_inference_steps=5 ,negative_prompt="" ,).to_tuple() SCREAMING_SNAKE_CASE:Dict = pipeline( image=SCREAMING_SNAKE_CASE__ ,mask_image=SCREAMING_SNAKE_CASE__ ,image_embeds=SCREAMING_SNAKE_CASE__ ,negative_image_embeds=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__ ,num_inference_steps=100 ,height=768 ,width=768 ,output_type="np" ,) SCREAMING_SNAKE_CASE:List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ )
465
0
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> int: return x if y == 0 else greatest_common_divisor(__UpperCamelCase , x % y) def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> int: return (x * y) // greatest_common_divisor(__UpperCamelCase , __UpperCamelCase) def SCREAMING_SNAKE_CASE ( __UpperCamelCase = 20) -> int: a = 1 for i in range(1 , n + 1): a = lcm(__UpperCamelCase , __UpperCamelCase) return g if __name__ == "__main__": print(F'{solution() = }')
515
import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , **__UpperCamelCase) -> Any: a = [x.strip() for x in open(__UpperCamelCase).readlines()] a = [x.strip() for x in open(__UpperCamelCase).readlines()][: len(__UpperCamelCase)] a = calculate_rouge(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase) if save_path is not None: save_json(__UpperCamelCase , __UpperCamelCase , indent=__UpperCamelCase) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
515
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'vocab_file': 'spm_char.model'} lowerCAmelCase_ = { 'vocab_file': { 'microsoft/speecht5_asr': 'https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model', 'microsoft/speecht5_tts': 'https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model', 'microsoft/speecht5_vc': 'https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model', } } lowerCAmelCase_ = { 'microsoft/speecht5_asr': 10_24, 'microsoft/speecht5_tts': 10_24, 'microsoft/speecht5_vc': 10_24, } class _A ( lowercase_ ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : int , _A : Optional[int] , _A : Optional[Any]="<s>" , _A : List[str]="</s>" , _A : Any="<unk>" , _A : Optional[int]="<pad>" , _A : Optional[Dict[str, Any]] = None , **_A : Optional[int] , ) -> int: """simple docstring""" lowercase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) lowercase : str = vocab_file lowercase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) @property def __a ( self : Tuple ) -> Dict: """simple docstring""" return self.sp_model.get_piece_size() def __a ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase : List[str] = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> Dict: """simple docstring""" lowercase : Optional[int] = self.__dict__.copy() lowercase : Optional[Any] = None return state def __setstate__( self : Union[str, Any] , _A : Dict ) -> Union[str, Any]: """simple docstring""" lowercase : str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase : List[Any] = {} lowercase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self : str , _A : str ) -> int: """simple docstring""" return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def __a ( self : str , _A : Optional[Any] ) -> List[str]: """simple docstring""" return self.sp_model.piece_to_id(UpperCamelCase__ ) def __a ( self : int , _A : List[str] ) -> List[str]: """simple docstring""" lowercase : Optional[Any] = self.sp_model.IdToPiece(UpperCamelCase__ ) return token def __a ( self : List[Any] , _A : Optional[int] ) -> Dict: """simple docstring""" lowercase : int = [] lowercase : Any = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase__ ) + token lowercase : Optional[Any] = [] else: current_sub_tokens.append(UpperCamelCase__ ) out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string.strip() def __a ( self : Any , _A : Tuple , _A : Union[str, Any]=None ) -> Dict: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __a ( self : List[str] , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ) -> Union[str, Any]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) lowercase : str = [1] if token_ids_a is None: return ([0] * len(UpperCamelCase__ )) + suffix_ones return ([0] * len(UpperCamelCase__ )) + ([0] * len(UpperCamelCase__ )) + suffix_ones def __a ( self : Any , _A : str , _A : Optional[str] = None ) -> Tuple: """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase : List[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , '''wb''' ) as fi: lowercase : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
711
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
596
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = DanceDiffusionPipeline _lowerCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } _lowerCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _lowerCAmelCase = False _lowerCAmelCase = False def a ( self ): torch.manual_seed(0 ) _UpperCamelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=A_ , use_timestep_embedding=A_ , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) _UpperCamelCase = IPNDMScheduler() _UpperCamelCase = { "unet": unet, "scheduler": scheduler, } return components def a ( self , A_ , A_=0 ): if str(A_ ).startswith("mps" ): _UpperCamelCase = torch.manual_seed(A_ ) else: _UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) _UpperCamelCase = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def a ( self ): _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = DanceDiffusionPipeline(**A_ ) _UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = self.get_dummy_inputs(A_ ) _UpperCamelCase = pipe(**A_ ) _UpperCamelCase = output.audios _UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _UpperCamelCase = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def a ( self ): return super().test_save_load_local() @skip_mps def a ( self ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def a ( self ): return super().test_save_load_optional_components() @skip_mps def a ( self ): return super().test_attention_slicing_forward_pass() def a ( self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): _UpperCamelCase = torch_device _UpperCamelCase = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) _UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe(generator=A_ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) _UpperCamelCase = output.audios _UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self ): _UpperCamelCase = torch_device _UpperCamelCase = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe(generator=A_ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) _UpperCamelCase = output.audios _UpperCamelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _UpperCamelCase = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
138
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase__( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : PreTrainedTokenizer , _UpperCamelCase : int , _UpperCamelCase : Optional[int] = None , )-> List[Any]: """simple docstring""" _UpperCamelCase = {} if train_file is not None: _UpperCamelCase = [train_file] if eval_file is not None: _UpperCamelCase = [eval_file] if test_file is not None: _UpperCamelCase = [test_file] _UpperCamelCase = datasets.load_dataset("csv" , data_files=_UpperCamelCase ) _UpperCamelCase = list(ds[list(files.keys() )[0]].features.keys() ) _UpperCamelCase = features_name.pop(_UpperCamelCase ) _UpperCamelCase = list(set(ds[list(files.keys() )[0]][label_name] ) ) _UpperCamelCase = {label: i for i, label in enumerate(_UpperCamelCase )} _UpperCamelCase = tokenizer.model_input_names _UpperCamelCase = {} if len(_UpperCamelCase ) == 1: for k in files.keys(): _UpperCamelCase = ds[k].map( lambda _UpperCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) , batched=_UpperCamelCase , ) elif len(_UpperCamelCase ) == 2: for k in files.keys(): _UpperCamelCase = ds[k].map( lambda _UpperCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) , batched=_UpperCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _UpperCamelCase = {k: v for k, v in ex.items() if k in input_names} _UpperCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _UpperCamelCase = {k: v for k, v in ex.items() if k in input_names} _UpperCamelCase = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _UpperCamelCase = {k: v for k, v in ex.items() if k in input_names} _UpperCamelCase = labelaid[ex[label_name]] yield (d, label) _UpperCamelCase = ( tf.data.Dataset.from_generator( _UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _UpperCamelCase = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _UpperCamelCase = ( tf.data.Dataset.from_generator( _UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _UpperCamelCase = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _UpperCamelCase = ( tf.data.Dataset.from_generator( _UpperCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _UpperCamelCase = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid snake_case_ : Tuple = logging.getLogger(__name__) @dataclass class A_ : '''simple docstring''' _lowerCAmelCase = field(metadata={"""help""": """Which column contains the label"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """The path of the training file"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """The path of the development file"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """The path of the test file"""} ) _lowerCAmelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class A_ : '''simple docstring''' _lowerCAmelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _lowerCAmelCase = field(default=lowerCAmelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowerCAmelCase = field( default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def lowercase__( )-> List[Any]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, " f"16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_UpperCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_UpperCamelCase ) , labelaid=_UpperCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _UpperCamelCase = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_UpperCamelCase : EvalPrediction ) -> Dict: _UpperCamelCase = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _UpperCamelCase = TFTrainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , compute_metrics=_UpperCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_UpperCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f" {key} = {value}" ) writer.write(f"{key} = {value}\n" ) results.update(_UpperCamelCase ) return results if __name__ == "__main__": main()
138
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Optional[int] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCAmelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
521
'''simple docstring''' import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCAmelCase_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' lowerCAmelCase_ : Union[str, Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' lowerCAmelCase_ : Tuple = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def UpperCamelCase__ ( self : Optional[int] , __a : List[Any] , __a : str , __a : int=None , __a : Dict=True , __a : Optional[int]=False ): if rouge_types is None: _a = ["rouge1", "rouge2", "rougeL", "rougeLsum"] _a = rouge_scorer.RougeScorer(rouge_types=__a , use_stemmer=__a ) if use_aggregator: _a = scoring.BootstrapAggregator() else: _a = [] for ref, pred in zip(__a , __a ): _a = scorer.score(__a , __a ) if use_aggregator: aggregator.add_scores(__a ) else: scores.append(__a ) if use_aggregator: _a = aggregator.aggregate() else: _a = {} for key in scores[0]: _a = [score[key] for score in scores] return result
521
1
'''simple docstring''' def A ( UpperCamelCase_ : int ) -> str: '''simple docstring''' lowerCAmelCase__ = int(UpperCamelCase_ ) if decimal in (0, 1): # Exit cases for the recursion return str(UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = divmod(UpperCamelCase_ , 2 ) return binary_recursive(UpperCamelCase_ ) + str(UpperCamelCase_ ) def A ( UpperCamelCase_ : str ) -> str: '''simple docstring''' lowerCAmelCase__ = str(UpperCamelCase_ ).strip() if not number: raise ValueError("No input value was provided" ) lowerCAmelCase__ = "-" if number.startswith("-" ) else "" lowerCAmelCase__ = number.lstrip("-" ) if not number.isnumeric(): raise ValueError("Input value is not an integer" ) return F"""{negative}0b{binary_recursive(int(UpperCamelCase_ ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
48
'''simple docstring''' from __future__ import annotations a__ : Optional[int] = list[tuple[int, int]] a__ : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a__ : Optional[int] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __snake_case : def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Any: snake_case__ = pos_x snake_case__ = pos_y snake_case__ = (pos_y, pos_x) snake_case__ = goal_x snake_case__ = goal_y snake_case__ = g_cost snake_case__ = parent snake_case__ = self.calculate_heuristic() def _snake_case ( self ) -> float: snake_case__ = abs(self.pos_x - self.goal_x ) snake_case__ = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , UpperCamelCase_ ) -> bool: return self.f_cost < other.f_cost class __snake_case : def __init__( self , UpperCamelCase_ , UpperCamelCase_ ) -> Any: snake_case__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCamelCase_ ) snake_case__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , UpperCamelCase_ ) snake_case__ = [self.start] snake_case__ = [] snake_case__ = False def _snake_case ( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: snake_case__ = True return self.retrace_path(UpperCamelCase_ ) self.closed_nodes.append(UpperCamelCase_ ) snake_case__ = self.get_successors(UpperCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCamelCase_ ) else: # retrieve the best current path snake_case__ = self.open_nodes.pop(self.open_nodes.index(UpperCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCamelCase_ ) else: self.open_nodes.append(UpperCamelCase_ ) if not self.reached: return [self.start.pos] return None def _snake_case ( self , UpperCamelCase_ ) -> list[Node]: snake_case__ = [] for action in delta: snake_case__ = parent.pos_x + action[1] snake_case__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCamelCase_ , UpperCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCamelCase_ , ) ) return successors def _snake_case ( self , UpperCamelCase_ ) -> Path: snake_case__ = node snake_case__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ = current_node.parent path.reverse() return path if __name__ == "__main__": a__ : List[str] = (0, 0) a__ : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') a__ : Optional[int] = GreedyBestFirst(init, goal) a__ : Optional[int] = greedy_bf.search() if path: for pos_x, pos_y in path: a__ : Tuple = 2 for elem in grid: print(elem)
368
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.17.0.dev0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') __lowerCamelCase : List[str] = logging.getLogger(__name__) @dataclass class a__ : A = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) A = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) A = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A = field( default=lowerCAmelCase__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) A = field( default=lowerCAmelCase__ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) A = field( default=lowerCAmelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A = field( default=lowerCAmelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) A = field( default=lowerCAmelCase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) A = field( default=lowerCAmelCase__ , metadata={'help': 'A csv or a json file containing the training data.'} ) A = field( default=lowerCAmelCase__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) A = field(default=lowerCAmelCase__ , metadata={'help': 'A csv or a json file containing the test data.'} ) def __UpperCamelCase ( self : Any ): """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: SCREAMING_SNAKE_CASE_ : List[Any] = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." SCREAMING_SNAKE_CASE_ : Any = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class a__ : A = field( default=lowerCAmelCase__ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A = field( default=lowerCAmelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A = field( default=lowerCAmelCase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A = field( default=lowerCAmelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A = field( default=lowerCAmelCase__ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) A = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A = field( default=lowerCAmelCase__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(_A ) datasets.utils.logging.set_verbosity(_A ) transformers.utils.logging.set_verbosity(_A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE_ : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE_ : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE_ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. SCREAMING_SNAKE_CASE_ : Dict = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: SCREAMING_SNAKE_CASE_ : Tuple = data_args.train_file.split("." )[-1] SCREAMING_SNAKE_CASE_ : Any = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." SCREAMING_SNAKE_CASE_ : Optional[int] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(f'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files SCREAMING_SNAKE_CASE_ : List[Any] = load_dataset("csv" , data_files=_A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset("json" , data_files=_A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels SCREAMING_SNAKE_CASE_ : Any = raw_datasets["train"].features["label"].names SCREAMING_SNAKE_CASE_ : Tuple = len(_A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE_ : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer SCREAMING_SNAKE_CASE_ : Any = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_A , ) SCREAMING_SNAKE_CASE_ : int = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE_ : Optional[int] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch SCREAMING_SNAKE_CASE_ : Dict = False # Some models have set the order of the labels to use, so let's make sure we do use it. SCREAMING_SNAKE_CASE_ : int = {"Refused": 0, "Entailed": 1} SCREAMING_SNAKE_CASE_ : int = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase : Optional[Any] ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ : Optional[int] = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] SCREAMING_SNAKE_CASE_ : Tuple = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd SCREAMING_SNAKE_CASE_ : List[str] = examples["statement"] SCREAMING_SNAKE_CASE_ : int = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer(_A , _A , padding=_A , max_length=_A , truncation=_A ) SCREAMING_SNAKE_CASE_ : List[Any] = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): SCREAMING_SNAKE_CASE_ : str = raw_datasets.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = raw_datasets["train"] if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE_ : Tuple = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = raw_datasets["validation"] if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE_ : List[Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) SCREAMING_SNAKE_CASE_ : Any = raw_datasets["test"] if data_args.max_predict_samples is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_A ) ) , 3 ): logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase : EvalPrediction ): SCREAMING_SNAKE_CASE_ : Optional[int] = p.predictions[0] if isinstance(p.predictions , _A ) else p.predictions SCREAMING_SNAKE_CASE_ : Any = np.argmax(_A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE_ : Dict = default_data_collator elif training_args.fpaa: SCREAMING_SNAKE_CASE_ : Optional[Any] = DataCollatorWithPadding(_A , pad_to_multiple_of=8 ) else: SCREAMING_SNAKE_CASE_ : str = None # Initialize our Trainer SCREAMING_SNAKE_CASE_ : Tuple = Trainer( model=_A , args=_A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_A , tokenizer=_A , data_collator=_A , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE_ : Optional[int] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE_ : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE_ : str = last_checkpoint SCREAMING_SNAKE_CASE_ : Optional[int] = trainer.train(resume_from_checkpoint=_A ) SCREAMING_SNAKE_CASE_ : List[str] = train_result.metrics SCREAMING_SNAKE_CASE_ : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_A ) ) SCREAMING_SNAKE_CASE_ : int = min(_A , len(_A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , _A ) trainer.save_metrics("train" , _A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = trainer.evaluate(eval_dataset=_A ) SCREAMING_SNAKE_CASE_ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_A ) SCREAMING_SNAKE_CASE_ : List[Any] = min(_A , len(_A ) ) trainer.log_metrics("eval" , _A ) trainer.save_metrics("eval" , _A ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. SCREAMING_SNAKE_CASE_ : List[Any] = predict_dataset.remove_columns("label" ) SCREAMING_SNAKE_CASE_ : str = trainer.predict(_A , metric_key_prefix="predict" ).predictions SCREAMING_SNAKE_CASE_ : List[str] = np.argmax(_A , axis=1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(_A , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(_A ): SCREAMING_SNAKE_CASE_ : int = label_list[item] writer.write(f'{index}\t{item}\n' ) SCREAMING_SNAKE_CASE_ : Any = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**_A ) else: trainer.create_model_card(**_A ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" main() if __name__ == "__main__": main()
709
from typing import Any import numpy as np def _snake_case ( lowerCAmelCase : np.ndarray ): """simple docstring""" return np.array_equal(lowerCAmelCase , matrix.conjugate().T ) def _snake_case ( lowerCAmelCase : np.ndarray , lowerCAmelCase : np.ndarray ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = v.conjugate().T SCREAMING_SNAKE_CASE_ : int = v_star.dot(lowerCAmelCase ) assert isinstance(lowerCAmelCase , np.ndarray ) return (v_star_dot.dot(lowerCAmelCase )) / (v_star.dot(lowerCAmelCase )) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) SCREAMING_SNAKE_CASE_ : Dict = np.array([[1], [2], [3]] ) assert is_hermitian(lowerCAmelCase ), f'{a} is not hermitian.' print(rayleigh_quotient(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : int = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowerCAmelCase ), f'{a} is not hermitian.' assert rayleigh_quotient(lowerCAmelCase , lowerCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
316
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase : Tuple = logging.get_logger(__name__) def _A ( A ) -> List[List[ImageInput]]: if isinstance(A ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' _snake_case = ['''pixel_values'''] def __init__( self , a_ = True , a_ = None , a_ = PILImageResampling.BILINEAR , a_ = True , a_ = None , a_ = True , a_ = 1 / 2_5_5 , a_ = True , a_ = None , a_ = None , **a_ , ) -> None: super().__init__(**a_ ) lowercase : Any = size if size is not None else {"shortest_edge": 2_2_4} lowercase : List[str] = get_size_dict(a_ , default_to_square=a_ ) lowercase : Optional[int] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} lowercase : List[str] = get_size_dict(a_ , param_name="crop_size" ) lowercase : int = do_resize lowercase : int = size lowercase : Tuple = do_center_crop lowercase : Dict = crop_size lowercase : List[str] = resample lowercase : Dict = do_rescale lowercase : Optional[int] = rescale_factor lowercase : Optional[int] = do_normalize lowercase : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def a__ ( self , a_ , a_ , a_ = PILImageResampling.BILINEAR , a_ = None , **a_ , ) -> np.ndarray: lowercase : Dict = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" in size: lowercase : int = get_resize_output_image_size(a_ , size["shortest_edge"] , default_to_square=a_ ) elif "height" in size and "width" in size: lowercase : Union[str, Any] = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def a__ ( self , a_ , a_ , a_ = None , **a_ , ) -> np.ndarray: lowercase : Optional[int] = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(a_ , size=(size["height"], size["width"]) , data_format=a_ , **a_ ) def a__ ( self , a_ , a_ , a_ = None , **a_ , ) -> Optional[Any]: return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def a__ ( self , a_ , a_ , a_ , a_ = None , **a_ , ) -> np.ndarray: return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def a__ ( self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowercase : Union[str, Any] = to_numpy_array(a_ ) if do_resize: lowercase : str = self.resize(image=a_ , size=a_ , resample=a_ ) if do_center_crop: lowercase : Dict = self.center_crop(a_ , size=a_ ) if do_rescale: lowercase : Tuple = self.rescale(image=a_ , scale=a_ ) if do_normalize: lowercase : str = self.normalize(image=a_ , mean=a_ , std=a_ ) lowercase : Union[str, Any] = to_channel_dimension_format(a_ , a_ ) return image def a__ ( self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ) -> PIL.Image.Image: lowercase : int = do_resize if do_resize is not None else self.do_resize lowercase : List[str] = resample if resample is not None else self.resample lowercase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase : int = do_rescale if do_rescale is not None else self.do_rescale lowercase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : str = do_normalize if do_normalize is not None else self.do_normalize lowercase : Dict = image_mean if image_mean is not None else self.image_mean lowercase : List[Any] = image_std if image_std is not None else self.image_std lowercase : List[Any] = size if size is not None else self.size lowercase : Optional[int] = get_size_dict(a_ , default_to_square=a_ ) lowercase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowercase : List[str] = get_size_dict(a_ , param_name="crop_size" ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) lowercase : str = make_batched(a_ ) lowercase : List[str] = [ [ self._preprocess_image( image=a_ , do_resize=a_ , size=a_ , resample=a_ , do_center_crop=a_ , crop_size=a_ , do_rescale=a_ , rescale_factor=a_ , do_normalize=a_ , image_mean=a_ , image_std=a_ , data_format=a_ , ) for img in video ] for video in videos ] lowercase : Tuple = {"pixel_values": videos} return BatchFeature(data=a_ , tensor_type=a_ )
372
'''simple docstring''' from manim import * class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' def a__ ( self ) -> List[str]: lowercase : List[Any] = Rectangle(height=0.5 , width=0.5 ) lowercase : str = Rectangle(height=0.25 , width=0.25 ) lowercase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowercase : List[str] = [mem.copy() for i in range(6 )] lowercase : Any = [mem.copy() for i in range(6 )] lowercase : List[str] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : List[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : List[Any] = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) lowercase : Union[str, Any] = Text("CPU" , font_size=2_4 ) lowercase : List[Any] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a_ ) lowercase : List[Any] = [mem.copy() for i in range(4 )] lowercase : Union[str, Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : Dict = Text("GPU" , font_size=2_4 ) lowercase : Tuple = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) gpu.move_to([-1, -1, 0] ) self.add(a_ ) lowercase : Tuple = [mem.copy() for i in range(6 )] lowercase : Optional[int] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : Any = Text("Model" , font_size=2_4 ) lowercase : str = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) model.move_to([3, -1.0, 0] ) self.add(a_ ) lowercase : Dict = [] lowercase : Tuple = [] lowercase : List[Any] = [] for i, rect in enumerate(a_ ): rect.set_stroke(a_ ) lowercase : Tuple = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a_ , buff=0.0 ) self.add(a_ ) model_cpu_arr.append(a_ ) self.add(*a_ , *a_ , *a_ ) lowercase : Any = [mem.copy() for i in range(6 )] lowercase : Dict = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : List[str] = Text("Loaded Checkpoint" , font_size=2_4 ) lowercase : Optional[Any] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a_ ) lowercase : Any = [] lowercase : int = [] for i, rect in enumerate(a_ ): lowercase : str = fill.copy().set_fill(a_ , opacity=0.7 ) target.move_to(a_ ) ckpt_arr.append(a_ ) lowercase : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a_ ) self.add(*a_ , *a_ ) lowercase : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowercase : str = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a_ , a_ ) lowercase : Any = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=1_8 , ) blue_text.next_to(a_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a_ ) lowercase : List[Any] = MarkupText( F'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) lowercase : Any = [meta_mem.copy() for i in range(6 )] lowercase : Dict = [meta_mem.copy() for i in range(6 )] lowercase : Union[str, Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : Dict = VGroup(*a_ ).arrange(a_ , buff=0 ) lowercase : Any = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) lowercase : Optional[Any] = Text("Disk" , font_size=2_4 ) lowercase : List[str] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(a_ , run_time=3 ) , Write(a_ , run_time=1 ) , Create(a_ , run_time=1 ) ) lowercase : Optional[Any] = [] for i, rect in enumerate(a_ ): lowercase : int = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a_ , run_time=1.5 ) ) self.play(*a_ ) self.play(FadeOut(a_ ) ) lowercase : List[Any] = MarkupText(F'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=3 ) ) self.play( FadeOut(a_ , a_ , *a_ , *a_ ) , ) self.wait()
372
1
"""simple docstring""" from copy import deepcopy class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ = None , snake_case_ = None ) -> None: if arr is None and size is not None: __lowerCAmelCase = size __lowerCAmelCase = [0] * size elif arr is not None: self.init(snake_case_ ) else: raise ValueError("""Either arr or size must be specified""" ) def A__ ( self , snake_case_ ) -> None: __lowerCAmelCase = len(snake_case_ ) __lowerCAmelCase = deepcopy(snake_case_ ) for i in range(1 , self.size ): __lowerCAmelCase = self.next_(snake_case_ ) if j < self.size: self.tree[j] += self.tree[i] def A__ ( self ) -> list[int]: __lowerCAmelCase = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): __lowerCAmelCase = self.next_(snake_case_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def A__ ( snake_case_ ) -> int: return index + (index & (-index)) @staticmethod def A__ ( snake_case_ ) -> int: return index - (index & (-index)) def A__ ( self , snake_case_ , snake_case_ ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value __lowerCAmelCase = self.next_(snake_case_ ) def A__ ( self , snake_case_ , snake_case_ ) -> None: self.add(snake_case_ , value - self.get(snake_case_ ) ) def A__ ( self , snake_case_ ) -> int: if right == 0: return 0 __lowerCAmelCase = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] __lowerCAmelCase = self.prev(snake_case_ ) return result def A__ ( self , snake_case_ , snake_case_ ) -> int: return self.prefix(snake_case_ ) - self.prefix(snake_case_ ) def A__ ( self , snake_case_ ) -> int: return self.query(snake_case_ , index + 1 ) def A__ ( self , snake_case_ ) -> int: value -= self.tree[0] if value < 0: return -1 __lowerCAmelCase = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 __lowerCAmelCase = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
573
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=14 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> int: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_labels __lowerCAmelCase = use_mc_token_ids __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope __lowerCAmelCase = self.vocab_size - 1 def A__ ( self ) -> Optional[int]: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None if self.use_mc_token_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() __lowerCAmelCase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def A__ ( self ) -> Tuple: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ) -> int: __lowerCAmelCase = CTRLModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() model(snake_case_ , token_type_ids=snake_case_ , head_mask=snake_case_ ) model(snake_case_ , token_type_ids=snake_case_ ) __lowerCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ) -> List[str]: __lowerCAmelCase = CTRLLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , *snake_case_ ) -> Dict: __lowerCAmelCase = self.num_labels __lowerCAmelCase = CTRLForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCAmelCase_ ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _snake_case = (CTRLLMHeadModel,) if is_torch_available() else () _snake_case = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) _snake_case = True _snake_case = False _snake_case = False def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def A__ ( self ) -> Optional[Any]: __lowerCAmelCase = CTRLModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , n_embd=37 ) def A__ ( self ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def A__ ( self ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self ) -> List[str]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*snake_case_ ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case_ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A__ ( self ) -> List[Any]: pass @slow def A__ ( self ) -> Union[str, Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = CTRLModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def A__ ( self ) -> Tuple: pass @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> Dict: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def A__ ( self ) -> int: __lowerCAmelCase = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(snake_case_ ) __lowerCAmelCase = torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=snake_case_ ) # Legal the president is __lowerCAmelCase = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __lowerCAmelCase = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].tolist() , snake_case_ )
573
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ ( A ): __lowerCamelCase = 42 __lowerCamelCase = 42 def __init__( self , __A , __A ) -> Any: super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self , __A = 1 , __A = 50 , __A = None , __A = "pil" , __A = True , **__A , ) -> Union[Tuple, ImagePipelineOutput]: SCREAMING_SNAKE_CASE_ : Tuple =self.unet.config.sample_size SCREAMING_SNAKE_CASE_ : Any =(batch_size, 3, img_size, img_size) SCREAMING_SNAKE_CASE_ : int =self.unet # sample x_0 ~ N(0, sigma_0^2 * I) SCREAMING_SNAKE_CASE_ : Tuple =randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper SCREAMING_SNAKE_CASE_ : Optional[int] =self.scheduler.schedule[t] SCREAMING_SNAKE_CASE_ : int =self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat SCREAMING_SNAKE_CASE_ : List[str] =self.scheduler.add_noise_to_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. SCREAMING_SNAKE_CASE_ : Union[str, Any] =(sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev SCREAMING_SNAKE_CASE_ : Optional[int] =self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. SCREAMING_SNAKE_CASE_ : str =(sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample SCREAMING_SNAKE_CASE_ : int =self.scheduler.step_correct( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , step_output.prev_sample , step_output['''derivative'''] , ) SCREAMING_SNAKE_CASE_ : int =step_output.prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] =(sample / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : Optional[Any] =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ : List[Any] =self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
443
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __lowerCamelCase ( a_ : Dict ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE :Optional[int] = os.path.join(args.tf_model_dir , '''parameters.json''' ) __SCREAMING_SNAKE_CASE :Dict = json.loads(open(a_ ).read() ) if not params: raise ValueError( f'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('''.pt''' ): __SCREAMING_SNAKE_CASE :Tuple = args.output + '''.pt''' __SCREAMING_SNAKE_CASE :Union[str, Any] = OrderedDict() with tf.device('''/CPU:0''' ): __SCREAMING_SNAKE_CASE :Optional[int] = tf.train.load_checkpoint(args.tf_model_dir ) __SCREAMING_SNAKE_CASE :Tuple = reader.get_variable_to_shape_map() for key_name in shapes.keys(): __SCREAMING_SNAKE_CASE :str = reader.get_tensor(a_ ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): __SCREAMING_SNAKE_CASE :List[str] = 8 __SCREAMING_SNAKE_CASE :List[str] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time __SCREAMING_SNAKE_CASE :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Any = torch.tensor(a_ ) elif key_name.startswith('''model/moe''' ): __SCREAMING_SNAKE_CASE :List[Any] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): __SCREAMING_SNAKE_CASE :Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player __SCREAMING_SNAKE_CASE :str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Optional[int] = torch.tensor(a_ ) elif key_name.endswith('''/softmlp/kernel''' ): __SCREAMING_SNAKE_CASE :Tuple = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player __SCREAMING_SNAKE_CASE :Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :List[Any] = torch.tensor(a_ ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = key_name[-9:-7] for i in range(16 ): __SCREAMING_SNAKE_CASE :int = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) __SCREAMING_SNAKE_CASE :List[Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided __SCREAMING_SNAKE_CASE :Optional[int] = torch.tensor(a_ ) elif key_name.startswith('''model/mlp''' ): __SCREAMING_SNAKE_CASE :Optional[int] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player __SCREAMING_SNAKE_CASE :Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :str = torch.tensor(a_ ) elif key_name.endswith('''/p1/bias''' ): __SCREAMING_SNAKE_CASE :List[Any] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player __SCREAMING_SNAKE_CASE :List[str] = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :int = torch.tensor(a_ ) elif key_name.endswith('''/p2/kernel''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player __SCREAMING_SNAKE_CASE :Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Dict = torch.tensor(a_ ) elif key_name.endswith('''/p2/bias''' ): __SCREAMING_SNAKE_CASE :Dict = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player __SCREAMING_SNAKE_CASE :Optional[int] = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :int = torch.tensor(a_ ) elif key_name.startswith('''model/ln''' ): __SCREAMING_SNAKE_CASE :Tuple = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): __SCREAMING_SNAKE_CASE :Optional[Any] = '''model.blocks.%d.feed_forward.norm.bias''' % player __SCREAMING_SNAKE_CASE :Dict = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :List[str] = torch.tensor(a_ ) elif key_name.endswith('''/g''' ): __SCREAMING_SNAKE_CASE :Any = '''model.blocks.%d.feed_forward.norm.weight''' % player __SCREAMING_SNAKE_CASE :List[Any] = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :Tuple = torch.tensor(a_ ) elif key_name.startswith('''model/att''' ): __SCREAMING_SNAKE_CASE :Tuple = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): __SCREAMING_SNAKE_CASE :Any = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum __SCREAMING_SNAKE_CASE :Union[str, Any] = state[:, 0, :, :] __SCREAMING_SNAKE_CASE :Dict = state[:, 1, :, :] __SCREAMING_SNAKE_CASE :Union[str, Any] = state[:, 2, :, :] __SCREAMING_SNAKE_CASE :Optional[Any] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Union[str, Any] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Tuple = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Any = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player __SCREAMING_SNAKE_CASE :List[Any] = torch.tensor(a_ ) __SCREAMING_SNAKE_CASE :int = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player __SCREAMING_SNAKE_CASE :str = torch.tensor(a_ ) __SCREAMING_SNAKE_CASE :int = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player __SCREAMING_SNAKE_CASE :str = torch.tensor(a_ ) elif key_name.endswith('''/o/kernel''' ): __SCREAMING_SNAKE_CASE :Union[str, Any] = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player __SCREAMING_SNAKE_CASE :Any = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.tensor(a_ ) elif key_name.startswith('''model/an''' ): __SCREAMING_SNAKE_CASE :Optional[int] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): __SCREAMING_SNAKE_CASE :List[Any] = '''model.blocks.%d.self_attn.norm.bias''' % player __SCREAMING_SNAKE_CASE :Tuple = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.tensor(a_ ) elif key_name.endswith('''/g''' ): __SCREAMING_SNAKE_CASE :Optional[int] = '''model.blocks.%d.self_attn.norm.weight''' % player __SCREAMING_SNAKE_CASE :List[str] = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :Tuple = torch.tensor(a_ ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): __SCREAMING_SNAKE_CASE :str = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] __SCREAMING_SNAKE_CASE :Optional[int] = '''model.%s.weight''' % nlayer __SCREAMING_SNAKE_CASE :int = vnp.copy() # same in embedded __SCREAMING_SNAKE_CASE :str = torch.tensor(a_ ) if key_name.startswith('''model/wte''' ): __SCREAMING_SNAKE_CASE :Union[str, Any] = '''lm_head.weight''' __SCREAMING_SNAKE_CASE :Optional[Any] = vnp.copy() # same in embedded __SCREAMING_SNAKE_CASE :List[str] = torch.tensor(a_ ) elif key_name.startswith('''model/wob''' ): __SCREAMING_SNAKE_CASE :Any = '''final_logits_bias''' __SCREAMING_SNAKE_CASE :int = vnp.copy() # same in embedded __SCREAMING_SNAKE_CASE :List[Any] = state.reshape((1, -1) ) __SCREAMING_SNAKE_CASE :str = torch.tensor(a_ ) elif key_name == "model/dense/kernel": __SCREAMING_SNAKE_CASE :int = '''model.last_project.weight''' __SCREAMING_SNAKE_CASE :Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix __SCREAMING_SNAKE_CASE :Dict = torch.tensor(a_ ) elif key_name == "model/dense_1/bias": __SCREAMING_SNAKE_CASE :List[str] = '''model.last_project.bias''' __SCREAMING_SNAKE_CASE :Any = vnp.copy() # same because it is one dimensional __SCREAMING_SNAKE_CASE :Optional[Any] = torch.tensor(a_ ) torch.save(a_ , args.output ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") lowerCamelCase_ = parser.parse_args() convert_tf_gptsan_to_pt(args)
498
0
"""simple docstring""" import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _UpperCamelCase = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def lowerCAmelCase_ ( ): '''simple docstring''' __lowerCamelCase : Optional[Any] =_ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __lowerCamelCase : Union[str, Any] =get_sagemaker_input() else: __lowerCamelCase : Optional[Any] =get_cluster_input() return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if subparsers is not None: __lowerCamelCase : List[Any] =subparsers.add_parser('''config''' , description=SCREAMING_SNAKE_CASE ) else: __lowerCamelCase : Any =argparse.ArgumentParser('''Accelerate config command''' , description=SCREAMING_SNAKE_CASE ) parser.add_argument( '''--config_file''' , default=SCREAMING_SNAKE_CASE , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Union[str, Any] =get_user_input() if args.config_file is not None: __lowerCamelCase : Tuple =args.config_file else: if not os.path.isdir(SCREAMING_SNAKE_CASE ): os.makedirs(SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[Any] =default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(SCREAMING_SNAKE_CASE ) else: config.to_yaml_file(SCREAMING_SNAKE_CASE ) print(F'accelerate configuration saved at {config_file}' ) def lowerCAmelCase_ ( ): '''simple docstring''' __lowerCamelCase : int =config_command_parser() __lowerCamelCase : Optional[int] =parser.parse_args() config_command(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
718
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _UpperCamelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :List[str] , *__lowercase :int , **__lowercase :Any ): warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , __lowercase , ) super().__init__(*__lowercase , **__lowercase )
363
0
from __future__ import annotations def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = len(__lowerCamelCase ) # We need to create solution object to save path. _SCREAMING_SNAKE_CASE : Any = [[0 for _ in range(__lowerCamelCase )] for _ in range(__lowerCamelCase )] _SCREAMING_SNAKE_CASE : str = run_maze(__lowerCamelCase, 0, 0, __lowerCamelCase ) if solved: print("\n".join(str(__lowerCamelCase ) for row in solutions ) ) else: print("No solution exists!" ) return solved def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = len(__lowerCamelCase ) # Final check point. if i == j == (size - 1): _SCREAMING_SNAKE_CASE : Optional[Any] = 1 return True _SCREAMING_SNAKE_CASE : Tuple = (not i < 0) and (not j < 0) # Check lower bounds _SCREAMING_SNAKE_CASE : Optional[int] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _SCREAMING_SNAKE_CASE : Optional[int] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _SCREAMING_SNAKE_CASE : List[str] = 1 # check for directions if ( run_maze(__lowerCamelCase, i + 1, __lowerCamelCase, __lowerCamelCase ) or run_maze(__lowerCamelCase, __lowerCamelCase, j + 1, __lowerCamelCase ) or run_maze(__lowerCamelCase, i - 1, __lowerCamelCase, __lowerCamelCase ) or run_maze(__lowerCamelCase, __lowerCamelCase, j - 1, __lowerCamelCase ) ): return True _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
249
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ =logging.get_logger(__name__) UpperCamelCase__ ={ 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class lowerCAmelCase__( __lowercase ): '''simple docstring''' __snake_case = 'xlm' __snake_case = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self , __lowerCamelCase=3_0_1_4_5 , __lowerCamelCase=2_0_4_8 , __lowerCamelCase=1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=False , __lowerCamelCase=1 , __lowerCamelCase=True , __lowerCamelCase=5_1_2 , __lowerCamelCase=2_0_4_8**-0.5 , __lowerCamelCase=1E-12 , __lowerCamelCase=0.02 , __lowerCamelCase=0 , __lowerCamelCase=1 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=5 , __lowerCamelCase=True , __lowerCamelCase="first" , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=0.1 , __lowerCamelCase=5 , __lowerCamelCase=5 , __lowerCamelCase=0 , __lowerCamelCase=0 , __lowerCamelCase=2 , __lowerCamelCase=0 , **__lowerCamelCase , ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : List[Any] = vocab_size _SCREAMING_SNAKE_CASE : Optional[Any] = emb_dim _SCREAMING_SNAKE_CASE : List[str] = n_layers _SCREAMING_SNAKE_CASE : Optional[Any] = n_heads _SCREAMING_SNAKE_CASE : Optional[Any] = dropout _SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout _SCREAMING_SNAKE_CASE : Tuple = gelu_activation _SCREAMING_SNAKE_CASE : int = sinusoidal_embeddings _SCREAMING_SNAKE_CASE : str = causal _SCREAMING_SNAKE_CASE : Union[str, Any] = asm _SCREAMING_SNAKE_CASE : List[str] = n_langs _SCREAMING_SNAKE_CASE : Optional[int] = use_lang_emb _SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps _SCREAMING_SNAKE_CASE : Tuple = bos_index _SCREAMING_SNAKE_CASE : Union[str, Any] = eos_index _SCREAMING_SNAKE_CASE : str = pad_index _SCREAMING_SNAKE_CASE : Tuple = unk_index _SCREAMING_SNAKE_CASE : List[Any] = mask_index _SCREAMING_SNAKE_CASE : List[str] = is_encoder _SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[Any] = embed_init_std _SCREAMING_SNAKE_CASE : str = init_std _SCREAMING_SNAKE_CASE : Optional[int] = summary_type _SCREAMING_SNAKE_CASE : int = summary_use_proj _SCREAMING_SNAKE_CASE : List[str] = summary_activation _SCREAMING_SNAKE_CASE : Dict = summary_proj_to_labels _SCREAMING_SNAKE_CASE : Optional[Any] = summary_first_dropout _SCREAMING_SNAKE_CASE : Union[str, Any] = start_n_top _SCREAMING_SNAKE_CASE : Tuple = end_n_top _SCREAMING_SNAKE_CASE : str = mask_token_id _SCREAMING_SNAKE_CASE : Any = lang_id if "n_words" in kwargs: _SCREAMING_SNAKE_CASE : Any = kwargs["n_words"] super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , **__lowerCamelCase ) class lowerCAmelCase__( __lowercase ): '''simple docstring''' @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: _SCREAMING_SNAKE_CASE : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
249
1
'''simple docstring''' def snake_case__ ( _A: list ) -> list: '''simple docstring''' def merge(_A: list , _A: list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_A ) <= 1: return collection lowerCAmelCase = len(_A ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __lowercase = input('''Enter numbers separated by a comma:\n''').strip() __lowercase = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
605
'''simple docstring''' from collections.abc import Generator from math import sin def snake_case__ ( _A: bytes ) -> bytes: '''simple docstring''' if len(_A ) != 32: raise ValueError("""Input must be of length 32""" ) lowerCAmelCase = b"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case__ ( _A: int ) -> bytes: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCAmelCase = format(_A , """08x""" )[-8:] lowerCAmelCase = b"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def snake_case__ ( _A: bytes ) -> bytes: '''simple docstring''' lowerCAmelCase = b"""""" for char in message: bit_string += format(_A , """08b""" ).encode("""utf-8""" ) lowerCAmelCase = format(len(_A ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_A ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case__ ( _A: bytes ) -> Generator[list[int], None, None]: '''simple docstring''' if len(_A ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(_A ) , 512 ): lowerCAmelCase = bit_string[pos : pos + 512] lowerCAmelCase = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def snake_case__ ( _A: int ) -> int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCAmelCase = format(_A , """032b""" ) lowerCAmelCase = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(_A , 2 ) def snake_case__ ( _A: int , _A: int ) -> int: '''simple docstring''' return (a + b) % 2**32 def snake_case__ ( _A: int , _A: int ) -> int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case__ ( _A: bytes ) -> bytes: '''simple docstring''' lowerCAmelCase = preprocess(_A ) lowerCAmelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCAmelCase = 0X6_7_4_5_2_3_0_1 lowerCAmelCase = 0Xe_f_c_d_a_b_8_9 lowerCAmelCase = 0X9_8_b_a_d_c_f_e lowerCAmelCase = 0X1_0_3_2_5_4_7_6 lowerCAmelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_A ): lowerCAmelCase = aa lowerCAmelCase = ba lowerCAmelCase = ca lowerCAmelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCAmelCase = d ^ (b & (c ^ d)) lowerCAmelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCAmelCase = c ^ (d & (b ^ c)) lowerCAmelCase = (5 * i + 1) % 16 elif i <= 47: lowerCAmelCase = b ^ c ^ d lowerCAmelCase = (3 * i + 5) % 16 else: lowerCAmelCase = c ^ (b | not_aa(_A )) lowerCAmelCase = (7 * i) % 16 lowerCAmelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCAmelCase = d lowerCAmelCase = c lowerCAmelCase = b lowerCAmelCase = sum_aa(_A , left_rotate_aa(_A , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCAmelCase = sum_aa(_A , _A ) lowerCAmelCase = sum_aa(_A , _A ) lowerCAmelCase = sum_aa(_A , _A ) lowerCAmelCase = sum_aa(_A , _A ) lowerCAmelCase = reformat_hex(_A ) + reformat_hex(_A ) + reformat_hex(_A ) + reformat_hex(_A ) return digest if __name__ == "__main__": import doctest doctest.testmod()
605
1
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=False , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.0_2 , __a=3 , __a=4 , __a=None , ): __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = scope def snake_case ( self ): __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def snake_case ( self , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = DistilBertModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = DistilBertForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = DistilBertForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = DistilBertForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = self.num_labels __lowerCAmelCase = DistilBertForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __a , __a , __a , __a , __a , __a ): __lowerCAmelCase = self.num_choices __lowerCAmelCase = DistilBertForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self ): __lowerCAmelCase = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)) = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __UpperCAmelCase : Optional[Any] =( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase : List[str] =True __UpperCAmelCase : int =True __UpperCAmelCase : Any =True __UpperCAmelCase : Optional[int] =True def snake_case ( self ): __lowerCAmelCase = DistilBertModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , dim=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__ ) def snake_case ( self ): __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__ ) @slow def snake_case ( self ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DistilBertModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @slow @require_torch_gpu def snake_case ( self ): __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __lowerCAmelCase = True __lowerCAmelCase = model_class(config=UpperCAmelCase__ ) __lowerCAmelCase = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) __lowerCAmelCase = torch.jit.trace( UpperCAmelCase__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , "traced_model.pt" ) ) __lowerCAmelCase = torch.jit.load(os.path.join(UpperCAmelCase__ , "traced_model.pt" ) , map_location=UpperCAmelCase__ ) loaded(inputs_dict["input_ids"].to(UpperCAmelCase__ ) , inputs_dict["attention_mask"].to(UpperCAmelCase__ ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def snake_case ( self ): __lowerCAmelCase = DistilBertModel.from_pretrained("distilbert-base-uncased" ) __lowerCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] __lowerCAmelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __lowerCAmelCase = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1e-4 ) )
636
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " f"""{test_file} instead.""" ) __SCREAMING_SNAKE_CASE = components[-1] if not test_fn.endswith("py" ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("test_modeling_" ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __SCREAMING_SNAKE_CASE = components[:-1] + [test_fn.replace(".py" , "" )] __SCREAMING_SNAKE_CASE = ".".join(lowerCAmelCase_ ) return test_module_path def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_module_path(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = importlib.import_module(lowerCAmelCase_ ) return test_module def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = get_test_module(lowerCAmelCase_ ) for attr in dir(lowerCAmelCase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = get_test_module(lowerCAmelCase_ ) for attr in dir(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase_ , "all_model_classes" , [] ) if len(lowerCAmelCase_ ) > 0: test_classes.append(lowerCAmelCase_ ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = test_class() if hasattr(lowerCAmelCase_ , "setUp" ): test.setUp() __SCREAMING_SNAKE_CASE = None if hasattr(lowerCAmelCase_ , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __SCREAMING_SNAKE_CASE = test.model_tester.__class__ return model_tester def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowerCAmelCase_ ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes_for_model(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for test_class in test_classes: __SCREAMING_SNAKE_CASE = get_model_tester_from_test_class(lowerCAmelCase_ ) if tester_class is not None: tester_classes.append(lowerCAmelCase_ ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {test_class: get_model_tester_from_test_class(lowerCAmelCase_ ) for test_class in test_classes} return test_tester_mapping def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_model_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = { model_class: get_test_classes_for_model(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in model_classes } return model_test_mapping def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_model_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = { model_class: get_tester_classes_for_model(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in model_classes } return model_to_tester_mapping def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return o elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return o.__name__ elif isinstance(lowerCAmelCase_ , (list, tuple) ): return [to_json(lowerCAmelCase_ ) for x in o] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {to_json(lowerCAmelCase_ ): to_json(lowerCAmelCase_ ) for k, v in o.items()} else: return o
682
0
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'kakaobrain/align-base': 'https://huggingface.co/kakaobrain/align-base/resolve/main/config.json', } class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Any = 'align_text_model' def __init__( self , UpperCAmelCase=3_05_22 , UpperCAmelCase=7_68 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=30_72 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_12 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=True , **UpperCAmelCase , ): super().__init__(**UpperCAmelCase ) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = pad_token_id @classmethod def lowerCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): cls._set_token_in_kwargs(UpperCAmelCase ) a_ , a_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": a_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class a_ ( UpperCamelCase__ ): lowerCamelCase__ : str = 'align_vision_model' def __init__( self , UpperCAmelCase = 3 , UpperCAmelCase = 6_00 , UpperCAmelCase = 2.0 , UpperCAmelCase = 3.1 , UpperCAmelCase = 8 , UpperCAmelCase = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase = [32, 16, 24, 40, 80, 1_12, 1_92] , UpperCAmelCase = [16, 24, 40, 80, 1_12, 1_92, 3_20] , UpperCAmelCase = [] , UpperCAmelCase = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase = 0.25 , UpperCAmelCase = "swish" , UpperCAmelCase = 25_60 , UpperCAmelCase = "mean" , UpperCAmelCase = 0.02 , UpperCAmelCase = 0.0_01 , UpperCAmelCase = 0.99 , UpperCAmelCase = 0.2 , **UpperCAmelCase , ): super().__init__(**UpperCAmelCase ) a_ = num_channels a_ = image_size a_ = width_coefficient a_ = depth_coefficient a_ = depth_divisor a_ = kernel_sizes a_ = in_channels a_ = out_channels a_ = depthwise_padding a_ = strides a_ = num_block_repeats a_ = expand_ratios a_ = squeeze_expansion_ratio a_ = hidden_act a_ = hidden_dim a_ = pooling_type a_ = initializer_range a_ = batch_norm_eps a_ = batch_norm_momentum a_ = drop_connect_rate a_ = sum(UpperCAmelCase ) * 4 @classmethod def lowerCAmelCase__ ( cls , UpperCAmelCase , **UpperCAmelCase ): cls._set_token_in_kwargs(UpperCAmelCase ) a_ , a_ = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": a_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Optional[int] = 'align' lowerCamelCase__ : Any = True def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=6_40 , UpperCAmelCase=1.0 , UpperCAmelCase=0.02 , **UpperCAmelCase , ): super().__init__(**UpperCAmelCase ) if text_config is None: a_ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: a_ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) a_ = AlignTextConfig(**UpperCAmelCase ) a_ = AlignVisionConfig(**UpperCAmelCase ) a_ = projection_dim a_ = temperature_init_value a_ = initializer_range @classmethod def lowerCAmelCase__ ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = copy.deepcopy(self.__dict__ ) a_ = self.text_config.to_dict() a_ = self.vision_config.to_dict() a_ = self.__class__.model_type return output
720
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( A__ , A__ , A__ , A__ ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): a_ , a_ = array[indexa], array[indexa] def UpperCamelCase_ ( A__ , A__ , A__ , A__ ): if length > 1: a_ = int(length / 2 ) for i in range(A__ , low + middle ): comp_and_swap(A__ , A__ , i + middle , A__ ) bitonic_merge(A__ , A__ , A__ , A__ ) bitonic_merge(A__ , low + middle , A__ , A__ ) def UpperCamelCase_ ( A__ , A__ , A__ , A__ ): if length > 1: a_ = int(length / 2 ) bitonic_sort(A__ , A__ , A__ , 1 ) bitonic_sort(A__ , low + middle , A__ , 0 ) bitonic_merge(A__ , A__ , A__ , A__ ) if __name__ == "__main__": lowercase__ =input('Enter numbers separated by a comma:\n').strip() lowercase__ =[int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
511
0
'''simple docstring''' from torch import nn def __lowerCAmelCase ( a_ ) -> Optional[Any]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
251
'''simple docstring''' _lowerCAmelCase :Union[str, Any] = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) _lowerCAmelCase :Union[str, Any] = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def __lowerCAmelCase ( a_ , a_ , a_ ) -> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = from_type.lower().strip('s' ) SCREAMING_SNAKE_CASE : Union[str, Any] = to_type.lower().strip('s' ) SCREAMING_SNAKE_CASE : Dict = UNIT_SYMBOL.get(a_ , a_ ) SCREAMING_SNAKE_CASE : Optional[int] = UNIT_SYMBOL.get(a_ , a_ ) if from_sanitized not in METRIC_CONVERSION: SCREAMING_SNAKE_CASE : Any = ( f"""Invalid 'from_type' value: {from_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a_ )}""" ) raise ValueError(a_ ) if to_sanitized not in METRIC_CONVERSION: SCREAMING_SNAKE_CASE : int = ( f"""Invalid 'to_type' value: {to_type!r}.\n""" f"""Conversion abbreviations are: {", ".join(a_ )}""" ) raise ValueError(a_ ) SCREAMING_SNAKE_CASE : Dict = METRIC_CONVERSION[from_sanitized] SCREAMING_SNAKE_CASE : List[str] = METRIC_CONVERSION[to_sanitized] SCREAMING_SNAKE_CASE : Dict = 1 if from_exponent > to_exponent: SCREAMING_SNAKE_CASE : Any = from_exponent - to_exponent else: SCREAMING_SNAKE_CASE : Tuple = -(to_exponent - from_exponent) return value * pow(10 , a_ ) if __name__ == "__main__": from doctest import testmod testmod()
251
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase: Tuple =logging.get_logger(__name__) _UpperCamelCase: Any ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class __lowercase( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ = '''transfo-xl''' UpperCamelCase_ = ['''mems'''] UpperCamelCase_ = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , _lowerCAmelCase : Tuple=26_7735 , _lowerCAmelCase : Optional[int]=[2_0000, 4_0000, 20_0000] , _lowerCAmelCase : Optional[int]=1024 , _lowerCAmelCase : List[str]=1024 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Tuple=64 , _lowerCAmelCase : Any=4096 , _lowerCAmelCase : Optional[Any]=4 , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : str=18 , _lowerCAmelCase : Union[str, Any]=1600 , _lowerCAmelCase : Dict=1000 , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : str=0 , _lowerCAmelCase : List[Any]=-1 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Union[str, Any]=0.0 , _lowerCAmelCase : int=True , _lowerCAmelCase : List[Any]="normal" , _lowerCAmelCase : int=0.01 , _lowerCAmelCase : Union[str, Any]=0.01 , _lowerCAmelCase : str=0.02 , _lowerCAmelCase : Optional[Any]=1e-5 , _lowerCAmelCase : List[Any]=0 , **_lowerCAmelCase : List[Any] , ) -> Tuple: _lowerCAmelCase = vocab_size _lowerCAmelCase = [] self.cutoffs.extend(_lowerCAmelCase ) if proj_share_all_but_first: _lowerCAmelCase = [False] + [True] * len(self.cutoffs ) else: _lowerCAmelCase = [False] + [False] * len(self.cutoffs ) _lowerCAmelCase = d_model _lowerCAmelCase = d_embed _lowerCAmelCase = d_head _lowerCAmelCase = d_inner _lowerCAmelCase = div_val _lowerCAmelCase = pre_lnorm _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = mem_len _lowerCAmelCase = same_length _lowerCAmelCase = attn_type _lowerCAmelCase = clamp_len _lowerCAmelCase = sample_softmax _lowerCAmelCase = adaptive _lowerCAmelCase = dropout _lowerCAmelCase = dropatt _lowerCAmelCase = untie_r _lowerCAmelCase = init _lowerCAmelCase = init_range _lowerCAmelCase = proj_init_std _lowerCAmelCase = init_std _lowerCAmelCase = layer_norm_epsilon super().__init__(eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> Any: # Message copied from Transformer-XL documentation logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , _lowerCAmelCase : str ) -> int: # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
585
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _UpperCamelCase: int =logging.getLogger(__name__) def _a ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" _lowerCAmelCase = np.argmax(__SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def _a ( __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='utf_8' ) as f: _lowerCAmelCase = csv.reader(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [] next(__SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(__SCREAMING_SNAKE_CASE ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _a ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" _lowerCAmelCase = [] for dataset in encoded_datasets: _lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) _lowerCAmelCase = np.zeros((n_batch, 2) , dtype=np.intaa ) _lowerCAmelCase = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) _lowerCAmelCase = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] _lowerCAmelCase = with_conta _lowerCAmelCase = with_conta _lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) - 1 _lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) - 1 _lowerCAmelCase = with_conta _lowerCAmelCase = with_conta _lowerCAmelCase = mc_label _lowerCAmelCase = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def _a ( ): """simple docstring""" _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--model_name' , type=__SCREAMING_SNAKE_CASE , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=__SCREAMING_SNAKE_CASE , default='' ) parser.add_argument('--eval_dataset' , type=__SCREAMING_SNAKE_CASE , default='' ) parser.add_argument('--seed' , type=__SCREAMING_SNAKE_CASE , default=42 ) parser.add_argument('--num_train_epochs' , type=__SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument('--train_batch_size' , type=__SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument('--eval_batch_size' , type=__SCREAMING_SNAKE_CASE , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__SCREAMING_SNAKE_CASE , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=__SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=__SCREAMING_SNAKE_CASE , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=__SCREAMING_SNAKE_CASE , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=__SCREAMING_SNAKE_CASE , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=__SCREAMING_SNAKE_CASE , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=__SCREAMING_SNAKE_CASE , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=__SCREAMING_SNAKE_CASE , default=0.0_1 ) parser.add_argument('--lm_coef' , type=__SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument('--n_valid' , type=__SCREAMING_SNAKE_CASE , default=374 ) parser.add_argument('--server_ip' , type=__SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' ) _lowerCAmelCase = parser.parse_args() print(__SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) _lowerCAmelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) _lowerCAmelCase = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset _lowerCAmelCase = ['_start_', '_delimiter_', '_classify_'] _lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__SCREAMING_SNAKE_CASE ) ) model.to(__SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(__SCREAMING_SNAKE_CASE : str ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(__SCREAMING_SNAKE_CASE ) for o in obj] logger.info('Encoding dataset...' ) _lowerCAmelCase = load_rocstories_dataset(args.train_dataset ) _lowerCAmelCase = load_rocstories_dataset(args.eval_dataset ) _lowerCAmelCase = (train_dataset, eval_dataset) _lowerCAmelCase = tokenize_and_encode(__SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer _lowerCAmelCase = model.config.n_positions // 2 - 2 _lowerCAmelCase = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) _lowerCAmelCase = min(__SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders _lowerCAmelCase = pre_process_datasets(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase = tensor_datasets[0], tensor_datasets[1] _lowerCAmelCase = TensorDataset(*__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = RandomSampler(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = DataLoader(__SCREAMING_SNAKE_CASE , sampler=__SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) _lowerCAmelCase = TensorDataset(*__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = SequentialSampler(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = DataLoader(__SCREAMING_SNAKE_CASE , sampler=__SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: _lowerCAmelCase = args.max_steps _lowerCAmelCase = args.max_steps // (len(__SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: _lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs _lowerCAmelCase = list(model.named_parameters() ) _lowerCAmelCase = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] _lowerCAmelCase = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] _lowerCAmelCase = AdamW(__SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) _lowerCAmelCase = get_linear_schedule_with_warmup( __SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=__SCREAMING_SNAKE_CASE ) if args.do_train: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = tqdm(__SCREAMING_SNAKE_CASE , desc='Training' ) for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = tuple(t.to(__SCREAMING_SNAKE_CASE ) for t in batch ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = batch _lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , mc_token_ids=__SCREAMING_SNAKE_CASE , lm_labels=__SCREAMING_SNAKE_CASE , mc_labels=__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() _lowerCAmelCase = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 _lowerCAmelCase = 'Training loss: {:.2e} lr: {:.2e}'.format(__SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer _lowerCAmelCase = model.module if hasattr(__SCREAMING_SNAKE_CASE , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` _lowerCAmelCase = os.path.join(args.output_dir , __SCREAMING_SNAKE_CASE ) _lowerCAmelCase = os.path.join(args.output_dir , __SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , __SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(__SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned _lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) _lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() _lowerCAmelCase , _lowerCAmelCase = 0, 0 _lowerCAmelCase , _lowerCAmelCase = 0, 0 for batch in tqdm(__SCREAMING_SNAKE_CASE , desc='Evaluating' ): _lowerCAmelCase = tuple(t.to(__SCREAMING_SNAKE_CASE ) for t in batch ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = batch with torch.no_grad(): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = model( __SCREAMING_SNAKE_CASE , mc_token_ids=__SCREAMING_SNAKE_CASE , lm_labels=__SCREAMING_SNAKE_CASE , mc_labels=__SCREAMING_SNAKE_CASE ) _lowerCAmelCase = mc_logits.detach().cpu().numpy() _lowerCAmelCase = mc_labels.to('cpu' ).numpy() _lowerCAmelCase = accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 _lowerCAmelCase = eval_loss / nb_eval_steps _lowerCAmelCase = eval_accuracy / nb_eval_examples _lowerCAmelCase = tr_loss / nb_tr_steps if args.do_train else None _lowerCAmelCase = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} _lowerCAmelCase = os.path.join(args.output_dir , 'eval_results.txt' ) with open(__SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , __SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
585
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): # ===== initialization ===== _a : List[str] = Mock() _a : Optional[Any] = conn, Mock() _a : Optional[int] = iter([1, None] ) _a : Dict = lambda UpperCamelCase_ : next(UpperCamelCase_ ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=UpperCamelCase_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
471
def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _a : str = str(bin(UpperCamelCase_ ) )[2:] # remove the leading "0b" _a : Dict = str(bin(UpperCamelCase_ ) )[2:] _a : str = max(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase_ ) , b_binary.zfill(UpperCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
471
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class A_ : '''simple docstring''' def __init__( self: List[str] , a: Any , a: List[str]=13 , a: List[Any]=7 , a: Any=True , a: Union[str, Any]=True , a: Any=True , a: Dict=True , a: List[Any]=99 , a: int=64 , a: Optional[int]=5 , a: str=4 , a: Dict=37 , a: str="gelu" , a: Optional[int]=0.1 , a: Tuple=0.1 , a: Union[str, Any]=512 , a: str=16 , a: Optional[Any]=2 , a: Tuple=0.0_2 , a: Union[str, Any]=3 , a: List[str]=4 , a: Dict=None , ): __lowerCamelCase : List[str] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Union[str, Any] = is_training __lowerCamelCase : Tuple = use_input_mask __lowerCamelCase : int = use_token_type_ids __lowerCamelCase : List[Any] = use_labels __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : List[Any] = intermediate_size __lowerCamelCase : int = hidden_act __lowerCamelCase : str = hidden_dropout_prob __lowerCamelCase : str = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : int = type_vocab_size __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Union[str, Any] = initializer_range __lowerCamelCase : Optional[Any] = num_labels __lowerCamelCase : Union[str, Any] = num_choices __lowerCamelCase : str = scope __lowerCamelCase : Dict = vocab_size - 1 def _snake_case ( self: Tuple ): __lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : int = None if self.use_input_mask: __lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : List[Any] = None if self.use_labels: __lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase : Any = self.get_config() return config, input_ids, input_mask, token_labels def _snake_case ( self: Tuple ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def _snake_case ( self: str ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = self.prepare_config_and_inputs() __lowerCamelCase : Tuple = True return config, input_ids, input_mask, token_labels def _snake_case ( self: List[Any] , a: Optional[int] , a: Dict , a: List[str] ): __lowerCamelCase : str = GPTNeoXModel(config=a ) model.to(a ) model.eval() __lowerCamelCase : List[str] = model(a , attention_mask=a ) __lowerCamelCase : str = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self: List[Any] , a: Any , a: List[str] , a: Tuple ): __lowerCamelCase : Dict = True __lowerCamelCase : Dict = GPTNeoXModel(a ) model.to(a ) model.eval() __lowerCamelCase : Union[str, Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self: str , a: List[Any] , a: str , a: str , a: Optional[Any] ): __lowerCamelCase : Optional[Any] = GPTNeoXForCausalLM(config=a ) model.to(a ) model.eval() __lowerCamelCase : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self: Union[str, Any] , a: Optional[int] , a: Any , a: Dict , a: str ): __lowerCamelCase : List[Any] = self.num_labels __lowerCamelCase : Tuple = GPTNeoXForQuestionAnswering(a ) model.to(a ) model.eval() __lowerCamelCase : Tuple = model(a , attention_mask=a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self: Optional[Any] , a: Dict , a: Any , a: int , a: List[str] ): __lowerCamelCase : int = self.num_labels __lowerCamelCase : str = GPTNeoXForSequenceClassification(a ) model.to(a ) model.eval() __lowerCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self: Dict , a: Dict , a: List[Any] , a: List[Any] , a: Tuple ): __lowerCamelCase : Union[str, Any] = self.num_labels __lowerCamelCase : Any = GPTNeoXForTokenClassification(a ) model.to(a ) model.eval() __lowerCamelCase : Any = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self: Tuple , a: Optional[Any] , a: Tuple , a: int ): __lowerCamelCase : int = True __lowerCamelCase : List[str] = GPTNeoXForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass __lowerCamelCase : str = model(a , attention_mask=a , use_cache=a ) __lowerCamelCase : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __lowerCamelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __lowerCamelCase : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) __lowerCamelCase : Tuple = model(a , attention_mask=a , output_hidden_states=a ) __lowerCamelCase : List[Any] = output_from_no_past['hidden_states'][0] __lowerCamelCase : List[str] = model( a , attention_mask=a , past_key_values=a , output_hidden_states=a , )['hidden_states'][0] # select random slice __lowerCamelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCamelCase : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-3 ) ) def _snake_case ( self: Dict ): __lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = config_and_inputs __lowerCamelCase : Any = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class A_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __snake_case = (GPTNeoXForCausalLM,) if is_torch_available() else () __snake_case = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False def _snake_case ( self: int ): __lowerCamelCase : str = GPTNeoXModelTester(self ) __lowerCamelCase : int = ConfigTester(self , config_class=a , hidden_size=64 , num_attention_heads=8 ) def _snake_case ( self: List[Any] ): self.config_tester.run_common_tests() def _snake_case ( self: List[Any] ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a ) def _snake_case ( self: Optional[int] ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _snake_case ( self: List[str] ): # This regression test was failing with PyTorch < 1.3 __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() __lowerCamelCase : Any = None self.model_tester.create_and_check_model_as_decoder(a , a , a ) def _snake_case ( self: List[Any] ): __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a , a , a ) def _snake_case ( self: Optional[int] ): __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a ) def _snake_case ( self: Any ): __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _snake_case ( self: List[Any] ): __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _snake_case ( self: Dict ): __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def _snake_case ( self: Optional[Any] ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def _snake_case ( self: Any , a: Optional[int] ): __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[str] = ids_tensor([1, 10] , config.vocab_size ) __lowerCamelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowerCamelCase : Any = GPTNeoXModel(a ) original_model.to(a ) original_model.eval() __lowerCamelCase : List[Any] = original_model(a ).last_hidden_state __lowerCamelCase : str = original_model(a ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __lowerCamelCase : int = {'type': scaling_type, 'factor': 1_0.0} __lowerCamelCase : List[str] = GPTNeoXModel(a ) scaled_model.to(a ) scaled_model.eval() __lowerCamelCase : List[Any] = scaled_model(a ).last_hidden_state __lowerCamelCase : List[str] = scaled_model(a ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(a , a , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1e-5 ) ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self: Tuple ): __lowerCamelCase : str = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: __lowerCamelCase : Any = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(a ) __lowerCamelCase : str = tokenizer('My favorite food is' , return_tensors='pt' ).to(a ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __lowerCamelCase : int = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' __lowerCamelCase : int = model.generate(**a , do_sample=a , max_new_tokens=20 ) __lowerCamelCase : Dict = tokenizer.batch_decode(a )[0] self.assertEqual(a , a )
230
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowercase_ = False class A_ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self: List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self: Any ): __lowerCamelCase : Tuple = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowerCamelCase : Any = torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.7_5 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a ) __lowerCamelCase : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Any = generator.manual_seed(0 ) __lowerCamelCase : Dict = pipe.dual_guided( prompt='first prompt' , image=a , text_to_image_strength=0.7_5 , generator=a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _snake_case ( self: int ): __lowerCamelCase : Tuple = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) __lowerCamelCase : Any = 'cyberpunk 2077' __lowerCamelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __lowerCamelCase : List[Any] = torch.manual_seed(0 ) __lowerCamelCase : Any = pipe.dual_guided( prompt=a , image=a , text_to_image_strength=0.7_5 , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __lowerCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase : List[str] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __lowerCamelCase : Optional[Any] = 'A painting of a squirrel eating a burger ' __lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) __lowerCamelCase : Any = pipe.text_to_image( prompt=a , generator=a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images __lowerCamelCase : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase : List[Any] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __lowerCamelCase : List[str] = pipe.image_variation(a , generator=a , output_type='numpy' ).images __lowerCamelCase : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase : Dict = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
230
1
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets __snake_case : Optional[Any] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' __snake_case : str = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' __snake_case : Union[str, Any] = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case = None ,__snake_case = False ,) -> Dict: if label_map is not None: for old_id, new_id in label_map.items(): __lowerCAmelCase : int = new_id # turn into Numpy arrays __lowerCAmelCase : Dict = np.array(__snake_case ) __lowerCAmelCase : Union[str, Any] = np.array(__snake_case ) if reduce_labels: __lowerCAmelCase : Optional[Any] = 255 __lowerCAmelCase : int = label - 1 __lowerCAmelCase : Union[str, Any] = 255 __lowerCAmelCase : Any = label != ignore_index __lowerCAmelCase : Optional[int] = np.not_equal(__snake_case ,__snake_case ) __lowerCAmelCase : int = pred_label[mask] __lowerCAmelCase : Tuple = np.array(__snake_case )[mask] __lowerCAmelCase : Optional[int] = pred_label[pred_label == label] __lowerCAmelCase : Tuple = np.histogram(__snake_case ,bins=__snake_case ,range=(0, num_labels - 1) )[0] __lowerCAmelCase : Any = np.histogram(__snake_case ,bins=__snake_case ,range=(0, num_labels - 1) )[0] __lowerCAmelCase : List[str] = np.histogram(__snake_case ,bins=__snake_case ,range=(0, num_labels - 1) )[0] __lowerCAmelCase : int = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case = None ,__snake_case = False ,) -> Union[str, Any]: __lowerCAmelCase : Union[str, Any] = np.zeros((num_labels,) ,dtype=np.floataa ) __lowerCAmelCase : List[str] = np.zeros((num_labels,) ,dtype=np.floataa ) __lowerCAmelCase : Dict = np.zeros((num_labels,) ,dtype=np.floataa ) __lowerCAmelCase : str = np.zeros((num_labels,) ,dtype=np.floataa ) for result, gt_seg_map in zip(__snake_case ,__snake_case ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = intersect_and_union( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case = None ,__snake_case = None ,__snake_case = False ,) -> int: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : str = total_intersect_and_union( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) # compute metrics __lowerCAmelCase : Optional[Any] = {} __lowerCAmelCase : List[Any] = total_area_intersect.sum() / total_area_label.sum() __lowerCAmelCase : List[Any] = total_area_intersect / total_area_union __lowerCAmelCase : Tuple = total_area_intersect / total_area_label __lowerCAmelCase : List[Any] = np.nanmean(__snake_case ) __lowerCAmelCase : List[str] = np.nanmean(__snake_case ) __lowerCAmelCase : List[Any] = all_acc __lowerCAmelCase : Union[str, Any] = iou __lowerCAmelCase : List[Any] = acc if nan_to_num is not None: __lowerCAmelCase : List[str] = {metric: np.nan_to_num(__snake_case ,nan=__snake_case ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), }) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: bool , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[int, int]] = None , _SCREAMING_SNAKE_CASE: bool = False , ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = mean_iou( results=_SCREAMING_SNAKE_CASE , gt_seg_maps=_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , ignore_index=_SCREAMING_SNAKE_CASE , nan_to_num=_SCREAMING_SNAKE_CASE , label_map=_SCREAMING_SNAKE_CASE , reduce_labels=_SCREAMING_SNAKE_CASE , ) return iou_result
293
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : Any = { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/config.json', # See all XGLM models at https://huggingface.co/models?filter=xglm } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'xglm' SCREAMING_SNAKE_CASE = ['past_key_values'] SCREAMING_SNAKE_CASE = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any]=25_6008 , _SCREAMING_SNAKE_CASE: Dict=2048 , _SCREAMING_SNAKE_CASE: int=1024 , _SCREAMING_SNAKE_CASE: Dict=4096 , _SCREAMING_SNAKE_CASE: Optional[Any]=24 , _SCREAMING_SNAKE_CASE: int=16 , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: Optional[Any]=0.1 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.0 , _SCREAMING_SNAKE_CASE: Any=0.02 , _SCREAMING_SNAKE_CASE: Any=True , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: str=1 , _SCREAMING_SNAKE_CASE: Dict=0 , _SCREAMING_SNAKE_CASE: Dict=2 , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> List[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = vocab_size __lowerCAmelCase : int = max_position_embeddings __lowerCAmelCase : Optional[Any] = d_model __lowerCAmelCase : List[Any] = ffn_dim __lowerCAmelCase : int = num_layers __lowerCAmelCase : Any = attention_heads __lowerCAmelCase : int = activation_function __lowerCAmelCase : List[Any] = dropout __lowerCAmelCase : Optional[int] = attention_dropout __lowerCAmelCase : Optional[int] = activation_dropout __lowerCAmelCase : Optional[int] = layerdrop __lowerCAmelCase : Optional[int] = init_std __lowerCAmelCase : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase : Dict = use_cache super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
293
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case ( self : List[str] , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : Tuple ): self.assertEqual(len(lowercase__ ) , len(lowercase__ ) ) for a, b in zip(lowercase__ , lowercase__ ): self.assertAlmostEqual(lowercase__ , lowercase__ , delta=lowercase__ ) def snake_case ( self : str ): __lowercase : Optional[int] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(lowercase__ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def snake_case ( self : Optional[int] ): __lowercase : Dict = None ops.enable_eager_execution_internal() __lowercase : Optional[Any] = tf.config.list_physical_devices("CPU" ) if len(lowercase__ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __lowercase : Dict = tf.config.list_logical_devices(device_type="CPU" ) __lowercase : Dict = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __lowercase : Optional[int] = GradientAccumulator() __lowercase : Tuple = tf.Variable([4.0, 3.0] ) __lowercase : Any = create_optimizer(5e-5 , 1_0 , 5 ) __lowercase : int = tf.Variable([0.0, 0.0] , trainable=lowercase__ ) def accumulate_on_replica(lowercase__ : int ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(lowercase__ : Any , lowercase__ : List[Any] ): with strategy.scope(): __lowercase : Dict = strategy.experimental_local_results(lowercase__ ) local_variables[0].assign(lowercase__ ) local_variables[1].assign(lowercase__ ) strategy.run(lowercase__ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowercase__ ) def _check_local_values(lowercase__ : Dict , lowercase__ : Optional[int] ): __lowercase : str = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , lowercase__ , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , lowercase__ , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
710
"""simple docstring""" import os import sys import unittest __A : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __A : Optional[Any] = os.path.join(git_repo_path, 'src', 'diffusers') class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case ( self : str ): __lowercase : int = find_backend(" if not is_torch_available():" ) self.assertEqual(lowercase__ , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __lowercase : int = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(lowercase__ , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __lowercase : str = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(lowercase__ , "torch_and_transformers_and_onnx" ) def snake_case ( self : Any ): __lowercase : List[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , lowercase__ ) self.assertIn("torch_and_transformers" , lowercase__ ) self.assertIn("flax_and_transformers" , lowercase__ ) self.assertIn("torch_and_transformers_and_onnx" , lowercase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def snake_case ( self : Dict ): __lowercase : Tuple = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(lowercase__ , "\nCONSTANT = None\n" ) __lowercase : Union[str, Any] = create_dummy_object("function" , "'torch'" ) self.assertEqual( lowercase__ , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) __lowercase : Tuple = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" __lowercase : Dict = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(lowercase__ , lowercase__ ) def snake_case ( self : List[Any] ): __lowercase : Optional[int] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" __lowercase : List[str] = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , lowercase__ )
281
0
def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase): UpperCamelCase_ , UpperCamelCase_ = len(__lowercase), len(grid[0]) if ( min(__lowercase , __lowercase) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col)) UpperCamelCase_ = 0 count += depth_first_search(__lowercase , row + 1 , __lowercase , __lowercase) count += depth_first_search(__lowercase , row - 1 , __lowercase , __lowercase) count += depth_first_search(__lowercase , __lowercase , col + 1 , __lowercase) count += depth_first_search(__lowercase , __lowercase , col - 1 , __lowercase) visit.remove((row, col)) return count if __name__ == "__main__": import doctest doctest.testmod()
23
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionSAGPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCamelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]: if str(_UpperCAmelCase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCamelCase_ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Tuple: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase_ = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) UpperCamelCase_ = sag_pipe.to(_UpperCAmelCase ) sag_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCamelCase_ = '.' UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = sag_pipe( [prompt] , width=768 , height=512 , generator=_UpperCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase_ = output.images assert image.shape == (1, 512, 768, 3)
23
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCamelCase : List[str] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def A__ ( __A : Optional[int] , __A : Tuple , __A : Union[str, Any] , __A : List[str] , __A : Union[str, Any] ) ->str: for attribute in key.split('''.''' ): __A =getattr(__A , __A ) if weight_type is not None: __A =getattr(__A , __A ).shape else: __A =hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __A =value elif weight_type == "weight_g": __A =value elif weight_type == "weight_v": __A =value elif weight_type == "bias": __A =value else: __A =value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def A__ ( __A : int , __A : str ) ->List[str]: __A =[] __A =fairseq_model.state_dict() __A =hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __A =None for name, value in fairseq_dict.items(): __A =False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) __A =True elif name.split('''.''' )[0] == "proj": __A =fairseq_model.proj __A =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __A =True if "*" in mapped_key: __A =name.split(__A )[0].split('''.''' )[-2] __A =mapped_key.replace('''*''' , __A ) if "weight_g" in name: __A ='''weight_g''' elif "weight_v" in name: __A ='''weight_v''' elif "bias" in name: __A ='''bias''' elif "weight" in name: __A ='''weight''' else: __A =None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def A__ ( __A : str , __A : List[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : str ) ->Optional[Any]: __A =full_name.split('''conv_layers.''' )[-1] __A =name.split('''.''' ) __A =int(items[0] ) __A =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __A =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__A ) def A__ ( __A : Optional[Any] ) ->List[Any]: __A , __A =emb.weight.shape __A =nn.Linear(__A , __A , bias=__A ) __A =emb.weight.data return lin_layer def A__ ( __A : Dict ) ->Optional[int]: with open(__A , '''r''' , encoding='''utf-8''' ) as f: __A =f.readlines() __A =[line.split(''' ''' )[0] for line in lines] __A =len(__A ) __A ={ '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def A__ ( __A : List[Any] , __A : Optional[Any] , __A : Tuple , __A : int , __A : str , __A : str , __A : Dict , ) ->Tuple: __A =WavaVecaConfig.from_pretrained(__A ) __A =SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) __A =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) __A , __A , __A =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __A =model[0].eval() # set weights for wav2vec2 encoder __A =WavaVecaModel(__A ) __A =recursively_load_weights_wavaveca(model.encoder , __A ) __A =SpeechaTextaForCausalLM(__A ) __A , __A =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('''embed_out''' ) __A =nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __A =SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) __A =False # add projection layer __A =nn.Parameter(projection_layer.weight ) __A =nn.Parameter(projection_layer.bias ) __A =create_vocab_dict(__A ) with open(os.path.join(__A , '''vocab.json''' ) , '''w''' ) as fp: json.dump(__A , __A ) __A =SpeechaTextaTokenizer(os.path.join(__A , '''vocab.json''' ) ) tokenizer.save_pretrained(__A ) __A =hf_wavavec.config.to_dict() __A =tokenizer.pad_token_id __A =tokenizer.bos_token_id __A =tokenizer.eos_token_id __A ='''speech_to_text_2''' __A ='''wav2vec2''' __A =SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') _lowerCamelCase : Tuple = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
516
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar _lowerCamelCase : Optional[int] = TypeVar('''T''') class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__ ): '''simple docstring''' __A =None __A =len(lowercase__ ) __A =[any_type for _ in range(self.N )] + arr __A =fnc self.build() def __UpperCamelCase ( self ): '''simple docstring''' for p in range(self.N - 1 , 0 , -1 ): __A =self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCamelCase ( self , lowercase__ , lowercase__ ): '''simple docstring''' p += self.N __A =v while p > 1: __A =p // 2 __A =self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCamelCase ( self , lowercase__ , lowercase__ ): # noqa: E741 '''simple docstring''' __A , __A =l + self.N, r + self.N __A =None while l <= r: if l % 2 == 1: __A =self.st[l] if res is None else self.fn(lowercase__ , self.st[l] ) if r % 2 == 0: __A =self.st[r] if res is None else self.fn(lowercase__ , self.st[r] ) __A , __A =(l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce _lowerCamelCase : Dict = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] _lowerCamelCase : Union[str, Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } _lowerCamelCase : Dict = SegmentTree(test_array, min) _lowerCamelCase : int = SegmentTree(test_array, max) _lowerCamelCase : Optional[Any] = SegmentTree(test_array, lambda a, b: a + b) def A__ ( ) ->None: for i in range(len(__A ) ): for j in range(__A , len(__A ) ): __A =reduce(__A , test_array[i : j + 1] ) __A =reduce(__A , test_array[i : j + 1] ) __A =reduce(lambda __A , __A : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(__A , __A ) assert max_range == max_segment_tree.query(__A , __A ) assert sum_range == sum_segment_tree.query(__A , __A ) test_all_segments() for index, value in test_updates.items(): _lowerCamelCase : Union[str, Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
516
1
from scipy.stats import spearmanr import datasets __lowerCAmelCase = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowerCAmelCase = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowerCAmelCase = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowercase ( self ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ) -> Any: """simple docstring""" _UpperCamelCase = spearmanr(snake_case_ , snake_case_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
147
from maths.prime_factors import prime_factors def lowercase_ ( _UpperCamelCase ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __lowercase = F'Input value of [number={number}] must be an integer' raise TypeError(_UpperCamelCase ) if number < 1: raise ValueError('''Input must be a positive integer''' ) return -1 if len(prime_factors(_UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
639
0
'''simple docstring''' import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = '''https://openaipublic.azureedge.net/jukebox/models/''' __A = { '''jukebox-1b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''1b_lyrics/prior_level_2.pth.tar''', ], '''jukebox-5b-lyrics''': [ '''5b/vqvae.pth.tar''', '''5b/prior_level_0.pth.tar''', '''5b/prior_level_1.pth.tar''', '''5b_lyrics/prior_level_2.pth.tar''', ], } def _SCREAMING_SNAKE_CASE ( A : Dict ) -> Optional[Any]: """simple docstring""" if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: __snake_case : Union[str, Any] = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: __snake_case : Optional[int] = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: __snake_case : Optional[Any] = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: __snake_case : Dict = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: __snake_case : Optional[int] = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: __snake_case : int = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: __snake_case : Optional[Any] = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: __snake_case : int = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def _SCREAMING_SNAKE_CASE ( A : Optional[int] , A : Tuple , A : int , A : Union[str, Any] ) -> List[Any]: """simple docstring""" __snake_case : str = {} import re __snake_case : Any = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) __snake_case : Union[str, Any] = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __snake_case : Dict = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) __snake_case : Union[str, Any] = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) __snake_case : List[Any] = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __snake_case : Any = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) __snake_case : Tuple = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) __snake_case : List[str] = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) __snake_case : str = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A ): __snake_case : Optional[Any] = re_encoder_block_conv_in.match(A ) __snake_case : Optional[int] = regex_match.groups() __snake_case : Optional[int] = int(groups[2] ) * 2 + int(groups[3] ) __snake_case : Dict = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" __snake_case : Dict = re_encoder_block_conv_in.sub(A , A ) elif re_encoder_block_resnet.fullmatch(A ): __snake_case : str = re_encoder_block_resnet.match(A ) __snake_case : Tuple = regex_match.groups() __snake_case : List[str] = int(groups[2] ) * 2 + int(groups[3] ) __snake_case : Optional[Any] = {'1': 1, '3': 2}[groups[-2]] __snake_case : str = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" __snake_case : List[Any] = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __snake_case : Tuple = prefix + resnet_block __snake_case : Optional[Any] = re_encoder_block_resnet.sub(A , A ) elif re_encoder_block_proj_out.fullmatch(A ): __snake_case : Tuple = re_encoder_block_proj_out.match(A ) __snake_case : Optional[Any] = regex_match.groups() __snake_case : Optional[int] = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" __snake_case : Union[str, Any] = re_encoder_block_proj_out.sub(A , A ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A ): __snake_case : Dict = re_decoder_block_conv_out.match(A ) __snake_case : Union[str, Any] = regex_match.groups() __snake_case : Tuple = int(groups[2] ) * 2 + int(groups[3] ) - 2 __snake_case : List[str] = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" __snake_case : str = re_decoder_block_conv_out.sub(A , A ) elif re_decoder_block_resnet.fullmatch(A ): __snake_case : Any = re_decoder_block_resnet.match(A ) __snake_case : int = regex_match.groups() __snake_case : Dict = int(groups[2] ) * 2 + int(groups[3] ) - 2 __snake_case : int = {'1': 1, '3': 2}[groups[-2]] __snake_case : Optional[int] = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" __snake_case : Dict = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __snake_case : Union[str, Any] = prefix + resnet_block __snake_case : Any = re_decoder_block_resnet.sub(A , A ) elif re_decoder_block_proj_in.fullmatch(A ): __snake_case : int = re_decoder_block_proj_in.match(A ) __snake_case : Optional[Any] = regex_match.groups() __snake_case : Optional[int] = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" __snake_case : Optional[int] = re_decoder_block_proj_in.sub(A , A ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A ): __snake_case : str = re_prior_cond_conv_out.match(A ) __snake_case : Optional[int] = regex_match.groups() __snake_case : List[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 __snake_case : Tuple = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" __snake_case : Tuple = re_prior_cond_conv_out.sub(A , A ) elif re_prior_cond_resnet.fullmatch(A ): __snake_case : Dict = re_prior_cond_resnet.match(A ) __snake_case : Optional[int] = regex_match.groups() __snake_case : Union[str, Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 __snake_case : Any = {'1': 1, '3': 2}[groups[-2]] __snake_case : Any = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" __snake_case : List[str] = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" __snake_case : int = prefix + resnet_block __snake_case : List[str] = re_prior_cond_resnet.sub(A , A ) elif re_prior_cond_proj_in.fullmatch(A ): __snake_case : Optional[Any] = re_prior_cond_proj_in.match(A ) __snake_case : str = regex_match.groups() __snake_case : Optional[Any] = F"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" __snake_case : Tuple = re_prior_cond_proj_in.sub(A , A ) # keep original key else: __snake_case : int = original_key __snake_case : Optional[int] = replace_key(A ) if F"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(F"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[F"""{key_prefix}.{key}"""].shape: __snake_case : str = model_state_dict[F"""{key_prefix}.{key}"""] print(F"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) __snake_case : List[str] = original_key __snake_case : List[Any] = original_key __snake_case : Union[str, Any] = value return new_dict @torch.no_grad() def _SCREAMING_SNAKE_CASE ( A : str=None , A : int=None ) -> str: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): __snake_case : Union[str, Any] = requests.get(F"""{PREFIX}{file}""" , allow_redirects=A ) os.makedirs(F"""{pytorch_dump_folder_path}/""" , exist_ok=A ) open(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , 'wb' ).write(r.content ) __snake_case : Union[str, Any] = MODEL_MAPPING[model_name.split('/' )[-1]] __snake_case : Any = JukeboxConfig.from_pretrained(A ) __snake_case : Optional[Any] = JukeboxModel(A ) __snake_case : Optional[int] = [] __snake_case : Union[str, Any] = {} for i, dict_name in enumerate(A ): __snake_case : List[Any] = torch.load(F"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )['model'] __snake_case : List[Any] = {} for k in old_dic.keys(): if k.endswith('.b' ): __snake_case : Any = old_dic[k] elif k.endswith('.w' ): __snake_case : List[Any] = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: __snake_case : str = old_dic[k] else: __snake_case : List[Any] = old_dic[k] __snake_case : Union[str, Any] = 'vqvae' if i == 0 else F"""priors.{3 - i}""" __snake_case : Any = fix_jukebox_keys(A , model.state_dict() , A , A ) weight_dict.append(A ) __snake_case : Any = weight_dict.pop(0 ) model.vqvae.load_state_dict(A ) for i in range(len(A ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(A ).mkdir(exist_ok=A ) with open(F"""{pytorch_dump_folder_path}/mapping.json""" , 'w' ) as txtfile: json.dump(A , A ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) return weight_dict if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) __A = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
61
0
"""simple docstring""" import re from filelock import FileLock try: import nltk A: Optional[int] = True except (ImportError, ModuleNotFoundError): A: List[Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def _snake_case ( UpperCamelCase : str ): re.sub("""<n>""" , """""" , UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase ) )
160
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( UpperCamelCase : List[str] , UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : Union[str, Any] ): # Initialise PyTorch model UpperCAmelCase : int = FunnelConfig.from_json_file(UpperCamelCase ) print(F"Building PyTorch model from configuration: {config}" ) UpperCAmelCase : Dict = FunnelBaseModel(UpperCamelCase ) if base_model else FunnelModel(UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase ) if __name__ == "__main__": A: str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) A: Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
160
1
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class A_ : def __init__( self : List[Any] , snake_case_ : Any , snake_case_ : List[str]=1_3 , snake_case_ : Any=7 , snake_case_ : Union[str, Any]=True , snake_case_ : List[str]=True , snake_case_ : Dict=True , snake_case_ : Tuple=True , snake_case_ : Optional[int]=9_9 , snake_case_ : Optional[int]=3_2 , snake_case_ : List[str]=5 , snake_case_ : List[str]=4 , snake_case_ : int=3_7 , snake_case_ : Tuple="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : List[str]=0.1 , snake_case_ : Optional[Any]=1_2_8 , snake_case_ : Dict=3_2 , snake_case_ : List[Any]=1_6 , snake_case_ : List[Any]=2 , snake_case_ : int=0.0_2 , snake_case_ : List[str]=3 , snake_case_ : Any=4 , snake_case_ : Optional[int]=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowercase ( self : Optional[int] ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : Any ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowercase ( self : Dict ): ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : List[str] , snake_case_ : str , snake_case_ : Any , snake_case_ : Any , snake_case_ : Dict , snake_case_ : List[Any] ): _UpperCAmelCase = NezhaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) _UpperCAmelCase = model(snake_case_ , token_type_ids=snake_case_ ) _UpperCAmelCase = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self : str , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : int , snake_case_ : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : List[str] , ): _UpperCAmelCase = True _UpperCAmelCase = NezhaModel(snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , encoder_hidden_states=snake_case_ , encoder_attention_mask=snake_case_ , ) _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , encoder_hidden_states=snake_case_ , ) _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase ( self : Any , snake_case_ : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Dict ): _UpperCAmelCase = NezhaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Optional[Any] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : List[str] , snake_case_ : List[str] ): _UpperCAmelCase = NezhaForNextSentencePrediction(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowercase ( self : Optional[int] , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : int , snake_case_ : Dict ): _UpperCAmelCase = NezhaForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , next_sentence_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowercase ( self : int , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : int ): _UpperCAmelCase = NezhaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : Optional[int] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : str , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Optional[int] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = NezhaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : Union[str, Any] , snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Optional[Any] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = NezhaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : str , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : Any ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = NezhaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Optional[Any] ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class A_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : int = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : Tuple = True def lowercase ( self : str , snake_case_ : List[str] , snake_case_ : str , snake_case_ : str=False ): _UpperCAmelCase = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowercase ( self : str ): _UpperCAmelCase = NezhaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def lowercase ( self : str ): self.config_tester.run_common_tests() def lowercase ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*snake_case_ ) def lowercase ( self : int ): # This regression test was failing with PyTorch < 1.3 ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCAmelCase = None self.model_tester.create_and_check_model_as_decoder( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ) def lowercase ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case_ ) def lowercase ( self : Optional[Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case_ ) def lowercase ( self : Any ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case_ ) def lowercase ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def lowercase ( self : str ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @slow def lowercase ( self : List[Any] ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = NezhaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @slow @require_torch_gpu def lowercase ( self : Tuple ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _UpperCAmelCase = True _UpperCAmelCase = model_class(config=snake_case_ ) _UpperCAmelCase = self._prepare_for_class(snake_case_ , snake_case_ ) _UpperCAmelCase = torch.jit.trace( snake_case_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case_ , os.path.join(snake_case_ , "bert.pt" ) ) _UpperCAmelCase = torch.jit.load(os.path.join(snake_case_ , "bert.pt" ) , map_location=snake_case_ ) loaded(inputs_dict["input_ids"].to(snake_case_ ) , inputs_dict["attention_mask"].to(snake_case_ ) ) @require_torch class A_ ( unittest.TestCase ): @slow def lowercase ( self : Optional[int] ): _UpperCAmelCase = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) _UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ )[0] _UpperCAmelCase = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , snake_case_ ) _UpperCAmelCase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) ) @slow def lowercase ( self : Optional[int] ): _UpperCAmelCase = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) _UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(snake_case_ , attention_mask=snake_case_ )[0] _UpperCAmelCase = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , snake_case_ ) _UpperCAmelCase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) )
119
'''simple docstring''' from math import ceil def UpperCAmelCase_ ( __lowercase : Any , __lowercase : int ) -> Any: '''simple docstring''' _UpperCAmelCase = list(range(0 , __lowercase ) ) _UpperCAmelCase = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check _UpperCAmelCase = [] for i in device_map_blocks: if device_map_blocks.count(__lowercase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__lowercase ) # Missing blocks _UpperCAmelCase = [i for i in blocks if i not in device_map_blocks] _UpperCAmelCase = [i for i in device_map_blocks if i not in blocks] if len(__lowercase ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(__lowercase ) ) if len(__lowercase ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(__lowercase ) ) if len(__lowercase ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(__lowercase ) ) def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : List[Any] ) -> Any: '''simple docstring''' _UpperCAmelCase = list(range(__lowercase ) ) _UpperCAmelCase = int(ceil(n_layers / len(__lowercase ) ) ) _UpperCAmelCase = [layers[i : i + n_blocks] for i in range(0 , __lowercase , __lowercase )] return dict(zip(__lowercase , __lowercase ) )
119
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a : Dict = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) _a : Optional[Any] = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple ): UpperCAmelCase = SavedModel() UpperCAmelCase = [] with open(os.path.join(__UpperCAmelCase , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: UpperCAmelCase = json.load(__UpperCAmelCase )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__UpperCAmelCase )] ) with open(__UpperCAmelCase , 'rb' ) as f: saved_model.ParseFromString(f.read() ) UpperCAmelCase = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want UpperCAmelCase = sorted(__UpperCAmelCase ) UpperCAmelCase = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__UpperCAmelCase ) if strict and len(__UpperCAmelCase ) > 0: raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops ) elif len(__UpperCAmelCase ) > 0: print(f'''Found the following incompatible ops for the opset {opset}:''' ) print(*__UpperCAmelCase , sep='\n' ) else: print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' ) if __name__ == "__main__": _a : Tuple = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) _a : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
447
'''simple docstring''' import argparse from collections import defaultdict import yaml a : List[Any] = 'docs/source/en/_toctree.yml' def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' snake_case_ = defaultdict(__UpperCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 snake_case_ = [key for key, value in counts.items() if value > 1] snake_case_ = [] for duplicate_key in duplicates: snake_case_ = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(__UpperCAmelCase ) > 1: raise ValueError( F"{duplicate_key} is present several times in the documentation table of content at " '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(__UpperCAmelCase, key=lambda __UpperCAmelCase : s["title"].lower() ) def __magic_name__ ( __UpperCAmelCase=False ) -> List[Any]: '''simple docstring''' with open(__UpperCAmelCase, encoding='''utf-8''' ) as f: snake_case_ = yaml.safe_load(f.read() ) # Get to the API doc snake_case_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case_ = content[api_idx]['''sections'''] # Then to the model doc snake_case_ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case_ = api_doc[model_idx]['''sections'''] snake_case_ = [(idx, section) for idx, section in enumerate(__UpperCAmelCase ) if '''sections''' in section] snake_case_ = False for idx, modality_doc in modalities_docs: snake_case_ = modality_doc['''sections'''] snake_case_ = clean_model_doc_toc(__UpperCAmelCase ) if old_modality_doc != new_modality_doc: snake_case_ = True if overwrite: snake_case_ = new_modality_doc if diff: if overwrite: snake_case_ = model_doc snake_case_ = api_doc with open(__UpperCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(yaml.dump(__UpperCAmelCase, allow_unicode=__UpperCAmelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a : Union[str, Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
640
0
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 1_00 * 2**20, 9_00 * 2**20] ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , SCREAMING_SNAKE_CASE ) lowercase__ = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowercase__ = dataset_size < in_memory_max_size else: lowercase__ = False lowercase__ = is_small_dataset(SCREAMING_SNAKE_CASE ) assert result == expected
429
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for attribute in key.split('''.''' ): lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor lowercase__ = hf_model.adapter for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "bias" in name: lowercase__ = '''bias''' elif "weight" in name: lowercase__ = '''weight''' else: lowercase__ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''adaptor.''' )[-1] lowercase__ = name.split('''.''' ) if items[1].isdigit(): lowercase__ = int(items[1] ) else: lowercase__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' lowercase__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' lowercase__ = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase__ = WavaVecaConfig.from_pretrained( SCREAMING_SNAKE_CASE , add_adapter=SCREAMING_SNAKE_CASE , adapter_stride=SCREAMING_SNAKE_CASE , adapter_kernel_size=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , output_hidden_size=SCREAMING_SNAKE_CASE , ) lowercase__ = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE ) # load model lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) lowercase__ = model[0].eval() # load feature extractor lowercase__ = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE ) # set weights for wav2vec2 encoder lowercase__ = WavaVecaModel(SCREAMING_SNAKE_CASE ) recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) # load decoder weights lowercase__ = MBartForCausalLM(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowercase__ = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) lowercase__ = False lowercase__ = MBartaaTokenizer(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = hf_wavavec.config.to_dict() lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer.eos_token_id lowercase__ = '''mbart50''' lowercase__ = '''wav2vec2''' lowercase__ = tokenizer.eos_token_id lowercase__ = 25_00_04 lowercase__ = tokenizer.eos_token_id lowercase__ = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=25_0004, type=int, help='`decoder_start_token_id` of model config') lowerCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
429
1
from collections import defaultdict from math import ceil, sqrt def _lowercase( __a : int = 100_0000 , __a : int = 10 ): a__ =defaultdict(__a ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a__ =max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a__ =1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__a , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
from __future__ import annotations from collections import namedtuple def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> tuple: _UpperCAmelCase = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
from argparse import ArgumentParser from .env import EnvironmentCommand def lowerCAmelCase__ ( ): """simple docstring""" __a = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __a = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(_SCREAMING_SNAKE_CASE ) # Let's go __a = parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , """func""" ): parser.print_help() exit(1 ) # Run __a = args.func(_SCREAMING_SNAKE_CASE ) service.run() if __name__ == "__main__": main()
717
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=False ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a = len(set_a.intersection(_SCREAMING_SNAKE_CASE ) ) if alternative_union: __a = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE ) else: __a = len(set_a.union(_SCREAMING_SNAKE_CASE ) ) return intersection / union if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) return None if __name__ == "__main__": lowerCamelCase__ = {"""a""", """b""", """c""", """d""", """e"""} lowerCamelCase__ = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
547
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __lowercase : Optional[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: int , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: Dict ) -> None: '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
def a__ ( lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' if len(lowercase__ ) != len(lowercase__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. UpperCAmelCase_ =[p / w for p, w in zip(lowercase__ , lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order UpperCAmelCase_ =sorted(lowercase__ ) # declaring useful variables UpperCAmelCase_ =len(lowercase__ ) UpperCAmelCase_ =0 UpperCAmelCase_ =0 UpperCAmelCase_ =0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight UpperCAmelCase_ =sorted_profit_by_weight[length - i - 1] UpperCAmelCase_ =profit_by_weight.index(lowercase__ ) UpperCAmelCase_ =-1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) __lowercase : List[str] =[int(x) for x in input("""Input profits separated by spaces: """).split()] __lowercase : Union[str, Any] =[int(x) for x in input("""Input weights separated by spaces: """).split()] __lowercase : Tuple =int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
54
1
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_sentencepiece_available(): import sentencepiece as sp lowercase__ = 5 lowercase__ = 10 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( __snake_case , unittest.TestCase ): """simple docstring""" snake_case = SpeechaTextTokenizer snake_case = False snake_case = True def _lowercase ( self ): super().setUp() snake_case_ = sp.SentencePieceProcessor() spm_model.Load(_lowercase ) snake_case_ = ["""<s>""", """<pad>""", """</s>""", """<unk>"""] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_lowercase ) )] snake_case_ = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case_ = Path(self.tmpdirname ) save_json(_lowercase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowercase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) snake_case_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ): snake_case_ = """<pad>""" snake_case_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def _lowercase ( self ): snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_lowercase ) , 10_01 ) def _lowercase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def _lowercase ( self ): snake_case_ = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) snake_case_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [2_89, 50, 14, 1_74, 3_86] , ) snake_case_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) snake_case_ = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) snake_case_ = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def _lowercase ( self ): snake_case_ = {"""input_ids""": [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name="facebook/s2t-small-mustc-en-de-st" , revision="a14f04cf0776c02f62a8cb800cf7909e15ea23ad" , ) @require_sentencepiece class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" snake_case = """valhalla/s2t_mustc_multilinguial_medium""" snake_case = """C'est trop cool""" snake_case = """Esto es genial""" @classmethod def _lowercase ( cls ): snake_case_ = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def _lowercase ( self ): self.assertEqual(self.tokenizer.lang_code_to_id["pt"] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id["ru"] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id["it"] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id["de"] , 11 ) def _lowercase ( self ): self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def _lowercase ( self ): self.assertIn(_lowercase , self.tokenizer.all_special_ids ) snake_case_ = [ES_CODE, 4, 16_01, 47, 76_47, 2] snake_case_ = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) snake_case_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def _lowercase ( self ): snake_case_ = """fr""" snake_case_ = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _lowercase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def _lowercase ( self ): snake_case_ = """fr""" self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) snake_case_ = """es""" self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
719
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __snake_case ( lowercase : NDArray[floataa] , lowercase : NDArray[floataa] , lowercase : list[int] , lowercase : int , ): snake_case_ , snake_case_ = coefficient_matrix.shape snake_case_ , snake_case_ = constant_matrix.shape if rowsa != colsa: snake_case_ = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(lowercase ) if colsa != 1: snake_case_ = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(lowercase ) if rowsa != rowsa: snake_case_ = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(lowercase ) if len(lowercase ) != rowsa: snake_case_ = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(lowercase )} and {rowsa}''' ) raise ValueError(lowercase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) snake_case_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) snake_case_ , snake_case_ = table.shape strictly_diagonally_dominant(lowercase ) # Iterates the whole matrix for given number of times for _ in range(lowercase ): snake_case_ = [] for row in range(lowercase ): snake_case_ = 0 for col in range(lowercase ): if col == row: snake_case_ = table[row][col] elif col == cols - 1: snake_case_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] snake_case_ = (temp + val) / denom new_val.append(lowercase ) snake_case_ = new_val return [float(lowercase ) for i in new_val] def __snake_case ( lowercase : NDArray[floataa] ): snake_case_ , snake_case_ = table.shape snake_case_ = True for i in range(0 , lowercase ): snake_case_ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
420
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A : Dict = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[Any] , **__lowerCamelCase : Any ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] SCREAMING_SNAKE_CASE = not kwargs.pop(__lowerCamelCase ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _snake_case ( self : Optional[int] ): requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE = None return tpu @cached_property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}" ) return strategy @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _snake_case ( self : Optional[Any] ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def _snake_case ( self : List[str] ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _snake_case ( self : Dict ): return self.n_gpu > 0
16
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _UpperCamelCase = datasets.utils.logging.get_logger(__name__) _UpperCamelCase = ['''names''', '''prefix'''] _UpperCamelCase = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] _UpperCamelCase = ['''encoding_errors''', '''on_bad_lines'''] _UpperCamelCase = ['''date_format'''] @dataclass class _lowerCamelCase ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase_ : str ="," UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : Optional[Union[int, List[int], str]] ="infer" UpperCAmelCase_ : Optional[List[str]] =None UpperCAmelCase_ : Optional[List[str]] =None UpperCAmelCase_ : Optional[Union[int, str, List[int], List[str]]] =None UpperCAmelCase_ : Optional[Union[List[int], List[str]]] =None UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : bool =True UpperCAmelCase_ : Optional[Literal["c", "python", "pyarrow"]] =None UpperCAmelCase_ : Dict[Union[int, str], Callable[[Any], Any]] =None UpperCAmelCase_ : Optional[list] =None UpperCAmelCase_ : Optional[list] =None UpperCAmelCase_ : bool =False UpperCAmelCase_ : Optional[Union[int, List[int]]] =None UpperCAmelCase_ : Optional[int] =None UpperCAmelCase_ : Optional[Union[str, List[str]]] =None UpperCAmelCase_ : bool =True UpperCAmelCase_ : bool =True UpperCAmelCase_ : bool =False UpperCAmelCase_ : bool =True UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : str ="." UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : str ='"' UpperCAmelCase_ : int =0 UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : bool =True UpperCAmelCase_ : bool =True UpperCAmelCase_ : int =0 UpperCAmelCase_ : bool =True UpperCAmelCase_ : bool =False UpperCAmelCase_ : Optional[str] =None UpperCAmelCase_ : int =10_000 UpperCAmelCase_ : Optional[datasets.Features] =None UpperCAmelCase_ : Optional[str] ="strict" UpperCAmelCase_ : Literal["error", "warn", "skip"] ="error" UpperCAmelCase_ : Optional[str] =None def UpperCAmelCase ( self ) -> int: '''simple docstring''' if self.delimiter is not None: __snake_case : List[str] = self.delimiter if self.column_names is not None: __snake_case : Optional[Any] = self.column_names @property def UpperCAmelCase ( self ) -> str: '''simple docstring''' __snake_case : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , UpperCAmelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _lowerCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase_ : Dict =CsvConfig def UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase ( self , UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase , (str, list, tuple) ): __snake_case : int = data_files if isinstance(UpperCAmelCase , UpperCAmelCase ): __snake_case : Any = [files] __snake_case : Optional[int] = [dl_manager.iter_files(UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] __snake_case : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): __snake_case : str = [files] __snake_case : int = [dl_manager.iter_files(UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=UpperCAmelCase , gen_kwargs={"files": files} ) ) return splits def UpperCAmelCase ( self , UpperCAmelCase ) -> pa.Table: '''simple docstring''' if self.config.features is not None: __snake_case : str = self.config.features.arrow_schema if all(not require_storage_cast(UpperCAmelCase ) for feature in self.config.features.values() ): # cheaper cast __snake_case : Optional[int] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=UpperCAmelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __snake_case : List[str] = table_cast(UpperCAmelCase , UpperCAmelCase ) return pa_table def UpperCAmelCase ( self , UpperCAmelCase ) -> int: '''simple docstring''' __snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __snake_case : Union[str, Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(UpperCAmelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase ) ): __snake_case : Tuple = pd.read_csv(UpperCAmelCase , iterator=UpperCAmelCase , dtype=UpperCAmelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(UpperCAmelCase ): __snake_case : List[str] = pa.Table.from_pandas(UpperCAmelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase ) except ValueError as e: logger.error(F"""Failed to read file '{file}' with error {type(UpperCAmelCase )}: {e}""" ) raise
243
0
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __A : list[int | float] , __A : int , __A : int ) -> int | float: """simple docstring""" if len(__A ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(__A ) or left < -len(__A ) or right >= len(__A ) or right < -len(__A ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] a_ : Union[str, Any] = (left + right) >> 1 # the middle a_ : Optional[Any] = find_max(__A , __A , __A ) # find max in range[left, mid] a_ : Tuple = find_max(__A , mid + 1 , __A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
720
import random class SCREAMING_SNAKE_CASE__ : @staticmethod def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : str ) -> tuple[list[int], list[int]]: a_ : int = [ord(SCREAMING_SNAKE_CASE__ ) for i in text] a_ : Any = [] a_ : Optional[int] = [] for i in plain: a_ : Tuple = random.randint(1 , 3_0_0 ) a_ : Optional[int] = (i + k) * k cipher.append(SCREAMING_SNAKE_CASE__ ) key.append(SCREAMING_SNAKE_CASE__ ) return cipher, key @staticmethod def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] ) -> str: a_ : List[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): a_ : str = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(SCREAMING_SNAKE_CASE__ ) ) return "".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ , UpperCAmelCase_ : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
443
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class __SCREAMING_SNAKE_CASE ( __A , __A ): lowerCamelCase_ = "dinat" lowerCamelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[Any] , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Optional[int]=64 , UpperCAmelCase__ : int=[3, 4, 6, 5] , UpperCAmelCase__ : str=[2, 4, 8, 16] , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : Optional[int]=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , UpperCAmelCase__ : List[str]=3.0 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : List[str]=0.0 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : List[str]="gelu" , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : List[Any]=1E-5 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Optional[Any]=None , **UpperCAmelCase__ : Any , ): '''simple docstring''' super().__init__(**_UpperCamelCase ) lowercase : Any =patch_size lowercase : Union[str, Any] =num_channels lowercase : List[str] =embed_dim lowercase : List[Any] =depths lowercase : Any =len(_UpperCamelCase ) lowercase : str =num_heads lowercase : Tuple =kernel_size lowercase : Optional[int] =dilations lowercase : Optional[int] =mlp_ratio lowercase : Union[str, Any] =qkv_bias lowercase : int =hidden_dropout_prob lowercase : Union[str, Any] =attention_probs_dropout_prob lowercase : int =drop_path_rate lowercase : Optional[int] =hidden_act lowercase : Union[str, Any] =layer_norm_eps lowercase : Any =initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase : str =int(embed_dim * 2 ** (len(_UpperCamelCase ) - 1) ) lowercase : Any =layer_scale_init_value lowercase : Optional[int] =['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(_UpperCamelCase ) + 1 )] lowercase , lowercase : Any =get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names )
92
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase_ = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 6_55_36, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_80_00, '''sample_size''': 13_10_72, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_60_00, '''sample_size''': 6_55_36, }, } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return torch.atana(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) / math.pi * 2 def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.sin(t * math.pi / 2 ) ** 2 snake_case_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) class snake_case_ ( __A ): '''simple docstring''' pass class snake_case_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , _UpperCamelCase : int ) ->Optional[int]: super().__init__() snake_case_ = DiffusionAttnUnetaD(_UpperCamelCase , n_attn_layers=4 ) snake_case_ = deepcopy(self.diffusion ) snake_case_ = torch.quasirandom.SobolEngine(1 , scramble=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase_ = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase_ = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase_ = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase_ = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase_ = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): for key, value in ATTN_MAP.items(): if name.startswith(SCREAMING_SNAKE_CASE__ ) and not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif name.startswith(SCREAMING_SNAKE_CASE__ ): return [name.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 ): snake_case_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) snake_case_ = 0 if string.startswith('''net.3.''' ): depth += 1 snake_case_ = string[6:] elif string.startswith('''net.''' ): snake_case_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 snake_case_ = string[7:] if string.startswith('''main.''' ): snake_case_ = string[5:] # mid block if string[:2].isdigit(): snake_case_ = string[:2] snake_case_ = string[2:] else: snake_case_ = string[0] snake_case_ = string[1:] if depth == max_depth: snake_case_ = MID_NUM_TO_LAYER[layer_num] snake_case_ = '''mid_block''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) < 7: snake_case_ = DOWN_NUM_TO_LAYER[layer_num] snake_case_ = F'''down_blocks.{depth}''' elif depth > 0 and int(SCREAMING_SNAKE_CASE__ ) > 7: snake_case_ = UP_NUM_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: snake_case_ = DEPTH_0_TO_LAYER[layer_num] snake_case_ = F'''up_blocks.{max_depth - 1}''' if int(SCREAMING_SNAKE_CASE__ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) snake_case_ = string_left[1:] if "resnets" in new_layer: snake_case_ = convert_resconv_naming(SCREAMING_SNAKE_CASE__ ) elif "attentions" in new_layer: snake_case_ = convert_attn_naming(SCREAMING_SNAKE_CASE__ ) snake_case_ = new_string_left if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = prefix + '''.''' + new_layer + '''.''' + string_left else: snake_case_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue snake_case_ = rename(SCREAMING_SNAKE_CASE__ ) # check if we need to transform from Conv => Linear for attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = transform_conv_attns(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: snake_case_ = v return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) == 1: if len(v.shape ) == 3: # weight snake_case_ = v[:, :, 0] else: # bias snake_case_ = v else: # qkv matrices snake_case_ = v.shape[0] snake_case_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: snake_case_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: snake_case_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) snake_case_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' snake_case_ = download(SCREAMING_SNAKE_CASE__ ) snake_case_ = MODELS_MAP[model_name]['''sample_rate'''] snake_case_ = MODELS_MAP[model_name]['''sample_size'''] snake_case_ = Object() snake_case_ = sample_size snake_case_ = sample_rate snake_case_ = 0 snake_case_ = UNetaDModel(sample_size=SCREAMING_SNAKE_CASE__ , sample_rate=SCREAMING_SNAKE_CASE__ ) snake_case_ = diffusers_model.state_dict() snake_case_ = DiffusionUncond(SCREAMING_SNAKE_CASE__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=SCREAMING_SNAKE_CASE__ )['''state_dict'''] ) snake_case_ = orig_model.diffusion_ema.eval() snake_case_ = orig_model.state_dict() snake_case_ = rename_orig_weights(SCREAMING_SNAKE_CASE__ ) snake_case_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) snake_case_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(SCREAMING_SNAKE_CASE__ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(SCREAMING_SNAKE_CASE__ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": snake_case_ = value.squeeze() snake_case_ = value diffusers_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) snake_case_ = 100 snake_case_ = 33 snake_case_ = IPNDMScheduler(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.randn([1, 2, config.sample_size] , generator=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.linspace(1 , 0 , steps + 1 , device=SCREAMING_SNAKE_CASE__ )[:-1] snake_case_ = get_crash_schedule(SCREAMING_SNAKE_CASE__ ) snake_case_ = DanceDiffusionPipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) snake_case_ = torch.manual_seed(33 ) snake_case_ = pipe(num_inference_steps=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).audios snake_case_ = sampling.iplms_sample(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , {} ) snake_case_ = generated.clamp(-1 , 1 ) snake_case_ = (generated - audio).abs().sum() snake_case_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , SCREAMING_SNAKE_CASE__ ) print('''Diff max''' , SCREAMING_SNAKE_CASE__ ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase_ = parser.parse_args() main(args)
39
0
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" if len(_lowerCAmelCase ) != len(_lowerCAmelCase ): raise ValueError("""The length of profit and weight must be same.""" ) if max_weight <= 0: raise ValueError("""max_weight must greater than zero.""" ) if any(p < 0 for p in profit ): raise ValueError("""Profit can not be negative.""" ) if any(w < 0 for w in weight ): raise ValueError("""Weight can not be negative.""" ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. A : List[Any] = [p / w for p, w in zip(_lowerCAmelCase , _lowerCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order A : Union[str, Any] = sorted(_lowerCAmelCase ) # declaring useful variables A : str = len(_lowerCAmelCase ) A : Union[str, Any] = 0 A : Any = 0 A : Dict = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight A : str = sorted_profit_by_weight[length - i - 1] A : List[Any] = profit_by_weight.index(_lowerCAmelCase ) A : Tuple = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( """Input profits, weights, and then max_weight (all positive ints) separated by """ """spaces.""" ) SCREAMING_SNAKE_CASE_:Union[str, Any] = [int(x) for x in input("""Input profits separated by spaces: """).split()] SCREAMING_SNAKE_CASE_:Optional[int] = [int(x) for x in input("""Input weights separated by spaces: """).split()] SCREAMING_SNAKE_CASE_:int = int(input("""Max weight allowed: """)) # Function Call calc_profit(profit, weight, max_weight)
704
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_:List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Tuple = ["input_features", "is_longer"] def __init__( self, lowerCamelCase__=64, lowerCamelCase__=4_8000, lowerCamelCase__=480, lowerCamelCase__=10, lowerCamelCase__=1024, lowerCamelCase__=0.0, lowerCamelCase__=False, lowerCamelCase__ = 0, lowerCamelCase__ = 1_4000, lowerCamelCase__ = None, lowerCamelCase__ = "fusion", lowerCamelCase__ = "repeatpad", **lowerCamelCase__, ): super().__init__( feature_size=lowerCamelCase__, sampling_rate=lowerCamelCase__, padding_value=lowerCamelCase__, return_attention_mask=lowerCamelCase__, **lowerCamelCase__, ) A : Dict = top_db A : Tuple = truncation A : Union[str, Any] = padding A : Optional[int] = fft_window_size A : Optional[int] = (fft_window_size >> 1) + 1 A : Optional[int] = hop_length A : List[Any] = max_length_s A : List[str] = max_length_s * sampling_rate A : List[str] = sampling_rate A : Optional[int] = frequency_min A : int = frequency_max A : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm=lowerCamelCase__, mel_scale="""htk""", ) A : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm="""slaney""", mel_scale="""slaney""", ) def _lowerCAmelCase ( self ): A : Optional[Any] = copy.deepcopy(self.__dict__ ) A : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : List[str] = spectrogram( lowerCamelCase__, window_function(self.fft_window_size, """hann""" ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase__, log_mel="""dB""", ) return log_mel_spectrogram.T def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Union[str, Any] = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A : Dict = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A : Union[str, Any] = [0] # randomly choose index for each part A : str = np.random.choice(ranges[0] ) A : Optional[Any] = np.random.choice(ranges[1] ) A : int = np.random.choice(ranges[2] ) A : int = mel[idx_front : idx_front + chunk_frames, :] A : Tuple = mel[idx_middle : idx_middle + chunk_frames, :] A : Union[str, Any] = mel[idx_back : idx_back + chunk_frames, :] A : Tuple = torch.tensor(mel[None, None, :] ) A : Any = torch.nn.functional.interpolate( lowerCamelCase__, size=[chunk_frames, 64], mode="""bilinear""", align_corners=lowerCamelCase__ ) A : List[str] = mel_shrink[0][0].numpy() A : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": A : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A : Union[str, Any] = len(lowerCamelCase__ ) - max_length A : Dict = np.random.randint(0, overflow + 1 ) A : Union[str, Any] = waveform[idx : idx + max_length] A : List[str] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :] elif truncation == "fusion": A : Tuple = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters ) A : Optional[int] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A : Any = np.stack([mel, mel, mel, mel], axis=0 ) A : Optional[Any] = False else: A : Tuple = self._random_mel_fusion(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: A : str = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A : List[Any] = int(max_length / len(lowerCamelCase__ ) ) A : List[str] = np.stack(np.tile(lowerCamelCase__, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A : List[Any] = int(max_length / len(lowerCamelCase__ ) ) A : List[str] = np.stack(np.tile(lowerCamelCase__, lowerCamelCase__ ) ) A : Any = np.pad(lowerCamelCase__, (0, max_length - waveform.shape[0]), mode="""constant""", constant_values=0 ) if truncation == "fusion": A : str = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters ) A : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: A : Optional[int] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__, ): A : Any = truncation if truncation is not None else self.truncation A : str = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A : Any = isinstance(lowerCamelCase__, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) A : Optional[Any] = is_batched_numpy or ( isinstance(lowerCamelCase__, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: A : Tuple = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__, np.ndarray ): A : str = np.asarray(lowerCamelCase__, dtype=np.floataa ) elif isinstance(lowerCamelCase__, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A : List[str] = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. A : int = [ self._get_input_mel(lowerCamelCase__, max_length if max_length else self.nb_max_samples, lowerCamelCase__, lowerCamelCase__ ) for waveform in raw_speech ] A : Optional[Any] = [] A : Optional[int] = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A : Optional[Any] = np.random.randint(0, len(lowerCamelCase__ ) ) A : Union[str, Any] = True if isinstance(input_mel[0], lowerCamelCase__ ): A : List[Any] = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A : Optional[Any] = [[longer] for longer in is_longer] A : Tuple = {"""input_features""": input_mel, """is_longer""": is_longer} A : Any = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: A : Dict = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
520
0
"""simple docstring""" def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> List[Any]: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCamelCase = mf_knapsack(i - 1 , snake_case__ , snake_case__ , snake_case__ ) else: UpperCamelCase = max( mf_knapsack(i - 1 , snake_case__ , snake_case__ , snake_case__ ) , mf_knapsack(i - 1 , snake_case__ , snake_case__ , j - wt[i - 1] ) + val[i - 1] , ) UpperCamelCase = val return f[i][j] def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Dict: """simple docstring""" UpperCamelCase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: UpperCamelCase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: UpperCamelCase = dp[i - 1][w_] return dp[n][w_], dp def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> str: """simple docstring""" if not (isinstance(snake_case__ , (list, tuple) ) and isinstance(snake_case__ , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) UpperCamelCase = len(snake_case__ ) if num_items != len(snake_case__ ): UpperCamelCase = ( """The number of weights must be the same as the number of values.\n""" F"But got {num_items} weights and {len(snake_case__ )} values" ) raise ValueError(snake_case__ ) for i in range(snake_case__ ): if not isinstance(wt[i] , snake_case__ ): UpperCamelCase = ( """All weights must be integers but got weight of """ F"type {type(wt[i] )} at index {i}" ) raise TypeError(snake_case__ ) UpperCamelCase = knapsack(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase = set() _construct_solution(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return optimal_val, example_optional_set def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[Any]: """simple docstring""" # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(snake_case__ , snake_case__ , i - 1 , snake_case__ , snake_case__ ) else: optimal_set.add(snake_case__ ) _construct_solution(snake_case__ , snake_case__ , i - 1 , j - wt[i - 1] , snake_case__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = [3, 2, 4, 4] SCREAMING_SNAKE_CASE = [4, 3, 2, 3] SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = 6 SCREAMING_SNAKE_CASE = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
554
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False , ): super().__init__() A_ : Tuple = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) A_ : List[str] = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) A_ : Any = False A_ : Tuple = nn.Dropout(p=lowerCAmelCase_ ) A_ : List[str] = TaConfig( vocab_size=lowerCAmelCase_ , d_model=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , feed_forward_proj=lowerCAmelCase_ , is_decoder=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , ) A_ : Optional[Any] = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): A_ : Tuple = TaBlock(lowerCAmelCase_ ) self.encoders.append(lowerCAmelCase_ ) A_ : Any = TaLayerNorm(lowerCAmelCase_ ) A_ : Union[str, Any] = nn.Dropout(p=lowerCAmelCase_ ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : List[Any] = self.token_embedder(lowerCAmelCase_ ) A_ : Optional[Any] = encoder_input_tokens.shape[1] A_ : Any = torch.arange(lowerCAmelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCAmelCase_ ) A_ : Optional[Any] = self.dropout_pre(lowerCAmelCase_ ) # inverted the attention mask A_ : int = encoder_input_tokens.size() A_ : Optional[Any] = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ ) for lyr in self.encoders: A_ : int = lyr(lowerCAmelCase_ , lowerCAmelCase_ )[0] A_ : List[str] = self.layer_norm(lowerCAmelCase_ ) return self.dropout_post(lowerCAmelCase_ ), encoder_inputs_mask
180
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
708
'''simple docstring''' import argparse import os import re import packaging.version __lowerCAmelCase : Optional[int] = "examples/" __lowerCAmelCase : Dict = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } __lowerCAmelCase : List[str] = { "init": "src/transformers/__init__.py", "setup": "setup.py", } __lowerCAmelCase : int = "README.md" def lowerCAmelCase ( UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple ): """simple docstring""" with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase , __UpperCAmelCase = REPLACE_PATTERNS[pattern] __UpperCAmelCase = replace.replace('''VERSION''' , UpperCamelCase__ ) __UpperCAmelCase = re_pattern.sub(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ): """simple docstring""" for folder, directories, fnames in os.walk(UpperCamelCase__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ , pattern='''examples''' ) def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not patch: update_version_in_examples(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase = '''1. Want to contribute a new model?''' with open(UpperCamelCase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase = f.readlines() # Find the start of the list. __UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): __UpperCAmelCase = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''' , '''https://huggingface.co/docs/transformers/model_doc''' , ) index += 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(UpperCamelCase__ ) def lowerCAmelCase ( ): """simple docstring""" with open(REPLACE_FILES['''init'''] , '''r''' ) as f: __UpperCAmelCase = f.read() __UpperCAmelCase = REPLACE_PATTERNS['''init'''][0].search(UpperCamelCase__ ).groups()[0] return packaging.version.parse(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Any=False ): """simple docstring""" __UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: __UpperCAmelCase = default_version.base_version elif patch: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __UpperCAmelCase = f"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __UpperCAmelCase = input(f"""Which version are you releasing? [{default_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = default_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ , patch=UpperCamelCase__ ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = get_version() __UpperCAmelCase = f"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __UpperCAmelCase = current_version.base_version # Check with the user we got that right. __UpperCAmelCase = input(f"""Which version are we developing now? [{dev_version}]""" ) if len(UpperCamelCase__ ) == 0: __UpperCAmelCase = dev_version print(f"""Updating version to {version}.""" ) global_version_update(UpperCamelCase__ ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") __lowerCAmelCase : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
654
0
"""simple docstring""" import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=13 , _SCREAMING_SNAKE_CASE : List[Any]=7 , _SCREAMING_SNAKE_CASE : List[str]=True , _SCREAMING_SNAKE_CASE : Dict=True , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : Any=True , _SCREAMING_SNAKE_CASE : List[str]=99 , _SCREAMING_SNAKE_CASE : Tuple=32 , _SCREAMING_SNAKE_CASE : str=5 , _SCREAMING_SNAKE_CASE : Any=4 , _SCREAMING_SNAKE_CASE : Optional[int]=37 , _SCREAMING_SNAKE_CASE : str="gelu" , _SCREAMING_SNAKE_CASE : List[Any]=0.1 , _SCREAMING_SNAKE_CASE : int=0.1 , _SCREAMING_SNAKE_CASE : Dict=512 , _SCREAMING_SNAKE_CASE : Union[str, Any]=16 , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : str=0.0_2 , _SCREAMING_SNAKE_CASE : List[str]=4 , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = seq_length SCREAMING_SNAKE_CASE : Optional[Any] = is_training SCREAMING_SNAKE_CASE : Tuple = use_attention_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : List[str] = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Tuple = num_choices def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_attention_mask: SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : int = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : List[str] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def _lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = config_and_inputs SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCAmelCase__ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Optional[int] = True _SCREAMING_SNAKE_CASE : Any = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = FlaxBertModelTester(self ) @slow def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxBertModel.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase__ )
265
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('''KEY''') lowerCAmelCase__ = TypeVar('''VAL''') @dataclass(frozen=lowerCamelCase__ , slots=lowerCamelCase__ ) class lowercase_ (Generic[KEY, VAL] ): """simple docstring""" SCREAMING_SNAKE_CASE : KEY SCREAMING_SNAKE_CASE : VAL class lowercase_ (_Item ): """simple docstring""" def __init__( self : Optional[int] ): super().__init__(lowercase__ ,lowercase__ ) def __bool__( self : List[str] ): return False lowerCAmelCase__ = _DeletedItem() class lowercase_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self : Dict ,lowercase__ : int = 8 ,lowercase__ : float = 0.7_5 ): __lowercase = initial_block_size __lowercase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowercase = capacity_factor __lowercase = 0 def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : KEY ): return hash(lowercase__ ) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : int ): return (ind + 1) % len(self._buckets ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : int ,lowercase__ : KEY ,lowercase__ : VAL ): __lowercase = self._buckets[ind] if not stored: __lowercase = _Item(lowercase__ ,lowercase__ ) self._len += 1 return True elif stored.key == key: __lowercase = _Item(lowercase__ ,lowercase__ ) return True else: return False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): if len(self._buckets ) <= self._initial_block_size: return False __lowercase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : int ): __lowercase = self._buckets __lowercase = [None] * new_size __lowercase = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val ) def SCREAMING_SNAKE_CASE ( self : str ): self._resize(len(self._buckets ) * 2 ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self._resize(len(self._buckets ) // 2 ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : KEY ): __lowercase = self._get_bucket_index(lowercase__ ) for _ in range(len(self._buckets ) ): yield ind __lowercase = self._get_next_ind(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): for ind in self._iterate_buckets(lowercase__ ): if self._try_set(lowercase__ ,lowercase__ ,lowercase__ ): break def __setitem__( self : str ,lowercase__ : KEY ,lowercase__ : VAL ): if self._is_full(): self._size_up() self._add_item(lowercase__ ,lowercase__ ) def __delitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: raise KeyError(lowercase__ ) if item is _deleted: continue if item.key == key: __lowercase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Tuple ,lowercase__ : KEY ): for ind in self._iterate_buckets(lowercase__ ): __lowercase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowercase__ ) def __len__( self : Optional[int] ): return self._len def __iter__( self : str ): yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any] ): __lowercase = ''' ,'''.join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
41
0
'''simple docstring''' from __future__ import annotations def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if nth_term == "": return [""] lowerCamelCase_ : List[str] = int(__UpperCAmelCase ) lowerCamelCase_ : List[str] = int(__UpperCAmelCase ) lowerCamelCase_ : list[str] = [] for temp in range(int(__UpperCAmelCase ) ): series.append(F"""1 / {pow(temp + 1 , int(__UpperCAmelCase ) )}""" if series else '''1''' ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowerCamelCase : Tuple = int(input("""Enter the last number (nth term) of the P-Series""")) __lowerCamelCase : Tuple = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
708
'''simple docstring''' def __snake_case (__UpperCAmelCase = 3 , __UpperCAmelCase = 7 , __UpperCAmelCase = 1000000 ): """simple docstring""" lowerCamelCase_ : Any = 0 lowerCamelCase_ : Tuple = 1 for current_denominator in range(1 , limit + 1 ): lowerCamelCase_ : str = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: lowerCamelCase_ : Any = current_numerator lowerCamelCase_ : Dict = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
418
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: str = ["audio_values", "audio_mask"] def __init__( self : Optional[Any] , A : Optional[int]=2048 , A : Any=1 , A : Union[str, Any]=[16, 16] , A : Optional[int]=128 , A : Optional[int]=44100 , A : Dict=86 , A : List[Any]=2048 , A : Optional[Any]=0.0 , **A : List[str] , ): super().__init__( feature_size=A , sampling_rate=A , padding_value=A , **A , ) _UpperCAmelCase : Any = spectrogram_length _UpperCAmelCase : List[Any] = num_channels _UpperCAmelCase : int = patch_size _UpperCAmelCase : Union[str, Any] = feature_size // self.patch_size[1] _UpperCAmelCase : Dict = n_fft _UpperCAmelCase : Dict = sampling_rate // hop_length_to_sampling_rate _UpperCAmelCase : Optional[int] = sampling_rate _UpperCAmelCase : Any = padding_value _UpperCAmelCase : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A , min_frequency=0.0 , max_frequency=22_050.0 , sampling_rate=A , norm="slaney" , mel_scale="slaney" , ).T def _A ( self : Any , A : np.array ): _UpperCAmelCase : Tuple = spectrogram( A , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) _UpperCAmelCase : List[str] = log_spec[:, :-1] _UpperCAmelCase : List[str] = log_spec - 20.0 _UpperCAmelCase : str = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : List[str] , A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A : Optional[Union[str, TensorType]] = None , A : Optional[bool] = True , A : Optional[int] = None , A : bool = False , A : bool = False , **A : List[Any] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Tuple = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : Union[str, Any] = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): _UpperCAmelCase : str = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : Union[str, Any] = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _UpperCAmelCase : Union[str, Any] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , A ): _UpperCAmelCase : int = [np.asarray(A , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _UpperCAmelCase : Dict = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _UpperCAmelCase : int = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _UpperCAmelCase : Optional[int] = np.array(A ).astype(np.floataa ) # convert into correct format for padding _UpperCAmelCase : Any = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _UpperCAmelCase : Union[str, Any] = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _UpperCAmelCase : List[str] = padded_audio_features * self.padding_value for i in range(len(A ) ): _UpperCAmelCase : Optional[Any] = audio_features[i] _UpperCAmelCase : Optional[Any] = feature # return as BatchFeature if return_attention_mask: _UpperCAmelCase : Union[str, Any] = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: _UpperCAmelCase : Tuple = {"audio_values": padded_audio_features} _UpperCAmelCase : Optional[Any] = BatchFeature(data=A , tensor_type=A ) return encoded_inputs
244
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCamelCase_ : '''simple docstring''' def __init__( self : Tuple , A : List[Any] , ): _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Tuple = 13 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : List[Any] = 30 _UpperCAmelCase : Any = self.seq_length + self.mem_len _UpperCAmelCase : str = 15 _UpperCAmelCase : Dict = True _UpperCAmelCase : str = True _UpperCAmelCase : Tuple = 99 _UpperCAmelCase : int = [10, 50, 80] _UpperCAmelCase : List[str] = 32 _UpperCAmelCase : List[str] = 32 _UpperCAmelCase : Any = 4 _UpperCAmelCase : List[Any] = 8 _UpperCAmelCase : Any = 128 _UpperCAmelCase : Dict = 2 _UpperCAmelCase : int = 2 _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Any = 3 _UpperCAmelCase : List[str] = self.vocab_size - 1 _UpperCAmelCase : Any = 0.01 def _A ( self : Any ): _UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Any = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _A ( self : Optional[int] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def _A ( self : int , A : Union[str, Any] , A : str , A : List[str] , A : Optional[int] ): _UpperCAmelCase : int = TFTransfoXLModel(A ) _UpperCAmelCase , _UpperCAmelCase : str = model(A ).to_tuple() _UpperCAmelCase : Any = {"input_ids": input_ids_a, "mems": mems_a} _UpperCAmelCase , _UpperCAmelCase : Dict = model(A ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _A ( self : Optional[int] , A : Dict , A : Union[str, Any] , A : Any , A : Tuple ): _UpperCAmelCase : Tuple = TFTransfoXLLMHeadModel(A ) _UpperCAmelCase , _UpperCAmelCase : Dict = model(A ).to_tuple() _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids_a, "labels": lm_labels} _UpperCAmelCase , _UpperCAmelCase : List[Any] = model(A ).to_tuple() _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = model([input_ids_a, mems_a] ).to_tuple() _UpperCAmelCase : Tuple = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} _UpperCAmelCase , _UpperCAmelCase : Tuple = model(A ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _A ( self : Optional[Any] , A : Optional[Any] , A : Tuple , A : List[str] , A : Union[str, Any] ): _UpperCAmelCase : Dict = TFTransfoXLForSequenceClassification(A ) _UpperCAmelCase : List[Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self : int ): _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : Optional[Any] = config_and_inputs _UpperCAmelCase : Any = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class lowerCamelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Any = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __UpperCamelCase: Tuple = () if is_tf_available() else () __UpperCamelCase: Union[str, Any] = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __UpperCamelCase: Any = False __UpperCamelCase: Optional[Any] = False __UpperCamelCase: List[str] = False __UpperCamelCase: List[Any] = False def _A ( self : Tuple , A : Dict , A : int , A : str , A : Any , A : List[str] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _A ( self : List[str] ): _UpperCAmelCase : int = TFTransfoXLModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self , config_class=A , d_embed=37 ) def _A ( self : int ): self.config_tester.run_common_tests() def _A ( self : List[Any] ): self.model_tester.set_seed() _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*A ) def _A ( self : str ): self.model_tester.set_seed() _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*A ) def _A ( self : Optional[Any] ): _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*A ) def _A ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : List[str] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = model_class(A ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _UpperCAmelCase : List[Any] = model.get_output_embeddings() assert isinstance(A , tf.keras.layers.Layer ) _UpperCAmelCase : List[Any] = model.get_bias() assert name is None else: _UpperCAmelCase : Optional[int] = model.get_output_embeddings() assert x is None _UpperCAmelCase : Any = model.get_bias() assert name is None def _A ( self : Dict ): # TODO JP: Make TransfoXL XLA compliant pass @slow def _A ( self : Any ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : int = TFTransfoXLModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def _A ( self : Any ): pass @require_tf class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved." ) @slow def _A ( self : Union[str, Any] ): _UpperCAmelCase : str = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off _UpperCAmelCase : int = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _UpperCAmelCase : List[str] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _UpperCAmelCase : List[Any] = model.generate(A , max_length=200 , do_sample=A ) self.assertListEqual(output_ids[0].numpy().tolist() , A )
244
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): lowerCamelCase__ =StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) lowerCamelCase__ =sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) sd_pipe.set_scheduler("sample_euler" ) lowerCamelCase__ ="A painting of a squirrel eating a burger" lowerCamelCase__ =torch.manual_seed(0 ) lowerCamelCase__ =sd_pipe([prompt] , generator=_lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) lowerCamelCase__ =output.images lowerCamelCase__ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ =np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ): lowerCamelCase__ =StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowerCamelCase__ =sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) sd_pipe.set_scheduler("sample_euler" ) lowerCamelCase__ ="A painting of a squirrel eating a burger" lowerCamelCase__ =torch.manual_seed(0 ) lowerCamelCase__ =sd_pipe([prompt] , generator=_lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) lowerCamelCase__ =output.images lowerCamelCase__ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ =np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _a ( self ): lowerCamelCase__ =StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowerCamelCase__ =sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) lowerCamelCase__ ="A painting of a squirrel eating a burger" lowerCamelCase__ =torch.manual_seed(0 ) lowerCamelCase__ =sd_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=_lowerCamelCase , ) lowerCamelCase__ =output.images lowerCamelCase__ =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ =np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
132
"""simple docstring""" import sys def lowerCamelCase_ ( __lowerCAmelCase ) -> List[Any]: '''simple docstring''' lowerCamelCase__ =len(__lowerCAmelCase ) lowerCamelCase__ =[[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] lowerCamelCase__ =[[0 for x in range(__lowerCAmelCase )] for x in range(__lowerCAmelCase )] for chain_length in range(2 , __lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): lowerCamelCase__ =a + chain_length - 1 lowerCamelCase__ =sys.maxsize for c in range(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ =( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowerCamelCase__ =cost lowerCamelCase__ =c return matrix, sol def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' if i == j: print("A" + str(__lowerCAmelCase ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(__lowerCAmelCase , __lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(__lowerCAmelCase , optimal_solution[i][j] + 1 , __lowerCAmelCase ) print(")" , end=" " ) def lowerCamelCase_ ( ) -> Tuple: '''simple docstring''' lowerCamelCase__ =[30, 35, 15, 5, 10, 20, 25] lowerCamelCase__ =len(__lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowerCamelCase__ , lowerCamelCase__ =matrix_chain_order(__lowerCAmelCase ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(__lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
132
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Dict: print("Loading config file..." ) def flatten_yaml_as_dict(lowerCAmelCase: Union[str, Any] , lowerCAmelCase: Optional[Any]="" , lowerCAmelCase: Tuple="." ): _UpperCAmelCase : Union[str, Any] = [] for k, v in d.items(): _UpperCAmelCase : Optional[Any] = parent_key + sep + k if parent_key else k if isinstance(lowerCAmelCase , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowerCAmelCase , lowerCAmelCase , sep=lowerCAmelCase ).items() ) else: items.append((new_key, v) ) return dict(lowerCAmelCase ) _UpperCAmelCase : Optional[int] = argparse.Namespace() with open(lowerCAmelCase , "r" ) as yaml_file: try: _UpperCAmelCase : Union[str, Any] = yaml.load(lowerCAmelCase , Loader=yaml.FullLoader ) _UpperCAmelCase : List[str] = flatten_yaml_as_dict(lowerCAmelCase ) for k, v in flat_cfg.items(): setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) except yaml.YAMLError as exc: logger.error("Error while loading config file: {}. Error message: {}".format(lowerCAmelCase , str(lowerCAmelCase ) ) ) return config def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple , lowerCAmelCase: Union[str, Any] ) -> Optional[Any]: _UpperCAmelCase : List[Any] = MobileViTVaConfig() _UpperCAmelCase : Tuple = False # dataset if task_name.startswith("imagenet1k_" ): _UpperCAmelCase : List[str] = 1000 if int(task_name.strip().split("_" )[-1] ) == 384: _UpperCAmelCase : Union[str, Any] = 384 else: _UpperCAmelCase : Any = 256 _UpperCAmelCase : Optional[int] = "imagenet-1k-id2label.json" elif task_name.startswith("imagenet21k_to_1k_" ): _UpperCAmelCase : Tuple = 2_1000 if int(task_name.strip().split("_" )[-1] ) == 384: _UpperCAmelCase : Tuple = 384 else: _UpperCAmelCase : Any = 256 _UpperCAmelCase : List[Any] = "imagenet-22k-id2label.json" elif task_name.startswith("ade20k_" ): _UpperCAmelCase : Dict = 151 _UpperCAmelCase : Optional[Any] = 512 _UpperCAmelCase : List[str] = "ade20k-id2label.json" _UpperCAmelCase : Dict = True elif task_name.startswith("voc_" ): _UpperCAmelCase : Any = 21 _UpperCAmelCase : Optional[int] = 512 _UpperCAmelCase : List[str] = "pascal-voc-id2label.json" _UpperCAmelCase : int = True # orig_config _UpperCAmelCase : Optional[Any] = load_orig_config_file(lowerCAmelCase ) assert getattr(lowerCAmelCase , "model.classification.name" , -1 ) == "mobilevit_v2", "Invalid model" _UpperCAmelCase : Optional[int] = getattr(lowerCAmelCase , "model.classification.mitv2.width_multiplier" , 1.0 ) assert ( getattr(lowerCAmelCase , "model.classification.mitv2.attn_norm_layer" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _UpperCAmelCase : List[Any] = getattr(lowerCAmelCase , "model.classification.activation.name" , "swish" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _UpperCAmelCase : List[str] = getattr(lowerCAmelCase , "model.segmentation.output_stride" , 16 ) if "_deeplabv3" in task_name: _UpperCAmelCase : str = getattr(lowerCAmelCase , "model.segmentation.deeplabv3.aspp_rates" , [12, 24, 36] ) _UpperCAmelCase : Dict = getattr(lowerCAmelCase , "model.segmentation.deeplabv3.aspp_out_channels" , 512 ) _UpperCAmelCase : Optional[Any] = getattr(lowerCAmelCase , "model.segmentation.deeplabv3.aspp_dropout" , 0.1 ) # id2label _UpperCAmelCase : str = "huggingface/label-files" _UpperCAmelCase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : str = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : List[str] = idalabel _UpperCAmelCase : int = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: int ) -> str: _UpperCAmelCase : Tuple = dct.pop(lowerCAmelCase ) _UpperCAmelCase : Any = val def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Tuple=False ) -> Any: if base_model: _UpperCAmelCase : Optional[int] = "" else: _UpperCAmelCase : Any = "mobilevitv2." _UpperCAmelCase : List[Any] = [] for k in state_dict.keys(): if k[:8] == "encoder.": _UpperCAmelCase : Union[str, Any] = k[8:] else: _UpperCAmelCase : Any = k if ".block." in k: _UpperCAmelCase : List[str] = k_new.replace(".block." , "." ) if ".conv." in k: _UpperCAmelCase : int = k_new.replace(".conv." , ".convolution." ) if ".norm." in k: _UpperCAmelCase : List[Any] = k_new.replace(".norm." , ".normalization." ) if "conv_1." in k: _UpperCAmelCase : List[str] = k_new.replace("conv_1." , F'{model_prefix}conv_stem.' ) for i in [1, 2]: if F'layer_{i}.' in k: _UpperCAmelCase : Any = k_new.replace(F'layer_{i}.' , F'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: _UpperCAmelCase : Optional[Any] = k_new.replace(".exp_1x1." , ".expand_1x1." ) if ".red_1x1." in k: _UpperCAmelCase : List[Any] = k_new.replace(".red_1x1." , ".reduce_1x1." ) for i in [3, 4, 5]: if F'layer_{i}.0.' in k: _UpperCAmelCase : Optional[Any] = k_new.replace(F'layer_{i}.0.' , F'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if F'layer_{i}.1.local_rep.0.' in k: _UpperCAmelCase : List[str] = k_new.replace(F'layer_{i}.1.local_rep.0.' , F'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if F'layer_{i}.1.local_rep.1.' in k: _UpperCAmelCase : int = k_new.replace(F'layer_{i}.1.local_rep.1.' , F'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: _UpperCAmelCase : Optional[int] = [0, 1] elif i == 4: _UpperCAmelCase : Union[str, Any] = [0, 1, 2, 3] elif i == 5: _UpperCAmelCase : Optional[int] = [0, 1, 2] for j in j_in: if F'layer_{i}.1.global_rep.{j}.' in k: _UpperCAmelCase : int = k_new.replace( F'layer_{i}.1.global_rep.{j}.' , F'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if F'layer_{i}.1.global_rep.{j+1}.' in k: _UpperCAmelCase : Any = k_new.replace( F'layer_{i}.1.global_rep.{j+1}.' , F'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if F'layer_{i}.1.conv_proj.' in k: _UpperCAmelCase : str = k_new.replace(F'layer_{i}.1.conv_proj.' , F'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: _UpperCAmelCase : int = k_new.replace("pre_norm_attn.0." , "layernorm_before." ) if "pre_norm_attn.1." in k: _UpperCAmelCase : Tuple = k_new.replace("pre_norm_attn.1." , "attention." ) if "pre_norm_ffn.0." in k: _UpperCAmelCase : Tuple = k_new.replace("pre_norm_ffn.0." , "layernorm_after." ) if "pre_norm_ffn.1." in k: _UpperCAmelCase : str = k_new.replace("pre_norm_ffn.1." , "ffn.conv1." ) if "pre_norm_ffn.3." in k: _UpperCAmelCase : Any = k_new.replace("pre_norm_ffn.3." , "ffn.conv2." ) if "classifier.1." in k: _UpperCAmelCase : Any = k_new.replace("classifier.1." , "classifier." ) if "seg_head." in k: _UpperCAmelCase : Tuple = k_new.replace("seg_head." , "segmentation_head." ) if ".aspp_layer." in k: _UpperCAmelCase : Optional[Any] = k_new.replace(".aspp_layer." , "." ) if ".aspp_pool." in k: _UpperCAmelCase : Optional[Any] = k_new.replace(".aspp_pool." , "." ) rename_keys.append((k, k_new) ) return rename_keys def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict ) -> Any: _UpperCAmelCase : Dict = [] for k in state_dict.keys(): if k.startswith("seg_head.aux_head." ): keys_to_ignore.append(lowerCAmelCase ) for k in keys_to_ignore: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: _UpperCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _UpperCAmelCase : int = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: str , lowerCAmelCase: Optional[Any] ) -> List[str]: _UpperCAmelCase : Optional[Any] = get_mobilevitva_config(lowerCAmelCase , lowerCAmelCase ) # load original state_dict _UpperCAmelCase : Optional[Any] = torch.load(lowerCAmelCase , map_location="cpu" ) # load huggingface model if task_name.startswith("ade20k_" ) or task_name.startswith("voc_" ): _UpperCAmelCase : List[str] = MobileViTVaForSemanticSegmentation(lowerCAmelCase ).eval() _UpperCAmelCase : str = False else: _UpperCAmelCase : Optional[Any] = MobileViTVaForImageClassification(lowerCAmelCase ).eval() _UpperCAmelCase : Any = False # remove and rename some keys of load the original model _UpperCAmelCase : int = checkpoint remove_unused_keys(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = create_rename_keys(lowerCAmelCase , base_model=lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # load modified state_dict model.load_state_dict(lowerCAmelCase ) # Check outputs on an image, prepared by MobileViTImageProcessor _UpperCAmelCase : int = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _UpperCAmelCase : Any = image_processor(images=prepare_img() , return_tensors="pt" ) _UpperCAmelCase : Tuple = model(**lowerCAmelCase ) # verify classification model if task_name.startswith("imagenet" ): _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("imagenet1k_256" ) and config.width_multiplier == 1.0: # expected_logits for base variant _UpperCAmelCase : List[Any] = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , lowerCAmelCase , atol=1E-4 ) Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(F'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
300
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class a ( UpperCAmelCase ): def _UpperCAmelCase ( self , A_ ): '''simple docstring''' return 0.0 def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: np.ndarray , lowerCAmelCase: int ) -> tuple[int | float, int | float]: _UpperCAmelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _UpperCAmelCase : List[str] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: FilterType , lowerCAmelCase: int ) -> None: _UpperCAmelCase : Optional[int] = 512 _UpperCAmelCase : Dict = [1] + [0] * (size - 1) _UpperCAmelCase : Union[str, Any] = [filter_type.process(lowerCAmelCase ) for item in inputs] _UpperCAmelCase : str = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase : Union[str, Any] = np.abs(np.fft.fft(lowerCAmelCase ) ) _UpperCAmelCase : List[Any] = 20 * np.logaa(lowerCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds _UpperCAmelCase : Dict = get_bounds(lowerCAmelCase , lowerCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(lowerCAmelCase ) plt.show() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: FilterType , lowerCAmelCase: int ) -> None: _UpperCAmelCase : int = 512 _UpperCAmelCase : Optional[int] = [1] + [0] * (size - 1) _UpperCAmelCase : Dict = [filter_type.process(lowerCAmelCase ) for item in inputs] _UpperCAmelCase : Any = [0] * (samplerate - size) # zero-padding outputs += filler _UpperCAmelCase : Optional[int] = np.angle(np.fft.fft(lowerCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(lowerCAmelCase , -2 * pi ) ) plt.show()
300
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __lowerCamelCase ( _lowercase ) -> int: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def __lowerCamelCase ( _lowercase ) -> Tuple: # word like '180' or '身高' or '神' for char in word: UpperCamelCase = ord(_lowercase ) if not _is_chinese_char(_lowercase ): return 0 return 1 def __lowerCamelCase ( _lowercase ) -> List[str]: UpperCamelCase = set() for token in tokens: UpperCamelCase = len(_lowercase ) > 1 and is_chinese(_lowercase ) if chinese_word: word_set.add(_lowercase ) UpperCamelCase = list(_lowercase ) return word_list def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: if not chinese_word_set: return bert_tokens UpperCamelCase = max([len(_lowercase ) for w in chinese_word_set] ) UpperCamelCase = bert_tokens UpperCamelCase , UpperCamelCase = 0, len(_lowercase ) while start < end: UpperCamelCase = True if is_chinese(bert_word[start] ): UpperCamelCase = min(end - start , _lowercase ) for i in range(_lowercase , 1 , -1 ): UpperCamelCase = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase = '##' + bert_word[j] UpperCamelCase = start + i UpperCamelCase = False break if single_word: start += 1 return bert_word def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> Dict: UpperCamelCase = [] for i in range(0 , len(_lowercase ) , 100 ): UpperCamelCase = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase = [get_chinese_word(_lowercase ) for r in res] ltp_res.extend(_lowercase ) assert len(_lowercase ) == len(_lowercase ) UpperCamelCase = [] for i in range(0 , len(_lowercase ) , 100 ): UpperCamelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowercase , truncation=_lowercase , max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(_lowercase ) == len(_lowercase ) UpperCamelCase = [] for input_ids, chinese_word in zip(_lowercase , _lowercase ): UpperCamelCase = [] for id in input_ids: UpperCamelCase = bert_tokenizer._convert_id_to_token(_lowercase ) input_tokens.append(_lowercase ) UpperCamelCase = add_sub_symbol(_lowercase , _lowercase ) UpperCamelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowercase ): if token[:2] == "##": UpperCamelCase = token[2:] # save chinese tokens' pos if len(_lowercase ) == 1 and _is_chinese_char(ord(_lowercase ) ): ref_id.append(_lowercase ) ref_ids.append(_lowercase ) assert len(_lowercase ) == len(_lowercase ) return ref_ids def __lowerCamelCase ( _lowercase ) -> int: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [line.strip() for line in data if len(_lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase = LTP(args.ltp ) # faster in GPU device UpperCamelCase = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase = prepare_ref(_lowercase , _lowercase , _lowercase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: UpperCamelCase = [json.dumps(_lowercase ) + '\n' for ref in ref_ids] f.writelines(_lowercase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') _snake_case = parser.parse_args() main(args)
170
def __lowerCamelCase ( _lowercase ) -> int: assert ( isinstance(_lowercase , _lowercase ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 UpperCamelCase , UpperCamelCase = 1, 1 for _ in range(number_of_steps - 1 ): UpperCamelCase , UpperCamelCase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
170
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __UpperCamelCase : Optional[int] = pytest.mark.integration @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_snake_case ) for x in np.arange(30 ).tolist()]} ) return dset def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() lowerCAmelCase = dset.map( lambda _snake_case , _snake_case : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_snake_case , keep_in_memory=_snake_case ) lowerCAmelCase = dset.add_faiss_index('vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_snake_case , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCAmelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} lowerCAmelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_snake_case ) lowerCAmelCase ,lowerCAmelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertRaises(_snake_case , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) self.assertRaises(_snake_case , index.search_batch , queries[0] ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_snake_case ): lowerCAmelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = faiss.IndexFlat(5 ) lowerCAmelCase = FaissIndex(custom_index=_snake_case ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def UpperCamelCase__ ( self ): """simple docstring""" import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_snake_case ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Dict ): import faiss lowerCAmelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCAmelCase = 'index.faiss' lowerCAmelCase = F'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) lowerCAmelCase = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase = 1 lowerCAmelCase ,lowerCAmelCase = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class a ( a__ ): def UpperCamelCase__ ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: lowerCAmelCase = Elasticsearch() lowerCAmelCase = {'acknowledged': True} lowerCAmelCase = ElasticSearchIndex(es_client=_snake_case ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase = 'foo' lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} lowerCAmelCase ,lowerCAmelCase = index.search(_snake_case , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case ) # batched queries with timeout lowerCAmelCase = ['foo', 'bar', 'foobar'] lowerCAmelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} lowerCAmelCase ,lowerCAmelCase = index.search_batch(_snake_case , request_timeout=30 ) lowerCAmelCase = [scores[0] for scores in total_scores] lowerCAmelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_snake_case ) , 0 ) self.assertListEqual([1, 1, 1] , _snake_case )
4
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase : str =abspath(join(dirname(dirname(__file__)), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCAmelCase_ ( __lowerCamelCase : int ): from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : str ): from diffusers.utils.testing_utils import pytest_terminal_summary_main lowercase_ :Any = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__lowerCamelCase ,id=__lowerCamelCase )
172
0
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( a__ , a__ , unittest.TestCase ): _a = VQModel _a = """sample""" @property def __lowercase ( self : Tuple , lowerCAmelCase : Dict=(32, 32) ): lowerCAmelCase = 4 lowerCAmelCase = 3 lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCAmelCase__ ) return {"sample": image} @property def __lowercase ( self : int ): return (3, 32, 32) @property def __lowercase ( self : Dict ): return (3, 32, 32) def __lowercase ( self : Any ): lowerCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } lowerCAmelCase = self.dummy_input return init_dict, inputs_dict def __lowercase ( self : int ): pass def __lowercase ( self : str ): pass def __lowercase ( self : Tuple ): lowerCAmelCase = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowerCAmelCase__ ) lowerCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowercase ( self : str ): lowerCAmelCase = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(lowerCAmelCase__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowerCAmelCase = image.to(lowerCAmelCase__ ) with torch.no_grad(): lowerCAmelCase = model(lowerCAmelCase__ ).sample lowerCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
709
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml a = logging.get_logger(__name__) def lowercase (snake_case__ : bool , snake_case__ : bool ) -> Tuple: '''simple docstring''' def run_func(snake_case__ : Any ): @wraps(snake_case__ ) def run_in_eager_mode(*snake_case__ : Optional[Any] , **snake_case__ : int ): return func(*snake_case__ , **snake_case__ ) @wraps(snake_case__ ) @tf.function(experimental_compile=snake_case__ ) def run_in_graph_mode(*snake_case__ : int , **snake_case__ : Tuple ): return func(*snake_case__ , **snake_case__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowercase (snake_case__ : int , snake_case__ : int , snake_case__ : int ) -> ["tf.Tensor"]: '''simple docstring''' lowerCAmelCase = random.Random() lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(snake_case__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class SCREAMING_SNAKE_CASE__ ( _a ): _a = 42 _a = 42 _a = "TensorFlow" @property def __lowercase ( self : Optional[int] ): return tf.__version__ def __lowercase ( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : int ): # initialize GPU on separate process lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCAmelCase = self._prepare_inference_func(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return self._measure_speed(_inference ) def __lowercase ( self : str , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : int ): lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCAmelCase = self._prepare_train_func(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return self._measure_speed(_train ) def __lowercase ( self : str , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : int ): # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCAmelCase ) lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCAmelCase = self._prepare_inference_func(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return self._measure_memory(_inference ) def __lowercase ( self : int , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : int ): if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , lowerCAmelCase ) lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCAmelCase = self._prepare_train_func(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) return self._measure_memory(_train ) def __lowercase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : int ): lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) lowerCAmelCase = ( hasattr(lowerCAmelCase , """architectures""" ) and isinstance(config.architectures , lowerCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) lowerCAmelCase = getattr(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = model_cls(lowerCAmelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](lowerCAmelCase ) # encoder-decoder has vocab size saved differently lowerCAmelCase = config.vocab_size if hasattr(lowerCAmelCase , """vocab_size""" ) else config.encoder.vocab_size lowerCAmelCase = random_input_ids(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(lowerCAmelCase , decoder_input_ids=lowerCAmelCase , training=lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(lowerCAmelCase , training=lowerCAmelCase ) lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __lowercase ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : int ): lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) lowerCAmelCase = ( hasattr(lowerCAmelCase , """architectures""" ) and isinstance(config.architectures , lowerCAmelCase ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) lowerCAmelCase = getattr(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = model_cls(lowerCAmelCase ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](lowerCAmelCase ) # encoder-decoder has vocab size saved differently lowerCAmelCase = config.vocab_size if hasattr(lowerCAmelCase , """vocab_size""" ) else config.encoder.vocab_size lowerCAmelCase = random_input_ids(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCAmelCase = model(lowerCAmelCase , decoder_input_ids=lowerCAmelCase , labels=lowerCAmelCase , training=lowerCAmelCase )[0] lowerCAmelCase = tf.gradients(lowerCAmelCase , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase , training=lowerCAmelCase )[0] lowerCAmelCase = tf.gradients(lowerCAmelCase , model.trainable_variables ) return gradients lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __lowercase ( self : Optional[int] , lowerCAmelCase : List[str] ): with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(lowerCAmelCase , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCAmelCase = timeit.repeat( lowerCAmelCase , repeat=self.args.repeat , number=10 , ) return min(lowerCAmelCase ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def __lowercase ( self : Optional[Any] , lowerCAmelCase : Callable[[], None] ): logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won't log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(lowerCAmelCase ) lowerCAmelCase = meminfo.used lowerCAmelCase = Memory(lowerCAmelCase ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) lowerCAmelCase = None else: lowerCAmelCase = measure_peak_memory_cpu(lowerCAmelCase ) lowerCAmelCase = Memory(lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCAmelCase = stop_memory_tracing(lowerCAmelCase ) if memory is None: lowerCAmelCase = summary.total else: lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
529
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __A : Optional[int] = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
499
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): def a_ ( self ): UpperCamelCase : Any = tempfile.mkdtemp() UpperCamelCase : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] UpperCamelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) UpperCamelCase : List[Any] = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], """do_convert_rgb""": True, } UpperCamelCase : Tuple = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a_ ( self , **SCREAMING_SNAKE_CASE_ ): return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , **SCREAMING_SNAKE_CASE_ ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , **SCREAMING_SNAKE_CASE_ ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a_ ( self ): shutil.rmtree(self.tmpdirname ) def a_ ( self ): UpperCamelCase : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase : List[Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self ): UpperCamelCase : List[Any] = self.get_tokenizer() UpperCamelCase : Any = self.get_rust_tokenizer() UpperCamelCase : str = self.get_image_processor() UpperCamelCase : int = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase : List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase : str = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : Any = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Optional[int] = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) UpperCamelCase : str = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : str = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = self.prepare_image_inputs() UpperCamelCase : Optional[int] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) UpperCamelCase : Optional[Any] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a_ ( self ): UpperCamelCase : Tuple = self.get_image_processor() UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = """Alexandra,T-shirt的价格是15便士。""" UpperCamelCase : Union[str, Any] = processor(text=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self ): UpperCamelCase : int = self.get_image_processor() UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = """Alexandra,T-shirt的价格是15便士。""" UpperCamelCase : Tuple = self.prepare_image_inputs() UpperCamelCase : int = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def a_ ( self ): UpperCamelCase : Any = self.get_image_processor() UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : Any = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a_ ( self ): UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : Optional[int] = self.get_tokenizer() UpperCamelCase : List[Any] = ChineseCLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = """Alexandra,T-shirt的价格是15便士。""" UpperCamelCase : int = self.prepare_image_inputs() UpperCamelCase : Any = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
499
1
'''simple docstring''' import os def UpperCAmelCase_ ( ): """simple docstring""" with open(os.path.dirname(lowerCamelCase_ ) + "/grid.txt" ) as f: lowerCAmelCase__ : Optional[Any] = [] # noqa: E741 for _ in range(2_0 ): l.append([int(lowerCamelCase_ ) for x in f.readline().split()] ) lowerCAmelCase__ : Optional[int] = 0 # right for i in range(2_0 ): for j in range(1_7 ): lowerCAmelCase__ : List[str] = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowerCAmelCase__ : Union[str, Any] = temp # down for i in range(1_7 ): for j in range(2_0 ): lowerCAmelCase__ : List[Any] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowerCAmelCase__ : Tuple = temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): lowerCAmelCase__ : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowerCAmelCase__ : Optional[int] = temp # diagonal 2 for i in range(1_7 ): for j in range(3 , 2_0 ): lowerCAmelCase__ : List[Any] = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowerCAmelCase__ : Any = temp return maximum if __name__ == "__main__": print(solution())
568
'''simple docstring''' import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor snake_case = logging.getLogger(__name__) snake_case = 50 # max width of layer names snake_case = 70 # max width of quantizer names def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=lowerCamelCase_ , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=lowerCamelCase_ , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=lowerCamelCase_ , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=lowerCamelCase_ , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=lowerCamelCase_ , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=lowerCamelCase_ , type=lowerCamelCase_ , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=lowerCamelCase_ , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" if args.calibrator == "max": lowerCAmelCase__ : int = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) lowerCAmelCase__ : List[str] = "histogram" elif args.calibrator == "mse": lowerCAmelCase__ : Any = "histogram" else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) lowerCAmelCase__ : Union[str, Any] = QuantDescriptor(num_bits=args.aprec , calib_method=lowerCamelCase_ ) lowerCAmelCase__ : Any = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(lowerCamelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False ): """simple docstring""" logger.info("Configuring Model for Quantization" ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(lowerCamelCase_ , ["embeddings"] , which="weight" , _disabled=lowerCamelCase_ ) if args.quant_disable: set_quantizer_by_name(lowerCamelCase_ , [""] , _disabled=lowerCamelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(lowerCamelCase_ , args.quant_disable_keyword , _disabled=lowerCamelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(lowerCamelCase_ , [R"layer.\d+." + args.quant_disable_layer_module] , _disabled=lowerCamelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(lowerCamelCase_ , [R"layer.\d+." + args.quant_enable_layer_module] , _disabled=lowerCamelCase_ ) if args.recalibrate_weights: recalibrate_weights(lowerCamelCase_ ) if args.fuse_qkv: fuse_qkv(lowerCamelCase_ , lowerCamelCase_ ) if args.clip_gelu: clip_gelu(lowerCamelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" def fusea(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): for mod in [qq, qk, qv]: if not hasattr(lowerCamelCase_ , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return lowerCAmelCase__ : Optional[int] = qq._amax.detach().item() lowerCAmelCase__ : Optional[int] = qk._amax.detach().item() lowerCAmelCase__ : Any = qv._amax.detach().item() lowerCAmelCase__ : List[str] = max(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) qq._amax.fill_(lowerCamelCase_ ) qk._amax.fill_(lowerCamelCase_ ) qv._amax.fill_(lowerCamelCase_ ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): lowerCAmelCase__ : Any = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=lowerCamelCase_ ) lowerCAmelCase__ : Tuple = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: lowerCAmelCase__ : Optional[int] = mod.weight.shape[0] lowerCAmelCase__ : List[str] = mod._weight_quantizer._amax.detach() lowerCAmelCase__ : List[str] = torch.ones(lowerCamelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowerCAmelCase__ : List[Any] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowerCAmelCase__ : Tuple = set(range(len(mod.weight.size() ) ) ) - axis_set lowerCAmelCase__ : Tuple = pytorch_quantization.utils.reduce_amax(mod.weight , axis=lowerCamelCase_ , keepdims=lowerCamelCase_ ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) lowerCAmelCase__ : str = amax def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_=2_5 , lowerCamelCase_=1_8_0 , lowerCamelCase_=None ): """simple docstring""" if ignore is None: lowerCAmelCase__ : str = [] elif not isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ : List[Any] = [ignore] lowerCAmelCase__ : Optional[int] = 0 for name, mod in model.named_modules(): if not hasattr(lowerCamelCase_ , "weight" ): continue lowerCAmelCase__ : str = max(lowerCamelCase_ , len(lowerCamelCase_ ) ) for name, mod in model.named_modules(): lowerCAmelCase__ : Tuple = getattr(lowerCamelCase_ , "_input_quantizer" , lowerCamelCase_ ) lowerCAmelCase__ : Union[str, Any] = getattr(lowerCamelCase_ , "_weight_quantizer" , lowerCamelCase_ ) if not hasattr(lowerCamelCase_ , "weight" ): continue if type(lowerCamelCase_ ) in ignore: continue if [True for s in ignore if type(lowerCamelCase_ ) is str and s in name]: continue lowerCAmelCase__ : List[Any] = f'''Act:{input_q.extra_repr()}''' lowerCAmelCase__ : Optional[int] = f'''Wgt:{weight_q.extra_repr()}''' lowerCAmelCase__ : int = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(lowerCamelCase_ ) <= line_width: logger.info(lowerCamelCase_ ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{' ':{name_width}} {wgt_str}''' ) def UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : List[Any] = 0 for name, mod in model.named_modules(): if isinstance(lowerCamelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Tuple = getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if quantizer_mod is not None: assert hasattr(lowerCamelCase_ , lowerCamelCase_ ) setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: logger.warning(f'''{name} has no {quantizer}''' ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="both" , **lowerCamelCase_ ): """simple docstring""" lowerCAmelCase__ : Tuple = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(lowerCamelCase_ , lowerCamelCase_ , "_input_quantizer" , lowerCamelCase_ , lowerCamelCase_ ) if which in ["weight", "both"]: set_quantizer(lowerCamelCase_ , lowerCamelCase_ , "_weight_quantizer" , lowerCamelCase_ , lowerCamelCase_ ) logger.info(lowerCamelCase_ ) def UpperCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(lowerCamelCase_ , "_input_quantizer" ) or hasattr(lowerCamelCase_ , "_weight_quantizer" ): for n in names: if re.search(lowerCamelCase_ , lowerCamelCase_ ): set_quantizers(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) elif name.endswith("_quantizer" ): for n in names: if re.search(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ : Optional[Any] = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) logger.info(lowerCamelCase_ )
568
1
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( A : str , A : str , A : str ): '''simple docstring''' def get_masked_lm_array(A : str ): UpperCAmelCase = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" UpperCAmelCase = tf.train.load_variable(A , A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(A ) def get_encoder_array(A : str ): UpperCAmelCase = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" UpperCAmelCase = tf.train.load_variable(A , A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(A ) def get_encoder_layer_array(A : int , A : str ): UpperCAmelCase = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" UpperCAmelCase = tf.train.load_variable(A , A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(A ) def get_encoder_attention_layer_array(A : int , A : str , A : Any ): UpperCAmelCase = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" UpperCAmelCase = tf.train.load_variable(A , A ) UpperCAmelCase = array.reshape(A ) if "kernel" in name: UpperCAmelCase = array.transpose() return torch.from_numpy(A ) print(f"""Loading model based on config from {config_path}...""" ) UpperCAmelCase = BertConfig.from_json_file(A ) UpperCAmelCase = BertForMaskedLM(A ) # Layers for layer_index in range(0 , config.num_hidden_layers ): UpperCAmelCase = model.bert.encoder.layer[layer_index] # Self-attention UpperCAmelCase = layer.attention.self UpperCAmelCase = get_encoder_attention_layer_array( A , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( A , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( A , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( A , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( A , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( A , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output UpperCAmelCase = layer.attention.output UpperCAmelCase = get_encoder_attention_layer_array( A , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) UpperCAmelCase = get_encoder_attention_layer_array( A , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) UpperCAmelCase = get_encoder_layer_array(A , '''_attention_layer_norm/gamma''' ) UpperCAmelCase = get_encoder_layer_array(A , '''_attention_layer_norm/beta''' ) # Intermediate UpperCAmelCase = layer.intermediate UpperCAmelCase = get_encoder_layer_array(A , '''_intermediate_dense/kernel''' ) UpperCAmelCase = get_encoder_layer_array(A , '''_intermediate_dense/bias''' ) # Output UpperCAmelCase = layer.output UpperCAmelCase = get_encoder_layer_array(A , '''_output_dense/kernel''' ) UpperCAmelCase = get_encoder_layer_array(A , '''_output_dense/bias''' ) UpperCAmelCase = get_encoder_layer_array(A , '''_output_layer_norm/gamma''' ) UpperCAmelCase = get_encoder_layer_array(A , '''_output_layer_norm/beta''' ) # Embeddings UpperCAmelCase = get_encoder_array('''_position_embedding_layer/embeddings''' ) UpperCAmelCase = get_encoder_array('''_type_embedding_layer/embeddings''' ) UpperCAmelCase = get_encoder_array('''_embedding_norm_layer/gamma''' ) UpperCAmelCase = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head UpperCAmelCase = model.cls.predictions.transform UpperCAmelCase = get_masked_lm_array('''dense/kernel''' ) UpperCAmelCase = get_masked_lm_array('''dense/bias''' ) UpperCAmelCase = get_masked_lm_array('''layer_norm/gamma''' ) UpperCAmelCase = get_masked_lm_array('''layer_norm/beta''' ) UpperCAmelCase = get_masked_lm_array('''embedding_table''' ) # Pooling UpperCAmelCase = BertPooler(config=A ) UpperCAmelCase = get_encoder_array('''_pooler_layer/kernel''' ) UpperCAmelCase = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(A ) # Integration test - should load without any errors ;) UpperCAmelCase = BertForMaskedLM.from_pretrained(A ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": _lowercase : str = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) _lowercase : str = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
210
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowerCamelCase__ ( A : str = "isbn/0140328726" ): '''simple docstring''' UpperCAmelCase = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: UpperCAmelCase = f"""{olid} is not a valid Open Library olid""" raise ValueError(A ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def lowerCamelCase__ ( A : dict ): '''simple docstring''' UpperCAmelCase = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } UpperCAmelCase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCAmelCase = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] UpperCAmelCase = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(A , A ): UpperCAmelCase = ''', '''.join(A ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _lowercase : List[str] = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: _lowercase : Optional[int] = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print("""\n""".join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
210
1
'''simple docstring''' lowerCamelCase = 0 # The first color of the flag. lowerCamelCase = 1 # The second color of the flag. lowerCamelCase = 2 # The third color of the flag. lowerCamelCase = (red, white, blue) def a ( lowerCamelCase__ ): '''simple docstring''' if not sequence: return [] if len(A_ ) == 1: return list(A_ ) A_ : int = 0 A_ : List[Any] = len(A_ ) - 1 A_ : Union[str, Any] = 0 while mid <= high: if sequence[mid] == colors[0]: A_, A_ : Optional[Any] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: A_, A_ : str = sequence[high], sequence[mid] high -= 1 else: A_ : int = f'The elements inside the sequence must contains only {colors} values' raise ValueError(A_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase = input('''Enter numbers separated by commas:\n''').strip() lowerCamelCase = [int(item.strip()) for item in user_input.split(''',''')] print(F"{dutch_national_flag_sort(unsorted)}")
710
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCamelCase :Union[str, Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Tuple = 'linear' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'cosine' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'cosine_with_restarts' __SCREAMING_SNAKE_CASE : Union[str, Any] = 'polynomial' __SCREAMING_SNAKE_CASE : Optional[int] = 'constant' __SCREAMING_SNAKE_CASE : str = 'constant_with_warmup' __SCREAMING_SNAKE_CASE : Dict = 'piecewise_constant' def a ( lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' return LambdaLR(lowerCamelCase__ , lambda lowerCamelCase__ : 1 , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1.0 , lowerCamelCase__ ) ) return 1.0 return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = -1 ): '''simple docstring''' A_ : Optional[Any] = {} A_ : Optional[Any] = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: A_, A_ : Union[str, Any] = rule_str.split(""":""" ) A_ : Union[str, Any] = int(lowerCamelCase__ ) A_ : List[Any] = float(lowerCamelCase__ ) A_ : Union[str, Any] = value A_ : Optional[int] = float(rule_list[-1] ) def create_rules_function(lowerCamelCase__ , lowerCamelCase__ ): def rule_func(lowerCamelCase__ ) -> float: A_ : str = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(lowerCamelCase__ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func A_ : str = create_rules_function(lowerCamelCase__ , lowerCamelCase__ ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , last_epoch=lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=-1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 0.5 , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) A_ : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(lowerCamelCase__ ) * 2.0 * progress )) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1 , lowerCamelCase__ = -1 ): '''simple docstring''' def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) A_ : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(lowerCamelCase__ ) * progress) % 1.0) )) ) return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1E-7 , lowerCamelCase__=1.0 , lowerCamelCase__=-1 ): '''simple docstring''' A_ : Optional[Any] = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(lowerCamelCase__ ): if current_step < num_warmup_steps: return float(lowerCamelCase__ ) / float(max(1 , lowerCamelCase__ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: A_ : str = lr_init - lr_end A_ : Tuple = num_training_steps - num_warmup_steps A_ : Optional[int] = 1 - (current_step - num_warmup_steps) / decay_steps A_ : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase :List[Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = 1.0 , lowerCamelCase__ = -1 , ): '''simple docstring''' A_ : Optional[Any] = SchedulerType(lowerCamelCase__ ) A_ : Tuple = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(lowerCamelCase__ , last_epoch=lowerCamelCase__ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(lowerCamelCase__ , step_rules=lowerCamelCase__ , last_epoch=lowerCamelCase__ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , last_epoch=lowerCamelCase__ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , num_cycles=lowerCamelCase__ , last_epoch=lowerCamelCase__ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , power=lowerCamelCase__ , last_epoch=lowerCamelCase__ , ) return schedule_func( lowerCamelCase__ , num_warmup_steps=lowerCamelCase__ , num_training_steps=lowerCamelCase__ , last_epoch=lowerCamelCase__ )
686
0
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class snake_case__ : def __init__( self : Optional[int] , __a : List[str] ) -> Any: '''simple docstring''' __snake_case : Dict = str(id_ ) __snake_case : Dict = None __snake_case : Dict = None __snake_case : Optional[Any] = [] __snake_case : Union[str, Any] = {} # {vertex:distance} def __lt__( self : List[str] , __a : int ) -> Any: '''simple docstring''' return self.key < other.key def __repr__( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return self.id def A_ ( self : str , __a : str ) -> List[Any]: '''simple docstring''' self.neighbors.append(_lowerCAmelCase ) def A_ ( self : Optional[int] , __a : List[str] , __a : Any ) -> List[str]: '''simple docstring''' __snake_case : Dict = weight def a_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : Any ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : List[Any] ) -> int: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] ,UpperCamelCase__ ) graph[b - 1].add_edge(graph[a - 1] ,UpperCamelCase__ ) def a_ ( _UpperCAmelCase : list ,_UpperCAmelCase : Vertex ) -> list: __snake_case : Dict = [] for u in graph: __snake_case : int = math.inf __snake_case : Union[str, Any] = None __snake_case : Optional[int] = 0 __snake_case : Optional[int] = graph[:] while q: __snake_case : str = min(UpperCamelCase__ ) q.remove(UpperCamelCase__ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): __snake_case : List[str] = u __snake_case : Dict = u.edges[v.id] for i in range(1 ,len(UpperCamelCase__ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def a_ ( _UpperCAmelCase : list ,_UpperCAmelCase : Vertex ) -> Iterator[tuple]: for u in graph: __snake_case : Optional[int] = math.inf __snake_case : Any = None __snake_case : Optional[int] = 0 __snake_case : List[str] = list(UpperCamelCase__ ) hq.heapify(UpperCamelCase__ ) while h: __snake_case : List[Any] = hq.heappop(UpperCamelCase__ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): __snake_case : Dict = u __snake_case : Tuple = u.edges[v.id] hq.heapify(UpperCamelCase__ ) for i in range(1 ,len(UpperCamelCase__ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def a_ ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
286
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : jnp.ndarray @flax_register_to_config class a ( nn.Module ,__lowercase ,__lowercase ): SCREAMING_SNAKE_CASE__ : int = 32 SCREAMING_SNAKE_CASE__ : int = 4 SCREAMING_SNAKE_CASE__ : int = 4 SCREAMING_SNAKE_CASE__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") SCREAMING_SNAKE_CASE__ : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE__ : Tuple[int] = (320, 640, 1280, 1280) SCREAMING_SNAKE_CASE__ : int = 2 SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE__ : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE__ : int = 1280 SCREAMING_SNAKE_CASE__ : float = 0.0 SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE__ : bool = True SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : bool = False def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = (1, self.in_channels, self.sample_size, self.sample_size) __SCREAMING_SNAKE_CASE: Tuple = jnp.zeros(_lowerCAmelCase , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE: Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) __SCREAMING_SNAKE_CASE: Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = jax.random.split(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )["params"] def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.block_out_channels __SCREAMING_SNAKE_CASE: Union[str, Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __SCREAMING_SNAKE_CASE: Any = self.num_attention_heads or self.attention_head_dim # input __SCREAMING_SNAKE_CASE: str = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __SCREAMING_SNAKE_CASE: int = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __SCREAMING_SNAKE_CASE: Union[str, Any] = FlaxTimestepEmbedding(_lowerCAmelCase , dtype=self.dtype ) __SCREAMING_SNAKE_CASE: Optional[int] = self.only_cross_attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Any = (num_attention_heads,) * len(self.down_block_types ) # down __SCREAMING_SNAKE_CASE: Union[str, Any] = [] __SCREAMING_SNAKE_CASE: List[str] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __SCREAMING_SNAKE_CASE: List[str] = output_channel __SCREAMING_SNAKE_CASE: str = block_out_channels[i] __SCREAMING_SNAKE_CASE: Any = i == len(_lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": __SCREAMING_SNAKE_CASE: str = FlaxCrossAttnDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE: Tuple = FlaxDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: str = down_blocks # mid __SCREAMING_SNAKE_CASE: Union[str, Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __SCREAMING_SNAKE_CASE: Optional[int] = [] __SCREAMING_SNAKE_CASE: Tuple = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Optional[int] = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: str = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __SCREAMING_SNAKE_CASE: int = output_channel __SCREAMING_SNAKE_CASE: List[str] = reversed_block_out_channels[i] __SCREAMING_SNAKE_CASE: List[str] = reversed_block_out_channels[min(i + 1 , len(_lowerCAmelCase ) - 1 )] __SCREAMING_SNAKE_CASE: Union[str, Any] = i == len(_lowerCAmelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": __SCREAMING_SNAKE_CASE: Optional[int] = FlaxCrossAttnUpBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE: int = FlaxUpBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = output_channel __SCREAMING_SNAKE_CASE: Union[str, Any] = up_blocks # out __SCREAMING_SNAKE_CASE: Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __SCREAMING_SNAKE_CASE: Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase = True , _lowerCAmelCase = False , ): """simple docstring""" if not isinstance(_lowerCAmelCase , jnp.ndarray ): __SCREAMING_SNAKE_CASE: Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE: Optional[Any] = timesteps.astype(dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE: Union[str, Any] = jnp.expand_dims(_lowerCAmelCase , 0 ) __SCREAMING_SNAKE_CASE: Any = self.time_proj(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = self.time_embedding(_lowerCAmelCase ) # 2. pre-process __SCREAMING_SNAKE_CASE: int = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE: List[str] = self.conv_in(_lowerCAmelCase ) # 3. down __SCREAMING_SNAKE_CASE: Dict = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = down_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Tuple = down_block(_lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __SCREAMING_SNAKE_CASE: Union[str, Any] = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCAmelCase , _lowerCAmelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __SCREAMING_SNAKE_CASE: Union[str, Any] = new_down_block_res_samples # 4. mid __SCREAMING_SNAKE_CASE: Dict = self.mid_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __SCREAMING_SNAKE_CASE: Union[str, Any] = down_block_res_samples[-(self.layers_per_block + 1) :] __SCREAMING_SNAKE_CASE: Union[str, Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Any = up_block( _lowerCAmelCase , temb=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , res_hidden_states_tuple=_lowerCAmelCase , deterministic=not train , ) else: __SCREAMING_SNAKE_CASE: List[str] = up_block(_lowerCAmelCase , temb=_lowerCAmelCase , res_hidden_states_tuple=_lowerCAmelCase , deterministic=not train ) # 6. post-process __SCREAMING_SNAKE_CASE: Optional[Any] = self.conv_norm_out(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = nn.silu(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = self.conv_out(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = jnp.transpose(_lowerCAmelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCAmelCase )
202
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __UpperCamelCase : List[Any] = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 1000, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __UpperCamelCase : str = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 1000, 'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __UpperCamelCase : List[str] = { 'sample_size': 256, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __UpperCamelCase : str = { 'num_train_timesteps': 40, 'sigma_min': 0.002, 'sigma_max': 80.0, } __UpperCamelCase : Union[str, Any] = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } __UpperCamelCase : Optional[Any] = { 'num_train_timesteps': 151, 'sigma_min': 0.002, 'sigma_max': 80.0, } def snake_case_ ( __lowercase ): if isinstance(__lowercase , __lowercase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=False ): UpperCAmelCase_ : Dict = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] UpperCAmelCase_ : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] UpperCAmelCase_ : List[Any] = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] UpperCAmelCase_ : Tuple = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] UpperCAmelCase_ : Tuple = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] UpperCAmelCase_ : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] UpperCAmelCase_ : List[str] = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] UpperCAmelCase_ : Any = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] UpperCAmelCase_ : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] UpperCAmelCase_ : int = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: UpperCAmelCase_ : List[str] = checkpoint[F'''{old_prefix}.skip_connection.weight'''] UpperCAmelCase_ : int = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) UpperCAmelCase_ : List[Any] = checkpoint[F'''{old_prefix}.norm.weight'''] UpperCAmelCase_ : Tuple = checkpoint[F'''{old_prefix}.norm.bias'''] UpperCAmelCase_ : Any = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : str = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : Union[str, Any] = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : Optional[int] = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : str = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase_ : Any = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : int = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : Optional[int] = checkpoint['''time_embed.0.weight'''] UpperCAmelCase_ : Any = checkpoint['''time_embed.0.bias'''] UpperCAmelCase_ : int = checkpoint['''time_embed.2.weight'''] UpperCAmelCase_ : str = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: UpperCAmelCase_ : Any = checkpoint['''label_emb.weight'''] UpperCAmelCase_ : Optional[Any] = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase_ : List[Any] = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase_ : List[Any] = unet_config['''down_block_types'''] UpperCAmelCase_ : Tuple = unet_config['''layers_per_block'''] UpperCAmelCase_ : int = unet_config['''attention_head_dim'''] UpperCAmelCase_ : List[Any] = unet_config['''block_out_channels'''] UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Union[str, Any] = channels_list[0] for i, layer_type in enumerate(__lowercase ): UpperCAmelCase_ : Optional[int] = channels_list[i] UpperCAmelCase_ : Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__lowercase ): UpperCAmelCase_ : List[Any] = F'''down_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : Tuple = F'''input_blocks.{current_layer}.0''' UpperCAmelCase_ : int = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ : Any = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__lowercase ): UpperCAmelCase_ : Dict = F'''down_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : int = F'''input_blocks.{current_layer}.0''' UpperCAmelCase_ : Optional[int] = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ : Tuple = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) UpperCAmelCase_ : Optional[Any] = F'''down_blocks.{i}.attentions.{j}''' UpperCAmelCase_ : Optional[Any] = F'''input_blocks.{current_layer}.1''' UpperCAmelCase_ : List[Any] = convert_attention( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: UpperCAmelCase_ : Any = F'''down_blocks.{i}.downsamplers.0''' UpperCAmelCase_ : str = F'''input_blocks.{current_layer}.0''' UpperCAmelCase_ : List[str] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 UpperCAmelCase_ : str = current_channels # hardcoded the mid-block for now UpperCAmelCase_ : Optional[int] = '''mid_block.resnets.0''' UpperCAmelCase_ : List[str] = '''middle_block.0''' UpperCAmelCase_ : List[Any] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Optional[Any] = '''mid_block.attentions.0''' UpperCAmelCase_ : int = '''middle_block.1''' UpperCAmelCase_ : List[Any] = convert_attention(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Optional[Any] = '''mid_block.resnets.1''' UpperCAmelCase_ : Union[str, Any] = '''middle_block.2''' UpperCAmelCase_ : Optional[Any] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : int = 0 UpperCAmelCase_ : List[Any] = unet_config['''up_block_types'''] for i, layer_type in enumerate(__lowercase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ : Tuple = F'''up_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : List[str] = F'''output_blocks.{current_layer}.0''' UpperCAmelCase_ : Optional[int] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: UpperCAmelCase_ : Optional[Any] = F'''up_blocks.{i}.upsamplers.0''' UpperCAmelCase_ : Tuple = F'''output_blocks.{current_layer-1}.1''' UpperCAmelCase_ : Tuple = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ : Tuple = F'''up_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : Tuple = F'''output_blocks.{current_layer}.0''' UpperCAmelCase_ : Optional[Any] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) UpperCAmelCase_ : Optional[Any] = F'''up_blocks.{i}.attentions.{j}''' UpperCAmelCase_ : Union[str, Any] = F'''output_blocks.{current_layer}.1''' UpperCAmelCase_ : Union[str, Any] = convert_attention( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: UpperCAmelCase_ : List[Any] = F'''up_blocks.{i}.upsamplers.0''' UpperCAmelCase_ : Tuple = F'''output_blocks.{current_layer-1}.2''' UpperCAmelCase_ : Dict = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : str = checkpoint['''out.0.weight'''] UpperCAmelCase_ : Optional[Any] = checkpoint['''out.0.bias'''] UpperCAmelCase_ : Union[str, Any] = checkpoint['''out.2.weight'''] UpperCAmelCase_ : int = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') __UpperCamelCase : str = parser.parse_args() __UpperCamelCase : Optional[Any] = strabool(args.class_cond) __UpperCamelCase : Optional[Any] = os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: __UpperCamelCase : Dict = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCamelCase : Optional[Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __UpperCamelCase : Optional[Any] = TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: __UpperCamelCase : List[Any] = None __UpperCamelCase : Optional[Any] = con_pt_to_diffuser(args.unet_path, unet_config) __UpperCamelCase : Optional[int] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __UpperCamelCase : Optional[Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __UpperCamelCase : List[str] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCamelCase : Optional[Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') __UpperCamelCase : List[str] = CMStochasticIterativeScheduler(**scheduler_config) __UpperCamelCase : List[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
641
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu A_ : int = False class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self ): return 1_2 @property def __UpperCamelCase ( self ): return 1_2 @property def __UpperCamelCase ( self ): return 3_2 @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : List[Any] = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self ): snake_case__ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(__SCREAMING_SNAKE_CASE ) @property def __UpperCamelCase ( self ): torch.manual_seed(0 ) snake_case__ : Any = 1_2 snake_case__ : Any = 1_2 snake_case__ : Any = { """attention_bias""": True, """cross_attention_dim""": 3_2, """attention_head_dim""": height * width, """num_attention_heads""": 1, """num_vector_embeds""": self.num_embed, """num_embeds_ada_norm""": self.num_embeds_ada_norm, """norm_num_groups""": 3_2, """sample_size""": width, """activation_fn""": """geglu-approximate""", } snake_case__ : int = TransformeraDModel(**__SCREAMING_SNAKE_CASE ) return model def __UpperCamelCase ( self ): snake_case__ : Optional[int] = """cpu""" snake_case__ : int = self.dummy_vqvae snake_case__ : Union[str, Any] = self.dummy_text_encoder snake_case__ : str = self.dummy_tokenizer snake_case__ : List[Any] = self.dummy_transformer snake_case__ : Union[str, Any] = VQDiffusionScheduler(self.num_embed ) snake_case__ : Tuple = LearnedClassifierFreeSamplingEmbeddings(learnable=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = VQDiffusionPipeline( vqvae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , transformer=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , learned_classifier_free_sampling_embeddings=__SCREAMING_SNAKE_CASE , ) snake_case__ : List[str] = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = """teddy bear playing in the pool""" snake_case__ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) snake_case__ : Union[str, Any] = pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""np""" ) snake_case__ : List[Any] = output.images snake_case__ : str = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) snake_case__ : Optional[int] = pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , return_dict=__SCREAMING_SNAKE_CASE , num_inference_steps=2 )[0] snake_case__ : Optional[int] = image[0, -3:, -3:, -1] snake_case__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case__ : List[Any] = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self ): snake_case__ : int = """cpu""" snake_case__ : Optional[Any] = self.dummy_vqvae snake_case__ : Optional[int] = self.dummy_text_encoder snake_case__ : List[Any] = self.dummy_tokenizer snake_case__ : List[str] = self.dummy_transformer snake_case__ : Tuple = VQDiffusionScheduler(self.num_embed ) snake_case__ : Dict = LearnedClassifierFreeSamplingEmbeddings( learnable=__SCREAMING_SNAKE_CASE , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) snake_case__ : Union[str, Any] = VQDiffusionPipeline( vqvae=__SCREAMING_SNAKE_CASE , text_encoder=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , transformer=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , learned_classifier_free_sampling_embeddings=__SCREAMING_SNAKE_CASE , ) snake_case__ : Any = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = """teddy bear playing in the pool""" snake_case__ : Optional[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) snake_case__ : Optional[Any] = pipe([prompt] , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="""np""" ) snake_case__ : int = output.images snake_case__ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) snake_case__ : Any = pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , return_dict=__SCREAMING_SNAKE_CASE , num_inference_steps=2 )[0] snake_case__ : Optional[Any] = image[0, -3:, -3:, -1] snake_case__ : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 2_4, 2_4, 3) snake_case__ : Optional[Any] = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self ): snake_case__ : Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy""" ) snake_case__ : Dict = VQDiffusionPipeline.from_pretrained("""microsoft/vq-diffusion-ithq""" ) snake_case__ : int = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though snake_case__ : List[str] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) snake_case__ : List[str] = pipeline( """teddy bear playing in the pool""" , num_images_per_prompt=1 , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , ) snake_case__ : Any = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert np.abs(expected_image - image ).max() < 2.0
38
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def _lowercase ( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: SCREAMING_SNAKE_CASE__ = 128 elif "12-12" in model_name: SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 12 elif "14-14" in model_name: SCREAMING_SNAKE_CASE__ = 14 SCREAMING_SNAKE_CASE__ = 14 elif "16-16" in model_name: SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 16 else: raise ValueError('Model not supported' ) SCREAMING_SNAKE_CASE__ = 'huggingface/label-files' if "speech-commands" in model_name: SCREAMING_SNAKE_CASE__ = 35 SCREAMING_SNAKE_CASE__ = 'speech-commands-v2-id2label.json' else: SCREAMING_SNAKE_CASE__ = 527 SCREAMING_SNAKE_CASE__ = 'audioset-id2label.json' SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ = idalabel SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()} return config def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' if "module.v" in name: SCREAMING_SNAKE_CASE__ = name.replace('module.v' , 'audio_spectrogram_transformer' ) if "cls_token" in name: SCREAMING_SNAKE_CASE__ = name.replace('cls_token' , 'embeddings.cls_token' ) if "dist_token" in name: SCREAMING_SNAKE_CASE__ = name.replace('dist_token' , 'embeddings.distillation_token' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE__ = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) # transformer blocks if "blocks" in name: SCREAMING_SNAKE_CASE__ = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ = name.replace('mlp.fc2' , 'output.dense' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: SCREAMING_SNAKE_CASE__ = name.replace('audio_spectrogram_transformer.norm' , 'audio_spectrogram_transformer.layernorm' ) # classifier head if "module.mlp_head.0" in name: SCREAMING_SNAKE_CASE__ = name.replace('module.mlp_head.0' , 'classifier.layernorm' ) if "module.mlp_head.1" in name: SCREAMING_SNAKE_CASE__ = name.replace('module.mlp_head.1' , 'classifier.dense' ) return name def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase_ ) if "qkv" in key: SCREAMING_SNAKE_CASE__ = key.split('.' ) SCREAMING_SNAKE_CASE__ = int(key_split[3] ) SCREAMING_SNAKE_CASE__ = config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE__ = val[:dim, :] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE__ = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ = val[:dim] SCREAMING_SNAKE_CASE__ = val[dim : dim * 2] SCREAMING_SNAKE_CASE__ = val[-dim:] else: SCREAMING_SNAKE_CASE__ = val return orig_state_dict def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [ 'module.v.head.weight', 'module.v.head.bias', 'module.v.head_dist.weight', 'module.v.head_dist.bias', ] for k in ignore_keys: state_dict.pop(UpperCamelCase_ , UpperCamelCase_ ) @torch.no_grad() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_audio_spectrogram_transformer_config(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = { 'ast-finetuned-audioset-10-10-0.4593': ( 'https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.450': ( 'https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448': ( 'https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1' ), 'ast-finetuned-audioset-10-10-0.448-v2': ( 'https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1' ), 'ast-finetuned-audioset-12-12-0.447': ( 'https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1' ), 'ast-finetuned-audioset-14-14-0.443': ( 'https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1' ), 'ast-finetuned-audioset-16-16-0.442': ( 'https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1' ), 'ast-finetuned-speech-commands-v2': ( 'https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1' ), } # load original state_dict SCREAMING_SNAKE_CASE__ = model_name_to_url[model_name] SCREAMING_SNAKE_CASE__ = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location='cpu' ) # remove some keys remove_keys(UpperCamelCase_ ) # rename some keys SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase_ , UpperCamelCase_ ) # load 🤗 model SCREAMING_SNAKE_CASE__ = ASTForAudioClassification(UpperCamelCase_ ) model.eval() model.load_state_dict(UpperCamelCase_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 SCREAMING_SNAKE_CASE__ = -4.2_677_393 if 'speech-commands' not in model_name else -6.845_978 SCREAMING_SNAKE_CASE__ = 4.5_689_974 if 'speech-commands' not in model_name else 5.5_654_526 SCREAMING_SNAKE_CASE__ = 1024 if 'speech-commands' not in model_name else 128 SCREAMING_SNAKE_CASE__ = ASTFeatureExtractor(mean=UpperCamelCase_ , std=UpperCamelCase_ , max_length=UpperCamelCase_ ) if "speech-commands" in model_name: SCREAMING_SNAKE_CASE__ = load_dataset('speech_commands' , 'v0.02' , split='validation' ) SCREAMING_SNAKE_CASE__ = dataset[0]['audio']['array'] else: SCREAMING_SNAKE_CASE__ = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = torchaudio.load(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = waveform.squeeze().numpy() SCREAMING_SNAKE_CASE__ = feature_extractor(UpperCamelCase_ , sampling_rate=16000 , return_tensors='pt' ) # forward pass SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": SCREAMING_SNAKE_CASE__ = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": SCREAMING_SNAKE_CASE__ = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": SCREAMING_SNAKE_CASE__ = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": SCREAMING_SNAKE_CASE__ = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": SCREAMING_SNAKE_CASE__ = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": SCREAMING_SNAKE_CASE__ = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": SCREAMING_SNAKE_CASE__ = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": SCREAMING_SNAKE_CASE__ = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError('Unknown model name' ) if not torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1e-4 ): raise ValueError('Logits don\'t match' ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase_ ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print('Pushing model and feature extractor to the hub...' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __snake_case = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
472
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Union[str, Any] = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
def _lowerCAmelCase ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' __snake_case = set() # Replace all the whitespace in our sentence __snake_case = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_lowerCAmelCase ) == 26 def _lowerCAmelCase ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' __snake_case = [False] * 26 for char in input_str: if char.islower(): __snake_case = True elif char.isupper(): __snake_case = True return all(_lowerCAmelCase ) def _lowerCAmelCase ( _lowerCAmelCase = "The quick brown fox jumps over the lazy dog" , ) -> bool: '''simple docstring''' return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _lowerCAmelCase ( ) -> None: '''simple docstring''' from timeit import timeit __snake_case = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=_lowerCAmelCase ) ) print(timeit("is_pangram_faster()" , setup=_lowerCAmelCase ) ) print(timeit("is_pangram_fastest()" , setup=_lowerCAmelCase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
473
0
def __snake_case ( _UpperCamelCase ) -> Union[str, Any]: # noqa: E741 _a = len(lowercase_ ) _a = 0 _a = [0] * n _a = [False] * n _a = [False] * n def dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if parent == root: out_edge_count += 1 _a = True _a = at for to in l[at]: if to == parent: pass elif not visited[to]: _a = dfs(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) _a = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: _a = True # AP found via cycle if at == low[to]: _a = True else: _a = min(low[at] , lowercase_ ) return out_edge_count for i in range(lowercase_ ): if not visited[i]: _a = 0 _a = dfs(lowercase_ , lowercase_ , -1 , lowercase_ ) _a = out_edge_count > 1 for x in range(len(lowercase_ ) ): if is_art[x] is True: print(lowercase_ ) # Adjacency list of graph lowerCamelCase :Any = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
487
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE : Optional[int] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = { '''do_resize''': True, '''size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , **_lowerCamelCase :List[str] ): return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :List[str] , **_lowerCamelCase :Optional[int] ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : Tuple = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : int = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): __SCREAMING_SNAKE_CASE : str = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) __SCREAMING_SNAKE_CASE : int = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = image_processor(_lowerCamelCase , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : Tuple = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): __SCREAMING_SNAKE_CASE : Any = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = '''lower newer''' __SCREAMING_SNAKE_CASE : Optional[int] = processor(text=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self :str ): __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : int = self.get_tokenizer() __SCREAMING_SNAKE_CASE : int = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = '''lower newer''' __SCREAMING_SNAKE_CASE : int = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : int = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(_lowerCamelCase ): processor() def SCREAMING_SNAKE_CASE_ ( self :Any ): __SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : Tuple = processor.batch_decode(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = '''lower newer''' __SCREAMING_SNAKE_CASE : Dict = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : str = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
674
0
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Optional[Any] = {'vocab_file': 'vocab.txt'} __lowerCAmelCase : Optional[Any] = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } __lowerCAmelCase : List[str] = { 'openbmb/cpm-ant-10b': 1024, } def a__ ( A_ ): '''simple docstring''' __magic_name__ = collections.OrderedDict() with open(A_, """r""", encoding="""utf-8""" ) as reader: __magic_name__ = reader.readlines() for index, token in enumerate(A_ ): __magic_name__ = token.rstrip("""\n""" ) __magic_name__ = index return vocab class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : str="<unk>" , UpperCamelCase__ : int=200 ) -> Tuple: """simple docstring""" __magic_name__ = vocab __magic_name__ = unk_token __magic_name__ = max_input_chars_per_word def _lowercase ( self : str , UpperCamelCase__ : Optional[int] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = list(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.max_input_chars_per_word: return [self.unk_token] __magic_name__ = 0 __magic_name__ = [] while start < len(UpperCamelCase__ ): __magic_name__ = len(UpperCamelCase__ ) __magic_name__ = None while start < end: __magic_name__ = """""".join(chars[start:end] ) if substr in self.vocab: __magic_name__ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(UpperCamelCase__ ) __magic_name__ = end return sub_tokens class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ["""input_ids""", """attention_mask"""] a__ = False def __init__( self : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any]="<d>" , UpperCamelCase__ : int="</d>" , UpperCamelCase__ : int="<s>" , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : List[str]="<pad>" , UpperCamelCase__ : Any="<unk>" , UpperCamelCase__ : Optional[int]="</n>" , UpperCamelCase__ : Union[str, Any]="</_>" , UpperCamelCase__ : Optional[Any]="left" , **UpperCamelCase__ : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=UpperCamelCase__ , eod_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , line_token=UpperCamelCase__ , space_token=UpperCamelCase__ , padding_side=UpperCamelCase__ , **UpperCamelCase__ , ) __magic_name__ = bod_token __magic_name__ = eod_token __magic_name__ = load_vocab(UpperCamelCase__ ) __magic_name__ = self.encoder[space_token] __magic_name__ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __magic_name__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase__ : x[1] ) ) __magic_name__ = {v: k for k, v in self.encoder.items()} __magic_name__ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _lowercase ( self : List[Any] ) -> int: """simple docstring""" return self.encoder[self.bod_token] @property def _lowercase ( self : Tuple ) -> int: """simple docstring""" return self.encoder[self.eod_token] @property def _lowercase ( self : Dict ) -> int: """simple docstring""" return self.encoder["\n"] @property def _lowercase ( self : Any ) -> int: """simple docstring""" return len(self.encoder ) def _lowercase ( self : Tuple ) -> Tuple: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self : Any , UpperCamelCase__ : Any ) -> List[str]: """simple docstring""" __magic_name__ = [] for x in jieba.cut(UpperCamelCase__ , cut_all=UpperCamelCase__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(UpperCamelCase__ ) ) return output_tokens def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : List[Any] ) -> List[Any]: """simple docstring""" __magic_name__ = [i for i in token_ids if i >= 0] __magic_name__ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(UpperCamelCase__ , **UpperCamelCase__ ) def _lowercase ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return token in self.encoder def _lowercase ( self : List[Any] , UpperCamelCase__ : List[str] ) -> str: """simple docstring""" return "".join(UpperCamelCase__ ) def _lowercase ( self : Dict , UpperCamelCase__ : Any ) -> Dict: """simple docstring""" return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def _lowercase ( self : int , UpperCamelCase__ : Optional[Any] ) -> Dict: """simple docstring""" return self.decoder.get(UpperCamelCase__ , self.unk_token ) def _lowercase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if os.path.isdir(UpperCamelCase__ ): __magic_name__ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: __magic_name__ = (filename_prefix + """-""" if filename_prefix else """""") + save_directory __magic_name__ = 0 if " " in self.encoder: __magic_name__ = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: __magic_name__ = self.encoder["""\n"""] del self.encoder["\n"] __magic_name__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda UpperCamelCase__ : x[1] ) ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __magic_name__ = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : List[int] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _lowercase ( self : List[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) return [1] + ([0] * len(UpperCamelCase__ ))
76
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = """cvt""" def __init__( self : Dict , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : List[Any]=[7, 3, 3] , UpperCamelCase__ : Any=[4, 2, 2] , UpperCamelCase__ : Optional[Any]=[2, 1, 1] , UpperCamelCase__ : Union[str, Any]=[64, 192, 384] , UpperCamelCase__ : Dict=[1, 3, 6] , UpperCamelCase__ : Any=[1, 2, 10] , UpperCamelCase__ : List[str]=[4.0, 4.0, 4.0] , UpperCamelCase__ : Dict=[0.0, 0.0, 0.0] , UpperCamelCase__ : Tuple=[0.0, 0.0, 0.0] , UpperCamelCase__ : Optional[Any]=[0.0, 0.0, 0.1] , UpperCamelCase__ : str=[True, True, True] , UpperCamelCase__ : Optional[Any]=[False, False, True] , UpperCamelCase__ : Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , UpperCamelCase__ : List[Any]=[3, 3, 3] , UpperCamelCase__ : Any=[1, 1, 1] , UpperCamelCase__ : Optional[int]=[2, 2, 2] , UpperCamelCase__ : Any=[1, 1, 1] , UpperCamelCase__ : List[str]=[1, 1, 1] , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : int=1E-12 , **UpperCamelCase__ : int , ) -> Dict: """simple docstring""" super().__init__(**UpperCamelCase__ ) __magic_name__ = num_channels __magic_name__ = patch_sizes __magic_name__ = patch_stride __magic_name__ = patch_padding __magic_name__ = embed_dim __magic_name__ = num_heads __magic_name__ = depth __magic_name__ = mlp_ratio __magic_name__ = attention_drop_rate __magic_name__ = drop_rate __magic_name__ = drop_path_rate __magic_name__ = qkv_bias __magic_name__ = cls_token __magic_name__ = qkv_projection_method __magic_name__ = kernel_qkv __magic_name__ = padding_kv __magic_name__ = stride_kv __magic_name__ = padding_q __magic_name__ = stride_q __magic_name__ = initializer_range __magic_name__ = layer_norm_eps
76
1
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[Any] ) -> int: if isinstance(snake_case__ , collections.abc.Iterable ): return x return (x, x) @require_flax class A_ : """simple docstring""" def __UpperCAmelCase ( self : str ,__A : List[str] ,__A : Dict ) -> Union[str, Any]: pass def __UpperCAmelCase ( self : Any ) -> int: pass def __UpperCAmelCase ( self : Any ) -> Tuple: pass def __UpperCAmelCase ( self : Union[str, Any] ,__A : np.ndarray ,__A : np.ndarray ,__A : float ) -> Optional[Any]: _lowercase = np.abs((a - b) ).max() self.assertLessEqual(__A ,__A ,F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def __UpperCAmelCase ( self : Optional[Any] ,__A : Optional[int] ,__A : int ,__A : str ,__A : Optional[Any] ,__A : int=None ,**__A : int ) -> Any: _lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(__A ,__A ) _lowercase = FlaxVisionTextDualEncoderModel(__A ) _lowercase = model(input_ids=__A ,pixel_values=__A ,attention_mask=__A ) self.assertEqual(output['text_embeds'].shape ,(input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape ,(pixel_values.shape[0], config.projection_dim) ) def __UpperCAmelCase ( self : str ,__A : List[str] ,__A : Optional[Any] ,__A : Union[str, Any] ,__A : int ,__A : List[str]=None ,**__A : Tuple ) -> Dict: _lowercase , _lowercase = self.get_vision_text_model(__A ,__A ) _lowercase = {'vision_model': vision_model, 'text_model': text_model} _lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__A ) _lowercase = model(input_ids=__A ,pixel_values=__A ,attention_mask=__A ) self.assertEqual(output['text_embeds'].shape ,(input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape ,(pixel_values.shape[0], model.config.projection_dim) ) def __UpperCAmelCase ( self : List[str] ,__A : Optional[int] ,__A : List[str] ,__A : Optional[int] ,__A : Union[str, Any] ,__A : Union[str, Any]=None ,**__A : Optional[Any] ) -> List[Any]: _lowercase , _lowercase = self.get_vision_text_model(__A ,__A ) _lowercase = {'vision_model': vision_model, 'text_model': text_model} _lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__A ) _lowercase = model(input_ids=__A ,pixel_values=__A ,attention_mask=__A ) _lowercase = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) _lowercase = FlaxVisionTextDualEncoderModel.from_pretrained(__A ) _lowercase = model(input_ids=__A ,pixel_values=__A ,attention_mask=__A ) _lowercase = after_output[0] _lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A ,1e-3 ) def __UpperCAmelCase ( self : List[str] ,__A : Any ,__A : Union[str, Any] ,__A : Tuple ,__A : Tuple ,__A : Any=None ,**__A : Union[str, Any] ) -> Optional[Any]: _lowercase , _lowercase = self.get_vision_text_model(__A ,__A ) _lowercase = {'vision_model': vision_model, 'text_model': text_model} _lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__A ) _lowercase = model( input_ids=__A ,pixel_values=__A ,attention_mask=__A ,output_attentions=__A ) _lowercase = output.vision_model_output.attentions self.assertEqual(len(__A ) ,vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase = to_atuple(vision_model.config.image_size ) _lowercase = to_atuple(vision_model.config.patch_size ) _lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) ) _lowercase = output.text_model_output.attentions self.assertEqual(len(__A ) ,text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,) def __UpperCAmelCase ( self : Any ,__A : Optional[int] ,__A : Union[str, Any] ,__A : Union[str, Any] ) -> List[str]: pt_model.to(__A ) pt_model.eval() # prepare inputs _lowercase = inputs_dict _lowercase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _lowercase = pt_model(**__A ).to_tuple() _lowercase = fx_model(**__A ).to_tuple() self.assertEqual(len(__A ) ,len(__A ) ,'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ): self.assert_almost_equals(__A ,pt_output.numpy() ,4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__A ) _lowercase = FlaxVisionTextDualEncoderModel.from_pretrained(__A ,from_pt=__A ) _lowercase = fx_model_loaded(**__A ).to_tuple() self.assertEqual(len(__A ) ,len(__A ) ,'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ): self.assert_almost_equals(__A ,pt_output.numpy() ,4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__A ) _lowercase = VisionTextDualEncoderModel.from_pretrained(__A ,from_flax=__A ) pt_model_loaded.to(__A ) pt_model_loaded.eval() with torch.no_grad(): _lowercase = pt_model_loaded(**__A ).to_tuple() self.assertEqual(len(__A ) ,len(__A ) ,'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ): self.assert_almost_equals(__A ,pt_output_loaded.numpy() ,4e-2 ) def __UpperCAmelCase ( self : Optional[int] ,__A : Optional[int] ,__A : Tuple ,__A : int ) -> Optional[int]: _lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(__A ,__A ) _lowercase = VisionTextDualEncoderModel(__A ) _lowercase = FlaxVisionTextDualEncoderModel(__A ) _lowercase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,__A ) _lowercase = fx_state self.check_pt_flax_equivalence(__A ,__A ,__A ) def __UpperCAmelCase ( self : Any ,__A : int ,__A : Tuple ,__A : Tuple ) -> Optional[Any]: _lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(__A ,__A ) _lowercase = VisionTextDualEncoderModel(__A ) _lowercase = FlaxVisionTextDualEncoderModel(__A ) _lowercase = load_flax_weights_in_pytorch_model(__A ,fx_model.params ) self.check_pt_flax_equivalence(__A ,__A ,__A ) def __UpperCAmelCase ( self : str ) -> Union[str, Any]: _lowercase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__A ) def __UpperCAmelCase ( self : int ) -> Optional[Any]: _lowercase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__A ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: _lowercase = self.prepare_config_and_inputs() self.check_save_load(**__A ) def __UpperCAmelCase ( self : List[str] ) -> Any: _lowercase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__A ) @is_pt_flax_cross_test def __UpperCAmelCase ( self : Tuple ) -> Any: _lowercase = self.prepare_config_and_inputs() _lowercase = config_inputs_dict.pop('vision_config' ) _lowercase = config_inputs_dict.pop('text_config' ) _lowercase = config_inputs_dict self.check_equivalence_pt_to_flax(__A ,__A ,__A ) self.check_equivalence_flax_to_pt(__A ,__A ,__A ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: _lowercase , _lowercase = self.get_pretrained_model_and_inputs() _lowercase = model_a(**__A ) _lowercase = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__A ) _lowercase = FlaxVisionTextDualEncoderModel.from_pretrained(__A ) _lowercase = model_a(**__A ) _lowercase = after_outputs[0] _lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A ,1e-5 ) @require_flax class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: _lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' ,'hf-internal-testing/tiny-bert' ,vision_from_pt=__A ,text_from_pt=__A ,) _lowercase = 13 _lowercase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _lowercase = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) _lowercase = random_attention_mask([batch_size, 4] ) _lowercase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self : Optional[Any] ,__A : Tuple ,__A : Tuple ) -> Optional[int]: _lowercase = FlaxViTModel(__A ) _lowercase = FlaxBertModel(__A ) return vision_model, text_model def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: _lowercase = FlaxViTModelTester(self ) _lowercase = FlaxBertModelTester(self ) _lowercase = vit_model_tester.prepare_config_and_inputs() _lowercase = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : List[Any] ) -> Tuple: _lowercase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-clip' ,'hf-internal-testing/tiny-bert' ,vision_from_pt=__A ,text_from_pt=__A ,) _lowercase = 13 _lowercase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _lowercase = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size ) _lowercase = random_attention_mask([batch_size, 4] ) _lowercase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __UpperCAmelCase ( self : Optional[Any] ,__A : Dict ,__A : Optional[int] ) -> str: _lowercase = FlaxCLIPVisionModel(__A ) _lowercase = FlaxBertModel(__A ) return vision_model, text_model def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: _lowercase = FlaxCLIPVisionModelTester(self ) _lowercase = FlaxBertModelTester(self ) _lowercase = clip_model_tester.prepare_config_and_inputs() _lowercase = bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase = vision_config_and_inputs _lowercase , _lowercase , _lowercase , _lowercase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class A_ ( unittest.TestCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Dict ) -> Any: _lowercase = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' ,logit_scale_init_value=1.0 ) _lowercase = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) _lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowercase = processor( text=['una foto di un gatto', 'una foto di un cane'] ,images=__A ,padding=__A ,return_tensors='np' ) _lowercase = model(**__A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,) _lowercase = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image ,__A ,atol=1e-3 ) )
67
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = ['''image_processor''', '''tokenizer'''] A__ = '''CLIPImageProcessor''' A__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Any , __a : str=None , __a : List[Any]=None , **__a : List[str] ) -> Optional[Any]: '''simple docstring''' __snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __a , ) __snake_case : List[str] = kwargs.pop('feature_extractor' ) __snake_case : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__a , __a ) def __call__( self : List[Any] , __a : Optional[int]=None , __a : Optional[int]=None , __a : Union[str, Any]=None , **__a : Union[str, Any] ) -> List[Any]: '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __snake_case : Any = self.tokenizer(__a , return_tensors=__a , **__a ) if images is not None: __snake_case : str = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: __snake_case : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def A_ ( self : List[Any] , *__a : Dict , **__a : Dict ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a ) def A_ ( self : str , *__a : Tuple , **__a : List[str] ) -> int: '''simple docstring''' return self.tokenizer.decode(*__a , **__a ) @property def A_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __snake_case : Tuple = self.tokenizer.model_input_names __snake_case : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A_ ( self : Any ) -> Any: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __a , ) return self.image_processor_class @property def A_ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __a , ) return self.image_processor
286
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Optional[int] ={"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict =[ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys UpperCAmelCase : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : List[str] =get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase : int =25_0004 UpperCAmelCase : Dict =25_0020 @require_sentencepiece @require_tokenizers class _lowercase (a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = MBartTokenizer lowercase__ = MBartTokenizerFast lowercase__ = True lowercase__ = True def _lowerCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ = MBartTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = MBartTokenizer(snake_case__ , keep_accents=snake_case__ ) UpperCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase_ = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase_ = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _lowerCamelCase ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) UpperCamelCase_ = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = tokenizer_r.save_pretrained(snake_case__ ) UpperCamelCase_ = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCamelCase_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way UpperCamelCase_ = tokenizer_r.from_pretrained(snake_case__ ) UpperCamelCase_ = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) UpperCamelCase_ = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way UpperCamelCase_ = tokenizer_r.from_pretrained(snake_case__ ) UpperCamelCase_ = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) UpperCamelCase_ = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase_ = tokenizer_r.from_pretrained(snake_case__ ) UpperCamelCase_ = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase (unittest.TestCase ): '''simple docstring''' lowercase__ = """facebook/mbart-large-en-ro""" lowercase__ = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowercase__ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowercase__ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def _lowerCamelCase ( cls ): '''simple docstring''' UpperCamelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) UpperCamelCase_ = 1 return cls def _lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 25_0020 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) UpperCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] UpperCamelCase_ = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , snake_case__ ) UpperCamelCase_ = 10 UpperCamelCase_ = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , snake_case__ ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_0026, 25_0001] ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = MBartTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors="pt" ) UpperCamelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCamelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors="pt" ) UpperCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors="pt" ) UpperCamelCase_ = targets["input_ids"] UpperCamelCase_ = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(snake_case__ ) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 25_0004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_0001, } , )
504
0
# Function to print upper half of diamond (pyramid) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Tuple ) -> Optional[Any]: """simple docstring""" for i in range(0 ,lowerCAmelCase_ ): for _ in range(0 ,n - i - 1 ): # printing spaces print(' ' ,end='' ) for _ in range(0 ,i + 1 ): # printing stars print('* ' ,end='' ) print() def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : List[str] ) -> str: """simple docstring""" for i in range(lowerCAmelCase_ ,0 ,-1 ): for _ in range(lowerCAmelCase_ ,0 ,-1 ): # printing stars print('* ' ,end='' ) print() for _ in range(n - i + 1 ,0 ,-1 ): # printing spaces print(' ' ,end='' ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase_ ) # upper half reverse_floyd(lowerCAmelCase_ ) # lower half if __name__ == "__main__": print(r'| /\ | |- | |- |--| |\ /| |-') print(r'|/ \| |- |_ |_ |__| | \/ | |_') __SCREAMING_SNAKE_CASE = 1 while K: __SCREAMING_SNAKE_CASE = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) __SCREAMING_SNAKE_CASE = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
220
from __future__ import annotations class lowerCAmelCase_ : '''simple docstring''' def __init__( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =order # a_{0} ... a_{k} SCREAMING_SNAKE_CASE_ : List[str] =[1.0] + [0.0] * order # b_{0} ... b_{k} SCREAMING_SNAKE_CASE_ : List[str] =[1.0] + [0.0] * order # x[n-1] ... x[n-k] SCREAMING_SNAKE_CASE_ : List[Any] =[0.0] * self.order # y[n-1] ... y[n-k] SCREAMING_SNAKE_CASE_ : Any =[0.0] * self.order def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): if len(__UpperCAmelCase ) < self.order: SCREAMING_SNAKE_CASE_ : str =[1.0, *a_coeffs] if len(__UpperCAmelCase ) != self.order + 1: SCREAMING_SNAKE_CASE_ : List[Any] =( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(__UpperCAmelCase )}""" ) raise ValueError(__UpperCAmelCase ) if len(__UpperCAmelCase ) != self.order + 1: SCREAMING_SNAKE_CASE_ : List[str] =( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(__UpperCAmelCase )}""" ) raise ValueError(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =a_coeffs SCREAMING_SNAKE_CASE_ : int =b_coeffs def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : str =0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =(result + self.b_coeffs[0] * sample) / self.a_coeffs[0] SCREAMING_SNAKE_CASE_ : Tuple =self.input_history[:-1] SCREAMING_SNAKE_CASE_ : List[Any] =self.output_history[:-1] SCREAMING_SNAKE_CASE_ : Any =sample SCREAMING_SNAKE_CASE_ : Dict =result return result
220
1
def UpperCamelCase_ ( a_ , a_ ) ->int: A =1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): A =n - k # Calculate C(n,k) for i in range(a_ ): result *= n - i result //= i + 1 return result def UpperCamelCase_ ( a_ ) ->int: return binomial_coefficient(2 * node_count , a_ ) // (node_count + 1) def UpperCamelCase_ ( a_ ) ->int: if n < 0: raise ValueError("factorial() not defined for negative values" ) A =1 for i in range(1 , n + 1 ): result *= i return result def UpperCamelCase_ ( a_ ) ->int: return catalan_number(a_ ) * factorial(a_ ) if __name__ == "__main__": __a = int(input("""Enter the number of nodes: """).strip() or 0) if node_count <= 0: raise ValueError("""We need some nodes to work with.""") print( F'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' F'''binary trees and {catalan_number(node_count)} binary search trees.''' )
689
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } __a = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } __a = { """ctrl""": 2_5_6, } __a = { """Pregnancy""": 1_6_8_6_2_9, """Christianity""": 7_6_7_5, """Explain""": 1_0_6_4_2_3, """Fitness""": 6_3_4_4_0, """Saving""": 6_3_1_6_3, """Ask""": 2_7_1_7_1, """Ass""": 9_5_9_8_5, """Joke""": 1_6_3_5_0_9, """Questions""": 4_5_6_2_2, """Thoughts""": 4_9_6_0_5, """Retail""": 5_2_3_4_2, """Feminism""": 1_6_4_3_3_8, """Writing""": 1_1_9_9_2, """Atheism""": 1_9_2_2_6_3, """Netflix""": 4_8_6_1_6, """Computing""": 3_9_6_3_9, """Opinion""": 4_3_2_1_3, """Alone""": 4_4_9_6_7, """Funny""": 5_8_9_1_7, """Gaming""": 4_0_3_5_8, """Human""": 4_0_8_8, """India""": 1_3_3_1, """Joker""": 7_7_1_3_8, """Diet""": 3_6_2_0_6, """Legal""": 1_1_8_5_9, """Norman""": 4_9_3_9, """Tip""": 7_2_6_8_9, """Weight""": 5_2_3_4_3, """Movies""": 4_6_2_7_3, """Running""": 2_3_4_2_5, """Science""": 2_0_9_0, """Horror""": 3_7_7_9_3, """Confession""": 6_0_5_7_2, """Finance""": 1_2_2_5_0, """Politics""": 1_6_3_6_0, """Scary""": 1_9_1_9_8_5, """Support""": 1_2_6_5_4, """Technologies""": 3_2_5_1_6, """Teenage""": 6_6_1_6_0, """Event""": 3_2_7_6_9, """Learned""": 6_7_4_6_0, """Notion""": 1_8_2_7_7_0, """Wikipedia""": 3_7_5_8_3, """Books""": 6_6_6_5, """Extract""": 7_6_0_5_0, """Confessions""": 1_0_2_7_0_1, """Conspiracy""": 7_5_9_3_2, """Links""": 6_3_6_7_4, """Narcissus""": 1_5_0_4_2_5, """Relationship""": 5_4_7_6_6, """Relationships""": 1_3_4_7_9_6, """Reviews""": 4_1_6_7_1, """News""": 4_2_5_6, """Translation""": 2_6_8_2_0, """multilingual""": 1_2_8_4_0_6, } def UpperCamelCase_ ( a_ ) ->List[str]: A =set() A =word[0] for char in word[1:]: pairs.add((prev_char, char) ) A =char A =set(a_ ) return pairs class UpperCamelCase__( lowerCAmelCase__ ): """simple docstring""" _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = CONTROL_CODES def __init__( self : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] , snake_case__ : Optional[int]="<unk>" , **snake_case__ : List[str] ): """simple docstring""" super().__init__(unk_token=snake_case__ , **snake_case__ ) with open(snake_case__ , encoding="utf-8" ) as vocab_handle: A =json.load(snake_case__ ) A ={v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: A =merges_handle.read().split("\n" )[1:-1] A =[tuple(merge.split() ) for merge in merges] A =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) A ={} @property def _a ( self : str ): """simple docstring""" return len(self.encoder ) def _a ( self : List[Any] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _a ( self : int , snake_case__ : Any ): """simple docstring""" if token in self.cache: return self.cache[token] A =tuple(snake_case__ ) A =tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) A =get_pairs(snake_case__ ) if not pairs: return token while True: A =min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A , A =bigram A =[] A =0 while i < len(snake_case__ ): try: A =word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A =j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A =tuple(snake_case__ ) A =new_word if len(snake_case__ ) == 1: break else: A =get_pairs(snake_case__ ) A ="@@ ".join(snake_case__ ) A =word[:-4] A =word return word def _a ( self : List[str] , snake_case__ : int ): """simple docstring""" A =[] A =re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def _a ( self : List[str] , snake_case__ : Optional[int] ): """simple docstring""" return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def _a ( self : Union[str, Any] , snake_case__ : str ): """simple docstring""" return self.decoder.get(snake_case__ , self.unk_token ) def _a ( self : Optional[int] , snake_case__ : Any ): """simple docstring""" A =" ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def _a ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(snake_case__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + "\n" ) A =0 with open(snake_case__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) A =token_index writer.write(" ".join(snake_case__ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
689
1
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig A_ : List[str] ={ """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } A_ : List[str] =logging.get_logger(__name__) class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : str = "maskformer" SCREAMING_SNAKE_CASE__ : Optional[int] = {"hidden_size": "mask_feature_size"} SCREAMING_SNAKE_CASE__ : Any = ["resnet", "swin"] SCREAMING_SNAKE_CASE__ : int = ["detr"] def __init__( self , a__ = 2_56 , a__ = 2_56 , a__ = 0.1 , a__ = False , a__ = None , a__ = None , a__ = 0.02 , a__ = 1.0 , a__ = 1.0 , a__ = 1.0 , a__ = 20.0 , a__ = None , **a__ , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _lowerCamelCase = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(a__ , a__ ): _lowerCamelCase = backbone_config.pop('model_type' ) _lowerCamelCase = CONFIG_MAPPING[backbone_model_type] _lowerCamelCase = config_class.from_dict(a__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ' F'Supported model types: {",".join(self.backbones_supported )}' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _lowerCamelCase = DetrConfig() else: # verify that the decoder is supported _lowerCamelCase = ( decoder_config.pop('model_type' ) if isinstance(a__ , a__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F'Transformer Decoder {decoder_type} not supported, please use one of' F' {",".join(self.decoders_supported )}' ) if isinstance(a__ , a__ ): _lowerCamelCase = CONFIG_MAPPING[decoder_type] _lowerCamelCase = config_class.from_dict(a__ ) _lowerCamelCase = backbone_config _lowerCamelCase = decoder_config # main feature dimension for the model _lowerCamelCase = fpn_feature_size _lowerCamelCase = mask_feature_size # initializer _lowerCamelCase = init_std _lowerCamelCase = init_xavier_std # Hungarian matcher && loss _lowerCamelCase = cross_entropy_weight _lowerCamelCase = dice_weight _lowerCamelCase = mask_weight _lowerCamelCase = use_auxiliary_loss _lowerCamelCase = no_object_weight _lowerCamelCase = output_auxiliary_logits _lowerCamelCase = self.decoder_config.encoder_attention_heads _lowerCamelCase = self.decoder_config.num_hidden_layers super().__init__(**a__ ) @classmethod def snake_case_ ( cls , a__ , a__ , **a__ ): return cls( backbone_config=a__ , decoder_config=a__ , **a__ , ) def snake_case_ ( self ): _lowerCamelCase = copy.deepcopy(self.__dict__ ) _lowerCamelCase = self.backbone_config.to_dict() _lowerCamelCase = self.decoder_config.to_dict() _lowerCamelCase = self.__class__.model_type return output
650
"""simple docstring""" import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() A_ : int =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( snake_case : Optional[int] , snake_case : Tuple , snake_case : Union[str, Any] )-> Optional[Any]: _lowerCamelCase = WavaVecaForSequenceClassification.from_pretrained(snake_case , config=snake_case ) _lowerCamelCase = downstream_dict['projector.weight'] _lowerCamelCase = downstream_dict['projector.bias'] _lowerCamelCase = downstream_dict['model.post_net.linear.weight'] _lowerCamelCase = downstream_dict['model.post_net.linear.bias'] return model def SCREAMING_SNAKE_CASE_ ( snake_case : Union[str, Any] , snake_case : Dict , snake_case : Optional[int] )-> List[str]: _lowerCamelCase = WavaVecaForAudioFrameClassification.from_pretrained(snake_case , config=snake_case ) _lowerCamelCase = downstream_dict['model.linear.weight'] _lowerCamelCase = downstream_dict['model.linear.bias'] return model def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : List[str] , snake_case : Any )-> Tuple: _lowerCamelCase = WavaVecaForXVector.from_pretrained(snake_case , config=snake_case ) _lowerCamelCase = downstream_dict['connector.weight'] _lowerCamelCase = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _lowerCamelCase = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] _lowerCamelCase = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] _lowerCamelCase = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] _lowerCamelCase = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] _lowerCamelCase = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] _lowerCamelCase = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] _lowerCamelCase = downstream_dict['objective.W'] return model @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( snake_case : List[str] , snake_case : Optional[Any] , snake_case : int , snake_case : Dict )-> str: _lowerCamelCase = torch.load(snake_case , map_location='cpu' ) _lowerCamelCase = checkpoint['Downstream'] _lowerCamelCase = WavaVecaConfig.from_pretrained(snake_case ) _lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained( snake_case , return_attention_mask=snake_case , do_normalize=snake_case ) _lowerCamelCase = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): _lowerCamelCase = convert_classification(snake_case , snake_case , snake_case ) elif arch.endswith('ForAudioFrameClassification' ): _lowerCamelCase = convert_diarization(snake_case , snake_case , snake_case ) elif arch.endswith('ForXVector' ): _lowerCamelCase = convert_xvector(snake_case , snake_case , snake_case ) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: _lowerCamelCase = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(snake_case ) hf_model.save_pretrained(snake_case ) if __name__ == "__main__": A_ : Optional[int] =argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") A_ : List[Any] =parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
650
1
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case_ ( lowerCAmelCase ): def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , 'tf_padding' ) ) self.parent.assertTrue(hasattr(__lowerCAmelCase , 'depth_multiplier' ) ) class snake_case_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=3 , __lowerCAmelCase=32 , __lowerCAmelCase=0.25 , __lowerCAmelCase=8 , __lowerCAmelCase=8 , __lowerCAmelCase=6 , __lowerCAmelCase=32 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase="relu6" , __lowerCAmelCase=1_280 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.02 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=10 , __lowerCAmelCase=None , ): SCREAMING_SNAKE_CASE_ : Any = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Any = num_channels SCREAMING_SNAKE_CASE_ : int = image_size SCREAMING_SNAKE_CASE_ : Any = depth_multiplier SCREAMING_SNAKE_CASE_ : str = depth_divisible_by SCREAMING_SNAKE_CASE_ : Dict = min_depth SCREAMING_SNAKE_CASE_ : int = expand_ratio SCREAMING_SNAKE_CASE_ : Optional[int] = tf_padding SCREAMING_SNAKE_CASE_ : Dict = output_stride SCREAMING_SNAKE_CASE_ : Optional[Any] = first_layer_is_expansion SCREAMING_SNAKE_CASE_ : int = finegrained_output SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) SCREAMING_SNAKE_CASE_ : Tuple = classifier_dropout_prob SCREAMING_SNAKE_CASE_ : str = use_labels SCREAMING_SNAKE_CASE_ : List[Any] = is_training SCREAMING_SNAKE_CASE_ : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE_ : int = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = scope def __A ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self ): return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = MobileNetVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(__lowerCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Any = self.num_labels SCREAMING_SNAKE_CASE_ : int = MobileNetVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ : Optional[int] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Any = MobileNetVaForSemanticSegmentation(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() SCREAMING_SNAKE_CASE_ : int = model(__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE_ : int = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ : List[Any] = config_and_inputs SCREAMING_SNAKE_CASE_ : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __lowerCamelCase : Any = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase : Dict = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase : str = False __lowerCamelCase : Tuple = False __lowerCamelCase : str = False __lowerCamelCase : Union[str, Any] = False def __A ( self ): SCREAMING_SNAKE_CASE_ : Dict = MobileNetVaModelTester(self ) SCREAMING_SNAKE_CASE_ : Any = MobileNetVaConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase ) def __A ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileNetV2 does not use inputs_embeds' ) def __A ( self ): pass @unittest.skip(reason='MobileNetV2 does not support input and output embeddings' ) def __A ( self ): pass @unittest.skip(reason='MobileNetV2 does not output attentions' ) def __A ( self ): pass def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Any = model_class(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def __A ( self ): def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Dict = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[Any] = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[str] = outputs.hidden_states SCREAMING_SNAKE_CASE_ : str = 16 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Tuple = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ : List[Any] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCAmelCase ) @slow def __A ( self ): for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Dict = MobileNetVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): @cached_property def __A ( self ): return ( MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None ) @slow def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = self.default_image_processor SCREAMING_SNAKE_CASE_ : Tuple = prepare_img() SCREAMING_SNAKE_CASE_ : str = image_processor(images=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[str] = model(**__lowerCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE_ : str = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([0.24_45, -1.19_93, 0.19_05] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def __A ( self ): SCREAMING_SNAKE_CASE_ : Tuple = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) SCREAMING_SNAKE_CASE_ : Tuple = model.to(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' ) SCREAMING_SNAKE_CASE_ : int = prepare_img() SCREAMING_SNAKE_CASE_ : str = image_processor(images=__lowerCAmelCase , return_tensors='pt' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = model(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = outputs.logits # verify the logits SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = torch.tensor( [ [[17.57_90, 17.75_81, 18.33_55], [18.32_57, 18.42_30, 18.89_73], [18.61_69, 18.86_50, 19.21_87]], [[-2.15_95, -2.09_77, -2.37_41], [-2.42_26, -2.30_28, -2.68_35], [-2.78_19, -2.59_91, -2.77_06]], [[4.20_58, 4.83_17, 4.76_38], [4.41_36, 5.03_61, 4.93_83], [4.50_28, 4.96_44, 4.87_34]], ] , device=__lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __lowerCAmelCase , atol=1e-4 ) )
718
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): SCREAMING_SNAKE_CASE_ : str = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): SCREAMING_SNAKE_CASE_ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: SCREAMING_SNAKE_CASE_ : Optional[int] = subset[i - 1][j] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE_ : int = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
311
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ = { "configuration_clipseg": [ "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPSegConfig", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "processing_clipseg": ["CLIPSegProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ "CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", "CLIPSegForImageSegmentation", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys snake_case__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
395
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets SCREAMING_SNAKE_CASE : Tuple = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" SCREAMING_SNAKE_CASE : Tuple = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" SCREAMING_SNAKE_CASE : Optional[int] = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): def A_ (self ) -> Dict: if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = CHRF.CHAR_ORDER , __UpperCamelCase = CHRF.WORD_ORDER , __UpperCamelCase = CHRF.BETA , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , ) -> List[Any]: UpperCamelCase_ : List[str] = len(references[0] ) if any(len(__UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) UpperCamelCase_ : Optional[Any] = [[refs[i] for refs in references] for i in range(__UpperCamelCase )] UpperCamelCase_ : List[Any] = CHRF(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : int = sb_chrf.corpus_score(__UpperCamelCase , __UpperCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
635
0
'''simple docstring''' import torch from transformers import AutoModel class _snake_case ( torch.nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(_SCREAMING_SNAKE_CASE , self ).__init__() lowerCAmelCase = AutoModel.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.nn.CosineSimilarity(3 , 1e-08 ) lowerCAmelCase = torch.nn.Softmax(dim=1 ) def _SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.bert(**_SCREAMING_SNAKE_CASE ).last_hidden_state def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1 ): '''simple docstring''' return self.softmax(T * self.cos(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = W_supports['sizes'].tolist() lowerCAmelCase = W_supports['start_token_id'].item() lowerCAmelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase = self.BERT(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.BERT(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = W_supports['input_ids'] == start_token_id lowerCAmelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(_SCREAMING_SNAKE_CASE ): if i == 0: lowerCAmelCase = 0 else: lowerCAmelCase = support_sizes[i - 1] lowerCAmelCase = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase = torch.vstack((p_starts, p_start) ) lowerCAmelCase = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase = p_start lowerCAmelCase = p_end return p_starts, p_ends
514
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _snake_case : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 * 8 , _SCREAMING_SNAKE_CASE=32 * 8 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=64 , ): '''simple docstring''' lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = is_training lowerCAmelCase = use_auxiliary_loss lowerCAmelCase = num_queries lowerCAmelCase = num_channels lowerCAmelCase = min_size lowerCAmelCase = max_size lowerCAmelCase = num_labels lowerCAmelCase = hidden_dim lowerCAmelCase = hidden_dim def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) > 0.5 ).float() lowerCAmelCase = (torch.rand((self.batch_size, self.num_labels) , device=_SCREAMING_SNAKE_CASE ) > 0.5).long() lowerCAmelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase = self.num_queries lowerCAmelCase = self.num_labels lowerCAmelCase = [1, 1, 1, 1] lowerCAmelCase = self.num_channels lowerCAmelCase = 64 lowerCAmelCase = 1_28 lowerCAmelCase = self.hidden_dim lowerCAmelCase = self.hidden_dim lowerCAmelCase = self.hidden_dim return config def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = output.encoder_hidden_states lowerCAmelCase = output.pixel_decoder_hidden_states lowerCAmelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , config.decoder_layers ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): '''simple docstring''' with torch.no_grad(): lowerCAmelCase = MaskaFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = MaskaFormerForUniversalSegmentation(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() def comm_check_on_output(_SCREAMING_SNAKE_CASE ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model( pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _snake_case ( a_ , a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE : Tuple = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE : int = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = MaskaFormerModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase = MaskaFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = (self.model_tester.min_size,) * 2 lowerCAmelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=_SCREAMING_SNAKE_CASE ), 'mask_labels': torch.randn((2, 10, *size) , device=_SCREAMING_SNAKE_CASE ), 'class_labels': torch.zeros(2 , 10 , device=_SCREAMING_SNAKE_CASE ).long(), } lowerCAmelCase = self.model_tester.get_config() lowerCAmelCase = MaskaFormerForUniversalSegmentation(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.attentions is not None ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if not self.model_tester.is_training: return lowerCAmelCase = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() lowerCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ).loss loss.backward() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) model.train() lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _UpperCamelCase : Union[str, Any] = 1e-4 def snake_case ( ) -> Optional[int]: """simple docstring""" lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class _snake_case ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 3_84, 3_84) ) with torch.no_grad(): lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 3_84, 3_84) ) with torch.no_grad(): lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits lowerCAmelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCAmelCase = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits lowerCAmelCase = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase = self.default_image_processor lowerCAmelCase = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='pt' , ) lowerCAmelCase = inputs['pixel_values'].to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['mask_labels']] lowerCAmelCase = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['class_labels']] with torch.no_grad(): lowerCAmelCase = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None )
514
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration lowercase_ = 5_00_00 lowercase_ = 50_00 lowercase_ , lowercase_ = os.path.split(__file__) lowercase_ = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: for i in range(_UpperCAmelCase ): _a = dataset[i] @get_duration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: for i in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ): _a = dataset[i : i + batch_size] @get_duration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: with dataset.formatted_as(type=_UpperCAmelCase ): for i in range(_UpperCAmelCase ): _a = dataset[i] @get_duration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: with dataset.formatted_as(type=_UpperCAmelCase ): for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): _a = dataset[i : i + batch_size] def SCREAMING_SNAKE_CASE ( ) -> str: _a = {'num examples': SPEED_TEST_N_EXAMPLES} _a = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] _a = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print('generating dataset' ) _a = datasets.Features( {'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} ) _a = generate_example_dataset( os.path.join(_UpperCAmelCase , 'dataset.arrow' ) , _UpperCAmelCase , num_examples=_UpperCAmelCase , seq_shapes={'list': (100,)} , ) print('first set of iterations' ) for func, kwargs in functions: print(func.__name__ , str(_UpperCAmelCase ) ) _a = func(_UpperCAmelCase , **_UpperCAmelCase ) print('shuffling dataset' ) _a = dataset.shuffle() print('Second set of iterations (after shuffling' ) for func, kwargs in functions_shuffled: print('shuffled ' , func.__name__ , str(_UpperCAmelCase ) ) _a = func( _UpperCAmelCase , **_UpperCAmelCase ) with open(_UpperCAmelCase , 'wb' ) as f: f.write(json.dumps(_UpperCAmelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
562
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowercase_ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowercase_ = { 'moussaKam/mbarthez': 10_24, 'moussaKam/barthez': 10_24, 'moussaKam/barthez-orangesum-title': 10_24, } lowercase_ = '▁' class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int="<s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE_ : str="<mask>" , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) _a = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _a = len(self.sp_model ) - 1 _a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def _UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase ( self : Optional[int] ): return len(self.sp_model ) def _UpperCAmelCase ( self : Dict ): _a = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ): return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) return spm_id if spm_id else self.unk_token_id def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple ): _a = [] _a = '' _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token _a = True _a = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) _a = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def __getstate__( self : List[str] ): _a = self.__dict__.copy() _a = None return state def __setstate__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ): _a = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
562
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) __lowerCamelCase = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" __lowerCamelCase = model(lowerCamelCase__ )['last_hidden_state'] __lowerCamelCase = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
706
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = ['''input_features''', '''is_longer'''] def __init__( self , lowerCamelCase__=64 , lowerCamelCase__=48_000 , lowerCamelCase__=480 , lowerCamelCase__=10 , lowerCamelCase__=1_024 , lowerCamelCase__=0.0 , lowerCamelCase__=False , lowerCamelCase__ = 0 , lowerCamelCase__ = 14_000 , lowerCamelCase__ = None , lowerCamelCase__ = "fusion" , lowerCamelCase__ = "repeatpad" , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__( feature_size=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , padding_value=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = top_db __lowerCamelCase = truncation __lowerCamelCase = padding __lowerCamelCase = fft_window_size __lowerCamelCase = (fft_window_size >> 1) + 1 __lowerCamelCase = hop_length __lowerCamelCase = max_length_s __lowerCamelCase = max_length_s * sampling_rate __lowerCamelCase = sampling_rate __lowerCamelCase = frequency_min __lowerCamelCase = frequency_max __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm=lowerCamelCase__ , mel_scale='htk' , ) __lowerCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase__ , min_frequency=lowerCamelCase__ , max_frequency=lowerCamelCase__ , sampling_rate=lowerCamelCase__ , norm='slaney' , mel_scale='slaney' , ) def lowercase_ ( self ) -> Dict[str, Any]: '''simple docstring''' __lowerCamelCase = copy.deepcopy(self.__dict__ ) __lowerCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> np.ndarray: '''simple docstring''' __lowerCamelCase = spectrogram( lowerCamelCase__ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase__ , log_mel='dB' , ) return log_mel_spectrogram.T def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: '''simple docstring''' __lowerCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __lowerCamelCase = [0] # randomly choose index for each part __lowerCamelCase = np.random.choice(ranges[0] ) __lowerCamelCase = np.random.choice(ranges[1] ) __lowerCamelCase = np.random.choice(ranges[2] ) __lowerCamelCase = mel[idx_front : idx_front + chunk_frames, :] __lowerCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] __lowerCamelCase = mel[idx_back : idx_back + chunk_frames, :] __lowerCamelCase = torch.tensor(mel[None, None, :] ) __lowerCamelCase = torch.nn.functional.interpolate( lowerCamelCase__ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=lowerCamelCase__ ) __lowerCamelCase = mel_shrink[0][0].numpy() __lowerCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": __lowerCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __lowerCamelCase = len(lowerCamelCase__ ) - max_length __lowerCamelCase = np.random.randint(0 , overflow + 1 ) __lowerCamelCase = waveform[idx : idx + max_length] __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __lowerCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __lowerCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __lowerCamelCase = np.stack([mel, mel, mel, mel] , axis=0 ) __lowerCamelCase = False else: __lowerCamelCase = self._random_mel_fusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: __lowerCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __lowerCamelCase = int(max_length / len(lowerCamelCase__ ) ) __lowerCamelCase = np.stack(np.tile(lowerCamelCase__ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __lowerCamelCase = int(max_length / len(lowerCamelCase__ ) ) __lowerCamelCase = np.stack(np.tile(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCamelCase = np.pad(lowerCamelCase__ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters ) __lowerCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __lowerCamelCase = self._np_extract_fbank_features(lowerCamelCase__ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> BatchFeature: '''simple docstring''' __lowerCamelCase = truncation if truncation is not None else self.truncation __lowerCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) __lowerCamelCase = isinstance(lowerCamelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) __lowerCamelCase = is_batched_numpy or ( isinstance(lowerCamelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__ , np.ndarray ): __lowerCamelCase = np.asarray(lowerCamelCase__ , dtype=np.floataa ) elif isinstance(lowerCamelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. __lowerCamelCase = [ self._get_input_mel(lowerCamelCase__ , max_length if max_length else self.nb_max_samples , lowerCamelCase__ , lowerCamelCase__ ) for waveform in raw_speech ] __lowerCamelCase = [] __lowerCamelCase = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __lowerCamelCase = np.random.randint(0 , len(lowerCamelCase__ ) ) __lowerCamelCase = True if isinstance(input_mel[0] , lowerCamelCase__ ): __lowerCamelCase = [np.asarray(lowerCamelCase__ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __lowerCamelCase = [[longer] for longer in is_longer] __lowerCamelCase = {'input_features': input_mel, 'is_longer': is_longer} __lowerCamelCase = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: __lowerCamelCase = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
167
0
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase_ : Any = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' UpperCAmelCase_ : str = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' UpperCAmelCase_ : Dict = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' UpperCAmelCase_ : Tuple = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' UpperCAmelCase_ : int = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCAmelCase ( datasets.Metric): def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=[1, 10, 100] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3.0 ) -> List[str]: '''simple docstring''' if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=__SCREAMING_SNAKE_CASE ) as executor: __snake_case = [] __snake_case = Counter() __snake_case = 0 __snake_case = defaultdict(__SCREAMING_SNAKE_CASE ) for task_id, (candidates, test_case) in enumerate(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ): for candidate in candidates: __snake_case = candidate + '''\n''' + test_case __snake_case = (test_program, timeout, task_id, completion_id[task_id]) __snake_case = executor.submit(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) futures.append(__SCREAMING_SNAKE_CASE ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__SCREAMING_SNAKE_CASE ): __snake_case = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) __snake_case , __snake_case = [], [] for result in results.values(): result.sort() __snake_case = [r[1]['''passed'''] for r in result] total.append(len(__SCREAMING_SNAKE_CASE ) ) correct.append(sum(__SCREAMING_SNAKE_CASE ) ) __snake_case = np.array(__SCREAMING_SNAKE_CASE ) __snake_case = np.array(__SCREAMING_SNAKE_CASE ) __snake_case = k __snake_case = {F'''pass@{k}''': estimate_pass_at_k(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple )-> int: '''simple docstring''' def estimator(_lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(_lowerCamelCase , _lowerCamelCase ): __snake_case = itertools.repeat(_lowerCamelCase , len(_lowerCamelCase ) ) else: assert len(_lowerCamelCase ) == len(_lowerCamelCase ) __snake_case = iter(_lowerCamelCase ) return np.array([estimator(int(_lowerCamelCase ) , int(_lowerCamelCase ) , _lowerCamelCase ) for n, c in zip(_lowerCamelCase , _lowerCamelCase )] )
24
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 0.0 lowercase__ = 1 lowercase__ = 1 lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : int = [] _snake_case : Tuple = [] for i in range(self.num_layers ): _snake_case : str = self.in_channels if i == 0 else self.out_channels _snake_case : Tuple = FlaxResnetBlockaD( in_channels=a_, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(a_ ) _snake_case : str = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(a_ ) _snake_case : Optional[int] = resnets _snake_case : Tuple = attentions if self.add_downsample: _snake_case : Optional[int] = FlaxDownsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self: Dict, a_: Any, a_: List[str], a_: Optional[Any], a_: List[str]=True ): '''simple docstring''' _snake_case : List[str] = () for resnet, attn in zip(self.resnets, self.attentions ): _snake_case : Optional[Any] = resnet(a_, a_, deterministic=a_ ) _snake_case : str = attn(a_, a_, deterministic=a_ ) output_states += (hidden_states,) if self.add_downsample: _snake_case : Optional[Any] = self.downsamplers_a(a_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 0.0 lowercase__ = 1 lowercase__ = True lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Any = [] for i in range(self.num_layers ): _snake_case : str = self.in_channels if i == 0 else self.out_channels _snake_case : int = FlaxResnetBlockaD( in_channels=a_, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(a_ ) _snake_case : Optional[Any] = resnets if self.add_downsample: _snake_case : Tuple = FlaxDownsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self: Optional[Any], a_: Optional[Any], a_: List[Any], a_: Optional[int]=True ): '''simple docstring''' _snake_case : int = () for resnet in self.resnets: _snake_case : Any = resnet(a_, a_, deterministic=a_ ) output_states += (hidden_states,) if self.add_downsample: _snake_case : Dict = self.downsamplers_a(a_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 0.0 lowercase__ = 1 lowercase__ = 1 lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Optional[int] ): '''simple docstring''' _snake_case : Any = [] _snake_case : List[Any] = [] for i in range(self.num_layers ): _snake_case : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _snake_case : Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels _snake_case : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(a_ ) _snake_case : str = FlaxTransformeraDModel( in_channels=self.out_channels, n_heads=self.num_attention_heads, d_head=self.out_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, only_cross_attention=self.only_cross_attention, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(a_ ) _snake_case : Any = resnets _snake_case : Union[str, Any] = attentions if self.add_upsample: _snake_case : Dict = FlaxUpsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self: Any, a_: int, a_: List[Any], a_: Union[str, Any], a_: Optional[Any], a_: List[Any]=True ): '''simple docstring''' for resnet, attn in zip(self.resnets, self.attentions ): # pop res hidden states _snake_case : List[str] = res_hidden_states_tuple[-1] _snake_case : Any = res_hidden_states_tuple[:-1] _snake_case : int = jnp.concatenate((hidden_states, res_hidden_states), axis=-1 ) _snake_case : Optional[Any] = resnet(a_, a_, deterministic=a_ ) _snake_case : str = attn(a_, a_, deterministic=a_ ) if self.add_upsample: _snake_case : Dict = self.upsamplers_a(a_ ) return hidden_states class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 0.0 lowercase__ = 1 lowercase__ = True lowercase__ = jnp.floataa def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : List[str] = [] for i in range(self.num_layers ): _snake_case : Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels _snake_case : int = self.prev_output_channel if i == 0 else self.out_channels _snake_case : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels, out_channels=self.out_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(a_ ) _snake_case : List[Any] = resnets if self.add_upsample: _snake_case : Optional[Any] = FlaxUpsampleaD(self.out_channels, dtype=self.dtype ) def __call__( self: str, a_: Any, a_: List[Any], a_: str, a_: Union[str, Any]=True ): '''simple docstring''' for resnet in self.resnets: # pop res hidden states _snake_case : int = res_hidden_states_tuple[-1] _snake_case : Dict = res_hidden_states_tuple[:-1] _snake_case : List[Any] = jnp.concatenate((hidden_states, res_hidden_states), axis=-1 ) _snake_case : Any = resnet(a_, a_, deterministic=a_ ) if self.add_upsample: _snake_case : int = self.upsamplers_a(a_ ) return hidden_states class lowercase( nn.Module ): '''simple docstring''' lowercase__ = 42 lowercase__ = 0.0 lowercase__ = 1 lowercase__ = 1 lowercase__ = False lowercase__ = False lowercase__ = jnp.floataa def UpperCamelCase_ ( self: int ): '''simple docstring''' _snake_case : Optional[Any] = [ FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) ] _snake_case : int = [] for _ in range(self.num_layers ): _snake_case : Optional[Any] = FlaxTransformeraDModel( in_channels=self.in_channels, n_heads=self.num_attention_heads, d_head=self.in_channels // self.num_attention_heads, depth=1, use_linear_projection=self.use_linear_projection, use_memory_efficient_attention=self.use_memory_efficient_attention, dtype=self.dtype, ) attentions.append(a_ ) _snake_case : Tuple = FlaxResnetBlockaD( in_channels=self.in_channels, out_channels=self.in_channels, dropout_prob=self.dropout, dtype=self.dtype, ) resnets.append(a_ ) _snake_case : Optional[Any] = resnets _snake_case : List[str] = attentions def __call__( self: Tuple, a_: Optional[int], a_: str, a_: Optional[int], a_: int=True ): '''simple docstring''' _snake_case : Dict = self.resnets[0](a_, a_ ) for attn, resnet in zip(self.attentions, self.resnets[1:] ): _snake_case : str = attn(a_, a_, deterministic=a_ ) _snake_case : Union[str, Any] = resnet(a_, a_, deterministic=a_ ) return hidden_states
609
0
from __future__ import annotations _snake_case = [] def lowerCamelCase_ ( A : list[list[int]] , A : int , A : int ): """simple docstring""" for i in range(len(A ) ): if board[row][i] == 1: return False for i in range(len(A ) ): if board[i][column] == 1: return False for i, j in zip(range(A , -1 , -1 ) , range(A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(A , -1 , -1 ) , range(A , len(A ) ) ): if board[i][j] == 1: return False return True def lowerCamelCase_ ( A : list[list[int]] , A : int ): """simple docstring""" if row >= len(A ): solution.append(A ) printboard(A ) print() return True for i in range(len(A ) ): if is_safe(A , A , A ): lowerCAmelCase_ = 1 solve(A , row + 1 ) lowerCAmelCase_ = 0 return False def lowerCamelCase_ ( A : list[list[int]] ): """simple docstring""" for i in range(len(A ) ): for j in range(len(A ) ): if board[i][j] == 1: print('''Q''' , end=''' ''' ) else: print('''.''' , end=''' ''' ) print() # n=int(input("The no. of queens")) _snake_case = 8 _snake_case = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class UpperCamelCase_ ( A ): '''simple docstring''' a :Union[str, Any] = 'poolformer' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=16 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=4.0 , _UpperCAmelCase=[2, 2, 6, 2] , _UpperCAmelCase=[64, 128, 320, 512] , _UpperCAmelCase=[7, 3, 3, 3] , _UpperCAmelCase=[4, 2, 2, 2] , _UpperCAmelCase=[2, 1, 1, 1] , _UpperCAmelCase=4 , _UpperCAmelCase=0.0 , _UpperCAmelCase="gelu" , _UpperCAmelCase=True , _UpperCAmelCase=1E-5 , _UpperCAmelCase=0.02 , **_UpperCAmelCase , ): lowerCAmelCase_ = num_channels lowerCAmelCase_ = patch_size lowerCAmelCase_ = stride lowerCAmelCase_ = padding lowerCAmelCase_ = pool_size lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = depths lowerCAmelCase_ = patch_sizes lowerCAmelCase_ = strides lowerCAmelCase_ = num_encoder_blocks lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = use_layer_scale lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = initializer_range super().__init__(**_UpperCAmelCase) class UpperCamelCase_ ( A ): '''simple docstring''' a :Optional[Any] = version.parse('1.11' ) @property def lowercase__ ( self): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def lowercase__ ( self): return 2E-3
413
0
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowercase__ : Dict = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowercase__ : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowercase__ : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowercase__ : int = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowercase__ : List[str] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowercase__ : Tuple = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def a__ ( lowercase : Dict ) -> Optional[int]: """simple docstring""" _UpperCamelCase = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''', lowercase ) return [m.group(0 ) for m in matches] def a__ ( ) -> int: """simple docstring""" _UpperCamelCase = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCamelCase = { config.replace('''Config''', '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _UpperCamelCase = collections.defaultdict(lowercase ) _UpperCamelCase = collections.defaultdict(lowercase ) _UpperCamelCase = collections.defaultdict(lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowercase ): _UpperCamelCase = None if _re_tf_models.match(lowercase ) is not None: _UpperCamelCase = tf_models _UpperCamelCase = _re_tf_models.match(lowercase ).groups()[0] elif _re_flax_models.match(lowercase ) is not None: _UpperCamelCase = flax_models _UpperCamelCase = _re_flax_models.match(lowercase ).groups()[0] elif _re_pt_models.match(lowercase ) is not None: _UpperCamelCase = pt_models _UpperCamelCase = _re_pt_models.match(lowercase ).groups()[0] if lookup_dict is not None: while len(lowercase ) > 0: if attr_name in model_prefix_to_model_type: _UpperCamelCase = True break # Try again after removing the last word in the name _UpperCamelCase = ''''''.join(camel_case_split(lowercase )[:-1] ) _UpperCamelCase = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _UpperCamelCase = list(lowercase ) all_models.sort() _UpperCamelCase = {'''model_type''': all_models} _UpperCamelCase = [pt_models[t] for t in all_models] _UpperCamelCase = [tf_models[t] for t in all_models] _UpperCamelCase = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _UpperCamelCase = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _UpperCamelCase = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _UpperCamelCase = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _UpperCamelCase = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _UpperCamelCase = '''AutoTokenizer''' _UpperCamelCase = [processors[t] for t in all_models] return pd.DataFrame(lowercase ) def a__ ( lowercase : str ) -> Dict: """simple docstring""" _UpperCamelCase = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _UpperCamelCase = [model_mapping, F"""TF_{model_mapping}""", F"""FLAX_{model_mapping}"""] _UpperCamelCase = [auto_class, F"""TF_{auto_class}""", F"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(lowercase, lowercase, lowercase ): # The type of pipeline may not exist in this framework if not hasattr(lowercase, lowercase ): continue # First extract all model_names _UpperCamelCase = [] for name in getattr(lowercase, lowercase ).values(): if isinstance(lowercase, lowercase ): model_names.append(lowercase ) else: model_names.extend(list(lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def a__ ( lowercase : Optional[Any], lowercase : Any ) -> List[str]: """simple docstring""" _UpperCamelCase = get_frameworks_table() _UpperCamelCase = Dataset.from_pandas(lowercase ) _UpperCamelCase = hf_hub_download( '''huggingface/transformers-metadata''', '''pipeline_tags.json''', repo_type='''dataset''', token=lowercase ) _UpperCamelCase = Dataset.from_json(lowercase ) _UpperCamelCase = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(lowercase ) ) } _UpperCamelCase = update_pipeline_and_auto_class_table(lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _UpperCamelCase = sorted(table.keys() ) _UpperCamelCase = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) _UpperCamelCase = Dataset.from_pandas(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowercase, '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(lowercase, '''pipeline_tags.json''' ) ) if commit_sha is not None: _UpperCamelCase = ( F"""Update with commit {commit_sha}\n\nSee: """ F"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: _UpperCamelCase = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''', folder_path=lowercase, repo_type='''dataset''', token=lowercase, commit_message=lowercase, ) def a__ ( ) -> Any: """simple docstring""" _UpperCamelCase = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _UpperCamelCase = transformers_module.pipelines.SUPPORTED_TASKS _UpperCamelCase = [] for key in pipeline_tasks: if key not in in_table: _UpperCamelCase = pipeline_tasks[key]['''pt'''] if isinstance(lowercase, (list, tuple) ): _UpperCamelCase = model[0] _UpperCamelCase = model.__name__ if model not in in_table.values(): missing.append(lowercase ) if len(lowercase ) > 0: _UpperCamelCase = ''', '''.join(lowercase ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') lowercase__ : Any = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
98
'''simple docstring''' from __future__ import annotations import queue class __lowerCAmelCase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Optional[int] ) -> str: '''simple docstring''' _UpperCamelCase = data _UpperCamelCase = None _UpperCamelCase = None def a__ ( ) -> TreeNode: """simple docstring""" print('''\n********Press N to stop entering at any point of time********\n''' ) _UpperCamelCase = input('''Enter the value of the root node: ''' ).strip().lower() _UpperCamelCase = queue.Queue() _UpperCamelCase = TreeNode(int(lowercase ) ) q.put(lowercase ) while not q.empty(): _UpperCamelCase = q.get() _UpperCamelCase = F"""Enter the left node of {node_found.data}: """ _UpperCamelCase = input(lowercase ).strip().lower() or '''n''' if check == "n": return tree_node _UpperCamelCase = TreeNode(int(lowercase ) ) _UpperCamelCase = left_node q.put(lowercase ) _UpperCamelCase = F"""Enter the right node of {node_found.data}: """ _UpperCamelCase = input(lowercase ).strip().lower() or '''n''' if check == "n": return tree_node _UpperCamelCase = TreeNode(int(lowercase ) ) _UpperCamelCase = right_node q.put(lowercase ) raise def a__ ( lowercase : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase, lowercase ) or not node: return print(node.data, end=''',''' ) pre_order(node.left ) pre_order(node.right ) def a__ ( lowercase : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase, lowercase ) or not node: return in_order(node.left ) print(node.data, end=''',''' ) in_order(node.right ) def a__ ( lowercase : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase, lowercase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data, end=''',''' ) def a__ ( lowercase : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase, lowercase ) or not node: return _UpperCamelCase = queue.Queue() q.put(lowercase ) while not q.empty(): _UpperCamelCase = q.get() print(node_dequeued.data, end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def a__ ( lowercase : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase, lowercase ) or not node: return _UpperCamelCase = queue.Queue() q.put(lowercase ) while not q.empty(): _UpperCamelCase = [] while not q.empty(): _UpperCamelCase = q.get() print(node_dequeued.data, end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(lowercase ) def a__ ( lowercase : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase, lowercase ) or not node: return _UpperCamelCase = [] _UpperCamelCase = node while n or stack: while n: # start from root node, find its left child print(n.data, end=''',''' ) stack.append(lowercase ) _UpperCamelCase = n.left # end of while means current node doesn't have left child _UpperCamelCase = stack.pop() # start to traverse its right child _UpperCamelCase = n.right def a__ ( lowercase : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase, lowercase ) or not node: return _UpperCamelCase = [] _UpperCamelCase = node while n or stack: while n: stack.append(lowercase ) _UpperCamelCase = n.left _UpperCamelCase = stack.pop() print(n.data, end=''',''' ) _UpperCamelCase = n.right def a__ ( lowercase : TreeNode ) -> None: """simple docstring""" if not isinstance(lowercase, lowercase ) or not node: return _UpperCamelCase , _UpperCamelCase = [], [] _UpperCamelCase = node stacka.append(lowercase ) while stacka: # to find the reversed order of post order, store it in stack2 _UpperCamelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(lowercase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data, end=''',''' ) def a__ ( lowercase : str = "", lowercase : List[str]=50, lowercase : List[str]="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char _UpperCamelCase , _UpperCamelCase = divmod(width - len(lowercase ) - 2, 2 ) return F"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt('Binary Tree Traversals')) lowercase__ : TreeNode = build_tree() print(prompt('Pre Order Traversal')) pre_order(node) print(prompt() + '\n') print(prompt('In Order Traversal')) in_order(node) print(prompt() + '\n') print(prompt('Post Order Traversal')) post_order(node) print(prompt() + '\n') print(prompt('Level Order Traversal')) level_order(node) print(prompt() + '\n') print(prompt('Actual Level Order Traversal')) level_order_actual(node) print('*' * 50 + '\n') print(prompt('Pre Order Traversal - Iteration Version')) pre_order_iter(node) print(prompt() + '\n') print(prompt('In Order Traversal - Iteration Version')) in_order_iter(node) print(prompt() + '\n') print(prompt('Post Order Traversal - Iteration Version')) post_order_iter(node) print(prompt())
98
1
import math lowerCAmelCase : List[str] =10 lowerCAmelCase : List[Any] =7 lowerCAmelCase : Dict =BALLS_PER_COLOUR * NUM_COLOURS def A__ ( __A = 20 ): '''simple docstring''' _lowerCamelCase : Optional[Any] = math.comb(__A , __A ) _lowerCamelCase : Any = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __A ) _lowerCamelCase : Optional[int] = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
15
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE__ ( a__ ): def __init__( self: List[Any] , a: str , a: int , a: str , a: Dict , ) ->List[str]: '''simple docstring''' super().__init__() a_ = value_function a_ = unet a_ = scheduler a_ = env a_ = env.get_dataset() a_ = {} for key in self.data.keys(): try: a_ = self.data[key].mean() except: # noqa: E722 pass a_ = {} for key in self.data.keys(): try: a_ = self.data[key].std() except: # noqa: E722 pass a_ = env.observation_space.shape[0] a_ = env.action_space.shape[0] def _lowerCAmelCase ( self: Any , a: str , a: List[str]) ->str: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def _lowerCAmelCase ( self: Dict , a: Union[str, Any] , a: str) ->int: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def _lowerCAmelCase ( self: Union[str, Any] , a: Dict) ->Dict: '''simple docstring''' if type(SCREAMING_SNAKE_CASE_) is dict: return {k: self.to_torch(SCREAMING_SNAKE_CASE_) for k, v in x_in.items()} elif torch.is_tensor(SCREAMING_SNAKE_CASE_): return x_in.to(self.unet.device) return torch.tensor(SCREAMING_SNAKE_CASE_ , device=self.unet.device) def _lowerCAmelCase ( self: Optional[int] , a: Optional[int] , a: Tuple , a: int) ->Any: '''simple docstring''' for key, val in cond.items(): a_ = val.clone() return x_in def _lowerCAmelCase ( self: List[Any] , a: List[str] , a: Dict , a: Optional[int] , a: Any) ->Optional[int]: '''simple docstring''' a_ = x.shape[0] a_ = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model a_ = torch.full((batch_size,) , SCREAMING_SNAKE_CASE_ , device=self.unet.device , dtype=torch.long) for _ in range(SCREAMING_SNAKE_CASE_): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a_ = self.value_function(x.permute(0 , 2 , 1) , SCREAMING_SNAKE_CASE_).sample a_ = torch.autograd.grad([y.sum()] , [x])[0] a_ = self.scheduler._get_variance(SCREAMING_SNAKE_CASE_) a_ = torch.exp(0.5 * posterior_variance) a_ = model_std * grad a_ = 0 a_ = x.detach() a_ = x + scale * grad a_ = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim) a_ = self.unet(x.permute(0 , 2 , 1) , SCREAMING_SNAKE_CASE_).sample.permute(0 , 2 , 1) # TODO: verify deprecation of this kwarg a_ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , predict_epsilon=SCREAMING_SNAKE_CASE_)['prev_sample'] # apply conditions to the trajectory (set the initial state) a_ = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim) a_ = self.to_torch(SCREAMING_SNAKE_CASE_) return x, y def __call__( self: Dict , a: List[str] , a: str=64 , a: Tuple=32 , a: str=2 , a: List[Any]=0.1) ->Dict: '''simple docstring''' a_ = self.normalize(SCREAMING_SNAKE_CASE_ , "observations") a_ = obs[None].repeat(SCREAMING_SNAKE_CASE_ , axis=0) a_ = {0: self.to_torch(SCREAMING_SNAKE_CASE_)} a_ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a_ = randn_tensor(SCREAMING_SNAKE_CASE_ , device=self.unet.device) a_ = self.reset_xa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.action_dim) a_ = self.to_torch(SCREAMING_SNAKE_CASE_) # run the diffusion process a_ = self.run_diffusion(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # sort output trajectories by value a_ = y.argsort(0 , descending=SCREAMING_SNAKE_CASE_).squeeze() a_ = x[sorted_idx] a_ = sorted_values[:, :, : self.action_dim] a_ = actions.detach().cpu().numpy() a_ = self.de_normalize(SCREAMING_SNAKE_CASE_ , key="actions") # select the action with the highest value if y is not None: a_ = 0 else: # if we didn't run value guiding, select a random action a_ = np.random.randint(0 , SCREAMING_SNAKE_CASE_) a_ = denorm_actions[selected_index, 0] return denorm_actions
685
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __UpperCAmelCase = '''src/transformers''' __UpperCAmelCase = '''docs/source/en/tasks''' def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Any ) -> Optional[int]: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: UpperCamelCase : Optional[Any] = f.readlines() # Find the start prompt. UpperCamelCase : List[Any] = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 UpperCamelCase : Optional[Any] = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) __UpperCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __UpperCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def UpperCamelCase ( snake_case__ : Optional[int] ) -> Optional[Any]: UpperCamelCase : Tuple = TASK_GUIDE_TO_MODELS[task_guide] UpperCamelCase : str = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) UpperCamelCase : Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[int]=False ) -> Tuple: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[Any] = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) UpperCamelCase : Optional[Any] = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
40
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets a ="""\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ a ="""\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ a =""" Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def lowerCAmelCase ( self : List[Any]): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage='https://github.com/krishnap25/mauve' ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Value('string' ,id='sequence'), 'references': datasets.Value('string' ,id='sequence'), }) ,codebase_urls=['https://github.com/krishnap25/mauve'] ,reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] ,) def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : List[str]=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : Optional[int]=None ,SCREAMING_SNAKE_CASE__ : Dict="auto" ,SCREAMING_SNAKE_CASE__ : List[str]=-1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.9 ,SCREAMING_SNAKE_CASE__ : List[str]=5 ,SCREAMING_SNAKE_CASE__ : Any=5_0_0 ,SCREAMING_SNAKE_CASE__ : Optional[int]="gpt2-large" ,SCREAMING_SNAKE_CASE__ : Tuple=-1 ,SCREAMING_SNAKE_CASE__ : str=1_0_2_4 ,SCREAMING_SNAKE_CASE__ : Any=2_5 ,SCREAMING_SNAKE_CASE__ : Dict=5 ,SCREAMING_SNAKE_CASE__ : int=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2_5 ,): __lowerCamelCase : str = compute_mauve( p_text=SCREAMING_SNAKE_CASE__ ,q_text=SCREAMING_SNAKE_CASE__ ,p_features=SCREAMING_SNAKE_CASE__ ,q_features=SCREAMING_SNAKE_CASE__ ,p_tokens=SCREAMING_SNAKE_CASE__ ,q_tokens=SCREAMING_SNAKE_CASE__ ,num_buckets=SCREAMING_SNAKE_CASE__ ,pca_max_data=SCREAMING_SNAKE_CASE__ ,kmeans_explained_var=SCREAMING_SNAKE_CASE__ ,kmeans_num_redo=SCREAMING_SNAKE_CASE__ ,kmeans_max_iter=SCREAMING_SNAKE_CASE__ ,featurize_model_name=SCREAMING_SNAKE_CASE__ ,device_id=SCREAMING_SNAKE_CASE__ ,max_text_length=SCREAMING_SNAKE_CASE__ ,divergence_curve_discretization_size=SCREAMING_SNAKE_CASE__ ,mauve_scaling_factor=SCREAMING_SNAKE_CASE__ ,verbose=SCREAMING_SNAKE_CASE__ ,seed=SCREAMING_SNAKE_CASE__ ,) return out
337
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> list[int]: if length <= 0 or not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError('Length must be a positive integer.' ) return [n * (2 * n - 1) for n in range(lowerCamelCase__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
337
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'openai-gpt' SCREAMING_SNAKE_CASE_ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , SCREAMING_SNAKE_CASE_=40478 , SCREAMING_SNAKE_CASE_=512 , SCREAMING_SNAKE_CASE_=768 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_="cls_index" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.1 , **SCREAMING_SNAKE_CASE_ , ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = vocab_size lowerCamelCase_ = n_positions lowerCamelCase_ = n_embd lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = afn lowerCamelCase_ = resid_pdrop lowerCamelCase_ = embd_pdrop lowerCamelCase_ = attn_pdrop lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = initializer_range lowerCamelCase_ = summary_type lowerCamelCase_ = summary_use_proj lowerCamelCase_ = summary_activation lowerCamelCase_ = summary_first_dropout lowerCamelCase_ = summary_proj_to_labels super().__init__(**SCREAMING_SNAKE_CASE_ )
42
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCamelCase_ = ksize + 1 lowerCamelCase_ = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(__UpperCamelCase ): for x in range(__UpperCamelCase ): # distance from center lowerCamelCase_ = x - ksize // 2 lowerCamelCase_ = y - ksize // 2 # degree to radiant lowerCamelCase_ = theta / 1_80 * np.pi lowerCamelCase_ = np.cos(_theta ) lowerCamelCase_ = np.sin(_theta ) # get kernel x lowerCamelCase_ = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase_ = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase_ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A_ = imread("../image_data/lena.jpg") # turn image in gray scale value A_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A_ = out / out.max() * 255 A_ = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
42
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A : int = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
719
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=__UpperCAmelCase ): _SCREAMING_SNAKE_CASE = ["torch", "scipy"] def __init__( self : Tuple , *__snake_case : List[Any] , **__snake_case : List[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'scipy'] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Optional[int] , *__snake_case : Optional[Any] , **__snake_case : Tuple ): '''simple docstring''' requires_backends(cls , ['torch', 'scipy'] ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] , *__snake_case : Optional[Any] , **__snake_case : str ): '''simple docstring''' requires_backends(cls , ['torch', 'scipy'] )
273
0
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[Any] ) -> List[str]: # Initialise PyTorch model __a = BigBirdConfig.from_json_file(snake_case__ ) print(f'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: __a = BigBirdForQuestionAnswering(snake_case__ ) else: __a = BigBirdForPreTraining(snake_case__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(snake_case__ , snake_case__ , is_trivia_qa=snake_case__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) lowercase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
695
import os def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: __UpperCAmelCase =os.path.dirname(os.path.realpath(snake_case__ ) ) __UpperCAmelCase =os.path.join(snake_case__ , '''triangle.txt''' ) with open(snake_case__ ) as f: __UpperCAmelCase =f.readlines() __UpperCAmelCase =[] for line in triangle: __UpperCAmelCase =[] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(snake_case__ ) ) a.append(snake_case__ ) for i in range(1 , len(snake_case__ ) ): for j in range(len(a[i] ) ): __UpperCAmelCase =a[i - 1][j] if j != len(a[i - 1] ) else 0 __UpperCAmelCase =a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(snake_case__ , snake_case__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
132
0
'''simple docstring''' def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : List[str] = current_set.copy() for row_index, row in enumerate(__SCREAMING_SNAKE_CASE ): snake_case_ : int = row[0] for column_index, column in enumerate(__SCREAMING_SNAKE_CASE ): if magnitude == 0: snake_case_ : Optional[int] = column continue snake_case_ : Optional[Any] = column / magnitude # Subtract to cancel term snake_case_ : List[Any] = current_set[0] snake_case_ : Optional[Any] = [first_row] snake_case_ : Union[str, Any] = current_set[1::] for row in current_set: snake_case_ : Optional[Any] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__SCREAMING_SNAKE_CASE ) continue for column_index in range(len(__SCREAMING_SNAKE_CASE ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__SCREAMING_SNAKE_CASE ) # Create next recursion iteration set if len(final_set[0] ) != 3: snake_case_ : Union[str, Any] = final_set[0] snake_case_ : Dict = [] snake_case_ : Optional[Any] = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) snake_case_ : Dict = simplify(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, __SCREAMING_SNAKE_CASE ) snake_case_ : Any = resultant return final_set def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) snake_case_ : Optional[Any] = len(__SCREAMING_SNAKE_CASE ) + 1 if any(len(__SCREAMING_SNAKE_CASE ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(__SCREAMING_SNAKE_CASE, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(__SCREAMING_SNAKE_CASE ) == 1: return [equations[0][-1] / equations[0][0]] snake_case_ : int = equations.copy() if any(0 in row for row in data_set ): snake_case_ : Tuple = data_set.copy() snake_case_ : List[Any] = [] for row_index, row in enumerate(__SCREAMING_SNAKE_CASE ): if 0 not in row: snake_case_ : Tuple = data_set.pop(__SCREAMING_SNAKE_CASE ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, __SCREAMING_SNAKE_CASE ) snake_case_ : Dict = data_set.copy() snake_case_ : Tuple = simplify(__SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = simplified[::-1] snake_case_ : list = [] for row in simplified: snake_case_ : Tuple = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue snake_case_ : Optional[Any] = row.copy()[: len(__SCREAMING_SNAKE_CASE ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__SCREAMING_SNAKE_CASE ) == 0: solutions.append(0 ) continue snake_case_ : List[Any] = temp_row[1::] snake_case_ : Optional[Any] = temp_row[::-1] for column_index, column in enumerate(__SCREAMING_SNAKE_CASE ): current_solution -= column * solutions[column_index] solutions.append(__SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = [] for item in solutions: final.append(float(round(__SCREAMING_SNAKE_CASE, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() a_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
92
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ "WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST", "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
92
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _a ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ) -> int: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ : Optional[int] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class lowerCamelCase : """simple docstring""" UpperCAmelCase_ = OPTConfig UpperCAmelCase_ = {} UpperCAmelCase_ = "gelu" def __init__( self : str, _UpperCAmelCase : Optional[int], _UpperCAmelCase : Union[str, Any]=1_3, _UpperCAmelCase : str=7, _UpperCAmelCase : Dict=True, _UpperCAmelCase : Union[str, Any]=False, _UpperCAmelCase : Dict=9_9, _UpperCAmelCase : List[Any]=1_6, _UpperCAmelCase : Any=2, _UpperCAmelCase : Dict=4, _UpperCAmelCase : int=4, _UpperCAmelCase : Union[str, Any]="gelu", _UpperCAmelCase : Any=0.1, _UpperCAmelCase : Dict=0.1, _UpperCAmelCase : Optional[Any]=2_0, _UpperCAmelCase : str=2, _UpperCAmelCase : str=1, _UpperCAmelCase : str=0, _UpperCAmelCase : Union[str, Any]=1_6, _UpperCAmelCase : str=1_6, ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : List[str] = seq_length SCREAMING_SNAKE_CASE__ : Any = is_training SCREAMING_SNAKE_CASE__ : Optional[int] = use_labels SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Dict = num_attention_heads SCREAMING_SNAKE_CASE__ : Dict = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : int = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = pad_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id SCREAMING_SNAKE_CASE__ : Any = embed_dim SCREAMING_SNAKE_CASE__ : List[Any] = word_embed_proj_dim SCREAMING_SNAKE_CASE__ : Optional[Any] = False def A_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) SCREAMING_SNAKE_CASE__ : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.concat([input_ids, eos_tensor], axis=1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.config_cls( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, embed_dim=self.embed_dim, word_embed_proj_dim=self.word_embed_proj_dim, is_encoder_decoder=a_, **self.config_updates, ) SCREAMING_SNAKE_CASE__ : List[str] = prepare_opt_inputs_dict(a_, a_ ) return config, inputs_dict def A_ ( self : Optional[int], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = TFOPTModel(config=a_ ) SCREAMING_SNAKE_CASE__ : str = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE__ : Any = input_ids[:1, :] SCREAMING_SNAKE_CASE__ : str = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE__ : Any = 1 # first forward pass SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(a_, attention_mask=a_, use_cache=a_ ) SCREAMING_SNAKE_CASE__ : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 3), config.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : List[Any] = tf.concat([input_ids, next_tokens], axis=-1 ) SCREAMING_SNAKE_CASE__ : int = tf.concat([attention_mask, next_attn_mask], axis=-1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(a_, attention_mask=a_ )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(a_, attention_mask=a_, past_key_values=a_ )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ : Tuple = int(ids_tensor((1,), output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a_, a_, rtol=1E-3 ) @require_tf class lowerCamelCase (UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () UpperCAmelCase_ = (TFOPTForCausalLM,) if is_tf_available() else () UpperCAmelCase_ = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = 10 def A_ ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = TFOPTModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self, config_class=a_ ) def A_ ( self : Tuple ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a_ ) def A_ ( self : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_UpperCAmelCase : str, _UpperCAmelCase : str ): if hasattr(a_, "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(a_, "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(config=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = _get_word_embedding_weight(a_, model.get_input_embeddings() ) SCREAMING_SNAKE_CASE__ : Any = _get_word_embedding_weight(a_, model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = _get_word_embedding_weight(a_, model.get_input_embeddings() ) SCREAMING_SNAKE_CASE__ : Tuple = _get_word_embedding_weight(a_, model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. SCREAMING_SNAKE_CASE__ : List[Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0], a_ ) # check that weights remain the same after resizing SCREAMING_SNAKE_CASE__ : List[str] = True for pa, pa in zip(old_input_embeddings.value(), new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE__ : int = False self.assertTrue(a_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0], a_ ) SCREAMING_SNAKE_CASE__ : Dict = True for pa, pa in zip(old_output_embeddings.value(), new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE__ : str = False self.assertTrue(a_ ) def _a ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Union[str, Any]: '''simple docstring''' return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = 99 def A_ ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = tf.ones((4, 1), dtype=tf.intaa ) * 2 SCREAMING_SNAKE_CASE__ : str = tf.concat([ids_tensor((4, 6), self.vocab_size - 3 ) + 3, eos_column_vector], axis=1 ) SCREAMING_SNAKE_CASE__ : List[str] = input_ids.shape[0] SCREAMING_SNAKE_CASE__ : str = OPTConfig( vocab_size=self.vocab_size, hidden_size=2_4, num_hidden_layers=2, num_attention_heads=2, ffn_dim=3_2, max_position_embeddings=4_8, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size @require_sentencepiece @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def A_ ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = TFOPTModel.from_pretrained("facebook/opt-350m" ) SCREAMING_SNAKE_CASE__ : List[Any] = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE__ : int = tf.not_equal(a_, model.config.pad_token_id ) with tf.GradientTape(): SCREAMING_SNAKE_CASE__ : List[str] = model(input_ids=a_, attention_mask=a_ ).last_hidden_state SCREAMING_SNAKE_CASE__ : List[str] = (1, 1_1, 5_1_2) self.assertEqual(output.shape, a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3], a_, atol=4E-3 ) ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.function(a_, jit_compile=a_ ) SCREAMING_SNAKE_CASE__ : str = xla_generate(a_, a_ )[0] self.assertTrue(np.allclose(output[:, :3, :3], a_, atol=4E-2 ) ) @require_tf @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : str ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ : str = 'facebook/opt-350m' def A_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE__ : int = GPTaTokenizer.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE__ : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer(a_, return_tensors="tf", padding=a_, add_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : Dict = tf.math.reduce_mean(model(inputs.input_ids, attention_mask=inputs.attention_mask )[0], axis=-1 ) SCREAMING_SNAKE_CASE__ : int = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(a_, a_, atol=1E-4 ) ) SCREAMING_SNAKE_CASE__ : Dict = tf.function(a_, jit_compile=a_ ) SCREAMING_SNAKE_CASE__ : Dict = tf.math.reduce_mean(xla_generate(inputs.input_ids, attention_mask=inputs.attention_mask )[0], axis=-1 ) self.assertTrue(np.allclose(a_, a_, atol=1E-4 ) ) @require_tf @slow class lowerCamelCase (unittest.TestCase ): """simple docstring""" @property def A_ ( self : int ) -> List[Any]: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def A_ ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 'facebook/opt-125m' SCREAMING_SNAKE_CASE__ : int = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Dict = GPTaTokenizer.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFOPTForCausalLM.from_pretrained(a_ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(a_, return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE__ : Dict = model.generate(a_, max_length=1_0 ) SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.batch_decode(a_, skip_special_tokens=a_ ) predicted_outputs += generated_string self.assertListEqual(a_, a_ ) def A_ ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'facebook/opt-350m' SCREAMING_SNAKE_CASE__ : List[str] = GPTaTokenizer.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Any = TFOPTForCausalLM.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = 'left' # use different length sentences to test batching SCREAMING_SNAKE_CASE__ : Any = [ 'Hello, my dog is a little', 'Today, I', ] SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer(a_, return_tensors="tf", padding=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = inputs['input_ids'] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate(input_ids=a_, attention_mask=inputs["attention_mask"] ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(sentences[0], return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE__ : str = model.generate(input_ids=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1], tf.intaa ) ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer(sentences[1], return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.generate(input_ids=a_, max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(a_, skip_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : str = tokenizer.decode(output_non_padded[0], skip_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.decode(output_padded[0], skip_special_tokens=a_ ) SCREAMING_SNAKE_CASE__ : Dict = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(a_, a_ ) self.assertListEqual(a_, [non_padded_sentence, padded_sentence] ) def A_ ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = 'facebook/opt-350m' SCREAMING_SNAKE_CASE__ : List[Any] = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] SCREAMING_SNAKE_CASE__ : List[Any] = [] SCREAMING_SNAKE_CASE__ : Optional[int] = GPTaTokenizer.from_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = TFOPTForCausalLM.from_pretrained(a_ ) for prompt in self.prompts: SCREAMING_SNAKE_CASE__ : int = tokenizer(a_, return_tensors="tf" ).input_ids SCREAMING_SNAKE_CASE__ : int = model.generate(a_, max_length=1_0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.batch_decode(a_, skip_special_tokens=a_ ) predicted_outputs += generated_string self.assertListEqual(a_, a_ )
663
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu SCREAMING_SNAKE_CASE__ : Any = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: SCREAMING_SNAKE_CASE__ : Tuple = json.load(f) @require_torch class snake_case ( unittest.TestCase ): def __lowercase( self : List[str] , a_ : Any )-> str: """simple docstring""" return FSMTTokenizer.from_pretrained(a_ ) def __lowercase( self : int , a_ : Union[str, Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = FSMTForConditionalGeneration.from_pretrained(a_ ).to(a_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def __lowercase( self : int , a_ : Optional[int] , a_ : str )-> List[str]: """simple docstring""" # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality SCREAMING_SNAKE_CASE__ : Any = F'''facebook/wmt19-{pair}''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_tokenizer(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_model(a_ ) SCREAMING_SNAKE_CASE__ : int = bleu_data[pair]['src'] SCREAMING_SNAKE_CASE__ : Optional[int] = bleu_data[pair]['tgt'] SCREAMING_SNAKE_CASE__ : Any = tokenizer(a_ , return_tensors='pt' , truncation=a_ , padding='longest' ).to(a_ ) SCREAMING_SNAKE_CASE__ : int = model.generate( input_ids=batch.input_ids , num_beams=8 , ) SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.batch_decode( a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = calculate_bleu(a_ , a_ ) print(a_ ) self.assertGreaterEqual(scores['bleu'] , a_ )
85
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class snake_case__ ( UpperCamelCase_ ): _lowerCAmelCase =42 @flax_register_to_config class snake_case__ ( nn.Module , UpperCamelCase_ , UpperCamelCase_ ): _lowerCAmelCase =32 _lowerCAmelCase =4 _lowerCAmelCase =4 _lowerCAmelCase =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _lowerCAmelCase =("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _lowerCAmelCase =False _lowerCAmelCase =(320, 640, 1280, 1280) _lowerCAmelCase =2 _lowerCAmelCase =8 _lowerCAmelCase =None _lowerCAmelCase =1280 _lowerCAmelCase =0.0 _lowerCAmelCase =False _lowerCAmelCase =jnp.floataa _lowerCAmelCase =True _lowerCAmelCase =0 _lowerCAmelCase =False def UpperCAmelCase__ ( self : Optional[Any] , _lowerCamelCase : jax.random.KeyArray ): # init input tensors snake_case__ : Optional[int] = (1, self.in_channels, self.sample_size, self.sample_size) snake_case__ : Tuple = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) snake_case__ : str = jnp.ones((1,) , dtype=jnp.intaa ) snake_case__ : Union[str, Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case__ , snake_case__ : Union[str, Any] = jax.random.split(_lowerCamelCase ) snake_case__ : Dict = {'params': params_rng, 'dropout': dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def UpperCAmelCase__ ( self : Dict ): snake_case__ : Dict = self.block_out_channels snake_case__ : Dict = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case__ : List[Any] = self.num_attention_heads or self.attention_head_dim # input snake_case__ : Union[str, Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case__ : List[str] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case__ : List[str] = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) snake_case__ : Optional[Any] = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): snake_case__ : Any = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): snake_case__ : Any = (num_attention_heads,) * len(self.down_block_types ) # down snake_case__ : Union[str, Any] = [] snake_case__ : Tuple = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): snake_case__ : str = output_channel snake_case__ : List[str] = block_out_channels[i] snake_case__ : List[Any] = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case__ : Dict = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case__ : int = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) snake_case__ : str = down_blocks # mid snake_case__ : Tuple = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up snake_case__ : List[str] = [] snake_case__ : Union[str, Any] = list(reversed(_lowerCamelCase ) ) snake_case__ : List[str] = list(reversed(_lowerCamelCase ) ) snake_case__ : List[Any] = list(reversed(_lowerCamelCase ) ) snake_case__ : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): snake_case__ : Tuple = output_channel snake_case__ : List[str] = reversed_block_out_channels[i] snake_case__ : str = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] snake_case__ : Optional[Any] = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": snake_case__ : int = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: snake_case__ : str = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) snake_case__ : int = output_channel snake_case__ : Tuple = up_blocks # out snake_case__ : int = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) snake_case__ : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any]=None , _lowerCamelCase : List[Any]=None , _lowerCamelCase : bool = True , _lowerCamelCase : bool = False , ): # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): snake_case__ : Any = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case__ : Any = timesteps.astype(dtype=jnp.floataa ) snake_case__ : Any = jnp.expand_dims(_lowerCamelCase , 0 ) snake_case__ : List[str] = self.time_proj(_lowerCamelCase ) snake_case__ : int = self.time_embedding(_lowerCamelCase ) # 2. pre-process snake_case__ : Any = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) snake_case__ : List[str] = self.conv_in(_lowerCamelCase ) # 3. down snake_case__ : Dict = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): snake_case__ , snake_case__ : Dict = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: snake_case__ , snake_case__ : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: snake_case__ : int = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) snake_case__ : Optional[int] = new_down_block_res_samples # 4. mid snake_case__ : Optional[int] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: snake_case__ : List[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] snake_case__ : List[str] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): snake_case__ : Any = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: snake_case__ : Optional[Any] = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process snake_case__ : List[Any] = self.conv_norm_out(_lowerCamelCase ) snake_case__ : Union[str, Any] = nn.silu(_lowerCamelCase ) snake_case__ : Any = self.conv_out(_lowerCamelCase ) snake_case__ : Optional[int] = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
303
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def lowercase__( A , A=False ): snake_case__ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase__( A , A , A=False ): for i in range(config.num_hidden_layers ): if base_model: snake_case__ : int = '' else: snake_case__ : Any = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Dict = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) snake_case__ : int = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Dict = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Any = in_proj_bias[: config.hidden_size] snake_case__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : Any = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Dict = in_proj_bias[-config.hidden_size :] def lowercase__( A ): snake_case__ : List[Any] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(A , A ) def lowercase__( A , A , A ): snake_case__ : str = dct.pop(A ) snake_case__ : Optional[int] = val def lowercase__( ): snake_case__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : Any = Image.open(requests.get(A , stream=A ).raw ) return im @torch.no_grad() def lowercase__( A , A , A=True ): snake_case__ : Any = ViTConfig() # patch_size if model_name[-1] == "8": snake_case__ : Any = 8 # set labels if required if not base_model: snake_case__ : Tuple = 1_0_0_0 snake_case__ : int = 'huggingface/label-files' snake_case__ : int = 'imagenet-1k-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) snake_case__ : Union[str, Any] = {int(A ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: snake_case__ : Optional[Any] = 3_8_4 snake_case__ : Optional[int] = 1_5_3_6 snake_case__ : List[Any] = 1_2 snake_case__ : Optional[Any] = 6 # load original model from torch hub snake_case__ : Tuple = torch.hub.load('facebookresearch/dino:main' , A ) original_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : List[Any] = original_model.state_dict() if base_model: remove_classification_head_(A ) snake_case__ : str = create_rename_keys(A , base_model=A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , A , A ) # load HuggingFace model if base_model: snake_case__ : int = ViTModel(A , add_pooling_layer=A ).eval() else: snake_case__ : Dict = ViTForImageClassification(A ).eval() model.load_state_dict(A ) # Check outputs on an image, prepared by ViTImageProcessor snake_case__ : Tuple = ViTImageProcessor() snake_case__ : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='pt' ) snake_case__ : Tuple = encoding['pixel_values'] snake_case__ : str = model(A ) if base_model: snake_case__ : Optional[int] = original_model(A ) assert torch.allclose(A , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: snake_case__ : Optional[Any] = original_model(A ) assert logits.shape == outputs.logits.shape assert torch.allclose(A , outputs.logits , atol=1e-3 ) Path(A ).mkdir(exist_ok=A ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A ) if __name__ == "__main__": lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) lowerCamelCase : Tuple = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
303
1
'''simple docstring''' import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=64 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ) -> int: _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = embedding_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def _snake_case ( self ) -> Any: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ) -> str: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: _lowerCAmelCase = MegatronBertModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: _lowerCAmelCase = MegatronBertForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = MegatronBertForCausalLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = MegatronBertForNextSentencePrediction(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _lowerCAmelCase = MegatronBertForPreTraining(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , next_sentence_label=_lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Any: _lowerCAmelCase = MegatronBertForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = self.num_labels _lowerCAmelCase = MegatronBertForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _lowerCAmelCase = self.num_labels _lowerCAmelCase = MegatronBertForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = self.num_choices _lowerCAmelCase = MegatronBertForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[int] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase : Tuple = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : Any = True # test_resize_embeddings = False __lowerCamelCase : str = False def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Tuple: _lowerCAmelCase = super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) if return_labels: if model_class in get_values(_lowerCAmelCase ): _lowerCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCAmelCase ) _lowerCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase ) return inputs_dict def _snake_case ( self ) -> str: _lowerCAmelCase = MegatronBertModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def _snake_case ( self ) -> List[str]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowerCAmelCase ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowerCAmelCase ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowerCAmelCase ) def _snake_case ( self ) -> int: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowerCAmelCase ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowerCAmelCase ) def _snake_case ( self ) -> Any: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowerCAmelCase ) def _snake_case ( self ) -> str: _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowerCAmelCase ) def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' return torch.tensor( SCREAMING_SNAKE_CASE_ , dtype=torch.long , device=SCREAMING_SNAKE_CASE_ , ) _SCREAMING_SNAKE_CASE = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( unittest.TestCase ): @slow @unittest.skip("Model is not available." ) def _snake_case ( self ) -> str: _lowerCAmelCase = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: _lowerCAmelCase = os.path.join(os.environ["MYDIR"] , _lowerCAmelCase ) _lowerCAmelCase = MegatronBertModel.from_pretrained(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.half() _lowerCAmelCase = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): _lowerCAmelCase = output[0, ii, jj] _lowerCAmelCase = expected[3 * ii + jj] _lowerCAmelCase = "ii={} jj={} a={} b={}".format(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) self.assertTrue(math.isclose(_lowerCAmelCase , _lowerCAmelCase , rel_tol=_lowerCAmelCase , abs_tol=_lowerCAmelCase ) , msg=_lowerCAmelCase )
18
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Union[str, Any] = { """configuration_m2m_100""": ["""M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP""", """M2M100Config""", """M2M100OnnxConfig"""], """tokenization_m2m_100""": ["""M2M100Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ """M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST""", """M2M100ForConditionalGeneration""", """M2M100Model""", """M2M100PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
0
'''simple docstring''' def _UpperCamelCase ( __A ) -> Optional[int]: '''simple docstring''' if not head: return True # split the list to two parts UpperCamelCase__ , UpperCamelCase__ = head.next, head while fast and fast.next: UpperCamelCase__ = fast.next.next UpperCamelCase__ = slow.next UpperCamelCase__ = slow.next UpperCamelCase__ = None # Don't forget here! But forget still works! # reverse the second part UpperCamelCase__ = None while second: UpperCamelCase__ = second.next UpperCamelCase__ = node UpperCamelCase__ = second UpperCamelCase__ = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False UpperCamelCase__ = node.next UpperCamelCase__ = head.next return True def _UpperCamelCase ( __A ) -> int: '''simple docstring''' if not head or not head.next: return True # 1. Get the midpoint (slow) UpperCamelCase__ = UpperCamelCase__ = UpperCamelCase__ = head while fast and fast.next: UpperCamelCase__ , UpperCamelCase__ = fast.next.next, slow.next # 2. Push the second half into the stack UpperCamelCase__ = [slow.val] while slow.next: UpperCamelCase__ = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False UpperCamelCase__ = cur.next return True def _UpperCamelCase ( __A ) -> List[Any]: '''simple docstring''' if not head or not head.next: return True UpperCamelCase__ = {} UpperCamelCase__ = 0 while head: if head.val in d: d[head.val].append(__A ) else: UpperCamelCase__ = [pos] UpperCamelCase__ = head.next pos += 1 UpperCamelCase__ = pos - 1 UpperCamelCase__ = 0 for v in d.values(): if len(__A ) % 2 != 0: middle += 1 else: UpperCamelCase__ = 0 for i in range(0 , len(__A ) ): if v[i] + v[len(__A ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
714
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _UpperCamelCase ( __A , __A , __A ) -> Tuple: '''simple docstring''' UpperCamelCase__ = AutoConfig.from_pretrained(__A ) UpperCamelCase__ = FlaxAutoModelForSeqaSeqLM.from_config(config=__A ) UpperCamelCase__ = checkpoints.load_tax_checkpoint(__A ) UpperCamelCase__ = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": UpperCamelCase__ = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCamelCase__ = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): UpperCamelCase__ = F'''layers_{str(__A )}''' # Self-Attention UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization UpperCamelCase__ = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning UpperCamelCase__ = flax_model.params["encoder"]["block"][str(__A )]["layer"] UpperCamelCase__ = tax_attention_key UpperCamelCase__ = tax_attention_out UpperCamelCase__ = tax_attention_query UpperCamelCase__ = tax_attention_value UpperCamelCase__ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ = tax_global_layer_norm if split_mlp_wi: UpperCamelCase__ = tax_mlp_wi_a UpperCamelCase__ = tax_mlp_wi_a else: UpperCamelCase__ = tax_mlp_wi UpperCamelCase__ = tax_mlp_wo UpperCamelCase__ = tax_mlp_layer_norm UpperCamelCase__ = flax_model_encoder_layer_block # Only for layer 0: UpperCamelCase__ = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T UpperCamelCase__ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T UpperCamelCase__ = tax_encoder_global_rel_embedding # Assigning UpperCamelCase__ = tax_model["target"]["encoder"]["encoder_norm"]["scale"] UpperCamelCase__ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCamelCase__ = F'''layers_{str(__A )}''' # Self-Attention UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] UpperCamelCase__ = tax_enc_dec_attention_module["key"]["kernel"] UpperCamelCase__ = tax_enc_dec_attention_module["out"]["kernel"] UpperCamelCase__ = tax_enc_dec_attention_module["query"]["kernel"] UpperCamelCase__ = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization UpperCamelCase__ = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning UpperCamelCase__ = flax_model.params["decoder"]["block"][str(__A )]["layer"] UpperCamelCase__ = tax_attention_key UpperCamelCase__ = tax_attention_out UpperCamelCase__ = tax_attention_query UpperCamelCase__ = tax_attention_value UpperCamelCase__ = tax_pre_attention_layer_norm UpperCamelCase__ = tax_enc_dec_attention_key UpperCamelCase__ = tax_enc_dec_attention_out UpperCamelCase__ = tax_enc_dec_attention_query UpperCamelCase__ = tax_enc_dec_attention_value UpperCamelCase__ = tax_cross_layer_norm if split_mlp_wi: UpperCamelCase__ = tax_mlp_wi_a UpperCamelCase__ = tax_mlp_wi_a else: UpperCamelCase__ = tax_mlp_wi UpperCamelCase__ = tax_mlp_wo UpperCamelCase__ = txa_mlp_layer_norm UpperCamelCase__ = flax_model_decoder_layer_block # Decoder Normalization UpperCamelCase__ = tax_model["target"]["decoder"]["decoder_norm"]["scale"] UpperCamelCase__ = txa_decoder_norm # Only for layer 0: UpperCamelCase__ = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T UpperCamelCase__ = tax_decoder_rel_embedding # Token Embeddings UpperCamelCase__ = tax_model["target"]["token_embedder"]["embedding"] UpperCamelCase__ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCamelCase__ = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(__A ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) a__ : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
223
0
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : str=1 ) -> List[str]: '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Tuple=0 ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = [] for old_item in old_list: UpperCAmelCase_ = old_item.replace("in_layers.0" , "norm1" ) UpperCAmelCase_ = new_item.replace("in_layers.2" , "conv1" ) UpperCAmelCase_ = new_item.replace("out_layers.0" , "norm2" ) UpperCAmelCase_ = new_item.replace("out_layers.3" , "conv2" ) UpperCAmelCase_ = new_item.replace("emb_layers.1" , "time_emb_proj" ) UpperCAmelCase_ = new_item.replace("skip_connection" , "conv_shortcut" ) UpperCAmelCase_ = shave_segments(snake_case_ , n_shave_prefix_segments=snake_case_ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : List[str]=0 ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [] for old_item in old_list: UpperCAmelCase_ = old_item UpperCAmelCase_ = new_item.replace("norm.weight" , "group_norm.weight" ) UpperCAmelCase_ = new_item.replace("norm.bias" , "group_norm.bias" ) UpperCAmelCase_ = new_item.replace("proj_out.weight" , "proj_attn.weight" ) UpperCAmelCase_ = new_item.replace("proj_out.bias" , "proj_attn.bias" ) UpperCAmelCase_ = shave_segments(snake_case_ , n_shave_prefix_segments=snake_case_ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Any , snake_case_ : Dict=None , snake_case_ : Dict=None , snake_case_ : str=None ) -> int: '''simple docstring''' assert isinstance(snake_case_ , snake_case_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCAmelCase_ = old_checkpoint[path] UpperCAmelCase_ = old_tensor.shape[0] // 3 UpperCAmelCase_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCAmelCase_ = old_tensor.shape[0] // config['''num_head_channels'''] // 3 UpperCAmelCase_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCAmelCase_ = old_tensor.split(channels // num_heads , dim=1 ) UpperCAmelCase_ = query.reshape(snake_case_ ) UpperCAmelCase_ = key.reshape(snake_case_ ) UpperCAmelCase_ = value.reshape(snake_case_ ) for path in paths: UpperCAmelCase_ = path['''new'''] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCAmelCase_ = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) UpperCAmelCase_ = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) UpperCAmelCase_ = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: UpperCAmelCase_ = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCAmelCase_ = old_checkpoint[path['''old''']][:, :, 0] else: UpperCAmelCase_ = old_checkpoint[path['''old''']] def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = {} UpperCAmelCase_ = checkpoint['''time_embed.0.weight'''] UpperCAmelCase_ = checkpoint['''time_embed.0.bias'''] UpperCAmelCase_ = checkpoint['''time_embed.2.weight'''] UpperCAmelCase_ = checkpoint['''time_embed.2.bias'''] UpperCAmelCase_ = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase_ = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase_ = checkpoint['''out.0.weight'''] UpperCAmelCase_ = checkpoint['''out.0.bias'''] UpperCAmelCase_ = checkpoint['''out.2.weight'''] UpperCAmelCase_ = checkpoint['''out.2.bias'''] # Retrieves the keys for the input blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the middle blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the output blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(1 , snake_case_ ): UpperCAmelCase_ = (i - 1) // (config['''num_res_blocks'''] + 1) UpperCAmelCase_ = (i - 1) % (config['''num_res_blocks'''] + 1) UpperCAmelCase_ = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] UpperCAmelCase_ = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: UpperCAmelCase_ = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] UpperCAmelCase_ = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue UpperCAmelCase_ = renew_resnet_paths(snake_case_ ) UpperCAmelCase_ = {'''old''': f"""input_blocks.{i}.0""", '''new''': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} UpperCAmelCase_ = {'''old''': '''resnets.2.op''', '''new''': '''downsamplers.0.op'''} assign_to_checkpoint( snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path, resnet_op] , config=snake_case_ ) if len(snake_case_ ): UpperCAmelCase_ = renew_attention_paths(snake_case_ ) UpperCAmelCase_ = { '''old''': f"""input_blocks.{i}.1""", '''new''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase_ = { f"""input_blocks.{i}.1.qkv.bias""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { '''key''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , attention_paths_to_split=snake_case_ , config=snake_case_ , ) UpperCAmelCase_ = middle_blocks[0] UpperCAmelCase_ = middle_blocks[1] UpperCAmelCase_ = middle_blocks[2] UpperCAmelCase_ = renew_resnet_paths(snake_case_ ) assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , config=snake_case_ ) UpperCAmelCase_ = renew_resnet_paths(snake_case_ ) assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , config=snake_case_ ) UpperCAmelCase_ = renew_attention_paths(snake_case_ ) UpperCAmelCase_ = { '''middle_block.1.qkv.bias''': { '''key''': '''mid_block.attentions.0.key.bias''', '''query''': '''mid_block.attentions.0.query.bias''', '''value''': '''mid_block.attentions.0.value.bias''', }, '''middle_block.1.qkv.weight''': { '''key''': '''mid_block.attentions.0.key.weight''', '''query''': '''mid_block.attentions.0.query.weight''', '''value''': '''mid_block.attentions.0.value.weight''', }, } assign_to_checkpoint( snake_case_ , snake_case_ , snake_case_ , attention_paths_to_split=snake_case_ , config=snake_case_ ) for i in range(snake_case_ ): UpperCAmelCase_ = i // (config['''num_res_blocks'''] + 1) UpperCAmelCase_ = i % (config['''num_res_blocks'''] + 1) UpperCAmelCase_ = [shave_segments(snake_case_ , 2 ) for name in output_blocks[i]] UpperCAmelCase_ = {} for layer in output_block_layers: UpperCAmelCase_ = layer.split("." )[0], shave_segments(snake_case_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case_ ) else: UpperCAmelCase_ = [layer_name] if len(snake_case_ ) > 1: UpperCAmelCase_ = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] UpperCAmelCase_ = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] UpperCAmelCase_ = renew_resnet_paths(snake_case_ ) UpperCAmelCase_ = renew_resnet_paths(snake_case_ ) UpperCAmelCase_ = {'''old''': f"""output_blocks.{i}.0""", '''new''': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCAmelCase_ = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) UpperCAmelCase_ = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] UpperCAmelCase_ = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(snake_case_ ) == 2: UpperCAmelCase_ = [] if len(snake_case_ ): UpperCAmelCase_ = renew_attention_paths(snake_case_ ) UpperCAmelCase_ = { '''old''': f"""output_blocks.{i}.1""", '''new''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } UpperCAmelCase_ = { f"""output_blocks.{i}.1.qkv.bias""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { '''key''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", '''query''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", '''value''': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=snake_case_ , ) else: UpperCAmelCase_ = renew_resnet_paths(snake_case_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCAmelCase_ = '''.'''.join(["output_blocks", str(snake_case_ ), path["old"]] ) UpperCAmelCase_ = '''.'''.join(["up_blocks", str(snake_case_ ), "resnets", str(snake_case_ ), path["new"]] ) UpperCAmelCase_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[Any] =argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE_: Any =parser.parse_args() SCREAMING_SNAKE_CASE_: Optional[int] =torch.load(args.checkpoint_path) with open(args.config_file) as f: SCREAMING_SNAKE_CASE_: List[str] =json.loads(f.read()) SCREAMING_SNAKE_CASE_: Tuple =convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] SCREAMING_SNAKE_CASE_: Dict =UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: SCREAMING_SNAKE_CASE_: Any =DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) SCREAMING_SNAKE_CASE_: Optional[Any] =VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) SCREAMING_SNAKE_CASE_: Union[str, Any] =LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
78
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
678
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore _lowerCAmelCase : Optional[int] = ''' Human: <<task>> Assistant: ''' _lowerCAmelCase : Union[str, Any] = '''huggingface-tools/default-prompts''' _lowerCAmelCase : Optional[int] = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="run" ) -> Any: '''simple docstring''' if prompt_or_repo_id is None: _lowerCamelCase : str = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCamelCase ) is not None: return prompt_or_repo_id _lowerCamelCase : Optional[int] = cached_file( _lowerCamelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCamelCase , "r" , encoding="utf-8" ) as f: return f.read()
386
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase ) _lowerCamelCase : str = checkpoints.load_tax_checkpoint(_lowerCamelCase ) _lowerCamelCase : str = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": _lowerCamelCase : Optional[int] = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": _lowerCamelCase : Optional[Any] = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : Optional[int] = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): _lowerCamelCase : Tuple = F"""layers_{str(_lowerCamelCase )}""" # Self-Attention _lowerCamelCase : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] _lowerCamelCase : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] _lowerCamelCase : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] _lowerCamelCase : int = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : Optional[int] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization _lowerCamelCase : Any = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: _lowerCamelCase : Any = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] _lowerCamelCase : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _lowerCamelCase : List[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] _lowerCamelCase : Optional[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _lowerCamelCase : List[str] = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _lowerCamelCase : Tuple = flax_model.params["encoder"]["block"][str(_lowerCamelCase )]["layer"] _lowerCamelCase : int = tax_attention_key _lowerCamelCase : Union[str, Any] = tax_attention_out _lowerCamelCase : str = tax_attention_query _lowerCamelCase : Dict = tax_attention_value _lowerCamelCase : str = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : Union[str, Any] = tax_global_layer_norm if split_mlp_wi: _lowerCamelCase : Optional[Any] = tax_mlp_wi_a _lowerCamelCase : int = tax_mlp_wi_a else: _lowerCamelCase : str = tax_mlp_wi _lowerCamelCase : Optional[int] = tax_mlp_wo _lowerCamelCase : List[str] = tax_mlp_layer_norm _lowerCamelCase : Tuple = flax_model_encoder_layer_block # Only for layer 0: _lowerCamelCase : Optional[int] = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T _lowerCamelCase : int = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : int = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T _lowerCamelCase : List[str] = tax_encoder_global_rel_embedding # Assigning _lowerCamelCase : List[str] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] _lowerCamelCase : int = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _lowerCamelCase : str = F"""layers_{str(_lowerCamelCase )}""" # Self-Attention _lowerCamelCase : Optional[int] = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] _lowerCamelCase : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] _lowerCamelCase : Dict = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] _lowerCamelCase : Any = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization _lowerCamelCase : Tuple = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention _lowerCamelCase : Optional[int] = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] _lowerCamelCase : List[str] = tax_enc_dec_attention_module["key"]["kernel"] _lowerCamelCase : Tuple = tax_enc_dec_attention_module["out"]["kernel"] _lowerCamelCase : Union[str, Any] = tax_enc_dec_attention_module["query"]["kernel"] _lowerCamelCase : Any = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization _lowerCamelCase : int = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: _lowerCamelCase : Optional[int] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] _lowerCamelCase : List[str] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _lowerCamelCase : str = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] _lowerCamelCase : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _lowerCamelCase : Tuple = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _lowerCamelCase : str = flax_model.params["decoder"]["block"][str(_lowerCamelCase )]["layer"] _lowerCamelCase : Tuple = tax_attention_key _lowerCamelCase : List[str] = tax_attention_out _lowerCamelCase : Union[str, Any] = tax_attention_query _lowerCamelCase : Optional[int] = tax_attention_value _lowerCamelCase : Optional[Any] = tax_pre_attention_layer_norm _lowerCamelCase : Tuple = tax_enc_dec_attention_key _lowerCamelCase : List[str] = tax_enc_dec_attention_out _lowerCamelCase : Tuple = tax_enc_dec_attention_query _lowerCamelCase : Tuple = tax_enc_dec_attention_value _lowerCamelCase : Optional[Any] = tax_cross_layer_norm if split_mlp_wi: _lowerCamelCase : List[Any] = tax_mlp_wi_a _lowerCamelCase : List[Any] = tax_mlp_wi_a else: _lowerCamelCase : Dict = tax_mlp_wi _lowerCamelCase : Union[str, Any] = tax_mlp_wo _lowerCamelCase : Dict = txa_mlp_layer_norm _lowerCamelCase : Optional[int] = flax_model_decoder_layer_block # Decoder Normalization _lowerCamelCase : Tuple = tax_model["target"]["decoder"]["decoder_norm"]["scale"] _lowerCamelCase : Union[str, Any] = txa_decoder_norm # Only for layer 0: _lowerCamelCase : int = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T _lowerCamelCase : List[Any] = tax_decoder_rel_embedding # Token Embeddings _lowerCamelCase : Union[str, Any] = tax_model["target"]["token_embedder"]["embedding"] _lowerCamelCase : Any = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _lowerCamelCase : Tuple = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) _lowerCAmelCase : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
386
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): """simple docstring""" lowercase__ = {} for old_key in state_dict.keys(): lowercase__ = old_key if "moe_layer.experts." in key: if expert_idx is not None: lowercase__ = key.replace('''moe_layer.experts.0''' , f'ffn.experts.expert_{expert_idx}' ) else: lowercase__ = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: lowercase__ = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: lowercase__ = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: lowercase__ = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: lowercase__ = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: lowercase__ = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: lowercase__ = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) lowercase__ = state_dict[old_key] return new_dict def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = WEIGHTS_NAME ): """simple docstring""" lowercase__ = [] lowercase__ = 0 os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) for expert in range(SCREAMING_SNAKE_CASE ): lowercase__ = switch_checkpoint_path + f'-rank-{expert}.pt' if os.path.isfile(SCREAMING_SNAKE_CASE ): lowercase__ = torch.load(SCREAMING_SNAKE_CASE )['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) lowercase__ = rename_fairseq_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = os.path.join( SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(SCREAMING_SNAKE_CASE )[0]].dtype ) # Add the last block lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{len(SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin' ) ) lowercase__ = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE ) lowercase__ = rename_fairseq_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(SCREAMING_SNAKE_CASE ) == 1: lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Otherwise, let's build the index lowercase__ = {} for idx, shard in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ = weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-{len(SCREAMING_SNAKE_CASE ):05d}.bin' ) lowercase__ = os.path.join(SCREAMING_SNAKE_CASE , weights_name.replace('''.bin''' , f'-{idx+1:05d}-of-???.bin' ) ) os.rename(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) for key in shard: lowercase__ = shard_file # Add the metadata lowercase__ = {'''total_size''': total_size} lowercase__ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , '''w''' , encoding='''utf-8''' ) as f: lowercase__ = json.dumps(SCREAMING_SNAKE_CASE , indent=2 , sort_keys=SCREAMING_SNAKE_CASE ) + '''\n''' f.write(SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) lowerCAmelCase = parser.parse_args() lowerCAmelCase, lowerCAmelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
43
lowerCAmelCase = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } lowerCAmelCase = {value: key for key, value in encode_dict.items()} def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" if set(SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) lowercase__ = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase__ = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
43
1
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _A : int = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCamelCase_ ( snake_case_ : Dict ) -> List[Any]: '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCamelCase_ ( snake_case_ : int , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> str: '''simple docstring''' return max(metric_fn(snake_case_ , snake_case_ ) for gt in ground_truths ) def UpperCamelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> str: '''simple docstring''' __lowerCAmelCase = [line.strip() for line in open(snake_case_ , """r""" ).readlines()] __lowerCAmelCase = [] if args.gold_data_mode == "qa": __lowerCAmelCase = pd.read_csv(snake_case_ , sep="""\t""" , header=snake_case_ ) for answer_list in data[1]: __lowerCAmelCase = ast.literal_eval(snake_case_ ) answers.append(snake_case_ ) else: __lowerCAmelCase = [line.strip() for line in open(snake_case_ , """r""" ).readlines()] __lowerCAmelCase = [[reference] for reference in references] __lowerCAmelCase = __lowerCAmelCase = __lowerCAmelCase = 0 for prediction, ground_truths in zip(snake_case_ , snake_case_ ): total += 1 em += metric_max_over_ground_truths(snake_case_ , snake_case_ , snake_case_ ) fa += metric_max_over_ground_truths(snake_case_ , snake_case_ , snake_case_ ) __lowerCAmelCase = 1_00.0 * em / total __lowerCAmelCase = 1_00.0 * fa / total logger.info(f"""F1: {fa:.2f}""" ) logger.info(f"""EM: {em:.2f}""" ) def UpperCamelCase_ ( snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : List[Any] ) -> int: '''simple docstring''' __lowerCAmelCase = args.k __lowerCAmelCase = [line.strip() for line in open(snake_case_ , """r""" ).readlines()] __lowerCAmelCase = [line.strip() for line in open(snake_case_ , """r""" ).readlines()] __lowerCAmelCase = __lowerCAmelCase = 0 for hypo, reference in zip(snake_case_ , snake_case_ ): __lowerCAmelCase = set(hypo.split("""\t""" )[:k] ) __lowerCAmelCase = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __lowerCAmelCase = 1_00.0 * em / total logger.info(f"""Precision@{k}: {em: .2f}""" ) def UpperCamelCase_ ( snake_case_ : str , snake_case_ : Dict , snake_case_ : Tuple ) -> int: '''simple docstring''' def strip_title(snake_case_ : List[str] ): if title.startswith("""\"""" ): __lowerCAmelCase = title[1:] if title.endswith("""\"""" ): __lowerCAmelCase = title[:-1] return title __lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case_ , return_tensors="""pt""" , padding=snake_case_ , truncation=snake_case_ , )["""input_ids"""].to(args.device ) __lowerCAmelCase = rag_model.rag.question_encoder(snake_case_ ) __lowerCAmelCase = question_enc_outputs[0] __lowerCAmelCase = rag_model.retriever( snake_case_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) __lowerCAmelCase = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __lowerCAmelCase = [] for docs in all_docs: __lowerCAmelCase = [strip_title(snake_case_ ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(snake_case_ ) ) return provenance_strings def UpperCamelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : List[Any] ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): __lowerCAmelCase = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( snake_case_ , return_tensors="""pt""" , padding=snake_case_ , truncation=snake_case_ ) __lowerCAmelCase = inputs_dict.input_ids.to(args.device ) __lowerCAmelCase = inputs_dict.attention_mask.to(args.device ) __lowerCAmelCase = rag_model.generate( # rag_model overwrites generate snake_case_ , attention_mask=snake_case_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=snake_case_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __lowerCAmelCase = rag_model.retriever.generator_tokenizer.batch_decode(snake_case_ , skip_special_tokens=snake_case_ ) if args.print_predictions: for q, a in zip(snake_case_ , snake_case_ ): logger.info("""Q: {} - A: {}""".format(snake_case_ , snake_case_ ) ) return answers def UpperCamelCase_ ( ) -> int: '''simple docstring''' __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=snake_case_ , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=snake_case_ , choices=["""exact""", """compressed""", """legacy"""] , type=snake_case_ , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=snake_case_ , type=snake_case_ , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=snake_case_ , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=snake_case_ , type=snake_case_ , required=snake_case_ , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=snake_case_ , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=snake_case_ , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=snake_case_ , type=snake_case_ , required=snake_case_ , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=snake_case_ , type=snake_case_ , required=snake_case_ , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=snake_case_ , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=snake_case_ , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=snake_case_ , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=snake_case_ , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=snake_case_ , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=snake_case_ , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def UpperCamelCase_ ( snake_case_ : Dict ) -> Union[str, Any]: '''simple docstring''' __lowerCAmelCase = {} if args.model_type is None: __lowerCAmelCase = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): __lowerCAmelCase = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration __lowerCAmelCase = args.n_docs if args.index_name is not None: __lowerCAmelCase = args.index_name if args.index_path is not None: __lowerCAmelCase = args.index_path else: __lowerCAmelCase = BartForConditionalGeneration __lowerCAmelCase = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , snake_case_ ) __lowerCAmelCase = get_scores if args.eval_mode == """e2e""" else get_precision_at_k __lowerCAmelCase = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(snake_case_ , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(snake_case_ ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): __lowerCAmelCase = RagRetriever.from_pretrained(snake_case_ , **snake_case_ ) __lowerCAmelCase = model_class.from_pretrained(snake_case_ , retriever=snake_case_ , **snake_case_ ) model.retriever.init_retrieval() else: __lowerCAmelCase = model_class.from_pretrained(snake_case_ , **snake_case_ ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: __lowerCAmelCase = [] for line in tqdm(snake_case_ ): questions.append(line.strip() ) if len(snake_case_ ) == args.eval_batch_size: __lowerCAmelCase = evaluate_batch_fn(snake_case_ , snake_case_ , snake_case_ ) preds_file.write("""\n""".join(snake_case_ ) + """\n""" ) preds_file.flush() __lowerCAmelCase = [] if len(snake_case_ ) > 0: __lowerCAmelCase = evaluate_batch_fn(snake_case_ , snake_case_ , snake_case_ ) preds_file.write("""\n""".join(snake_case_ ) ) preds_file.flush() score_fn(snake_case_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _A : int = get_args() main(args)
703
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _A : Optional[Any] = logging.get_logger(__name__) _A : Dict = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def UpperCamelCase_ ( snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Any , snake_case_ : Union[str, Any] ) -> Tuple: '''simple docstring''' for attribute in key.split(""".""" ): __lowerCAmelCase = getattr(snake_case_ , snake_case_ ) if weight_type is not None: __lowerCAmelCase = getattr(snake_case_ , snake_case_ ).shape else: __lowerCAmelCase = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCAmelCase = value elif weight_type == "weight_g": __lowerCAmelCase = value elif weight_type == "weight_v": __lowerCAmelCase = value elif weight_type == "bias": __lowerCAmelCase = value else: __lowerCAmelCase = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCamelCase_ ( snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : Optional[Any] ) -> int: '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = fairseq_model.state_dict() __lowerCAmelCase = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowerCAmelCase = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == """group""" , ) __lowerCAmelCase = True else: for key, mapped_key in MAPPING.items(): __lowerCAmelCase = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): __lowerCAmelCase = True if "*" in mapped_key: __lowerCAmelCase = name.split(snake_case_ )[0].split(""".""" )[-2] __lowerCAmelCase = mapped_key.replace("""*""" , snake_case_ ) if "weight_g" in name: __lowerCAmelCase = """weight_g""" elif "weight_v" in name: __lowerCAmelCase = """weight_v""" elif "weight" in name: __lowerCAmelCase = """weight""" elif "bias" in name: __lowerCAmelCase = """bias""" else: __lowerCAmelCase = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase_ ( snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : int ) -> int: '''simple docstring''' __lowerCAmelCase = full_name.split("""conv_layers.""" )[-1] __lowerCAmelCase = name.split(""".""" ) __lowerCAmelCase = int(items[0] ) __lowerCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCAmelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCAmelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def UpperCamelCase_ ( snake_case_ : Tuple , snake_case_ : List[str] , snake_case_ : Dict=None , snake_case_ : Tuple=None , snake_case_ : Dict=True ) -> List[str]: '''simple docstring''' if config_path is not None: __lowerCAmelCase = HubertConfig.from_pretrained(snake_case_ ) else: __lowerCAmelCase = HubertConfig() if is_finetuned: if dict_path: __lowerCAmelCase = Dictionary.load(snake_case_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowerCAmelCase = target_dict.pad_index __lowerCAmelCase = target_dict.bos_index __lowerCAmelCase = target_dict.eos_index __lowerCAmelCase = len(target_dict.symbols ) __lowerCAmelCase = os.path.join(snake_case_ , """vocab.json""" ) if not os.path.isdir(snake_case_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(snake_case_ ) ) return os.makedirs(snake_case_ , exist_ok=snake_case_ ) with open(snake_case_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , snake_case_ ) __lowerCAmelCase = WavaVecaCTCTokenizer( snake_case_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=snake_case_ , ) __lowerCAmelCase = True if config.feat_extract_norm == """layer""" else False __lowerCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) __lowerCAmelCase = WavaVecaProcessor(feature_extractor=snake_case_ , tokenizer=snake_case_ ) processor.save_pretrained(snake_case_ ) __lowerCAmelCase = HubertForCTC(snake_case_ ) else: __lowerCAmelCase = HubertModel(snake_case_ ) if is_finetuned: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __lowerCAmelCase = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": _A : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _A : str = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
0
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path A : Optional[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) A : str = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} A : int = 'zero2' A : Tuple = 'zero3' A : str = [ZEROa, ZEROa] def snake_case__ ( _snake_case : Union[str, Any] , _snake_case : Tuple , _snake_case : Any ): """simple docstring""" UpperCamelCase__ = parameterized.to_safe_name("_".join(str(_snake_case ) for x in param.args ) ) return F'{func.__name__}_{param_based_name}' # Cartesian-product of zero stages with models to test A : Tuple = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCAmelCase ( snake_case__ ): '''simple docstring''' @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def lowerCamelCase__ ( self :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] ) -> Dict: """simple docstring""" self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def lowerCamelCase__ ( self :Optional[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[Any] ) -> int: """simple docstring""" self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def lowerCamelCase__ ( self :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[Any] ) -> Any: """simple docstring""" self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) @require_torch_multi_gpu @parameterized.expand(lowerCamelCase_ , name_func=lowerCamelCase_ ) def lowerCamelCase__ ( self :Tuple , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] ) -> str: """simple docstring""" self.run_and_check( stage=lowerCamelCase_ , model=lowerCamelCase_ , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) def lowerCamelCase__ ( self :List[Any] , lowerCamelCase_ :Optional[Any] ) -> Union[str, Any]: """simple docstring""" pass def lowerCamelCase__ ( self :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :int = 1_0 , lowerCamelCase_ :bool = True , lowerCamelCase_ :bool = True , lowerCamelCase_ :bool = True , ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = models[model] UpperCamelCase__ = self.run_trainer( stage=lowerCamelCase_ , model_name=lowerCamelCase_ , eval_steps=lowerCamelCase_ , num_train_epochs=1 , distributed=lowerCamelCase_ , fpaa=lowerCamelCase_ , ) self.do_checks(lowerCamelCase_ ) return output_dir def lowerCamelCase__ ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :int = 1_0 , lowerCamelCase_ :int = 1 , lowerCamelCase_ :bool = True , lowerCamelCase_ :bool = True , ) -> Optional[int]: """simple docstring""" UpperCamelCase__ = self.get_auto_remove_tmp_dir("./xxx" , after=lowerCamelCase_ ) UpperCamelCase__ = f'\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(lowerCamelCase_ )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n '.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files UpperCamelCase__ = f'--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'.split() UpperCamelCase__ = [f'{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'] UpperCamelCase__ = self.get_launcher(lowerCamelCase_ ) UpperCamelCase__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase_ , env=self.get_env() ) return output_dir def lowerCamelCase__ ( self :List[str] , lowerCamelCase_ :Union[str, Any]=False ) -> List[str]: """simple docstring""" UpperCamelCase__ = min(2 , get_gpu_count() ) if distributed else 1 return f'deepspeed --num_nodes 1 --num_gpus {num_gpus}'.split()
516
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : Tuple = logging.get_logger(__name__) def snake_case__ ( _snake_case : Union[str, Any] , _snake_case : Dict=False ): """simple docstring""" UpperCamelCase__ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): UpperCamelCase__ = "segformer.encoder." + key if key.startswith("backbone" ): UpperCamelCase__ = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase__ = key[key.find("patch_embed" ) + len("patch_embed" )] UpperCamelCase__ = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(_snake_case )-1}' ) if "norm" in key: UpperCamelCase__ = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase__ = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] UpperCamelCase__ = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(_snake_case )-1}' ) if "layer_norm1" in key: UpperCamelCase__ = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: UpperCamelCase__ = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase__ = key[key.find("block" ) + len("block" )] UpperCamelCase__ = key.replace(F'block{idx}' , F'block.{int(_snake_case )-1}' ) if "attn.q" in key: UpperCamelCase__ = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: UpperCamelCase__ = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: UpperCamelCase__ = key.replace("attn" , "attention.self" ) if "fc1" in key: UpperCamelCase__ = key.replace("fc1" , "dense1" ) if "fc2" in key: UpperCamelCase__ = key.replace("fc2" , "dense2" ) if "linear_pred" in key: UpperCamelCase__ = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: UpperCamelCase__ = key.replace("linear_fuse.conv" , "linear_fuse" ) UpperCamelCase__ = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase__ = key[key.find("linear_c" ) + len("linear_c" )] UpperCamelCase__ = key.replace(F'linear_c{idx}' , F'linear_c.{int(_snake_case )-1}' ) if key.startswith("head" ): UpperCamelCase__ = key.replace("head" , "classifier" ) UpperCamelCase__ = value return new_state_dict def snake_case__ ( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase__ = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) UpperCamelCase__ = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict UpperCamelCase__ = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase__ = kv_bias[: config.hidden_sizes[i]] UpperCamelCase__ = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase__ = kv_bias[ config.hidden_sizes[i] : ] def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase__ = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def snake_case__ ( _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : List[Any] ): """simple docstring""" UpperCamelCase__ = SegformerConfig() UpperCamelCase__ = False # set attributes based on model_name UpperCamelCase__ = "huggingface/label-files" if "segformer" in model_name: UpperCamelCase__ = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: UpperCamelCase__ = 1_50 UpperCamelCase__ = "ade20k-id2label.json" UpperCamelCase__ = (1, 1_50, 1_28, 1_28) elif "city" in model_name: UpperCamelCase__ = 19 UpperCamelCase__ = "cityscapes-id2label.json" UpperCamelCase__ = (1, 19, 1_28, 1_28) else: raise ValueError(F'Model {model_name} not supported' ) elif "mit" in model_name: UpperCamelCase__ = True UpperCamelCase__ = model_name[4:6] UpperCamelCase__ = 10_00 UpperCamelCase__ = "imagenet-1k-id2label.json" UpperCamelCase__ = (1, 10_00) else: raise ValueError(F'Model {model_name} not supported' ) # set config attributes UpperCamelCase__ = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) UpperCamelCase__ = {int(_snake_case ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 2_56 elif size == "b2": UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 7_68 UpperCamelCase__ = [3, 4, 6, 3] elif size == "b3": UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 7_68 UpperCamelCase__ = [3, 4, 18, 3] elif size == "b4": UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 7_68 UpperCamelCase__ = [3, 8, 27, 3] elif size == "b5": UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 7_68 UpperCamelCase__ = [3, 6, 40, 3] else: raise ValueError(F'Size {size} not supported' ) # load image processor (only resize + normalize) UpperCamelCase__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) # prepare image UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=_snake_case , return_tensors="pt" ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict if encoder_only: UpperCamelCase__ = torch.load(_snake_case , map_location=torch.device("cpu" ) ) else: UpperCamelCase__ = torch.load(_snake_case , map_location=torch.device("cpu" ) )["state_dict"] # rename keys UpperCamelCase__ = rename_keys(_snake_case , encoder_only=_snake_case ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_snake_case , _snake_case ) # create HuggingFace model and load state dict if encoder_only: UpperCamelCase__ = False UpperCamelCase__ = SegformerForImageClassification(_snake_case ) else: UpperCamelCase__ = SegformerForSemanticSegmentation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass UpperCamelCase__ = model(_snake_case ) UpperCamelCase__ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": UpperCamelCase__ = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": UpperCamelCase__ = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: UpperCamelCase__ = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _snake_case , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) A : Dict = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
516
1
"""simple docstring""" import re def _UpperCamelCase ( UpperCamelCase ) -> list: """simple docstring""" return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def _UpperCamelCase ( UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Dict = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" try: __UpperCAmelCase : Optional[int] = split_input(UpperCamelCase ) if upper: __UpperCAmelCase : str = "".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __UpperCAmelCase : List[str] = "".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def _UpperCamelCase ( UpperCamelCase ) -> str: """simple docstring""" return to_simple_case(UpperCamelCase ) def _UpperCamelCase ( UpperCamelCase ) -> str: """simple docstring""" try: __UpperCAmelCase : Any = to_simple_case(UpperCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" return to_complex_case(UpperCamelCase , UpperCamelCase , "_" ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" return to_complex_case(UpperCamelCase , UpperCamelCase , "-" ) if __name__ == "__main__": __import__("""doctest""").testmod()
711
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __UpperCAmelCase : Optional[int] = mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: __UpperCAmelCase : Any = max( mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , j - wt[i - 1] ) + val[i - 1] , ) __UpperCAmelCase : str = val return f[i][j] def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: """simple docstring""" __UpperCAmelCase : List[Any] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __UpperCAmelCase : Tuple = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __UpperCAmelCase : int = dp[i - 1][w_] return dp[n][w_], dp def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" if not (isinstance(UpperCamelCase , (list, tuple) ) and isinstance(UpperCamelCase , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) __UpperCAmelCase : List[Any] = len(UpperCamelCase ) if num_items != len(UpperCamelCase ): __UpperCAmelCase : int = ( "The number of weights must be the same as the number of values.\n" f"But got {num_items} weights and {len(UpperCamelCase )} values" ) raise ValueError(UpperCamelCase ) for i in range(UpperCamelCase ): if not isinstance(wt[i] , UpperCamelCase ): __UpperCAmelCase : Tuple = ( "All weights must be integers but got weight of " f"type {type(wt[i] )} at index {i}" ) raise TypeError(UpperCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Tuple = knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : set = set() _construct_solution(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) return optimal_val, example_optional_set def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: """simple docstring""" # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCamelCase , UpperCamelCase , i - 1 , UpperCamelCase , UpperCamelCase ) else: optimal_set.add(UpperCamelCase ) _construct_solution(UpperCamelCase , UpperCamelCase , i - 1 , j - wt[i - 1] , UpperCamelCase ) if __name__ == "__main__": A = [3, 2, 4, 4] A = [4, 3, 2, 3] A = 4 A = 6 A = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] A , A = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 A , A = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
487
0