code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : List[Any] = '▁' snake_case_ : Any = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} snake_case_ : str = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } snake_case_ : Dict = {'vinai/bartpho-syllable': 1_024} class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__ = None , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase__ , ) UpperCamelCase = vocab_file UpperCamelCase = monolingual_vocab_file UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase__ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCamelCase = {} UpperCamelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase__ ) not in self.fairseq_tokens_to_ids: UpperCamelCase = cnt cnt += 1 with open(lowerCamelCase__ , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): UpperCamelCase = line.strip().split()[0] UpperCamelCase = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase__ ) not in self.fairseq_tokens_to_ids: UpperCamelCase = len(self.fairseq_tokens_to_ids ) UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' UpperCamelCase = self.__dict__.copy() UpperCamelCase = None UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase = {} UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase ( self ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ , out_type=lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = ''''''.join(lowerCamelCase__ ).replace(lowerCamelCase__ , ''' ''' ).strip() return out_string def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase__ , '''wb''' ) as fi: UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase__ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase__ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(lowerCamelCase__ )} \n' ) return out_vocab_file, out_monolingual_vocab_file
212
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) snake_case_ : Optional[Any] = 'pytorch_model.bin' snake_case_ : Union[str, Any] = 'pytorch_model.bin.index.json' snake_case_ : Optional[Any] = 'adapter_config.json' snake_case_ : List[str] = 'adapter_model.bin' snake_case_ : Any = 'adapter_model.safetensors' snake_case_ : Optional[int] = 'tf_model.h5' snake_case_ : List[Any] = 'tf_model.h5.index.json' snake_case_ : Any = 'model.ckpt' snake_case_ : Optional[Any] = 'flax_model.msgpack' snake_case_ : List[str] = 'flax_model.msgpack.index.json' snake_case_ : List[str] = 'model.safetensors' snake_case_ : Any = 'model.safetensors.index.json' snake_case_ : Any = 'config.json' snake_case_ : Optional[Any] = 'preprocessor_config.json' snake_case_ : List[Any] = FEATURE_EXTRACTOR_NAME snake_case_ : Optional[int] = 'generation_config.json' snake_case_ : Any = 'modelcard.json' snake_case_ : Optional[int] = '▁' snake_case_ : Optional[Any] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility snake_case_ : Union[str, Any] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. snake_case_ : Union[str, Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] snake_case_ : Union[str, Any] = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __snake_case ( _UpperCAmelCase : int): if version.parse(_UpperCAmelCase) < version.parse(_UpperCAmelCase): if "dev" in min_version: UpperCamelCase = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: UpperCamelCase = f'This example requires a minimum version of {min_version},' error_message += f' but the version found is {__version__}.\n' raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''')
212
1
def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' return str(lowerCAmelCase__ ) == str(lowerCAmelCase__ )[::-1] def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' return int(lowerCAmelCase__ ) + int(str(lowerCAmelCase__ )[::-1] ) def UpperCAmelCase ( lowerCAmelCase__ = 1_0000 ): '''simple docstring''' __A = [] for num in range(1 , lowerCAmelCase__ ): __A = 0 __A = num while iterations < 50: __A = sum_reverse(lowerCAmelCase__ ) iterations += 1 if is_palindrome(lowerCAmelCase__ ): break else: lychrel_nums.append(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
205
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer snake_case_ : str =logging.get_logger(__name__) snake_case_ : Any ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ : Optional[Any] ={ '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } snake_case_ : Optional[int] ={ '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } snake_case_ : List[str] ={ '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class a__ ( lowerCAmelCase__ ): UpperCAmelCase_ : int = VOCAB_FILES_NAMES UpperCAmelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Any = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : List[Any] = RealmTokenizer def __init__( self , lowercase__=None , lowercase__=None , lowercase__=True , lowercase__="[UNK]" , lowercase__="[SEP]" , lowercase__="[PAD]" , lowercase__="[CLS]" , lowercase__="[MASK]" , lowercase__=True , lowercase__=None , **lowercase__ , ) -> str: super().__init__( lowercase__ , tokenizer_file=lowercase__ , do_lower_case=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , pad_token=lowercase__ , cls_token=lowercase__ , mask_token=lowercase__ , tokenize_chinese_chars=lowercase__ , strip_accents=lowercase__ , **lowercase__ , ) __A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowercase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowercase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowercase__ ) != tokenize_chinese_chars ): __A = getattr(lowercase__ , normalizer_state.pop("type" ) ) __A = do_lower_case __A = strip_accents __A = tokenize_chinese_chars __A = normalizer_class(**lowercase__ ) __A = do_lower_case def _lowerCamelCase ( self , lowercase__ , **lowercase__ ) -> Union[str, Any]: __A = PaddingStrategy.MAX_LENGTH __A = text __A = kwargs.pop("text_pair" , lowercase__ ) __A = kwargs.pop("return_tensors" , lowercase__ ) __A = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(lowercase__ ): if batch_text_pair is not None: __A = batch_text_pair[idx] else: __A = None __A = super().__call__(lowercase__ , lowercase__ , return_tensors=lowercase__ , **lowercase__ ) __A = encoded_candidates.get("input_ids" ) __A = encoded_candidates.get("attention_mask" ) __A = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(lowercase__ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowercase__ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowercase__ ) __A = {key: item for key, item in output_data.items() if len(lowercase__ ) != 0} return BatchEncoding(lowercase__ , tensor_type=lowercase__ ) def _lowerCamelCase ( self , lowercase__ , lowercase__=None ) -> Tuple: __A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self , lowercase__ , lowercase__ = None ) -> List[int]: __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , lowercase__ , lowercase__ = None ) -> Tuple[str]: __A = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ )
205
1
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=() , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="no" , SCREAMING_SNAKE_CASE="29500" ): UpperCamelCase : Any = False UpperCamelCase : List[Any] = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): UpperCamelCase : List[str] = True elif "IPython" in sys.modules: UpperCamelCase : Any = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: UpperCamelCase : Union[str, Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , SCREAMING_SNAKE_CASE ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: UpperCamelCase : List[str] = 8 UpperCamelCase : Any = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="""TPU""" ) print(f"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*SCREAMING_SNAKE_CASE ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr="""127.0.01""" , master_port=SCREAMING_SNAKE_CASE , mixed_precision=SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type="""MULTI_GPU""" ) print(f"""Launching training on {num_processes} GPUs.""" ) try: start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCamelCase : List[str] = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*SCREAMING_SNAKE_CASE ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=() , SCREAMING_SNAKE_CASE=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=SCREAMING_SNAKE_CASE , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ): UpperCamelCase : Union[str, Any] = PrepareForLaunch(SCREAMING_SNAKE_CASE , debug=SCREAMING_SNAKE_CASE ) start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method="""fork""" )
102
from __future__ import annotations lowerCamelCase__ = "#" class lowerCAmelCase__ : def __init__( self ) -> None: '''simple docstring''' _UpperCamelCase = {} def A_ ( self , a ) -> None: '''simple docstring''' _UpperCamelCase = self._trie for char in text: if char not in trie: _UpperCamelCase = {} _UpperCamelCase = trie[char] _UpperCamelCase = True def A_ ( self , a ) -> tuple | list: '''simple docstring''' _UpperCamelCase = self._trie for char in prefix: if char in trie: _UpperCamelCase = trie[char] else: return [] return self._elements(a ) def A_ ( self , a ) -> tuple: '''simple docstring''' _UpperCamelCase = [] for c, v in d.items(): _UpperCamelCase = [""" """] if c == END else [(c + s) for s in self._elements(a )] result.extend(a ) return tuple(a ) lowerCamelCase__ = Trie() lowerCamelCase__ = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def __A(lowerCAmelCase ) -> tuple: """simple docstring""" _UpperCamelCase = trie.find_word(lowerCAmelCase ) return tuple(string + word for word in suffixes ) def __A() -> None: """simple docstring""" print(autocomplete_using_trie("""de""" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
612
0
'''simple docstring''' __SCREAMING_SNAKE_CASE : Any = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} __SCREAMING_SNAKE_CASE : str = ['a', 'b', 'c', 'd', 'e'] def _snake_case ( lowercase , lowercase , lowercase ) -> Union[str, Any]: __a : Optional[int] = start # add current to visited visited.append(A_ ) __a : int = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __a : Optional[Any] = topological_sort(A_ , A_ , A_ ) # if all neighbors visited add current to sort sort.append(A_ ) # if all vertices haven't been visited select a new one to visit if len(A_ ) != len(A_ ): for vertice in vertices: if vertice not in visited: __a : int = topological_sort(A_ , A_ , A_ ) # return sort return sort if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = topological_sort('a', [], []) print(sort)
710
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) lowercase_ = None lowercase_ = { '7B': 1_10_08, '13B': 1_38_24, '30B': 1_79_20, '65B': 2_20_16, '70B': 2_86_72, } lowercase_ = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=1 , _UpperCAmelCase=256 ) -> List[Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: with open(_UpperCAmelCase , 'r' ) as f: return json.load(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: with open(_UpperCAmelCase , 'w' ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=True ) -> List[Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _a = os.path.join(_UpperCAmelCase , 'tmp' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _a = read_json(os.path.join(_UpperCAmelCase , 'params.json' ) ) _a = NUM_SHARDS[model_size] _a = params["n_layers"] _a = params["n_heads"] _a = n_heads // num_shards _a = params["dim"] _a = dim // n_heads _a = 10000.0 _a = 1.0 / (base ** (torch.arange(0 , _UpperCAmelCase , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _a = params["n_kv_heads"] # for GQA / MQA _a = n_heads_per_shard // num_key_value_heads _a = dim // num_key_value_heads else: # compatibility with other checkpoints _a = n_heads _a = n_heads_per_shard _a = dim # permute for sliced rotary def permute(_UpperCAmelCase , _UpperCAmelCase=n_heads , _UpperCAmelCase=dim , _UpperCAmelCase=dim ): return w.view(_UpperCAmelCase , dima // n_heads // 2 , 2 , _UpperCAmelCase ).transpose(1 , 2 ).reshape(_UpperCAmelCase , _UpperCAmelCase ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _a = torch.load(os.path.join(_UpperCAmelCase , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _a = [ torch.load(os.path.join(_UpperCAmelCase , f"""consolidated.{i:02d}.pth""" ) , map_location='cpu' ) for i in range(_UpperCAmelCase ) ] _a = 0 _a = {"weight_map": {}} for layer_i in range(_UpperCAmelCase ): _a = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _a = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _a = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } _a = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for i in range(_UpperCAmelCase ) ] , dim=0 , ).reshape(_UpperCAmelCase , _UpperCAmelCase ) ) _a = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for i in range(_UpperCAmelCase ) ] , dim=0 , ).reshape(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) _a = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for i in range(_UpperCAmelCase ) ] , dim=0 , ).reshape(_UpperCAmelCase , _UpperCAmelCase ) _a = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_UpperCAmelCase )] , dim=1 ) _a = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_UpperCAmelCase )] , dim=0 ) _a = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_UpperCAmelCase )] , dim=1 ) _a = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_UpperCAmelCase )] , dim=0 ) _a = inv_freq for k, v in state_dict.items(): _a = filename param_count += v.numel() torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) _a = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _a = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: _a = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_UpperCAmelCase )] , dim=1 ), "lm_head.weight": torch.cat([loaded[i]['output.weight'] for i in range(_UpperCAmelCase )] , dim=0 ), } for k, v in state_dict.items(): _a = filename param_count += v.numel() torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase ) ) # Write configs _a = {"total_size": param_count * 2} write_json(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'pytorch_model.bin.index.json' ) ) _a = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 _a = params["multiple_of"] if "multiple_of" in params else 256 _a = LlamaConfig( hidden_size=_UpperCAmelCase , intermediate_size=compute_intermediate_size(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_UpperCAmelCase , ) config.save_pretrained(_UpperCAmelCase ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _a = LlamaForCausalLM.from_pretrained(_UpperCAmelCase , torch_dtype=torch.floataa , low_cpu_mem_usage=_UpperCAmelCase ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_UpperCAmelCase , safe_serialization=_UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: # Initialize the tokenizer based on the `spm` model _a = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) _a = tokenizer_class(_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Any: _a = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_UpperCAmelCase , help='Whether or not to save using `safetensors`.' ) _a = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _a = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _UpperCAmelCase ) if __name__ == "__main__": main()
562
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : str = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class A ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase : Tuple = """ibert""" def __init__( self : str , _UpperCamelCase : Optional[Any]=30_522 , _UpperCamelCase : List[Any]=768 , _UpperCamelCase : str=12 , _UpperCamelCase : Optional[Any]=12 , _UpperCamelCase : Tuple=3_072 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Dict=0.1 , _UpperCamelCase : str=512 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : List[Any]=1e-12 , _UpperCamelCase : Any=1 , _UpperCamelCase : Optional[int]=0 , _UpperCamelCase : int=2 , _UpperCamelCase : Any="absolute" , _UpperCamelCase : Union[str, Any]=False , _UpperCamelCase : Optional[int]="none" , **_UpperCamelCase : Dict , ): super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase) _lowercase: Dict = vocab_size _lowercase: int = hidden_size _lowercase: Union[str, Any] = num_hidden_layers _lowercase: Optional[Any] = num_attention_heads _lowercase: Tuple = hidden_act _lowercase: str = intermediate_size _lowercase: List[str] = hidden_dropout_prob _lowercase: Tuple = attention_probs_dropout_prob _lowercase: Optional[Any] = max_position_embeddings _lowercase: Tuple = type_vocab_size _lowercase: List[str] = initializer_range _lowercase: Optional[int] = layer_norm_eps _lowercase: Optional[int] = position_embedding_type _lowercase: Any = quant_mode _lowercase: Dict = force_dequant class A ( lowerCamelCase_ ): '''simple docstring''' @property def UpperCAmelCase__ ( self : List[str]): if self.task == "multiple-choice": _lowercase: List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowercase: Optional[int] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
226
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) lowercase_ : List[Any] = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowercase ( __lowerCAmelCase ): """simple docstring""" _UpperCamelCase : Union[str, Any] = '''speech_to_text''' _UpperCamelCase : List[str] = ['''past_key_values'''] _UpperCamelCase : str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[Any] , lowerCamelCase_ : Tuple=1_00_00 , lowerCamelCase_ : Optional[Any]=12 , lowerCamelCase_ : Optional[Any]=20_48 , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : str=6 , lowerCamelCase_ : List[Any]=20_48 , lowerCamelCase_ : Any=4 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Tuple=0.0 , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Union[str, Any]="relu" , lowerCamelCase_ : Any=2_56 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : int=0.0 , lowerCamelCase_ : List[str]=0.02 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : int=True , lowerCamelCase_ : str=1 , lowerCamelCase_ : List[Any]=0 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : List[str]=60_00 , lowerCamelCase_ : Any=10_24 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Union[str, Any]=(5, 5) , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : Union[str, Any]=80 , lowerCamelCase_ : str=1 , **lowerCamelCase_ : Dict , ): '''simple docstring''' _snake_case : Any = vocab_size _snake_case : Union[str, Any] = d_model _snake_case : List[str] = encoder_ffn_dim _snake_case : List[Any] = encoder_layers _snake_case : Union[str, Any] = encoder_attention_heads _snake_case : Any = decoder_ffn_dim _snake_case : Dict = decoder_layers _snake_case : Tuple = decoder_attention_heads _snake_case : int = dropout _snake_case : Optional[Any] = attention_dropout _snake_case : Optional[int] = activation_dropout _snake_case : Optional[Any] = activation_function _snake_case : int = init_std _snake_case : Dict = encoder_layerdrop _snake_case : Optional[Any] = decoder_layerdrop _snake_case : Dict = use_cache _snake_case : Any = encoder_layers _snake_case : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True _snake_case : int = max_source_positions _snake_case : List[Any] = max_target_positions _snake_case : int = num_conv_layers _snake_case : Any = list(lowerCAmelCase_ ) _snake_case : str = conv_channels _snake_case : str = input_feat_per_channel _snake_case : str = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
717
def A__( __lowerCAmelCase ): assert column_title.isupper() _snake_case : List[Any] = 0 _snake_case : List[str] = len(__lowerCAmelCase ) - 1 _snake_case : Dict = 0 while index >= 0: _snake_case : List[str] = (ord(column_title[index] ) - 64) * pow(26 , __lowerCAmelCase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
652
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
665
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'vocab_file': 'spiece.model'} __magic_name__ = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } __magic_name__ = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] a_ = [] def __init__( self : Optional[int] ,_a : int ,_a : Optional[Any]="<unk>" ,_a : int="<s>" ,_a : str="</s>" ,_a : Optional[Any]="<pad>" ,_a : Tuple="[SEP]" ,_a : Tuple="[MASK]" ,_a : Union[str, Any]="[CLS]" ,_a : Optional[Dict[str, Any]] = None ,**_a : Any ,): '''simple docstring''' A_ : Dict = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else bos_token A_ : Union[str, Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else eos_token A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else unk_token A_ : Union[str, Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else pad_token A_ : Any = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else cls_token A_ : Optional[int] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A_ : List[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else mask_token A_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a ,eos_token=_a ,unk_token=_a ,pad_token=_a ,sep_token=_a ,mask_token=_a ,cls_token=_a ,sp_model_kwargs=self.sp_model_kwargs ,**_a ,) A_ : Optional[int] = vocab_file A_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def _a ( self : Union[str, Any] ): '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : Tuple = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): '''simple docstring''' A_ : Union[str, Any] = self.__dict__.copy() A_ : Union[str, Any] = None return state def __setstate__( self : List[Any] ,_a : Any ): '''simple docstring''' A_ : Tuple = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): A_ : Tuple = {} A_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self : Union[str, Any] ,_a : str ): '''simple docstring''' return self.sp_model.encode(_a ,out_type=_a ) def _a ( self : Optional[int] ,_a : str ): '''simple docstring''' return self.sp_model.piece_to_id(_a ) def _a ( self : int ,_a : Optional[int] ): '''simple docstring''' A_ : List[str] = self.sp_model.IdToPiece(_a ) return token def _a ( self : Dict ,_a : int ): '''simple docstring''' A_ : int = [] A_ : Any = """""" A_ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token A_ : Dict = True A_ : Union[str, Any] = [] else: current_sub_tokens.append(_a ) A_ : str = False out_string += self.sp_model.decode(_a ) return out_string.strip() def _a ( self : int ,_a : List[int] ,_a : bool = False ,_a : bool = None ,_a : bool = True ,**_a : str ,): '''simple docstring''' A_ : Any = kwargs.pop("""use_source_tokenizer""" ,_a ) A_ : Union[str, Any] = self.convert_ids_to_tokens(_a ,skip_special_tokens=_a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ : str = [] A_ : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) A_ : List[str] = [] sub_texts.append(_a ) else: current_sub_text.append(_a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: A_ : Optional[int] = re.sub(r""" (\[(MASK|SEP)\])""" ,r"""\1""" ,""" """.join(_a ) ) else: A_ : Tuple = """""".join(_a ) A_ : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ : Optional[Any] = self.clean_up_tokenization(_a ) return clean_text else: return text def _a ( self : int ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A_ : int = os.path.join( _a ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_a ) elif not os.path.isfile(self.vocab_file ): with open(_a ,"""wb""" ) as fi: A_ : str = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def _a ( self : Optional[Any] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ : List[Any] = [self.cls_token_id] A_ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _a ( self : Optional[int] ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a ,token_ids_a=_a ,already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def _a ( self : Tuple ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' A_ : Tuple = [self.sep_token_id] A_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
665
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( UpperCAmelCase , unittest.TestCase ): a_ = BioGptTokenizer a_ = False def snake_case__ ( self : Any ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __UpperCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __UpperCAmelCase = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__a ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__a ) ) def snake_case__ ( self : Dict , __a : Any ) -> List[Any]: __UpperCAmelCase = '''lower newer''' __UpperCAmelCase = '''lower newer''' return input_text, output_text def snake_case__ ( self : Any ) -> Tuple: __UpperCAmelCase = BioGptTokenizer(self.vocab_file , self.merges_file ) __UpperCAmelCase = '''lower''' __UpperCAmelCase = ['''low''', '''er</w>'''] __UpperCAmelCase = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __UpperCAmelCase = tokens + ['''<unk>'''] __UpperCAmelCase = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) @slow def snake_case__ ( self : List[Any] ) -> List[str]: __UpperCAmelCase = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__a ) __UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__a ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a ) __UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__a , __a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
654
'''simple docstring''' import heapq import sys import numpy as np __lowerCAmelCase : Any = tuple[int, int] class A : def __init__( self : Optional[int] ) -> int: __UpperCAmelCase = [] __UpperCAmelCase = set() def snake_case__ ( self : Optional[Any] ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case__ ( self : Dict ) -> Optional[int]: return len(self.elements ) == 0 def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__a ) else: # update # print("update", item) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case__ ( self : int , __a : Any ) -> int: if item in self.set: self.set.remove(__a ) __UpperCAmelCase = [] ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case__ ( self : List[str] ) -> Dict: return self.elements[0][1] def snake_case__ ( self : Any ) -> List[str]: ((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements ) self.set.remove(__a ) return (priority, item) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # euclidean distance __UpperCAmelCase = np.array(UpperCamelCase__ ) __UpperCAmelCase = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): """simple docstring""" # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): """simple docstring""" __UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ): """simple docstring""" __UpperCAmelCase = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): __UpperCAmelCase = '''*''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: __UpperCAmelCase = '''#''' __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[goal] while x != start: ((__UpperCAmelCase) , (__UpperCAmelCase)) = x # print(x) __UpperCAmelCase = '''-''' __UpperCAmelCase = back_pointer[x] __UpperCAmelCase = '''-''' for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCAmelCase = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=''' ''' ) __UpperCAmelCase = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def lowerCAmelCase ( UpperCamelCase__ : TPos ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ): """simple docstring""" for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((__UpperCAmelCase) , (__UpperCAmelCase)) = s __UpperCAmelCase = (x - 1, y) __UpperCAmelCase = (x + 1, y) __UpperCAmelCase = (x, y + 1) __UpperCAmelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) __UpperCAmelCase = -1 __UpperCAmelCase = float('''inf''' ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: __UpperCAmelCase = g_function[s] + 1 __UpperCAmelCase = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __lowerCAmelCase : List[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __lowerCAmelCase : Dict = make_common_ground() __lowerCAmelCase : int = blocks_blk # hyper parameters __lowerCAmelCase : Dict = 1 __lowerCAmelCase : List[str] = 1 __lowerCAmelCase : Union[str, Any] = 20 __lowerCAmelCase : Any = 3 # one consistent and two other inconsistent # start and end destination __lowerCAmelCase : Optional[Any] = (0, 0) __lowerCAmelCase : Any = (n - 1, n - 1) __lowerCAmelCase : Optional[int] = 1 def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = {start: 0, goal: float('''inf''' )} __UpperCAmelCase = {start: -1, goal: -1} __UpperCAmelCase = [] __UpperCAmelCase = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase = [] __UpperCAmelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __UpperCAmelCase = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
654
1
"""simple docstring""" import numpy as np def UpperCamelCase ( _A ) -> np.ndarray: return 1 / (1 + np.exp(-vector )) def UpperCamelCase ( _A ) -> np.ndarray: return vector * sigmoid(_A ) if __name__ == "__main__": import doctest doctest.testmod()
264
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def UpperCamelCase ( _A = "laptop" ) -> DataFrame: lowercase : List[str] = F"""https://www.amazon.in/laptop/s?k={product}""" lowercase : str = { """User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""", """Accept-Language""": """en-US, en;q=0.5""", } lowercase : str = BeautifulSoup(requests.get(_A , headers=_A ).text ) # Initialize a Pandas dataframe with the column titles lowercase : Optional[Any] = DataFrame( columns=[ """Product Title""", """Product Link""", """Current Price of the product""", """Product Rating""", """MRP of the product""", """Discount""", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( """div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ): try: lowercase : str = item.ha.text lowercase : Tuple = """https://www.amazon.in/""" + item.ha.a["""href"""] lowercase : Tuple = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text try: lowercase : Any = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text except AttributeError: lowercase : Tuple = """Not available""" try: lowercase : Any = ( """₹""" + item.find( """span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1] ) except AttributeError: lowercase : Any = """""" try: lowercase : List[str] = float( ( ( float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) - float(product_price.strip("""₹""" ).replace(""",""" , """""" ) ) ) / float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) ) ) * 100 ) except ValueError: lowercase : Tuple = float("""nan""" ) except AttributeError: pass lowercase : Union[str, Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowercase : Tuple = """ """ lowercase : List[str] = """ """ data_frame.index += 1 return data_frame if __name__ == "__main__": _lowerCAmelCase = 'headphones' get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
264
1
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCAmelCase : Any = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class A ( UpperCAmelCase ): def __init__( self : Optional[Any] , __a : int = 1_0_1 ) -> str: __UpperCAmelCase = length def __len__( self : Tuple ) -> List[str]: return self.length def __getitem__( self : List[Any] , __a : Any ) -> int: return i class A : def __call__( self : List[str] , __a : Any ) -> int: return {"input_ids": torch.tensor(__a ), "labels": torch.tensor(__a )} class A ( nn.Module ): def __init__( self : str ) -> Any: super().__init__() # Add some (unused) params otherwise DDP will complain. __UpperCAmelCase = nn.Linear(1_2_0 , 8_0 ) def snake_case__ ( self : int , __a : Union[str, Any] , __a : List[Any]=None ) -> Dict: if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class A ( UpperCAmelCase ): @require_torch_neuroncore def snake_case__ ( self : Optional[Any] ) -> Tuple: __UpperCAmelCase = f"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f"""--output_dir {output_dir}""".split() __UpperCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class A ( UpperCAmelCase ): @require_torch_multi_gpu def snake_case__ ( self : int ) -> Any: __UpperCAmelCase = f"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() __UpperCAmelCase = self.get_auto_remove_tmp_dir() __UpperCAmelCase = f"""--output_dir {output_dir}""".split() __UpperCAmelCase = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__a , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCAmelCase : Optional[Any] = HfArgumentParser((TrainingArguments,)) __lowerCAmelCase : Dict = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __lowerCAmelCase : List[Any] = DummyDataset(dataset_length) def lowerCAmelCase ( UpperCamelCase__ : EvalPrediction ): """simple docstring""" __UpperCAmelCase = list(range(len(UpperCamelCase__ ) ) ) __UpperCAmelCase = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} __lowerCAmelCase : str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCAmelCase : Union[str, Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase : List[str] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase : Union[str, Any] = 2 __lowerCAmelCase : str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase : Optional[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase : str = None
654
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : Tuple ): """simple docstring""" # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __UpperCAmelCase = len(UpperCamelCase__ ) __UpperCAmelCase = max(UpperCamelCase__ ) __UpperCAmelCase = min(UpperCamelCase__ ) # create the counting array __UpperCAmelCase = coll_max + 1 - coll_min __UpperCAmelCase = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , UpperCamelCase__ ): __UpperCAmelCase = counting_arr[i] + counting_arr[i - 1] # create the output collection __UpperCAmelCase = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , UpperCamelCase__ ) ): __UpperCAmelCase = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" return "".join([chr(UpperCamelCase__ ) for i in counting_sort([ord(UpperCamelCase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" __lowerCAmelCase : str = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
654
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = os.path.join(args.tf_model_dir , "parameters.json" ) snake_case_ = json.loads(open(_A ).read() ) if not params: raise ValueError( f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file." ) if not args.output.endswith(".pt" ): snake_case_ = args.output + ".pt" snake_case_ = OrderedDict() with tf.device("/CPU:0" ): snake_case_ = tf.train.load_checkpoint(args.tf_model_dir ) snake_case_ = reader.get_variable_to_shape_map() for key_name in shapes.keys(): snake_case_ = reader.get_tensor(_A ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): snake_case_ = int(key_name[9] ) elif key_name.startswith("pasts/out" ): snake_case_ = 8 snake_case_ = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(_A ) elif key_name.startswith("model/moe" ): snake_case_ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): snake_case_ = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(_A ) elif key_name.endswith("/softmlp/kernel" ): snake_case_ = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(_A ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): snake_case_ = key_name[-9:-7] for i in range(16 ): snake_case_ = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) snake_case_ = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided snake_case_ = torch.tensor(_A ) elif key_name.startswith("model/mlp" ): snake_case_ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): snake_case_ = "model.blocks.%d.feed_forward.mlp.wi.weight" % player snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(_A ) elif key_name.endswith("/p1/bias" ): snake_case_ = "model.blocks.%d.feed_forward.mlp.wi.bias" % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(_A ) elif key_name.endswith("/p2/kernel" ): snake_case_ = "model.blocks.%d.feed_forward.mlp.wo.weight" % player snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(_A ) elif key_name.endswith("/p2/bias" ): snake_case_ = "model.blocks.%d.feed_forward.mlp.wo.bias" % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(_A ) elif key_name.startswith("model/ln" ): snake_case_ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): snake_case_ = "model.blocks.%d.feed_forward.norm.bias" % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(_A ) elif key_name.endswith("/g" ): snake_case_ = "model.blocks.%d.feed_forward.norm.weight" % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(_A ) elif key_name.startswith("model/att" ): snake_case_ = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): snake_case_ = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum snake_case_ = state[:, 0, :, :] snake_case_ = state[:, 1, :, :] snake_case_ = state[:, 2, :, :] snake_case_ = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player snake_case_ = torch.tensor(_A ) snake_case_ = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player snake_case_ = torch.tensor(_A ) snake_case_ = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player snake_case_ = torch.tensor(_A ) elif key_name.endswith("/o/kernel" ): snake_case_ = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player snake_case_ = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(_A ) elif key_name.startswith("model/an" ): snake_case_ = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): snake_case_ = "model.blocks.%d.self_attn.norm.bias" % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(_A ) elif key_name.endswith("/g" ): snake_case_ = "model.blocks.%d.self_attn.norm.weight" % player snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(_A ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): snake_case_ = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] snake_case_ = "model.%s.weight" % nlayer snake_case_ = vnp.copy() # same in embedded snake_case_ = torch.tensor(_A ) if key_name.startswith("model/wte" ): snake_case_ = "lm_head.weight" snake_case_ = vnp.copy() # same in embedded snake_case_ = torch.tensor(_A ) elif key_name.startswith("model/wob" ): snake_case_ = "final_logits_bias" snake_case_ = vnp.copy() # same in embedded snake_case_ = state.reshape((1, -1) ) snake_case_ = torch.tensor(_A ) elif key_name == "model/dense/kernel": snake_case_ = "model.last_project.weight" snake_case_ = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix snake_case_ = torch.tensor(_A ) elif key_name == "model/dense_1/bias": snake_case_ = "model.last_project.bias" snake_case_ = vnp.copy() # same because it is one dimensional snake_case_ = torch.tensor(_A ) torch.save(_A , args.output ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser( description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model") parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model") lowercase__ : Any = parser.parse_args() convert_tf_gptsan_to_pt(args)
376
import numpy as np def lowerCamelCase__ ( _A ): '''simple docstring''' return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
376
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Tuple = logging.get_logger(__name__) _A : List[str] = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class a__ ( _UpperCamelCase ): __lowerCAmelCase = """altclip_text_model""" def __init__( self , _a=250_002 , _a=1_024 , _a=24 , _a=16 , _a=4_096 , _a="gelu" , _a=0.1 , _a=0.1 , _a=514 , _a=1 , _a=0.0_2 , _a=0.0_2 , _a=1E-05 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=768 , **_a , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowercase : Optional[int] = vocab_size lowercase : Optional[Any] = hidden_size lowercase : Dict = num_hidden_layers lowercase : Tuple = num_attention_heads lowercase : Union[str, Any] = hidden_act lowercase : Union[str, Any] = intermediate_size lowercase : Optional[Any] = hidden_dropout_prob lowercase : Tuple = attention_probs_dropout_prob lowercase : List[str] = max_position_embeddings lowercase : Tuple = type_vocab_size lowercase : Any = initializer_range lowercase : Optional[int] = initializer_factor lowercase : Any = layer_norm_eps lowercase : int = position_embedding_type lowercase : List[Any] = use_cache lowercase : Tuple = project_dim class a__ ( _UpperCamelCase ): __lowerCAmelCase = """altclip_vision_model""" def __init__( self , _a=768 , _a=3_072 , _a=512 , _a=12 , _a=12 , _a=3 , _a=224 , _a=32 , _a="quick_gelu" , _a=1E-5 , _a=0.0 , _a=0.0_2 , _a=1.0 , **_a , ): super().__init__(**_UpperCAmelCase ) lowercase : Union[str, Any] = hidden_size lowercase : int = intermediate_size lowercase : Optional[int] = projection_dim lowercase : List[Any] = num_hidden_layers lowercase : Optional[Any] = num_attention_heads lowercase : int = num_channels lowercase : List[Any] = patch_size lowercase : Union[str, Any] = image_size lowercase : Dict = initializer_range lowercase : Any = initializer_factor lowercase : Union[str, Any] = attention_dropout lowercase : List[str] = layer_norm_eps lowercase : Optional[int] = hidden_act @classmethod def __magic_name__ ( cls , _a , **_a ): cls._set_token_in_kwargs(_UpperCAmelCase ) lowercase : Any = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type" ) == "altclip": lowercase : Any = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class a__ ( _UpperCamelCase ): __lowerCAmelCase = """altclip""" __lowerCAmelCase = True def __init__( self , _a=None , _a=None , _a=768 , _a=2.6_5_9_2 , **_a ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). lowercase : List[Any] = kwargs.pop("text_config_dict" , _UpperCAmelCase ) lowercase : str = kwargs.pop("vision_config_dict" , _UpperCAmelCase ) super().__init__(**_UpperCAmelCase ) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: lowercase : int = {} # This is the complete result when using `text_config_dict`. lowercase : str = AltCLIPTextConfig(**_UpperCAmelCase ).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: lowercase : Optional[Any] = ( f"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ f"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: lowercase : int = ( f"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ f"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(_UpperCAmelCase ) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict ) if vision_config_dict is not None: if vision_config is None: lowercase : Tuple = {} # This is the complete result when using `vision_config_dict`. lowercase : Optional[Any] = AltCLIPVisionConfig(**_UpperCAmelCase ).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: lowercase : Optional[int] = { str(_UpperCAmelCase ): value for key, value in _vision_config_dict['''id2label'''].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: lowercase : str = ( f"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ f"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: lowercase : Optional[Any] = ( f"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ f"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(_UpperCAmelCase ) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict ) if text_config is None: lowercase : Dict = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values." ) if vision_config is None: lowercase : Any = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values." ) lowercase : Optional[Any] = AltCLIPTextConfig(**_UpperCAmelCase ) lowercase : Dict = AltCLIPVisionConfig(**_UpperCAmelCase ) lowercase : Dict = projection_dim lowercase : int = logit_scale_init_value lowercase : int = 1.0 @classmethod def __magic_name__ ( cls , _a , _a , **_a ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def __magic_name__ ( self ): lowercase : Dict = copy.deepcopy(self.__dict__ ) lowercase : int = self.text_config.to_dict() lowercase : List[str] = self.vision_config.to_dict() lowercase : List[str] = self.__class__.model_type return output
713
"""simple docstring""" # flake8: noqa # Lint as: python3 _A : Dict = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
518
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __lowerCAmelCase ( _UpperCamelCase ,_UpperCamelCase ): _UpperCamelCase : str = """swin""" _UpperCamelCase : Tuple = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , snake_case=224 , snake_case=4 , snake_case=3 , snake_case=96 , snake_case=[2, 2, 6, 2] , snake_case=[3, 6, 12, 24] , snake_case=7 , snake_case=4.0 , snake_case=True , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case="gelu" , snake_case=False , snake_case=0.02 , snake_case=1E-5 , snake_case=32 , snake_case=None , snake_case=None , **snake_case , ) -> List[Any]: """simple docstring""" super().__init__(**snake_case ) a__ : str = image_size a__ : int = patch_size a__ : Union[str, Any] = num_channels a__ : List[str] = embed_dim a__ : Optional[int] = depths a__ : Union[str, Any] = len(snake_case ) a__ : int = num_heads a__ : Any = window_size a__ : Union[str, Any] = mlp_ratio a__ : Dict = qkv_bias a__ : Tuple = hidden_dropout_prob a__ : int = attention_probs_dropout_prob a__ : Optional[Any] = drop_path_rate a__ : str = hidden_act a__ : Any = use_absolute_embeddings a__ : List[str] = layer_norm_eps a__ : List[Any] = initializer_range a__ : Optional[int] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a__ : Union[str, Any] = int(embed_dim * 2 ** (len(snake_case ) - 1) ) a__ : Optional[int] = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(snake_case ) + 1 )] a__ , a__ : Optional[int] = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : int = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self ) -> float: """simple docstring""" return 1E-4
112
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path SCREAMING_SNAKE_CASE__ : List[str] = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} SCREAMING_SNAKE_CASE__ : Any = """zero2""" SCREAMING_SNAKE_CASE__ : Dict = """zero3""" SCREAMING_SNAKE_CASE__ : str = [ZEROa, ZEROa] def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param a__ : Optional[Any] = parameterized.to_safe_name("_".join(str(lowerCamelCase ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __lowerCAmelCase ( _UpperCamelCase ): @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> Dict: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> str: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> List[str]: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> List[str]: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) def _snake_case ( self , snake_case ) -> str: """simple docstring""" pass def _snake_case ( self , snake_case , snake_case , snake_case = 10 , snake_case = True , snake_case = True , snake_case = True , ) -> str: """simple docstring""" a__ : Tuple = models[model] a__ : int = self.run_trainer( stage=snake_case , model_name=snake_case , eval_steps=snake_case , num_train_epochs=1 , distributed=snake_case , fpaa=snake_case , ) self.do_checks(snake_case ) return output_dir def _snake_case ( self , snake_case , snake_case , snake_case = 10 , snake_case = 1 , snake_case = True , snake_case = True , ) -> Optional[Any]: """simple docstring""" a__ : str = self.get_auto_remove_tmp_dir("./xxx" , after=snake_case ) a__ : List[Any] = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files a__ : str = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() a__ : Dict = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] a__ : Optional[int] = self.get_launcher(snake_case ) a__ : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case , env=self.get_env() ) return output_dir def _snake_case ( self , snake_case=False ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
112
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) def A__ ( A : List[Any]): '''simple docstring''' if isinstance(A , (list, tuple)) and isinstance(videos[0] , (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(A , (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(A): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''') class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = 1 / 2_55 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ) -> None: '''simple docstring''' super().__init__(**lowerCamelCase ) UpperCamelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 2_24} UpperCamelCase : Tuple = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) UpperCamelCase : Tuple = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} UpperCamelCase : Tuple = get_size_dict(lowerCamelCase , param_name="crop_size" ) UpperCamelCase : Tuple = do_resize UpperCamelCase : Any = size UpperCamelCase : str = do_center_crop UpperCamelCase : Union[str, Any] = crop_size UpperCamelCase : Dict = resample UpperCamelCase : Dict = do_rescale UpperCamelCase : Any = rescale_factor UpperCamelCase : Optional[int] = do_normalize UpperCamelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: '''simple docstring''' UpperCamelCase : List[Any] = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) if "shortest_edge" in size: UpperCamelCase : Union[str, Any] = get_resize_output_image_size(lowerCamelCase , size["shortest_edge"] , default_to_square=lowerCamelCase ) elif "height" in size and "width" in size: UpperCamelCase : Union[str, Any] = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: '''simple docstring''' UpperCamelCase : List[Any] = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCamelCase , size=(size["height"], size["width"]) , data_format=lowerCamelCase , **lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) -> List[str]: '''simple docstring''' return rescale(lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase : Union[str, Any] = to_numpy_array(lowerCamelCase ) if do_resize: UpperCamelCase : Tuple = self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) if do_center_crop: UpperCamelCase : Tuple = self.center_crop(lowerCamelCase , size=lowerCamelCase ) if do_rescale: UpperCamelCase : Union[str, Any] = self.rescale(image=lowerCamelCase , scale=lowerCamelCase ) if do_normalize: UpperCamelCase : List[str] = self.normalize(image=lowerCamelCase , mean=lowerCamelCase , std=lowerCamelCase ) UpperCamelCase : Any = to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) return image def SCREAMING_SNAKE_CASE__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> PIL.Image.Image: '''simple docstring''' UpperCamelCase : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCamelCase : int = resample if resample is not None else self.resample UpperCamelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase : Dict = image_std if image_std is not None else self.image_std UpperCamelCase : Tuple = size if size is not None else self.size UpperCamelCase : Tuple = get_size_dict(lowerCamelCase , default_to_square=lowerCamelCase ) UpperCamelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size UpperCamelCase : Union[str, Any] = get_size_dict(lowerCamelCase , param_name="crop_size" ) if not valid_images(lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) UpperCamelCase : Union[str, Any] = make_batched(lowerCamelCase ) UpperCamelCase : Any = [ [ self._preprocess_image( image=lowerCamelCase , do_resize=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , do_center_crop=lowerCamelCase , crop_size=lowerCamelCase , do_rescale=lowerCamelCase , rescale_factor=lowerCamelCase , do_normalize=lowerCamelCase , image_mean=lowerCamelCase , image_std=lowerCamelCase , data_format=lowerCamelCase , ) for img in video ] for video in videos ] UpperCamelCase : Optional[int] = {"pixel_values": videos} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
435
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
435
1
SCREAMING_SNAKE_CASE__ : Dict = [ (1_0_0_0, """M"""), (9_0_0, """CM"""), (5_0_0, """D"""), (4_0_0, """CD"""), (1_0_0, """C"""), (9_0, """XC"""), (5_0, """L"""), (4_0, """XL"""), (1_0, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def _A ( lowerCamelCase ): a__ : Any = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} a__ : Any = 0 a__ : str = 0 while place < len(lowerCamelCase ): if (place + 1 < len(lowerCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def _A ( lowerCamelCase ): a__ : List[Any] = [] for arabic, roman in ROMAN: ((a__) , (a__)) : Optional[int] = divmod(lowerCamelCase , lowerCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
112
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : Tuple = ["""input_values""", """attention_mask"""] def __init__( self , snake_case = 1 , snake_case = 16_000 , snake_case = 0.0 , snake_case = False , snake_case = 80 , snake_case = 16 , snake_case = 64 , snake_case = "hann_window" , snake_case = 1.0 , snake_case = 80 , snake_case = 7_600 , snake_case = 1E-10 , snake_case = 2 , snake_case = True , **snake_case , ) -> Dict: """simple docstring""" super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) a__ : Any = do_normalize a__ : List[str] = return_attention_mask a__ : List[Any] = num_mel_bins a__ : List[str] = hop_length a__ : int = win_length a__ : List[Any] = win_function a__ : List[str] = frame_signal_scale a__ : List[Any] = fmin a__ : Optional[Any] = fmax a__ : Union[str, Any] = mel_floor a__ : Union[str, Any] = reduction_factor a__ : List[str] = win_length * sampling_rate // 1_000 a__ : List[Any] = hop_length * sampling_rate // 1_000 a__ : List[Any] = optimal_fft_length(self.sample_size ) a__ : Dict = (self.n_fft // 2) + 1 a__ : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) a__ : Tuple = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , snake_case , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _snake_case ( snake_case , snake_case , snake_case = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: a__ : Tuple = np.array(snake_case , np.intaa ) a__ : List[str] = [] for vector, length in zip(snake_case , attention_mask.sum(-1 ) ): a__ : List[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: a__ : List[str] = padding_value normed_input_values.append(snake_case ) else: a__ : Any = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _snake_case ( self , snake_case , ) -> np.ndarray: """simple docstring""" a__ : str = spectrogram( snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__( self , snake_case = None , snake_case = None , snake_case = False , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = None , snake_case = None , **snake_case , ) -> BatchFeature: """simple docstring""" if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: a__ : Dict = self._process_audio( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case , ) else: a__ : Optional[int] = None if audio_target is not None: a__ : List[Any] = self._process_audio( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case , ) if inputs is None: return inputs_target else: a__ : Tuple = inputs_target["input_values"] a__ : Tuple = inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: a__ : Tuple = decoder_attention_mask return inputs def _snake_case ( self , snake_case , snake_case = False , snake_case = False , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = None , **snake_case , ) -> BatchFeature: """simple docstring""" a__ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) a__ : List[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a__ : int = [np.asarray(snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): a__ : Any = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): a__ : List[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: a__ : Union[str, Any] = [speech] # needed to make pad() work on spectrogram inputs a__ : Optional[Any] = self.feature_size # convert into correct format for padding if is_target: a__ : List[str] = [self._extract_mel_features(snake_case ) for waveform in speech] a__ : Optional[Any] = BatchFeature({"input_values": features} ) a__ : str = self.num_mel_bins else: a__ : int = BatchFeature({"input_values": speech} ) a__ : int = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) a__ : Any = feature_size_hack # convert input values to correct format a__ : Tuple = padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): a__ : int = [np.asarray(snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): a__ : Union[str, Any] = [array.astype(np.floataa ) for array in input_values] elif isinstance(snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): a__ : Optional[int] = input_values.astype(np.floataa ) # convert attention_mask to correct format a__ : Optional[int] = padded_inputs.get("attention_mask" ) if attention_mask is not None: a__ : Tuple = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: a__ : Any = ( attention_mask if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) a__ : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=snake_case , padding_value=self.padding_value ) if return_tensors is not None: a__ : int = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs def _snake_case ( self ) -> Dict[str, Any]: """simple docstring""" a__ : int = super().to_dict() # Don't serialize these as they are derived from the other properties. a__ : str = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
112
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): """simple docstring""" __A = """bit""" __A = ["""preactivation""", """bottleneck"""] __A = ["""SAME""", """VALID"""] def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=64 , __UpperCamelCase=[2_56, 5_12, 10_24, 20_48] , __UpperCamelCase=[3, 4, 6, 3] , __UpperCamelCase="preactivation" , __UpperCamelCase="relu" , __UpperCamelCase=None , __UpperCamelCase=32 , __UpperCamelCase=0.0 , __UpperCamelCase=False , __UpperCamelCase=32 , __UpperCamelCase=1 , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case_ = global_padding.upper() else: raise ValueError(f"""Padding strategy {global_padding} not supported""" ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = global_padding snake_case_ = num_groups snake_case_ = drop_path_rate snake_case_ = embedding_dynamic_padding snake_case_ = output_stride snake_case_ = width_factor snake_case_ = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCamelCase ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
701
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=[1, 2, 1] , __UpperCamelCase=[2, 2, 4] , __UpperCamelCase=2 , __UpperCamelCase=2.0 , __UpperCamelCase=True , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.1 , __UpperCamelCase="gelu" , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=0.02 , __UpperCamelCase=1E-5 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=10 , __UpperCamelCase=8 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = embed_dim snake_case_ = depths snake_case_ = num_heads snake_case_ = window_size snake_case_ = mlp_ratio snake_case_ = qkv_bias snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = drop_path_rate snake_case_ = hidden_act snake_case_ = use_absolute_embeddings snake_case_ = patch_norm snake_case_ = layer_norm_eps snake_case_ = initializer_range snake_case_ = is_training snake_case_ = scope snake_case_ = use_labels snake_case_ = type_sequence_label_size snake_case_ = encoder_stride def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = SwinvaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) snake_case_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = SwinvaForMaskedImageModeling(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case_ = 1 snake_case_ = SwinvaForMaskedImageModeling(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.type_sequence_label_size snake_case_ = SwinvaForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __A = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = SwinvaModelTester(self ) snake_case_ = ConfigTester(self , config_class=__UpperCamelCase , embed_dim=37 ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.attentions snake_case_ = len(self.model_tester.depths ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = config.window_size**2 snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) snake_case_ = len(__UpperCamelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): snake_case_ = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states snake_case_ = 2 self.assertEqual(out_len + added_hidden_states , len(__UpperCamelCase ) ) snake_case_ = outputs.attentions self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # Swinv2 has a different seq_length snake_case_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) snake_case_ = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = reshaped_hidden_states[0].shape snake_case_ = ( reshaped_hidden_states[0].view(__UpperCamelCase , __UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = 3 snake_case_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SwinvaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: snake_case_ = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( __UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) )
46
0
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def A ( __UpperCamelCase , __UpperCamelCase=7 ) -> Optional[int]: A__ = None if token is not None: A__ = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) A__ = '636036' A__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' A__ = requests.get(__UpperCamelCase , headers=__UpperCamelCase ).json() return result["workflow_runs"] def A ( __UpperCamelCase ) -> Optional[int]: A__ = get_daily_ci_runs(__UpperCamelCase ) A__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": A__ = workflow_run['id'] break return workflow_run_id def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> str: A__ = get_last_daily_ci_runs(__UpperCamelCase ) if workflow_run_id is not None: A__ = get_artifacts_links(worflow_run_id=__UpperCamelCase , token=__UpperCamelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: A__ = artifacts_links[artifact_name] download_artifact( artifact_name=__UpperCamelCase , artifact_url=__UpperCamelCase , output_dir=__UpperCamelCase , token=__UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: get_last_daily_ci_artifacts(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ = {} for artifact_name in artifact_names: A__ = os.path.join(__UpperCamelCase , f'''{artifact_name}.zip''' ) if os.path.isfile(__UpperCamelCase ): A__ = {} with zipfile.ZipFile(__UpperCamelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__UpperCamelCase ): # read the file with z.open(__UpperCamelCase ) as f: A__ = f.read().decode('UTF-8' ) return results
9
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
620
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __snake_case ( _lowercase): snake_case__ : str = "poolformer" def __init__( self : Union[str, Any] , __lowerCAmelCase : List[Any]=3 , __lowerCAmelCase : List[Any]=1_6 , __lowerCAmelCase : Optional[Any]=1_6 , __lowerCAmelCase : List[str]=3 , __lowerCAmelCase : Optional[Any]=4.0 , __lowerCAmelCase : str=[2, 2, 6, 2] , __lowerCAmelCase : Any=[6_4, 1_2_8, 3_2_0, 5_1_2] , __lowerCAmelCase : Union[str, Any]=[7, 3, 3, 3] , __lowerCAmelCase : List[str]=[4, 2, 2, 2] , __lowerCAmelCase : Optional[int]=[2, 1, 1, 1] , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : Optional[Any]=0.0 , __lowerCAmelCase : int="gelu" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Any=1E-5 , __lowerCAmelCase : int=0.02 , **__lowerCAmelCase : Any , ): """simple docstring""" _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Tuple = patch_size _lowerCamelCase : Optional[Any] = stride _lowerCamelCase : Union[str, Any] = padding _lowerCamelCase : Any = pool_size _lowerCamelCase : int = hidden_sizes _lowerCamelCase : str = mlp_ratio _lowerCamelCase : Optional[Any] = depths _lowerCamelCase : Union[str, Any] = patch_sizes _lowerCamelCase : List[str] = strides _lowerCamelCase : Optional[Any] = num_encoder_blocks _lowerCamelCase : List[str] = drop_path_rate _lowerCamelCase : str = hidden_act _lowerCamelCase : Optional[int] = use_layer_scale _lowerCamelCase : Dict = layer_scale_init_value _lowerCamelCase : Tuple = initializer_range super().__init__(**__lowerCAmelCase ) class __snake_case ( _lowercase): snake_case__ : int = version.parse("1.11") @property def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" return 2E-3
716
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def snake_case_ ( A_ : Dict, A_ : Dict=False ): '''simple docstring''' _lowerCamelCase : List[str] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((F'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', F'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : int = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def snake_case_ ( A_ : Union[str, Any], A_ : Optional[Any], A_ : int=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : Optional[int] = '''''' else: _lowerCamelCase : str = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : List[str] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _lowerCamelCase : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : Tuple = in_proj_bias[-config.hidden_size :] def snake_case_ ( A_ : Tuple ): '''simple docstring''' _lowerCamelCase : str = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(A_, A_ ) def snake_case_ ( A_ : int, A_ : Any, A_ : Optional[Any] ): '''simple docstring''' _lowerCamelCase : str = dct.pop(A_ ) _lowerCamelCase : List[Any] = val def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCamelCase : Any = Image.open(requests.get(A_, stream=A_ ).raw ) return im @torch.no_grad() def snake_case_ ( A_ : Dict, A_ : Optional[Any], A_ : str=False ): '''simple docstring''' _lowerCamelCase : List[str] = BitConfig( global_padding='''same''', layer_type='''bottleneck''', depths=(3, 4, 9), out_features=['''stage3'''], embedding_dynamic_padding=A_, ) _lowerCamelCase : Any = ViTHybridConfig(backbone_config=A_, image_size=3_84, num_labels=10_00 ) _lowerCamelCase : Optional[Any] = False # load original model from timm _lowerCamelCase : Any = timm.create_model(A_, pretrained=A_ ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Optional[Any] = timm_model.state_dict() if base_model: remove_classification_head_(A_ ) _lowerCamelCase : int = create_rename_keys(A_, A_ ) for src, dest in rename_keys: rename_key(A_, A_, A_ ) read_in_q_k_v(A_, A_, A_ ) _lowerCamelCase : Optional[Any] = '''huggingface/label-files''' _lowerCamelCase : Tuple = '''imagenet-1k-id2label.json''' _lowerCamelCase : Optional[int] = json.load(open(hf_hub_download(A_, A_, repo_type='''dataset''' ), '''r''' ) ) _lowerCamelCase : List[Any] = {int(A_ ): v for k, v in idalabel.items()} _lowerCamelCase : Union[str, Any] = idalabel _lowerCamelCase : Tuple = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : List[Any] = ViTHybridModel(A_ ).eval() else: _lowerCamelCase : Dict = ViTHybridForImageClassification(A_ ).eval() model.load_state_dict(A_ ) # create image processor _lowerCamelCase : Any = create_transform(**resolve_data_config({}, model=A_ ) ) _lowerCamelCase : str = transform.transforms _lowerCamelCase : Union[str, Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } _lowerCamelCase : Any = ViTHybridImageProcessor( do_resize=A_, size={'''shortest_edge''': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=A_, crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]}, do_normalize=A_, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) _lowerCamelCase : List[Any] = prepare_img() _lowerCamelCase : int = transform(A_ ).unsqueeze(0 ) _lowerCamelCase : Any = processor(A_, return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(A_, A_ ) # verify logits with torch.no_grad(): _lowerCamelCase : Tuple = model(A_ ) _lowerCamelCase : List[Any] = outputs.logits print('''Predicted class:''', logits.argmax(-1 ).item() ) if base_model: _lowerCamelCase : List[Any] = timm_model.forward_features(A_ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(A_, outputs.pooler_output, atol=1E-3 ) else: _lowerCamelCase : str = timm_model(A_ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(A_, outputs.logits, atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(A_ ).mkdir(exist_ok=A_ ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A_ ) if push_to_hub: print(F'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(F'''ybelkada/{vit_name}''' ) processor.push_to_hub(F'''ybelkada/{vit_name}''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
598
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed A__ = logging.getLogger(__name__) def _lowerCAmelCase ( __lowerCAmelCase=2 , __lowerCAmelCase=3 , __lowerCAmelCase=16 , __lowerCAmelCase = 10 , __lowerCAmelCase = 2 ) -> int: """simple docstring""" def get_dataset(__lowerCAmelCase ): snake_case__ : Dict = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__lowerCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) snake_case__ : Optional[Any] = get_dataset(__lowerCAmelCase ) snake_case__ : Any = get_dataset(__lowerCAmelCase ) snake_case__ : Tuple = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) snake_case__ : Optional[int] = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> int: """simple docstring""" snake_case__ : Tuple = [] for epoch in range(__lowerCAmelCase ): # Train quickly model.train() for batch in dataloader: snake_case__ , snake_case__ : List[str] = batch snake_case__ : Union[str, Any] = model(__lowerCAmelCase ) snake_case__ : List[str] = torch.nn.functional.mse_loss(__lowerCAmelCase , __lowerCAmelCase ) accelerator.backward(__lowerCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class a ( nn.Module ): def __init__( self :Union[str, Any] ): super().__init__() snake_case__ : int = nn.Parameter(torch.randn(1 ) ) snake_case__ : Any = nn.Parameter(torch.randn(1 ) ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :str ): return x * self.a + self.b class a ( unittest.TestCase ): def __lowerCamelCase ( self :int ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) snake_case__ : Optional[int] = DummyModel() snake_case__ : List[Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) snake_case__ , snake_case__ : Optional[Any] = dummy_dataloaders() snake_case__ : List[Any] = ProjectConfiguration(total_limit=1 ,project_dir=__lowercase ,automatic_checkpoint_naming=__lowercase ) # Train baseline snake_case__ : Any = Accelerator(project_config=__lowercase ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = accelerator.prepare( __lowercase ,__lowercase ,__lowercase ,__lowercase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def __lowerCamelCase ( self :List[Any] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) snake_case__ : Any = DummyModel() snake_case__ : Union[str, Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) snake_case__ , snake_case__ : List[Any] = dummy_dataloaders() # Train baseline snake_case__ : Optional[int] = Accelerator() snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = accelerator.prepare( __lowercase ,__lowercase ,__lowercase ,__lowercase ) # Save initial snake_case__ : Tuple = os.path.join(__lowercase ,'''initial''' ) accelerator.save_state(__lowercase ) ((snake_case__) , (snake_case__)) : List[str] = model.a.item(), model.b.item() snake_case__ : int = optimizer.state_dict() snake_case__ : List[Any] = train(3 ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) ((snake_case__) , (snake_case__)) : Union[str, Any] = model.a.item(), model.b.item() snake_case__ : Union[str, Any] = optimizer.state_dict() # Train partially set_seed(4_2 ) snake_case__ : str = DummyModel() snake_case__ : Union[str, Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) snake_case__ , snake_case__ : Union[str, Any] = dummy_dataloaders() snake_case__ : Tuple = Accelerator() snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = accelerator.prepare( __lowercase ,__lowercase ,__lowercase ,__lowercase ) accelerator.load_state(__lowercase ) ((snake_case__) , (snake_case__)) : Optional[Any] = model.a.item(), model.b.item() snake_case__ : List[Any] = optimizer.state_dict() self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) snake_case__ : int = train(2 ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) # Save everything snake_case__ : Tuple = os.path.join(__lowercase ,'''checkpoint''' ) accelerator.save_state(__lowercase ) # Load everything back in and make sure all states work accelerator.load_state(__lowercase ) test_rands += train(1 ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) ((snake_case__) , (snake_case__)) : Optional[int] = model.a.item(), model.b.item() snake_case__ : Dict = optimizer.state_dict() self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) def __lowerCamelCase ( self :Tuple ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) snake_case__ : List[Any] = DummyModel() snake_case__ : Optional[Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) snake_case__ , snake_case__ : Tuple = dummy_dataloaders() snake_case__ : Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=__lowercase ) # Train baseline snake_case__ : Optional[Any] = Accelerator(project_dir=__lowercase ,project_config=__lowercase ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = accelerator.prepare( __lowercase ,__lowercase ,__lowercase ,__lowercase ) # Save initial accelerator.save_state() ((snake_case__) , (snake_case__)) : List[Any] = model.a.item(), model.b.item() snake_case__ : List[str] = optimizer.state_dict() snake_case__ : Optional[int] = train(3 ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) ((snake_case__) , (snake_case__)) : Optional[Any] = model.a.item(), model.b.item() snake_case__ : int = optimizer.state_dict() # Train partially set_seed(4_2 ) snake_case__ : Optional[int] = DummyModel() snake_case__ : str = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) snake_case__ , snake_case__ : Any = dummy_dataloaders() snake_case__ : Any = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=__lowercase ) snake_case__ : Any = Accelerator(project_dir=__lowercase ,project_config=__lowercase ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = accelerator.prepare( __lowercase ,__lowercase ,__lowercase ,__lowercase ) accelerator.load_state(os.path.join(__lowercase ,'''checkpoints''' ,'''checkpoint_0''' ) ) ((snake_case__) , (snake_case__)) : List[str] = model.a.item(), model.b.item() snake_case__ : Union[str, Any] = optimizer.state_dict() self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) snake_case__ : Optional[int] = train(2 ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__lowercase ,'''checkpoints''' ,'''checkpoint_1''' ) ) test_rands += train(1 ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) ((snake_case__) , (snake_case__)) : List[Any] = model.a.item(), model.b.item() snake_case__ : Optional[Any] = optimizer.state_dict() self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) self.assertEqual(__lowercase ,__lowercase ) def __lowerCamelCase ( self :Tuple ): snake_case__ : List[str] = torch.tensor([1, 2, 3] ) snake_case__ : int = torch.tensor([2, 3, 4] ) snake_case__ : Optional[int] = DummyModel() snake_case__ : Optional[Any] = torch.optim.Adam(net.parameters() ) snake_case__ : Optional[Any] = Accelerator() with self.assertRaises(__lowercase ) as ve: accelerator.register_for_checkpointing(__lowercase ,__lowercase ,__lowercase ,__lowercase ) snake_case__ : Optional[Any] = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def __lowerCamelCase ( self :Optional[int] ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) snake_case__ : Tuple = DummyModel() snake_case__ : List[str] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) snake_case__ : Optional[Any] = torch.optim.lr_scheduler.StepLR(__lowercase ,step_size=1 ,gamma=0.99 ) snake_case__ , snake_case__ : Any = dummy_dataloaders() snake_case__ : Dict = ProjectConfiguration(automatic_checkpoint_naming=__lowercase ) # Train baseline snake_case__ : Any = Accelerator(project_dir=__lowercase ,project_config=__lowercase ) snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = accelerator.prepare( __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) # Save initial accelerator.save_state() snake_case__ : str = scheduler.state_dict() train(3 ,__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase ) self.assertNotEqual(__lowercase ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__lowercase ,'''checkpoints''' ,'''checkpoint_0''' ) ) self.assertEqual(__lowercase ,scheduler.state_dict() ) def __lowerCamelCase ( self :Dict ): with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) snake_case__ : Dict = DummyModel() snake_case__ : List[Any] = ProjectConfiguration(automatic_checkpoint_naming=__lowercase ,total_limit=2 ) # Train baseline snake_case__ : int = Accelerator(project_dir=__lowercase ,project_config=__lowercase ) snake_case__ : Optional[int] = accelerator.prepare(__lowercase ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__lowercase ,'''checkpoints''' ,'''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowercase ,'''checkpoints''' ,'''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowercase ,'''checkpoints''' ,'''checkpoint_10''' ) ) ) @require_cuda def __lowerCamelCase ( self :Tuple ): snake_case__ : int = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__lowercase ,env=os.environ.copy() ) if __name__ == "__main__": A__ = '''/tmp/accelerate/state_checkpointing''' A__ = DummyModel() A__ = torch.optim.Adam(params=model.parameters(), lr=1e-3) A__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) A__ , A__ = dummy_dataloaders() A__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline A__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) A__ , A__ , A__ , A__ , A__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) A__ , A__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: A__ = group['''params'''][0].device break assert param_device.type == accelerator.device.type A__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: A__ = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: A__ = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
252
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class a ( __lowerCamelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __lowerCAmelCase : str = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) __lowerCAmelCase : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) __lowerCAmelCase : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) __lowerCAmelCase : str = "question" __lowerCAmelCase : str = "context" __lowerCAmelCase : str = "answers" @property def __lowerCamelCase ( self :Any ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
252
1
"""simple docstring""" from collections import defaultdict from math import gcd def lowerCamelCase_ ( __lowerCAmelCase = 150_0000 ) -> int: '''simple docstring''' lowerCamelCase__ =defaultdict(__lowerCAmelCase ) lowerCamelCase__ =2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __lowerCAmelCase , 2 ): if gcd(__lowerCAmelCase , __lowerCAmelCase ) > 1: continue lowerCamelCase__ =2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__lowerCAmelCase , limit + 1 , __lowerCAmelCase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
132
"""simple docstring""" import heapq import sys import numpy as np a =tuple[int, int] class __UpperCAmelCase : def __init__( self ): lowerCamelCase__ =[] lowerCamelCase__ =set() def _a ( self ): if not self.empty(): return self.elements[0][0] else: return float("inf" ) def _a ( self ): return len(self.elements ) == 0 def _a ( self , _lowerCamelCase , _lowerCamelCase ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_lowerCamelCase ) else: # update # print("update", item) lowerCamelCase__ =[] ((lowerCamelCase__) , (lowerCamelCase__)) =heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCamelCase__) , (lowerCamelCase__)) =heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _a ( self , _lowerCamelCase ): if item in self.set: self.set.remove(_lowerCamelCase ) lowerCamelCase__ =[] ((lowerCamelCase__) , (lowerCamelCase__)) =heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCamelCase__) , (lowerCamelCase__)) =heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _a ( self ): return self.elements[0][1] def _a ( self ): ((lowerCamelCase__) , (lowerCamelCase__)) =heapq.heappop(self.elements ) self.set.remove(_lowerCamelCase ) return (priority, item) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ =np.array(__lowerCAmelCase ) lowerCamelCase__ =np.array(__lowerCAmelCase ) return np.linalg.norm(a - b ) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' return consistent_heuristic(__lowerCAmelCase , __lowerCAmelCase ) // t def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCamelCase__ =g_function[start] + Wa * heuristics[i](__lowerCAmelCase , __lowerCAmelCase ) return ans def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__ =np.chararray((n, n) ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): lowerCamelCase__ ="*" for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if (j, (n - 1) - i) in blocks: lowerCamelCase__ ="#" lowerCamelCase__ ="-" lowerCamelCase__ =back_pointer[goal] while x != start: ((lowerCamelCase__) , (lowerCamelCase__)) =x # print(x) lowerCamelCase__ ="-" lowerCamelCase__ =back_pointer[x] lowerCamelCase__ ="-" for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) lowerCamelCase__ =back_pointer[goal] while x != start: print(__lowerCAmelCase , end=" " ) lowerCamelCase__ =back_pointer[x] print(__lowerCAmelCase ) sys.exit() def lowerCamelCase_ ( __lowerCAmelCase ) -> Optional[int]: '''simple docstring''' if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> List[str]: '''simple docstring''' for itera in range(__lowerCAmelCase ): open_list[itera].remove_element(__lowerCAmelCase ) # print("s", s) # print("j", j) ((lowerCamelCase__) , (lowerCamelCase__)) =s lowerCamelCase__ =(x - 1, y) lowerCamelCase__ =(x + 1, y) lowerCamelCase__ =(x, y + 1) lowerCamelCase__ =(x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__lowerCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__lowerCAmelCase ) lowerCamelCase__ =-1 lowerCamelCase__ =float("inf" ) if valid(__lowerCAmelCase ) and g_function[neighbours] > g_function[s] + 1: lowerCamelCase__ =g_function[s] + 1 lowerCamelCase__ =s if neighbours not in close_list_anchor: open_list[0].put(__lowerCAmelCase , key(__lowerCAmelCase , 0 , __lowerCAmelCase , __lowerCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1 , __lowerCAmelCase ): if key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) <= Wa * key( __lowerCAmelCase , 0 , __lowerCAmelCase , __lowerCAmelCase ): open_list[j].put( __lowerCAmelCase , key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) def lowerCamelCase_ ( ) -> Any: '''simple docstring''' lowerCamelCase__ =[] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a ={0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a =[ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a =make_common_ground() a =blocks_blk # hyper parameters a =1 a =1 a =20 a =3 # one consistent and two other inconsistent # start and end destination a =(0, 0) a =(n - 1, n - 1) a =1 def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' lowerCamelCase__ ={start: 0, goal: float("inf" )} lowerCamelCase__ ={start: -1, goal: -1} lowerCamelCase__ =[] lowerCamelCase__ =set() for i in range(__lowerCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(__lowerCAmelCase , key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ) lowerCamelCase__ =[] lowerCamelCase__ =[] while open_list[0].minkey() < float("inf" ): for i in range(1 , __lowerCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: lowerCamelCase__ , lowerCamelCase__ =open_list[i].top_show() visited.add(__lowerCAmelCase ) expand_state( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) close_list_inad.append(__lowerCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: lowerCamelCase__ =open_list[0].top_show() visited.add(__lowerCAmelCase ) expand_state( __lowerCAmelCase , 0 , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) close_list_anchor.append(__lowerCAmelCase ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__lowerCAmelCase ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
132
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_=None,snake_case_=None ): # Recurse if needed if "." in tensor_name: _A : Optional[int] = tensor_name.split(""".""" ) for split in splits[:-1]: _A : int = getattr(snake_case_,snake_case_ ) if new_module is None: raise ValueError(f'''{module} has no attribute {split}.''' ) _A : int = new_module _A : str = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) _A : Any = tensor_name in module._buffers _A : Optional[int] = getattr(snake_case_,snake_case_ ) if old_value.device == torch.device("""meta""" ) and device not in ["meta", torch.device("""meta""" )] and value is None: raise ValueError(f'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) _A : Union[str, Any] = False _A : Dict = False if is_buffer or not is_bitsandbytes_available(): _A : Optional[Any] = False _A : Any = False else: _A : List[str] = hasattr(bnb.nn,"""Params4bit""" ) and isinstance(module._parameters[tensor_name],bnb.nn.Paramsabit ) _A : List[str] = isinstance(module._parameters[tensor_name],bnb.nn.IntaParams ) if is_abit or is_abit: _A : Dict = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: _A : Dict = old_value.to(snake_case_ ) elif isinstance(snake_case_,torch.Tensor ): _A : Optional[Any] = value.to("""cpu""" ) if value.dtype == torch.inta: _A : str = version.parse(importlib.metadata.version("""bitsandbytes""" ) ) > version.parse( """0.37.2""" ) if not is_abit_serializable: raise ValueError( """Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. """ """Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.""" ) else: _A : Optional[Any] = torch.tensor(snake_case_,device="""cpu""" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls,snake_case_ ) and fpaa_statistics is None: _A : Union[str, Any] = new_value.T _A : Optional[Any] = old_value.__dict__ if is_abit: _A : Optional[Any] = bnb.nn.IntaParams(snake_case_,requires_grad=snake_case_,**snake_case_ ).to(snake_case_ ) elif is_abit: _A : Optional[Any] = bnb.nn.Paramsabit(snake_case_,requires_grad=snake_case_,**snake_case_ ).to(snake_case_ ) _A : Any = new_value if fpaa_statistics is not None: setattr(module.weight,"""SCB""",fpaa_statistics.to(snake_case_ ) ) else: if value is None: _A : Any = old_value.to(snake_case_ ) elif isinstance(snake_case_,torch.Tensor ): _A : List[str] = value.to(snake_case_ ) else: _A : Union[str, Any] = torch.tensor(snake_case_,device=snake_case_ ) if is_buffer: _A : Optional[int] = new_value else: _A : Optional[int] = nn.Parameter(snake_case_,requires_grad=old_value.requires_grad ) _A : Optional[int] = new_value def lowerCAmelCase_ ( snake_case_,snake_case_=None,snake_case_=None,snake_case_=None,snake_case_=False ): for name, module in model.named_children(): if current_key_name is None: _A : Union[str, Any] = [] current_key_name.append(snake_case_ ) if (isinstance(snake_case_,nn.Linear ) or isinstance(snake_case_,snake_case_ )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in """.""".join(snake_case_ ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(snake_case_,snake_case_ ): _A , _A : str = module.weight.shape else: _A : List[Any] = module.in_features _A : Optional[int] = module.out_features if quantization_config.quantization_method() == "llm_int8": _A : Optional[int] = bnb.nn.LinearabitLt( snake_case_,snake_case_,module.bias is not None,has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight,threshold=quantization_config.llm_inta_threshold,) _A : Any = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: _A : Any = bnb.nn.Linearabit( snake_case_,snake_case_,module.bias is not None,quantization_config.bnb_abit_compute_dtype,compress_statistics=quantization_config.bnb_abit_use_double_quant,quant_type=quantization_config.bnb_abit_quant_type,) _A : Dict = True # Store the module class in case we need to transpose the weight later _A : List[str] = type(snake_case_ ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(snake_case_ ) if len(list(module.children() ) ) > 0: _A , _A : Dict = _replace_with_bnb_linear( snake_case_,snake_case_,snake_case_,snake_case_,has_been_replaced=snake_case_,) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def lowerCAmelCase_ ( snake_case_,snake_case_=None,snake_case_=None,snake_case_=None ): _A : Optional[int] = ["""lm_head"""] if modules_to_not_convert is None else modules_to_not_convert _A , _A : Any = _replace_with_bnb_linear( snake_case_,snake_case_,snake_case_,snake_case_ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def lowerCAmelCase_ ( *snake_case_,**snake_case_ ): warnings.warn( """`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead""",snake_case_,) return replace_with_bnb_linear(*snake_case_,**snake_case_ ) def lowerCAmelCase_ ( *snake_case_,**snake_case_ ): warnings.warn( """`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead""",snake_case_,) return set_module_quantized_tensor_to_device(*snake_case_,**snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = deepcopy(snake_case_ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() _A : List[Any] = find_tied_parameters(snake_case_ ) # For compatibility with Accelerate < 0.18 if isinstance(snake_case_,snake_case_ ): _A : List[Any] = sum(list(tied_params.values() ),[] ) + list(tied_params.keys() ) else: _A : List[str] = sum(snake_case_,[] ) _A : Any = len(snake_case_ ) > 0 # Check if it is a base model _A : int = not hasattr(snake_case_,model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _A : Tuple = list(model.named_children() ) _A : int = [list_modules[-1][0]] # add last module together with tied weights _A : Any = set(snake_case_ ) - set(snake_case_ ) _A : Any = list(set(snake_case_ ) ) + list(snake_case_ ) # remove ".weight" from the keys _A : Tuple = [""".weight""", """.bias"""] _A : Any = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _A : Optional[int] = name.replace(snake_case_,"""""" ) filtered_module_names.append(snake_case_ ) return filtered_module_names
307
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ) -> Optional[int]: _A : List[Any] = parent _A : List[Any] = batch_size _A : Dict = seq_length _A : Optional[Any] = is_training _A : int = use_attention_mask _A : int = use_token_type_ids _A : List[Any] = use_labels _A : List[str] = vocab_size _A : List[Any] = hidden_size _A : str = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : List[Any] = intermediate_size _A : Any = hidden_act _A : int = hidden_dropout_prob _A : int = attention_probs_dropout_prob _A : List[str] = max_position_embeddings _A : Optional[int] = type_vocab_size _A : List[str] = type_sequence_label_size _A : Dict = initializer_range _A : List[Any] = num_choices def a__ ( self ) -> int: _A : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : Optional[Any] = None if self.use_attention_mask: _A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _A : Optional[int] = None if self.use_token_type_ids: _A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Optional[int] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ ( self ) -> List[str]: _A : Tuple = self.prepare_config_and_inputs() _A , _A , _A , _A : str = config_and_inputs _A : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def a__ ( self ) -> int: _A : Any = self.prepare_config_and_inputs() _A , _A , _A , _A : int = config_and_inputs _A : int = True _A : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = True _a = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self ) -> List[Any]: _A : Optional[Any] = FlaxRobertaModelTester(self ) @slow def a__ ( self ) -> Optional[int]: for model_class_name in self.all_model_classes: _A : Optional[int] = model_class_name.from_pretrained("""roberta-base""" , from_pt=_a ) _A : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a )
307
1
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( lowercase_ : int , lowercase_ : int ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((lowercase) , (lowercase)) =extended_euclid(lowercase_ , a % b ) lowercase =a // b return (y, x - k * y) def UpperCamelCase ( lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ) -> int: '''simple docstring''' ((lowercase) , (lowercase)) =extended_euclid(lowercase_ , lowercase_ ) lowercase =na * na lowercase =ra * x * na + ra * y * na return (n % m + m) % m def UpperCamelCase ( lowercase_ : int , lowercase_ : int ) -> int: '''simple docstring''' ((lowercase) , (lowercase)) =extended_euclid(lowercase_ , lowercase_ ) if b < 0: lowercase =(b % n + n) % n return b def UpperCamelCase ( lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ) -> int: '''simple docstring''' lowercase , lowercase =invert_modulo(lowercase_ , lowercase_ ), invert_modulo(lowercase_ , lowercase_ ) lowercase =na * na lowercase =ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
706
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase ( lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def UpperCamelCase ( lowercase_ : np.ndarray , lowercase_ : Optional[str] , lowercase_ : Optional[str] = None ) -> Tuple: '''simple docstring''' lowercase =tesseract_config if tesseract_config is not None else '''''' # apply OCR lowercase =to_pil_image(lowercase_ ) lowercase , lowercase =pil_image.size lowercase =pytesseract.image_to_data(lowercase_ , lang=lowercase_ , output_type='''dict''' , config=lowercase_ ) lowercase , lowercase , lowercase , lowercase , lowercase =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase =[idx for idx, word in enumerate(lowercase_ ) if not word.strip()] lowercase =[word for idx, word in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase =[] for x, y, w, h in zip(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): lowercase =[x, y, x + w, y + h] actual_boxes.append(lowercase_ ) # finally, normalize the bounding boxes lowercase =[] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase_ , lowercase_ , lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = ['pixel_values'] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = True , snake_case_ = None , snake_case_ = "" , **snake_case_ , ): super().__init__(**snake_case_ ) lowercase =size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase =get_size_dict(snake_case_ ) lowercase =do_resize lowercase =size lowercase =resample lowercase =apply_ocr lowercase =ocr_lang lowercase =tesseract_config def _A( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = None , **snake_case_ , ): lowercase =get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase =(size['''height'''], size['''width''']) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _A( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): lowercase =do_resize if do_resize is not None else self.do_resize lowercase =size if size is not None else self.size lowercase =get_size_dict(snake_case_ ) lowercase =resample if resample is not None else self.resample lowercase =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase =make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. lowercase =[to_numpy_array(snake_case_ ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase =[] lowercase =[] for image in images: lowercase , lowercase =apply_tesseract(snake_case_ , snake_case_ , snake_case_ ) words_batch.append(snake_case_ ) boxes_batch.append(snake_case_ ) if do_resize: lowercase =[self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase =[flip_channel_order(snake_case_ ) for image in images] lowercase =[to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] lowercase =BatchFeature(data={'''pixel_values''': images} , tensor_type=snake_case_ ) if apply_ocr: lowercase =words_batch lowercase =boxes_batch return data
145
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = { '''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''', '''microsoft/deberta-v2-xlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json''' ), '''microsoft/deberta-v2-xxlarge-mnli''': ( '''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json''' ), } class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''deberta-v2''' def __init__( self , _lowercase=1_2_8_1_0_0 , _lowercase=1_5_3_6 , _lowercase=2_4 , _lowercase=2_4 , _lowercase=6_1_4_4 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=0 , _lowercase=0.02 , _lowercase=1E-7 , _lowercase=False , _lowercase=-1 , _lowercase=0 , _lowercase=True , _lowercase=None , _lowercase=0 , _lowercase="gelu" , **_lowercase , ) -> Optional[int]: '''simple docstring''' super().__init__(**_lowercase ) snake_case_ : Dict = hidden_size snake_case_ : Tuple = num_hidden_layers snake_case_ : Optional[Any] = num_attention_heads snake_case_ : Tuple = intermediate_size snake_case_ : Optional[int] = hidden_act snake_case_ : int = hidden_dropout_prob snake_case_ : str = attention_probs_dropout_prob snake_case_ : int = max_position_embeddings snake_case_ : int = type_vocab_size snake_case_ : Dict = initializer_range snake_case_ : str = relative_attention snake_case_ : Dict = max_relative_positions snake_case_ : List[Any] = pad_token_id snake_case_ : List[Any] = position_biased_input # Backwards compatibility if type(_lowercase ) == str: snake_case_ : Any = [x.strip() for x in pos_att_type.lower().split("""|""" )] snake_case_ : List[str] = pos_att_type snake_case_ : Union[str, Any] = vocab_size snake_case_ : Dict = layer_norm_eps snake_case_ : Dict = kwargs.get("""pooler_hidden_size""" , _lowercase ) snake_case_ : Union[str, Any] = pooler_dropout snake_case_ : List[str] = pooler_hidden_act class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case_ : Any = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return 1_2 def UpperCAmelCase__ ( self , _lowercase , _lowercase = -1 , _lowercase = -1 , _lowercase = -1 , _lowercase = False , _lowercase = None , _lowercase = 3 , _lowercase = 4_0 , _lowercase = 4_0 , _lowercase = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ : Tuple = super().generate_dummy_inputs(preprocessor=_lowercase , framework=_lowercase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
58
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _UpperCAmelCase = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": _UpperCAmelCase = """hopper-medium-v2""" _UpperCAmelCase = gym.make(env_name) _UpperCAmelCase = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) _UpperCAmelCase = env.reset() _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1000 _UpperCAmelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _UpperCAmelCase = pipeline(obs, planning_horizon=32) # execute action in environment _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = env.step(denorm_actions) _UpperCAmelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" F""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) _UpperCAmelCase = next_observation except KeyboardInterrupt: pass print(F"""Total reward: {total_reward}""")
558
0
from math import isqrt, loga def __UpperCamelCase ( _lowerCAmelCase ) -> list[int]: """simple docstring""" A : Tuple = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _lowerCAmelCase , _lowerCAmelCase ): A : Union[str, Any] = False return [i for i in range(2 , _lowerCAmelCase ) if is_prime[i]] def __UpperCamelCase ( _lowerCAmelCase = 80_0800 , _lowerCAmelCase = 80_0800 ) -> int: """simple docstring""" A : List[str] = degree * loga(_lowerCAmelCase ) A : Union[str, Any] = int(_lowerCAmelCase ) A : Dict = calculate_prime_numbers(_lowerCAmelCase ) A : Dict = 0 A : Optional[int] = 0 A : List[str] = len(_lowerCAmelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
520
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_:List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Tuple = ["input_features", "is_longer"] def __init__( self, lowerCamelCase__=64, lowerCamelCase__=4_8000, lowerCamelCase__=480, lowerCamelCase__=10, lowerCamelCase__=1024, lowerCamelCase__=0.0, lowerCamelCase__=False, lowerCamelCase__ = 0, lowerCamelCase__ = 1_4000, lowerCamelCase__ = None, lowerCamelCase__ = "fusion", lowerCamelCase__ = "repeatpad", **lowerCamelCase__, ): super().__init__( feature_size=lowerCamelCase__, sampling_rate=lowerCamelCase__, padding_value=lowerCamelCase__, return_attention_mask=lowerCamelCase__, **lowerCamelCase__, ) A : Dict = top_db A : Tuple = truncation A : Union[str, Any] = padding A : Optional[int] = fft_window_size A : Optional[int] = (fft_window_size >> 1) + 1 A : Optional[int] = hop_length A : List[Any] = max_length_s A : List[str] = max_length_s * sampling_rate A : List[str] = sampling_rate A : Optional[int] = frequency_min A : int = frequency_max A : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm=lowerCamelCase__, mel_scale="""htk""", ) A : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins, num_mel_filters=lowerCamelCase__, min_frequency=lowerCamelCase__, max_frequency=lowerCamelCase__, sampling_rate=lowerCamelCase__, norm="""slaney""", mel_scale="""slaney""", ) def _lowerCAmelCase ( self ): A : Optional[Any] = copy.deepcopy(self.__dict__ ) A : Tuple = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None ): A : List[str] = spectrogram( lowerCamelCase__, window_function(self.fft_window_size, """hann""" ), frame_length=self.fft_window_size, hop_length=self.hop_length, power=2.0, mel_filters=lowerCamelCase__, log_mel="""dB""", ) return log_mel_spectrogram.T def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Union[str, Any] = np.array_split(list(range(0, total_frames - chunk_frames + 1 ) ), 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A : Dict = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A : Union[str, Any] = [0] # randomly choose index for each part A : str = np.random.choice(ranges[0] ) A : Optional[Any] = np.random.choice(ranges[1] ) A : int = np.random.choice(ranges[2] ) A : int = mel[idx_front : idx_front + chunk_frames, :] A : Tuple = mel[idx_middle : idx_middle + chunk_frames, :] A : Union[str, Any] = mel[idx_back : idx_back + chunk_frames, :] A : Tuple = torch.tensor(mel[None, None, :] ) A : Any = torch.nn.functional.interpolate( lowerCamelCase__, size=[chunk_frames, 64], mode="""bilinear""", align_corners=lowerCamelCase__ ) A : List[str] = mel_shrink[0][0].numpy() A : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back], axis=0 ) return mel_fusion def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": A : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A : Union[str, Any] = len(lowerCamelCase__ ) - max_length A : Dict = np.random.randint(0, overflow + 1 ) A : Union[str, Any] = waveform[idx : idx + max_length] A : List[str] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :] elif truncation == "fusion": A : Tuple = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters ) A : Optional[int] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A : Any = np.stack([mel, mel, mel, mel], axis=0 ) A : Optional[Any] = False else: A : Tuple = self._random_mel_fusion(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) A : List[Any] = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: A : str = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A : List[Any] = int(max_length / len(lowerCamelCase__ ) ) A : List[str] = np.stack(np.tile(lowerCamelCase__, n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A : List[Any] = int(max_length / len(lowerCamelCase__ ) ) A : List[str] = np.stack(np.tile(lowerCamelCase__, lowerCamelCase__ ) ) A : Any = np.pad(lowerCamelCase__, (0, max_length - waveform.shape[0]), mode="""constant""", constant_values=0 ) if truncation == "fusion": A : str = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters ) A : Optional[Any] = np.stack([input_mel, input_mel, input_mel, input_mel], axis=0 ) else: A : Optional[int] = self._np_extract_fbank_features(lowerCamelCase__, self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__, ): A : Any = truncation if truncation is not None else self.truncation A : str = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A : Any = isinstance(lowerCamelCase__, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) A : Optional[Any] = is_batched_numpy or ( isinstance(lowerCamelCase__, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: A : Tuple = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase__, np.ndarray ): A : str = np.asarray(lowerCamelCase__, dtype=np.floataa ) elif isinstance(lowerCamelCase__, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A : List[str] = [np.asarray(lowerCamelCase__ )] # convert to mel spectrogram, truncate and pad if needed. A : int = [ self._get_input_mel(lowerCamelCase__, max_length if max_length else self.nb_max_samples, lowerCamelCase__, lowerCamelCase__ ) for waveform in raw_speech ] A : Optional[Any] = [] A : Optional[int] = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase__ ) is_longer.append(lowerCamelCase__ ) if truncation == "fusion" and sum(lowerCamelCase__ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A : Optional[Any] = np.random.randint(0, len(lowerCamelCase__ ) ) A : Union[str, Any] = True if isinstance(input_mel[0], lowerCamelCase__ ): A : List[Any] = [np.asarray(lowerCamelCase__, dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A : Optional[Any] = [[longer] for longer in is_longer] A : Tuple = {"""input_features""": input_mel, """is_longer""": is_longer} A : Any = BatchFeature(lowerCamelCase__ ) if return_tensors is not None: A : Dict = input_features.convert_to_tensors(lowerCamelCase__ ) return input_features
520
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=56 , lowercase_ : str=True , lowercase_ : Optional[Any]=True , lowercase_ : List[Any]=True , lowercase_ : Union[str, Any]=True , lowercase_ : Any=99 , lowercase_ : Optional[int]=32 , lowercase_ : Tuple=2 , lowercase_ : int=2 , lowercase_ : List[str]=7 , lowercase_ : Any="gelu_new" , lowercase_ : List[str]=0.1 , lowercase_ : str=0.1 , lowercase_ : List[Any]=512 , lowercase_ : List[str]=16 , lowercase_ : Optional[int]=2 , lowercase_ : Union[str, Any]=0.02 , lowercase_ : Union[str, Any]=4 , lowercase_ : Union[str, Any]="block_sparse" , lowercase_ : Tuple=True , lowercase_ : Dict=False , lowercase_ : Dict=2 , lowercase_ : Dict=3 , ) -> List[str]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices _UpperCamelCase = rescale_embeddings _UpperCamelCase = attention_type _UpperCamelCase = use_bias _UpperCamelCase = block_size _UpperCamelCase = num_random_blocks def __UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = { "input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask, } return config, inputs_dict @require_flax class _UpperCAmelCase ( lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) __A = False __A = False def __UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" _UpperCamelCase = FlaxBigBirdModelTester(self) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self : Any) -> int: """simple docstring""" super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self : List[Any]) -> Union[str, Any]: """simple docstring""" super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" super().test_hidden_states_output() @slow def __UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained("google/bigbird-roberta-base") self.assertIsNotNone(lowercase_) def __UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def __UpperCAmelCase ( self : Tuple) -> Dict: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _UpperCamelCase = self._prepare_for_class(lowercase_ , lowercase_) _UpperCamelCase = model_class(lowercase_) @jax.jit def model_jitted(lowercase_ : Dict , lowercase_ : List[Any]=None , **lowercase_ : Tuple): return model(input_ids=lowercase_ , attention_mask=lowercase_ , **lowercase_) with self.subTest("JIT Enabled"): _UpperCamelCase = model_jitted(**lowercase_).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): _UpperCamelCase = model_jitted(**lowercase_).to_tuple() self.assertEqual(len(lowercase_) , len(lowercase_)) for jitted_output, output in zip(lowercase_ , lowercase_): self.assertEqual(jitted_output.shape , output.shape) def __UpperCAmelCase ( self : Any , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : str=1e-5 , lowercase_ : int="outputs" , lowercase_ : List[str]=None) -> Tuple: """simple docstring""" if name.startswith("outputs.attentions"): return else: super().check_pt_flax_outputs(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_)
547
from __future__ import annotations from collections import Counter from random import random class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" _UpperCamelCase = {} def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : str) -> None: """simple docstring""" _UpperCamelCase = {} def __UpperCAmelCase ( self : List[str] , lowercase_ : str , lowercase_ : str , lowercase_ : float) -> None: """simple docstring""" if nodea not in self.connections: self.add_node(lowercase_) if nodea not in self.connections: self.add_node(lowercase_) _UpperCamelCase = probability def __UpperCAmelCase ( self : Any) -> list[str]: """simple docstring""" return list(self.connections) def __UpperCAmelCase ( self : Tuple , lowercase_ : str) -> str: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def lowerCAmelCase__ ( a__ , a__ , a__ ) ->dict[str, int]: '''simple docstring''' _UpperCamelCase = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(a__ , a__ , a__ ) _UpperCamelCase = Counter(graph.get_nodes() ) _UpperCamelCase = start for _ in range(a__ ): _UpperCamelCase = graph.transition(a__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
547
1
'''simple docstring''' from itertools import product def _snake_case ( lowercase , lowercase ) -> list[int]: __a : Optional[int] = sides_number __a : Union[str, Any] = max_face_number * dice_number __a : Optional[Any] = [0] * (max_total + 1) __a : Dict = 1 __a : str = range(lowercase , max_face_number + 1 ) for dice_numbers in product(lowercase , repeat=lowercase ): __a : int = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case ( ) -> float: __a : Tuple = total_frequency_distribution( sides_number=4 , dice_number=9 ) __a : Union[str, Any] = total_frequency_distribution( sides_number=6 , dice_number=6 ) __a : str = 0 __a : Dict = 9 __a : str = 4 * 9 __a : Any = 6 for peter_total in range(lowercase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __a : str = (4**9) * (6**6) __a : List[Any] = peter_wins_count / total_games_number __a : List[Any] = round(lowercase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
697
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): def __init__( self , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __a : Any = params __a : Optional[Any] = np.array(__UpperCamelCase ) __a : Union[str, Any] = np.array([len(__UpperCamelCase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __UpperCamelCase ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def __lowerCamelCase ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = self.params.max_model_input_size __a : Union[str, Any] = self.lengths > max_len logger.info(f"""Splitting {sum(__UpperCamelCase )} too long sequences.""" ) def divide_chunks(__UpperCamelCase , __UpperCamelCase ): return [l[i : i + n] for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase )] __a : int = [] __a : Union[str, Any] = [] if self.params.mlm: __a , __a : Any = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: __a , __a : str = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: __a : Any = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: __a : int = np.insert(__UpperCamelCase , 0 , __UpperCamelCase ) if sub_s[-1] != sep_id: __a : str = np.insert(__UpperCamelCase , len(__UpperCamelCase ) , __UpperCamelCase ) assert len(__UpperCamelCase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__UpperCamelCase ) new_tok_ids.extend(__UpperCamelCase ) new_lengths.extend([len(__UpperCamelCase ) for l in sub_seqs] ) __a : Dict = np.array(__UpperCamelCase ) __a : Tuple = np.array(__UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[str] = len(self ) __a : List[str] = self.lengths > 11 __a : int = self.token_ids[indices] __a : Union[str, Any] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" ) def __lowerCamelCase ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: __a : List[str] = self.params.special_tok_ids["""unk_token"""] __a : str = len(self ) __a : str = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) __a : Optional[Any] = (unk_occs / self.lengths) < 0.5 __a : List[str] = self.token_ids[indices] __a : Optional[int] = self.lengths[indices] __a : Any = len(self ) logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" ) def __lowerCamelCase ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(f"""{len(self )} sequences""" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __lowerCamelCase ( self , __UpperCamelCase ): '''simple docstring''' __a : List[str] = [t[0] for t in batch] __a : str = [t[1] for t in batch] assert len(__UpperCamelCase ) == len(__UpperCamelCase ) # Max for paddings __a : Optional[int] = max(__UpperCamelCase ) # Pad token ids if self.params.mlm: __a : int = self.params.special_tok_ids["""pad_token"""] else: __a : Tuple = self.params.special_tok_ids["""unk_token"""] __a : Any = [list(t.astype(__UpperCamelCase ) ) + [pad_idx] * (max_seq_len_ - len(__UpperCamelCase )) for t in token_ids] assert len(tk_ ) == len(__UpperCamelCase ) assert all(len(__UpperCamelCase ) == max_seq_len_ for t in tk_ ) __a : Any = torch.tensor(tk_ ) # (bs, max_seq_len_) __a : Optional[Any] = torch.tensor(__UpperCamelCase ) # (bs) return tk_t, lg_t
697
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( _lowercase : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : Dict , _lowercase : List[str] ) -> str: '''simple docstring''' # Initialise PyTorch model lowercase__ : Tuple = FunnelConfig.from_json_file(_lowercase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowercase__ : Union[str, Any] = FunnelBaseModel(_lowercase ) if base_model else FunnelModel(_lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": __UpperCamelCase: str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether you want just the base model (no decoder) or not.""" ) __UpperCamelCase: List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
266
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase: List[Any] = logging.get_logger(__name__) __UpperCamelCase: Dict = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class __lowerCAmelCase ( _UpperCamelCase ): '''simple docstring''' _A = "luke" def __init__( self: Union[str, Any], lowerCamelCase_: str=50267, lowerCamelCase_: Dict=500000, lowerCamelCase_: Union[str, Any]=768, lowerCamelCase_: Dict=256, lowerCamelCase_: int=12, lowerCamelCase_: Union[str, Any]=12, lowerCamelCase_: str=3072, lowerCamelCase_: List[Any]="gelu", lowerCamelCase_: int=0.1, lowerCamelCase_: Optional[Any]=0.1, lowerCamelCase_: Any=512, lowerCamelCase_: List[str]=2, lowerCamelCase_: str=0.0_2, lowerCamelCase_: Union[str, Any]=1E-12, lowerCamelCase_: List[Any]=True, lowerCamelCase_: List[Any]=None, lowerCamelCase_: Optional[Any]=1, lowerCamelCase_: Dict=0, lowerCamelCase_: List[Any]=2, **lowerCamelCase_: Optional[Any], ): super().__init__(pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowercase__ : Tuple = vocab_size lowercase__ : Any = entity_vocab_size lowercase__ : Tuple = hidden_size lowercase__ : List[str] = entity_emb_size lowercase__ : Tuple = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = hidden_act lowercase__ : Optional[int] = intermediate_size lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : List[Any] = use_entity_aware_attention lowercase__ : Optional[Any] = classifier_dropout
266
1
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class __UpperCamelCase : def __init__( self :List[Any] ,_UpperCamelCase :str ,_UpperCamelCase :Tuple=1_4 ,_UpperCamelCase :Union[str, Any]=7 ,_UpperCamelCase :Any=True ,_UpperCamelCase :List[Any]=True ,_UpperCamelCase :Tuple=True ,_UpperCamelCase :Optional[Any]=True ,_UpperCamelCase :List[Any]=True ,_UpperCamelCase :str=9_9 ,_UpperCamelCase :List[Any]=3_2 ,_UpperCamelCase :List[str]=5 ,_UpperCamelCase :Optional[int]=4 ,_UpperCamelCase :Optional[int]=3_7 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :str=0.1 ,_UpperCamelCase :Optional[int]=0.1 ,_UpperCamelCase :int=5_1_2 ,_UpperCamelCase :Union[str, Any]=1_6 ,_UpperCamelCase :Union[str, Any]=2 ,_UpperCamelCase :List[Any]=0.02 ,_UpperCamelCase :Any=3 ,_UpperCamelCase :Tuple=4 ,_UpperCamelCase :str=None ,): snake_case_ : Dict = parent snake_case_ : Optional[int] = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : Union[str, Any] = is_training snake_case_ : Tuple = use_token_type_ids snake_case_ : Union[str, Any] = use_input_mask snake_case_ : Dict = use_labels snake_case_ : Optional[int] = use_mc_token_ids snake_case_ : Dict = vocab_size snake_case_ : List[Any] = hidden_size snake_case_ : List[Any] = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Optional[Any] = intermediate_size snake_case_ : str = hidden_act snake_case_ : int = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Union[str, Any] = max_position_embeddings snake_case_ : Tuple = type_vocab_size snake_case_ : Any = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : Tuple = num_labels snake_case_ : str = num_choices snake_case_ : int = scope snake_case_ : str = self.vocab_size - 1 def a__ ( self :Optional[int] ): snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case_ : Union[str, Any] = None if self.use_input_mask: snake_case_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Tuple = None if self.use_token_type_ids: snake_case_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case_ : Any = None if self.use_mc_token_ids: snake_case_ : int = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length ) snake_case_ : Optional[Any] = None snake_case_ : str = None snake_case_ : Optional[Any] = None if self.use_labels: snake_case_ : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case_ : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case_ : Tuple = ids_tensor([self.batch_size] ,self.num_choices ) snake_case_ : Any = self.get_config() snake_case_ : Optional[Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def a__ ( self :Tuple ): return CTRLConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,) def a__ ( self :List[Any] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :int ,*_UpperCamelCase :Union[str, Any] ): snake_case_ : Tuple = CTRLModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() model(_UpperCamelCase ,token_type_ids=_UpperCamelCase ,head_mask=_UpperCamelCase ) model(_UpperCamelCase ,token_type_ids=_UpperCamelCase ) snake_case_ : Optional[Any] = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Dict ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :List[Any] ,*_UpperCamelCase :int ): snake_case_ : Union[str, Any] = CTRLLMHeadModel(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ : Tuple = model(_UpperCamelCase ,token_type_ids=_UpperCamelCase ,labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self :Optional[int] ): snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) : List[str] = config_and_inputs snake_case_ : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def a__ ( self :Optional[int] ,_UpperCamelCase :Tuple ,_UpperCamelCase :List[str] ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Optional[int] ,*_UpperCamelCase :int ): snake_case_ : Tuple = self.num_labels snake_case_ : List[Any] = CTRLForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case_ : str = model(_UpperCamelCase ,token_type_ids=_UpperCamelCase ,labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) @require_torch class __UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): lowercase : Optional[int] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase : List[str] = (CTRLLMHeadModel,) if is_torch_available() else () lowercase : List[str] = ( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase : Dict = True lowercase : Optional[Any] = False lowercase : int = False def a__ ( self :Dict ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :Dict ,_UpperCamelCase :Any ,_UpperCamelCase :Optional[Any] ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def a__ ( self :Any ): snake_case_ : int = CTRLModelTester(self ) snake_case_ : Dict = ConfigTester(self ,config_class=_UpperCamelCase ,n_embd=3_7 ) def a__ ( self :Dict ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def a__ ( self :Tuple ): self.config_tester.run_common_tests() def a__ ( self :Optional[Any] ): snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*_UpperCamelCase ) def a__ ( self :int ): snake_case_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_UpperCamelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a__ ( self :List[Any] ): pass @slow def a__ ( self :int ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Any = CTRLModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def a__ ( self :str ): pass @require_torch class __UpperCamelCase ( unittest.TestCase ): def a__ ( self :Dict ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def a__ ( self :str ): snake_case_ : Optional[int] = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(_UpperCamelCase ) snake_case_ : Optional[Any] = torch.tensor( [[1_1_8_5_9, 0, 1_6_1_1, 8]] ,dtype=torch.long ,device=_UpperCamelCase ) # Legal the president is snake_case_ : List[str] = [ 1_1_8_5_9, 0, 1_6_1_1, 8, 5, 1_5_0, 2_6_4_4_9, 2, 1_9, 3_4_8, 4_6_9, 3, 2_5_9_5, 4_8, 2_0_7_4_0, 2_4_6_5_3_3, 2_4_6_5_3_3, 1_9, 3_0, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a snake_case_ : Dict = model.generate(_UpperCamelCase ,do_sample=_UpperCamelCase ) self.assertListEqual(output_ids[0].tolist() ,_UpperCamelCase )
267
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : List[Any] = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class __UpperCamelCase ( lowercase__ ): lowercase : Union[str, Any] = 'luke' def __init__( self :List[str] ,_UpperCamelCase :Tuple=5_0_2_6_7 ,_UpperCamelCase :Tuple=5_0_0_0_0_0 ,_UpperCamelCase :str=7_6_8 ,_UpperCamelCase :List[Any]=2_5_6 ,_UpperCamelCase :List[str]=1_2 ,_UpperCamelCase :str=1_2 ,_UpperCamelCase :Union[str, Any]=3_0_7_2 ,_UpperCamelCase :int="gelu" ,_UpperCamelCase :int=0.1 ,_UpperCamelCase :Dict=0.1 ,_UpperCamelCase :Dict=5_1_2 ,_UpperCamelCase :Optional[Any]=2 ,_UpperCamelCase :int=0.02 ,_UpperCamelCase :Any=1E-1_2 ,_UpperCamelCase :Tuple=True ,_UpperCamelCase :Any=None ,_UpperCamelCase :Any=1 ,_UpperCamelCase :int=0 ,_UpperCamelCase :List[Any]=2 ,**_UpperCamelCase :str ,): super().__init__(pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,**_UpperCamelCase ) snake_case_ : Any = vocab_size snake_case_ : List[Any] = entity_vocab_size snake_case_ : Optional[Any] = hidden_size snake_case_ : List[Any] = entity_emb_size snake_case_ : Dict = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : Dict = hidden_act snake_case_ : Dict = intermediate_size snake_case_ : Any = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Any = type_vocab_size snake_case_ : int = initializer_range snake_case_ : Union[str, Any] = layer_norm_eps snake_case_ : Tuple = use_entity_aware_attention snake_case_ : Tuple = classifier_dropout
267
1
import math from datetime import datetime, timedelta def lowercase( UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = year % 19 UpperCamelCase = year % 4 UpperCamelCase = year % 7 UpperCamelCase = math.floor(year / 100 ) UpperCamelCase = math.floor((13 + 8 * leap_day_inhibits) / 25 ) UpperCamelCase = leap_day_inhibits / 4 UpperCamelCase = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 UpperCamelCase = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 UpperCamelCase = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon UpperCamelCase = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(snake_case__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(snake_case__ , 4 , 18 ) else: return datetime(snake_case__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): _SCREAMING_SNAKE_CASE = """will be""" if year > datetime.now().year else """was""" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
537
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[Any] , snake_case__ : Any ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): _snake_case : List[str] = np.full((len(snake_case__ ), sequence_length, 2) , snake_case__ ) else: _snake_case : List[str] = np.full((len(snake_case__ ), sequence_length) , snake_case__ ) for i, tensor in enumerate(snake_case__ ): if padding_side == "right": if isinstance(snake_case__ , snake_case__ ): _snake_case : List[Any] = tensor[:sequence_length] else: _snake_case : int = tensor[:sequence_length] else: if isinstance(snake_case__ , snake_case__ ): _snake_case : List[str] = tensor[:sequence_length] else: _snake_case : Tuple = tensor[:sequence_length] return out_tensor.tolist() def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = ord(snake_case__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True _snake_case : Dict = unicodedata.category(snake_case__ ) if cat.startswith("""P""" ): return True return False @dataclass class lowercase( __a ): '''simple docstring''' lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None lowercase__ = -1_00 lowercase__ = "pt" def UpperCamelCase_ ( self: Optional[int], a_: Tuple ): '''simple docstring''' import torch _snake_case : Union[str, Any] = """label""" if """label""" in features[0].keys() else """labels""" _snake_case : Tuple = [feature[label_name] for feature in features] if label_name in features[0].keys() else None _snake_case : int = self.tokenizer.pad( a_, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="""pt""" if labels is None else None, ) if labels is None: return batch _snake_case : Optional[int] = torch.tensor(batch["""entity_ids"""] ).shape[1] _snake_case : str = self.tokenizer.padding_side if padding_side == "right": _snake_case : Tuple = [ list(a_ ) + [self.label_pad_token_id] * (sequence_length - len(a_ )) for label in labels ] else: _snake_case : Dict = [ [self.label_pad_token_id] * (sequence_length - len(a_ )) + list(a_ ) for label in labels ] _snake_case : str = [feature["""ner_tags"""] for feature in features] _snake_case : Tuple = padding_tensor(a_, -1, a_, a_ ) _snake_case : Any = [feature["""original_entity_spans"""] for feature in features] _snake_case : Union[str, Any] = padding_tensor(a_, (-1, -1), a_, a_ ) _snake_case : Optional[Any] = {k: torch.tensor(a_, dtype=torch.intaa ) for k, v in batch.items()} return batch
609
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case__ : Optional[int] = logging.get_logger(__name__) snake_case__ : Any = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :int = '''resnet''' lowerCamelCase_ :Tuple = ['''basic''', '''bottleneck'''] def __init__( self , snake_case_=3 , snake_case_=6_4 , snake_case_=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , snake_case_=[3, 4, 6, 3] , snake_case_="bottleneck" , snake_case_="relu" , snake_case_=False , snake_case_=None , snake_case_=None , **snake_case_ , ): '''simple docstring''' super().__init__(**snake_case_ ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : str = embedding_size UpperCAmelCase_ : Tuple = hidden_sizes UpperCAmelCase_ : str = depths UpperCAmelCase_ : int = layer_type UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Union[str, Any] = downsample_in_first_stage UpperCAmelCase_ : Optional[int] = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(snake_case_ ) + 1 )] UpperCAmelCase_ , UpperCAmelCase_ : Dict = get_aligned_output_features_output_indices( out_features=snake_case_ , out_indices=snake_case_ , stage_names=self.stage_names ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Tuple = version.parse('''1.11''' ) @property def _UpperCamelCase ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _UpperCamelCase ( self ): '''simple docstring''' return 1E-3
389
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) snake_case__ : Optional[int] = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys snake_case__ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
389
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __snake_case ( unittest.TestCase ): def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=True ,a_=True ,a_=True ,a_=99 ,a_=32 ,a_=5 ,a_=4 ,a_=37 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=16 ,a_=2 ,a_=0.02 ,a_=4 ,): """simple docstring""" lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_attention_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_choices def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ = None if self.use_attention_mask: lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase__ = RoFormerConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=a_ ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class __snake_case ( SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = FlaxRoFormerModelTester(self ) @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase__ = model_class_name.from_pretrained('junnyu/roformer_chinese_small' ,from_pt=a_ ) lowerCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ ) @require_flax class __snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowerCAmelCase__ = jnp.array([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ = model(a_ )[0] lowerCAmelCase__ = 5_0000 lowerCAmelCase__ = (1, 6, vocab_size) self.assertEqual(output.shape ,a_ ) lowerCAmelCase__ = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] ,a_ ,atol=1e-4 ) )
193
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : Any = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ["ChineseCLIPFeatureExtractor"] _lowerCAmelCase : Any = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys _lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
193
1
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" def __init__( self , __A , __A = None , __A = None , __A = False , __A = False , __A = None , __A = None , **__A , ) -> List[str]: super().__init__( features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , ) _lowerCAmelCase =Generator( cache_dir=__A , features=__A , generator=__A , gen_kwargs=__A , **__A , ) def UpperCamelCase__ ( self ) -> List[str]: # Build iterable dataset if self.streaming: _lowerCAmelCase =self.builder.as_streaming_dataset(split='train' ) # Build regular (map-style) dataset else: _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None self.builder.download_and_prepare( download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , ) _lowerCAmelCase =self.builder.as_dataset( split='train' , verification_mode=__A , in_memory=self.keep_in_memory ) return dataset
58
'''simple docstring''' def UpperCamelCase__ ( a__ = 1_0_0_0 ): '''simple docstring''' _lowerCAmelCase =2**power _lowerCAmelCase =0 while n: _lowerCAmelCase , _lowerCAmelCase =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase__ : str = logging.get_logger(__name__) UpperCAmelCase__ : Optional[int] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } UpperCAmelCase__ : Tuple = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ) -> Dict: '''simple docstring''' for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase__ = "lm_head" lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ) if weight_type is not None: lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape else: lowerCAmelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(UpperCamelCase_ )[0].split("." )[-2] lowerCAmelCase__ = mapped_key.replace("*" , UpperCamelCase_ ) if "weight_g" in name: lowerCAmelCase__ = "weight_g" elif "weight_v" in name: lowerCAmelCase__ = "weight_v" elif "bias" in name: lowerCAmelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ = "weight" else: lowerCAmelCase__ = None set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) continue if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase__ = full_name.split("conv_layers." )[-1] lowerCAmelCase__ = name.split("." ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase_ ) @torch.no_grad() def A ( UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : int=True ) -> Tuple: '''simple docstring''' if config_path is not None: lowerCAmelCase__ = UniSpeechConfig.from_pretrained(UpperCamelCase_ ) else: lowerCAmelCase__ = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase__ = Dictionary.load_from_json(UpperCamelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ = target_dict.pad_index lowerCAmelCase__ = target_dict.bos_index lowerCAmelCase__ = target_dict.eos_index lowerCAmelCase__ = len(target_dict.symbols ) lowerCAmelCase__ = os.path.join(UpperCamelCase_ , "vocab.json" ) if not os.path.isdir(UpperCamelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCamelCase_ ) ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) lowerCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ = 42 lowerCAmelCase__ = 43 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = WavaVecaPhonemeCTCTokenizer( UpperCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCamelCase_ , ) lowerCAmelCase__ = True if config.feat_extract_norm == "layer" else False lowerCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) lowerCAmelCase__ = WavaVecaProcessor(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) lowerCAmelCase__ = UniSpeechForCTC(UpperCamelCase_ ) else: lowerCAmelCase__ = UniSpeechForPreTraining(UpperCamelCase_ ) if is_finetuned: lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase__ = model[0].eval() recursively_load_weights(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) hf_unispeech.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCAmelCase__ : List[str] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
48
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __A : a__ : int a__ : TreeNode | None = None a__ : TreeNode | None = None SCREAMING_SNAKE_CASE_: Union[str, Any] =namedtuple('CoinsDistribResult', 'moves excess') def lowerCAmelCase_ ( snake_case_ : TreeNode | None ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(snake_case_ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(snake_case_ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(snake_case_ ) != count_coins(snake_case_ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(snake_case_ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.left ) UpperCAmelCase_ , UpperCAmelCase_ = get_distrib(node.right ) UpperCAmelCase_ = 1 - left_distrib_excess UpperCAmelCase_ = 1 - right_distrib_excess UpperCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(snake_case_ ) + abs(snake_case_ ) ) UpperCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(snake_case_ , snake_case_ ) return get_distrib(snake_case_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
78
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _SCREAMING_SNAKE_CASE : int = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = '''hopper-medium-v2''' _SCREAMING_SNAKE_CASE : Any = gym.make(env_name) _SCREAMING_SNAKE_CASE : int = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) _SCREAMING_SNAKE_CASE : List[str] = env.reset() _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : Any = 0 _SCREAMING_SNAKE_CASE : List[str] = 1000 _SCREAMING_SNAKE_CASE : Tuple = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _SCREAMING_SNAKE_CASE : Dict = pipeline(obs, planning_horizon=32) # execute action in environment _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = env.step(denorm_actions) _SCREAMING_SNAKE_CASE : Dict = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) _SCREAMING_SNAKE_CASE : Union[str, Any] = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
472
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : int=32 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[int]=10 , __lowerCamelCase : List[Any]=[8, 16, 32, 64] , __lowerCamelCase : Dict=[1, 1, 2, 1] , __lowerCamelCase : int=True , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[int]="relu" , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=["stage2", "stage3", "stage4"] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[Any]=1 , ) -> List[str]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = image_size SCREAMING_SNAKE_CASE__ = num_channels SCREAMING_SNAKE_CASE__ = embeddings_size SCREAMING_SNAKE_CASE__ = hidden_sizes SCREAMING_SNAKE_CASE__ = depths SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = num_labels SCREAMING_SNAKE_CASE__ = scope SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = out_features SCREAMING_SNAKE_CASE__ = out_indices SCREAMING_SNAKE_CASE__ = num_groups def lowercase_ ( self : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ = None if self.use_labels: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE__ = self.get_config() return config, pixel_values, labels def lowercase_ ( self : List[str] ) -> Dict: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ) -> int: SCREAMING_SNAKE_CASE__ = BitModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ ( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.num_labels SCREAMING_SNAKE_CASE__ = BitForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = BitBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" a = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () a = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) a = False a = False a = False a = False a = False def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = BitModelTester(self ) SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> str: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self : str ) -> Dict: return @unittest.skip(reason='''Bit does not output attentions''' ) def lowercase_ ( self : Any ) -> Dict: pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def lowercase_ ( self : Tuple ) -> Optional[int]: pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def lowercase_ ( self : Optional[int] ) -> str: pass def lowercase_ ( self : str ) -> str: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def lowercase_ ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowercase_ ( self : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def lowercase_ ( self : Any ) -> str: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class(config=__lowerCamelCase ) for name, module in model.named_modules(): if isinstance(__lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def lowercase_ ( self : str ) -> Optional[Any]: def check_hidden_states_output(__lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE__ = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE__ = layer_type SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def lowercase_ ( self : List[str] ) -> Dict: pass def lowercase_ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def lowercase_ ( self : Optional[Any] ) -> Dict: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ = BitModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self : List[Any] ) -> List[Any]: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase_ ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.default_image_processor SCREAMING_SNAKE_CASE__ = prepare_img() SCREAMING_SNAKE_CASE__ = image_processor(images=__lowerCamelCase , return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class UpperCAmelCase__ ( A__ , unittest.TestCase ): """simple docstring""" a = (BitBackbone,) if is_torch_available() else () a = BitConfig a = False def lowercase_ ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = BitModelTester(self )
472
1
"""simple docstring""" from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" return getitem, k def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: """simple docstring""" return setitem, k, v def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" return delitem, k def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" try: return fun(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ), None except Exception as e: return None, e __A = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) __A = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] __A = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] __A = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] __A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __A = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" lowerCAmelCase__ :Tuple = HashMap(initial_block_size=4 ) lowerCAmelCase__ :str = {} for _, (fun, *args) in enumerate(_SCREAMING_SNAKE_CASE ): lowerCAmelCase__ , lowerCAmelCase__ :List[Any] = _run_operation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ , lowerCAmelCase__ :List[str] = _run_operation(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) assert my_res == py_res assert str(_SCREAMING_SNAKE_CASE ) == str(_SCREAMING_SNAKE_CASE ) assert set(_SCREAMING_SNAKE_CASE ) == set(_SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) assert set(my.items() ) == set(py.items() ) def __A () ->str: """simple docstring""" def is_public(_SCREAMING_SNAKE_CASE ) -> bool: return not name.startswith('_' ) lowerCAmelCase__ :Tuple = {name for name in dir({} ) if is_public(_SCREAMING_SNAKE_CASE )} lowerCAmelCase__ :Optional[Any] = {name for name in dir(HashMap() ) if is_public(_SCREAMING_SNAKE_CASE )} assert dict_public_names > hash_public_names
93
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json""" ), } class A_(SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ : List[Any] = """xlm-prophetnet""" a_ : Any = ["""past_key_values"""] a_ : Optional[int] = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self , A = 0.1 , A = "gelu" , A = 3_0522 , A = 1024 , A = 4096 , A = 12 , A = 16 , A = 4096 , A = 12 , A = 16 , A = 0.1 , A = 0.1 , A = 512 , A = 0.0_2 , A = True , A = True , A = 0 , A = 2 , A = 32 , A = 128 , A = False , A = 0.0 , A = True , A = 0 , A = 1 , A = 2 , **A , ): _lowerCamelCase : Dict = vocab_size _lowerCamelCase : List[Any] = hidden_size _lowerCamelCase : List[Any] = encoder_ffn_dim _lowerCamelCase : Any = num_encoder_layers _lowerCamelCase : Any = num_encoder_attention_heads _lowerCamelCase : List[str] = decoder_ffn_dim _lowerCamelCase : Optional[int] = num_decoder_layers _lowerCamelCase : List[str] = num_decoder_attention_heads _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : Optional[Any] = init_std # Normal(0, this parameter) _lowerCamelCase : Optional[int] = activation_function # parameters for xlmprophetnet _lowerCamelCase : Any = ngram _lowerCamelCase : Dict = num_buckets _lowerCamelCase : Dict = relative_max_distance _lowerCamelCase : Optional[Any] = disable_ngram_loss _lowerCamelCase : Union[str, Any] = eps # 3 Types of Dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : str = activation_dropout _lowerCamelCase : Optional[int] = dropout _lowerCamelCase : List[Any] = use_cache super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , add_cross_attention=A , decoder_start_token_id=A , **A , ) @property def _lowerCAmelCase ( self ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def _lowerCAmelCase ( self , A ): raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
437
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset UpperCamelCase_ = random.Random() def lowerCamelCase_ ( _a : Dict , _a : Union[str, Any]=1.0 , _a : Optional[int]=None , _a : Optional[Any]=None ): '''simple docstring''' if rng is None: UpperCAmelCase_ : List[str] = global_rng UpperCAmelCase_ : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self: List[Any] ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[str]=7 ,lowerCamelCase_: Dict=400 ,lowerCamelCase_: Any=2000 ,lowerCamelCase_: Tuple=2048 ,lowerCamelCase_: Union[str, Any]=128 ,lowerCamelCase_: Tuple=1 ,lowerCamelCase_: int=512 ,lowerCamelCase_: int=30 ,lowerCamelCase_: Any=44100 ,) -> Optional[int]: UpperCAmelCase_ : int = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : List[str] = min_seq_length UpperCAmelCase_ : Dict = max_seq_length UpperCAmelCase_ : Any = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase_ : List[str] = spectrogram_length UpperCAmelCase_ : str = feature_size UpperCAmelCase_ : Any = num_audio_channels UpperCAmelCase_ : Dict = hop_length UpperCAmelCase_ : Tuple = chunk_length UpperCAmelCase_ : List[str] = sampling_rate def A__ ( self: Tuple ) -> Union[str, Any]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def A__ ( self: List[str] ,lowerCamelCase_: Dict=False ,lowerCamelCase_: Optional[int]=False ) -> Any: def _flatten(lowerCamelCase_: Union[str, Any] ): return list(itertools.chain(*lowerCamelCase_ ) ) if equal_length: UpperCAmelCase_ : List[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase_ : str = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: UpperCAmelCase_ : Tuple = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[int] = TvltFeatureExtractor def A__ ( self: List[str] ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = TvltFeatureExtractionTester(self ) def A__ ( self: Optional[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase_ ,"""spectrogram_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ ,"""feature_size""" ) ) self.assertTrue(hasattr(lowerCamelCase_ ,"""num_audio_channels""" ) ) self.assertTrue(hasattr(lowerCamelCase_ ,"""hop_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ ,"""chunk_length""" ) ) self.assertTrue(hasattr(lowerCamelCase_ ,"""sampling_rate""" ) ) def A__ ( self: Tuple ) -> Dict: UpperCAmelCase_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : str = feat_extract_first.save_pretrained(lowerCamelCase_ )[0] check_json_file_has_correct_format(lowerCamelCase_ ) UpperCAmelCase_ : Any = self.feature_extraction_class.from_pretrained(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = feat_extract_first.to_dict() UpperCAmelCase_ : Tuple = feat_extract_second.to_dict() UpperCAmelCase_ : Tuple = dict_first.pop("""mel_filters""" ) UpperCAmelCase_ : List[str] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: int ) -> int: UpperCAmelCase_ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ : List[Any] = os.path.join(lowerCamelCase_ ,"""feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = self.feature_extraction_class.from_json_file(lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = feat_extract_first.to_dict() UpperCAmelCase_ : Union[str, Any] = feat_extract_second.to_dict() UpperCAmelCase_ : str = dict_first.pop("""mel_filters""" ) UpperCAmelCase_ : List[str] = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase_ ,lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ ,lowerCamelCase_ ) def A__ ( self: Any ) -> int: # Initialize feature_extractor UpperCAmelCase_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] UpperCAmelCase_ : Optional[int] = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase_ : List[str] = feature_extractor(np_speech_inputs[0] ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched UpperCAmelCase_ : List[Any] = feature_extractor(lowerCamelCase_ ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking UpperCAmelCase_ : Union[str, Any] = feature_extractor( lowerCamelCase_ ,return_tensors="""np""" ,sampling_rate=44100 ,mask_audio=lowerCamelCase_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. UpperCAmelCase_ : Tuple = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCAmelCase_ : List[str] = np.asarray(lowerCamelCase_ ) UpperCAmelCase_ : Any = feature_extractor(lowerCamelCase_ ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def A__ ( self: List[Any] ,lowerCamelCase_: str ) -> List[str]: UpperCAmelCase_ : Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" ,"""clean""" ,split="""validation""" ) # automatic decoding with librispeech UpperCAmelCase_ : Tuple = ds.sort("""id""" ).select(range(lowerCamelCase_ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def A__ ( self: Dict ) -> List[str]: UpperCAmelCase_ : Dict = self._load_datasamples(1 ) UpperCAmelCase_ : Dict = TvltFeatureExtractor() UpperCAmelCase_ : str = feature_extractor(lowerCamelCase_ ,return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape ,(1, 1, 192, 128) ) UpperCAmelCase_ : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] ,lowerCamelCase_ ,atol=1e-4 ) )
701
from __future__ import annotations from typing import Any class _snake_case : '''simple docstring''' def __init__( self: Optional[int] ,lowerCamelCase_: int = 6 ) -> None: UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None self.create_linked_list(lowerCamelCase_ ) def A__ ( self: Optional[int] ,lowerCamelCase_: int ) -> None: UpperCAmelCase_ : List[Any] = Node() UpperCAmelCase_ : List[str] = current_node UpperCAmelCase_ : List[Any] = current_node UpperCAmelCase_ : Any = current_node for _ in range(1 ,lowerCamelCase_ ): UpperCAmelCase_ : Optional[int] = Node() UpperCAmelCase_ : Optional[Any] = current_node UpperCAmelCase_ : List[str] = previous_node UpperCAmelCase_ : str = current_node UpperCAmelCase_ : Dict = self.front UpperCAmelCase_ : List[Any] = previous_node def A__ ( self: Any ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A__ ( self: List[str] ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def A__ ( self: Tuple ,lowerCamelCase_: Any ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): UpperCAmelCase_ : str = self.rear.next if self.rear: UpperCAmelCase_ : int = data def A__ ( self: Optional[int] ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: UpperCAmelCase_ : Union[str, Any] = self.front.data UpperCAmelCase_ : Dict = None return data UpperCAmelCase_ : Union[str, Any] = self.front UpperCAmelCase_ : Optional[int] = old_front.next UpperCAmelCase_ : Union[str, Any] = old_front.data UpperCAmelCase_ : Optional[Any] = None return data def A__ ( self: str ) -> None: if self.is_empty(): raise Exception("""Empty Queue""" ) def A__ ( self: int ) -> None: if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class _snake_case : '''simple docstring''' def __init__( self: Tuple ) -> None: UpperCAmelCase_ : Any | None = None UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
322
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : Tuple = logging.get_logger(__name__) __magic_name__ : Optional[int] = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase__ = 'bridgetower_vision_model' def __init__( self : Optional[int] , __A : int=7_6_8 , __A : Union[str, Any]=1_2 , __A : Union[str, Any]=3 , __A : Any=1_6 , __A : List[Any]=2_8_8 , __A : Any=1 , __A : Optional[int]=1e-05 , __A : Dict=False , __A : Optional[int]=True , __A : int=False , **__A : str , ): """simple docstring""" super().__init__(**__A ) _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_channels _lowercase = patch_size _lowercase = image_size _lowercase = initializer_factor _lowercase = layer_norm_eps _lowercase = stop_gradient _lowercase = share_layernorm _lowercase = remove_last_layer @classmethod def snake_case ( cls : List[Any] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): """simple docstring""" _lowercase , _lowercase = cls.get_config_dict(__A , **__A ) if config_dict.get("model_type" ) == "bridgetower": _lowercase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__A , **__A ) class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase__ = 'bridgetower_text_model' def __init__( self : Any , __A : List[Any]=5_0_2_6_5 , __A : Tuple=7_6_8 , __A : List[Any]=1_2 , __A : Optional[int]=1_2 , __A : Union[str, Any]=1 , __A : Tuple=3_0_7_2 , __A : List[str]="gelu" , __A : int=0.1 , __A : List[str]=0.1 , __A : Dict=5_1_4 , __A : Union[str, Any]=1 , __A : Any=1e-05 , __A : List[str]=1 , __A : List[Any]=0 , __A : Any=2 , __A : Optional[Any]="absolute" , __A : Dict=True , **__A : Optional[Any] , ): """simple docstring""" super().__init__(**__A ) _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = hidden_act _lowercase = initializer_factor _lowercase = intermediate_size _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = layer_norm_eps _lowercase = position_embedding_type _lowercase = use_cache _lowercase = pad_token_id _lowercase = bos_token_id _lowercase = eos_token_id @classmethod def snake_case ( cls : List[str] , __A : Union[str, os.PathLike] , **__A : Optional[int] ): """simple docstring""" _lowercase , _lowercase = cls.get_config_dict(__A , **__A ) if config_dict.get("model_type" ) == "bridgetower": _lowercase = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__A , **__A ) class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" UpperCAmelCase__ = 'bridgetower' def __init__( self : List[str] , __A : List[str]=True , __A : str="gelu" , __A : List[str]=7_6_8 , __A : List[Any]=1 , __A : str=1e-05 , __A : Any=False , __A : Dict="add" , __A : Optional[Any]=1_2 , __A : Any=6 , __A : Tuple=False , __A : Optional[int]=False , __A : List[Any]=None , __A : List[str]=None , **__A : Optional[Any] , ): """simple docstring""" # TODO: remove this once the Hub files are updated. _lowercase = kwargs.pop("text_config_dict" , __A ) _lowercase = kwargs.pop("vision_config_dict" , __A ) super().__init__(**__A ) _lowercase = share_cross_modal_transformer_layers _lowercase = hidden_act _lowercase = hidden_size _lowercase = initializer_factor _lowercase = layer_norm_eps _lowercase = share_link_tower_layers _lowercase = link_tower_type _lowercase = num_attention_heads _lowercase = num_hidden_layers _lowercase = tie_word_embeddings _lowercase = init_layernorm_from_vision_encoder if text_config is None: _lowercase = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: _lowercase = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) _lowercase = BridgeTowerTextConfig(**__A ) _lowercase = BridgeTowerVisionConfig(**__A ) @classmethod def snake_case ( cls : Optional[Any] , __A : BridgeTowerTextConfig , __A : BridgeTowerVisionConfig , **__A : str ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A ) def snake_case ( self : str ): """simple docstring""" _lowercase = copy.deepcopy(self.__dict__ ) _lowercase = self.text_config.to_dict() _lowercase = self.vision_config.to_dict() _lowercase = self.__class__.model_type return output
497
'''simple docstring''' from typing import Any def A__ ( A_ ) -> list[Any]: if not input_list: return [] _lowercase = [input_list.count(A_ ) for value in input_list] _lowercase = max(A_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(A_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
497
1
"""simple docstring""" from functools import lru_cache def __magic_name__ ( __snake_case : int ) -> set: lowercase : List[str] = 2 lowercase : Union[str, Any] = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCAmelCase__ ) if n > 1: factors.add(UpperCAmelCase__ ) return factors @lru_cache def __magic_name__ ( __snake_case : int ) -> int: return len(unique_prime_factors(UpperCAmelCase__ ) ) def __magic_name__ ( __snake_case : list ) -> bool: return len(set(UpperCAmelCase__ ) ) in (0, 1) def __magic_name__ ( __snake_case : int ) -> list: lowercase : Tuple = 2 while True: # Increment each value of a generated range lowercase : List[Any] = [base + i for i in range(UpperCAmelCase__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase : str = [upf_len(UpperCAmelCase__ ) for x in group] checker.append(UpperCAmelCase__ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCAmelCase__ ): return group # Increment our base variable by 1 base += 1 def __magic_name__ ( __snake_case : int = 4 ) -> int: lowercase : Union[str, Any] = run(UpperCAmelCase__ ) return results[0] if len(UpperCAmelCase__ ) else None if __name__ == "__main__": print(solution())
715
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _A : Any = """.""" if __name__ == "__main__": _A : Any = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") _A : Any = [] _A : List[Any] = [] with open(doctest_file_path) as fp: for line in fp: _A : int = line.strip() _A : Optional[Any] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _A : Union[str, Any] = """\n""".join(non_existent_paths) raise ValueError(F"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
518
0
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument __SCREAMING_SNAKE_CASE : Optional[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def lowerCAmelCase_( lowercase_ : List[str] ) -> str: _lowerCamelCase = list(s_dict.keys() ) for key in keys: _lowerCamelCase = R'''.*/layers_(\d+)''' _lowerCamelCase = key if re.match(__a , __a ): _lowerCamelCase = re.sub(r'''layers_(\d+)''' , r'''block/\1/layer''' , __a ) _lowerCamelCase = R'''(encoder|decoder)\/''' if re.match(__a , __a ): _lowerCamelCase = re.match(__a , __a ).groups() if groups[0] == "encoder": _lowerCamelCase = re.sub(r'''/mlp/''' , r'''/1/mlp/''' , __a ) _lowerCamelCase = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/1/layer_norm/''' , __a ) elif groups[0] == "decoder": _lowerCamelCase = re.sub(r'''/mlp/''' , r'''/2/mlp/''' , __a ) _lowerCamelCase = re.sub(r'''/pre_mlp_layer_norm/''' , r'''/2/layer_norm/''' , __a ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: _lowerCamelCase = new_key.replace(__a , __a ) print(F"""{key} -> {new_key}""" ) _lowerCamelCase = s_dict.pop(__a ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _lowerCamelCase = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: _lowerCamelCase = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: _lowerCamelCase = s_dict[key].shape[0] _lowerCamelCase = s_dict[key] for idx in range(__a ): _lowerCamelCase = expert_weihts[idx] print(F"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(__a ) return s_dict __SCREAMING_SNAKE_CASE : Dict = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def lowerCAmelCase_( lowercase_ : int , lowercase_ : Any ) -> Union[str, Any]: import regex as re with open(__a , '''r''' ) as f: _lowerCamelCase = f.read() _lowerCamelCase = re.findall(r'''(.*) = ([0-9.]*)''' , __a ) _lowerCamelCase = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": _lowerCamelCase = float(__a ) if '''.''' in value else int(__a ) _lowerCamelCase = re.findall(r'''(.*activations) = \(\'(.*)\',\)''' , __a )[0] _lowerCamelCase = str(activation[1] ) _lowerCamelCase = num_experts _lowerCamelCase = SwitchTransformersConfig(**__a ) return config def lowerCAmelCase_( lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Dict=None , lowercase_ : int="./" , lowercase_ : Union[str, Any]=8 ) -> Dict: print(F"""Loading flax weights from : {flax_checkpoint_path}""" ) _lowerCamelCase = checkpoints.load_tax_checkpoint(__a ) if gin_file is not None: _lowerCamelCase = convert_gin_to_config(__a , __a ) else: _lowerCamelCase = SwitchTransformersConfig.from_pretrained(__a ) _lowerCamelCase = SwitchTransformersForConditionalGeneration(__a ) _lowerCamelCase = flax_params['''target'''] _lowerCamelCase = flatten_dict(__a , sep='''/''' ) _lowerCamelCase = rename_keys(__a ) _lowerCamelCase = unflatten_dict(__a , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__a , __a ) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(__a ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
661
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any = LxmertTokenizer UpperCAmelCase__ : Optional[Any] = LxmertTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Dict = True def __lowercase ( self ) -> Union[str, Any]: super().setUp() _a : int = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowercase ( self , _a ) -> List[str]: _a : Tuple = '''UNwant\u00E9d,running''' _a : str = '''unwanted, running''' return input_text, output_text def __lowercase ( self ) -> List[Any]: _a : str = self.tokenizer_class(self.vocab_file ) _a : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def __lowercase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _a : Optional[Any] = self.get_tokenizer() _a : str = self.get_rust_tokenizer() _a : Optional[Any] = '''I was born in 92000, and this is falsé.''' _a : Optional[Any] = tokenizer.tokenize(_a ) _a : List[Any] = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) _a : List[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _a : Any = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) _a : Dict = self.get_rust_tokenizer() _a : Optional[int] = tokenizer.encode(_a ) _a : Dict = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
14
0
import math def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : int = 0, UpperCamelCase__ : int = 0 ): '''simple docstring''' UpperCamelCase__ = end or len(UpperCamelCase__ ) for i in range(UpperCamelCase__, UpperCamelCase__ ): UpperCamelCase__ = i UpperCamelCase__ = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: UpperCamelCase__ = array[temp_index - 1] temp_index -= 1 UpperCamelCase__ = temp_index_value return array def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : int, UpperCamelCase__ : int ): # Max Heap '''simple docstring''' UpperCamelCase__ = index UpperCamelCase__ = 2 * index + 1 # Left Node UpperCamelCase__ = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: UpperCamelCase__ = left_index if right_index < heap_size and array[largest] < array[right_index]: UpperCamelCase__ = right_index if largest != index: UpperCamelCase__ , UpperCamelCase__ = array[largest], array[index] heapify(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : list ): '''simple docstring''' UpperCamelCase__ = len(UpperCamelCase__ ) for i in range(n // 2, -1, -1 ): heapify(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) for i in range(n - 1, 0, -1 ): UpperCamelCase__ , UpperCamelCase__ = array[0], array[i] heapify(UpperCamelCase__, 0, UpperCamelCase__ ) return array def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = low UpperCamelCase__ = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i UpperCamelCase__ , UpperCamelCase__ = array[j], array[i] i += 1 def lowerCamelCase_ ( UpperCamelCase__ : list ): '''simple docstring''' if len(UpperCamelCase__ ) == 0: return array UpperCamelCase__ = 2 * math.ceil(math.loga(len(UpperCamelCase__ ) ) ) UpperCamelCase__ = 16 return intro_sort(UpperCamelCase__, 0, len(UpperCamelCase__ ), UpperCamelCase__, UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : list, UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' while end - start > size_threshold: if max_depth == 0: return heap_sort(UpperCamelCase__ ) max_depth -= 1 UpperCamelCase__ = median_of_a(UpperCamelCase__, UpperCamelCase__, start + ((end - start) // 2) + 1, end - 1 ) UpperCamelCase__ = partition(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) intro_sort(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) UpperCamelCase__ = p return insertion_sort(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() lowercase = input("""Enter numbers separated by a comma : """).strip() lowercase = [float(item) for item in user_input.split(""",""")] print(sort(unsorted))
591
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowercase = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowerCamelCase_ ( UpperCamelCase__ : Optional[int]=None ): '''simple docstring''' if subparsers is not None: UpperCamelCase__ = subparsers.add_parser('''tpu-config''', description=_description ) else: UpperCamelCase__ = argparse.ArgumentParser('''Accelerate tpu-config command''', description=_description ) # Core arguments UpperCamelCase__ = parser.add_argument_group( '''Config Arguments''', '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''', type=UpperCamelCase__, default=UpperCamelCase__, help='''Path to the config file to use for accelerate.''', ) config_args.add_argument( '''--tpu_name''', default=UpperCamelCase__, help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''', ) config_args.add_argument( '''--tpu_zone''', default=UpperCamelCase__, help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''', ) UpperCamelCase__ = parser.add_argument_group('''TPU Arguments''', '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''', action='''store_true''', help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''', ) pod_args.add_argument( '''--command_file''', default=UpperCamelCase__, help='''The path to the file containing the commands to run on the pod on startup.''', ) pod_args.add_argument( '''--command''', action='''append''', nargs='''+''', help='''A command to run on the pod. Can be passed multiple times.''', ) pod_args.add_argument( '''--install_accelerate''', action='''store_true''', help='''Whether to install accelerate on the pod. Defaults to False.''', ) pod_args.add_argument( '''--accelerate_version''', default='''latest''', help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''', ) pod_args.add_argument( '''--debug''', action='''store_true''', help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase__ ) return parser def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCamelCase__ ): UpperCamelCase__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCamelCase__ = defaults.command_file if not args.command and defaults.commands is not None: UpperCamelCase__ = defaults.commands if not args.tpu_name: UpperCamelCase__ = defaults.tpu_name if not args.tpu_zone: UpperCamelCase__ = defaults.tpu_zone if args.accelerate_version == "dev": UpperCamelCase__ = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCamelCase__ = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ), UpperCamelCase__ ): UpperCamelCase__ = F"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file, '''r''' ) as f: UpperCamelCase__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0], UpperCamelCase__ ): UpperCamelCase__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCamelCase__ = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F"""pip install {args.accelerate_version}"""] new_cmd += args.command UpperCamelCase__ = '''; '''.join(UpperCamelCase__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCamelCase__ = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F"""Running {" ".join(UpperCamelCase__ )}""" ) return subprocess.run(UpperCamelCase__ ) print('''Successfully setup pod.''' ) def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = tpu_command_parser() UpperCamelCase__ = parser.parse_args() tpu_command_launcher(UpperCamelCase__ )
591
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : int ) -> bool: __A : Any = len(A__ ) __A : Dict = len(A__ ) __A : Dict = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __A : List[str] = True for i in range(A__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __A : int = True if a[i].islower(): __A : Optional[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' def __a ( A__ = 1000 ) -> int: lowerCAmelCase = 3 lowerCAmelCase = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"{solution() = }")
649
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> bool: '''simple docstring''' if not isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : List[str] = F"""Input value of [number={number}] must be an integer""" raise TypeError(_lowerCamelCase ) if number < 0: return False _lowerCamelCase : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
386
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = AutoConfig.from_pretrained(_lowerCamelCase ) _lowerCamelCase : List[Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=_lowerCamelCase ) _lowerCamelCase : str = checkpoints.load_tax_checkpoint(_lowerCamelCase ) _lowerCamelCase : str = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": _lowerCamelCase : Optional[int] = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": _lowerCamelCase : Optional[Any] = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : Optional[int] = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): _lowerCamelCase : Tuple = F"""layers_{str(_lowerCamelCase )}""" # Self-Attention _lowerCamelCase : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] _lowerCamelCase : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] _lowerCamelCase : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] _lowerCamelCase : int = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : Optional[int] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization _lowerCamelCase : Any = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: _lowerCamelCase : Any = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] _lowerCamelCase : str = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _lowerCamelCase : List[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] _lowerCamelCase : Optional[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _lowerCamelCase : List[str] = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _lowerCamelCase : Tuple = flax_model.params["encoder"]["block"][str(_lowerCamelCase )]["layer"] _lowerCamelCase : int = tax_attention_key _lowerCamelCase : Union[str, Any] = tax_attention_out _lowerCamelCase : str = tax_attention_query _lowerCamelCase : Dict = tax_attention_value _lowerCamelCase : str = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : Union[str, Any] = tax_global_layer_norm if split_mlp_wi: _lowerCamelCase : Optional[Any] = tax_mlp_wi_a _lowerCamelCase : int = tax_mlp_wi_a else: _lowerCamelCase : str = tax_mlp_wi _lowerCamelCase : Optional[int] = tax_mlp_wo _lowerCamelCase : List[str] = tax_mlp_layer_norm _lowerCamelCase : Tuple = flax_model_encoder_layer_block # Only for layer 0: _lowerCamelCase : Optional[int] = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T _lowerCamelCase : int = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _lowerCamelCase : int = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T _lowerCamelCase : List[str] = tax_encoder_global_rel_embedding # Assigning _lowerCamelCase : List[str] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] _lowerCamelCase : int = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _lowerCamelCase : str = F"""layers_{str(_lowerCamelCase )}""" # Self-Attention _lowerCamelCase : Optional[int] = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] _lowerCamelCase : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] _lowerCamelCase : Dict = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] _lowerCamelCase : Any = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization _lowerCamelCase : Tuple = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention _lowerCamelCase : Optional[int] = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] _lowerCamelCase : List[str] = tax_enc_dec_attention_module["key"]["kernel"] _lowerCamelCase : Tuple = tax_enc_dec_attention_module["out"]["kernel"] _lowerCamelCase : Union[str, Any] = tax_enc_dec_attention_module["query"]["kernel"] _lowerCamelCase : Any = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization _lowerCamelCase : int = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: _lowerCamelCase : Optional[int] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] _lowerCamelCase : List[str] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _lowerCamelCase : str = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] _lowerCamelCase : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _lowerCamelCase : Tuple = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _lowerCamelCase : str = flax_model.params["decoder"]["block"][str(_lowerCamelCase )]["layer"] _lowerCamelCase : Tuple = tax_attention_key _lowerCamelCase : List[str] = tax_attention_out _lowerCamelCase : Union[str, Any] = tax_attention_query _lowerCamelCase : Optional[int] = tax_attention_value _lowerCamelCase : Optional[Any] = tax_pre_attention_layer_norm _lowerCamelCase : Tuple = tax_enc_dec_attention_key _lowerCamelCase : List[str] = tax_enc_dec_attention_out _lowerCamelCase : Tuple = tax_enc_dec_attention_query _lowerCamelCase : Tuple = tax_enc_dec_attention_value _lowerCamelCase : Optional[Any] = tax_cross_layer_norm if split_mlp_wi: _lowerCamelCase : List[Any] = tax_mlp_wi_a _lowerCamelCase : List[Any] = tax_mlp_wi_a else: _lowerCamelCase : Dict = tax_mlp_wi _lowerCamelCase : Union[str, Any] = tax_mlp_wo _lowerCamelCase : Dict = txa_mlp_layer_norm _lowerCamelCase : Optional[int] = flax_model_decoder_layer_block # Decoder Normalization _lowerCamelCase : Tuple = tax_model["target"]["decoder"]["decoder_norm"]["scale"] _lowerCamelCase : Union[str, Any] = txa_decoder_norm # Only for layer 0: _lowerCamelCase : int = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T _lowerCamelCase : List[Any] = tax_decoder_rel_embedding # Token Embeddings _lowerCamelCase : Union[str, Any] = tax_model["target"]["token_embedder"]["embedding"] _lowerCamelCase : Any = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _lowerCamelCase : Tuple = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_lowerCamelCase ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": _lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) _lowerCAmelCase : int = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
386
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: a_ : List[Any] = None a_ : Union[str, Any] = logging.get_logger(__name__) a_ : Dict = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} a_ : str = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } a_ : str = { 'google/rembert': 2_56, } a_ : List[str] = '▁' class __lowercase( __snake_case ): '''simple docstring''' __a : List[str] = VOCAB_FILES_NAMES __a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : int = RemBertTokenizer def __init__( self , __a=None , __a=None , __a=True , __a=True , __a=False , __a="[CLS]" , __a="[SEP]" , __a="<unk>" , __a="[SEP]" , __a="<pad>" , __a="[CLS]" , __a="[MASK]" , **__a , ): __lowerCamelCase : Any = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) __lowerCamelCase : Dict = do_lower_case __lowerCamelCase : Optional[Any] = remove_space __lowerCamelCase : Tuple = keep_accents __lowerCamelCase : Union[str, Any] = vocab_file __lowerCamelCase : Optional[int] = False if not self.vocab_file else True def snake_case_ ( self , __a , __a = None ): __lowerCamelCase : int = [self.sep_token_id] __lowerCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case_ ( self , __a , __a = None , __a = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] def snake_case_ ( self , __a , __a = None ): __lowerCamelCase : Union[str, Any] = [self.sep_token_id] __lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , __a , __a = None ): if not os.path.isdir(__a ): logger.error('Vocabulary path ({}) should be a directory'.format(__a ) ) return __lowerCamelCase : str = os.path.join( __a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
594
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=[1, 2, 1] , SCREAMING_SNAKE_CASE=[2, 2, 4] , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=2.0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-5 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE=[1, 2, 3] , ) -> Optional[int]: """simple docstring""" A : Any = parent A : List[Any] = batch_size A : Any = image_size A : Optional[Any] = patch_size A : Dict = num_channels A : Union[str, Any] = embed_dim A : Optional[int] = depths A : int = num_heads A : Tuple = window_size A : str = mlp_ratio A : Optional[Any] = qkv_bias A : Optional[int] = hidden_dropout_prob A : Any = attention_probs_dropout_prob A : List[Any] = drop_path_rate A : Tuple = hidden_act A : Any = use_absolute_embeddings A : Optional[int] = patch_norm A : List[str] = layer_norm_eps A : int = initializer_range A : Tuple = is_training A : int = scope A : List[Any] = use_labels A : List[str] = type_sequence_label_size A : int = encoder_stride A : List[Any] = out_features A : str = out_indices def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Union[str, Any] = None if self.use_labels: A : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : str = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : List[Any] = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Optional[int] = model(SCREAMING_SNAKE_CASE ) A : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) A : Optional[int] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" A : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : Union[str, Any] = model(SCREAMING_SNAKE_CASE ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE ): A : str = ['''stem'''] A : Dict = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = self.prepare_config_and_inputs() A, A, A : int = config_and_inputs A : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( __snake_case , __snake_case , unittest.TestCase ): __magic_name__ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __magic_name__ = {'''feature-extraction''': MaskFormerSwinModel} if is_torch_available() else {} __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : Tuple = MaskFormerSwinModelTester(self ) A : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" pass def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" return def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE ) @unittest.skip('''Swin does not use inputs_embeds''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''Swin does not support feedforward chunking''' ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A, A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A, A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : List[Any] = model_class(SCREAMING_SNAKE_CASE ) A : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Optional[Any] = [*signature.parameters.keys()] A : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" pass def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Tuple = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): A : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) A : List[str] = outputs.hidden_states A : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) # Swin has a different seq_length A : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) A : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A, A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() A : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: A : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A : Optional[Any] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A, A : Any = self.model_tester.prepare_config_and_inputs_for_common() A : Union[str, Any] = 3 A : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) A : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) A : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) A : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: A : Optional[Any] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A : Optional[Any] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" pass def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A, A : str = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE ): A : List[str] = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE={} ): with torch.no_grad(): A : List[Any] = model(**SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : str = model(**SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if isinstance(SCREAMING_SNAKE_CASE , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE ) , atol=1e-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' F' {torch.isnan(SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE )}. Dict has' F' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A : Tuple = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() A : List[str] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : int = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) A : int = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) A : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) A : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) check_equivalence(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , {'''output_hidden_states''': True} ) @require_torch class A ( unittest.TestCase , __snake_case ): __magic_name__ = (MaskFormerSwinBackbone,) if is_torch_available() else () __magic_name__ = MaskFormerSwinConfig def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Dict = MaskFormerSwinModelTester(self ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A, A : int = self.model_tester.prepare_config_and_inputs_for_common() A : str = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: A : Any = backbone_class(SCREAMING_SNAKE_CASE ) backbone.to(SCREAMING_SNAKE_CASE ) backbone.eval() A : Dict = backbone(**SCREAMING_SNAKE_CASE ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True A : Optional[int] = backbone(**SCREAMING_SNAKE_CASE , output_hidden_states=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) A, A, A : List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: A : Dict = backbone(**SCREAMING_SNAKE_CASE , output_attentions=SCREAMING_SNAKE_CASE ) self.assertIsNotNone(outputs.attentions )
634
0
'''simple docstring''' def a_ ( ) -> int: return 1 def a_ ( _UpperCAmelCase : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def a_ ( _UpperCAmelCase : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(_UpperCAmelCase ) def a_ ( _UpperCAmelCase : int ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(_UpperCAmelCase ) def a_ ( _UpperCAmelCase : int ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(_UpperCAmelCase ) def a_ ( _UpperCAmelCase : int ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(_UpperCAmelCase ) def a_ ( _UpperCAmelCase : int ) -> int: return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(_UpperCAmelCase ) def a_ ( _UpperCAmelCase : int ) -> int: return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(_UpperCAmelCase ) def a_ ( _UpperCAmelCase : int = 2_00 ) -> int: return two_pound(_UpperCAmelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
721
'''simple docstring''' import random def a_ ( _UpperCAmelCase : list ,_UpperCAmelCase : List[Any] ) -> tuple: __snake_case , __snake_case , __snake_case : int = [], [], [] for element in data: if element < pivot: less.append(_UpperCAmelCase ) elif element > pivot: greater.append(_UpperCAmelCase ) else: equal.append(_UpperCAmelCase ) return less, equal, greater def a_ ( _UpperCAmelCase : list ,_UpperCAmelCase : int ) -> int: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(_UpperCAmelCase ) or index < 0: return None __snake_case : int = items[random.randint(0 ,len(_UpperCAmelCase ) - 1 )] __snake_case : List[Any] = 0 __snake_case , __snake_case , __snake_case : Any = _partition(_UpperCAmelCase ,_UpperCAmelCase ) __snake_case : List[str] = len(_UpperCAmelCase ) __snake_case : int = len(_UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_UpperCAmelCase ,_UpperCAmelCase ) # must be in larger else: return quick_select(_UpperCAmelCase ,index - (m + count) )
124
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) def lowercase__ ( A_: Tuple ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(A_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Dict = ['pixel_values'] def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> None: super().__init__(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) __UpperCAmelCase =do_resize __UpperCAmelCase =size __UpperCAmelCase =do_center_crop __UpperCAmelCase =crop_size __UpperCAmelCase =resample __UpperCAmelCase =do_rescale __UpperCAmelCase =rescale_factor __UpperCAmelCase =offset __UpperCAmelCase =do_normalize __UpperCAmelCase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase =image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self : str , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> np.ndarray: __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" in size: __UpperCAmelCase =get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size["""shortest_edge"""] , default_to_square=__SCREAMING_SNAKE_CASE ) elif "height" in size and "width" in size: __UpperCAmelCase =(size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> np.ndarray: __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[int, float] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Any , ) -> Optional[int]: __UpperCAmelCase =image.astype(np.floataa ) if offset: __UpperCAmelCase =image - (scale / 2) return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> np.ndarray: return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase =to_numpy_array(__SCREAMING_SNAKE_CASE ) if do_resize: __UpperCAmelCase =self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) if do_center_crop: __UpperCAmelCase =self.center_crop(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) if do_rescale: __UpperCAmelCase =self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE ) if do_normalize: __UpperCAmelCase =self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return image def _a ( self : Any , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> PIL.Image.Image: __UpperCAmelCase =do_resize if do_resize is not None else self.do_resize __UpperCAmelCase =resample if resample is not None else self.resample __UpperCAmelCase =do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase =do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase =offset if offset is not None else self.offset __UpperCAmelCase =do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase =image_mean if image_mean is not None else self.image_mean __UpperCAmelCase =image_std if image_std is not None else self.image_std __UpperCAmelCase =size if size is not None else self.size __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =crop_size if crop_size is not None else self.crop_size __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase =make_batched(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =[ [ self._preprocess_image( image=__SCREAMING_SNAKE_CASE , do_resize=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , do_center_crop=__SCREAMING_SNAKE_CASE , crop_size=__SCREAMING_SNAKE_CASE , do_rescale=__SCREAMING_SNAKE_CASE , rescale_factor=__SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE , do_normalize=__SCREAMING_SNAKE_CASE , image_mean=__SCREAMING_SNAKE_CASE , image_std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , ) for img in video ] for video in videos ] __UpperCAmelCase ={"""pixel_values""": videos} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
68
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __A = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): """simple docstring""" def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Path , __SCREAMING_SNAKE_CASE : Union[str, None] = None , __SCREAMING_SNAKE_CASE : Union[List[str], None] = None , __SCREAMING_SNAKE_CASE : Union[str, List[str], None] = None , __SCREAMING_SNAKE_CASE : bool = True , ) -> List[str]: __UpperCAmelCase =[file for file in os.listdir(__SCREAMING_SNAKE_CASE ) if os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )] if identifier is not None: __UpperCAmelCase =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for n_ in n_identifier: __UpperCAmelCase =[file for file in files if n_ not in file] else: __UpperCAmelCase =[file for file in files if n_identifier not in file] __UpperCAmelCase =ignore_files or [] ignore_files.append("""__init__.py""" ) __UpperCAmelCase =[file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __SCREAMING_SNAKE_CASE ) if only_modules: __UpperCAmelCase =file.split(""".""" )[0] try: __UpperCAmelCase =getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =doctest.DocTestSuite(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =unittest.TextTestRunner().run(__SCREAMING_SNAKE_CASE ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __UpperCAmelCase =doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _a ( self : Optional[Any] ) -> List[str]: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase ="""modeling""" __UpperCAmelCase =[ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE ) def _a ( self : Tuple ) -> Optional[int]: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase ="""tokenization""" self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE ) def _a ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase ="""configuration""" self.analyze_directory(__SCREAMING_SNAKE_CASE , identifier=__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> Tuple: __UpperCAmelCase =Path("""src/transformers""" ) __UpperCAmelCase =["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__SCREAMING_SNAKE_CASE , n_identifier=__SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Tuple: __UpperCAmelCase =Path("""docs/source""" ) __UpperCAmelCase =["""favicon.ico"""] self.analyze_directory(__SCREAMING_SNAKE_CASE , ignore_files=__SCREAMING_SNAKE_CASE , only_modules=__SCREAMING_SNAKE_CASE )
68
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowercase ) class _UpperCamelCase ( __lowercase ): """simple docstring""" snake_case_ = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) snake_case_ = Features({'text': Value('string' )} ) snake_case_ = Features({'labels': ClassLabel} ) snake_case_ = "text" snake_case_ = "labels" def _UpperCAmelCase ( self : Optional[int] , snake_case : Optional[int] ) -> Dict: '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __a ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) __magic_name__ : Dict = copy.deepcopy(self ) __magic_name__ : str = self.label_schema.copy() __magic_name__ : Tuple = features[self.label_column] __magic_name__ : int = label_schema return task_template @property def _UpperCAmelCase ( self : List[str] ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
720
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer A = logging.get_logger(__name__) A = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } A = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } A = { """facebook/blenderbot_small-90M""": 512, } class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = BlenderbotSmallTokenizer def __init__( self : Optional[Any] , snake_case : Any=None , snake_case : List[str]=None , snake_case : Optional[int]="<|endoftext|>" , snake_case : str="<|endoftext|>" , snake_case : Optional[Any]="<|endoftext|>" , snake_case : Union[str, Any]=False , snake_case : Union[str, Any]=True , **snake_case : Union[str, Any] , ) -> List[str]: '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=snake_case , merges=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , ) , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , **snake_case , ) __magic_name__ : str = add_prefix_space def _UpperCAmelCase ( self : Optional[Any] , snake_case : Optional[int] , snake_case : Optional[int]=None ) -> int: '''simple docstring''' __magic_name__ : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self : Optional[int] , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __magic_name__ : Tuple = [self.sep_token_id] __magic_name__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
147
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCamelCase_ = """__DUMMY_TRANSFORMERS_USER__""" UpperCamelCase_ = """Dummy User""" UpperCamelCase_ = """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""" UpperCamelCase_ = """https://hub-ci.huggingface.co""" UpperCamelCase_ = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" UpperCamelCase_ = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" UpperCamelCase_ = Path("~/.huggingface/hub_ci_token").expanduser() @pytest.fixture def _lowerCamelCase ( lowerCamelCase_: Union[str, Any] ): '''simple docstring''' monkeypatch.setattr( '''huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE''' , UpperCAmelCase_ ) @pytest.fixture def _lowerCamelCase ( lowerCamelCase_: Tuple ): '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_ENDPOINT''' , UpperCAmelCase_ ) monkeypatch.setattr('''datasets.config.HUB_DATASETS_URL''' , UpperCAmelCase_ ) @pytest.fixture def _lowerCamelCase ( lowerCamelCase_: Any ): '''simple docstring''' monkeypatch.setattr('''huggingface_hub.hf_api.HfFolder.path_token''' , UpperCAmelCase_ ) @pytest.fixture def _lowerCamelCase ( lowerCamelCase_: Any , lowerCamelCase_: List[str] ): '''simple docstring''' HfFolder.save_token(UpperCAmelCase_ ) yield HfFolder.delete_token() @pytest.fixture(scope='''session''' ) def _lowerCamelCase ( ): '''simple docstring''' return HfApi(endpoint=UpperCAmelCase_ ) @pytest.fixture(scope='''session''' ) def _lowerCamelCase ( lowerCamelCase_: HfApi ): '''simple docstring''' A : List[Any] = HfFolder.get_token() HfFolder.save_token(UpperCAmelCase_ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCAmelCase_ ) @pytest.fixture def _lowerCamelCase ( lowerCamelCase_: str ): '''simple docstring''' def _cleanup_repo(lowerCamelCase_: List[str] ): hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='''dataset''' ) return _cleanup_repo @pytest.fixture def _lowerCamelCase ( lowerCamelCase_: int ): '''simple docstring''' @contextmanager def _temporary_repo(lowerCamelCase_: Union[str, Any] ): try: yield repo_id finally: cleanup_repo(UpperCAmelCase_ ) return _temporary_repo @pytest.fixture(scope='''session''' ) def _lowerCamelCase ( lowerCamelCase_: HfApi , lowerCamelCase_: Optional[int] , lowerCamelCase_: List[Any] ): '''simple docstring''' A : int = f"""repo_txt_data-{int(time.time() * 10e3 )}""" A : Optional[Any] = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='''dataset''' , private=UpperCAmelCase_ ) hf_api.upload_file( token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='''data/text_data.txt''' , repo_id=UpperCAmelCase_ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowerCamelCase ( lowerCamelCase_: Tuple , lowerCamelCase_: Optional[Any] , lowerCamelCase_: Any ): '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='''session''' ) def _lowerCamelCase ( lowerCamelCase_: HfApi , lowerCamelCase_: Tuple , lowerCamelCase_: Any ): '''simple docstring''' A : List[str] = f"""repo_zipped_txt_data-{int(time.time() * 10e3 )}""" A : int = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='''dataset''' , private=UpperCAmelCase_ ) hf_api.upload_file( token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='''data.zip''' , repo_id=UpperCAmelCase_ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowerCamelCase ( lowerCamelCase_: Tuple , lowerCamelCase_: Optional[Any] , lowerCamelCase_: str ): '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='''session''' ) def _lowerCamelCase ( lowerCamelCase_: HfApi , lowerCamelCase_: Dict , lowerCamelCase_: Tuple ): '''simple docstring''' A : Tuple = f"""repo_zipped_img_data-{int(time.time() * 10e3 )}""" A : Any = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='''dataset''' , private=UpperCAmelCase_ ) hf_api.upload_file( token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='''data.zip''' , repo_id=UpperCAmelCase_ , repo_type='''dataset''' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='''dataset''' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _lowerCamelCase ( lowerCamelCase_: List[Any] , lowerCamelCase_: Tuple , lowerCamelCase_: List[Any] ): '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
256
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(lowercase_ ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(lowercase_ ) == 1: return True __UpperCamelCase = series[1] - series[0] for index in range(len(lowercase_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> float: """simple docstring""" if not isinstance(lowercase_ , lowercase_ ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(lowercase_ ) == 0: raise ValueError('''Input list must be a non empty list''' ) __UpperCamelCase = 0 for val in series: answer += val return answer / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
375
from ....configuration_utils import PretrainedConfig from ....utils import logging a_ = logging.get_logger(__name__) a_ = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class _lowerCamelCase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase__ : int = "mctct" def __init__( self : List[Any] , snake_case : Optional[Any]=8065 , snake_case : Optional[int]=1536 , snake_case : Any=36 , snake_case : List[str]=6144 , snake_case : Dict=4 , snake_case : str=384 , snake_case : List[str]=920 , snake_case : Dict=1E-5 , snake_case : Union[str, Any]=0.3 , snake_case : Optional[Any]="relu" , snake_case : str=0.02 , snake_case : Optional[int]=0.3 , snake_case : int=0.3 , snake_case : Any=1 , snake_case : int=0 , snake_case : Union[str, Any]=2 , snake_case : List[Any]=1 , snake_case : Dict=0.3 , snake_case : int=1 , snake_case : Optional[int]=(7,) , snake_case : List[Any]=(3,) , snake_case : Optional[int]=80 , snake_case : List[str]=1 , snake_case : int=None , snake_case : List[str]="sum" , snake_case : Tuple=False , **snake_case : List[str] , ): super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = num_attention_heads __UpperCamelCase = attention_head_dim __UpperCamelCase = max_position_embeddings __UpperCamelCase = layer_norm_eps __UpperCamelCase = layerdrop __UpperCamelCase = hidden_act __UpperCamelCase = initializer_range __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id __UpperCamelCase = eos_token_id __UpperCamelCase = conv_glu_dim __UpperCamelCase = conv_dropout __UpperCamelCase = num_conv_layers __UpperCamelCase = input_feat_per_channel __UpperCamelCase = input_channels __UpperCamelCase = conv_channels __UpperCamelCase = ctc_loss_reduction __UpperCamelCase = ctc_zero_infinity # prevents config testing fail with exporting to json __UpperCamelCase = list(snake_case ) __UpperCamelCase = list(snake_case ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." )
375
1
'''simple docstring''' def snake_case_ (UpperCamelCase : int ): '''simple docstring''' if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError('''only integers accepted as input''' ) else: _a = str(abs(UpperCamelCase ) ) _a = [list(UpperCamelCase ) for char in range(len(UpperCamelCase ) )] for index in range(len(UpperCamelCase ) ): num_transpositions[index].pop(UpperCamelCase ) return max( int(''''''.join(list(UpperCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
22
'''simple docstring''' from random import randint, random def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : int = 5 , ): """simple docstring""" __UpperCAmelCase = [[-1] * number_of_cells] # Create a highway without any car __UpperCAmelCase = 0 __UpperCAmelCase = max(UpperCamelCase__ , 0 ) while i < number_of_cells: __UpperCAmelCase = ( randint(0 , UpperCamelCase__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = highway_now[car_index + 1 :] for cell in range(len(UpperCamelCase__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(UpperCamelCase__ , -1 ) def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = len(UpperCamelCase__ ) # Beforce calculations, the highway is empty __UpperCAmelCase = [-1] * number_of_cells for car_index in range(UpperCamelCase__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __UpperCAmelCase = min(highway_now[car_index] + 1 , UpperCamelCase__ ) # Number of empty cell before the next car __UpperCAmelCase = get_distance(UpperCamelCase__ , UpperCamelCase__ ) - 1 # We can't have the car causing an accident __UpperCAmelCase = min(next_highway[car_index] , UpperCamelCase__ ) if random() < probability: # Randomly, a driver will slow down __UpperCAmelCase = max(next_highway[car_index] - 1 , 0 ) return next_highway def lowerCAmelCase ( UpperCamelCase__ : list , UpperCamelCase__ : int , UpperCamelCase__ : float , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = len(highway[0] ) for i in range(UpperCamelCase__ ): __UpperCAmelCase = update(highway[i] , UpperCamelCase__ , UpperCamelCase__ ) __UpperCAmelCase = [-1] * number_of_cells for car_index in range(UpperCamelCase__ ): __UpperCAmelCase = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __UpperCAmelCase = (car_index + speed) % number_of_cells # Commit the change of position __UpperCAmelCase = speed highway.append(UpperCamelCase__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
262
0
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar a_ = TypeVar('_T') class __SCREAMING_SNAKE_CASE ( Generic[_T] ): def __init__( self : List[Any] , __lowercase : Iterable[_T] | None = None ) -> None: SCREAMING_SNAKE_CASE__ : list[_T] =list(iterable or [] ) SCREAMING_SNAKE_CASE__ : list[_T] =[] def __len__( self : List[str] ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self : List[str] ) -> str: return F"Queue({tuple(self._stacka[::-1] + self._stacka )})" def __magic_name__ ( self : List[Any] , __lowercase : _T ) -> None: self._stacka.append(__lowercase ) def __magic_name__ ( self : Optional[Any] ) -> _T: SCREAMING_SNAKE_CASE__ : List[str] =self._stacka.pop SCREAMING_SNAKE_CASE__ : List[Any] =self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """gpt_neox""" def __init__( self : List[Any] , __lowercase : Union[str, Any]=5_04_32 , __lowercase : int=61_44 , __lowercase : Tuple=44 , __lowercase : List[str]=64 , __lowercase : str=2_45_76 , __lowercase : Dict="gelu" , __lowercase : Tuple=0.25 , __lowercase : Tuple=1_00_00 , __lowercase : Tuple=0.0 , __lowercase : str=0.0 , __lowercase : List[Any]=0.1 , __lowercase : Dict=20_48 , __lowercase : Any=0.02 , __lowercase : Dict=1e-5 , __lowercase : List[Any]=True , __lowercase : str=0 , __lowercase : Optional[Any]=2 , __lowercase : Tuple=False , __lowercase : List[Any]=True , __lowercase : Optional[Any]=None , **__lowercase : Any , ) -> Dict: super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Any =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : Any =num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE__ : Dict =hidden_act SCREAMING_SNAKE_CASE__ : str =rotary_pct SCREAMING_SNAKE_CASE__ : Optional[Any] =rotary_emb_base SCREAMING_SNAKE_CASE__ : List[Any] =attention_dropout SCREAMING_SNAKE_CASE__ : List[Any] =hidden_dropout SCREAMING_SNAKE_CASE__ : str =classifier_dropout SCREAMING_SNAKE_CASE__ : Any =initializer_range SCREAMING_SNAKE_CASE__ : Dict =layer_norm_eps SCREAMING_SNAKE_CASE__ : Any =use_cache SCREAMING_SNAKE_CASE__ : Tuple =tie_word_embeddings SCREAMING_SNAKE_CASE__ : Tuple =use_parallel_residual SCREAMING_SNAKE_CASE__ : Union[str, Any] =rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE__ : int =self.rope_scaling.get('''type''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.rope_scaling.get('''factor''' , __lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowercase , __lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
665
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase_ = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ['''YolosFeatureExtractor'''] lowercase_ = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
562
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _lowerCAmelCase : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _lowerCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
46
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Optional[Any] = {'''vocab_file''': '''spiece.model'''} __A : Any = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 __A : str = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } __A : Optional[Any] = '''▁''' class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : int = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : Any , A : str , A : Dict="</s>" , A : Union[str, Any]="<unk>" , A : List[str]="<pad>" , A : List[str]=1_00 , A : Optional[Any]=None , A : Optional[Dict[str, Any]] = None , A : str=True , **A : Tuple , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase_ : Dict = [F'''<extra_id_{i}>''' for i in range(A )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowercase_ : Optional[int] = len(set(filter(lambda A : bool('''extra_id''' in str(A ) ) , A ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( F'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) lowercase_ : Tuple = legacy lowercase_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A , unk_token=A , pad_token=A , extra_ids=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , legacy=A , **A , ) lowercase_ : str = vocab_file lowercase_ : Union[str, Any] = extra_ids lowercase_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @staticmethod def A ( A : Dict , A : int , A : List[Any] ) -> Optional[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowercase_ : Tuple = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , A , ) return max_model_length @property def A ( self : List[Any] ) -> Optional[int]: return self.sp_model.get_piece_size() + self._extra_ids def A ( self : Optional[int] ) -> List[Any]: lowercase_ : Tuple = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Any , A : List[int] , A : Optional[List[int]] = None , A : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(A )) + [1] return ([0] * len(A )) + [1] + ([0] * len(A )) + [1] def A ( self : str ) -> Any: return list( set(filter(lambda A : bool(re.search(R'''<extra_id_\d+>''' , A ) ) is not None , self.additional_special_tokens ) ) ) def A ( self : Optional[int] ) -> Optional[int]: return [self._convert_token_to_id(A ) for token in self.get_sentinel_tokens()] def A ( self : Dict , A : List[int] ) -> List[int]: if len(A ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def A ( self : Dict , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : Optional[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A ( self : Optional[Any] , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : Any = self._add_eos_if_not_present(A ) if token_ids_a is None: return token_ids_a else: lowercase_ : List[Any] = self._add_eos_if_not_present(A ) return token_ids_a + token_ids_a def __getstate__( self : int ) -> Dict: lowercase_ : List[Any] = self.__dict__.copy() lowercase_ : Dict = None return state def __setstate__( self : Optional[int] , A : Optional[Any] ) -> Any: lowercase_ : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : str = {} lowercase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : List[Any] , A : "TextInput" , **A : Optional[int] ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: lowercase_ : str = SPIECE_UNDERLINE + text.replace(A , ''' ''' ) return super().tokenize(A , **A ) def A ( self : Dict , A : List[str] , **A : Tuple ) -> Optional[int]: if not self.legacy: lowercase_ : int = text.startswith(A ) if is_first: lowercase_ : Tuple = text[1:] lowercase_ : List[str] = self.sp_model.encode(A , out_type=A ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(A ): lowercase_ : Any = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def A ( self : Any , A : Union[str, Any] ) -> Optional[Any]: if token.startswith('''<extra_id_''' ): lowercase_ : Optional[Any] = re.match(R'''<extra_id_(\d+)>''' , A ) lowercase_ : List[str] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(A ) def A ( self : List[Any] , A : Dict ) -> Union[str, Any]: if index < self.sp_model.get_piece_size(): lowercase_ : Optional[int] = self.sp_model.IdToPiece(A ) else: lowercase_ : List[str] = F'''<extra_id_{self.vocab_size - 1 - index}>''' return token def A ( self : Optional[int] , A : List[str] ) -> Tuple: lowercase_ : Optional[int] = [] lowercase_ : Tuple = '''''' lowercase_ : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token lowercase_ : Optional[Any] = True lowercase_ : Optional[int] = [] else: current_sub_tokens.append(A ) lowercase_ : Optional[int] = False out_string += self.sp_model.decode(A ) return out_string.strip() def A ( self : int , A : str , A : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : Optional[int] = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: lowercase_ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
713
"""simple docstring""" import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Tuple = (DDPMScheduler,) def A ( self : int , **A : Dict ) -> Dict: lowercase_ : Optional[int] = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**A ) return config def A ( self : Tuple ) -> List[str]: for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=A ) def A ( self : str ) -> Dict: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A , beta_end=A ) def A ( self : Union[str, Any] ) -> Optional[int]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A ) def A ( self : Tuple ) -> Union[str, Any]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A ) def A ( self : Tuple ) -> Union[str, Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=A ) def A ( self : List[str] ) -> List[str]: self.check_over_configs(thresholding=A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A , prediction_type=A , sample_max_value=A , ) def A ( self : Optional[Any] ) -> List[str]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A ) def A ( self : Optional[Any] ) -> Optional[int]: for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=A ) def A ( self : Optional[int] ) -> List[Any]: lowercase_ : Any = self.scheduler_classes[0] lowercase_ : Dict = self.get_scheduler_config() lowercase_ : Any = scheduler_class(**A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def A ( self : Dict ) -> List[str]: lowercase_ : Union[str, Any] = self.scheduler_classes[0] lowercase_ : Optional[Any] = self.get_scheduler_config() lowercase_ : Tuple = scheduler_class(**A ) lowercase_ : Tuple = len(A ) lowercase_ : Tuple = self.dummy_model() lowercase_ : List[Any] = self.dummy_sample_deter lowercase_ : Tuple = torch.manual_seed(0 ) for t in reversed(range(A ) ): # 1. predict noise residual lowercase_ : int = model(A , A ) # 2. predict previous mean of sample x_t-1 lowercase_ : List[Any] = scheduler.step(A , A , A , generator=A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase_ : Tuple = pred_prev_sample lowercase_ : str = torch.sum(torch.abs(A ) ) lowercase_ : int = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def A ( self : int ) -> str: lowercase_ : Dict = self.scheduler_classes[0] lowercase_ : int = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowercase_ : Any = scheduler_class(**A ) lowercase_ : Any = len(A ) lowercase_ : Optional[int] = self.dummy_model() lowercase_ : Tuple = self.dummy_sample_deter lowercase_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(A ) ): # 1. predict noise residual lowercase_ : str = model(A , A ) # 2. predict previous mean of sample x_t-1 lowercase_ : Any = scheduler.step(A , A , A , generator=A ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase_ : str = pred_prev_sample lowercase_ : Any = torch.sum(torch.abs(A ) ) lowercase_ : int = torch.mean(torch.abs(A ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def A ( self : str ) -> int: lowercase_ : Union[str, Any] = self.scheduler_classes[0] lowercase_ : Tuple = self.get_scheduler_config() lowercase_ : Any = scheduler_class(**A ) lowercase_ : Union[str, Any] = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A ) lowercase_ : Any = scheduler.timesteps for i, timestep in enumerate(A ): if i == len(A ) - 1: lowercase_ : List[str] = -1 else: lowercase_ : Dict = timesteps[i + 1] lowercase_ : int = scheduler.previous_timestep(A ) lowercase_ : Any = prev_t.item() self.assertEqual(A , A ) def A ( self : Union[str, Any] ) -> Dict: lowercase_ : List[Any] = self.scheduler_classes[0] lowercase_ : Union[str, Any] = self.get_scheduler_config() lowercase_ : Tuple = scheduler_class(**A ) lowercase_ : Optional[Any] = [1_00, 87, 50, 51, 0] with self.assertRaises(A , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=A ) def A ( self : List[Any] ) -> Optional[Any]: lowercase_ : Any = self.scheduler_classes[0] lowercase_ : Any = self.get_scheduler_config() lowercase_ : List[Any] = scheduler_class(**A ) lowercase_ : str = [1_00, 87, 50, 1, 0] lowercase_ : str = len(A ) with self.assertRaises(A , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=A , timesteps=A ) def A ( self : Optional[Any] ) -> Dict: lowercase_ : List[str] = self.scheduler_classes[0] lowercase_ : Optional[Any] = self.get_scheduler_config() lowercase_ : Union[str, Any] = scheduler_class(**A ) lowercase_ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( A , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=A )
141
0
"""simple docstring""" import numpy as np _a = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class _UpperCAmelCase: def __init__( self) -> None: '''simple docstring''' _UpperCamelCase = np.array(__a) def UpperCAmelCase ( self , __a) -> np.ndarray: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = np.where(letter == self.SQUARE) _UpperCamelCase = np.concatenate([indexa + 1, indexa + 1]) return indexes def UpperCAmelCase ( self , __a , __a) -> str: '''simple docstring''' _UpperCamelCase = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' _UpperCamelCase = message.lower() _UpperCamelCase = message.replace(''' ''' , '''''') _UpperCamelCase = message.replace('''j''' , '''i''') _UpperCamelCase = np.empty((2, len(__a))) for letter_index in range(len(__a)): _UpperCamelCase = self.letter_to_numbers(message[letter_index]) _UpperCamelCase = numbers[0] _UpperCamelCase = numbers[1] _UpperCamelCase = first_step.reshape(2 * len(__a)) _UpperCamelCase = '''''' for numbers_index in range(len(__a)): _UpperCamelCase = int(second_step[numbers_index * 2]) _UpperCamelCase = int(second_step[(numbers_index * 2) + 1]) _UpperCamelCase = self.numbers_to_letter(__a , __a) _UpperCamelCase = encoded_message + letter return encoded_message def UpperCAmelCase ( self , __a) -> str: '''simple docstring''' _UpperCamelCase = message.lower() message.replace(''' ''' , '''''') _UpperCamelCase = np.empty(2 * len(__a)) for letter_index in range(len(__a)): _UpperCamelCase = self.letter_to_numbers(message[letter_index]) _UpperCamelCase = numbers[0] _UpperCamelCase = numbers[1] _UpperCamelCase = first_step.reshape((2, len(__a))) _UpperCamelCase = '''''' for numbers_index in range(len(__a)): _UpperCamelCase = int(second_step[0, numbers_index]) _UpperCamelCase = int(second_step[1, numbers_index]) _UpperCamelCase = self.numbers_to_letter(__a , __a) _UpperCamelCase = decoded_message + letter return decoded_message
19
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = BlipImageProcessor() lowerCamelCase_ = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) lowerCamelCase_ = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) lowerCamelCase_ = InstructBlipProcessor(A_ , A_ , A_ ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : Optional[int] , **A_ : Optional[int] ) -> Dict: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).tokenizer def a__ ( self : List[str] , **A_ : str ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).image_processor def a__ ( self : Tuple , **A_ : Any ) -> Optional[int]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).qformer_tokenizer def a__ ( self : str ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase_ = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) lowerCamelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) self.assertIsInstance(processor.qformer_tokenizer , A_ ) def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_qformer_tokenizer() lowerCamelCase_ = InstructBlipProcessor( tokenizer=A_ , image_processor=A_ , qformer_tokenizer=A_ ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(A_ , return_tensors='np' ) lowerCamelCase_ = processor(images=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_qformer_tokenizer() lowerCamelCase_ = InstructBlipProcessor( tokenizer=A_ , image_processor=A_ , qformer_tokenizer=A_ ) lowerCamelCase_ = 'lower newer' lowerCamelCase_ = processor(text=A_ ) lowerCamelCase_ = tokenizer(A_ , return_token_type_ids=A_ ) lowerCamelCase_ = qformer_tokenizer(A_ , return_token_type_ids=A_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def a__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_qformer_tokenizer() lowerCamelCase_ = InstructBlipProcessor( tokenizer=A_ , image_processor=A_ , qformer_tokenizer=A_ ) lowerCamelCase_ = 'lower newer' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=A_ , images=A_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def a__ ( self : Optional[int] ) -> int: """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_qformer_tokenizer() lowerCamelCase_ = InstructBlipProcessor( tokenizer=A_ , image_processor=A_ , qformer_tokenizer=A_ ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(A_ ) lowerCamelCase_ = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_qformer_tokenizer() lowerCamelCase_ = InstructBlipProcessor( tokenizer=A_ , image_processor=A_ , qformer_tokenizer=A_ ) lowerCamelCase_ = 'lower newer' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=A_ , images=A_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
70
0
"""simple docstring""" __A : Tuple = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __A : Optional[int] = [{'type': 'code', 'content': INSTALL_CONTENT}] __A : List[str] = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
281
"""simple docstring""" def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" return abs(_lowerCamelCase ) if a == 0 else greatest_common_divisor(b % a, _lowerCamelCase ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->int: """simple docstring""" while y: # --> when y=0 then loop will terminate and return x as final GCD. __lowercase ,__lowercase : Any = y, x % y return abs(_lowerCamelCase ) def snake_case__ ( ) ->Optional[int]: """simple docstring""" try: __lowercase : Optional[int] = input("Enter two integers separated by comma (,): " ).split("," ) __lowercase : Optional[Any] = int(nums[0] ) __lowercase : str = int(nums[1] ) print( F'greatest_common_divisor({num_a}, {num_a}) = ' F'{greatest_common_divisor(_lowerCamelCase, _lowerCamelCase )}' ) print(F'By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(_lowerCamelCase, _lowerCamelCase )}' ) except (IndexError, UnboundLocalError, ValueError): print("Wrong input" ) if __name__ == "__main__": main()
281
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : Optional[Any] , __magic_name__ : Any=1E-1_2 ) -> str: """simple docstring""" lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__magic_name__ , axis=1 ) , a_min=__magic_name__ ) ).T lowercase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(__magic_name__ , axis=1 ) , a_min=__magic_name__ ) ).T return jnp.matmul(__magic_name__ , norm_emb_a.T ) class A ( nn.Module ): '''simple docstring''' A__ = 42 A__ = jnp.floataa def lowerCamelCase__ (self : Dict ) -> Dict: """simple docstring""" lowercase__ = FlaxCLIPVisionModule(self.config.vision_config ) lowercase__ = nn.Dense(self.config.projection_dim , use_bias=_UpperCAmelCase , dtype=self.dtype ) lowercase__ = self.param("""concept_embeds""" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) lowercase__ = self.param( """special_care_embeds""" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) lowercase__ = self.param("""concept_embeds_weights""" , jax.nn.initializers.ones , (17,) ) lowercase__ = self.param("""special_care_embeds_weights""" , jax.nn.initializers.ones , (3,) ) def __call__(self : List[str] , _UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" lowercase__ = self.vision_model(_UpperCAmelCase )[1] lowercase__ = self.visual_projection(_UpperCAmelCase ) lowercase__ = jax_cosine_distance(_UpperCAmelCase , self.special_care_embeds ) lowercase__ = jax_cosine_distance(_UpperCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs lowercase__ = 0.0 lowercase__ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment lowercase__ = jnp.round(_UpperCAmelCase , 3 ) lowercase__ = jnp.any(special_scores > 0 , axis=1 , keepdims=_UpperCAmelCase ) # Use a lower threshold if an image has any special care concept lowercase__ = is_special_care * 0.01 lowercase__ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment lowercase__ = jnp.round(_UpperCAmelCase , 3 ) lowercase__ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = CLIPConfig A__ = '''clip_input''' A__ = FlaxStableDiffusionSafetyCheckerModule def __init__(self : List[str] , _UpperCAmelCase : CLIPConfig , _UpperCAmelCase : Optional[Tuple] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : jnp.dtype = jnp.floataa , _UpperCAmelCase : bool = True , **_UpperCAmelCase : str , ) -> Dict: """simple docstring""" if input_shape is None: lowercase__ = (1, 224, 224, 3) lowercase__ = self.module_class(config=_UpperCAmelCase , dtype=_UpperCAmelCase , **_UpperCAmelCase ) super().__init__(_UpperCAmelCase , _UpperCAmelCase , input_shape=_UpperCAmelCase , seed=_UpperCAmelCase , dtype=_UpperCAmelCase , _do_init=_do_init ) def lowerCamelCase__ (self : int , _UpperCAmelCase : jax.random.KeyArray , _UpperCAmelCase : Tuple , _UpperCAmelCase : FrozenDict = None ) -> FrozenDict: """simple docstring""" lowercase__ = jax.random.normal(_UpperCAmelCase , _UpperCAmelCase ) lowercase__ , lowercase__ = jax.random.split(_UpperCAmelCase ) lowercase__ = {"""params""": params_rng, """dropout""": dropout_rng} lowercase__ = self.module.init(_UpperCAmelCase , _UpperCAmelCase )["""params"""] return random_params def __call__(self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : dict = None , ) -> Dict: """simple docstring""" lowercase__ = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} , jnp.array(_UpperCAmelCase , dtype=jnp.floataa ) , rngs={} , )
15
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : List[str]=7 ) -> Dict: """simple docstring""" lowercase__ = None if token is not None: lowercase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) lowercase__ = """636036""" lowercase__ = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' lowercase__ = requests.get(__magic_name__ , headers=__magic_name__ ).json() return result["workflow_runs"] def UpperCamelCase ( __magic_name__ : str ) -> Dict: """simple docstring""" lowercase__ = get_daily_ci_runs(__magic_name__ ) lowercase__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": lowercase__ = workflow_run["""id"""] break return workflow_run_id def UpperCamelCase ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> str: """simple docstring""" lowercase__ = get_last_daily_ci_runs(__magic_name__ ) if workflow_run_id is not None: lowercase__ = get_artifacts_links(worflow_run_id=__magic_name__ , token=__magic_name__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: lowercase__ = artifacts_links[artifact_name] download_artifact( artifact_name=__magic_name__ , artifact_url=__magic_name__ , output_dir=__magic_name__ , token=__magic_name__ ) def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Union[str, Any] ) -> Tuple: """simple docstring""" get_last_daily_ci_artifacts(__magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = {} for artifact_name in artifact_names: lowercase__ = os.path.join(__magic_name__ , f'''{artifact_name}.zip''' ) if os.path.isfile(__magic_name__ ): lowercase__ = {} with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file with z.open(__magic_name__ ) as f: lowercase__ = f.read().decode("""UTF-8""" ) return results
15
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : int ) -> List[Any]: if isinstance(__snake_case , __snake_case ): __A : Dict = np.full((len(__snake_case ), sequence_length, 2) , __snake_case ) else: __A : Dict = np.full((len(__snake_case ), sequence_length) , __snake_case ) for i, tensor in enumerate(__snake_case ): if padding_side == "right": if isinstance(__snake_case , __snake_case ): __A : str = tensor[:sequence_length] else: __A : Union[str, Any] = tensor[:sequence_length] else: if isinstance(__snake_case , __snake_case ): __A : str = tensor[:sequence_length] else: __A : str = tensor[:sequence_length] return out_tensor.tolist() def _lowerCAmelCase ( __snake_case : List[Any] ) -> str: __A : Union[str, Any] = ord(__snake_case ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True __A : Any = unicodedata.category(__snake_case ) if cat.startswith('P' ): return True return False @dataclass class SCREAMING_SNAKE_CASE (__lowerCAmelCase ): lowerCAmelCase = 42 lowerCAmelCase = True lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = -100 lowerCAmelCase = "pt" def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' import torch __A : Tuple = '''label''' if '''label''' in features[0].keys() else '''labels''' __A : Optional[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __A : Optional[int] = self.tokenizer.pad( lowerCamelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' if labels is None else None , ) if labels is None: return batch __A : Dict = torch.tensor(batch['entity_ids']).shape[1] __A : Union[str, Any] = self.tokenizer.padding_side if padding_side == "right": __A : Optional[int] = [ list(lowerCamelCase__) + [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase__)) for label in labels ] else: __A : int = [ [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase__)) + list(lowerCamelCase__) for label in labels ] __A : Union[str, Any] = [feature['''ner_tags'''] for feature in features] __A : List[str] = padding_tensor(lowerCamelCase__ , -1 , lowerCamelCase__ , lowerCamelCase__) __A : Union[str, Any] = [feature['''original_entity_spans'''] for feature in features] __A : Any = padding_tensor(lowerCamelCase__ , (-1, -1) , lowerCamelCase__ , lowerCamelCase__) __A : str = {k: torch.tensor(lowerCamelCase__ , dtype=torch.intaa) for k, v in batch.items()} return batch
718
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() lowercase__ : Dict = logging.get_logger(__name__) lowercase__ : Union[str, Any] = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> str: __A : int = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } __A : Any = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __A : Any = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=__snake_case , output_all_encodings=__snake_case , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , __snake_case ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __A : Optional[int] = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __A : int = os.path.join(get_home_dir() , 'models' ) __A : Optional[int] = _load_vocab(__snake_case , __snake_case , __snake_case , cls=__snake_case ) __A : List[Any] = nlp.model.BERTModel( __snake_case , len(__snake_case ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=__snake_case , use_token_type_embed=__snake_case , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=__snake_case , use_decoder=__snake_case , ) original_bort.load_parameters(__snake_case , cast_dtype=__snake_case , ignore_extra=__snake_case ) __A : Any = original_bort._collect_params_with_prefix() # Build our config 🤗 __A : Dict = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(__snake_case ), } __A : Optional[int] = BertConfig.from_dict(__snake_case ) __A : Any = BertForMaskedLM(__snake_case ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__snake_case : List[str] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__snake_case : Union[str, Any] , __snake_case : int ): __A : str = hf_param.shape __A : int = to_torch(params[gluon_param] ) __A : Any = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param __A : Tuple = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __A : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __A : Any = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __A : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __A : Optional[int] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __A : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __A : BertSelfAttention = layer.attention.self __A : Optional[Any] = check_and_map_params( self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) __A : Optional[int] = check_and_map_params( self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) __A : List[Any] = check_and_map_params( self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) __A : Optional[Any] = check_and_map_params( self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) __A : Optional[Any] = check_and_map_params( self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) __A : str = check_and_map_params( self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output __A : BertSelfOutput = layer.attention.output __A : Optional[Any] = check_and_map_params( self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' ) __A : Union[str, Any] = check_and_map_params( self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' ) __A : Optional[Any] = check_and_map_params( self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' ) __A : Optional[Any] = check_and_map_params( self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate __A : BertIntermediate = layer.intermediate __A : Optional[int] = check_and_map_params( intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) __A : str = check_and_map_params( intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output __A : BertOutput = layer.output __A : List[str] = check_and_map_params( bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) __A : Union[str, Any] = check_and_map_params( bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) __A : List[Any] = check_and_map_params( bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) __A : Any = check_and_map_params( bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __A : List[Any] = RobertaTokenizer.from_pretrained('roberta-base' ) __A : int = tokenizer.encode_plus(__snake_case )['input_ids'] # Get gluon output __A : List[Any] = mx.nd.array([input_ids] ) __A : Optional[int] = original_bort(inputs=__snake_case , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__snake_case ) __A : List[Any] = BertModel.from_pretrained(__snake_case ) hf_bort_model.eval() __A : Dict = tokenizer.encode_plus(__snake_case , return_tensors='pt' ) __A : List[Any] = hf_bort_model(**__snake_case )[0] __A : Tuple = output_gluon[0].asnumpy() __A : Any = output_hf[0].detach().numpy() __A : int = np.max(np.abs(hf_layer - gluon_layer ) ).item() __A : str = np.allclose(__snake_case , __snake_case , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , __snake_case ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : List[Any] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
338
0
"""simple docstring""" import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Optional[int]: if "model" in orig_key: _lowerCamelCase : List[str] = orig_key.replace('''model.''' , '''''' ) if "norm1" in orig_key: _lowerCamelCase : List[str] = orig_key.replace('''norm1''' , '''attention.output.LayerNorm''' ) if "norm2" in orig_key: _lowerCamelCase : Tuple = orig_key.replace('''norm2''' , '''output.LayerNorm''' ) if "norm" in orig_key: _lowerCamelCase : List[Any] = orig_key.replace('''norm''' , '''LayerNorm''' ) if "transformer" in orig_key: _lowerCamelCase : Optional[Any] = orig_key.split('''.''' )[0].split('''_''' )[-1] _lowerCamelCase : Any = orig_key.replace(F'''transformer_{layer_num}''' , F'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: _lowerCamelCase : Optional[Any] = orig_key.replace('''mha.attn''' , '''attention.self''' ) if "mha" in orig_key: _lowerCamelCase : str = orig_key.replace('''mha''' , '''attention''' ) if "W_q" in orig_key: _lowerCamelCase : int = orig_key.replace('''W_q''' , '''self.query''' ) if "W_k" in orig_key: _lowerCamelCase : Dict = orig_key.replace('''W_k''' , '''self.key''' ) if "W_v" in orig_key: _lowerCamelCase : Union[str, Any] = orig_key.replace('''W_v''' , '''self.value''' ) if "ff1" in orig_key: _lowerCamelCase : int = orig_key.replace('''ff1''' , '''intermediate.dense''' ) if "ff2" in orig_key: _lowerCamelCase : int = orig_key.replace('''ff2''' , '''output.dense''' ) if "ff" in orig_key: _lowerCamelCase : Any = orig_key.replace('''ff''' , '''output.dense''' ) if "mlm_class" in orig_key: _lowerCamelCase : Optional[Any] = orig_key.replace('''mlm.mlm_class''' , '''cls.predictions.decoder''' ) if "mlm" in orig_key: _lowerCamelCase : List[Any] = orig_key.replace('''mlm''' , '''cls.predictions.transform''' ) if "cls" not in orig_key: _lowerCamelCase : Dict = 'yoso.' + orig_key return orig_key def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->List[Any]: for key in orig_state_dict.copy().keys(): _lowerCamelCase : str = orig_state_dict.pop(_A ) if ("pooler" in key) or ("sen_class" in key): continue else: _lowerCamelCase : Union[str, Any] = val _lowerCamelCase : Optional[Any] = orig_state_dict['cls.predictions.decoder.bias'] _lowerCamelCase : Optional[Any] = torch.arange(_A ).expand((1, -1) ) + 2 return orig_state_dict def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Optional[Any]: _lowerCamelCase : List[str] = torch.load(_A , map_location='''cpu''' )['model_state_dict'] _lowerCamelCase : List[Any] = YosoConfig.from_json_file(_A ) _lowerCamelCase : str = YosoForMaskedLM(_A ) _lowerCamelCase : Optional[int] = convert_checkpoint_helper(config.max_position_embeddings , _A ) print(model.load_state_dict(_A ) ) model.eval() model.save_pretrained(_A ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE__ : List[str] =parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
434
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Any = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
444
0
import cva import numpy as np class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' if k in (0.0_4, 0.0_6): A_ : Tuple = k A_ : Tuple = window_size else: raise ValueError('''invalid k value''' ) def __str__( self )->str: '''simple docstring''' return str(self.k ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->tuple[cva.Mat, list[list[int]]]: '''simple docstring''' A_ : List[Any] = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) A_ : Optional[int] = img.shape A_ : list[list[int]] = [] A_ : Optional[int] = img.copy() A_ : str = cva.cvtColor(_SCREAMING_SNAKE_CASE , cva.COLOR_GRAY2RGB ) A_ : List[str] = np.gradient(_SCREAMING_SNAKE_CASE ) A_ : Any = dx**2 A_ : List[str] = dy**2 A_ : Any = dx * dy A_ : str = 0.0_4 A_ : int = self.window_size // 2 for y in range(_SCREAMING_SNAKE_CASE , h - offset ): for x in range(_SCREAMING_SNAKE_CASE , w - offset ): A_ : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ : Union[str, Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() A_ : List[Any] = (wxx * wyy) - (wxy**2) A_ : str = wxx + wyy A_ : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": UpperCamelCase = HarrisCorner(0.04, 3) UpperCamelCase , UpperCamelCase = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
704
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = FunnelTokenizer snake_case = FunnelTokenizerFast snake_case = True snake_case = True def _snake_case ( self )->Tuple: '''simple docstring''' super().setUp() A_ : Dict = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] A_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->Union[str, Any]: '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , **_SCREAMING_SNAKE_CASE )->str: '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : Optional[int] = '''UNwant\u00E9d,running''' A_ : List[Any] = '''unwanted, running''' return input_text, output_text def _snake_case ( self )->int: '''simple docstring''' A_ : List[str] = self.tokenizer_class(self.vocab_file ) A_ : List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self )->str: '''simple docstring''' A_ : List[Any] = self.get_tokenizers(do_lower_case=_SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: A_ : Optional[Any] = tokenizer('''UNwant\u00E9d,running''' ) A_ : Tuple = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) A_ : str = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
152
0
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): if len(_UpperCAmelCase ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) lowerCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = (UnCLIPScheduler,) def lowerCAmelCase ( self : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : Any = { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**SCREAMING_SNAKE_CASE__) return config def lowerCAmelCase ( self : Optional[Any]): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any]): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any]): for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any]): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ,prev_timestep=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Optional[int] = self.scheduler_classes[0] __lowerCamelCase : Any = self.get_scheduler_config(variance_type='fixed_small_log') __lowerCamelCase : Dict = scheduler_class(**SCREAMING_SNAKE_CASE__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.00_00E-10)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.0549625)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.9994987)) < 1E-5 def lowerCAmelCase ( self : Any): __lowerCamelCase : Dict = self.scheduler_classes[0] __lowerCamelCase : List[str] = self.get_scheduler_config(variance_type='learned_range') __lowerCamelCase : int = scheduler_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = 0.5 assert scheduler._get_variance(1 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -10.1712790 < 1E-5 assert scheduler._get_variance(4_8_7 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -5.7998052 < 1E-5 assert scheduler._get_variance(9_9_9 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -0.0010011 < 1E-5 def lowerCAmelCase ( self : List[str]): __lowerCamelCase : str = self.scheduler_classes[0] __lowerCamelCase : str = self.get_scheduler_config() __lowerCamelCase : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = scheduler.timesteps __lowerCamelCase : Union[str, Any] = self.dummy_model() __lowerCamelCase : Optional[Any] = self.dummy_sample_deter __lowerCamelCase : List[str] = torch.manual_seed(0) for i, t in enumerate(SCREAMING_SNAKE_CASE__): # 1. predict noise residual __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) # 2. predict previous mean of sample x_t-1 __lowerCamelCase : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__).prev_sample __lowerCamelCase : Optional[Any] = pred_prev_sample __lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__)) assert abs(result_sum.item() - 252.2682495) < 1E-2 assert abs(result_mean.item() - 0.3284743) < 1E-3 def lowerCAmelCase ( self : str): __lowerCamelCase : str = self.scheduler_classes[0] __lowerCamelCase : List[Any] = self.get_scheduler_config() __lowerCamelCase : int = scheduler_class(**SCREAMING_SNAKE_CASE__) scheduler.set_timesteps(2_5) __lowerCamelCase : int = scheduler.timesteps __lowerCamelCase : Tuple = self.dummy_model() __lowerCamelCase : Any = self.dummy_sample_deter __lowerCamelCase : Any = torch.manual_seed(0) for i, t in enumerate(SCREAMING_SNAKE_CASE__): # 1. predict noise residual __lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) if i + 1 == timesteps.shape[0]: __lowerCamelCase : Optional[Any] = None else: __lowerCamelCase : Union[str, Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowerCamelCase : int = scheduler.step( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,prev_timestep=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__).prev_sample __lowerCamelCase : Union[str, Any] = pred_prev_sample __lowerCamelCase : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__)) assert abs(result_sum.item() - 258.2044983) < 1E-2 assert abs(result_mean.item() - 0.3362038) < 1E-3 def lowerCAmelCase ( self : List[Any]): pass def lowerCAmelCase ( self : Union[str, Any]): pass
652
0
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") _lowerCamelCase , _lowerCamelCase : Tuple = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") _lowerCamelCase : Optional[int] = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: _lowerCamelCase : str = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) _lowerCamelCase : Any = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([F'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([F'''python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
177
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : str = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = state_dict.pop(lowercase_ ) A__ = val def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: """simple docstring""" A__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A__ = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A__ = value else: A__ = value return new_state_dict def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) A__ = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:256, :] A__ = in_proj_bias[:256] A__ = in_proj_weight[256:512, :] A__ = in_proj_bias[256:512] A__ = in_proj_weight[-256:, :] A__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) A__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict A__ = in_proj_weight[:256, :] A__ = in_proj_bias[:256] A__ = in_proj_weight[256:512, :] A__ = in_proj_bias[256:512] A__ = in_proj_weight[-256:, :] A__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention A__ = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) A__ = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict A__ = in_proj_weight_cross_attn[:256, :] A__ = in_proj_bias_cross_attn[:256] A__ = in_proj_weight_cross_attn[256:512, :] A__ = in_proj_bias_cross_attn[256:512] A__ = in_proj_weight_cross_attn[-256:, :] A__ = in_proj_bias_cross_attn[-256:] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" A__ , A__ = image.size A__ = max(lowercase_ , lowercase_ ) A__ = 800 if '''detection''' in checkpoint_url else 1_000 A__ = target_max_size / current_max_size A__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Tuple: """simple docstring""" A__ = F.to_tensor(lowercase_ ) A__ = F.normalize(lowercase_ , mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: """simple docstring""" logger.info('''Converting model...''' ) # load original state dict A__ = torch.hub.load_state_dict_from_url(lowercase_ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) A__ = rename_backbone_keys(lowercase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowercase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A__ = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A__ = state_dict.pop(lowercase_ ) A__ = val # create HuggingFace model and load state dict A__ = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A__ = 15 A__ = 2 A__ = {0: '''table''', 1: '''table rotated'''} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} else: A__ = 125 A__ = 6 A__ = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = DetrImageProcessor( format='''coco_detection''' , max_size=800 if '''detection''' in checkpoint_url else 1_000 ) A__ = TableTransformerForObjectDetection(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() # verify our conversion A__ = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A__ = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowercase_ ) A__ = Image.open(lowercase_ ).convert('''RGB''' ) A__ = normalize(resize(lowercase_ , lowercase_ ) ).unsqueeze(0 ) A__ = model(lowercase_ ) if "detection" in checkpoint_url: A__ = (1, 15, 3) A__ = torch.tensor( [[-6.78_97, -16.99_85, 6.79_37], [-8.01_86, -22.21_92, 6.96_77], [-7.31_17, -21.07_08, 7.40_55]] ) A__ = torch.tensor([[0.48_67, 0.17_67, 0.67_32], [0.67_18, 0.44_79, 0.38_30], [0.47_16, 0.17_60, 0.63_64]] ) else: A__ = (1, 125, 7) A__ = torch.tensor( [[-18.14_30, -8.32_14, 4.82_74], [-18.46_85, -7.13_61, -4.26_67], [-26.36_93, -9.34_29, -4.99_62]] ) A__ = torch.tensor([[0.49_83, 0.55_95, 0.94_40], [0.49_16, 0.63_15, 0.59_54], [0.61_08, 0.86_37, 0.11_35]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowercase_ , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowercase_ , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) model.save_pretrained(lowercase_ ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A__ = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowercase_ ) image_processor.push_to_hub(lowercase_ ) if __name__ == "__main__": _lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) _lowerCamelCase : str = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
177
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCamelCase__ : Optional[Any] = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCamelCase__ : Union[str, Any] = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCamelCase__ : List[str] = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCamelCase__ : Any = { """num_train_timesteps""": 4_0, """sigma_min""": 0.002, """sigma_max""": 80.0, } lowerCamelCase__ : int = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.002, """sigma_max""": 80.0, } lowerCamelCase__ : List[Any] = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.002, """sigma_max""": 80.0, } def UpperCamelCase ( lowercase_ ) -> Tuple: '''simple docstring''' if isinstance(lowercase_ , lowercase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=False ) -> Any: '''simple docstring''' lowercase__ : List[str] = checkpoint[F'{old_prefix}.in_layers.0.weight'] lowercase__ : Tuple = checkpoint[F'{old_prefix}.in_layers.0.bias'] lowercase__ : Any = checkpoint[F'{old_prefix}.in_layers.2.weight'] lowercase__ : Union[str, Any] = checkpoint[F'{old_prefix}.in_layers.2.bias'] lowercase__ : Optional[int] = checkpoint[F'{old_prefix}.emb_layers.1.weight'] lowercase__ : List[Any] = checkpoint[F'{old_prefix}.emb_layers.1.bias'] lowercase__ : List[Any] = checkpoint[F'{old_prefix}.out_layers.0.weight'] lowercase__ : Optional[int] = checkpoint[F'{old_prefix}.out_layers.0.bias'] lowercase__ : Union[str, Any] = checkpoint[F'{old_prefix}.out_layers.3.weight'] lowercase__ : Tuple = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: lowercase__ : Any = checkpoint[F'{old_prefix}.skip_connection.weight'] lowercase__ : Any = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ) -> List[str]: '''simple docstring''' lowercase__ , lowercase__ , lowercase__ : str = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) lowercase__ , lowercase__ , lowercase__ : Any = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) lowercase__ : Optional[Any] = checkpoint[F'{old_prefix}.norm.weight'] lowercase__ : Tuple = checkpoint[F'{old_prefix}.norm.bias'] lowercase__ : int = weight_q.squeeze(-1 ).squeeze(-1 ) lowercase__ : int = bias_q.squeeze(-1 ).squeeze(-1 ) lowercase__ : str = weight_k.squeeze(-1 ).squeeze(-1 ) lowercase__ : Dict = bias_k.squeeze(-1 ).squeeze(-1 ) lowercase__ : List[Any] = weight_v.squeeze(-1 ).squeeze(-1 ) lowercase__ : Dict = bias_v.squeeze(-1 ).squeeze(-1 ) lowercase__ : List[Any] = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) lowercase__ : List[str] = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def UpperCamelCase ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : List[Any] = torch.load(lowercase_ , map_location="""cpu""" ) lowercase__ : Optional[Any] = {} lowercase__ : Tuple = checkpoint["""time_embed.0.weight"""] lowercase__ : Any = checkpoint["""time_embed.0.bias"""] lowercase__ : Dict = checkpoint["""time_embed.2.weight"""] lowercase__ : str = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: lowercase__ : int = checkpoint["""label_emb.weight"""] lowercase__ : Optional[int] = checkpoint["""input_blocks.0.0.weight"""] lowercase__ : Union[str, Any] = checkpoint["""input_blocks.0.0.bias"""] lowercase__ : Union[str, Any] = unet_config["""down_block_types"""] lowercase__ : str = unet_config["""layers_per_block"""] lowercase__ : Optional[int] = unet_config["""attention_head_dim"""] lowercase__ : Optional[Any] = unet_config["""block_out_channels"""] lowercase__ : Tuple = 1 lowercase__ : Optional[int] = channels_list[0] for i, layer_type in enumerate(lowercase_ ): lowercase__ : Any = channels_list[i] lowercase__ : List[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowercase_ ): lowercase__ : Any = F'down_blocks.{i}.resnets.{j}' lowercase__ : int = F'input_blocks.{current_layer}.0' lowercase__ : Tuple = True if j == 0 and downsample_block_has_skip else False lowercase__ : Tuple = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowercase_ ): lowercase__ : Optional[Any] = F'down_blocks.{i}.resnets.{j}' lowercase__ : Union[str, Any] = F'input_blocks.{current_layer}.0' lowercase__ : Any = True if j == 0 and downsample_block_has_skip else False lowercase__ : Optional[int] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ ) lowercase__ : Optional[int] = F'down_blocks.{i}.attentions.{j}' lowercase__ : int = F'input_blocks.{current_layer}.1' lowercase__ : str = convert_attention( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) current_layer += 1 if i != len(lowercase_ ) - 1: lowercase__ : Dict = F'down_blocks.{i}.downsamplers.0' lowercase__ : Union[str, Any] = F'input_blocks.{current_layer}.0' lowercase__ : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) current_layer += 1 lowercase__ : Optional[Any] = current_channels # hardcoded the mid-block for now lowercase__ : Any = """mid_block.resnets.0""" lowercase__ : List[Any] = """middle_block.0""" lowercase__ : Tuple = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : str = """mid_block.attentions.0""" lowercase__ : Union[str, Any] = """middle_block.1""" lowercase__ : Tuple = convert_attention(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Dict = """mid_block.resnets.1""" lowercase__ : List[Any] = """middle_block.2""" lowercase__ : int = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : str = 0 lowercase__ : Union[str, Any] = unet_config["""up_block_types"""] for i, layer_type in enumerate(lowercase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowercase__ : List[str] = F'up_blocks.{i}.resnets.{j}' lowercase__ : Dict = F'output_blocks.{current_layer}.0' lowercase__ : str = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ ) current_layer += 1 if i != len(lowercase_ ) - 1: lowercase__ : List[Any] = F'up_blocks.{i}.upsamplers.0' lowercase__ : Any = F'output_blocks.{current_layer-1}.1' lowercase__ : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowercase__ : Dict = F'up_blocks.{i}.resnets.{j}' lowercase__ : Any = F'output_blocks.{current_layer}.0' lowercase__ : List[str] = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ , has_skip=lowercase_ ) lowercase__ : Tuple = F'up_blocks.{i}.attentions.{j}' lowercase__ : Optional[Any] = F'output_blocks.{current_layer}.1' lowercase__ : Any = convert_attention( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) current_layer += 1 if i != len(lowercase_ ) - 1: lowercase__ : Any = F'up_blocks.{i}.upsamplers.0' lowercase__ : Optional[int] = F'output_blocks.{current_layer-1}.2' lowercase__ : int = convert_resnet(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : str = checkpoint["""out.0.weight"""] lowercase__ : Any = checkpoint["""out.0.bias"""] lowercase__ : Any = checkpoint["""out.2.weight"""] lowercase__ : Any = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCamelCase__ : Tuple = parser.parse_args() lowerCamelCase__ : Dict = strabool(args.class_cond) lowerCamelCase__ : List[Any] = os.path.basename(args.unet_path) print(f'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: lowerCamelCase__ : Optional[Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCamelCase__ : Optional[Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCamelCase__ : Dict = TEST_UNET_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: lowerCamelCase__ : Union[str, Any] = None lowerCamelCase__ : Optional[Any] = con_pt_to_diffuser(args.unet_path, unet_config) lowerCamelCase__ : List[Any] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCamelCase__ : Union[str, Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCamelCase__ : List[str] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCamelCase__ : List[Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') lowerCamelCase__ : str = CMStochasticIterativeScheduler(**scheduler_config) lowerCamelCase__ : Optional[int] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
12
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowerCamelCase : List[Any] = 'CompVis/stable-diffusion-v1-1' lowerCamelCase : Union[str, Any] = 'CompVis/stable-diffusion-v1-2' lowerCamelCase : List[str] = 'CompVis/stable-diffusion-v1-3' lowerCamelCase : Any = 'CompVis/stable-diffusion-v1-4' class __lowercase (UpperCamelCase__ ): """simple docstring""" def __init__( self , A , A , A , A , A , A , A , A = True , ) -> List[str]: super()._init_() snake_case : List[Any] = StableDiffusionPipeline.from_pretrained(A ) snake_case : str = StableDiffusionPipeline.from_pretrained(A ) snake_case : Optional[int] = StableDiffusionPipeline.from_pretrained(A ) snake_case : Dict = StableDiffusionPipeline( vae=A , text_encoder=A , tokenizer=A , unet=A , scheduler=A , safety_checker=A , feature_extractor=A , requires_safety_checker=A , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def UpperCAmelCase ( self ) -> Dict[str, Any]: return {k: getattr(self , A ) for k in self.config.keys() if not k.startswith("""_""" )} def UpperCAmelCase ( self , A = "auto" ) -> Tuple: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def UpperCAmelCase ( self ) -> Dict: self.enable_attention_slicing(A ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Optional[Any]: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Optional[Any]: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Any: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> Optional[int]: return self.pipea( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) @torch.no_grad() def UpperCAmelCase ( self , A , A = 5_1_2 , A = 5_1_2 , A = 5_0 , A = 7.5 , A = None , A = 1 , A = 0.0 , A = None , A = None , A = "pil" , A = True , A = None , A = 1 , **A , ) -> List[Any]: snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" self.to(A ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 snake_case : Tuple = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.2 snake_case : Tuple = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.3 snake_case : List[Any] = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get first result from Stable Diffusion Checkpoint v1.4 snake_case : Dict = self.textaimg_sda_a( prompt=A , height=A , width=A , num_inference_steps=A , guidance_scale=A , negative_prompt=A , num_images_per_prompt=A , eta=A , generator=A , latents=A , output_type=A , return_dict=A , callback=A , callback_steps=A , **A , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
587
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __A : Any = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Union[str, Any] = ["pixel_values"] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = IMAGENET_DEFAULT_MEAN , _SCREAMING_SNAKE_CASE = IMAGENET_DEFAULT_STD , **_SCREAMING_SNAKE_CASE , )-> None: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =size if size is not None else {"""shortest_edge""": 224} lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) lowerCamelCase_ =do_resize lowerCamelCase_ =size lowerCamelCase_ =resample lowerCamelCase_ =do_center_crop lowerCamelCase_ =crop_size lowerCamelCase_ =do_rescale lowerCamelCase_ =rescale_factor lowerCamelCase_ =do_normalize lowerCamelCase_ =image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCamelCase_ =image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: lowerCamelCase_ =int((256 / 224) * size["""shortest_edge"""] ) lowerCamelCase_ =get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ ={"""height""": output_size[0], """width""": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}' ) return resize( _SCREAMING_SNAKE_CASE , size=(size_dict["""height"""], size_dict["""width"""]) , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'Size dict must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )-> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , )-> BatchFeature: lowerCamelCase_ =do_resize if do_resize is not None else self.do_resize lowerCamelCase_ =resample if resample is not None else self.resample lowerCamelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ =do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ =do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase_ =image_mean if image_mean is not None else self.image_mean lowerCamelCase_ =image_std if image_std is not None else self.image_std lowerCamelCase_ =size if size is not None else self.size lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =crop_size if crop_size is not None else self.crop_size lowerCamelCase_ =get_size_dict(_SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) lowerCamelCase_ =make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCamelCase_ =[to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowerCamelCase_ =[self.resize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: lowerCamelCase_ =[self.center_crop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowerCamelCase_ =[self.rescale(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowerCamelCase_ =[self.normalize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowerCamelCase_ =[to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] lowerCamelCase_ ={"""pixel_values""": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
75
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[Any] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): _UpperCamelCase:Union[str, Any] = "deta" _UpperCamelCase:int = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=900 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="sine" , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=300 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.2_5 , **_SCREAMING_SNAKE_CASE , )-> str: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowerCamelCase_ =CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCamelCase_ =backbone_config.pop("""model_type""" ) lowerCamelCase_ =CONFIG_MAPPING[backbone_model_type] lowerCamelCase_ =config_class.from_dict(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =backbone_config lowerCamelCase_ =num_queries lowerCamelCase_ =max_position_embeddings lowerCamelCase_ =d_model lowerCamelCase_ =encoder_ffn_dim lowerCamelCase_ =encoder_layers lowerCamelCase_ =encoder_attention_heads lowerCamelCase_ =decoder_ffn_dim lowerCamelCase_ =decoder_layers lowerCamelCase_ =decoder_attention_heads lowerCamelCase_ =dropout lowerCamelCase_ =attention_dropout lowerCamelCase_ =activation_dropout lowerCamelCase_ =activation_function lowerCamelCase_ =init_std lowerCamelCase_ =init_xavier_std lowerCamelCase_ =encoder_layerdrop lowerCamelCase_ =auxiliary_loss lowerCamelCase_ =position_embedding_type # deformable attributes lowerCamelCase_ =num_feature_levels lowerCamelCase_ =encoder_n_points lowerCamelCase_ =decoder_n_points lowerCamelCase_ =two_stage lowerCamelCase_ =two_stage_num_proposals lowerCamelCase_ =with_box_refine lowerCamelCase_ =assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowerCamelCase_ =class_cost lowerCamelCase_ =bbox_cost lowerCamelCase_ =giou_cost # Loss coefficients lowerCamelCase_ =mask_loss_coefficient lowerCamelCase_ =dice_loss_coefficient lowerCamelCase_ =bbox_loss_coefficient lowerCamelCase_ =giou_loss_coefficient lowerCamelCase_ =eos_coefficient lowerCamelCase_ =focal_alpha super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _snake_case ( self )-> int: return self.encoder_attention_heads @property def _snake_case ( self )-> int: return self.d_model def _snake_case ( self )-> str: lowerCamelCase_ =copy.deepcopy(self.__dict__ ) lowerCamelCase_ =self.backbone_config.to_dict() lowerCamelCase_ =self.__class__.model_type return output
75
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } UpperCamelCase = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } UpperCamelCase = {"facebook/blenderbot_small-90M": 512} def A ( lowercase__ : Optional[int] ) -> List[Any]: UpperCamelCase__ :Union[str, Any] = set() UpperCamelCase__ :List[str] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase__ :List[Any] = char UpperCamelCase__ :Any = set(lowercase__ ) return pairs class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : str = VOCAB_FILES_NAMES _snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : str = ["""input_ids""", """attention_mask"""] def __init__( self :List[str] , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :str , lowerCamelCase__ :Tuple="__start__" , lowerCamelCase__ :Union[str, Any]="__end__" , lowerCamelCase__ :Dict="__unk__" , lowerCamelCase__ :List[Any]="__null__" , **lowerCamelCase__ :str , ): super().__init__(unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , **lowerCamelCase__ ) with open(lowerCamelCase__ , encoding="""utf-8""" ) as vocab_handle: UpperCamelCase__ :Optional[int] = json.load(lowerCamelCase__ ) UpperCamelCase__ :List[str] = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase__ , encoding="""utf-8""" ) as merges_handle: UpperCamelCase__ :Union[str, Any] = merges_handle.read().split("""\n""" )[1:-1] UpperCamelCase__ :List[Any] = [tuple(merge.split() ) for merge in merges] UpperCamelCase__ :List[str] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase__ :Union[str, Any] = {} @property def __a ( self :Dict ): return len(self.encoder ) def __a ( self :Optional[int] ): return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self :Union[str, Any] , lowerCamelCase__ :str ): if token in self.cache: return self.cache[token] UpperCamelCase__ :List[str] = re.sub("""([.,!?()])""" , r""" \1""" , lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = re.sub("""(')""" , r""" \1 """ , lowerCamelCase__ ) UpperCamelCase__ :Dict = re.sub(r"""\s{2,}""" , """ """ , lowerCamelCase__ ) if "\n" in token: UpperCamelCase__ :Dict = token.replace("""\n""" , """ __newln__""" ) UpperCamelCase__ :Dict = token.split(""" """ ) UpperCamelCase__ :Union[str, Any] = [] for token in tokens: if not len(lowerCamelCase__ ): continue UpperCamelCase__ :Any = token.lower() UpperCamelCase__ :Tuple = tuple(lowerCamelCase__ ) UpperCamelCase__ :List[str] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) UpperCamelCase__ :Optional[Any] = get_pairs(lowerCamelCase__ ) if not pairs: words.append(lowerCamelCase__ ) continue while True: UpperCamelCase__ :Optional[Any] = min(lowerCamelCase__ , key=lambda lowerCamelCase__ : self.bpe_ranks.get(lowerCamelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase__ , UpperCamelCase__ :int = bigram UpperCamelCase__ :List[str] = [] UpperCamelCase__ :List[str] = 0 while i < len(lowerCamelCase__ ): try: UpperCamelCase__ :Optional[int] = word.index(lowerCamelCase__ , lowerCamelCase__ ) new_word.extend(word[i:j] ) UpperCamelCase__ :Dict = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase__ :Dict = tuple(lowerCamelCase__ ) UpperCamelCase__ :Any = new_word if len(lowerCamelCase__ ) == 1: break else: UpperCamelCase__ :str = get_pairs(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = """@@ """.join(lowerCamelCase__ ) UpperCamelCase__ :List[str] = word[:-4] UpperCamelCase__ :Optional[int] = word words.append(lowerCamelCase__ ) return " ".join(lowerCamelCase__ ) def __a ( self :Dict , lowerCamelCase__ :str ): UpperCamelCase__ :Dict = [] UpperCamelCase__ :List[Any] = re.findall(r"""\S+\n?""" , lowerCamelCase__ ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase__ ).split(""" """ ) ) ) return split_tokens def __a ( self :Union[str, Any] , lowerCamelCase__ :str ): UpperCamelCase__ :List[Any] = token.lower() return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def __a ( self :Optional[int] , lowerCamelCase__ :int ): return self.decoder.get(lowerCamelCase__ , self.unk_token ) def __a ( self :Optional[Any] , lowerCamelCase__ :List[str] ): UpperCamelCase__ :int = """ """.join(lowerCamelCase__ ).replace("""@@ """ , """""" ).strip() return out_string def __a ( self :Optional[int] , lowerCamelCase__ :str , lowerCamelCase__ :Optional[str] = None ): if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase__ :Dict = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase__ :List[Any] = os.path.join( lowerCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + """\n""" ) UpperCamelCase__ :Optional[Any] = 0 with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" """ Please check that the tokenizer is not corrupted!""" ) UpperCamelCase__ :str = token_index writer.write(""" """.join(lowerCamelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file
45
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __A ( A_ ): '''simple docstring''' lowerCAmelCase : int = (UnCLIPScheduler,) def UpperCAmelCase ( self : Optional[Any] ,**_snake_case : Dict ) -> str: """simple docstring""" lowercase__ : Union[str, Any] = { '''num_train_timesteps''': 1_000, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**_snake_case ) return config def UpperCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_snake_case ) def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_snake_case ) def UpperCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_snake_case ) def UpperCAmelCase ( self : List[str] ) -> int: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_snake_case ) def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_snake_case ) def UpperCAmelCase ( self : str ) -> Optional[Any]: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_snake_case ,prev_timestep=_snake_case ) def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Tuple = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config(variance_type='''fixed_small_log''' ) lowercase__ : List[Any] = scheduler_class(**_snake_case ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1e-5 def UpperCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ : str = self.scheduler_classes[0] lowercase__ : Dict = self.get_scheduler_config(variance_type='''learned_range''' ) lowercase__ : Optional[Any] = scheduler_class(**_snake_case ) lowercase__ : str = 0.5 assert scheduler._get_variance(1 ,predicted_variance=_snake_case ) - -10.171_2790 < 1e-5 assert scheduler._get_variance(487 ,predicted_variance=_snake_case ) - -5.799_8052 < 1e-5 assert scheduler._get_variance(999 ,predicted_variance=_snake_case ) - -0.001_0011 < 1e-5 def UpperCAmelCase ( self : Tuple ) -> str: """simple docstring""" lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : int = self.get_scheduler_config() lowercase__ : List[str] = scheduler_class(**_snake_case ) lowercase__ : Optional[Any] = scheduler.timesteps lowercase__ : Optional[int] = self.dummy_model() lowercase__ : int = self.dummy_sample_deter lowercase__ : List[str] = torch.manual_seed(0 ) for i, t in enumerate(_snake_case ): # 1. predict noise residual lowercase__ : Optional[Any] = model(_snake_case ,_snake_case ) # 2. predict previous mean of sample x_t-1 lowercase__ : Union[str, Any] = scheduler.step(_snake_case ,_snake_case ,_snake_case ,generator=_snake_case ).prev_sample lowercase__ : str = pred_prev_sample lowercase__ : Any = torch.sum(torch.abs(_snake_case ) ) lowercase__ : str = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1e-2 assert abs(result_mean.item() - 0.328_4743 ) < 1e-3 def UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ : Optional[int] = self.scheduler_classes[0] lowercase__ : str = self.get_scheduler_config() lowercase__ : List[Any] = scheduler_class(**_snake_case ) scheduler.set_timesteps(25 ) lowercase__ : Optional[int] = scheduler.timesteps lowercase__ : Any = self.dummy_model() lowercase__ : Optional[int] = self.dummy_sample_deter lowercase__ : str = torch.manual_seed(0 ) for i, t in enumerate(_snake_case ): # 1. predict noise residual lowercase__ : Optional[int] = model(_snake_case ,_snake_case ) if i + 1 == timesteps.shape[0]: lowercase__ : str = None else: lowercase__ : Tuple = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 lowercase__ : Dict = scheduler.step( _snake_case ,_snake_case ,_snake_case ,prev_timestep=_snake_case ,generator=_snake_case ).prev_sample lowercase__ : Optional[Any] = pred_prev_sample lowercase__ : Tuple = torch.sum(torch.abs(_snake_case ) ) lowercase__ : Optional[int] = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1e-2 assert abs(result_mean.item() - 0.336_2038 ) < 1e-3 def UpperCAmelCase ( self : int ) -> str: """simple docstring""" pass def UpperCAmelCase ( self : str ) -> Any: """simple docstring""" pass
560
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Dict = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class a_ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'ibert' def __init__(self, lowerCamelCase_=3_0_5_2_2, lowerCamelCase_=7_6_8, lowerCamelCase_=1_2, lowerCamelCase_=1_2, lowerCamelCase_=3_0_7_2, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=5_1_2, lowerCamelCase_=2, lowerCamelCase_=0.02, lowerCamelCase_=1e-12, lowerCamelCase_=1, lowerCamelCase_=0, lowerCamelCase_=2, lowerCamelCase_="absolute", lowerCamelCase_=False, lowerCamelCase_="none", **lowerCamelCase_, ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, **UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = vocab_size lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : int = hidden_dropout_prob lowerCamelCase__ : int = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = type_vocab_size lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : Any = layer_norm_eps lowerCamelCase__ : List[Any] = position_embedding_type lowerCamelCase__ : List[str] = quant_mode lowerCamelCase__ : Tuple = force_dequant class a_ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def a__ (self ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
711
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase__ : Optional[int] = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : Dict = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase__ : str = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase__ : Any = False @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return 3_2 @property def a__ (self ): '''simple docstring''' return self.time_input_dim @property def a__ (self ): '''simple docstring''' return self.time_input_dim * 4 @property def a__ (self ): '''simple docstring''' return 1_0_0 @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase__ : int = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def a__ (self ): '''simple docstring''' return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def a__ (self ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.dummy_unet lowerCamelCase__ : List[Any] = self.dummy_movq lowerCamelCase__ : Tuple = { 'num_train_timesteps': 1_0_0_0, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCamelCase__ : Optional[Any] = DDIMScheduler(**lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a__ (self, lowerCamelCase_, lowerCamelCase_=0 ): '''simple docstring''' lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCamelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCamelCase__ : Dict = image.cpu().permute(0, 2, 3, 1 )[0] lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((2_5_6, 2_5_6) ) # create hint lowerCamelCase__ : Dict = floats_tensor((1, 3, 6_4, 6_4), rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith('mps' ): lowerCamelCase__ : int = torch.manual_seed(lowerCamelCase_ ) else: lowerCamelCase__ : Any = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 6_4, 'width': 6_4, 'num_inference_steps': 1_0, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = 'cpu' lowerCamelCase__ : List[Any] = self.get_dummy_components() lowerCamelCase__ : List[Any] = self.pipeline_class(**lowerCamelCase_ ) lowerCamelCase__ : Dict = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : Any = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : str = pipe( **self.get_dummy_inputs(lowerCamelCase_ ), return_dict=lowerCamelCase_, )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCamelCase__ : List[str] = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCamelCase__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase__ : Any = init_image.resize((5_1_2, 5_1_2) ) lowerCamelCase__ : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCamelCase__ : Any = torch.from_numpy(np.array(lowerCamelCase_ ) ).float() / 255.0 lowerCamelCase__ : Optional[int] = hint.permute(2, 0, 1 ).unsqueeze(0 ) lowerCamelCase__ : Union[str, Any] = 'A robot, 4k photo' lowerCamelCase__ : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior', torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth', torch_dtype=torch.floataa ) lowerCamelCase__ : int = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCamelCase__ : str = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = pipe_prior( lowerCamelCase_, image=lowerCamelCase_, strength=0.85, generator=lowerCamelCase_, negative_prompt='', ).to_tuple() lowerCamelCase__ : Union[str, Any] = pipeline( image=lowerCamelCase_, image_embeds=lowerCamelCase_, negative_image_embeds=lowerCamelCase_, hint=lowerCamelCase_, generator=lowerCamelCase_, num_inference_steps=1_0_0, height=5_1_2, width=5_1_2, strength=0.5, output_type='np', ) lowerCamelCase__ : Dict = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(lowerCamelCase_, lowerCamelCase_ )
696
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig UpperCAmelCase__ = logging.get_logger(__name__) # General docstring UpperCAmelCase__ = '''MobileNetV1Config''' # Base docstring UpperCAmelCase__ = '''google/mobilenet_v1_1.0_224''' UpperCAmelCase__ = [1, 1024, 7, 7] # Image classification docstring UpperCAmelCase__ = '''google/mobilenet_v1_1.0_224''' UpperCAmelCase__ = '''tabby, tabby cat''' UpperCAmelCase__ = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def a_ (__A , __A , __A=None ) -> Union[str, Any]: """simple docstring""" __a : Union[str, Any] = {} if isinstance(__A , __A ): __a : List[Any] = model.mobilenet_va else: __a : List[Any] = model __a : Optional[Any] = "MobilenetV1/Conv2d_0/" __a : str = backbone.conv_stem.convolution.weight __a : int = backbone.conv_stem.normalization.bias __a : Dict = backbone.conv_stem.normalization.weight __a : Optional[int] = backbone.conv_stem.normalization.running_mean __a : Dict = backbone.conv_stem.normalization.running_var for i in range(13 ): __a : Optional[int] = i + 1 __a : Tuple = i * 2 __a : int = backbone.layer[pt_index] __a : List[str] = f'MobilenetV1/Conv2d_{tf_index}_depthwise/' __a : Optional[int] = pointer.convolution.weight __a : Optional[int] = pointer.normalization.bias __a : int = pointer.normalization.weight __a : int = pointer.normalization.running_mean __a : Union[str, Any] = pointer.normalization.running_var __a : List[Any] = backbone.layer[pt_index + 1] __a : Any = f'MobilenetV1/Conv2d_{tf_index}_pointwise/' __a : int = pointer.convolution.weight __a : str = pointer.normalization.bias __a : Optional[int] = pointer.normalization.weight __a : Optional[Any] = pointer.normalization.running_mean __a : int = pointer.normalization.running_var if isinstance(__A , __A ): __a : Dict = "MobilenetV1/Logits/Conv2d_1c_1x1/" __a : Union[str, Any] = model.classifier.weight __a : Optional[int] = model.classifier.bias return tf_to_pt_map def a_ (__A , __A , __A ) -> Dict: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model __a : Tuple = tf.train.list_variables(__A ) __a : Dict = {} for name, shape in init_vars: logger.info(f'Loading TF weight {name} with shape {shape}' ) __a : List[str] = tf.train.load_variable(__A , __A ) __a : Dict = array # Build TF to PyTorch weights loading map __a : Tuple = _build_tf_to_pytorch_map(__A , __A , __A ) for name, pointer in tf_to_pt_map.items(): logger.info(f'Importing {name}' ) if name not in tf_weights: logger.info(f'{name} not in tf pre-trained weights, skipping' ) continue __a : Any = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) __a : Dict = np.transpose(__A , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer __a : Union[str, Any] = array.squeeze().transpose() else: __a : Dict = np.transpose(__A , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(f'Initialize PyTorch weight {name} {array.shape}' ) __a : Union[str, Any] = torch.from_numpy(__A ) tf_weights.pop(__A , __A ) tf_weights.pop(name + "/RMSProp" , __A ) tf_weights.pop(name + "/RMSProp_1" , __A ) tf_weights.pop(name + "/ExponentialMovingAverage" , __A ) logger.info(f'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def a_ (__A , __A ) -> torch.Tensor: """simple docstring""" __a , __a : Dict = features.shape[-2:] __a , __a : List[Any] = conv_layer.stride __a , __a : int = conv_layer.kernel_size if in_height % stride_height == 0: __a : List[Any] = max(kernel_height - stride_height , 0 ) else: __a : int = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __a : int = max(kernel_width - stride_width , 0 ) else: __a : Union[str, Any] = max(kernel_width - (in_width % stride_width) , 0 ) __a : str = pad_along_width // 2 __a : List[Any] = pad_along_width - pad_left __a : str = pad_along_height // 2 __a : str = pad_along_height - pad_top __a : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(__A , __A , "constant" , 0.0 ) class snake_case_ ( nn.Module ): """simple docstring""" def __init__(self: str , __UpperCAmelCase: MobileNetVaConfig , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: int , __UpperCAmelCase: Optional[int] = 1 , __UpperCAmelCase: Optional[int] = 1 , __UpperCAmelCase: bool = False , __UpperCAmelCase: Optional[bool] = True , __UpperCAmelCase: Optional[bool or str] = True , ) -> None: '''simple docstring''' super().__init__() __a : Optional[Any] = config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) __a : Optional[Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __a : str = nn.Convad( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=__UpperCAmelCase , groups=__UpperCAmelCase , bias=__UpperCAmelCase , padding_mode="zeros" , ) if use_normalization: __a : List[Any] = nn.BatchNormad( num_features=__UpperCAmelCase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__UpperCAmelCase , track_running_stats=__UpperCAmelCase , ) else: __a : str = None if use_activation: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __a : List[Any] = ACTaFN[use_activation] elif isinstance(config.hidden_act , __UpperCAmelCase ): __a : Dict = ACTaFN[config.hidden_act] else: __a : Optional[int] = config.hidden_act else: __a : Optional[Any] = None def UpperCAmelCase__ (self: int , __UpperCAmelCase: torch.Tensor ) -> torch.Tensor: '''simple docstring''' if self.config.tf_padding: __a : str = apply_tf_padding(__UpperCAmelCase , self.convolution ) __a : int = self.convolution(__UpperCAmelCase ) if self.normalization is not None: __a : Any = self.normalization(__UpperCAmelCase ) if self.activation is not None: __a : Tuple = self.activation(__UpperCAmelCase ) return features class snake_case_ ( UpperCAmelCase_ ): """simple docstring""" snake_case__ = MobileNetVaConfig snake_case__ = load_tf_weights_in_mobilenet_va snake_case__ = 'mobilenet_v1' snake_case__ = 'pixel_values' snake_case__ = False def UpperCAmelCase__ (self: Any , __UpperCAmelCase: Union[nn.Linear, nn.Convad] ) -> None: '''simple docstring''' if isinstance(__UpperCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__UpperCAmelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) UpperCAmelCase__ = r'''\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n''' UpperCAmelCase__ = r'''\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n''' @add_start_docstrings( """The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.""" , UpperCAmelCase_ , ) class snake_case_ ( UpperCAmelCase_ ): """simple docstring""" def __init__(self: Any , __UpperCAmelCase: MobileNetVaConfig , __UpperCAmelCase: bool = True ) -> str: '''simple docstring''' super().__init__(__UpperCAmelCase ) __a : Union[str, Any] = config __a : str = 32 __a : Any = max(int(depth * config.depth_multiplier ) , config.min_depth ) __a : List[Any] = MobileNetVaConvLayer( __UpperCAmelCase , in_channels=config.num_channels , out_channels=__UpperCAmelCase , kernel_size=3 , stride=2 , ) __a : Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __a : Optional[int] = nn.ModuleList() for i in range(13 ): __a : Union[str, Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 __a : Tuple = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __UpperCAmelCase , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , kernel_size=3 , stride=strides[i] , groups=__UpperCAmelCase , ) ) self.layer.append( MobileNetVaConvLayer( __UpperCAmelCase , in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , kernel_size=1 , ) ) __a : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: int ) -> Tuple: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCAmelCase__ (self: Optional[int] , __UpperCAmelCase: Optional[torch.Tensor] = None , __UpperCAmelCase: Optional[bool] = None , __UpperCAmelCase: Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: '''simple docstring''' __a : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) __a : str = self.conv_stem(__UpperCAmelCase ) __a : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __a : int = layer_module(__UpperCAmelCase ) if output_hidden_states: __a : Any = all_hidden_states + (hidden_states,) __a : Union[str, Any] = hidden_states if self.pooler is not None: __a : List[Any] = torch.flatten(self.pooler(__UpperCAmelCase ) , start_dim=1 ) else: __a : Any = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__UpperCAmelCase , pooler_output=__UpperCAmelCase , hidden_states=__UpperCAmelCase , ) @add_start_docstrings( """\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n """ , UpperCAmelCase_ , ) class snake_case_ ( UpperCAmelCase_ ): """simple docstring""" def __init__(self: Dict , __UpperCAmelCase: MobileNetVaConfig ) -> None: '''simple docstring''' super().__init__(__UpperCAmelCase ) __a : Dict = config.num_labels __a : Union[str, Any] = MobileNetVaModel(__UpperCAmelCase ) __a : str = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __a : Optional[Any] = nn.Dropout(config.classifier_dropout_prob , inplace=__UpperCAmelCase ) __a : Optional[int] = nn.Linear(__UpperCAmelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCAmelCase__ (self: Any , __UpperCAmelCase: Optional[torch.Tensor] = None , __UpperCAmelCase: Optional[bool] = None , __UpperCAmelCase: Optional[torch.Tensor] = None , __UpperCAmelCase: Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' __a : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __a : int = self.mobilenet_va(__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase ) __a : Dict = outputs.pooler_output if return_dict else outputs[1] __a : List[str] = self.classifier(self.dropout(__UpperCAmelCase ) ) __a : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __a : Any = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __a : List[str] = "single_label_classification" else: __a : Optional[Any] = "multi_label_classification" if self.config.problem_type == "regression": __a : str = MSELoss() if self.num_labels == 1: __a : Any = loss_fct(logits.squeeze() , labels.squeeze() ) else: __a : Tuple = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": __a : str = CrossEntropyLoss() __a : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __a : Optional[int] = BCEWithLogitsLoss() __a : Tuple = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) if not return_dict: __a : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states , )
351
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : int = DownBlockaD # noqa F405 __UpperCAmelCase : int = 'down' def lowercase_ (self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : List[Any] = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : str = 'down' def lowercase_ (self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Any = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' def lowercase_ (self : List[str] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : str = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'down' def lowercase_ (self : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase__ = 3_2 return init_dict, inputs_dict def lowercase_ (self : str ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Optional[Any] = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'down' @property def lowercase_ (self : Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=__UpperCAmelCase ) def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase__ = 3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowercase_ (self : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : List[str] = SkipDownBlockaD # noqa F405 __UpperCAmelCase : str = 'down' @property def lowercase_ (self : Optional[Any] ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> Any: """simple docstring""" UpperCAmelCase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Dict = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' @property def lowercase_ (self : List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_skip_sample=__UpperCAmelCase ) def lowercase_ (self : List[Any] ) -> str: """simple docstring""" UpperCAmelCase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : str = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' @property def lowercase_ (self : List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=__UpperCAmelCase ) def lowercase_ (self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = { "in_channels": 3_2, "out_channels": 3_2, } UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'down' @property def lowercase_ (self : Union[str, Any] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_temb=__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = { "in_channels": 3_2, "out_channels": 3_2, } UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict def lowercase_ (self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : int = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'mid' def lowercase_ (self : Dict ) -> Tuple: """simple docstring""" UpperCAmelCase__ = { "in_channels": 3_2, "temb_channels": 1_2_8, } UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" UpperCAmelCase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Dict = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : List[str] = 'mid' def lowercase_ (self : int ) -> Dict: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase__ = 3_2 return init_dict, inputs_dict def lowercase_ (self : Dict ) -> Any: """simple docstring""" UpperCAmelCase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Optional[Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def lowercase_ (self : str ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase__ = 3_2 return init_dict, inputs_dict def lowercase_ (self : int ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : int = UpBlockaD # noqa F405 __UpperCAmelCase : Dict = 'up' @property def lowercase_ (self : List[str] ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) def lowercase_ (self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : List[Any] = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def lowercase_ (self : Any ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) def lowercase_ (self : str ) -> str: """simple docstring""" UpperCAmelCase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Optional[int] = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def lowercase_ (self : Any ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> Tuple: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase__ = 3_2 return init_dict, inputs_dict def lowercase_ (self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Tuple = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def lowercase_ (self : Tuple ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase , include_encoder_hidden_states=__UpperCAmelCase ) def lowercase_ (self : int ) -> Any: """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = super().prepare_init_args_and_inputs_for_common() UpperCAmelCase__ = 3_2 return init_dict, inputs_dict def lowercase_ (self : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : str = AttnUpBlockaD # noqa F405 __UpperCAmelCase : Dict = 'up' @property def lowercase_ (self : Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowercase_ (self : Optional[Any] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : List[Any] = SkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def lowercase_ (self : List[Any] ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) def lowercase_ (self : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def lowercase_ (self : Any ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=__UpperCAmelCase ) def lowercase_ (self : Dict ) -> str: """simple docstring""" UpperCAmelCase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Dict = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'up' @property def lowercase_ (self : int ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = {"in_channels": 3_2, "out_channels": 3_2} UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict def lowercase_ (self : Dict ) -> Any: """simple docstring""" UpperCAmelCase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(__UpperCAmelCase ) class A ( UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Dict = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def lowercase_ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase__ = {"in_channels": 3_2, "out_channels": 3_2} UpperCAmelCase__ = self.dummy_input return init_dict, inputs_dict def lowercase_ (self : Dict ) -> str: """simple docstring""" UpperCAmelCase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(__UpperCAmelCase )
486
0
import math import sys def __lowerCAmelCase ( UpperCamelCase ) -> int: if number != int(UpperCamelCase ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 lowerCAmelCase__ : Any = [-1] * (number + 1) lowerCAmelCase__ : Dict = 0 for i in range(1 , number + 1 ): lowerCAmelCase__ : Dict = sys.maxsize lowerCAmelCase__ : str = int(math.sqrt(UpperCamelCase ) ) for j in range(1 , root + 1 ): lowerCAmelCase__ : Any = 1 + answers[i - (j**2)] lowerCAmelCase__ : Optional[Any] = min(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
470
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
470
1
from __future__ import annotations from collections.abc import Callable def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 100 , ) -> float: '''simple docstring''' __lowercase = x_start __lowercase = fnc(_UpperCAmelCase ) __lowercase = 0.0 for _ in range(_UpperCAmelCase ): # Approximates small segments of curve as linear and solve # for trapezoidal area __lowercase = (x_end - x_start) / steps + xa __lowercase = fnc(_UpperCAmelCase ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __lowercase = xa __lowercase = fxa return area if __name__ == "__main__": def __lowercase ( _UpperCAmelCase ) -> int: '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') lowerCAmelCase__ = 10 while i <= 100_000: print(F"with {i} steps: {trapezoidal_area(f, -5, 5, i)}") i *= 10
321
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=12 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=32 , lowerCAmelCase_=2 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=0.02 , lowerCAmelCase_=0 , lowerCAmelCase_=None , ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = projection_dim __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = dropout __lowercase = attention_dropout __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = scope __lowercase = bos_token_id def snake_case__ ( self ): __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __lowercase = input_mask.numpy() __lowercase , __lowercase = input_mask.shape __lowercase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCAmelCase_ ): __lowercase = 1 __lowercase = 0 __lowercase = self.get_config() return config, input_ids, tf.convert_to_tensor(lowerCAmelCase_ ) def snake_case__ ( self ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): __lowercase = TFBlipTextModel(config=lowerCAmelCase_ ) __lowercase = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , training=lowerCAmelCase_ ) __lowercase = model(lowerCAmelCase_ , training=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self ): __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class snake_case ( __snake_case ,unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (TFBlipTextModel,) if is_tf_available() else () __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def snake_case__ ( self ): __lowercase = BlipTextModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def snake_case__ ( self ): self.config_tester.run_common_tests() def snake_case__ ( self ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def snake_case__ ( self ): pass def snake_case__ ( self ): pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def snake_case__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def snake_case__ ( self ): pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def snake_case__ ( self ): pass @slow def snake_case__ ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFBlipTextModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def snake_case__ ( self , lowerCAmelCase_=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=lowerCAmelCase_ )
321
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def UpperCAmelCase_ ( *_lowerCamelCase , **_lowerCamelCase ) -> Any: pass @is_pipeline_test @require_vision @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" lowerCamelCase = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Any: A_ : Optional[int] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) A_ : Union[str, Any] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: A_ : Optional[Any] = object_detector(examples[0] , threshold=0.0 ) A_ : Tuple = len(_lowerCamelCase ) self.assertGreater(_lowerCamelCase , 0 ) self.assertEqual( _lowerCamelCase , [ { """score""": ANY(_lowerCamelCase ), """label""": ANY(_lowerCamelCase ), """box""": {"""xmin""": ANY(_lowerCamelCase ), """ymin""": ANY(_lowerCamelCase ), """xmax""": ANY(_lowerCamelCase ), """ymax""": ANY(_lowerCamelCase )}, } for i in range(_lowerCamelCase ) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass @require_torch def UpperCAmelCase_ ( self ) -> Tuple: A_ : Union[str, Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""" ) A_ : Union[str, Any] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) A_ : List[Any] = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.7235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Tuple = pipeline("""zero-shot-object-detection""" ) A_ : str = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) A_ : List[Any] = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""" ) def UpperCAmelCase_ ( self ) -> List[Any]: pass @require_torch @slow def UpperCAmelCase_ ( self ) -> List[Any]: A_ : int = 0.2 A_ : Optional[int] = pipeline("""zero-shot-object-detection""" ) A_ : Union[str, Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : int = 2 A_ : Optional[Any] = pipeline("""zero-shot-object-detection""" ) A_ : str = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=_lowerCamelCase , ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {"""score""": 0.2868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
721
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( """split_dict""" , [ SplitDict(), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 , dataset_name="""my_dataset""" )} ), SplitDict({"""train""": SplitInfo(name="""train""" , num_bytes=1_3_3_7 , num_examples=4_2 )} ), SplitDict({"""train""": SplitInfo()} ), ] , ) def UpperCAmelCase ( a_ ) -> Union[str, Any]: """simple docstring""" A_ : Tuple = split_dict._to_yaml_list() assert len(a_ ) == len(a_ ) A_ : Union[str, Any] = SplitDict._from_yaml_list(a_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump A_ : List[Any] = None # the split name of split_dict takes over the name of the split info object A_ : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( """split_info""" , [SplitInfo(), SplitInfo(dataset_name=a_ ), SplitInfo(dataset_name="""my_dataset""" )] ) def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" A_ : int = asdict(SplitDict({"""train""": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
385
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=True , _UpperCamelCase="pt" ): '''simple docstring''' __lowerCAmelCase = {"""add_prefix_space""": True} if isinstance(__UpperCamelCase , __UpperCamelCase ) and not line.startswith(" " ) else {} __lowerCAmelCase = padding_side return tokenizer( [line] , max_length=__UpperCamelCase , padding="max_length" if pad_to_max_length else None , truncation=__UpperCamelCase , return_tensors=__UpperCamelCase , add_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , ): '''simple docstring''' __lowerCAmelCase = input_ids.ne(__UpperCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _UpperCamelCase ( __lowerCamelCase ): '''simple docstring''' def __init__( self , __a , __a , __a , __a , __a="train" , __a=None , __a=None , __a=None , __a="" , ): super().__init__() __lowerCAmelCase = Path(__a ).joinpath(type_path + ".source" ) __lowerCAmelCase = Path(__a ).joinpath(type_path + ".target" ) __lowerCAmelCase = self.get_char_lens(self.src_file ) __lowerCAmelCase = max_source_length __lowerCAmelCase = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" __lowerCAmelCase = tokenizer __lowerCAmelCase = prefix if n_obs is not None: __lowerCAmelCase = self.src_lens[:n_obs] __lowerCAmelCase = src_lang __lowerCAmelCase = tgt_lang def __len__( self ): return len(self.src_lens ) def __getitem__( self , __a ): __lowerCAmelCase = index + 1 # linecache starts at 1 __lowerCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , __a ).rstrip("\n" ) __lowerCAmelCase = linecache.getline(str(self.tgt_file ) , __a ).rstrip("\n" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __lowerCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __a ) else self.tokenizer ) __lowerCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , __a ) else self.tokenizer __lowerCAmelCase = encode_line(__a , __a , self.max_source_length , "right" ) __lowerCAmelCase = encode_line(__a , __a , self.max_target_length , "right" ) __lowerCAmelCase = source_inputs["""input_ids"""].squeeze() __lowerCAmelCase = target_inputs["""input_ids"""].squeeze() __lowerCAmelCase = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case ( __a ): return [len(__a ) for x in Path(__a ).open().readlines()] def snake_case ( self , __a ): __lowerCAmelCase = torch.stack([x["input_ids"] for x in batch] ) __lowerCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) __lowerCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) __lowerCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __a ) else self.tokenizer.pad_token_id ) __lowerCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __a ) else self.tokenizer.pad_token_id ) __lowerCAmelCase = trim_batch(__a , __a ) __lowerCAmelCase = trim_batch(__a , __a , attention_mask=__a ) __lowerCAmelCase = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch A : Any = getLogger(__name__) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return list(itertools.chain.from_iterable(__UpperCamelCase ) ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = get_git_info() save_json(__UpperCamelCase , os.path.join(__UpperCamelCase , "git_log.json" ) ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=4 , **_UpperCamelCase ): '''simple docstring''' with open(__UpperCamelCase , "w" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase , indent=__UpperCamelCase , **__UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' with open(__UpperCamelCase ) as f: return json.load(__UpperCamelCase ) def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = git.Repo(search_parent_directories=__UpperCamelCase ) __lowerCAmelCase = { """repo_id""": str(__UpperCamelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return list(map(__UpperCamelCase , __UpperCamelCase ) ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' with open(__UpperCamelCase , "wb" ) as f: return pickle.dump(__UpperCamelCase , __UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' def remove_articles(_UpperCamelCase ): return re.sub(R"\b(a|an|the)\b" , " " , __UpperCamelCase ) def white_space_fix(_UpperCamelCase ): return " ".join(text.split() ) def remove_punc(_UpperCamelCase ): __lowerCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = normalize_answer(__UpperCamelCase ).split() __lowerCAmelCase = normalize_answer(__UpperCamelCase ).split() __lowerCAmelCase = Counter(__UpperCamelCase ) & Counter(__UpperCamelCase ) __lowerCAmelCase = sum(common.values() ) if num_same == 0: return 0 __lowerCAmelCase = 1.0 * num_same / len(__UpperCamelCase ) __lowerCAmelCase = 1.0 * num_same / len(__UpperCamelCase ) __lowerCAmelCase = (2 * precision * recall) / (precision + recall) return fa def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' return normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' assert len(__UpperCamelCase ) == len(__UpperCamelCase ) __lowerCAmelCase = 0 for hypo, pred in zip(__UpperCamelCase , __UpperCamelCase ): em += exact_match_score(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: em /= len(__UpperCamelCase ) return {"em": em} def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' return model_prefix.startswith("rag" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __lowerCAmelCase = """dropout_rate""" for p in extra_params: if getattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if not hasattr(__UpperCamelCase , __UpperCamelCase ) and not hasattr(__UpperCamelCase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(__UpperCamelCase ) ) delattr(__UpperCamelCase , __UpperCamelCase ) continue __lowerCAmelCase = p if hasattr(__UpperCamelCase , __UpperCamelCase ) else equivalent_param[p] setattr(__UpperCamelCase , __UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) delattr(__UpperCamelCase , __UpperCamelCase ) return hparams, config
636
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowerCAmelCase ( __UpperCamelCase = "isbn/0140328726" ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: UpperCAmelCase__ : Dict = F"{olid} is not a valid Open Library olid" raise ValueError(__UpperCamelCase ) return requests.get(F"https://openlibrary.org/{new_olid}.json" ).json() def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Any = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } UpperCAmelCase__ : Dict = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCAmelCase__ : str = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] UpperCAmelCase__ : Dict = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Dict = """, """.join(__UpperCamelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __UpperCAmelCase = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.") continue print(F"\nSearching Open Library for ISBN: {isbn}...\n") try: __UpperCAmelCase = summarize_book(get_openlibrary_data(F"isbn/{isbn}")) print('\n'.join(F"{key}: {value}" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"Sorry, there are no results for ISBN: {isbn}.")
65
0
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A ( A_ : List[str] ): if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(A_ , '''_dynamo''' ): return False return isinstance(A_ , torch._dynamo.eval_frame.OptimizedModule ) def A ( A_ : Any , A_ : bool = True ): snake_case : Union[str, Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) snake_case : str = is_compiled_module(A_ ) if is_compiled: snake_case : Union[str, Any] = model snake_case : Any = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A_ , A_ ): snake_case : Optional[int] = model.module if not keep_fpaa_wrapper: snake_case : str = getattr(A_ , '''forward''' ) snake_case : str = model.__dict__.pop('''_original_forward''' , A_ ) if original_forward is not None: while hasattr(A_ , '''__wrapped__''' ): snake_case : List[Any] = forward.__wrapped__ if forward == original_forward: break snake_case : Optional[int] = forward if getattr(A_ , '''_converted_to_transformer_engine''' , A_ ): convert_model(A_ , to_transformer_engine=A_ ) if is_compiled: snake_case : str = model snake_case : Dict = compiled_model return model def A ( ): PartialState().wait_for_everyone() def A ( A_ : Dict , A_ : List[Any] ): if PartialState().distributed_type == DistributedType.TPU: xm.save(A_ , A_ ) elif PartialState().local_process_index == 0: torch.save(A_ , A_ ) @contextmanager def A ( **A_ : str ): for key, value in kwargs.items(): snake_case : List[Any] = str(A_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A ( A_ : Union[str, Any] ): if not hasattr(A_ , '''__qualname__''' ) and not hasattr(A_ , '''__name__''' ): snake_case : Dict = getattr(A_ , '''__class__''' , A_ ) if hasattr(A_ , '''__qualname__''' ): return obj.__qualname__ if hasattr(A_ , '''__name__''' ): return obj.__name__ return str(A_ ) def A ( A_ : Tuple , A_ : Any ): for key, value in source.items(): if isinstance(A_ , A_ ): snake_case : Any = destination.setdefault(A_ , {} ) merge_dicts(A_ , A_ ) else: snake_case : str = value return destination def A ( A_ : int = None ): if port is None: snake_case : Union[str, Any] = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
555
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def A ( A_ : str ): snake_case : List[str] = int(A_ ) snake_case, snake_case, snake_case : Any = t // 3600, (t // 60) % 60, t % 60 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def A ( A_ : Optional[int] , A_ : int , A_ : List[str] , A_ : Optional[int] , A_ : Optional[int]=300 ): # docstyle-ignore return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def A ( A_ : Dict ): snake_case : Tuple = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: snake_case : List[str] = F"""{elt:.6f}""" if isinstance(A_ , A_ ) else str(A_ ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class a : _snake_case = 5 _snake_case = 0.2 def __init__( self : Union[str, Any], SCREAMING_SNAKE_CASE_ : int, SCREAMING_SNAKE_CASE_ : Optional[str] = None, SCREAMING_SNAKE_CASE_ : bool = True, SCREAMING_SNAKE_CASE_ : Optional["NotebookTrainingTracker"] = None, SCREAMING_SNAKE_CASE_ : int = 3_00, ): snake_case : List[Any] = total snake_case : Union[str, Any] = '''''' if prefix is None else prefix snake_case : List[Any] = leave snake_case : int = parent snake_case : List[str] = width snake_case : Optional[int] = None snake_case : Optional[Any] = None snake_case : Tuple = None def __snake_case ( self : Any, SCREAMING_SNAKE_CASE_ : int, SCREAMING_SNAKE_CASE_ : bool = False, SCREAMING_SNAKE_CASE_ : str = None ): snake_case : List[Any] = value if comment is not None: snake_case : Tuple = comment if self.last_value is None: snake_case : str = time.time() snake_case : List[str] = value snake_case : str = None snake_case : Dict = self.warmup snake_case : Tuple = 1 self.update_bar(SCREAMING_SNAKE_CASE_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total ): if self.first_calls > 0: self.first_calls -= 1 snake_case : Tuple = time.time() snake_case : str = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: snake_case : Any = self.elapsed_time / (value - self.start_value) else: snake_case : List[str] = None if value >= self.total: snake_case : List[Any] = self.total snake_case : Tuple = None if not self.leave: self.close() elif self.average_time_per_item is not None: snake_case : Optional[int] = self.average_time_per_item * (self.total - value) self.update_bar(SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = value snake_case : List[Any] = current_time if self.average_time_per_item is None: snake_case : List[str] = 1 else: snake_case : Optional[int] = max(int(self.update_every / self.average_time_per_item ), 1 ) def __snake_case ( self : Any, SCREAMING_SNAKE_CASE_ : List[str], SCREAMING_SNAKE_CASE_ : Optional[Any]=None ): snake_case : Optional[Any] = ''' ''' * (len(str(self.total ) ) - len(str(SCREAMING_SNAKE_CASE_ ) )) + str(SCREAMING_SNAKE_CASE_ ) if self.elapsed_time is None: snake_case : int = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: snake_case : List[str] = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: snake_case : Optional[int] = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def __snake_case ( self : Optional[int] ): snake_case : str = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: snake_case : Any = disp.display(disp.HTML(self.html_code ), display_id=SCREAMING_SNAKE_CASE_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __snake_case ( self : Optional[int] ): if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class a ( __magic_name__ ): def __init__( self : List[str], SCREAMING_SNAKE_CASE_ : List[str], SCREAMING_SNAKE_CASE_ : Optional[int]=None ): super().__init__(SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = None if column_names is None else [column_names] snake_case : str = None def __snake_case ( self : Dict ): snake_case : Tuple = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: snake_case : List[Any] = disp.display(disp.HTML(self.html_code ), display_id=SCREAMING_SNAKE_CASE_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __snake_case ( self : List[str], SCREAMING_SNAKE_CASE_ : Any ): if self.inner_table is None: snake_case : Optional[Any] = [list(values.keys() ), list(values.values() )] else: snake_case : Tuple = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(SCREAMING_SNAKE_CASE_ ) snake_case : int = columns self.inner_table.append([values[c] for c in columns] ) def __snake_case ( self : Tuple, SCREAMING_SNAKE_CASE_ : Optional[Any], SCREAMING_SNAKE_CASE_ : int=None, SCREAMING_SNAKE_CASE_ : str=3_00 ): snake_case : int = NotebookProgressBar(SCREAMING_SNAKE_CASE_, prefix=SCREAMING_SNAKE_CASE_, parent=self, width=SCREAMING_SNAKE_CASE_ ) return self.child_bar def __snake_case ( self : Union[str, Any] ): snake_case : int = None self.display() class a ( __magic_name__ ): def __init__( self : Optional[Any] ): snake_case : Dict = None snake_case : Union[str, Any] = None snake_case : Dict = False def __snake_case ( self : List[str], SCREAMING_SNAKE_CASE_ : Any, SCREAMING_SNAKE_CASE_ : int, SCREAMING_SNAKE_CASE_ : str, **SCREAMING_SNAKE_CASE_ : List[str] ): snake_case : str = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' snake_case : List[str] = 0 snake_case : Dict = 0 snake_case : List[Any] = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) snake_case : Tuple = NotebookTrainingTracker(state.max_steps, SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Tuple, SCREAMING_SNAKE_CASE_ : List[Any], SCREAMING_SNAKE_CASE_ : Dict, SCREAMING_SNAKE_CASE_ : str, **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): snake_case : Tuple = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1, comment=F"""Epoch {epoch}/{state.num_train_epochs}""", force_update=self._force_next_update, ) snake_case : str = False def __snake_case ( self : Tuple, SCREAMING_SNAKE_CASE_ : int, SCREAMING_SNAKE_CASE_ : Union[str, Any], SCREAMING_SNAKE_CASE_ : int, SCREAMING_SNAKE_CASE_ : Tuple=None, **SCREAMING_SNAKE_CASE_ : Tuple ): if not has_length(SCREAMING_SNAKE_CASE_ ): return if self.prediction_bar is None: if self.training_tracker is not None: snake_case : Dict = self.training_tracker.add_child(len(SCREAMING_SNAKE_CASE_ ) ) else: snake_case : Optional[Any] = NotebookProgressBar(len(SCREAMING_SNAKE_CASE_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __snake_case ( self : Optional[int], SCREAMING_SNAKE_CASE_ : Any, SCREAMING_SNAKE_CASE_ : Dict, SCREAMING_SNAKE_CASE_ : Union[str, Any], **SCREAMING_SNAKE_CASE_ : List[Any] ): if self.prediction_bar is not None: self.prediction_bar.close() snake_case : Optional[int] = None def __snake_case ( self : Optional[Any], SCREAMING_SNAKE_CASE_ : List[str], SCREAMING_SNAKE_CASE_ : Any, SCREAMING_SNAKE_CASE_ : Optional[int], SCREAMING_SNAKE_CASE_ : Optional[int]=None, **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: snake_case : List[str] = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy snake_case : List[Any] = state.global_step self.training_tracker.write_line(SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Any, SCREAMING_SNAKE_CASE_ : Optional[int], SCREAMING_SNAKE_CASE_ : List[str], SCREAMING_SNAKE_CASE_ : List[str], SCREAMING_SNAKE_CASE_ : Optional[Any]=None, **SCREAMING_SNAKE_CASE_ : Any ): if self.training_tracker is not None: snake_case : List[Any] = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: snake_case : Union[str, Any] = log['''loss'''] break if self.first_column == "Epoch": snake_case : Optional[int] = int(state.epoch ) else: snake_case : Optional[int] = state.global_step snake_case : Optional[int] = '''eval''' for k in metrics: if k.endswith('''_loss''' ): snake_case : str = re.sub(R'''\_loss$''', '''''', SCREAMING_SNAKE_CASE_ ) snake_case : str = metrics.pop('''total_flos''', SCREAMING_SNAKE_CASE_ ) snake_case : int = metrics.pop('''epoch''', SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = metrics.pop(F"""{metric_key_prefix}_runtime""", SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = metrics.pop(F"""{metric_key_prefix}_samples_per_second""", SCREAMING_SNAKE_CASE_ ) snake_case : Any = metrics.pop(F"""{metric_key_prefix}_steps_per_second""", SCREAMING_SNAKE_CASE_ ) snake_case : Dict = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""", SCREAMING_SNAKE_CASE_ ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": snake_case : Optional[int] = v else: snake_case : int = k.split('''_''' ) snake_case : Any = ''' '''.join([part.capitalize() for part in splits[1:]] ) snake_case : Tuple = v self.training_tracker.write_line(SCREAMING_SNAKE_CASE_ ) self.training_tracker.remove_child() snake_case : Any = None # Evaluation takes a long time so we should force the next update. snake_case : Optional[int] = True def __snake_case ( self : List[str], SCREAMING_SNAKE_CASE_ : List[Any], SCREAMING_SNAKE_CASE_ : List[str], SCREAMING_SNAKE_CASE_ : Dict, **SCREAMING_SNAKE_CASE_ : str ): self.training_tracker.update( state.global_step, comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""", force_update=SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = None
555
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> None: warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
104
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors UpperCamelCase = logging.getLogger(__name__) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : List[Any] = "sequence-classification" def __init__( self , SCREAMING_SNAKE_CASE__ ) -> Any: if type(SCREAMING_SNAKE_CASE__ ) == dict: A__ = Namespace(**SCREAMING_SNAKE_CASE__ ) A__ = glue_output_modes[hparams.task] A__ = glue_tasks_num_labels[hparams.task] super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.mode ) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Dict: return self.model(**SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A__ = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None A__ = self(**SCREAMING_SNAKE_CASE__ ) A__ = outputs[0] A__ = self.trainer.lr_schedulers[0]["scheduler"] A__ = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def snake_case__ ( self ) -> List[str]: A__ = self.hparams A__ = processors[args.task]() A__ = processor.get_labels() for mode in ["train", "dev"]: A__ = self._feature_file(SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , SCREAMING_SNAKE_CASE__ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) A__ = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) A__ = convert_examples_to_features( SCREAMING_SNAKE_CASE__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , SCREAMING_SNAKE_CASE__ ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ) -> DataLoader: A__ = "dev" if mode == "test" else mode A__ = self._feature_file(SCREAMING_SNAKE_CASE__ ) logger.info("Loading features from cached file %s" , SCREAMING_SNAKE_CASE__ ) A__ = torch.load(SCREAMING_SNAKE_CASE__ ) A__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) A__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) A__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": A__ = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": A__ = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , batch_size=SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: A__ = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A__ = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None A__ = self(**SCREAMING_SNAKE_CASE__ ) A__ , A__ = outputs[:2] A__ = logits.detach().cpu().numpy() A__ = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> tuple: A__ = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() A__ = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": A__ = np.argmax(SCREAMING_SNAKE_CASE__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": A__ = np.squeeze(SCREAMING_SNAKE_CASE__ ) A__ = np.concatenate([x["target"] for x in outputs] , axis=0 ) A__ = [[] for _ in range(out_label_ids.shape[0] )] A__ = [[] for _ in range(out_label_ids.shape[0] )] A__ = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )} A__ = dict(results.items() ) A__ = results return ret, preds_list, out_label_list def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> dict: A__ , A__ , A__ = self._eval_end(SCREAMING_SNAKE_CASE__ ) A__ = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def snake_case__ ( self , SCREAMING_SNAKE_CASE__ ) -> dict: A__ , A__ , A__ = self._eval_end(SCREAMING_SNAKE_CASE__ ) A__ = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def snake_case__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: BaseTransformer.add_model_specific_args(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) parser.add_argument( "--max_seq_length" , default=128 , type=SCREAMING_SNAKE_CASE__ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=SCREAMING_SNAKE_CASE__ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def _lowerCamelCase ( ) -> str: """simple docstring""" A__ = argparse.ArgumentParser() add_generic_args(UpperCAmelCase_, os.getcwd() ) A__ = GLUETransformer.add_model_specific_args(UpperCAmelCase_, os.getcwd() ) A__ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: A__ = os.path.join( "./results", F"""{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}""", ) os.makedirs(args.output_dir ) A__ = GLUETransformer(UpperCAmelCase_ ) A__ = generic_train(UpperCAmelCase_, UpperCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: A__ = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt" ), recursive=UpperCAmelCase_ ) ) A__ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(UpperCAmelCase_ ) if __name__ == "__main__": main()
104
1
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: __SCREAMING_SNAKE_CASE = TOKENIZER_CLASSES else: __SCREAMING_SNAKE_CASE = {tokenizer_name: getattr(__UpperCAmelCase , tokenizer_name + """Fast""" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: __SCREAMING_SNAKE_CASE = TOKENIZER_CLASSES[tokenizer_name] __SCREAMING_SNAKE_CASE = True if checkpoint_name is None: __SCREAMING_SNAKE_CASE = list(tokenizer_class.max_model_input_sizes.keys() ) else: __SCREAMING_SNAKE_CASE = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer __SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(__UpperCAmelCase , force_download=__UpperCAmelCase ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = checkpoint.split("""/""" ) __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) elif add_prefix: __SCREAMING_SNAKE_CASE = checkpoint __SCREAMING_SNAKE_CASE = dump_path else: __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __SCREAMING_SNAKE_CASE = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __SCREAMING_SNAKE_CASE = file_path.split(__UpperCAmelCase )[-1][0] if next_char == "/": __SCREAMING_SNAKE_CASE = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) __SCREAMING_SNAKE_CASE = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) __SCREAMING_SNAKE_CASE = tokenizer.save_pretrained( __UpperCAmelCase , legacy_format=__UpperCAmelCase , filename_prefix=__UpperCAmelCase ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("""tokenizer.json""" ): os.remove(__UpperCAmelCase ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) a = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
703
'''simple docstring''' from __future__ import annotations import bisect def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) while lo < hi: __SCREAMING_SNAKE_CASE = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __SCREAMING_SNAKE_CASE = mid + 1 else: __SCREAMING_SNAKE_CASE = mid return lo def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = len(__UpperCAmelCase ) - 1 while left <= right: __SCREAMING_SNAKE_CASE = left + (right - left) // 2 __SCREAMING_SNAKE_CASE = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __SCREAMING_SNAKE_CASE = midpoint - 1 else: __SCREAMING_SNAKE_CASE = midpoint + 1 return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' __SCREAMING_SNAKE_CASE = bisect.bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if index != len(__UpperCAmelCase ) and sorted_collection[index] == item: return index return None def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int | None: '''simple docstring''' if right < left: return None __SCREAMING_SNAKE_CASE = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , midpoint - 1 ) else: return binary_search_by_recursion(__UpperCAmelCase , __UpperCAmelCase , midpoint + 1 , __UpperCAmelCase ) if __name__ == "__main__": a = input("Enter numbers separated by comma:\n").strip() a = sorted(int(item) for item in user_input.split(",")) a = int(input("Enter a single number to be found in the list:\n")) a = binary_search(collection, target) if result is None: print(F'''{target} was not found in {collection}.''') else: print(F'''{target} was found at position {result} in {collection}.''')
13
0
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class lowercase_ : '''simple docstring''' def __init__( self , a_ , a_ , a_ = True , a_ = False ) -> Dict: """simple docstring""" UpperCAmelCase = scheduler UpperCAmelCase = optimizers if isinstance(a_ , (list, tuple) ) else [optimizers] UpperCAmelCase = split_batches UpperCAmelCase = step_with_optimizer UpperCAmelCase = GradientState() def snake_case_ ( self , *a_ , **a_ ) -> str: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*a_ , **a_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*a_ , **a_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCAmelCase = AcceleratorState().num_processes for _ in range(a_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*a_ , **a_ ) else: self.scheduler.step(*a_ , **a_ ) def snake_case_ ( self ) -> int: """simple docstring""" return self.scheduler.get_last_lr() def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" return self.scheduler.state_dict() def snake_case_ ( self , a_ ) -> Dict: """simple docstring""" self.scheduler.load_state_dict(a_ ) def snake_case_ ( self ) -> Any: """simple docstring""" return self.scheduler.get_lr() def snake_case_ ( self , *a_ , **a_ ) -> Union[str, Any]: """simple docstring""" return self.scheduler.print_lr(*a_ , **a_ )
447
'''simple docstring''' def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int = 1000 ): UpperCAmelCase = -1 UpperCAmelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c UpperCAmelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) UpperCAmelCase = n - a - b if c * c == (a * a + b * b): UpperCAmelCase = a * b * c if candidate >= product: UpperCAmelCase = candidate return product if __name__ == "__main__": print(F'''{solution() = }''')
447
1
class UpperCAmelCase_ ( __lowercase ): pass class UpperCAmelCase_ ( __lowercase ): pass class UpperCAmelCase_ : def __init__( self : Dict ) -> Optional[int]: lowerCAmelCase = [ [], [], [], ] def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> None: try: if len(self.queues[priority] ) >= 1_0_0: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(UpperCAmelCase__ ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self : Optional[Any] ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class UpperCAmelCase_ : def __init__( self : List[str] ) -> Union[str, Any]: lowerCAmelCase = [] def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : int ) -> None: if len(self.queue ) == 1_0_0: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(UpperCAmelCase__ ) def __UpperCAmelCase ( self : Any ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: lowerCAmelCase = min(self.queue ) self.queue.remove(UpperCAmelCase__ ) return data def __str__( self : str ) -> str: return str(self.queue ) def a_ ( ): lowerCAmelCase = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowerCamelCase ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ): lowerCAmelCase = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowerCamelCase ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
706
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Tuple = '''glpn''' def __init__( self : int , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : str=[2, 2, 2, 2] , UpperCAmelCase__ : Tuple=[8, 4, 2, 1] , UpperCAmelCase__ : List[Any]=[3_2, 6_4, 1_6_0, 2_5_6] , UpperCAmelCase__ : List[Any]=[7, 3, 3, 3] , UpperCAmelCase__ : List[Any]=[4, 2, 2, 2] , UpperCAmelCase__ : Optional[Any]=[1, 2, 5, 8] , UpperCAmelCase__ : Union[str, Any]=[4, 4, 4, 4] , UpperCAmelCase__ : List[Any]="gelu" , UpperCAmelCase__ : Optional[Any]=0.0 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=0.02 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : int=1E-6 , UpperCAmelCase__ : int=6_4 , UpperCAmelCase__ : int=1_0 , UpperCAmelCase__ : str=-1 , **UpperCAmelCase__ : Tuple , ) -> List[str]: super().__init__(**UpperCAmelCase__ ) lowerCAmelCase = num_channels lowerCAmelCase = num_encoder_blocks lowerCAmelCase = depths lowerCAmelCase = sr_ratios lowerCAmelCase = hidden_sizes lowerCAmelCase = patch_sizes lowerCAmelCase = strides lowerCAmelCase = mlp_ratios lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = initializer_range lowerCAmelCase = drop_path_rate lowerCAmelCase = layer_norm_eps lowerCAmelCase = decoder_hidden_size lowerCAmelCase = max_depth lowerCAmelCase = head_in_index
513
0
from typing import TYPE_CHECKING from ..utils import _LazyModule _snake_case = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
500
def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : str = [0 for i in range(r + 1 )] # nc0 = 1 _lowerCAmelCase : Optional[int] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowerCAmelCase : List[str] = min(_lowerCamelCase , _lowerCamelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
500
1
'''simple docstring''' # Imports import numpy as np class _SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=None , __UpperCamelCase : Dict=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : int=None ) -> Dict: """simple docstring""" self.set_matricies(red=__UpperCamelCase , green=__UpperCamelCase , blue=__UpperCamelCase , red_edge=__UpperCamelCase , nir=__UpperCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCamelCase : int=None , __UpperCamelCase : int=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : int=None ) -> Union[str, Any]: """simple docstring""" if red is not None: snake_case__ : Dict = red if green is not None: snake_case__ : Any = green if blue is not None: snake_case__ : Optional[Any] = blue if red_edge is not None: snake_case__ : str = red_edge if nir is not None: snake_case__ : Optional[Any] = nir return True def lowerCAmelCase ( self : Tuple , __UpperCamelCase : int="" , __UpperCamelCase : Any=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Optional[int]=None ) -> Tuple: """simple docstring""" self.set_matricies(red=__UpperCamelCase , green=__UpperCamelCase , blue=__UpperCamelCase , red_edge=__UpperCamelCase , nir=__UpperCamelCase ) snake_case__ : Union[str, Any] = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def lowerCAmelCase ( self : Tuple ) -> Any: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowerCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowerCAmelCase ( self : Optional[Any] , __UpperCamelCase : Any=0.08 , __UpperCamelCase : Union[str, Any]=1.22 , __UpperCamelCase : Union[str, Any]=0.03 ) -> Optional[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" return (self.nir / self.green) - 1 def lowerCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" return (self.nir / self.redEdge) - 1 def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return (self.red - self.blue) / self.red def lowerCAmelCase ( self : str ) -> Dict: """simple docstring""" snake_case__ : Any = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" return self.nir - self.green def lowerCAmelCase ( self : Any ) -> Any: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" snake_case__ : Optional[Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def lowerCAmelCase ( self : List[str] , __UpperCamelCase : List[str]=0.16 ) -> int: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def lowerCAmelCase ( self : List[Any] , __UpperCamelCase : int=0.5 ) -> Optional[Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowerCAmelCase ( self : str ) -> str: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def lowerCAmelCase ( self : Tuple , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : str=None ) -> Any: """simple docstring""" return (self.nir - b) / (a * self.red) def lowerCAmelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" return self.nir / self.red def lowerCAmelCase ( self : str ) -> int: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" return self.green / (self.nir + self.red + self.green) def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return self.red / (self.nir + self.red + self.green) def lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" snake_case__ : List[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) snake_case__ : int = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" return self.nir / self.red def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
574
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _SCREAMING_SNAKE_CASE (lowercase__, unittest.TestCase ): A__ = UnCLIPImageVariationPipeline A__ = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} A__ = IMAGE_VARIATION_BATCH_PARAMS A__ = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] A__ = False @property def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim @property def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" return 100 @property def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__UpperCamelCase ) @property def lowerCAmelCase ( self : str ) -> str: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(__UpperCamelCase ) @property def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Optional[Any] = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } snake_case__ : Tuple = UnCLIPTextProjModel(**__UpperCamelCase ) return model @property def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Optional[Any] = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } snake_case__ : Tuple = UNetaDConditionModel(**__UpperCamelCase ) return model @property def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Union[str, Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(1 ) snake_case__ : int = UNetaDModel(**self.dummy_super_res_kwargs ) return model def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case__ : List[Any] = self.dummy_decoder snake_case__ : int = self.dummy_text_proj snake_case__ : Union[str, Any] = self.dummy_text_encoder snake_case__ : str = self.dummy_tokenizer snake_case__ : List[str] = self.dummy_super_res_first snake_case__ : str = self.dummy_super_res_last snake_case__ : Optional[int] = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1000 , ) snake_case__ : int = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1000 , ) snake_case__ : int = CLIPImageProcessor(crop_size=32 , size=32 ) snake_case__ : str = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def lowerCAmelCase ( self : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Dict=True ) -> str: """simple docstring""" snake_case__ : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('''mps''' ): snake_case__ : List[str] = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Optional[int] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) if pil_image: snake_case__ : Any = input_image * 0.5 + 0.5 snake_case__ : Optional[Any] = input_image.clamp(0 , 1 ) snake_case__ : Tuple = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case__ : List[str] = DiffusionPipeline.numpy_to_pil(__UpperCamelCase )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" snake_case__ : Tuple = '''cpu''' snake_case__ : Dict = self.get_dummy_components() snake_case__ : List[str] = self.pipeline_class(**__UpperCamelCase ) snake_case__ : str = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Dict = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : List[str] = pipe(**__UpperCamelCase ) snake_case__ : str = output.images snake_case__ : Dict = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : Any = pipe( **__UpperCamelCase , return_dict=__UpperCamelCase , )[0] snake_case__ : Dict = image[0, -3:, -3:, -1] snake_case__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ : str = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" snake_case__ : int = '''cpu''' snake_case__ : List[str] = self.get_dummy_components() snake_case__ : Dict = self.pipeline_class(**__UpperCamelCase ) snake_case__ : Any = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : Optional[int] = pipe(**__UpperCamelCase ) snake_case__ : str = output.images snake_case__ : str = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : List[str] = pipe( **__UpperCamelCase , return_dict=__UpperCamelCase , )[0] snake_case__ : Tuple = image[0, -3:, -3:, -1] snake_case__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ : Optional[Any] = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = '''cpu''' snake_case__ : Union[str, Any] = self.get_dummy_components() snake_case__ : Dict = self.pipeline_class(**__UpperCamelCase ) snake_case__ : List[str] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : List[Any] = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : int = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] snake_case__ : List[Any] = pipe(**__UpperCamelCase ) snake_case__ : Tuple = output.images snake_case__ : Union[str, Any] = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : List[Any] = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] snake_case__ : int = pipe( **__UpperCamelCase , return_dict=__UpperCamelCase , )[0] snake_case__ : str = image[0, -3:, -3:, -1] snake_case__ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) snake_case__ : int = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case__ : Any = torch.device('''cpu''' ) class _SCREAMING_SNAKE_CASE : A__ = 1 snake_case__ : Optional[Any] = self.get_dummy_components() snake_case__ : List[str] = self.pipeline_class(**__UpperCamelCase ) snake_case__ : List[str] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : List[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) snake_case__ : str = pipe.decoder.dtype snake_case__ : Tuple = 1 snake_case__ : List[Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) snake_case__ : Union[str, Any] = pipe.prepare_latents( __UpperCamelCase , dtype=__UpperCamelCase , device=__UpperCamelCase , generator=__UpperCamelCase , latents=__UpperCamelCase , scheduler=DummyScheduler() ) snake_case__ : Optional[Any] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) snake_case__ : Optional[int] = pipe.prepare_latents( __UpperCamelCase , dtype=__UpperCamelCase , device=__UpperCamelCase , generator=__UpperCamelCase , latents=__UpperCamelCase , scheduler=DummyScheduler() ) snake_case__ : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : Any = pipe( **__UpperCamelCase , decoder_latents=__UpperCamelCase , super_res_latents=__UpperCamelCase ).images snake_case__ : Optional[int] = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) # Don't pass image, instead pass embedding snake_case__ : List[str] = pipeline_inputs.pop('''image''' ) snake_case__ : Dict = pipe.image_encoder(__UpperCamelCase ).image_embeds snake_case__ : Optional[Any] = pipe( **__UpperCamelCase , decoder_latents=__UpperCamelCase , super_res_latents=__UpperCamelCase , image_embeddings=__UpperCamelCase , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" snake_case__ : Optional[Any] = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor snake_case__ : str = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=__UpperCamelCase , expected_max_diff=__UpperCamelCase ) @skip_mps def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case__ : Optional[Any] = torch_device == '''cpu''' snake_case__ : List[Any] = True snake_case__ : int = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=__UpperCamelCase , relax_max_difference=__UpperCamelCase , additional_params_copy_to_batched_inputs=__UpperCamelCase , ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[int] = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes snake_case__ : Dict = [2, 3] self._test_inference_batch_consistent( batch_sizes=__UpperCamelCase , additional_params_copy_to_batched_inputs=__UpperCamelCase , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__UpperCamelCase ) @skip_mps def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return super().test_save_load_local() @skip_mps def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return super().test_save_load_optional_components() @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE (unittest.TestCase ): def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case__ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) snake_case__ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) snake_case__ : Dict = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) snake_case__ : Dict = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case__ : Optional[int] = pipeline( __UpperCamelCase , generator=__UpperCamelCase , output_type='''np''' , ) snake_case__ : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase , 15 )
574
1
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class __lowerCAmelCase ( __lowercase ): _a = """bart""" _a = ["""past_key_values"""] _a = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCAmelCase=50_265 , lowerCAmelCase=1_024 , lowerCAmelCase=12 , lowerCAmelCase=4_096 , lowerCAmelCase=16 , lowerCAmelCase=12 , lowerCAmelCase=4_096 , lowerCAmelCase=16 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase="gelu" , lowerCAmelCase=1_024 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=0.0 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=3 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=True , lowerCAmelCase=2 , lowerCAmelCase=2 , **lowerCAmelCase , ) -> Dict: '''simple docstring''' _lowercase =vocab_size _lowercase =max_position_embeddings _lowercase =d_model _lowercase =encoder_ffn_dim _lowercase =encoder_layers _lowercase =encoder_attention_heads _lowercase =decoder_ffn_dim _lowercase =decoder_layers _lowercase =decoder_attention_heads _lowercase =dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =activation_function _lowercase =init_std _lowercase =encoder_layerdrop _lowercase =decoder_layerdrop _lowercase =classifier_dropout _lowercase =use_cache _lowercase =encoder_layers _lowercase =scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowerCAmelCase , pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , forced_eos_token_id=lowerCAmelCase , **lowerCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , lowerCAmelCase ): _lowercase =self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' ) class __lowerCAmelCase ( __lowercase ): @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowercase ={0: "batch"} _lowercase ={0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowercase ={0: "batch", 1: "decoder_sequence"} _lowercase ={0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowercase =self.num_layers for i in range(lowerCAmelCase ): _lowercase ={0: "batch", 2: "past_sequence + sequence"} _lowercase ={0: "batch", 2: "past_sequence + sequence"} else: _lowercase =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowercase =super().outputs else: _lowercase =super(lowerCAmelCase , self ).outputs if self.use_past: _lowercase =self.num_layers for i in range(lowerCAmelCase ): _lowercase ={0: "batch", 2: "past_sequence + sequence"} _lowercase ={0: "batch", 2: "past_sequence + sequence"} return common_outputs def A__ ( self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' _lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Generate decoder inputs _lowercase =seq_length if not self.use_past else 1 _lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _lowercase ={F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowercase =dict(**lowerCAmelCase , **lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowercase =common_inputs["input_ids"].shape _lowercase =common_inputs["decoder_input_ids"].shape[1] _lowercase =self.num_attention_heads _lowercase =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowercase =decoder_seq_length + 3 _lowercase =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowercase =torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase )] , dim=1 ) _lowercase =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowercase =self.num_layers _lowercase =min(lowerCAmelCase , lowerCAmelCase ) _lowercase =max(lowerCAmelCase , lowerCAmelCase ) - min_num_layers _lowercase ="encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase ), ) ) # TODO: test this. _lowercase =encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(lowerCAmelCase , lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) ) return common_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' _lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowercase =common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowercase =seqlen + 2 _lowercase =self.num_layers _lowercase =self.num_attention_heads _lowercase =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowercase =common_inputs["attention_mask"].dtype _lowercase =torch.cat( [common_inputs['attention_mask'], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase )] , dim=1 ) _lowercase =[ (torch.zeros(lowerCAmelCase ), torch.zeros(lowerCAmelCase )) for _ in range(lowerCAmelCase ) ] return common_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' _lowercase =compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowercase =tokenizer.num_special_tokens_to_add(lowerCAmelCase ) _lowercase =compute_effective_axis_dimension( lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowercase =[" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _lowercase =dict(tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase ) ) return common_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase = -1 , lowerCAmelCase = -1 , lowerCAmelCase = False , lowerCAmelCase = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowercase =self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) elif self.task == "causal-lm": _lowercase =self._generate_dummy_inputs_for_causal_lm( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) else: _lowercase =self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase ) return common_inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowercase =super()._flatten_past_key_values_(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) else: _lowercase =super(lowerCAmelCase , self )._flatten_past_key_values_( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
291
from __future__ import annotations class lowerCamelCase__ : '''simple docstring''' def __init__( self :Dict , a :str , a :str ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase : Optional[int] = text, pattern __UpperCamelCase , __UpperCamelCase : Tuple = len(a ), len(a ) def _lowerCamelCase ( self :Any , a :str ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def _lowerCamelCase ( self :str , a :int ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def _lowerCamelCase ( self :Union[str, Any] ) -> list[int]: # searches pattern in text and returns index positions __UpperCamelCase : Any = [] for i in range(self.textLen - self.patLen + 1 ): __UpperCamelCase : List[Any] = self.mismatch_in_text(a ) if mismatch_index == -1: positions.append(a ) else: __UpperCamelCase : Any = self.match_in_pattern(self.text[mismatch_index] ) __UpperCamelCase : Dict = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowercase : Any = 'ABAABA' lowercase : str = 'AB' lowercase : str = BoyerMooreSearch(text, pattern) lowercase : Union[str, Any] = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
557
0
from functools import lru_cache @lru_cache def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
711
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return getitem, k def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return setitem, k, v def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return delitem, k def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ): try: return fun(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ), None except Exception as e: return None, e UpperCamelCase = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) UpperCamelCase = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] UpperCamelCase = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] UpperCamelCase = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] UpperCamelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] UpperCamelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( '''operations''' , ( pytest.param(_add_items , id='''add items''' ), pytest.param(_overwrite_items , id='''overwrite items''' ), pytest.param(_delete_items , id='''delete items''' ), pytest.param(_access_absent_items , id='''access absent items''' ), pytest.param(_add_with_resize_up , id='''add with resize up''' ), pytest.param(_add_with_resize_down , id='''add with resize down''' ), ) , ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Optional[Any] = HashMap(initial_block_size=4 ) A_ : Union[str, Any] = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE ): A_ , A_ : Union[str, Any] = _run_operation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) A_ , A_ : int = _run_operation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE ) == str(SCREAMING_SNAKE_CASE ) assert set(SCREAMING_SNAKE_CASE ) == set(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) assert set(my.items() ) == set(py.items() ) def _SCREAMING_SNAKE_CASE ( ): def is_public(SCREAMING_SNAKE_CASE ) -> bool: return not name.startswith('''_''' ) A_ : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE )} A_ : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE )} assert dict_public_names > hash_public_names
152
0
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __A: def lowercase__ ( self : int ): torch.manual_seed(0 ) lowerCamelCase_ = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCamelCase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCamelCase_ = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=__UpperCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCamelCase_ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self : Any ): torch.manual_seed(0 ) lowerCamelCase_ = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCamelCase_ = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCamelCase_ = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=__UpperCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowerCamelCase_ = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) lowerCamelCase_ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase__ ( self : List[Any] ): lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = inputs["""prompt"""] lowerCamelCase_ = inputs["""generator"""] lowerCamelCase_ = inputs["""num_inference_steps"""] lowerCamelCase_ = inputs["""output_type"""] if "image" in inputs: lowerCamelCase_ = inputs["""image"""] else: lowerCamelCase_ = None if "mask_image" in inputs: lowerCamelCase_ = inputs["""mask_image"""] else: lowerCamelCase_ = None if "original_image" in inputs: lowerCamelCase_ = inputs["""original_image"""] else: lowerCamelCase_ = None lowerCamelCase_ , lowerCamelCase_ = pipe.encode_prompt(__UpperCamelCase ) # inputs with prompt converted to embeddings lowerCamelCase_ = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCamelCase_ = image if mask_image is not None: lowerCamelCase_ = mask_image if original_image is not None: lowerCamelCase_ = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = pipe(**__UpperCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__UpperCamelCase ) lowerCamelCase_ = self.pipeline_class.from_pretrained(__UpperCamelCase ) pipe_loaded.to(__UpperCamelCase ) pipe_loaded.set_progress_bar_config(disable=__UpperCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__UpperCamelCase , __UpperCamelCase ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = inputs["""generator"""] lowerCamelCase_ = inputs["""num_inference_steps"""] lowerCamelCase_ = inputs["""output_type"""] # inputs with prompt converted to embeddings lowerCamelCase_ = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowerCamelCase_ = image if mask_image is not None: lowerCamelCase_ = mask_image if original_image is not None: lowerCamelCase_ = original_image lowerCamelCase_ = pipe_loaded(**__UpperCamelCase )[0] lowerCamelCase_ = np.abs(to_np(__UpperCamelCase ) - to_np(__UpperCamelCase ) ).max() self.assertLess(__UpperCamelCase , 1E-4 ) def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = pipe(**__UpperCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__UpperCamelCase ) lowerCamelCase_ = self.pipeline_class.from_pretrained(__UpperCamelCase ) pipe_loaded.to(__UpperCamelCase ) pipe_loaded.set_progress_bar_config(disable=__UpperCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = pipe_loaded(**__UpperCamelCase )[0] lowerCamelCase_ = np.abs(to_np(__UpperCamelCase ) - to_np(__UpperCamelCase ) ).max() self.assertLess(__UpperCamelCase , 1E-4 )
272
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : Dict = GPTSanJapaneseTokenizer A_ : Optional[int] = False A_ : List[str] = {'do_clean_text': False, 'add_prefix_space': False} def __UpperCamelCase ( self : Tuple ) -> Any: super().setUp() # fmt: off A = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on A = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 A = {'unk_token': '<unk>'} A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(__UpperCamelCase ) ) def __UpperCamelCase ( self : Any , **__UpperCamelCase : Any ) -> Tuple: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCamelCase ( self : str , __UpperCamelCase : Dict ) -> List[str]: A = 'こんにちは、世界。 \nこんばんは、㔺界。😀' A = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def __UpperCamelCase ( self : str , __UpperCamelCase : Optional[Any] ) -> List[str]: A , A = self.get_input_output_texts(__UpperCamelCase ) A = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) A = tokenizer.decode(__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) return text, ids def __UpperCamelCase ( self : Any ) -> int: pass # TODO add if relevant def __UpperCamelCase ( self : List[str] ) -> Tuple: pass # TODO add if relevant def __UpperCamelCase ( self : List[str] ) -> List[Any]: pass # TODO add if relevant def __UpperCamelCase ( self : List[str] ) -> int: A = self.get_tokenizer() # Testing tokenization A = 'こんにちは、世界。 こんばんは、㔺界。' A = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] A = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # Testing conversion to ids without special tokens A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] A = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # Testing conversion to ids with special tokens A = tokens + [tokenizer.unk_token] A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] A = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: A = self.get_tokenizer() # Testing tokenization A = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' A = 'こんにちは、、、、世界。こんばんは、、、、世界。' A = tokenizer.encode(__UpperCamelCase ) A = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> str: A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization A = 'こんにちは、世界。' A = 'こんばんは、㔺界。😀' A = 'こんにちは、世界。こんばんは、世界。😀' A = tokenizer.encode(prefix_text + input_text ) A = tokenizer.encode('' , prefix_text=prefix_text + input_text ) A = tokenizer.encode(__UpperCamelCase , prefix_text=__UpperCamelCase ) A = tokenizer.decode(__UpperCamelCase ) A = tokenizer.decode(__UpperCamelCase ) A = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization A = 'こんにちは、世界。' A = 'こんばんは、㔺界。😀' A = len(tokenizer.encode(__UpperCamelCase ) ) - 2 A = len(tokenizer.encode(__UpperCamelCase ) ) - 2 A = [1] + [0] * (len_prefix + len_text + 1) A = [1] * (len_prefix + len_text + 1) + [0] A = [1] + [1] * (len_prefix) + [0] * (len_text + 1) A = tokenizer(prefix_text + input_text ).token_type_ids A = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids A = tokenizer(__UpperCamelCase , prefix_text=__UpperCamelCase ).token_type_ids self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @slow def __UpperCamelCase ( self : Any ) -> str: A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) A = tokenizer.encode('あンいワ' ) A = tokenizer.encode('' , prefix_text='あンいワ' ) A = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(__UpperCamelCase ) , tokenizer.decode(__UpperCamelCase ) ) self.assertEqual(tokenizer.decode(__UpperCamelCase ) , tokenizer.decode(__UpperCamelCase ) ) self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __UpperCamelCase ( self : Any ) -> List[Any]: A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) A = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] A = tokenizer(__UpperCamelCase , padding=__UpperCamelCase ) A = tokenizer.batch_encode_plus(__UpperCamelCase , padding=__UpperCamelCase ) # fmt: off A = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] A = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] A = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __UpperCamelCase ) self.assertListEqual(x_token.token_type_ids , __UpperCamelCase ) self.assertListEqual(x_token.attention_mask , __UpperCamelCase ) self.assertListEqual(x_token_a.input_ids , __UpperCamelCase ) self.assertListEqual(x_token_a.token_type_ids , __UpperCamelCase ) self.assertListEqual(x_token_a.attention_mask , __UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> str: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __UpperCamelCase ( self : Dict ) -> int: # tokenizer has no padding token pass
106
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _A (UpperCamelCase : List[Any] ) ->Tuple: '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCamelCase ) def _A (UpperCamelCase : str ) ->Optional[Any]: '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main lowerCamelCase__ : Tuple = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(UpperCamelCase , id=UpperCamelCase )
96
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask _lowercase = logging.getLogger(__name__) class __A ( A_ ): UpperCamelCase :Optional[int] = '''token-classification''' def __init__(self , __magic_name__ ): if type(__magic_name__ ) == dict: lowerCamelCase__ : Any = Namespace(**__magic_name__ ) lowerCamelCase__ : str = import_module("""tasks""" ) try: lowerCamelCase__ : Optional[Any] = getattr(__magic_name__ , hparams.task_type ) lowerCamelCase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) lowerCamelCase__ : Any = self.token_classification_task.get_labels(hparams.labels ) lowerCamelCase__ : Tuple = CrossEntropyLoss().ignore_index super().__init__(__magic_name__ , len(self.labels ) , self.mode ) def _snake_case (self , **__magic_name__ ): return self.model(**__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Tuple = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": lowerCamelCase__ : Union[str, Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase__ : List[str] = self(**__magic_name__ ) lowerCamelCase__ : Dict = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _snake_case (self ): lowerCamelCase__ : Dict = self.hparams for mode in ["train", "dev", "test"]: lowerCamelCase__ : List[str] = self._feature_file(__magic_name__ ) if os.path.exists(__magic_name__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __magic_name__ ) lowerCamelCase__ : Union[str, Any] = torch.load(__magic_name__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) lowerCamelCase__ : int = self.token_classification_task.read_examples_from_file(args.data_dir , __magic_name__ ) lowerCamelCase__ : Tuple = self.token_classification_task.convert_examples_to_features( __magic_name__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__magic_name__ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , __magic_name__ ) torch.save(__magic_name__ , __magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ = False ): lowerCamelCase__ : Any = self._feature_file(__magic_name__ ) logger.info("""Loading features from cached file %s""" , __magic_name__ ) lowerCamelCase__ : Optional[Any] = torch.load(__magic_name__ ) lowerCamelCase__ : Tuple = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCamelCase__ : Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCamelCase__ : str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCamelCase__ : int = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCamelCase__ : Any = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , batch_size=__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ ): """Compute validation""" "" lowerCamelCase__ : Optional[int] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": lowerCamelCase__ : Tuple = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase__ : str = self(**__magic_name__ ) lowerCamelCase__ ,lowerCamelCase__ : List[Any] = outputs[:2] lowerCamelCase__ : List[Any] = logits.detach().cpu().numpy() lowerCamelCase__ : Dict = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case (self , __magic_name__ ): lowerCamelCase__ : List[str] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() lowerCamelCase__ : Optional[int] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) lowerCamelCase__ : List[str] = np.argmax(__magic_name__ , axis=2 ) lowerCamelCase__ : Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) lowerCamelCase__ : Optional[int] = dict(enumerate(self.labels ) ) lowerCamelCase__ : List[str] = [[] for _ in range(out_label_ids.shape[0] )] lowerCamelCase__ : Any = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCamelCase__ : Tuple = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(__magic_name__ , __magic_name__ ), """precision""": precision_score(__magic_name__ , __magic_name__ ), """recall""": recall_score(__magic_name__ , __magic_name__ ), """f1""": fa_score(__magic_name__ , __magic_name__ ), } lowerCamelCase__ : Dict = dict(results.items() ) lowerCamelCase__ : str = results return ret, preds_list, out_label_list def _snake_case (self , __magic_name__ ): # when stable lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : str = self._eval_end(__magic_name__ ) lowerCamelCase__ : Union[str, Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case (self , __magic_name__ ): # updating to test_epoch_end instead of deprecated test_end lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : Union[str, Any] = self._eval_end(__magic_name__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCamelCase__ : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case (__magic_name__ , __magic_name__ ): # Add NER specific options BaseTransformer.add_model_specific_args(__magic_name__ , __magic_name__ ) parser.add_argument( """--task_type""" , default="""NER""" , type=__magic_name__ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__magic_name__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=__magic_name__ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=__magic_name__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": _lowercase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) _lowercase = NERTransformer.add_model_specific_args(parser, os.getcwd()) _lowercase = parser.parse_args() _lowercase = NERTransformer(args) _lowercase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 _lowercase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) _lowercase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
96
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _a ( A__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization SCREAMING_SNAKE_CASE_ : str = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) SCREAMING_SNAKE_CASE_ : ClassVar[Features] = Features({"""summary""": Value("""string""" )} ) SCREAMING_SNAKE_CASE_ : str = "text" SCREAMING_SNAKE_CASE_ : str = "summary" @property def _lowercase ( self ) -> Dict: return {self.text_column: "text", self.summary_column: "summary"}
185
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __a ( A__ ): def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "num_attention_heads" ) ) class __a : def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple=13 , SCREAMING_SNAKE_CASE : List[Any]=64 , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : List[Any]=1 , SCREAMING_SNAKE_CASE : List[Any]=16 , SCREAMING_SNAKE_CASE : Tuple=[1_28, 2_56, 3_84] , SCREAMING_SNAKE_CASE : Tuple=[4, 6, 8] , SCREAMING_SNAKE_CASE : Dict=[2, 3, 4] , SCREAMING_SNAKE_CASE : Any=[16, 16, 16] , SCREAMING_SNAKE_CASE : List[str]=0 , SCREAMING_SNAKE_CASE : List[Any]=[2, 2, 2] , SCREAMING_SNAKE_CASE : int=[2, 2, 2] , SCREAMING_SNAKE_CASE : str=0.0_2 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : int=2 , ): '''simple docstring''' UpperCamelCase__ : Dict = parent UpperCamelCase__ : Any = batch_size UpperCamelCase__ : str = image_size UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : str = kernel_size UpperCamelCase__ : str = stride UpperCamelCase__ : int = padding UpperCamelCase__ : int = hidden_sizes UpperCamelCase__ : Dict = num_attention_heads UpperCamelCase__ : int = depths UpperCamelCase__ : Optional[Any] = key_dim UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : List[str] = patch_size UpperCamelCase__ : str = attention_ratio UpperCamelCase__ : int = mlp_ratio UpperCamelCase__ : Optional[int] = initializer_range UpperCamelCase__ : Union[str, Any] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCamelCase__ : str = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : List[str] = num_labels UpperCamelCase__ : int = initializer_range def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase__ : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Tuple ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = LevitModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : Any = model(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = (self.image_size, self.image_size) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ : List[Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCamelCase__ : int = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __lowercase ( self : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.num_labels UpperCamelCase__ : Optional[Any] = LevitForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase__ : str = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Tuple = self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : str = config_and_inputs UpperCamelCase__ : List[str] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __a ( A__ , A__ , unittest.TestCase ): _lowerCAmelCase : str = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) _lowerCAmelCase : List[str] = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Any = False _lowerCAmelCase : Tuple = False _lowerCAmelCase : List[Any] = False def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : List[Any] = LevitModelTester(self ) UpperCamelCase__ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def __lowercase ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : List[str] ): '''simple docstring''' return @unittest.skip(reason="Levit does not use inputs_embeds" ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="Levit does not output attentions" ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : str ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : int = [*signature.parameters.keys()] UpperCamelCase__ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ): UpperCamelCase__ : Dict = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase__ : int = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) UpperCamelCase__ : int = outputs.hidden_states UpperCamelCase__ : List[Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = (self.model_tester.image_size, self.model_tester.image_size) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase__ : int = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCamelCase__ : Any = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __lowercase ( self : List[str] ): '''simple docstring''' if not self.model_tester.is_training: return UpperCamelCase__ , UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[int] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(SCREAMING_SNAKE_CASE ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCamelCase__ : Dict = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase__ : int = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase__ : Union[str, Any] = False UpperCamelCase__ : Dict = True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCamelCase__ : int = model_class(SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase__ : Tuple = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = model(**SCREAMING_SNAKE_CASE ).loss loss.backward() def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[int] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(SCREAMING_SNAKE_CASE ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): UpperCamelCase__ : Optional[int] = problem_type["title"] UpperCamelCase__ : Tuple = problem_type["num_labels"] UpperCamelCase__ : Tuple = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase__ : Dict = self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE ) if problem_type["num_labels"] > 1: UpperCamelCase__ : Optional[int] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCamelCase__ : Tuple = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=SCREAMING_SNAKE_CASE ) as warning_list: UpperCamelCase__ : Any = model(**SCREAMING_SNAKE_CASE ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def __lowercase ( self : Dict ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Union[str, Any] = LevitModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: UpperCamelCase__ : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def __lowercase ( self : Optional[Any] ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : Tuple = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : Any = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase__ : List[Any] = model(**SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) )
228
0
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask __lowerCamelCase = logging.getLogger(__name__) class snake_case_ (a__ ): """simple docstring""" def __init__( self ,lowercase=-1): """simple docstring""" UpperCAmelCase_ : Optional[Any] = label_idx def A_ ( self ,lowercase ,lowercase): """simple docstring""" if isinstance(_A ,_A): UpperCAmelCase_ : Any = mode.value UpperCAmelCase_ : Optional[Any] = os.path.join(_A ,F"""{mode}.txt""") UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Tuple = [] with open(_A ,encoding="utf-8") as f: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Any = [] for line in f: if line.startswith("-DOCSTART-") or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_A ,labels=_A)) guid_index += 1 UpperCAmelCase_ : str = [] UpperCAmelCase_ : int = [] else: UpperCAmelCase_ : int = line.split(" ") words.append(splits[0]) if len(_A) > 1: labels.append(splits[self.label_idx].replace("\n" ,"")) else: # Examples could have no label for mode = "test" labels.append("O") if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_A ,labels=_A)) return examples def A_ ( self ,lowercase ,lowercase ,lowercase): """simple docstring""" UpperCAmelCase_ : int = 0 for line in test_input_reader: if line.startswith("-DOCSTART-") or line == "" or line == "\n": writer.write(_A) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: UpperCAmelCase_ : int = line.split()[0] + ' ' + preds_list[example_id].pop(0) + '\n' writer.write(_A) else: logger.warning("Maximum sequence length exceeded: No prediction for \'%s\'." ,line.split()[0]) def A_ ( self ,lowercase): """simple docstring""" if path: with open(_A ,"r") as f: UpperCAmelCase_ : Any = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ : Optional[int] = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class snake_case_ (a__ ): """simple docstring""" def __init__( self): """simple docstring""" super().__init__(label_idx=-2) def A_ ( self ,lowercase): """simple docstring""" if path: with open(_A ,"r") as f: UpperCAmelCase_ : Union[str, Any] = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ : Any = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class snake_case_ (a__ ): """simple docstring""" def A_ ( self ,lowercase ,lowercase): """simple docstring""" if isinstance(_A ,_A): UpperCAmelCase_ : Dict = mode.value UpperCAmelCase_ : Dict = os.path.join(_A ,F"""{mode}.txt""") UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : str = [] with open(_A ,encoding="utf-8") as f: for sentence in parse_incr(_A): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Any = [] for token in sentence: words.append(token["form"]) labels.append(token["upos"]) assert len(_A) == len(_A) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" ,words=_A ,labels=_A)) guid_index += 1 return examples def A_ ( self ,lowercase ,lowercase ,lowercase): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 for sentence in parse_incr(_A): UpperCAmelCase_ : str = preds_list[example_id] UpperCAmelCase_ : Tuple = '' for token in sentence: out += F"""{token['form']} ({token['upos']}|{s_p.pop(0)}) """ out += "\n" writer.write(_A) example_id += 1 def A_ ( self ,lowercase): """simple docstring""" if path: with open(_A ,"r") as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
716
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class snake_case_ (TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): """simple docstring""" def __init__( self ,lowercase=None ,**lowercase): """simple docstring""" super().__init__(features=lowercase) UpperCAmelCase_ : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def A_ ( self ,lowercase): """simple docstring""" import torch if isinstance(lowercase ,lowercase) and column: if all( isinstance(lowercase ,torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return torch.stack(lowercase) return column def A_ ( self ,lowercase): """simple docstring""" import torch if isinstance(lowercase ,(str, bytes, type(lowercase))): return value elif isinstance(lowercase ,(np.character, np.ndarray)) and np.issubdtype(value.dtype ,np.character): return value.tolist() UpperCAmelCase_ : List[str] = {} if isinstance(lowercase ,(np.number, np.ndarray)) and np.issubdtype(value.dtype ,np.integer): UpperCAmelCase_ : Dict = {"dtype": torch.intaa} elif isinstance(lowercase ,(np.number, np.ndarray)) and np.issubdtype(value.dtype ,np.floating): UpperCAmelCase_ : Optional[Any] = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowercase ,PIL.Image.Image): UpperCAmelCase_ : List[str] = np.asarray(lowercase) return torch.tensor(lowercase ,**{**default_dtype, **self.torch_tensor_kwargs}) def A_ ( self ,lowercase): """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(lowercase ,"__array__") and not isinstance(lowercase ,torch.Tensor): UpperCAmelCase_ : int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowercase ,np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowercase) for substruct in data_struct]) elif isinstance(lowercase ,(list, tuple)): return self._consolidate([self.recursive_tensorize(lowercase) for substruct in data_struct]) return self._tensorize(lowercase) def A_ ( self ,lowercase): """simple docstring""" return map_nested(self._recursive_tensorize ,lowercase ,map_list=lowercase) def A_ ( self ,lowercase): """simple docstring""" UpperCAmelCase_ : List[Any] = self.numpy_arrow_extractor().extract_row(lowercase) UpperCAmelCase_ : Tuple = self.python_features_decoder.decode_row(lowercase) return self.recursive_tensorize(lowercase) def A_ ( self ,lowercase): """simple docstring""" UpperCAmelCase_ : str = self.numpy_arrow_extractor().extract_column(lowercase) UpperCAmelCase_ : List[Any] = self.python_features_decoder.decode_column(lowercase ,pa_table.column_names[0]) UpperCAmelCase_ : List[Any] = self.recursive_tensorize(lowercase) UpperCAmelCase_ : List[str] = self._consolidate(lowercase) return column def A_ ( self ,lowercase): """simple docstring""" UpperCAmelCase_ : Any = self.numpy_arrow_extractor().extract_batch(lowercase) UpperCAmelCase_ : Optional[int] = self.python_features_decoder.decode_batch(lowercase) UpperCAmelCase_ : List[Any] = self.recursive_tensorize(lowercase) for column_name in batch: UpperCAmelCase_ : Optional[int] = self._consolidate(batch[column_name]) return batch
455
0
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : str ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
369
import re def lowerCAmelCase ( UpperCamelCase__ : str ) -> bool: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": lowerCAmelCase : str = """0094702343221""" print(is_sri_lankan_phone_number(phone))
202
0
from torch import nn def _snake_case ( __snake_case ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
71
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _lowerCAmelCase = logging.getLogger(__name__) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether tp freeze the encoder."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Whether to freeze the embeddings."} ) @dataclass class lowerCAmelCase_ : UpperCAmelCase = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) UpperCAmelCase = field( default="summarization", metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, ) UpperCAmelCase = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field( default=142, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) UpperCAmelCase = field( default=142, metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) UpperCAmelCase = field(default=-1, metadata={"help": "# training examples. -1 means use all."} ) UpperCAmelCase = field(default=-1, metadata={"help": "# validation examples. -1 means use all."} ) UpperCAmelCase = field(default=-1, metadata={"help": "# test examples. -1 means use all."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Source language id for translation."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "Target language id for translation."} ) UpperCAmelCase = field(default=__lowercase, metadata={"help": "# num_beams to use for evaluation."} ) UpperCAmelCase = field( default=__lowercase, metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, ) def _snake_case ( __snake_case , __snake_case , __snake_case ): logger.info(f"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(f""" {key} = {metrics[key]}""" ) save_json(__snake_case , os.path.join(__snake_case , f"""{split}_results.json""" ) ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() check_output_dir(__snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , __snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(__snake_case , __snake_case , __snake_case ): assert hasattr(__snake_case , __snake_case ), f"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(__snake_case , __snake_case , getattr(__snake_case , __snake_case ) ) _UpperCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=__snake_case , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(__snake_case , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _UpperCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__snake_case , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__snake_case , __snake_case ): _UpperCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _UpperCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__snake_case ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _UpperCamelCase = SeqaSeqDataset # Get datasets _UpperCamelCase = ( dataset_class( __snake_case , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) _UpperCamelCase = ( dataset_class( __snake_case , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _UpperCamelCase = ( dataset_class( __snake_case , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer _UpperCamelCase = ( build_compute_metrics_fn(data_args.task , __snake_case ) if training_args.predict_with_generate else None ) _UpperCamelCase = SeqaSeqTrainer( model=__snake_case , args=__snake_case , data_args=__snake_case , train_dataset=__snake_case , eval_dataset=__snake_case , data_collator=SeqaSeqDataCollator( __snake_case , __snake_case , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=__snake_case , tokenizer=__snake_case , ) _UpperCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) _UpperCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _UpperCamelCase = train_result.metrics _UpperCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , __snake_case , training_args.output_dir ) all_metrics.update(__snake_case ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) _UpperCamelCase = data_args.n_val _UpperCamelCase = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , __snake_case , training_args.output_dir ) all_metrics.update(__snake_case ) if training_args.do_predict: logger.info('''*** Predict ***''' ) _UpperCamelCase = trainer.predict(test_dataset=__snake_case , metric_key_prefix='''test''' ) _UpperCamelCase = test_output.metrics _UpperCamelCase = data_args.n_test if trainer.is_world_process_zero(): _UpperCamelCase = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , __snake_case , training_args.output_dir ) all_metrics.update(__snake_case ) if training_args.predict_with_generate: _UpperCamelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) _UpperCamelCase = lmap(str.strip , __snake_case ) write_txt_file(__snake_case , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(__snake_case , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def _snake_case ( __snake_case ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
71
1
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> List[str]: if num < 0: return False lowercase__ = num lowercase__ = 0 while num > 0: lowercase__ = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
235
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "embed_dim" ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "num_heads" ) ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[16, 48, 96] , _SCREAMING_SNAKE_CASE=[1, 3, 6] , _SCREAMING_SNAKE_CASE=[1, 2, 10] , _SCREAMING_SNAKE_CASE=[7, 3, 3] , _SCREAMING_SNAKE_CASE=[4, 2, 2] , _SCREAMING_SNAKE_CASE=[2, 1, 1] , _SCREAMING_SNAKE_CASE=[2, 2, 2] , _SCREAMING_SNAKE_CASE=[False, False, True] , _SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-12 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=2 , ) -> Optional[Any]: snake_case_ : List[str] = parent snake_case_ : Optional[int] = batch_size snake_case_ : Any = image_size snake_case_ : Dict = patch_sizes snake_case_ : Union[str, Any] = patch_stride snake_case_ : List[str] = patch_padding snake_case_ : str = is_training snake_case_ : Tuple = use_labels snake_case_ : Dict = num_labels snake_case_ : Tuple = num_channels snake_case_ : Tuple = embed_dim snake_case_ : str = num_heads snake_case_ : Any = stride_kv snake_case_ : Optional[int] = depth snake_case_ : Any = cls_token snake_case_ : Tuple = attention_drop_rate snake_case_ : Dict = initializer_range snake_case_ : Any = layer_norm_eps def _lowerCAmelCase ( self ) -> str: snake_case_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Optional[Any] = None if self.use_labels: snake_case_ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ : str = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ) -> Any: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: snake_case_ : Optional[Any] = CvtModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = (self.image_size, self.image_size) snake_case_ , snake_case_ : Any = image_size[0], image_size[1] for i in range(len(self.depth ) ): snake_case_ : Optional[int] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) snake_case_ : Optional[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[Any]: snake_case_ : List[Any] = self.num_labels snake_case_ : int = CvtForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() snake_case_ : int = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self ) -> str: snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : Optional[Any] = (CvtModel, CvtForImageClassification) if is_torch_available() else () A : List[Any] = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) A : str = False A : List[Any] = False A : Union[str, Any] = False A : Optional[int] = False A : Optional[int] = False def _lowerCAmelCase ( self ) -> Dict: snake_case_ : Optional[int] = CvtModelTester(self ) snake_case_ : Any = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowerCAmelCase ( self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self ) -> int: return @unittest.skip(reason="Cvt does not output attentions" ) def _lowerCAmelCase ( self ) -> List[Any]: pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def _lowerCAmelCase ( self ) -> str: pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def _lowerCAmelCase ( self ) -> Dict: pass def _lowerCAmelCase ( self ) -> List[str]: snake_case_ , snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : List[str] = model_class(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : str = [*signature.parameters.keys()] snake_case_ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Any: snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Union[str, Any]: def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): snake_case_ : Dict = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): snake_case_ : List[Any] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ : Union[str, Any] = outputs.hidden_states snake_case_ : List[str] = len(self.model_tester.depth ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) snake_case_ , snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[Any] = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : int = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> str: snake_case_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCAmelCase ( self ) -> Any: pass @slow def _lowerCAmelCase ( self ) -> Optional[int]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : Optional[Any] = CvtModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( ): snake_case_ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ) -> int: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _lowerCAmelCase ( self ) -> int: snake_case_ : Tuple = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = self.default_image_processor snake_case_ : Optional[Any] = prepare_img() snake_case_ : List[str] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case_ : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits snake_case_ : Dict = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) snake_case_ : int = torch.tensor([0.9285, 0.9015, -0.3150] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
568
0
'''simple docstring''' from collections.abc import Sequence def __snake_case (__UpperCAmelCase , __UpperCAmelCase = False ): """simple docstring""" if not arr: return 0 lowerCamelCase_ : Dict = 0 if allow_empty_subarrays else float('''-inf''' ) lowerCamelCase_ : str = 0.0 for num in arr: lowerCamelCase_ : List[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCamelCase_ : int = max(__UpperCAmelCase , __UpperCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() __lowerCamelCase : str = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
418
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __snake_case (__UpperCAmelCase ): """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = gather(__UpperCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = [state.process_index] lowerCamelCase_ : str = gather_object(__UpperCAmelCase ) assert len(__UpperCAmelCase ) == state.num_processes, F"""{gathered_obj}, {len(__UpperCAmelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Union[str, Any] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = broadcast(__UpperCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __snake_case (__UpperCAmelCase ): """simple docstring""" # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: lowerCamelCase_ : int = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCamelCase_ : Optional[Any] = torch.arange(state.num_processes ).to(state.device ) lowerCamelCase_ : Any = pad_across_processes(__UpperCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __snake_case (__UpperCAmelCase ): """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase_ : Dict = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = reduce(__UpperCAmelCase , '''sum''' ) lowerCamelCase_ : str = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase_ : Optional[int] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : Any = reduce(__UpperCAmelCase , '''mean''' ) lowerCamelCase_ : Any = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" # For xla_spawn (TPUs) main() def __snake_case (): """simple docstring""" lowerCamelCase_ : int = PartialState() state.print(F"""State: {state}""" ) state.print('''testing gather''' ) test_gather(__UpperCAmelCase ) state.print('''testing gather_object''' ) test_gather_object(__UpperCAmelCase ) state.print('''testing broadcast''' ) test_broadcast(__UpperCAmelCase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(__UpperCAmelCase ) state.print('''testing reduce_sum''' ) test_reduce_sum(__UpperCAmelCase ) state.print('''testing reduce_mean''' ) test_reduce_mean(__UpperCAmelCase ) if __name__ == "__main__": main()
418
1
import math import sys def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' A = '' try: with open(lowerCAmelCase__ , 'rb' ) as binary_file: A = binary_file.read() for dat in data: A = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' A = {'0': '0', '1': '1'} A , A = '', '' A = len(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue A = lexicon[curr_string] result += last_match_id A = last_match_id + '0' if math.loga(lowerCAmelCase__ ).is_integer(): A = {} for curr_key in list(lowerCAmelCase__ ): A = lexicon.pop(lowerCAmelCase__ ) A = new_lex A = last_match_id + '1' index += 1 A = '' return result def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None: '''simple docstring''' A = 8 try: with open(lowerCAmelCase__ , 'wb' ) as opened_file: A = [ to_write[i : i + byte_length] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> str: '''simple docstring''' A = 0 for letter in data_bits: if letter == "1": break counter += 1 A = data_bits[counter:] A = data_bits[counter + 1 :] return data_bits def lowerCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None: '''simple docstring''' A = read_file_binary(lowerCAmelCase__ ) A = remove_prefix(lowerCAmelCase__ ) A = decompress_data(lowerCAmelCase__ ) write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
106
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A( unittest.TestCase ): """simple docstring""" @property def _UpperCamelCase( self ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase :str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :Dict = self.dummy_uncond_unet _UpperCamelCase :List[Any] = KarrasVeScheduler() _UpperCamelCase :Optional[Any] = KarrasVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Dict = torch.manual_seed(0 ) _UpperCamelCase :List[Any] = pipe(num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type='''numpy''' ).images _UpperCamelCase :List[Any] = torch.manual_seed(0 ) _UpperCamelCase :Dict = pipe(num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type='''numpy''' , return_dict=SCREAMING_SNAKE_CASE__ )[0] _UpperCamelCase :Dict = image[0, -3:, -3:, -1] _UpperCamelCase :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase :List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :List[Any] = '''google/ncsnpp-celebahq-256''' _UpperCamelCase :Any = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Optional[int] = KarrasVeScheduler() _UpperCamelCase :Optional[int] = KarrasVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :List[str] = torch.manual_seed(0 ) _UpperCamelCase :List[Any] = pipe(num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE__ , output_type='''numpy''' ).images _UpperCamelCase :Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCamelCase :Any = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
355
0
from pathlib import Path import fire def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : str ,lowerCAmelCase_ : str ,lowerCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str =Path(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple =Path(lowerCAmelCase_ ) dest_dir.mkdir(exist_ok=lowerCAmelCase_ ) for path in src_dir.iterdir(): SCREAMING_SNAKE_CASE_ : Optional[int] =[x.rstrip() for x in list(path.open().readlines() )][:n] SCREAMING_SNAKE_CASE_ : Optional[Any] =dest_dir.joinpath(path.name ) print(lowerCAmelCase_ ) dest_path.open('w' ).write('\n'.join(lowerCAmelCase_ ) ) if __name__ == "__main__": fire.Fire(minify)
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
153
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : def __init__( self : List[str] , __a : Union[str, Any] , __a : int=13 , __a : Dict=32 , __a : str=3 , __a : Dict=4 , __a : List[Any]=[10, 20, 30, 40] , __a : List[str]=[2, 2, 3, 2] , __a : Union[str, Any]=True , __a : Dict=True , __a : Optional[Any]=37 , __a : Dict="gelu" , __a : int=10 , __a : List[Any]=0.02 , __a : Any=["stage2", "stage3", "stage4"] , __a : List[str]=[2, 3, 4] , __a : int=None , ): '''simple docstring''' lowerCamelCase__: Union[str, Any] = parent lowerCamelCase__: Optional[int] = batch_size lowerCamelCase__: List[Any] = image_size lowerCamelCase__: Optional[Any] = num_channels lowerCamelCase__: str = num_stages lowerCamelCase__: List[str] = hidden_sizes lowerCamelCase__: int = depths lowerCamelCase__: List[str] = is_training lowerCamelCase__: Optional[int] = use_labels lowerCamelCase__: List[str] = intermediate_size lowerCamelCase__: Optional[int] = hidden_act lowerCamelCase__: List[Any] = num_labels lowerCamelCase__: Tuple = initializer_range lowerCamelCase__: Tuple = out_features lowerCamelCase__: int = out_indices lowerCamelCase__: str = scope def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__: Dict = None if self.use_labels: lowerCamelCase__: List[str] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__: Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase_ ( self : Union[str, Any] , __a : Union[str, Any] , __a : List[str] , __a : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: List[str] = ConvNextModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__: int = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[Any] , __a : Optional[Any] , __a : Tuple , __a : Any ): '''simple docstring''' lowerCamelCase__: str = ConvNextForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__: Optional[Any] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : List[str] , __a : Tuple , __a : Optional[int] , __a : Tuple ): '''simple docstring''' lowerCamelCase__: List[str] = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__: Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase__: Tuple = None lowerCamelCase__: Dict = ConvNextBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__: Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Tuple = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: str = config_and_inputs lowerCamelCase__: Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCamelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __lowerCamelCase = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: List[str] = ConvNextModelTester(self ) lowerCamelCase__: Optional[int] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : str ): '''simple docstring''' return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: Tuple = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__: Any = [*signature.parameters.keys()] lowerCamelCase__: Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' lowerCamelCase__: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(__a : List[Any] , __a : List[Any] , __a : Optional[int] ): lowerCamelCase__: str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowerCamelCase__: Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase__: List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__: Dict = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase__ , lowerCamelCase__: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__: List[Any] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__: Optional[int] = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowerCamelCase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def lowerCamelCase_ ( self : int ): '''simple docstring''' for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__: str = ConvNextModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __lowerCAmelCase ( ) -> List[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: List[str] = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: str = self.default_image_processor lowerCamelCase__: Union[str, Any] = prepare_img() lowerCamelCase__: List[Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase__: List[str] = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowerCamelCase__: Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__: Tuple = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase , UpperCAmelCase__ ): __lowerCamelCase = (ConvNextBackbone,) if is_torch_available() else () __lowerCamelCase = ConvNextConfig __lowerCamelCase = False def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: str = ConvNextModelTester(self )
306
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ = 250_004 A_ = 250_020 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = MBartTokenizer SCREAMING_SNAKE_CASE_ = MBartTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def UpperCamelCase( self ) -> int: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase_ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'facebook/mbart-large-en-ro' SCREAMING_SNAKE_CASE_ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] SCREAMING_SNAKE_CASE_ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] SCREAMING_SNAKE_CASE_ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def UpperCamelCase( cls ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) lowerCamelCase_ = 1 return cls def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250020 ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) lowerCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase_ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = 10 lowerCamelCase_ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [250026, 250001] ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) lowerCamelCase_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) lowerCamelCase_ = targets['input_ids'] lowerCamelCase_ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[62, 3034, 2, 250004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250001, } , )
42
0
'''simple docstring''' def lowerCAmelCase__ ( a_ : Optional[int] , a_ : List[Any] , a_ : Tuple , a_ : Optional[int] , a_ : List[Any] , a_ : Optional[Any] ) -> str: if index == r: for j in range(a_ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase__ : Optional[int] = arr[i] combination_util(a_ , a_ , a_ , index + 1 , a_ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(a_ , a_ , a_ , a_ , a_ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase__ ( a_ : Union[str, Any] , a_ : str , a_ : int ) -> List[Any]: # A temporary array to store all combination one by one UpperCAmelCase__ : Optional[Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(a_ , a_ , a_ , 0 , a_ , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCamelCase_ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
599
0
"""simple docstring""" import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __A = """bart""" __A = True @st.cache(allow_output_mutation=_lowercase ) def UpperCamelCase__ ( ): if LOAD_DENSE_INDEX: snake_case : Tuple = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) snake_case : Optional[Any] = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) snake_case : Optional[int] = qar_model.eval() else: snake_case : str = (None, None) if MODEL_TYPE == "bart": snake_case : Dict = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) snake_case : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) snake_case : List[Any] = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) snake_case : Dict = sas_model.eval() else: snake_case : str = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_lowercase ) def UpperCamelCase__ ( ): if LOAD_DENSE_INDEX: snake_case : str = faiss.StandardGpuResources() snake_case : Optional[Any] = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )['train'] snake_case : Union[str, Any] = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) snake_case : Tuple = faiss.IndexFlatIP(128 ) snake_case : Any = faiss.index_cpu_to_gpu(_lowercase , 1 , _lowercase ) wikiaab_gpu_index_flat.add(_lowercase ) # TODO fix for larger GPU else: snake_case : Union[str, Any] = (None, None) snake_case : Optional[int] = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_lowercase ) def UpperCamelCase__ ( ): snake_case : int = datasets.load_dataset("eli5" , name="LFQA_reddit" ) snake_case : Dict = elia['train_eli5'] snake_case : Optional[int] = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) snake_case : Union[str, Any] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_lowercase ) return (elia_train, eli5_train_q_index) __A = load_indexes() __A = load_models() __A = load_train_data() def UpperCamelCase__ ( lowercase__ : str , lowercase__ : Optional[int]=10 ): snake_case : int = embed_questions_for_retrieval([question] , _lowercase , _lowercase ) snake_case : Dict = eli5_train_q_index.search(_lowercase , _lowercase ) snake_case : int = [elia_train[int(_lowercase )] for i in I[0]] return nn_examples def UpperCamelCase__ ( lowercase__ : int , lowercase__ : Tuple="wiki40b" , lowercase__ : List[str]="dense" , lowercase__ : int=10 ): if source == "none": snake_case : Dict = (' <P> '.join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": snake_case : int = query_qa_dense_index( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) else: snake_case : Tuple = query_es_index( _lowercase , _lowercase , index_name="english_wiki40b_snippets_100w" , n_results=_lowercase , ) snake_case : Tuple = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] snake_case : List[Any] = 'question: {} context: {}'.format(_lowercase , _lowercase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda lowercase__ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda lowercase__ : None), } ) def UpperCamelCase__ ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : List[Any]=64 , lowercase__ : List[Any]=256 , lowercase__ : str=False , lowercase__ : Union[str, Any]=2 , lowercase__ : Dict=0.95 , lowercase__ : List[Any]=0.8 ): with torch.no_grad(): snake_case : Any = qa_sas_generate( _lowercase , _lowercase , _lowercase , num_answers=1 , num_beams=_lowercase , min_len=_lowercase , max_len=_lowercase , do_sample=_lowercase , temp=_lowercase , top_p=_lowercase , top_k=_lowercase , max_input_length=1024 , device="cuda:0" , )[0] return (answer, support_list) st.title("Long Form Question Answering with ELI5") # Start sidebar __A = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" __A = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __A = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) __A = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] __A = st.sidebar.checkbox("Demo options") if demo_options: __A = st.sidebar.selectbox( "", action_list, index=3, ) __A = action_list.index(action_st) __A = st.sidebar.selectbox( "", ["Show full text of passages", "Show passage section titles"], index=0, ) __A = show_type == """Show full text of passages""" else: __A = 3 __A = True __A = st.sidebar.checkbox("Retrieval options") if retrieval_options: __A = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) __A = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"]) __A = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"]) else: __A = """wiki40b""" __A = """dense""" __A = """beam""" __A = 2 __A = 64 __A = 256 __A = None __A = None __A = st.sidebar.checkbox("Generation options") if generate_options: __A = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) __A = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"]) __A = st.sidebar.slider( "Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __A = st.sidebar.slider( "Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __A = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __A = st.sidebar.slider( "Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __A = st.sidebar.slider( "Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __A = None # start main text __A = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] __A = st.selectbox( "What would you like to ask? ---- select <MY QUESTION> to enter a new query", questions_list, index=1, ) if question_s == "<MY QUESTION>": __A = st.text_input("Enter your question here:", "") else: __A = question_s if st.button("Show me!"): if action in [0, 1, 3]: if index_type == "mixed": __A = make_support(question, source=wiki_source, method="dense", n_results=10) __A = make_support(question, source=wiki_source, method="sparse", n_results=10) __A = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __A = support_list[:10] __A = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: __A = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __A = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == "sampled"), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("### The model generated answer is:") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:") for i, res in enumerate(support_list): __A = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(" ", "_")) __A = res[1].strip() if sec_titles == "": __A = """[{}]({})""".format(res[0], wiki_url) else: __A = sec_titles.split(" & ") __A = """ & """.join( ["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list] ) st.markdown( "{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( "> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True ) if action in [2, 3]: __A = find_nearest_training(question) __A = nn_train_list[0] st.markdown( "--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"]) ) __A = [ """{}. {}""".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""])) for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"])) if i == 0 or sc > 2 ] st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st))) __A = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
134
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __UpperCamelCase: Optional[int] = logging.get_logger(__name__) class __lowerCAmelCase ( _UpperCamelCase ): '''simple docstring''' _A = ["audio_values", "audio_mask"] def __init__( self: Any, lowerCamelCase_: int=2048, lowerCamelCase_: str=1, lowerCamelCase_: str=[16, 16], lowerCamelCase_: Union[str, Any]=128, lowerCamelCase_: Tuple=44100, lowerCamelCase_: Union[str, Any]=86, lowerCamelCase_: Optional[Any]=2048, lowerCamelCase_: Dict=0.0, **lowerCamelCase_: str, ): super().__init__( feature_size=lowerCamelCase_, sampling_rate=lowerCamelCase_, padding_value=lowerCamelCase_, **lowerCamelCase_, ) lowercase__ : List[str] = spectrogram_length lowercase__ : Union[str, Any] = num_channels lowercase__ : int = patch_size lowercase__ : Union[str, Any] = feature_size // self.patch_size[1] lowercase__ : Optional[int] = n_fft lowercase__ : int = sampling_rate // hop_length_to_sampling_rate lowercase__ : str = sampling_rate lowercase__ : Union[str, Any] = padding_value lowercase__ : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=lowerCamelCase_, min_frequency=0.0, max_frequency=2_2_0_5_0.0, sampling_rate=lowerCamelCase_, norm='slaney', mel_scale='slaney', ).T def snake_case__( self: Tuple, lowerCamelCase_: np.array ): lowercase__ : Optional[Any] = spectrogram( lowerCamelCase_, window_function(self.n_fft, 'hann' ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters.T, log_mel='dB', db_range=8_0.0, ) lowercase__ : Optional[Any] = log_spec[:, :-1] lowercase__ : int = log_spec - 2_0.0 lowercase__ : Dict = np.clip(log_spec / 4_0.0, -2.0, 0.0 ) + 1.0 return log_spec def __call__( self: Dict, lowerCamelCase_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], lowerCamelCase_: Optional[Union[str, TensorType]] = None, lowerCamelCase_: Optional[bool] = True, lowerCamelCase_: Optional[int] = None, lowerCamelCase_: bool = False, lowerCamelCase_: bool = False, **lowerCamelCase_: str, ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowercase__ : Any = isinstance(lowerCamelCase_, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) lowercase__ : Optional[Any] = is_batched_numpy or ( isinstance(lowerCamelCase_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: lowercase__ : int = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_, np.ndarray ): lowercase__ : Optional[int] = np.asarray(lowerCamelCase_, dtype=np.floataa ) elif isinstance(lowerCamelCase_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase__ : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase__ : Tuple = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase__ : List[str] = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0], lowerCamelCase_ ): lowercase__ : str = [np.asarray(lowerCamelCase_, dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase__ : Dict = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase__ : int = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase__ : Any = np.array(lowerCamelCase_ ).astype(np.floataa ) # convert into correct format for padding lowercase__ : Any = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase__ : Tuple = np.ones([len(lowerCamelCase_ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase__ : Dict = padded_audio_features * self.padding_value for i in range(len(lowerCamelCase_ ) ): lowercase__ : Union[str, Any] = audio_features[i] lowercase__ : str = feature # return as BatchFeature if return_attention_mask: lowercase__ : Dict = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: lowercase__ : int = {'audio_values': padded_audio_features} lowercase__ : List[Any] = BatchFeature(data=lowerCamelCase_, tensor_type=lowerCamelCase_ ) return encoded_inputs
266
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): _lowercase =AltDiffusionPipeline _lowercase =TEXT_TO_IMAGE_PARAMS _lowercase =TEXT_TO_IMAGE_BATCH_PARAMS _lowercase =TEXT_TO_IMAGE_IMAGE_PARAMS _lowercase =TEXT_TO_IMAGE_IMAGE_PARAMS def __a ( self ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCAmelCase_ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) lowerCAmelCase_ = CLIPTextModel(UpperCamelCase_ ) lowerCAmelCase_ = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowerCAmelCase_ = 77 lowerCAmelCase_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __a ( self , _UpperCamelCase , _UpperCamelCase=0 ) -> Optional[int]: if str(UpperCamelCase_ ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase_ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self ) -> int: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __a ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __a ( self ) -> Dict: lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() torch.manual_seed(0 ) lowerCAmelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase_ = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) lowerCAmelCase_ = text_encoder lowerCAmelCase_ = AltDiffusionPipeline(**UpperCamelCase_ ) lowerCAmelCase_ = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase_ = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase_ = 'A photo of an astronaut' lowerCAmelCase_ = alt_pipe(**UpperCamelCase_ ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self ) -> List[str]: lowerCAmelCase_ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) lowerCAmelCase_ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase_ = RobertaSeriesModelWithTransformation(UpperCamelCase_ ) lowerCAmelCase_ = text_encoder lowerCAmelCase_ = AltDiffusionPipeline(**UpperCamelCase_ ) lowerCAmelCase_ = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase_ = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase_ = alt_pipe(**UpperCamelCase_ ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def __a ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> int: lowerCAmelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=UpperCamelCase_ ) lowerCAmelCase_ = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase_ = 'A painting of a squirrel eating a burger' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = alt_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __a ( self ) -> int: lowerCAmelCase_ = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) lowerCAmelCase_ = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ ) lowerCAmelCase_ = alt_pipe.to(UpperCamelCase_ ) alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase_ = 'A painting of a squirrel eating a burger' lowerCAmelCase_ = torch.manual_seed(0 ) lowerCAmelCase_ = alt_pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type="numpy" ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
704
import math class _lowerCAmelCase : def __init__( self , _UpperCamelCase=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 lowerCAmelCase_ = n lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # adjacency matrix for weight lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: lowerCAmelCase_ = w def __a ( self ) -> List[str]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: return self.dp[u][v] if __name__ == "__main__": _A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
279
0
'''simple docstring''' from math import loga def a__ ( lowerCAmelCase__ ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
75
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
63
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : def __init__( self : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any=2 , lowerCamelCase__ : str=True , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Dict=10 , lowerCamelCase__ : int=3 , lowerCamelCase__ : str=32 * 4 , lowerCamelCase__ : List[str]=32 * 6 , lowerCamelCase__ : str=4 , lowerCamelCase__ : Dict=32 , ) -> str: '''simple docstring''' UpperCamelCase__ : List[Any] = parent UpperCamelCase__ : Union[str, Any] = batch_size UpperCamelCase__ : Dict = is_training UpperCamelCase__ : Optional[int] = use_auxiliary_loss UpperCamelCase__ : Optional[Any] = num_queries UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : Tuple = min_size UpperCamelCase__ : Tuple = max_size UpperCamelCase__ : List[Any] = num_labels UpperCamelCase__ : List[Any] = mask_feature_size def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) UpperCamelCase__ : Any = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) UpperCamelCase__ : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() UpperCamelCase__ : int = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() UpperCamelCase__ : Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCAmelCase__ ( self : Any ) -> int: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase__ : Optional[int] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def UpperCAmelCase__ ( self : int , lowerCamelCase__ : int , lowerCamelCase__ : Dict ) -> int: '''simple docstring''' UpperCamelCase__ : List[str] = output.encoder_hidden_states UpperCamelCase__ : str = output.pixel_decoder_hidden_states UpperCamelCase__ : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_config.decoder_layers ) def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : str=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): UpperCamelCase__ : List[Any] = MaskFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCamelCase__ : List[str] = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) UpperCamelCase__ : str = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ : List[Any] = MaskFormerForInstanceSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase__ : int = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) UpperCamelCase__ : Any = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) UpperCamelCase__ : Any = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __magic_name__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): A: Optional[int] = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () A: Dict = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) A: Union[str, Any] = False A: Optional[Any] = False A: Union[str, Any] = False A: Optional[Any] = False def UpperCAmelCase__ ( self : str ) -> Any: '''simple docstring''' UpperCamelCase__ : Optional[int] = MaskFormerModelTester(self ) UpperCamelCase__ : str = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason='''MaskFormer does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not have a get_input_embeddings method''' ) def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer is not a generative model''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='''MaskFormer does not use token embeddings''' ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='''MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : List[Any] ) -> str: '''simple docstring''' pass def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Dict = model_class(lowerCamelCase__ ) UpperCamelCase__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def UpperCAmelCase__ ( self : Any ) -> Dict: '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCamelCase__ : Tuple = MaskFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Any = (self.model_tester.min_size,) * 2 UpperCamelCase__ : List[str] = { '''pixel_values''': torch.randn((2, 3, *size) , device=lowerCamelCase__ ), '''mask_labels''': torch.randn((2, 10, *size) , device=lowerCamelCase__ ), '''class_labels''': torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } UpperCamelCase__ : List[Any] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowerCamelCase__ ) UpperCamelCase__ : int = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) UpperCamelCase__ : Any = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCamelCase__ : List[str] = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : Union[str, Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ : Optional[int] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def UpperCAmelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCamelCase__ : Optional[int] = self.all_model_classes[1] UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() UpperCamelCase__ : Any = True UpperCamelCase__ : int = True UpperCamelCase__ : List[Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() UpperCamelCase__ : Union[str, Any] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) UpperCamelCase__ : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase__ : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCamelCase__ : str = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase__ : Dict = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __UpperCamelCase : Optional[int] = 1E-4 def _a ( ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class __magic_name__ ( unittest.TestCase): @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('''facebook/maskformer-swin-small-coco''' ) if is_vision_available() else None ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCamelCase__ : str = MaskFormerModel.from_pretrained('''facebook/maskformer-swin-small-coco''' ).to(lowerCamelCase__ ) UpperCamelCase__ : List[str] = self.default_image_processor UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : Any = image_processor(lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) UpperCamelCase__ : Union[str, Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**lowerCamelCase__ ) UpperCamelCase__ : Dict = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) UpperCamelCase__ : Union[str, Any] = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) UpperCamelCase__ : Optional[Any] = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : List[Any] ) -> Any: '''simple docstring''' UpperCamelCase__ : Tuple = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(lowerCamelCase__ ) .eval() ) UpperCamelCase__ : Union[str, Any] = self.default_image_processor UpperCamelCase__ : Optional[int] = prepare_img() UpperCamelCase__ : Dict = image_processor(lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) UpperCamelCase__ : int = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**lowerCamelCase__ ) # masks_queries_logits UpperCamelCase__ : Optional[int] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ : Union[str, Any] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] UpperCamelCase__ : Any = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits UpperCamelCase__ : List[str] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase__ : Optional[int] = torch.tensor( [ [1.6_5_1_2E0_0, -5.2_5_7_2E0_0, -3.3_5_1_9E0_0], [3.6_1_6_9E-0_2, -5.9_0_2_5E0_0, -2.9_3_1_3E0_0], [1.0_7_6_6E-0_4, -7.7_6_3_0E0_0, -5.1_2_6_3E0_0], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : int = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-resnet101-coco-stuff''' ) .to(lowerCamelCase__ ) .eval() ) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Any = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) UpperCamelCase__ : Optional[int] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 800, 1088) ) with torch.no_grad(): UpperCamelCase__ : List[Any] = model(**lowerCamelCase__ ) # masks_queries_logits UpperCamelCase__ : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCamelCase__ : Optional[int] = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] UpperCamelCase__ : Any = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits UpperCamelCase__ : str = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCamelCase__ : List[str] = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def UpperCAmelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('''facebook/maskformer-swin-small-coco''' ) .to(lowerCamelCase__ ) .eval() ) UpperCamelCase__ : Dict = self.default_image_processor UpperCamelCase__ : Optional[Any] = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='''pt''' , ) UpperCamelCase__ : int = inputs['''pixel_values'''].to(lowerCamelCase__ ) UpperCamelCase__ : Tuple = [el.to(lowerCamelCase__ ) for el in inputs['''mask_labels''']] UpperCamelCase__ : Optional[int] = [el.to(lowerCamelCase__ ) for el in inputs['''class_labels''']] with torch.no_grad(): UpperCamelCase__ : Optional[int] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
106
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Dict = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ["MobileViTFeatureExtractor"] __UpperCamelCase : Optional[Any] = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
106
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _snake_case : Dict , _snake_case : List[Any]=2 , _snake_case : str=True , _snake_case : Tuple=False , _snake_case : Any=10 , _snake_case : List[str]=3 , _snake_case : Optional[Any]=32 * 4 , _snake_case : Optional[int]=32 * 6 , _snake_case : int=4 , _snake_case : Any=32 , ): """simple docstring""" A__ = parent A__ = batch_size A__ = is_training A__ = use_auxiliary_loss A__ = num_queries A__ = num_channels A__ = min_size A__ = max_size A__ = num_labels A__ = mask_feature_size def _a ( self : int ): """simple docstring""" A__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( __snake_case ) A__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=__snake_case ) A__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=__snake_case ) > 0.5 ).float() A__ = (torch.rand((self.batch_size, self.num_labels) , device=__snake_case ) > 0.5).long() A__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _a ( self : Union[str, Any] ): """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def _a ( self : Any ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def _a ( self : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : List[str] ): """simple docstring""" A__ = output.encoder_hidden_states A__ = output.pixel_decoder_hidden_states A__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(__snake_case ) , config.decoder_config.decoder_layers ) def _a ( self : Any , _snake_case : Tuple , _snake_case : Dict , _snake_case : Dict , _snake_case : List[Any]=False ): """simple docstring""" with torch.no_grad(): A__ = MaskFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() A__ = model(pixel_values=__snake_case , pixel_mask=__snake_case ) A__ = model(__snake_case , output_hidden_states=__snake_case ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(__snake_case , __snake_case ) def _a ( self : Any , _snake_case : str , _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : str ): """simple docstring""" A__ = MaskFormerForInstanceSegmentation(config=__snake_case ) model.to(__snake_case ) model.eval() def comm_check_on_output(_snake_case : Tuple ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): A__ = model(pixel_values=__snake_case , pixel_mask=__snake_case ) A__ = model(__snake_case ) comm_check_on_output(__snake_case ) A__ = model( pixel_values=__snake_case , pixel_mask=__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) comm_check_on_output(__snake_case ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A__ : Dict = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () A__ : Optional[int] = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : int = False A__ : Any = False A__ : List[str] = False def _a ( self : Dict ): """simple docstring""" A__ = MaskFormerModelTester(self ) A__ = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def _a ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Union[str, Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def _a ( self : List[str] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*__snake_case ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def _a ( self : Any ): """simple docstring""" pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def _a ( self : int ): """simple docstring""" pass @unittest.skip(reason='MaskFormer is not a generative model' ) def _a ( self : int ): """simple docstring""" pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def _a ( self : Any ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _a ( self : Tuple ): """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self : Optional[int] ): """simple docstring""" pass def _a ( self : int ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__snake_case ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) @slow def _a ( self : Dict ): """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: A__ = MaskFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _a ( self : Tuple ): """simple docstring""" A__ = (self.model_tester.min_size,) * 2 A__ = { '''pixel_values''': torch.randn((2, 3, *size) , device=__snake_case ), '''mask_labels''': torch.randn((2, 10, *size) , device=__snake_case ), '''class_labels''': torch.zeros(2 , 10 , device=__snake_case ).long(), } A__ = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(__snake_case ) A__ = model(**__snake_case ) self.assertTrue(outputs.loss is not None ) def _a ( self : str ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(__snake_case , **__snake_case , output_hidden_states=__snake_case ) def _a ( self : List[Any] ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(__snake_case ).to(__snake_case ) A__ = model(**__snake_case , output_attentions=__snake_case ) self.assertTrue(outputs.attentions is not None ) def _a ( self : int ): """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss A__ = self.all_model_classes[1] A__ = self.model_tester.prepare_config_and_inputs() A__ = model_class(__snake_case ) model.to(__snake_case ) model.train() A__ = model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ).loss loss.backward() def _a ( self : Any ): """simple docstring""" A__ = self.all_model_classes[1] A__ = self.model_tester.prepare_config_and_inputs() A__ = True A__ = True A__ = model_class(__snake_case ) model.to(__snake_case ) model.train() A__ = model(__snake_case , mask_labels=__snake_case , class_labels=__snake_case ) A__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() A__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't A__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() A__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=__snake_case ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) SCREAMING_SNAKE_CASE__ = 1e-4 def A ( ) -> Any: A__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self : Any ): """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def _a ( self : List[Any] ): """simple docstring""" A__ = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(__snake_case ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(__snake_case , return_tensors='pt' ).to(__snake_case ) A__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 8_00, 10_88) ) with torch.no_grad(): A__ = model(**__snake_case ) A__ = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) A__ = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) A__ = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(__snake_case ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , __snake_case , atol=__snake_case ) ) def _a ( self : int ): """simple docstring""" A__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(__snake_case ) .eval() ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(__snake_case , return_tensors='pt' ).to(__snake_case ) A__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 8_00, 10_88) ) with torch.no_grad(): A__ = model(**__snake_case ) # masks_queries_logits A__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A__ = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] A__ = torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits A__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) A__ = torch.tensor( [ [1.65_12E00, -5.25_72E00, -3.35_19E00], [3.61_69E-02, -5.90_25E00, -2.93_13E00], [1.07_66E-04, -7.76_30E00, -5.12_63E00], ] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def _a ( self : List[Any] ): """simple docstring""" A__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(__snake_case ) .eval() ) A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(__snake_case , return_tensors='pt' ).to(__snake_case ) A__ = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(__snake_case , (1, 3, 8_00, 10_88) ) with torch.no_grad(): A__ = model(**__snake_case ) # masks_queries_logits A__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) A__ = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.77_11]] A__ = torch.tensor(__snake_case ).to(__snake_case ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , __snake_case , atol=__snake_case ) ) # class_queries_logits A__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) A__ = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=__snake_case ) ) def _a ( self : List[Any] ): """simple docstring""" A__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(__snake_case ) .eval() ) A__ = self.default_image_processor A__ = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='pt' , ) A__ = inputs['''pixel_values'''].to(__snake_case ) A__ = [el.to(__snake_case ) for el in inputs['''mask_labels''']] A__ = [el.to(__snake_case ) for el in inputs['''class_labels''']] with torch.no_grad(): A__ = model(**__snake_case ) self.assertTrue(outputs.loss is not None )
9
def _lowerCamelCase ( a_ : str): return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''')) def _lowerCamelCase ( a_ : str): lowerCamelCase :Union[str, Any] = credit_card_number lowerCamelCase :Tuple = 0 lowerCamelCase :Any = len(a_) - 2 for i in range(a_ , -1 , -2): # double the value of every second digit lowerCamelCase :Any = int(cc_number[i]) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 lowerCamelCase :Optional[int] = cc_number[:i] + str(a_) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(a_) - 1 , -1 , -2): total += int(cc_number[i]) return total % 10 == 0 def _lowerCamelCase ( a_ : str): lowerCamelCase :Union[str, Any] = F"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(F"{error_message} it has nonnumerical characters.") return False if not 13 <= len(a_) <= 16: print(F"{error_message} of its length.") return False if not validate_initial_digits(a_): print(F"{error_message} of its first two digits.") return False if not luhn_validation(a_): print(F"{error_message} it fails the Luhn check.") return False print(F"{credit_card_number} is a valid credit card number.") return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
166
0
import numpy as np class lowerCAmelCase_ : def __init__( self : Dict ): lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = None lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def __eq__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): return self.position == cell.position def __snake_case ( self : str ): print(self.position ) class lowerCAmelCase_ : def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any=(5, 5) ): lowerCAmelCase__ = np.zeros(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ = world_size[0] lowerCAmelCase__ = world_size[1] def __snake_case ( self : Optional[Any] ): print(self.w ) def __snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Any ): lowerCAmelCase__ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowerCAmelCase__ = cell.position[0] lowerCAmelCase__ = cell.position[1] lowerCAmelCase__ = [] for n in neughbour_cord: lowerCAmelCase__ = current_x + n[0] lowerCAmelCase__ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowerCAmelCase__ = Cell() lowerCAmelCase__ = (x, y) lowerCAmelCase__ = cell neighbours.append(SCREAMING_SNAKE_CASE_ ) return neighbours def lowerCAmelCase_ (lowercase__ : Any , lowercase__ : Union[str, Any] , lowercase__ : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = [] _open.append(lowercase__ ) while _open: lowerCAmelCase__ = np.argmin([n.f for n in _open] ) lowerCAmelCase__ = _open[min_f] _closed.append(_open.pop(lowercase__ ) ) if current == goal: break for n in world.get_neigbours(lowercase__ ): for c in _closed: if c == n: continue lowerCAmelCase__ = current.g + 1 lowerCAmelCase__ , lowerCAmelCase__ = n.position lowerCAmelCase__ , lowerCAmelCase__ = goal.position lowerCAmelCase__ = (ya - ya) ** 2 + (xa - xa) ** 2 lowerCAmelCase__ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowercase__ ) lowerCAmelCase__ = [] while current.parent is not None: path.append(current.position ) lowerCAmelCase__ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _UpperCAmelCase : Optional[int] = Gridworld() # Start position and goal _UpperCAmelCase : List[str] = Cell() _UpperCAmelCase : int = (0, 0) _UpperCAmelCase : Optional[Any] = Cell() _UpperCAmelCase : List[Any] = (4, 4) print(F'''path from {start.position} to {goal.position}''') _UpperCAmelCase : Optional[int] = astar(world, start, goal) # Just for visual reasons. for i in s: _UpperCAmelCase : Dict = 1 print(world.w)
288
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowerCAmelCase_ : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) lowerCAmelCase__ = img lowerCAmelCase__ = img.shape[1] lowerCAmelCase__ = img.shape[0] lowerCAmelCase__ = dst_width lowerCAmelCase__ = dst_height lowerCAmelCase__ = self.src_w / self.dst_w lowerCAmelCase__ = self.src_h / self.dst_h lowerCAmelCase__ = lowerCAmelCase__ = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def __snake_case ( self : List[str] ): for i in range(self.dst_h ): for j in range(self.dst_w ): lowerCAmelCase__ = self.img[self.get_y(SCREAMING_SNAKE_CASE_ )][self.get_x(SCREAMING_SNAKE_CASE_ )] def __snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int ): return int(self.ratio_x * x ) def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : int ): return int(self.ratio_y * y ) if __name__ == "__main__": _UpperCAmelCase , _UpperCAmelCase : List[str] = 800, 600 _UpperCAmelCase : Tuple = imread("image_data/lena.jpg", 1) _UpperCAmelCase : str = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
288
1
def a__ ( __UpperCamelCase , __UpperCamelCase = 0 ): SCREAMING_SNAKE_CASE_ = length or len(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = list_data[i + 1], list_data[i] SCREAMING_SNAKE_CASE_ = True return list_data if not swapped else bubble_sort(__UpperCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
140
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __a :Dict = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Tuple=False ): """simple docstring""" A_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Any=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A_ = "" else: A_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) A_ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[ : config.hidden_size, : ] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[ -config.hidden_size :, : ] A_ = in_proj_bias[-config.hidden_size :] def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = dct.pop(__UpperCamelCase ) A_ = val def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ): """simple docstring""" A_ = ViTConfig() A_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": A_ = True A_ = int(vit_name[-12:-10] ) A_ = int(vit_name[-9:-6] ) else: A_ = 1000 A_ = "huggingface/label-files" A_ = "imagenet-1k-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} A_ = int(vit_name[-6:-4] ) A_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): A_ = 192 A_ = 768 A_ = 12 A_ = 3 elif vit_name[9:].startswith("small" ): A_ = 384 A_ = 1536 A_ = 12 A_ = 6 else: pass else: if vit_name[4:].startswith("small" ): A_ = 768 A_ = 2304 A_ = 8 A_ = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): A_ = 1024 A_ = 4096 A_ = 24 A_ = 16 elif vit_name[4:].startswith("huge" ): A_ = 1280 A_ = 5120 A_ = 32 A_ = 16 # load original model from timm A_ = timm.create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ = timm_model.state_dict() if base_model: remove_classification_head_(__UpperCamelCase ) A_ = create_rename_keys(__UpperCamelCase ,__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) read_in_q_k_v(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": A_ = ViTModel(__UpperCamelCase ).eval() else: A_ = ViTForImageClassification(__UpperCamelCase ).eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: A_ = DeiTImageProcessor(size=config.image_size ) else: A_ = ViTImageProcessor(size=config.image_size ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ) A_ = encoding["pixel_values"] A_ = model(__UpperCamelCase ) if base_model: A_ = timm_model.forward_features(__UpperCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__UpperCamelCase ,outputs.pooler_output ,atol=1E-3 ) else: A_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __a :Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
86
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a__ : def __init__( self : Dict , lowerCamelCase_ : List[str] , ): a_ : List[Any] = parent a_ : str = 1_3 a_ : Optional[int] = 7 a_ : int = True a_ : Any = True a_ : List[Any] = True a_ : Any = 9_9 a_ : int = 3_2 a_ : Tuple = 2 a_ : Union[str, Any] = 4 a_ : int = 3_7 a_ : Optional[int] = "gelu" a_ : Tuple = 0.1 a_ : Dict = 0.1 a_ : str = 5_1_2 a_ : Tuple = 1_6 a_ : Tuple = 2 a_ : str = 0.0_2 a_ : int = 3 a_ : Optional[int] = 4 a_ : Dict = None def UpperCAmelCase( self : int ): a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Tuple = None if self.use_input_mask: a_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) a_ : Any = None a_ : Dict = None a_ : Union[str, Any] = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) a_ : Optional[Any] = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase( self : int ): ( a_ ) : List[str] = self.prepare_config_and_inputs() a_ : str = True a_ : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a_ : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] ): a_ : Tuple = TFEsmModel(config=__lowerCamelCase ) a_ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask} a_ : Optional[int] = model(__lowerCamelCase ) a_ : List[Any] = [input_ids, input_mask] a_ : List[Any] = model(__lowerCamelCase ) a_ : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase( self : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str] , ): a_ : Dict = True a_ : Union[str, Any] = TFEsmModel(config=__lowerCamelCase ) a_ : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } a_ : str = model(__lowerCamelCase ) a_ : Tuple = [input_ids, input_mask] a_ : Union[str, Any] = model(__lowerCamelCase , encoder_hidden_states=__lowerCamelCase ) # Also check the case where encoder outputs are not passed a_ : str = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] ): a_ : Dict = TFEsmForMaskedLM(config=__lowerCamelCase ) a_ : Any = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : int ): a_ : Any = self.num_labels a_ : Tuple = TFEsmForTokenClassification(config=__lowerCamelCase ) a_ : Dict = {"input_ids": input_ids, "attention_mask": input_mask} a_ : int = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase( self : Dict ): a_ : int = self.prepare_config_and_inputs() ( a_ ) : Tuple = config_and_inputs a_ : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( _A , _A , unittest.TestCase ): lowerCamelCase__: List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__: List[str] = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__: Optional[Any] = False lowerCamelCase__: List[str] = False def UpperCAmelCase( self : int ): a_ : Any = TFEsmModelTester(self ) a_ : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def UpperCAmelCase( self : List[str] ): self.config_tester.run_common_tests() def UpperCAmelCase( self : int ): a_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCAmelCase( self : Optional[int] ): a_ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCamelCase ) def UpperCAmelCase( self : int ): a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCAmelCase( self : Optional[Any] ): a_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def UpperCAmelCase( self : str ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Tuple = TFEsmModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCAmelCase( self : List[str] ): pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCAmelCase( self : List[Any] ): pass def UpperCAmelCase( self : List[Any] ): a_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Union[str, Any] = model_class(__lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer a_ : Union[str, Any] = model.get_bias() assert isinstance(__lowerCamelCase , __lowerCamelCase ) for k, v in name.items(): assert isinstance(__lowerCamelCase , tf.Variable ) else: a_ : List[Any] = model.get_output_embeddings() assert x is None a_ : List[Any] = model.get_bias() assert name is None @require_tf class a__ ( unittest.TestCase ): @slow def UpperCAmelCase( self : Union[str, Any] ): a_ : Any = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) a_ : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) a_ : Any = model(__lowerCamelCase )[0] a_ : int = [1, 6, 3_3] self.assertEqual(list(output.numpy().shape ) , __lowerCamelCase ) # compare the actual values for a slice. a_ : Union[str, Any] = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCAmelCase( self : Optional[int] ): a_ : Optional[int] = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) a_ : int = tf.constant([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) a_ : Optional[Any] = model(__lowerCamelCase )[0] # compare the actual values for a slice. a_ : Dict = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
717
import argparse import collections import json import os import re import string import sys import numpy as np __lowerCamelCase = re.compile(R'''\b(a|an|the)\b''', re.UNICODE) __lowerCamelCase = None def _a ( ): a_ : Tuple = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" ) parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" ) parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" ) parser.add_argument( """--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" ) parser.add_argument( """--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" ) parser.add_argument( """--na-prob-thresh""" , """-t""" , type=__UpperCamelCase , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , ) parser.add_argument( """--out-image-dir""" , """-p""" , metavar="""out_images""" , default=__UpperCamelCase , help="""Save precision-recall curves to directory.""" ) parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _a ( __UpperCamelCase ): a_ : Union[str, Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a_ : Union[str, Any] = bool(qa["""answers"""]["""text"""] ) return qid_to_has_ans def _a ( __UpperCamelCase ): def remove_articles(__UpperCamelCase ): return ARTICLES_REGEX.sub(""" """ , __UpperCamelCase ) def white_space_fix(__UpperCamelCase ): return " ".join(text.split() ) def remove_punc(__UpperCamelCase ): a_ : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) ) def _a ( __UpperCamelCase ): if not s: return [] return normalize_answer(__UpperCamelCase ).split() def _a ( __UpperCamelCase , __UpperCamelCase ): return int(normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase ) ) def _a ( __UpperCamelCase , __UpperCamelCase ): a_ : List[Any] = get_tokens(__UpperCamelCase ) a_ : str = get_tokens(__UpperCamelCase ) a_ : Tuple = collections.Counter(__UpperCamelCase ) & collections.Counter(__UpperCamelCase ) a_ : str = sum(common.values() ) if len(__UpperCamelCase ) == 0 or len(__UpperCamelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a_ : Any = 1.0 * num_same / len(__UpperCamelCase ) a_ : Optional[int] = 1.0 * num_same / len(__UpperCamelCase ) a_ : List[Any] = (2 * precision * recall) / (precision + recall) return fa def _a ( __UpperCamelCase , __UpperCamelCase ): a_ : Tuple = {} a_ : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a_ : str = qa["""id"""] a_ : Dict = [t for t in qa["""answers"""]["""text"""] if normalize_answer(__UpperCamelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a_ : Union[str, Any] = [""""""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue a_ : int = preds[qid] # Take max over all gold answers a_ : Union[str, Any] = max(compute_exact(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) a_ : int = max(compute_fa(__UpperCamelCase , __UpperCamelCase ) for a in gold_answers ) return exact_scores, fa_scores def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): a_ : Optional[Any] = {} for qid, s in scores.items(): a_ : Optional[int] = na_probs[qid] > na_prob_thresh if pred_na: a_ : List[Any] = float(not qid_to_has_ans[qid] ) else: a_ : List[Any] = s return new_scores def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None ): if not qid_list: a_ : List[Any] = len(__UpperCamelCase ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores.values() ) / total), ("""f1""", 1_00.0 * sum(fa_scores.values() ) / total), ("""total""", total), ] ) else: a_ : Tuple = len(__UpperCamelCase ) return collections.OrderedDict( [ ("""exact""", 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total), ("""f1""", 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total), ("""total""", total), ] ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): for k in new_eval: a_ : Any = new_eval[k] def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): plt.step(__UpperCamelCase , __UpperCamelCase , color="""b""" , alpha=0.2 , where="""post""" ) plt.fill_between(__UpperCamelCase , __UpperCamelCase , step="""post""" , alpha=0.2 , color="""b""" ) plt.xlabel("""Recall""" ) plt.ylabel("""Precision""" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__UpperCamelCase ) plt.savefig(__UpperCamelCase ) plt.clf() def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None ): a_ : List[Any] = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : na_probs[k] ) a_ : int = 0.0 a_ : Tuple = 1.0 a_ : Union[str, Any] = 0.0 a_ : List[str] = [1.0] a_ : int = [0.0] a_ : Optional[int] = 0.0 for i, qid in enumerate(__UpperCamelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] a_ : Union[str, Any] = true_pos / float(i + 1 ) a_ : Tuple = true_pos / float(__UpperCamelCase ) if i == len(__UpperCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__UpperCamelCase ) recalls.append(__UpperCamelCase ) if out_image: plot_pr_curve(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return {"ap": 1_00.0 * avg_prec} def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if out_image_dir and not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) a_ : Any = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a_ : Union[str, Any] = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , ) a_ : Any = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , ) a_ : int = {k: float(__UpperCamelCase ) for k, v in qid_to_has_ans.items()} a_ : Dict = make_precision_recall_eval( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , out_image=os.path.join(__UpperCamelCase , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , ) merge_eval(__UpperCamelCase , __UpperCamelCase , """pr_exact""" ) merge_eval(__UpperCamelCase , __UpperCamelCase , """pr_f1""" ) merge_eval(__UpperCamelCase , __UpperCamelCase , """pr_oracle""" ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if not qid_list: return a_ : List[Any] = [na_probs[k] for k in qid_list] a_ : List[Any] = np.ones_like(__UpperCamelCase ) / float(len(__UpperCamelCase ) ) plt.hist(__UpperCamelCase , weights=__UpperCamelCase , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel("""Model probability of no-answer""" ) plt.ylabel("""Proportion of dataset""" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__UpperCamelCase , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): a_ : Optional[int] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a_ : Tuple = num_no_ans a_ : List[Any] = cur_score a_ : List[Any] = 0.0 a_ : int = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : na_probs[k] ) for i, qid in enumerate(__UpperCamelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: a_ : Optional[Any] = scores[qid] else: if preds[qid]: a_ : Optional[int] = -1 else: a_ : Optional[int] = 0 cur_score += diff if cur_score > best_score: a_ : str = cur_score a_ : int = na_probs[qid] return 1_00.0 * best_score / len(__UpperCamelCase ), best_thresh def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): a_ , a_ : Optional[int] = find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) a_ , a_ : Optional[Any] = find_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) a_ : Dict = best_exact a_ : Optional[Any] = exact_thresh a_ : Optional[Any] = best_fa a_ : Union[str, Any] = fa_thresh def _a ( ): with open(OPTS.data_file ) as f: a_ : str = json.load(__UpperCamelCase ) a_ : Optional[int] = dataset_json["""data"""] with open(OPTS.pred_file ) as f: a_ : Dict = json.load(__UpperCamelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a_ : List[str] = json.load(__UpperCamelCase ) else: a_ : List[str] = {k: 0.0 for k in preds} a_ : Any = make_qid_to_has_ans(__UpperCamelCase ) # maps qid to True/False a_ : Any = [k for k, v in qid_to_has_ans.items() if v] a_ : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v] a_ , a_ : List[str] = get_raw_scores(__UpperCamelCase , __UpperCamelCase ) a_ : int = apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) a_ : Optional[int] = apply_no_ans_threshold(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.na_prob_thresh ) a_ : List[str] = make_eval_dict(__UpperCamelCase , __UpperCamelCase ) if has_ans_qids: a_ : Dict = make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , """HasAns""" ) if no_ans_qids: a_ : List[str] = make_eval_dict(__UpperCamelCase , __UpperCamelCase , qid_list=__UpperCamelCase ) merge_eval(__UpperCamelCase , __UpperCamelCase , """NoAns""" ) if OPTS.na_prob_file: find_all_best_thresh(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , """hasAns""" ) histogram_na_prob(__UpperCamelCase , __UpperCamelCase , OPTS.out_image_dir , """noAns""" ) if OPTS.out_file: with open(OPTS.out_file , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) else: print(json.dumps(__UpperCamelCase , indent=2 ) ) if __name__ == "__main__": __lowerCamelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
478
0
from __future__ import annotations def __snake_case ( _UpperCamelCase , _UpperCamelCase = None ) -> list[list[str]]: _a = word_bank or [] # create a table _a = len(_UpperCamelCase ) + 1 _a = [] for _ in range(_UpperCamelCase ): table.append([] ) # seed value _a = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCamelCase )] == word: _a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCamelCase )]: combination.reverse() return table[len(_UpperCamelCase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
487
def __snake_case ( _UpperCamelCase ) -> int: _a = len(_UpperCamelCase ) _a = sum(_UpperCamelCase ) _a = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _a = True for i in range(1 , s + 1 ): _a = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _a = dp[i][j - 1] if arr[i - 1] <= j: _a = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _a = s - 2 * j break return diff
487
1
'''simple docstring''' from __future__ import annotations import numpy as np def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = np.shape(SCREAMING_SNAKE_CASE_ ) if rows != columns: lowerCamelCase : int = ( "'table' has to be of square shaped array but got a " f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = np.zeros((rows, columns) ) lowerCamelCase : List[str] = np.zeros((rows, columns) ) for i in range(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Dict = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) lowerCamelCase : Dict = (table[i][j] - total) / upper[j][j] lowerCamelCase : Dict = 1 for j in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase : int = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase : Any = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
702
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def lowercase_( SCREAMING_SNAKE_CASE_ = "isbn/0140328726" ): '''simple docstring''' lowerCamelCase : List[Any] = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: lowerCamelCase : Tuple = f"""{olid} is not a valid Open Library olid""" raise ValueError(SCREAMING_SNAKE_CASE_ ) return requests.get(f"""https://openlibrary.org/{new_olid}.json""" ).json() def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } lowerCamelCase : Tuple = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} lowerCamelCase : Union[str, Any] = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] lowerCamelCase : str = data["First sentence"]["value"] for key, value in data.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Any = ", ".join(SCREAMING_SNAKE_CASE_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: _snake_case = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: _snake_case = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('''\n'''.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
231
0