code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase__ ( __lowercase , __lowercase , __lowercase ):
return params[F'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :]
def lowerCamelCase__ ( __lowercase , __lowercase , __lowercase , __lowercase="attention" ):
snake_case : Tuple = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] )
snake_case : Optional[Any] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
snake_case : Optional[int] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] )
snake_case : Dict = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
snake_case : Dict = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] )
snake_case : Optional[int] = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
snake_case : Optional[int] = np.ascontiguousarray(params[F'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] )
snake_case : Union[str, Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def lowerCamelCase__ ( __lowercase , __lowercase , __lowercase , __lowercase=False ):
if split_mlp_wi:
snake_case : Optional[int] = params[F'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :]
snake_case : List[str] = params[F'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :]
snake_case : Dict = (wi_a, wi_a)
else:
snake_case : Any = params[F'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :]
snake_case : List[str] = params[F'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :]
return wi, wo
def lowerCamelCase__ ( __lowercase , __lowercase , __lowercase , __lowercase ):
return params[F'''{prefix}/{prefix}/{layer_name}/scale'''][:, i]
def lowerCamelCase__ ( __lowercase , *, __lowercase , __lowercase , __lowercase = False ):
snake_case : Tuple = traverse_util.flatten_dict(variables["""target"""] )
snake_case : str = {'''/'''.join(UpperCamelCase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
snake_case : int = '''encoder/encoder/mlp/wi_0/kernel''' in old
print("""Split MLP:""" , UpperCamelCase__ )
snake_case : int = collections.OrderedDict()
# Shared embeddings.
snake_case : int = old['''token_embedder/embedding''']
# Encoder.
for i in range(UpperCamelCase__ ):
# Block i, layer 0 (Self Attention).
snake_case : Dict = tax_layer_norm_lookup(UpperCamelCase__ , UpperCamelCase__ , """encoder""" , """pre_attention_layer_norm""" )
snake_case : Any = tax_attention_lookup(UpperCamelCase__ , UpperCamelCase__ , """encoder""" , """attention""" )
snake_case : List[str] = layer_norm
snake_case : Any = k.T
snake_case : Optional[int] = o.T
snake_case : int = q.T
snake_case : str = v.T
# Block i, layer 1 (MLP).
snake_case : str = tax_layer_norm_lookup(UpperCamelCase__ , UpperCamelCase__ , """encoder""" , """pre_mlp_layer_norm""" )
snake_case : List[Any] = tax_mlp_lookup(UpperCamelCase__ , UpperCamelCase__ , """encoder""" , UpperCamelCase__ )
snake_case : List[Any] = layer_norm
if split_mlp_wi:
snake_case : Dict = wi[0].T
snake_case : List[str] = wi[1].T
else:
snake_case : int = wi.T
snake_case : Dict = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
snake_case : str = tax_relpos_bias_lookup(
UpperCamelCase__ , UpperCamelCase__ , """encoder""" ).T
snake_case : List[str] = old['''encoder/encoder_norm/scale''']
if not scalable_attention:
snake_case : Optional[Any] = tax_relpos_bias_lookup(
UpperCamelCase__ , 0 , """encoder""" ).T
snake_case : Optional[int] = tax_relpos_bias_lookup(
UpperCamelCase__ , 0 , """decoder""" ).T
if not is_encoder_only:
# Decoder.
for i in range(UpperCamelCase__ ):
# Block i, layer 0 (Self Attention).
snake_case : str = tax_layer_norm_lookup(UpperCamelCase__ , UpperCamelCase__ , """decoder""" , """pre_self_attention_layer_norm""" )
snake_case : Tuple = tax_attention_lookup(UpperCamelCase__ , UpperCamelCase__ , """decoder""" , """self_attention""" )
snake_case : Any = layer_norm
snake_case : int = k.T
snake_case : List[Any] = o.T
snake_case : List[str] = q.T
snake_case : List[str] = v.T
# Block i, layer 1 (Cross Attention).
snake_case : List[str] = tax_layer_norm_lookup(UpperCamelCase__ , UpperCamelCase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
snake_case : int = tax_attention_lookup(UpperCamelCase__ , UpperCamelCase__ , """decoder""" , """encoder_decoder_attention""" )
snake_case : Optional[int] = layer_norm
snake_case : List[str] = k.T
snake_case : List[str] = o.T
snake_case : int = q.T
snake_case : str = v.T
# Block i, layer 2 (MLP).
snake_case : Tuple = tax_layer_norm_lookup(UpperCamelCase__ , UpperCamelCase__ , """decoder""" , """pre_mlp_layer_norm""" )
snake_case : Optional[int] = tax_mlp_lookup(UpperCamelCase__ , UpperCamelCase__ , """decoder""" , UpperCamelCase__ )
snake_case : Optional[int] = layer_norm
if split_mlp_wi:
snake_case : List[Any] = wi[0].T
snake_case : List[str] = wi[1].T
else:
snake_case : Dict = wi.T
snake_case : int = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
snake_case : Any = tax_relpos_bias_lookup(UpperCamelCase__ , UpperCamelCase__ , """decoder""" ).T
snake_case : Tuple = old['''decoder/decoder_norm/scale''']
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
snake_case : List[Any] = old['''decoder/logits_dense/kernel'''].T
return new
def lowerCamelCase__ ( __lowercase , __lowercase ):
snake_case : Union[str, Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
snake_case : Optional[Any] = state_dict['''shared.weight''']
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
snake_case : Optional[Any] = state_dict['''shared.weight''']
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
snake_case : List[Any] = state_dict['''shared.weight''']
return state_dict
def lowerCamelCase__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ):
snake_case : Dict = checkpoints.load_tax_checkpoint(UpperCamelCase__ )
snake_case : int = convert_tax_to_pytorch(
UpperCamelCase__ , num_layers=config.num_layers , is_encoder_only=UpperCamelCase__ , scalable_attention=UpperCamelCase__ )
snake_case : Tuple = make_state_dict(UpperCamelCase__ , UpperCamelCase__ )
model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
def lowerCamelCase__ ( __lowercase , __lowercase , __lowercase , __lowercase = False , __lowercase = False , ):
snake_case : List[str] = MTaConfig.from_json_file(UpperCamelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
snake_case : Union[str, Any] = UMTaEncoderModel(UpperCamelCase__ )
else:
snake_case : Optional[int] = UMTaForConditionalGeneration(UpperCamelCase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(UpperCamelCase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(UpperCamelCase__ )
print("""Done""" )
if __name__ == "__main__":
lowercase : int = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""")
# Required parameters
parser.add_argument(
"""--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False
)
parser.add_argument(
"""--scalable_attention""",
action="""store_true""",
help="""Whether the model uses scaled attention (umt5 model)""",
default=False,
)
lowercase : int = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 116 |
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=[3_0, 3_0] , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1_0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=1_0 , ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ : Any = parent
UpperCamelCase__ : Optional[Any] = batch_size
UpperCamelCase__ : str = image_size
UpperCamelCase__ : Union[str, Any] = patch_size
UpperCamelCase__ : Union[str, Any] = num_channels
UpperCamelCase__ : Tuple = is_training
UpperCamelCase__ : Optional[int] = use_labels
UpperCamelCase__ : Optional[int] = hidden_size
UpperCamelCase__ : Any = num_hidden_layers
UpperCamelCase__ : Optional[Any] = num_attention_heads
UpperCamelCase__ : int = intermediate_size
UpperCamelCase__ : Tuple = hidden_act
UpperCamelCase__ : int = hidden_dropout_prob
UpperCamelCase__ : str = attention_probs_dropout_prob
UpperCamelCase__ : str = type_sequence_label_size
UpperCamelCase__ : str = initializer_range
UpperCamelCase__ : Dict = num_labels
UpperCamelCase__ : List[Any] = scope
UpperCamelCase__ : str = n_targets
UpperCamelCase__ : int = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
UpperCamelCase__ : int = (image_size[1] // patch_size) * (image_size[0] // patch_size)
UpperCamelCase__ : Any = num_patches + 1 + self.num_detection_tokens
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
UpperCamelCase__ : int = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
UpperCamelCase__ : Union[str, Any] = []
for i in range(self.batch_size ):
UpperCamelCase__ : Optional[Any] = {}
UpperCamelCase__ : str = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[Any] = torch.rand(self.n_targets , 4 , device=__SCREAMING_SNAKE_CASE )
labels.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Any = self.get_config()
return config, pixel_values, labels
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
"""simple docstring"""
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ : Dict = YolosModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
UpperCamelCase__ : Optional[int] = YolosForObjectDetection(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ : str = model(pixel_values=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
UpperCamelCase__ : Optional[Any] = model(pixel_values=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ : str = self.prepare_config_and_inputs()
UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Union[str, Any] = config_and_inputs
UpperCamelCase__ : Union[str, Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ = (
{'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {}
)
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ : int = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
UpperCamelCase__ : List[Any] = []
for i in range(self.model_tester.batch_size ):
UpperCamelCase__ : Optional[int] = {}
UpperCamelCase__ : Union[str, Any] = torch.ones(
size=(self.model_tester.n_targets,) , device=__SCREAMING_SNAKE_CASE , dtype=torch.long )
UpperCamelCase__ : Tuple = torch.ones(
self.model_tester.n_targets , 4 , device=__SCREAMING_SNAKE_CASE , dtype=torch.float )
labels.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[int] = labels
return inputs_dict
def __SCREAMING_SNAKE_CASE ( self ) -> int:
"""simple docstring"""
UpperCamelCase__ : Any = YolosModelTester(self )
UpperCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __SCREAMING_SNAKE_CASE ( self ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self ) -> str:
"""simple docstring"""
pass
def __SCREAMING_SNAKE_CASE ( self ) -> str:
"""simple docstring"""
UpperCamelCase__ ,UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : Dict = model_class(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase__ : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) )
def __SCREAMING_SNAKE_CASE ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ ,UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : Any = model_class(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase__ : List[Any] = [*signature.parameters.keys()]
UpperCamelCase__ : List[Any] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ ,UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ : List[str] = True
# in YOLOS, the seq_len is different
UpperCamelCase__ : List[str] = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
UpperCamelCase__ : Tuple = True
UpperCamelCase__ : int = False
UpperCamelCase__ : Union[str, Any] = True
UpperCamelCase__ : str = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
UpperCamelCase__ : Tuple = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
UpperCamelCase__ : Tuple = outputs.attentions
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
UpperCamelCase__ : str = True
UpperCamelCase__ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
UpperCamelCase__ : Optional[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
UpperCamelCase__ : List[Any] = outputs.attentions
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
UpperCamelCase__ : Optional[Any] = len(__SCREAMING_SNAKE_CASE )
# Check attention is always last and order is fine
UpperCamelCase__ : Optional[Any] = True
UpperCamelCase__ : List[Any] = True
UpperCamelCase__ : List[Any] = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
UpperCamelCase__ : Optional[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
UpperCamelCase__ : Optional[int] = 1
self.assertEqual(out_len + added_hidden_states , len(__SCREAMING_SNAKE_CASE ) )
UpperCamelCase__ : int = outputs.attentions
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def __SCREAMING_SNAKE_CASE ( self ) -> Any:
"""simple docstring"""
def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
UpperCamelCase__ : str = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
UpperCamelCase__ : Optional[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
UpperCamelCase__ : Tuple = outputs.hidden_states
UpperCamelCase__ : Tuple = getattr(
self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# YOLOS has a different seq_length
UpperCamelCase__ : Dict = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
UpperCamelCase__ ,UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase__ : Optional[Any] = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase__ : Any = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*__SCREAMING_SNAKE_CASE )
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
"""simple docstring"""
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ : Dict = YolosModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( ):
UpperCamelCase__ : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __SCREAMING_SNAKE_CASE ( self ) -> str:
"""simple docstring"""
return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase__ : List[Any] = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[Any] = self.default_image_processor
UpperCamelCase__ : int = prepare_img()
UpperCamelCase__ : Optional[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
UpperCamelCase__ : int = model(inputs.pixel_values )
# verify outputs
UpperCamelCase__ : Dict = torch.Size((1, 1_0_0, 9_2) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[int] = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=__SCREAMING_SNAKE_CASE , )
UpperCamelCase__ : Dict = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify postprocessing
UpperCamelCase__ : Any = image_processor.post_process_object_detection(
__SCREAMING_SNAKE_CASE , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
UpperCamelCase__ : List[Any] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[str] = [7_5, 7_5, 1_7, 6_3, 1_7]
UpperCamelCase__ : List[str] = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(__SCREAMING_SNAKE_CASE )
self.assertEqual(len(results['''scores'''] ) , 5 )
self.assertTrue(torch.allclose(results['''scores'''] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
self.assertSequenceEqual(results['''labels'''].tolist() , __SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(results['''boxes'''][0, :] , __SCREAMING_SNAKE_CASE ) )
| 285 | 0 |
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
__UpperCAmelCase = TypeVar("KT")
__UpperCAmelCase = TypeVar("VT")
class UpperCamelCase__ ( Generic[KT, VT] ):
"""simple docstring"""
def __init__( self , _A = "root" , _A = None ) -> Dict:
SCREAMING_SNAKE_CASE_ = key
SCREAMING_SNAKE_CASE_ = value
SCREAMING_SNAKE_CASE_ = []
def __repr__( self ) -> str:
return F'''Node({self.key}: {self.value})'''
@property
def _UpperCamelCase ( self ) -> int:
return len(self.forward )
class UpperCamelCase__ ( Generic[KT, VT] ):
"""simple docstring"""
def __init__( self , _A = 0.5 , _A = 16 ) -> Any:
SCREAMING_SNAKE_CASE_ = Node[KT, VT]()
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = p
SCREAMING_SNAKE_CASE_ = max_level
def __str__( self ) -> str:
SCREAMING_SNAKE_CASE_ = list(self )
if len(_A ) == 0:
return F'''SkipList(level={self.level})'''
SCREAMING_SNAKE_CASE_ = max((len(str(_A ) ) for item in items) , default=4 )
SCREAMING_SNAKE_CASE_ = max(_A , 4 ) + 4
SCREAMING_SNAKE_CASE_ = self.head
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = node.forward.copy()
lines.append(F'''[{node.key}]'''.ljust(_A , '''-''' ) + '''* ''' * len(_A ) )
lines.append(''' ''' * label_size + '''| ''' * len(_A ) )
while len(node.forward ) != 0:
SCREAMING_SNAKE_CASE_ = node.forward[0]
lines.append(
F'''[{node.key}]'''.ljust(_A , '''-''' )
+ ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) )
lines.append(''' ''' * label_size + '''| ''' * len(_A ) )
SCREAMING_SNAKE_CASE_ = node.forward
lines.append('''None'''.ljust(_A ) + '''* ''' * len(_A ) )
return F'''SkipList(level={self.level})\n''' + "\n".join(_A )
def __iter__( self ) -> List[str]:
SCREAMING_SNAKE_CASE_ = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
SCREAMING_SNAKE_CASE_ = node.forward[0]
def _UpperCamelCase ( self ) -> int:
SCREAMING_SNAKE_CASE_ = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def _UpperCamelCase ( self , _A ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]:
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
SCREAMING_SNAKE_CASE_ = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(_A )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def _UpperCamelCase ( self , _A ) -> List[str]:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._locate_node(_A )
if node is not None:
for i, update_node in enumerate(_A ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
SCREAMING_SNAKE_CASE_ = node.forward[i]
else:
SCREAMING_SNAKE_CASE_ = update_node.forward[:i]
def _UpperCamelCase ( self , _A , _A ) -> List[str]:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._locate_node(_A )
if node is not None:
SCREAMING_SNAKE_CASE_ = value
else:
SCREAMING_SNAKE_CASE_ = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , _A ):
update_vector.append(self.head )
SCREAMING_SNAKE_CASE_ = level
SCREAMING_SNAKE_CASE_ = Node(_A , _A )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(_A )
else:
SCREAMING_SNAKE_CASE_ = new_node
def _UpperCamelCase ( self , _A ) -> VT | None:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._locate_node(_A )
if node is not None:
return node.value
return None
def A__ ( ):
SCREAMING_SNAKE_CASE_ = SkipList()
skip_list.insert('''Key1''', 3 )
skip_list.insert('''Key2''', 12 )
skip_list.insert('''Key3''', 41 )
skip_list.insert('''Key4''', -19 )
SCREAMING_SNAKE_CASE_ = skip_list.head
SCREAMING_SNAKE_CASE_ = {}
while node.level != 0:
SCREAMING_SNAKE_CASE_ = node.forward[0]
SCREAMING_SNAKE_CASE_ = node.value
assert len(__lowerCamelCase ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 12
assert all_values["Key3"] == 41
assert all_values["Key4"] == -19
def A__ ( ):
SCREAMING_SNAKE_CASE_ = SkipList()
skip_list.insert('''Key1''', 10 )
skip_list.insert('''Key1''', 12 )
skip_list.insert('''Key5''', 7 )
skip_list.insert('''Key7''', 10 )
skip_list.insert('''Key10''', 5 )
skip_list.insert('''Key7''', 7 )
skip_list.insert('''Key5''', 5 )
skip_list.insert('''Key10''', 10 )
SCREAMING_SNAKE_CASE_ = skip_list.head
SCREAMING_SNAKE_CASE_ = {}
while node.level != 0:
SCREAMING_SNAKE_CASE_ = node.forward[0]
SCREAMING_SNAKE_CASE_ = node.value
if len(__lowerCamelCase ) != 4:
print()
assert len(__lowerCamelCase ) == 4
assert all_values["Key1"] == 12
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 10
def A__ ( ):
SCREAMING_SNAKE_CASE_ = SkipList()
assert skip_list.find('''Some key''' ) is None
def A__ ( ):
SCREAMING_SNAKE_CASE_ = SkipList()
skip_list.insert('''Key2''', 20 )
assert skip_list.find('''Key2''' ) == 20
skip_list.insert('''Some Key''', 10 )
skip_list.insert('''Key2''', 8 )
skip_list.insert('''V''', 13 )
assert skip_list.find('''Y''' ) is None
assert skip_list.find('''Key2''' ) == 8
assert skip_list.find('''Some Key''' ) == 10
assert skip_list.find('''V''' ) == 13
def A__ ( ):
SCREAMING_SNAKE_CASE_ = SkipList()
skip_list.delete('''Some key''' )
assert len(skip_list.head.forward ) == 0
def A__ ( ):
SCREAMING_SNAKE_CASE_ = SkipList()
skip_list.insert('''Key1''', 12 )
skip_list.insert('''V''', 13 )
skip_list.insert('''X''', 14 )
skip_list.insert('''Key2''', 15 )
skip_list.delete('''V''' )
skip_list.delete('''Key2''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''Key2''' ) is None
def A__ ( ):
SCREAMING_SNAKE_CASE_ = SkipList()
skip_list.insert('''Key1''', 12 )
skip_list.insert('''V''', 13 )
skip_list.insert('''X''', 14 )
skip_list.insert('''Key2''', 15 )
skip_list.delete('''V''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) == 14
assert skip_list.find('''Key1''' ) == 12
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''X''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) == 12
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''Key1''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) is None
assert skip_list.find('''Key2''' ) == 15
skip_list.delete('''Key2''' )
assert skip_list.find('''V''' ) is None
assert skip_list.find('''X''' ) is None
assert skip_list.find('''Key1''' ) is None
assert skip_list.find('''Key2''' ) is None
def A__ ( ):
SCREAMING_SNAKE_CASE_ = SkipList()
skip_list.insert('''Key1''', 12 )
skip_list.insert('''V''', 13 )
skip_list.insert('''X''', 1_42 )
skip_list.insert('''Key2''', 15 )
skip_list.delete('''X''' )
def traverse_keys(__lowerCamelCase ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(__lowerCamelCase )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def A__ ( ):
def is_sorted(__lowerCamelCase ):
return all(next_item >= item for item, next_item in zip(__lowerCamelCase, lst[1:] ) )
SCREAMING_SNAKE_CASE_ = SkipList()
for i in range(10 ):
skip_list.insert(__lowerCamelCase, __lowerCamelCase )
assert is_sorted(list(__lowerCamelCase ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(__lowerCamelCase ) )
skip_list.insert(-12, -12 )
skip_list.insert(77, 77 )
assert is_sorted(list(__lowerCamelCase ) )
def A__ ( ):
for _ in range(1_00 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def A__ ( ):
SCREAMING_SNAKE_CASE_ = SkipList()
skip_list.insert(2, '''2''' )
skip_list.insert(4, '''4''' )
skip_list.insert(6, '''4''' )
skip_list.insert(4, '''5''' )
skip_list.insert(8, '''4''' )
skip_list.insert(9, '''4''' )
skip_list.delete(4 )
print(__lowerCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 597 |
import socket
def A__ ( ):
SCREAMING_SNAKE_CASE_ = socket.socket(socket.AF_INET, socket.SOCK_STREAM )
SCREAMING_SNAKE_CASE_ = socket.gethostname()
SCREAMING_SNAKE_CASE_ = 1_23_12
sock.connect((host, port) )
sock.send(B'''Hello server!''' )
with open('''Received_file''', '''wb''' ) as out_file:
print('''File opened''' )
print('''Receiving data...''' )
while True:
SCREAMING_SNAKE_CASE_ = sock.recv(10_24 )
if not data:
break
out_file.write(__lowerCamelCase )
print('''Successfully received the file''' )
sock.close()
print('''Connection closed''' )
if __name__ == "__main__":
main()
| 597 | 1 |
'''simple docstring'''
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: Path , _lowerCamelCase: str = None , _lowerCamelCase: str = None , _lowerCamelCase: str = None , ):
if config_name_or_path is None:
__SCREAMING_SNAKE_CASE : List[str] = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base"""
if generator_tokenizer_name_or_path is None:
__SCREAMING_SNAKE_CASE : Union[str, Any] = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
__SCREAMING_SNAKE_CASE : Tuple = question_encoder_name_or_path
__SCREAMING_SNAKE_CASE : int = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration
# Save model.
__SCREAMING_SNAKE_CASE : List[Any] = RagConfig.from_pretrained(_lowerCamelCase )
__SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(_lowerCamelCase )
__SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained(_lowerCamelCase )
__SCREAMING_SNAKE_CASE : Union[str, Any] = gen_config
__SCREAMING_SNAKE_CASE : Union[str, Any] = question_encoder_config
__SCREAMING_SNAKE_CASE : Dict = model_class.from_pretrained_question_encoder_generator(
_lowerCamelCase , _lowerCamelCase , config=_lowerCamelCase )
rag_model.save_pretrained(_lowerCamelCase )
# Sanity check.
model_class.from_pretrained(_lowerCamelCase )
# Save tokenizers.
__SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(_lowerCamelCase )
gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" )
__SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase )
question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" )
if __name__ == "__main__":
UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'''--model_type''',
choices=['''rag_sequence''', '''rag_token'''],
required=True,
type=str,
help='''RAG model type: rag_sequence, rag_token''',
)
parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''')
parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''')
parser.add_argument(
'''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier'''
)
parser.add_argument(
'''--generator_tokenizer_name_or_path''',
type=str,
help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''',
)
parser.add_argument(
'''--question_encoder_tokenizer_name_or_path''',
type=str,
help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''',
)
parser.add_argument(
'''--config_name_or_path''',
type=str,
help=(
'''Identifier of the model config to use, if not provided, resolves to a base config for a given'''
''' ``model_type``'''
),
)
UpperCamelCase__ : Dict = parser.parse_args()
UpperCamelCase__ : Any = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
) | 578 |
'''simple docstring'''
import torch
from diffusers import DDPMScheduler
from .test_schedulers import SchedulerCommonTest
class _UpperCamelCase ( lowerCamelCase__ ):
'''simple docstring'''
_A : int = (DDPMScheduler,)
def UpperCamelCase__ ( self : Union[str, Any] , **lowerCAmelCase__ : Union[str, Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = {
"""num_train_timesteps""": 1_0_0_0,
"""beta_start""": 0.00_01,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""variance_type""": """fixed_small""",
"""clip_sample""": True,
}
config.update(**lowerCAmelCase__ )
return config
def UpperCamelCase__ ( self : List[Any] ):
"""simple docstring"""
for timesteps in [1, 5, 1_0_0, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def UpperCamelCase__ ( self : int ):
"""simple docstring"""
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def UpperCamelCase__ ( self : Optional[Any] ):
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def UpperCamelCase__ ( self : Any ):
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowerCAmelCase__ )
def UpperCamelCase__ ( self : Optional[int] ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase__ )
def UpperCamelCase__ ( self : Union[str, Any] ):
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase__ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase__ , prediction_type=lowerCAmelCase__ , sample_max_value=lowerCAmelCase__ , )
def UpperCamelCase__ ( self : int ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def UpperCamelCase__ ( self : Dict ):
"""simple docstring"""
for t in [0, 5_0_0, 9_9_9]:
self.check_over_forward(time_step=lowerCAmelCase__ )
def UpperCamelCase__ ( self : Tuple ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCAmelCase__ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_09_79 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5
def UpperCamelCase__ ( self : List[str] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : List[str] = len(lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_model()
__SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter
__SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase__ ) ):
# 1. predict noise residual
__SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ , lowerCAmelCase__ )
# 2. predict previous mean of sample x_t-1
__SCREAMING_SNAKE_CASE : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__SCREAMING_SNAKE_CASE : List[Any] = pred_prev_sample
__SCREAMING_SNAKE_CASE : Optional[int] = torch.sum(torch.abs(lowerCAmelCase__ ) )
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 2_58.96_06 ) < 1E-2
assert abs(result_mean.item() - 0.33_72 ) < 1E-3
def UpperCamelCase__ ( self : Optional[Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config(prediction_type="""v_prediction""" )
__SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Tuple = self.dummy_model()
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter
__SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase__ ) ):
# 1. predict noise residual
__SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , lowerCAmelCase__ )
# 2. predict previous mean of sample x_t-1
__SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
__SCREAMING_SNAKE_CASE : Optional[int] = pred_prev_sample
__SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(lowerCAmelCase__ ) )
__SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 2_02.02_96 ) < 1E-2
assert abs(result_mean.item() - 0.26_31 ) < 1E-3
def UpperCamelCase__ ( self : List[str] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Optional[int] = [1_0_0, 8_7, 5_0, 1, 0]
scheduler.set_timesteps(timesteps=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.timesteps
for i, timestep in enumerate(lowerCAmelCase__ ):
if i == len(lowerCAmelCase__ ) - 1:
__SCREAMING_SNAKE_CASE : List[str] = -1
else:
__SCREAMING_SNAKE_CASE : Dict = timesteps[i + 1]
__SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.previous_timestep(lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : int = prev_t.item()
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCamelCase__ ( self : str ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0]
with self.assertRaises(lowerCAmelCase__ , msg="""`custom_timesteps` must be in descending order.""" ):
scheduler.set_timesteps(timesteps=lowerCAmelCase__ )
def UpperCamelCase__ ( self : List[Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class(**lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0]
__SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowerCAmelCase__ )
with self.assertRaises(lowerCAmelCase__ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ):
scheduler.set_timesteps(num_inference_steps=lowerCAmelCase__ , timesteps=lowerCAmelCase__ )
def UpperCamelCase__ ( self : int ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : int = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCAmelCase__ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ):
scheduler.set_timesteps(timesteps=lowerCAmelCase__ ) | 578 | 1 |
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[Any]:
if isinstance(_SCREAMING_SNAKE_CASE , collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class lowerCAmelCase :
def A_ ( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ) -> Dict:
pass
def A_ ( self : Union[str, Any] ) -> Dict:
pass
def A_ ( self : List[Any] ) -> Tuple:
pass
def A_ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : np.ndarray , UpperCAmelCase : float ) -> int:
lowerCamelCase__ : Tuple = np.abs((a - b) ).max()
self.assertLessEqual(__UpperCamelCase , __UpperCamelCase , F"""Difference between torch and flax is {diff} (>= {tol}).""" )
def A_ ( self : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
lowerCamelCase__ : Dict = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase , __UpperCamelCase )
lowerCamelCase__ : Optional[int] = FlaxVisionTextDualEncoderModel(__UpperCamelCase )
lowerCamelCase__ : List[str] = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) )
def A_ ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : List[str]=None , **UpperCAmelCase : str ) -> Tuple:
lowerCamelCase__ , lowerCamelCase__ : str = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase )
lowerCamelCase__ : Dict = {'vision_model': vision_model, 'text_model': text_model}
lowerCamelCase__ : List[str] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase )
lowerCamelCase__ : Dict = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) )
def A_ ( self : str , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str]=None , **UpperCAmelCase : List[Any] ) -> Tuple:
lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase )
lowerCamelCase__ : str = {'vision_model': vision_model, 'text_model': text_model}
lowerCamelCase__ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase )
lowerCamelCase__ : str = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase )
lowerCamelCase__ : Any = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__UpperCamelCase )
lowerCamelCase__ : int = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase )
lowerCamelCase__ : str = model(input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase )
lowerCamelCase__ : Optional[Any] = after_output[0]
lowerCamelCase__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__UpperCamelCase , 1e-3 )
def A_ ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str]=None , **UpperCAmelCase : int ) -> Optional[Any]:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.get_vision_text_model(__UpperCamelCase , __UpperCamelCase )
lowerCamelCase__ : Dict = {'vision_model': vision_model, 'text_model': text_model}
lowerCamelCase__ : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCamelCase )
lowerCamelCase__ : str = model(
input_ids=__UpperCamelCase , pixel_values=__UpperCamelCase , attention_mask=__UpperCamelCase , output_attentions=__UpperCamelCase )
lowerCamelCase__ : Tuple = output.vision_model_output.attentions
self.assertEqual(len(__UpperCamelCase ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCamelCase__ : Union[str, Any] = to_atuple(vision_model.config.image_size )
lowerCamelCase__ : Dict = to_atuple(vision_model.config.patch_size )
lowerCamelCase__ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowerCamelCase__ : int = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowerCamelCase__ : str = output.text_model_output.attentions
self.assertEqual(len(__UpperCamelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def A_ ( self : int , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : List[str] ) -> Any:
pt_model.to(__UpperCamelCase )
pt_model.eval()
# prepare inputs
lowerCamelCase__ : int = inputs_dict
lowerCamelCase__ : int = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
lowerCamelCase__ : Union[str, Any] = pt_model(**__UpperCamelCase ).to_tuple()
lowerCamelCase__ : Optional[Any] = fx_model(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(__UpperCamelCase , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(__UpperCamelCase )
lowerCamelCase__ : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase , from_pt=__UpperCamelCase )
lowerCamelCase__ : Union[str, Any] = fx_model_loaded(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(__UpperCamelCase , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(__UpperCamelCase )
lowerCamelCase__ : Tuple = VisionTextDualEncoderModel.from_pretrained(__UpperCamelCase , from_flax=__UpperCamelCase )
pt_model_loaded.to(__UpperCamelCase )
pt_model_loaded.eval()
with torch.no_grad():
lowerCamelCase__ : Tuple = pt_model_loaded(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(__UpperCamelCase , pt_output_loaded.numpy() , 4e-2 )
def A_ ( self : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ) -> List[Any]:
lowerCamelCase__ : str = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase , __UpperCamelCase )
lowerCamelCase__ : Union[str, Any] = VisionTextDualEncoderModel(__UpperCamelCase )
lowerCamelCase__ : str = FlaxVisionTextDualEncoderModel(__UpperCamelCase )
lowerCamelCase__ : Union[str, Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCamelCase )
lowerCamelCase__ : Optional[Any] = fx_state
self.check_pt_flax_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def A_ ( self : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
lowerCamelCase__ : int = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCamelCase , __UpperCamelCase )
lowerCamelCase__ : int = VisionTextDualEncoderModel(__UpperCamelCase )
lowerCamelCase__ : Union[str, Any] = FlaxVisionTextDualEncoderModel(__UpperCamelCase )
lowerCamelCase__ : Union[str, Any] = load_flax_weights_in_pytorch_model(__UpperCamelCase , fx_model.params )
self.check_pt_flax_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def A_ ( self : List[Any] ) -> Optional[Any]:
lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**__UpperCamelCase )
def A_ ( self : Optional[Any] ) -> List[Any]:
lowerCamelCase__ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**__UpperCamelCase )
def A_ ( self : int ) -> List[str]:
lowerCamelCase__ : List[str] = self.prepare_config_and_inputs()
self.check_save_load(**__UpperCamelCase )
def A_ ( self : Dict ) -> Optional[int]:
lowerCamelCase__ : int = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**__UpperCamelCase )
@is_pt_flax_cross_test
def A_ ( self : List[str] ) -> Optional[int]:
lowerCamelCase__ : Any = self.prepare_config_and_inputs()
lowerCamelCase__ : Dict = config_inputs_dict.pop('vision_config' )
lowerCamelCase__ : Optional[int] = config_inputs_dict.pop('text_config' )
lowerCamelCase__ : Optional[int] = config_inputs_dict
self.check_equivalence_pt_to_flax(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
self.check_equivalence_flax_to_pt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
@slow
def A_ ( self : List[str] ) -> List[Any]:
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.get_pretrained_model_and_inputs()
lowerCamelCase__ : Optional[int] = model_a(**__UpperCamelCase )
lowerCamelCase__ : str = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(__UpperCamelCase )
lowerCamelCase__ : Dict = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCamelCase )
lowerCamelCase__ : List[Any] = model_a(**__UpperCamelCase )
lowerCamelCase__ : Optional[int] = after_outputs[0]
lowerCamelCase__ : Dict = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__UpperCamelCase , 1e-5 )
@require_flax
class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ):
def A_ ( self : Tuple ) -> List[Any]:
lowerCamelCase__ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=__UpperCamelCase , text_from_pt=__UpperCamelCase , )
lowerCamelCase__ : str = 13
lowerCamelCase__ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowerCamelCase__ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowerCamelCase__ : Tuple = random_attention_mask([batch_size, 4] )
lowerCamelCase__ : Tuple = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Any ) -> List[Any]:
lowerCamelCase__ : int = FlaxViTModel(__UpperCamelCase )
lowerCamelCase__ : Any = FlaxBertModel(__UpperCamelCase )
return vision_model, text_model
def A_ ( self : List[str] ) -> List[Any]:
lowerCamelCase__ : Tuple = FlaxViTModelTester(self )
lowerCamelCase__ : str = FlaxBertModelTester(self )
lowerCamelCase__ : Optional[Any] = vit_model_tester.prepare_config_and_inputs()
lowerCamelCase__ : List[str] = bert_model_tester.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ : List[Any] = vision_config_and_inputs
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ):
def A_ ( self : Any ) -> Optional[Any]:
lowerCamelCase__ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=__UpperCamelCase , text_from_pt=__UpperCamelCase , )
lowerCamelCase__ : List[Any] = 13
lowerCamelCase__ : str = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
lowerCamelCase__ : Any = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
lowerCamelCase__ : List[str] = random_attention_mask([batch_size, 4] )
lowerCamelCase__ : Any = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def A_ ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any] ) -> Optional[int]:
lowerCamelCase__ : Dict = FlaxCLIPVisionModel(__UpperCamelCase )
lowerCamelCase__ : List[str] = FlaxBertModel(__UpperCamelCase )
return vision_model, text_model
def A_ ( self : Optional[Any] ) -> int:
lowerCamelCase__ : Dict = FlaxCLIPVisionModelTester(self )
lowerCamelCase__ : List[Any] = FlaxBertModelTester(self )
lowerCamelCase__ : Optional[int] = clip_model_tester.prepare_config_and_inputs()
lowerCamelCase__ : List[str] = bert_model_tester.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = vision_config_and_inputs
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class lowerCAmelCase ( unittest.TestCase ):
@slow
def A_ ( self : Any ) -> List[Any]:
lowerCamelCase__ : Any = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 )
lowerCamelCase__ : Optional[Any] = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' )
lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
lowerCamelCase__ : List[str] = processor(
text=['una foto di un gatto', 'una foto di un cane'] , images=__UpperCamelCase , padding=__UpperCamelCase , return_tensors='np' )
lowerCamelCase__ : Any = model(**__UpperCamelCase )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowerCamelCase__ : List[Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] )
self.assertTrue(np.allclose(outputs.logits_per_image , __UpperCamelCase , atol=1e-3 ) )
| 707 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCAmelCase ( unittest.TestCase ):
def __init__( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : str=32 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Dict=10 , UpperCAmelCase : List[str]=[10, 20, 30, 40] , UpperCAmelCase : Any=[1, 1, 2, 1] , UpperCAmelCase : List[str]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict="relu" , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Dict=None , ) -> Optional[Any]:
lowerCamelCase__ : Union[str, Any] = parent
lowerCamelCase__ : Optional[Any] = batch_size
lowerCamelCase__ : Dict = image_size
lowerCamelCase__ : int = num_channels
lowerCamelCase__ : int = embeddings_size
lowerCamelCase__ : str = hidden_sizes
lowerCamelCase__ : Any = depths
lowerCamelCase__ : str = is_training
lowerCamelCase__ : List[Any] = use_labels
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Dict = num_labels
lowerCamelCase__ : Dict = scope
lowerCamelCase__ : List[str] = len(UpperCAmelCase )
def A_ ( self : Optional[int] ) -> Optional[int]:
lowerCamelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ : str = self.get_config()
return config, pixel_values
def A_ ( self : Optional[int] ) -> Dict:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def A_ ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ) -> Optional[Any]:
lowerCamelCase__ : Optional[Any] = FlaxRegNetModel(config=UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = model(UpperCAmelCase )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def A_ ( self : str , UpperCAmelCase : int , UpperCAmelCase : Tuple ) -> Tuple:
lowerCamelCase__ : List[str] = self.num_labels
lowerCamelCase__ : str = FlaxRegNetForImageClassification(config=UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A_ ( self : Dict ) -> str:
lowerCamelCase__ : Optional[int] = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ : Any = config_and_inputs
lowerCamelCase__ : Dict = {'pixel_values': pixel_values}
return config, inputs_dict
@require_flax
class lowerCAmelCase ( __UpperCamelCase, unittest.TestCase ):
UpperCAmelCase__ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
UpperCAmelCase__ = False
UpperCAmelCase__ = False
UpperCAmelCase__ = False
def A_ ( self : List[Any] ) -> None:
lowerCamelCase__ : List[Any] = FlaxRegNetModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def A_ ( self : int ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A_ ( self : Any ) -> str:
return
def A_ ( self : Optional[Any] ) -> Optional[Any]:
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A_ ( self : Dict ) -> Optional[Any]:
lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
@unittest.skip(reason='RegNet does not use inputs_embeds' )
def A_ ( self : Dict ) -> Dict:
pass
@unittest.skip(reason='RegNet does not support input and output embeddings' )
def A_ ( self : Any ) -> Tuple:
pass
def A_ ( self : Union[str, Any] ) -> Union[str, Any]:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : Optional[int] = model_class(UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ : List[Any] = [*signature.parameters.keys()]
lowerCamelCase__ : int = ['pixel_values']
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A_ ( self : int ) -> List[str]:
def check_hidden_states_output(UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] ):
lowerCamelCase__ : Any = model_class(UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowerCamelCase__ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCamelCase__ : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 )
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : List[str] = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ : List[Any] = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A_ ( self : Dict ) -> int:
lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowerCamelCase__ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase__ : Tuple = model_class(UpperCAmelCase )
@jax.jit
def model_jitted(UpperCAmelCase : Tuple , **UpperCAmelCase : Tuple ):
return model(pixel_values=UpperCAmelCase , **UpperCAmelCase )
with self.subTest('JIT Enabled' ):
lowerCamelCase__ : Dict = model_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
lowerCamelCase__ : Optional[int] = model_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
lowerCamelCase__ : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_flax
class lowerCAmelCase ( unittest.TestCase ):
@cached_property
def A_ ( self : Any ) -> List[Any]:
return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None
@slow
def A_ ( self : Dict ) -> Tuple:
lowerCamelCase__ : Union[str, Any] = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' )
lowerCamelCase__ : Dict = self.default_image_processor
lowerCamelCase__ : List[Any] = prepare_img()
lowerCamelCase__ : List[str] = image_processor(images=UpperCAmelCase , return_tensors='np' )
lowerCamelCase__ : List[Any] = model(**UpperCAmelCase )
# verify the logits
lowerCamelCase__ : Union[str, Any] = (1, 1000)
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCamelCase__ : Tuple = jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
| 188 | 0 |
"""simple docstring"""
def A ( __snake_case: str ) -> str:
"""simple docstring"""
if collection == []:
return []
# get some information about the collection
__magic_name__ = len(lowerCAmelCase__ )
__magic_name__ = max(lowerCAmelCase__ )
__magic_name__ = min(lowerCAmelCase__ )
# create the counting array
__magic_name__ = coll_max + 1 - coll_min
__magic_name__ = [0] * counting_arr_length
# count how much a number appears in the collection
for number in collection:
counting_arr[number - coll_min] += 1
# sum each position with it's predecessors. now, counting_arr[i] tells
# us how many elements <= i has in the collection
for i in range(1 , lowerCAmelCase__ ):
__magic_name__ = counting_arr[i] + counting_arr[i - 1]
# create the output collection
__magic_name__ = [0] * coll_len
# place the elements in the output, respecting the original order (stable
# sort) from end to begin, updating counting_arr
for i in reversed(range(0 , lowerCAmelCase__ ) ):
__magic_name__ = collection[i]
counting_arr[collection[i] - coll_min] -= 1
return ordered
def A ( __snake_case: Dict ) -> Dict:
"""simple docstring"""
return "".join([chr(lowerCAmelCase__ ) for i in counting_sort([ord(lowerCAmelCase__ ) for c in string] )] )
if __name__ == "__main__":
# Test string sort
assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt"
snake_case : List[str] = input("""Enter numbers separated by a comma:\n""").strip()
snake_case : str = [int(item) for item in user_input.split(""",""")]
print(counting_sort(unsorted)) | 545 |
'''simple docstring'''
from typing import Dict, Iterable, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
UpperCamelCase__ = logging.get_logger(__name__)
class lowerCamelCase_ ( __a ):
lowerCAmelCase__ = ['pixel_values']
def __init__( self : List[str] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 255 , _A : bool = True , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , _A : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **_A : int , ):
'''simple docstring'''
super().__init__(**_A )
UpperCAmelCase__ : Dict = size if size is not None else {'''shortest_edge''': 224}
UpperCAmelCase__ : int = get_size_dict(_A , default_to_square=_A )
UpperCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
UpperCAmelCase__ : List[str] = get_size_dict(_A , param_name='''crop_size''' )
UpperCAmelCase__ : str = do_resize
UpperCAmelCase__ : List[Any] = size
UpperCAmelCase__ : int = resample
UpperCAmelCase__ : int = do_center_crop
UpperCAmelCase__ : List[str] = crop_size
UpperCAmelCase__ : Union[str, Any] = do_rescale
UpperCAmelCase__ : Optional[int] = rescale_factor
UpperCAmelCase__ : List[Any] = do_normalize
UpperCAmelCase__ : Dict = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
UpperCAmelCase__ : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def lowercase_ ( self : str , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BICUBIC , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Any , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[int] = get_size_dict(_A , default_to_square=_A )
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
UpperCAmelCase__ : Tuple = int((256 / 224) * size['''shortest_edge'''] )
UpperCAmelCase__ : Tuple = get_resize_output_image_size(_A , size=_A , default_to_square=_A )
UpperCAmelCase__ : Dict = {'''height''': output_size[0], '''width''': output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" )
return resize(
_A , size=(size_dict['''height'''], size_dict['''width''']) , resample=_A , data_format=_A , **_A )
def lowercase_ ( self : Optional[Any] , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = get_size_dict(_A )
if "height" not in size or "width" not in size:
raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A )
def lowercase_ ( self : List[str] , _A : np.ndarray , _A : Union[int, float] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Dict , ):
'''simple docstring'''
return rescale(_A , scale=_A , data_format=_A , **_A )
def lowercase_ ( self : Dict , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[int] , ):
'''simple docstring'''
return normalize(_A , mean=_A , std=_A , data_format=_A , **_A )
def lowercase_ ( self : Optional[Any] , _A : ImageInput , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : PILImageResampling = None , _A : Optional[bool] = None , _A : Optional[Dict[str, int]] = None , _A : Optional[bool] = None , _A : Optional[float] = None , _A : Optional[bool] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[Union[float, Iterable[float]]] = None , _A : Optional[TensorType] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : str , ):
'''simple docstring'''
UpperCAmelCase__ : str = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase__ : Optional[int] = resample if resample is not None else self.resample
UpperCAmelCase__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCAmelCase__ : Tuple = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCAmelCase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
UpperCAmelCase__ : Tuple = image_mean if image_mean is not None else self.image_mean
UpperCAmelCase__ : List[str] = image_std if image_std is not None else self.image_std
UpperCAmelCase__ : Tuple = size if size is not None else self.size
UpperCAmelCase__ : int = get_size_dict(_A , default_to_square=_A )
UpperCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size
UpperCAmelCase__ : int = get_size_dict(_A , param_name='''crop_size''' )
UpperCAmelCase__ : Union[str, Any] = make_list_of_images(_A )
if not valid_images(_A ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
UpperCAmelCase__ : int = [to_numpy_array(_A ) for image in images]
if do_resize:
UpperCAmelCase__ : str = [self.resize(_A , _A , _A ) for image in images]
if do_center_crop:
UpperCAmelCase__ : Tuple = [self.center_crop(_A , _A ) for image in images]
if do_rescale:
UpperCAmelCase__ : Optional[int] = [self.rescale(_A , _A ) for image in images]
if do_normalize:
UpperCAmelCase__ : Any = [self.normalize(_A , _A , _A ) for image in images]
UpperCAmelCase__ : Tuple = [to_channel_dimension_format(_A , _A ) for image in images]
UpperCAmelCase__ : Dict = {'''pixel_values''': images}
return BatchFeature(data=_A , tensor_type=_A )
| 75 | 0 |
'''simple docstring'''
import os
import sys
import unittest
A : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
A : Optional[int] = os.path.join(git_repo_path, """src""", """transformers""")
A : List[Any] = """
{0} = None
"""
A : List[Any] = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
"""
A : Optional[int] = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
def snake_case__ ( self ) -> int:
"""simple docstring"""
__lowercase = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" )
self.assertIsNone(lowerCamelCase__ )
__lowercase = find_backend(""" if not is_tokenizers_available():""" )
self.assertEqual(lowerCamelCase__ , """tokenizers""" )
__lowercase = find_backend(""" if not is_tensorflow_text_available():""" )
self.assertEqual(lowerCamelCase__ , """tensorflow_text""" )
__lowercase = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" )
self.assertEqual(lowerCamelCase__ , """sentencepiece_and_tokenizers""" )
__lowercase = find_backend(
""" if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" )
self.assertEqual(lowerCamelCase__ , """sentencepiece_and_tensorflow_text""" )
__lowercase = find_backend(
""" if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" )
self.assertEqual(lowerCamelCase__ , """sentencepiece_and_tokenizers_and_vision""" )
def snake_case__ ( self ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""" , lowerCamelCase__ )
self.assertIn("""tensorflow_text""" , lowerCamelCase__ )
self.assertIn("""sentencepiece_and_tokenizers""" , lowerCamelCase__ )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""BertModel""" , objects["""torch"""] )
self.assertIn("""TFBertModel""" , objects["""tf"""] )
self.assertIn("""FlaxBertModel""" , objects["""flax"""] )
self.assertIn("""BertModel""" , objects["""torch"""] )
self.assertIn("""TFBertTokenizer""" , objects["""tensorflow_text"""] )
self.assertIn("""convert_slow_tokenizer""" , objects["""sentencepiece_and_tokenizers"""] )
def snake_case__ ( self ) -> List[str]:
"""simple docstring"""
__lowercase = create_dummy_object("""CONSTANT""" , """'torch'""" )
self.assertEqual(lowerCamelCase__ , """\nCONSTANT = None\n""" )
__lowercase = create_dummy_object("""function""" , """'torch'""" )
self.assertEqual(
lowerCamelCase__ , """\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
__lowercase = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
"""
__lowercase = create_dummy_object("""FakeClass""" , """'torch'""" )
self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
def snake_case__ ( self ) -> int:
"""simple docstring"""
__lowercase = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
"""
__lowercase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""] , lowerCamelCase__ )
| 163 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=30 , lowerCamelCase__=2 , lowerCamelCase__=3 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=10 , lowerCamelCase__=0.02 , ) -> Tuple:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = type_sequence_label_size
__lowercase = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = (image_size // patch_size) ** 2
__lowercase = num_patches + 1
def snake_case__ ( self ) -> Tuple:
"""simple docstring"""
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , )
return config, pixel_values
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str:
"""simple docstring"""
__lowercase = FlaxViTModel(config=lowerCamelCase__ )
__lowercase = model(lowerCamelCase__ )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
__lowercase = (self.image_size, self.image_size)
__lowercase = (self.patch_size, self.patch_size)
__lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
__lowercase = self.type_sequence_label_size
__lowercase = FlaxViTForImageClassification(config=lowerCamelCase__ )
__lowercase = model(lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__lowercase = 1
__lowercase = FlaxViTForImageClassification(lowerCamelCase__ )
__lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__lowercase = model(lowerCamelCase__ )
def snake_case__ ( self ) -> Tuple:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class SCREAMING_SNAKE_CASE( __A , unittest.TestCase ):
snake_case_ : Optional[Any] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def snake_case__ ( self ) -> None:
"""simple docstring"""
__lowercase = FlaxViTModelTester(self )
__lowercase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 )
def snake_case__ ( self ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def snake_case__ ( self ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase__ )
def snake_case__ ( self ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ )
def snake_case__ ( self ) -> Dict:
"""simple docstring"""
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(lowerCamelCase__ )
__lowercase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
def snake_case__ ( self ) -> Optional[Any]:
"""simple docstring"""
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ )
__lowercase = model_class(lowerCamelCase__ )
@jax.jit
def model_jitted(lowerCamelCase__ , **lowerCamelCase__ ):
return model(pixel_values=lowerCamelCase__ , **lowerCamelCase__ )
with self.subTest("""JIT Enabled""" ):
__lowercase = model_jitted(**lowerCamelCase__ ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
__lowercase = model_jitted(**lowerCamelCase__ ).to_tuple()
self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) )
for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def snake_case__ ( self ) -> Any:
"""simple docstring"""
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained("""google/vit-base-patch16-224""" )
__lowercase = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(lowerCamelCase__ )
| 163 | 1 |
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
_lowerCamelCase : int = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
_lowerCamelCase : List[str] = """https://storage.googleapis.com/cvdf-datasets/mnist/"""
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
A__ = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=lowercase_ )[0]
@deprecated(lowercase_ , '''Please use tf.data to implement this functionality.''' )
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]:
"""simple docstring"""
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=lowercase_ ) as bytestream:
A__ = _readaa(lowercase_ )
if magic != 2_051:
raise ValueError(
'''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) )
A__ = _readaa(lowercase_ )
A__ = _readaa(lowercase_ )
A__ = _readaa(lowercase_ )
A__ = bytestream.read(rows * cols * num_images )
A__ = numpy.frombuffer(lowercase_ , dtype=numpy.uinta )
A__ = data.reshape(lowercase_ , lowercase_ , lowercase_ , 1 )
return data
@deprecated(lowercase_ , '''Please use tf.one_hot on tensors.''' )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
A__ = labels_dense.shape[0]
A__ = numpy.arange(lowercase_ ) * num_classes
A__ = numpy.zeros((num_labels, num_classes) )
A__ = 1
return labels_one_hot
@deprecated(lowercase_ , '''Please use tf.data to implement this functionality.''' )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False , lowercase_=10 ) -> List[Any]:
"""simple docstring"""
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=lowercase_ ) as bytestream:
A__ = _readaa(lowercase_ )
if magic != 2_049:
raise ValueError(
'''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) )
A__ = _readaa(lowercase_ )
A__ = bytestream.read(lowercase_ )
A__ = numpy.frombuffer(lowercase_ , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(lowercase_ , lowercase_ )
return labels
class UpperCamelCase_ :
'''simple docstring'''
@deprecated(
UpperCAmelCase__ , '''Please use alternatives such as official/mnist/_DataSet.py'''
''' from tensorflow/models.''' , )
def __init__( self : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int=False , UpperCAmelCase__ : int=False , UpperCAmelCase__ : str=dtypes.floataa , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Dict=None , ) ->List[Any]:
'''simple docstring'''
A__ , A__ = random_seed.get_seed(UpperCAmelCase__)
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda)
A__ = dtypes.as_dtype(UpperCAmelCase__).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype)
if fake_data:
A__ = 10_000
A__ = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f"""images.shape: {images.shape} labels.shape: {labels.shape}"""
A__ = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
A__ = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2])
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
A__ = images.astype(numpy.floataa)
A__ = numpy.multiply(UpperCAmelCase__ , 1.0 / 255.0)
A__ = images
A__ = labels
A__ = 0
A__ = 0
@property
def SCREAMING_SNAKE_CASE ( self : int) ->Dict:
'''simple docstring'''
return self._images
@property
def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]:
'''simple docstring'''
return self._labels
@property
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->int:
'''simple docstring'''
return self._num_examples
@property
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Tuple:
'''simple docstring'''
return self._epochs_completed
def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : int=True) ->Optional[int]:
'''simple docstring'''
if fake_data:
A__ = [1] * 784
A__ = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(UpperCAmelCase__)],
[fake_label for _ in range(UpperCAmelCase__)],
)
A__ = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
A__ = numpy.arange(self._num_examples)
numpy.random.shuffle(UpperCAmelCase__)
A__ = self.images[perma]
A__ = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
A__ = self._num_examples - start
A__ = self._images[start : self._num_examples]
A__ = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
A__ = numpy.arange(self._num_examples)
numpy.random.shuffle(UpperCAmelCase__)
A__ = self.images[perm]
A__ = self.labels[perm]
# Start next epoch
A__ = 0
A__ = batch_size - rest_num_examples
A__ = self._index_in_epoch
A__ = self._images[start:end]
A__ = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0),
)
else:
self._index_in_epoch += batch_size
A__ = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(lowercase_ , '''Please write your own downloading logic.''' )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]:
"""simple docstring"""
if not gfile.Exists(lowercase_ ):
gfile.MakeDirs(lowercase_ )
A__ = os.path.join(lowercase_ , lowercase_ )
if not gfile.Exists(lowercase_ ):
urllib.request.urlretrieve(lowercase_ , lowercase_ ) # noqa: S310
with gfile.GFile(lowercase_ ) as f:
A__ = f.size()
print('''Successfully downloaded''' , lowercase_ , lowercase_ , '''bytes.''' )
return filepath
@deprecated(
lowercase_ , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=False , lowercase_=False , lowercase_=dtypes.floataa , lowercase_=True , lowercase_=5_000 , lowercase_=None , lowercase_=DEFAULT_SOURCE_URL , ) -> Any:
"""simple docstring"""
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=lowercase_ , one_hot=lowercase_ , dtype=lowercase_ , seed=lowercase_ )
A__ = fake()
A__ = fake()
A__ = fake()
return _Datasets(train=lowercase_ , validation=lowercase_ , test=lowercase_ )
if not source_url: # empty string check
A__ = DEFAULT_SOURCE_URL
A__ = '''train-images-idx3-ubyte.gz'''
A__ = '''train-labels-idx1-ubyte.gz'''
A__ = '''t10k-images-idx3-ubyte.gz'''
A__ = '''t10k-labels-idx1-ubyte.gz'''
A__ = _maybe_download(
lowercase_ , lowercase_ , source_url + train_images_file )
with gfile.Open(lowercase_ , '''rb''' ) as f:
A__ = _extract_images(lowercase_ )
A__ = _maybe_download(
lowercase_ , lowercase_ , source_url + train_labels_file )
with gfile.Open(lowercase_ , '''rb''' ) as f:
A__ = _extract_labels(lowercase_ , one_hot=lowercase_ )
A__ = _maybe_download(
lowercase_ , lowercase_ , source_url + test_images_file )
with gfile.Open(lowercase_ , '''rb''' ) as f:
A__ = _extract_images(lowercase_ )
A__ = _maybe_download(
lowercase_ , lowercase_ , source_url + test_labels_file )
with gfile.Open(lowercase_ , '''rb''' ) as f:
A__ = _extract_labels(lowercase_ , one_hot=lowercase_ )
if not 0 <= validation_size <= len(lowercase_ ):
A__ = (
'''Validation size should be between 0 and '''
f"""{len(lowercase_ )}. Received: {validation_size}."""
)
raise ValueError(lowercase_ )
A__ = train_images[:validation_size]
A__ = train_labels[:validation_size]
A__ = train_images[validation_size:]
A__ = train_labels[validation_size:]
A__ = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed}
A__ = _DataSet(lowercase_ , lowercase_ , **lowercase_ )
A__ = _DataSet(lowercase_ , lowercase_ , **lowercase_ )
A__ = _DataSet(lowercase_ , lowercase_ , **lowercase_ )
return _Datasets(train=lowercase_ , validation=lowercase_ , test=lowercase_ )
| 87 |
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
snake_case__ = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class UpperCAmelCase ( __lowerCamelCase ):
a__: bool = field(default=__lowerCamelCase , metadata={"""help""": """Whether to use SortishSampler or not."""} )
a__: bool = field(
default=__lowerCamelCase , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} )
a__: Optional[int] = field(
default=__lowerCamelCase , metadata={
"""help""": (
"""The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `max_length` value of the model configuration."""
)
} , )
a__: Optional[int] = field(
default=__lowerCamelCase , metadata={
"""help""": (
"""The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """
"""to the `num_beams` value of the model configuration."""
)
} , )
a__: Optional[Union[str, Path, GenerationConfig]] = field(
default=__lowerCamelCase , metadata={
"""help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."""
} , )
def _lowerCAmelCase ( self : List[str] ):
lowercase : Union[str, Any] = super().to_dict()
for k, v in d.items():
if isinstance(lowerCAmelCase , lowerCAmelCase ):
lowercase : Tuple = v.to_dict()
return d
| 583 | 0 |
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
lowercase : Union[str, Any] = logging.get_logger(__name__)
class lowerCamelCase__ ( __lowercase):
'''simple docstring'''
_A = ['pixel_values']
def __init__( self :Optional[int] , a :bool = True , a :int = 3_2 , a :Dict=PILImageResampling.BILINEAR , a :bool = True , **a :Union[str, Any] , ) -> None:
__UpperCamelCase : Optional[Any] = do_resize
__UpperCamelCase : str = do_rescale
__UpperCamelCase : List[str] = size_divisor
__UpperCamelCase : str = resample
super().__init__(**a )
def _lowerCamelCase ( self :List[str] , a :np.ndarray , a :int , a :str , a :Optional[ChannelDimension] = None , **a :List[str] ) -> np.ndarray:
__UpperCamelCase , __UpperCamelCase : int = get_image_size(a )
# Rounds the height and width down to the closest multiple of size_divisor
__UpperCamelCase : Dict = height // size_divisor * size_divisor
__UpperCamelCase : str = width // size_divisor * size_divisor
__UpperCamelCase : str = resize(a , (new_h, new_w) , resample=a , data_format=a , **a )
return image
def _lowerCamelCase ( self :str , a :np.ndarray , a :float , a :Optional[ChannelDimension] = None , **a :Union[str, Any] ) -> np.ndarray:
return rescale(image=a , scale=a , data_format=a , **a )
def _lowerCamelCase ( self :Union[str, Any] , a :Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , a :Optional[bool] = None , a :Optional[int] = None , a :Tuple=None , a :Optional[bool] = None , a :Optional[Union[TensorType, str]] = None , a :ChannelDimension = ChannelDimension.FIRST , **a :Dict , ) -> BatchFeature:
__UpperCamelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
__UpperCamelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase : Dict = size_divisor if size_divisor is not None else self.size_divisor
__UpperCamelCase : List[str] = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError("size_divisor is required for resizing" )
__UpperCamelCase : int = make_list_of_images(a )
if not valid_images(a ):
raise ValueError("Invalid image(s)" )
# All transformations expect numpy arrays.
__UpperCamelCase : Tuple = [to_numpy_array(a ) for img in images]
if do_resize:
__UpperCamelCase : Optional[int] = [self.resize(a , size_divisor=a , resample=a ) for image in images]
if do_rescale:
__UpperCamelCase : List[str] = [self.rescale(a , scale=1 / 2_5_5 ) for image in images]
__UpperCamelCase : Optional[Any] = [to_channel_dimension_format(a , a ) for image in images]
__UpperCamelCase : Optional[int] = {"pixel_values": images}
return BatchFeature(data=a , tensor_type=a ) | 94 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase : Tuple = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Union[str, Any] = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 94 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __UpperCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , _lowercase : TransformeraDModel , _lowercase : AutoencoderKL , _lowercase : KarrasDiffusionSchedulers , _lowercase : Optional[Dict[int, str]] = None , ) -> Optional[int]:
super().__init__()
self.register_modules(transformer=_lowercase , vae=_lowercase , scheduler=_lowercase)
# create a imagenet -> id dictionary for easier use
A_ = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split(','):
A_ = int(_lowercase)
A_ = dict(sorted(self.labels.items()))
def __snake_case ( self : List[Any] , _lowercase : Union[str, List[str]]) -> List[int]:
if not isinstance(_lowercase , _lowercase):
A_ = list(_lowercase)
for l in label:
if l not in self.labels:
raise ValueError(
F'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.')
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self : Union[str, Any] , _lowercase : List[int] , _lowercase : float = 4.0 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : int = 50 , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]:
A_ = len(_lowercase)
A_ = self.transformer.config.sample_size
A_ = self.transformer.config.in_channels
A_ = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=_lowercase , device=self.device , dtype=self.transformer.dtype , )
A_ = torch.cat([latents] * 2) if guidance_scale > 1 else latents
A_ = torch.tensor(_lowercase , device=self.device).reshape(-1)
A_ = torch.tensor([1_000] * batch_size , device=self.device)
A_ = torch.cat([class_labels, class_null] , 0) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(_lowercase)
for t in self.progress_bar(self.scheduler.timesteps):
if guidance_scale > 1:
A_ = latent_model_input[: len(_lowercase) // 2]
A_ = torch.cat([half, half] , dim=0)
A_ = self.scheduler.scale_model_input(_lowercase , _lowercase)
A_ = t
if not torch.is_tensor(_lowercase):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
A_ = latent_model_input.device.type == 'mps'
if isinstance(_lowercase , _lowercase):
A_ = torch.floataa if is_mps else torch.floataa
else:
A_ = torch.intaa if is_mps else torch.intaa
A_ = torch.tensor([timesteps] , dtype=_lowercase , device=latent_model_input.device)
elif len(timesteps.shape) == 0:
A_ = timesteps[None].to(latent_model_input.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
A_ = timesteps.expand(latent_model_input.shape[0])
# predict noise model_output
A_ = self.transformer(
_lowercase , timestep=_lowercase , class_labels=_lowercase).sample
# perform guidance
if guidance_scale > 1:
A_ , A_ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
A_ , A_ = torch.split(_lowercase , len(_lowercase) // 2 , dim=0)
A_ = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
A_ = torch.cat([half_eps, half_eps] , dim=0)
A_ = torch.cat([eps, rest] , dim=1)
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
A_ , A_ = torch.split(_lowercase , _lowercase , dim=1)
else:
A_ = noise_pred
# compute previous image: x_t -> x_t-1
A_ = self.scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample
if guidance_scale > 1:
A_ , A_ = latent_model_input.chunk(2 , dim=0)
else:
A_ = latent_model_input
A_ = 1 / self.vae.config.scaling_factor * latents
A_ = self.vae.decode(_lowercase).sample
A_ = (samples / 2 + 0.5).clamp(0 , 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
A_ = samples.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
A_ = self.numpy_to_pil(_lowercase)
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=_lowercase)
| 366 |
'''simple docstring'''
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> str:
A_ = int(SCREAMING_SNAKE_CASE_ )
A_ , A_ , A_ = t // 3600, (t // 60) % 60, t % 60
return F'{h}:{m:02d}:{s:02d}' if h != 0 else F'{m:02d}:{s:02d}'
def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=300 ) -> Dict:
# docstyle-ignore
return F'\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n '
def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> List[str]:
A_ = '<table border="1" class="dataframe">\n'
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += F' <th>{i}</th>\n'
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
A_ = F'{elt:.6f}' if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) else str(SCREAMING_SNAKE_CASE_ )
html_code += F' <td>{elt}</td>\n'
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class __UpperCAmelCase :
'''simple docstring'''
_UpperCamelCase = 5
_UpperCamelCase = 0.2
def __init__( self : Tuple , _lowercase : int , _lowercase : Optional[str] = None , _lowercase : bool = True , _lowercase : Optional["NotebookTrainingTracker"] = None , _lowercase : int = 300 , ) -> Dict:
A_ = total
A_ = '' if prefix is None else prefix
A_ = leave
A_ = parent
A_ = width
A_ = None
A_ = None
A_ = None
def __snake_case ( self : Optional[int] , _lowercase : int , _lowercase : bool = False , _lowercase : str = None) -> Dict:
A_ = value
if comment is not None:
A_ = comment
if self.last_value is None:
A_ = A_ = time.time()
A_ = A_ = value
A_ = A_ = None
A_ = self.warmup
A_ = 1
self.update_bar(_lowercase)
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total):
if self.first_calls > 0:
self.first_calls -= 1
A_ = time.time()
A_ = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
A_ = self.elapsed_time / (value - self.start_value)
else:
A_ = None
if value >= self.total:
A_ = self.total
A_ = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
A_ = self.average_time_per_item * (self.total - value)
self.update_bar(_lowercase)
A_ = value
A_ = current_time
if self.average_time_per_item is None:
A_ = 1
else:
A_ = max(int(self.update_every / self.average_time_per_item) , 1)
def __snake_case ( self : str , _lowercase : List[Any] , _lowercase : Optional[int]=None) -> str:
A_ = ' ' * (len(str(self.total)) - len(str(_lowercase))) + str(_lowercase)
if self.elapsed_time is None:
A_ = F'[{spaced_value}/{self.total} : < :'
elif self.predicted_remaining is None:
A_ = F'[{spaced_value}/{self.total} {format_time(self.elapsed_time)}'
else:
A_ = (
F'[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <'
F' {format_time(self.predicted_remaining)}'
)
self.label += F', {1/self.average_time_per_item:.2f} it/s'
self.label += "]" if self.comment is None or len(self.comment) == 0 else F', {self.comment}]'
self.display()
def __snake_case ( self : Optional[int]) -> Dict:
A_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width)
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
A_ = disp.display(disp.HTML(self.html_code) , display_id=_lowercase)
else:
self.output.update(disp.HTML(self.html_code))
def __snake_case ( self : List[Any]) -> Optional[Any]:
if self.parent is None and self.output is not None:
self.output.update(disp.HTML(''))
class __UpperCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , _lowercase : Union[str, Any] , _lowercase : str=None) -> str:
super().__init__(_lowercase)
A_ = None if column_names is None else [column_names]
A_ = None
def __snake_case ( self : Dict) -> List[Any]:
A_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width)
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table)
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
A_ = disp.display(disp.HTML(self.html_code) , display_id=_lowercase)
else:
self.output.update(disp.HTML(self.html_code))
def __snake_case ( self : str , _lowercase : int) -> Optional[int]:
if self.inner_table is None:
A_ = [list(values.keys()), list(values.values())]
else:
A_ = self.inner_table[0]
if len(self.inner_table) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(_lowercase)
A_ = columns
self.inner_table.append([values[c] for c in columns])
def __snake_case ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : str=None , _lowercase : Optional[int]=300) -> Dict:
A_ = NotebookProgressBar(_lowercase , prefix=_lowercase , parent=self , width=_lowercase)
return self.child_bar
def __snake_case ( self : Any) -> int:
A_ = None
self.display()
class __UpperCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict) -> Tuple:
A_ = None
A_ = None
A_ = False
def __snake_case ( self : int , _lowercase : str , _lowercase : str , _lowercase : str , **_lowercase : List[Any]) -> List[Any]:
A_ = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step'
A_ = 0
A_ = 0
A_ = [self.first_column] + ['Training Loss']
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append('Validation Loss')
A_ = NotebookTrainingTracker(state.max_steps , _lowercase)
def __snake_case ( self : Tuple , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : List[str] , **_lowercase : Union[str, Any]) -> str:
A_ = int(state.epoch) if int(state.epoch) == state.epoch else F'{state.epoch:.2f}'
self.training_tracker.update(
state.global_step + 1 , comment=F'Epoch {epoch}/{state.num_train_epochs}' , force_update=self._force_next_update , )
A_ = False
def __snake_case ( self : Union[str, Any] , _lowercase : Any , _lowercase : int , _lowercase : Optional[int] , _lowercase : List[Any]=None , **_lowercase : Any) -> Union[str, Any]:
if not has_length(_lowercase):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
A_ = self.training_tracker.add_child(len(_lowercase))
else:
A_ = NotebookProgressBar(len(_lowercase))
self.prediction_bar.update(1)
else:
self.prediction_bar.update(self.prediction_bar.value + 1)
def __snake_case ( self : List[Any] , _lowercase : List[str] , _lowercase : Any , _lowercase : Union[str, Any] , **_lowercase : Optional[int]) -> Optional[Any]:
if self.prediction_bar is not None:
self.prediction_bar.close()
A_ = None
def __snake_case ( self : Dict , _lowercase : Dict , _lowercase : str , _lowercase : str , _lowercase : Optional[Any]=None , **_lowercase : Dict) -> Optional[int]:
# Only for when there is no evaluation
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
A_ = {'Training Loss': logs['loss']}
# First column is necessarily Step sine we're not in epoch eval strategy
A_ = state.global_step
self.training_tracker.write_line(_lowercase)
def __snake_case ( self : List[Any] , _lowercase : Any , _lowercase : Optional[int] , _lowercase : str , _lowercase : Optional[Any]=None , **_lowercase : Union[str, Any]) -> Union[str, Any]:
if self.training_tracker is not None:
A_ = {'Training Loss': 'No log', 'Validation Loss': 'No log'}
for log in reversed(state.log_history):
if "loss" in log:
A_ = log['loss']
break
if self.first_column == "Epoch":
A_ = int(state.epoch)
else:
A_ = state.global_step
A_ = 'eval'
for k in metrics:
if k.endswith('_loss'):
A_ = re.sub(r'\_loss$' , '' , _lowercase)
A_ = metrics.pop('total_flos' , _lowercase)
A_ = metrics.pop('epoch' , _lowercase)
A_ = metrics.pop(F'{metric_key_prefix}_runtime' , _lowercase)
A_ = metrics.pop(F'{metric_key_prefix}_samples_per_second' , _lowercase)
A_ = metrics.pop(F'{metric_key_prefix}_steps_per_second' , _lowercase)
A_ = metrics.pop(F'{metric_key_prefix}_jit_compilation_time' , _lowercase)
for k, v in metrics.items():
if k == F'{metric_key_prefix}_loss':
A_ = v
else:
A_ = k.split('_')
A_ = ' '.join([part.capitalize() for part in splits[1:]])
A_ = v
self.training_tracker.write_line(_lowercase)
self.training_tracker.remove_child()
A_ = None
# Evaluation takes a long time so we should force the next update.
A_ = True
def __snake_case ( self : Tuple , _lowercase : Dict , _lowercase : str , _lowercase : List[str] , **_lowercase : str) -> Optional[int]:
self.training_tracker.update(
state.global_step , comment=F'Epoch {int(state.epoch)}/{state.num_train_epochs}' , force_update=_lowercase)
A_ = None
| 366 | 1 |
def A_ ( _lowerCAmelCase : Optional[int] = 10_00 ):
"""simple docstring"""
_a , _a = 1, 1
_a = []
for i in range(1, n + 1 ):
_a = prev_numerator + 2 * prev_denominator
_a = prev_numerator + prev_denominator
if len(str(UpperCamelCase__ ) ) > len(str(UpperCamelCase__ ) ):
result.append(UpperCamelCase__ )
_a = numerator
_a = denominator
return len(UpperCamelCase__ )
if __name__ == "__main__":
print(f'{solution() = }') | 720 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 10**12 ):
"""simple docstring"""
_a = 1
_a = 0
_a = 1
_a = 1
while numerator <= 2 * min_total - 1:
prev_numerator += 2 * numerator
numerator += 2 * prev_numerator
prev_denominator += 2 * denominator
denominator += 2 * prev_denominator
return (denominator + 1) // 2
if __name__ == "__main__":
print(f'{solution() = }') | 285 | 0 |
from __future__ import annotations
from functools import lru_cache
from math import ceil
snake_case : List[Any] = 1_00
snake_case : Any = set(range(3, NUM_PRIMES, 2))
primes.add(2)
snake_case : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=100 )
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ):
"""simple docstring"""
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
_SCREAMING_SNAKE_CASE = set()
_SCREAMING_SNAKE_CASE = 42
_SCREAMING_SNAKE_CASE = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ = 5000 ):
"""simple docstring"""
for number_to_partition in range(1 ,UpperCAmelCase__ ):
if len(partition(UpperCAmelCase__ ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(f"""{solution() = }""")
| 605 |
def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> int:
def count_of_possible_combinations(snake_case ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(snake_case )
def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> int:
def count_of_possible_combinations_with_dp_array(
snake_case , snake_case ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
__lowercase = sum(
count_of_possible_combinations_with_dp_array(target - item , snake_case )
for item in array )
__lowercase = answer
return answer
__lowercase = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(snake_case , snake_case )
def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> int:
__lowercase = [0] * (target + 1)
__lowercase = 1
for i in range(1 , target + 1 ):
for j in range(snake_case ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE_ : Tuple = 3
SCREAMING_SNAKE_CASE_ : Dict = 5
SCREAMING_SNAKE_CASE_ : Any = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 375 | 0 |
import json
import logging
import os
import sys
from time import time
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, require_torch_tpu
logging.basicConfig(level=logging.DEBUG)
__a = logging.getLogger()
def a ( snake_case__: Any ):
'''simple docstring'''
lowercase_ = {}
lowercase_ = os.path.join(snake_case__ , '''all_results.json''' )
if os.path.exists(snake_case__ ):
with open(snake_case__ , '''r''' ) as f:
lowercase_ = json.load(snake_case__ )
else:
raise ValueError(F'''can\'t find {path}''' )
return results
__a = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@require_torch_tpu
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
def _lowercase ( self : Tuple ) -> List[str]:
import xla_spawn
lowercase_ = self.get_auto_remove_tmp_dir()
lowercase_ = f'''
./examples/pytorch/text-classification/run_glue.py
--num_cores=8
./examples/pytorch/text-classification/run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--debug tpu_metrics_debug
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
'''.split()
with patch.object(SCREAMING_SNAKE_CASE_ , '''argv''' , SCREAMING_SNAKE_CASE_ ):
lowercase_ = time()
xla_spawn.main()
lowercase_ = time()
lowercase_ = get_results(SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
# Assert that the script takes less than 500 seconds to make sure it doesn't hang.
self.assertLess(end - start , 5_0_0 )
def _lowercase ( self : int ) -> List[Any]:
import xla_spawn
lowercase_ = '''
./tests/test_trainer_tpu.py
--num_cores=8
./tests/test_trainer_tpu.py
'''.split()
with patch.object(SCREAMING_SNAKE_CASE_ , '''argv''' , SCREAMING_SNAKE_CASE_ ):
xla_spawn.main()
| 705 |
def a ( snake_case__: int ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
raise ValueError('''check_bouncy() accepts only integer arguments''' )
lowercase_ = str(snake_case__ )
lowercase_ = ''''''.join(sorted(snake_case__ ) )
return sorted_str_n != str_n and sorted_str_n[::-1] != str_n
def a ( snake_case__: float = 99 ):
'''simple docstring'''
if not 0 < percent < 100:
raise ValueError('''solution() only accepts values from 0 to 100''' )
lowercase_ = 0
lowercase_ = 1
while True:
if check_bouncy(snake_case__ ):
bouncy_num += 1
if (bouncy_num / num) * 100 >= percent:
return num
num += 1
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"{solution(9_9)}")
| 409 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase ={
"configuration_conditional_detr": [
"CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ConditionalDetrConfig",
"ConditionalDetrOnnxConfig",
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase =["ConditionalDetrFeatureExtractor"]
UpperCamelCase =["ConditionalDetrImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase =[
"CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConditionalDetrForObjectDetection",
"ConditionalDetrForSegmentation",
"ConditionalDetrModel",
"ConditionalDetrPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
UpperCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 208 | from __future__ import annotations
import bisect
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: list[int] , lowerCAmelCase_: int , lowerCAmelCase_: int = 0 , lowerCAmelCase_: int = -1 ):
if hi < 0:
snake_case_ : Any = len(lowerCAmelCase_ )
while lo < hi:
snake_case_ : List[Any] = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
snake_case_ : Tuple = mid + 1
else:
snake_case_ : Dict = mid
return lo
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: list[int] , lowerCAmelCase_: int , lowerCAmelCase_: int = 0 , lowerCAmelCase_: int = -1 ):
if hi < 0:
snake_case_ : Optional[Any] = len(lowerCAmelCase_ )
while lo < hi:
snake_case_ : Union[str, Any] = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
snake_case_ : Optional[Any] = mid + 1
else:
snake_case_ : Tuple = mid
return lo
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: list[int] , lowerCAmelCase_: int , lowerCAmelCase_: int = 0 , lowerCAmelCase_: int = -1 ):
sorted_collection.insert(bisect_left(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: list[int] , lowerCAmelCase_: int , lowerCAmelCase_: int = 0 , lowerCAmelCase_: int = -1 ):
sorted_collection.insert(bisect_right(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ )
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: list[int] , lowerCAmelCase_: int ):
snake_case_ : Dict = 0
snake_case_ : Tuple = len(lowerCAmelCase_ ) - 1
while left <= right:
snake_case_ : int = left + (right - left) // 2
snake_case_ : Optional[Any] = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
snake_case_ : Optional[Any] = midpoint - 1
else:
snake_case_ : Optional[int] = midpoint + 1
return None
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: list[int] , lowerCAmelCase_: int ):
snake_case_ : Optional[int] = bisect.bisect_left(lowerCAmelCase_ , lowerCAmelCase_ )
if index != len(lowerCAmelCase_ ) and sorted_collection[index] == item:
return index
return None
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: list[int] , lowerCAmelCase_: int , lowerCAmelCase_: int , lowerCAmelCase_: int ):
if right < left:
return None
snake_case_ : List[Any] = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , midpoint - 1 )
else:
return binary_search_by_recursion(lowerCAmelCase_ , lowerCAmelCase_ , midpoint + 1 , lowerCAmelCase_ )
if __name__ == "__main__":
UpperCAmelCase = input("Enter numbers separated by comma:\n").strip()
UpperCAmelCase = sorted(int(item) for item in user_input.split(","))
UpperCAmelCase = int(input("Enter a single number to be found in the list:\n"))
UpperCAmelCase = binary_search(collection, target)
if result is None:
print(F"{target} was not found in {collection}.")
else:
print(F"{target} was found at position {result} in {collection}.")
| 666 | 0 |
'''simple docstring'''
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __snake_case :
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[Any]=14 , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Optional[Any]=True , lowerCamelCase : Optional[int]=True , lowerCamelCase : str=False , lowerCamelCase : Any=True , lowerCamelCase : Optional[Any]=99 , lowerCamelCase : Optional[Any]=32 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : List[Any]=4 , lowerCamelCase : Optional[int]=4 , lowerCamelCase : Dict=37 , lowerCamelCase : Union[str, Any]="gelu" , lowerCamelCase : Any=0.1 , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[Any]=5_12 , lowerCamelCase : List[str]=0.02 , ) -> List[Any]:
lowerCAmelCase_ : Optional[int] = parent
lowerCAmelCase_ : Optional[int] = batch_size
lowerCAmelCase_ : List[str] = seq_length
lowerCAmelCase_ : str = is_training
lowerCAmelCase_ : Optional[Any] = use_input_mask
lowerCAmelCase_ : List[str] = use_token_type_ids
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : Any = vocab_size
lowerCAmelCase_ : List[str] = hidden_size
lowerCAmelCase_ : Any = rotary_dim
lowerCAmelCase_ : List[Any] = num_hidden_layers
lowerCAmelCase_ : List[Any] = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Union[str, Any] = hidden_act
lowerCAmelCase_ : List[str] = hidden_dropout_prob
lowerCAmelCase_ : int = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[int] = max_position_embeddings
lowerCAmelCase_ : Optional[Any] = initializer_range
lowerCAmelCase_ : Tuple = None
lowerCAmelCase_ : Optional[Any] = vocab_size - 1
lowerCAmelCase_ : Optional[int] = vocab_size - 1
lowerCAmelCase_ : Dict = vocab_size - 1
def __lowercase ( self : str ) -> Any:
lowerCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : Any = None
if self.use_input_mask:
lowerCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ : str = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__A , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def __lowercase ( self : Any ) -> List[str]:
lowerCAmelCase_ : Any = self.prepare_config_and_inputs()
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : List[Any] = config_and_inputs
lowerCAmelCase_ : Dict = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def __lowercase ( self : Dict , lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : int ) -> Dict:
lowerCAmelCase_ : Optional[Any] = 20
lowerCAmelCase_ : Union[str, Any] = model_class_name(__A )
lowerCAmelCase_ : str = model.init_cache(input_ids.shape[0] , __A )
lowerCAmelCase_ : Tuple = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCAmelCase_ : Union[str, Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : int = model(
input_ids[:, :-1] , attention_mask=__A , past_key_values=__A , position_ids=__A , )
lowerCAmelCase_ : Any = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : Any = model(
input_ids[:, -1:] , attention_mask=__A , past_key_values=outputs_cache.past_key_values , position_ids=__A , )
lowerCAmelCase_ : List[Any] = model(__A )
lowerCAmelCase_ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' )
def __lowercase ( self : Any , lowerCamelCase : Optional[Any] , lowerCamelCase : Any , lowerCamelCase : Optional[int] , lowerCamelCase : Dict ) -> str:
lowerCAmelCase_ : List[str] = 20
lowerCAmelCase_ : List[str] = model_class_name(__A )
lowerCAmelCase_ : List[str] = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
lowerCAmelCase_ : Any = model.init_cache(input_ids.shape[0] , __A )
lowerCAmelCase_ : Any = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : int = model(
input_ids[:, :-1] , attention_mask=__A , past_key_values=__A , position_ids=__A , )
lowerCAmelCase_ : Optional[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__A , position_ids=__A , )
lowerCAmelCase_ : Union[str, Any] = model(__A , attention_mask=__A )
lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' )
@require_flax
class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase):
"""simple docstring"""
lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def __lowercase ( self : Dict ) -> Dict:
lowerCAmelCase_ : Dict = FlaxGPTJModelTester(self )
def __lowercase ( self : Any ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(__A , __A , __A , __A )
def __lowercase ( self : int ) -> Union[str, Any]:
for model_class_name in self.all_model_classes:
lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
__A , __A , __A , __A )
@tooslow
def __lowercase ( self : str ) -> Optional[Any]:
lowerCAmelCase_ : Union[str, Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
lowerCAmelCase_ : int = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=__A , truncation=__A )
lowerCAmelCase_ : Dict = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : Optional[Any] = False
lowerCAmelCase_ : List[Any] = model.config.eos_token_id
lowerCAmelCase_ : str = jax.jit(model.generate )
lowerCAmelCase_ : int = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
lowerCAmelCase_ : List[str] = tokenizer.batch_decode(__A , skip_special_tokens=__A )
lowerCAmelCase_ : int = [
"""Hello this is a long string of text.\n\nI\'m trying to get the text of the""",
"""Hey, I\'m a little late to the party. I\'m going to""",
]
self.assertListEqual(__A , __A )
@is_pt_flax_cross_test
def __lowercase ( self : Optional[Any] ) -> Union[str, Any]:
lowerCAmelCase_, lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : Any = self._prepare_for_class(__A , __A )
lowerCAmelCase_ : Optional[int] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : List[Any] = getattr(__A , __A )
lowerCAmelCase_, lowerCAmelCase_ : List[str] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__A ):
lowerCAmelCase_ : List[str] = 0
lowerCAmelCase_ : Union[str, Any] = 1
lowerCAmelCase_ : List[Any] = 0
lowerCAmelCase_ : Any = 1
lowerCAmelCase_ : Optional[Any] = pt_model_class(__A ).eval()
lowerCAmelCase_ : Optional[int] = model_class(__A , dtype=jnp.floataa )
lowerCAmelCase_ : Dict = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __A )
lowerCAmelCase_ : List[Any] = fx_state
with torch.no_grad():
lowerCAmelCase_ : Dict = pt_model(**__A ).to_tuple()
lowerCAmelCase_ : int = fx_model(**__A ).to_tuple()
self.assertEqual(len(__A ) , len(__A ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(__A , __A ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(__A )
lowerCAmelCase_ : List[str] = model_class.from_pretrained(__A , from_pt=__A )
lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**__A ).to_tuple()
self.assertEqual(
len(__A ) , len(__A ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(__A , __A ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def __lowercase ( self : List[Any] ) -> List[str]:
lowerCAmelCase_, lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : int = self._prepare_for_class(__A , __A )
lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : str = getattr(__A , __A )
lowerCAmelCase_ : Tuple = pt_model_class(__A ).eval()
lowerCAmelCase_ : Any = model_class(__A , dtype=jnp.floataa )
lowerCAmelCase_ : Optional[int] = load_flax_weights_in_pytorch_model(__A , fx_model.params )
lowerCAmelCase_, lowerCAmelCase_ : Any = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : List[str] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__A ):
lowerCAmelCase_ : Dict = 0
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Optional[int] = 0
lowerCAmelCase_ : Any = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowerCAmelCase_ : Union[str, Any] = pt_model(**__A ).to_tuple()
lowerCAmelCase_ : Tuple = fx_model(**__A ).to_tuple()
self.assertEqual(len(__A ) , len(__A ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(__A , __A ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(__A )
lowerCAmelCase_ : int = pt_model_class.from_pretrained(__A , from_flax=__A )
with torch.no_grad():
lowerCAmelCase_ : Tuple = pt_model_loaded(**__A ).to_tuple()
self.assertEqual(
len(__A ) , len(__A ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(__A , __A ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def __lowercase ( self : Tuple ) -> Tuple:
for model_class_name in self.all_model_classes:
lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : Tuple = model(np.ones((1, 1) ) )
self.assertIsNotNone(__A )
| 718 |
'''simple docstring'''
def UpperCamelCase_ ( A__ : int ):
'''simple docstring'''
assert isinstance(A__ , A__ ), f'The input value of [n={number}] is not an integer'
if number == 1:
return 2
elif number < 1:
lowerCAmelCase_ : Any = f'The input value of [n={number}] has to be > 0'
raise ValueError(A__ )
else:
lowerCAmelCase_ : Optional[int] = sylvester(number - 1 )
lowerCAmelCase_ : Dict = num - 1
lowerCAmelCase_ : Union[str, Any] = num
return lower * upper + 1
if __name__ == "__main__":
print(F'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
| 398 | 0 |
from __future__ import annotations
from math import pi, sqrt
def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> tuple:
if inductance <= 0:
raise ValueError("Inductance cannot be 0 or negative" )
elif capacitance <= 0:
raise ValueError("Capacitance cannot be 0 or negative" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod() | 397 |
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase( snake_case_ ):
"""simple docstring"""
a : List[str] = (DEISMultistepScheduler,)
a : Tuple = (("""num_inference_steps""", 2_5),)
def __a ( self , **lowerCamelCase ) -> str:
"""simple docstring"""
lowercase__ : Optional[Any] = {
"num_train_timesteps": 1000,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
"solver_order": 2,
}
config.update(**lowerCamelCase )
return config
def __a ( self , lowerCamelCase=0 , **lowerCamelCase ) -> List[str]:
"""simple docstring"""
lowercase__ : int = dict(self.forward_default_kwargs )
lowercase__ : Union[str, Any] = kwargs.pop("num_inference_steps" , lowerCamelCase )
lowercase__ : Optional[int] = self.dummy_sample
lowercase__ : Any = 0.1 * sample
lowercase__ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
lowercase__ : Optional[int] = self.get_scheduler_config(**lowerCamelCase )
lowercase__ : Union[str, Any] = scheduler_class(**lowerCamelCase )
scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals
lowercase__ : Dict = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase )
lowercase__ : Optional[int] = scheduler_class.from_pretrained(lowerCamelCase )
new_scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals
lowercase__ : str = dummy_past_residuals[: new_scheduler.config.solver_order]
lowercase__ , lowercase__ : Tuple = sample, sample
for t in range(lowerCamelCase , time_step + scheduler.config.solver_order + 1 ):
lowercase__ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample
lowercase__ : Optional[Any] = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __a ( self ) -> str:
"""simple docstring"""
pass
def __a ( self , lowerCamelCase=0 , **lowerCamelCase ) -> str:
"""simple docstring"""
lowercase__ : int = dict(self.forward_default_kwargs )
lowercase__ : Optional[Any] = kwargs.pop("num_inference_steps" , lowerCamelCase )
lowercase__ : Any = self.dummy_sample
lowercase__ : Dict = 0.1 * sample
lowercase__ : str = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
lowercase__ : Any = self.get_scheduler_config()
lowercase__ : Union[str, Any] = scheduler_class(**lowerCamelCase )
scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residuals (must be after setting timesteps)
lowercase__ : List[Any] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase )
lowercase__ : str = scheduler_class.from_pretrained(lowerCamelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowerCamelCase )
# copy over dummy past residual (must be after setting timesteps)
lowercase__ : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
lowercase__ : Tuple = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample
lowercase__ : List[Any] = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __a ( self , lowerCamelCase=None , **lowerCamelCase ) -> Optional[Any]:
"""simple docstring"""
if scheduler is None:
lowercase__ : int = self.scheduler_classes[0]
lowercase__ : Dict = self.get_scheduler_config(**lowerCamelCase )
lowercase__ : Optional[Any] = scheduler_class(**lowerCamelCase )
lowercase__ : Optional[Any] = self.scheduler_classes[0]
lowercase__ : Tuple = self.get_scheduler_config(**lowerCamelCase )
lowercase__ : int = scheduler_class(**lowerCamelCase )
lowercase__ : Union[str, Any] = 10
lowercase__ : Dict = self.dummy_model()
lowercase__ : Optional[Any] = self.dummy_sample_deter
scheduler.set_timesteps(lowerCamelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ : int = model(lowerCamelCase , lowerCamelCase )
lowercase__ : Any = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample
return sample
def __a ( self ) -> List[Any]:
"""simple docstring"""
lowercase__ : List[str] = dict(self.forward_default_kwargs )
lowercase__ : int = kwargs.pop("num_inference_steps" , lowerCamelCase )
for scheduler_class in self.scheduler_classes:
lowercase__ : List[str] = self.get_scheduler_config()
lowercase__ : Optional[int] = scheduler_class(**lowerCamelCase )
lowercase__ : Optional[Any] = self.dummy_sample
lowercase__ : int = 0.1 * sample
if num_inference_steps is not None and hasattr(lowerCamelCase , "set_timesteps" ):
scheduler.set_timesteps(lowerCamelCase )
elif num_inference_steps is not None and not hasattr(lowerCamelCase , "set_timesteps" ):
lowercase__ : str = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
lowercase__ : str = [residual + 0.2, residual + 0.15, residual + 0.10]
lowercase__ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order]
lowercase__ : Dict = scheduler.timesteps[5]
lowercase__ : str = scheduler.timesteps[6]
lowercase__ : List[Any] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample
lowercase__ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def __a ( self ) -> List[Any]:
"""simple docstring"""
lowercase__ : List[str] = DEISMultistepScheduler(**self.get_scheduler_config() )
lowercase__ : Union[str, Any] = self.full_loop(scheduler=lowerCamelCase )
lowercase__ : Tuple = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3
lowercase__ : Tuple = DPMSolverSinglestepScheduler.from_config(scheduler.config )
lowercase__ : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config )
lowercase__ : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config )
lowercase__ : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config )
lowercase__ : int = self.full_loop(scheduler=lowerCamelCase )
lowercase__ : List[str] = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3
def __a ( self ) -> Dict:
"""simple docstring"""
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=lowerCamelCase )
def __a ( self ) -> Optional[int]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCamelCase )
for order in [1, 2, 3]:
for solver_type in ["logrho"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=lowerCamelCase , prediction_type=lowerCamelCase , sample_max_value=lowerCamelCase , algorithm_type="deis" , solver_order=lowerCamelCase , solver_type=lowerCamelCase , )
def __a ( self ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCamelCase )
def __a ( self ) -> Optional[int]:
"""simple docstring"""
for algorithm_type in ["deis"]:
for solver_type in ["logrho"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=lowerCamelCase , solver_type=lowerCamelCase , prediction_type=lowerCamelCase , algorithm_type=lowerCamelCase , )
lowercase__ : Dict = self.full_loop(
solver_order=lowerCamelCase , solver_type=lowerCamelCase , prediction_type=lowerCamelCase , algorithm_type=lowerCamelCase , )
assert not torch.isnan(lowerCamelCase ).any(), "Samples have nan numbers"
def __a ( self ) -> List[str]:
"""simple docstring"""
self.check_over_configs(lower_order_final=lowerCamelCase )
self.check_over_configs(lower_order_final=lowerCamelCase )
def __a ( self ) -> List[Any]:
"""simple docstring"""
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=lowerCamelCase , time_step=0 )
def __a ( self ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Union[str, Any] = self.full_loop()
lowercase__ : Optional[int] = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 0.2_39_16 ) < 1E-3
def __a ( self ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ : List[Any] = self.full_loop(prediction_type="v_prediction" )
lowercase__ : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase ) )
assert abs(result_mean.item() - 0.0_91 ) < 1E-3
def __a ( self ) -> Optional[Any]:
"""simple docstring"""
lowercase__ : Dict = self.scheduler_classes[0]
lowercase__ : Union[str, Any] = self.get_scheduler_config(thresholding=lowerCamelCase , dynamic_thresholding_ratio=0 )
lowercase__ : Union[str, Any] = scheduler_class(**lowerCamelCase )
lowercase__ : Dict = 10
lowercase__ : List[str] = self.dummy_model()
lowercase__ : Tuple = self.dummy_sample_deter.half()
scheduler.set_timesteps(lowerCamelCase )
for i, t in enumerate(scheduler.timesteps ):
lowercase__ : Optional[int] = model(lowerCamelCase , lowerCamelCase )
lowercase__ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample
assert sample.dtype == torch.floataa | 397 | 1 |
import argparse
from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( _A , _A , _A ):
# Initialise PyTorch model
lowerCAmelCase_ = TaConfig.from_json_file(_A )
print(f"Building PyTorch model from configuration: {config}" )
lowerCAmelCase_ = TaForConditionalGeneration(_A )
# Load weights from tf checkpoint
load_tf_weights_in_ta(_A , _A , _A )
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}" )
model.save_pretrained(_A )
if __name__ == "__main__":
_A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_A = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 325 |
class A :
def __init__( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ):
"""simple docstring"""
lowerCAmelCase_ = name
lowerCAmelCase_ = value
lowerCAmelCase_ = weight
def __repr__( self ):
"""simple docstring"""
return f"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
return self.value
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
return self.name
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
return self.weight
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
return self.value / self.weight
def __UpperCamelCase ( _A , _A , _A ):
lowerCAmelCase_ = []
for i in range(len(_A ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def __UpperCamelCase ( _A , _A , _A ):
lowerCAmelCase_ = sorted(_A , key=_A , reverse=_A )
lowerCAmelCase_ = []
lowerCAmelCase_ , lowerCAmelCase_ = 0.0, 0.0
for i in range(len(_A ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def __UpperCamelCase ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
from packaging import version
if TYPE_CHECKING:
from ... import PreTrainedTokenizer, TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import is_torch_available, logging
snake_case : List[Any] = logging.get_logger(__name__)
snake_case : Optional[int] = {
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json',
}
class __lowercase ( UpperCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = "bloom"
SCREAMING_SNAKE_CASE : Optional[Any] = ["past_key_values"]
SCREAMING_SNAKE_CASE : List[str] = {
"num_hidden_layers": "n_layer",
"num_attention_heads": "n_head",
}
def __init__( self , A_=250880 , A_=64 , A_=2 , A_=8 , A_=1e-5 , A_=0.02 , A_=True , A_=1 , A_=2 , A_=False , A_=0.0 , A_=0.0 , A_=1 , A_=False , **A_ , )-> Union[str, Any]:
_SCREAMING_SNAKE_CASE = vocab_size
# Backward compatibility with n_embed kwarg
_SCREAMING_SNAKE_CASE = kwargs.pop('n_embed' , A_ )
_SCREAMING_SNAKE_CASE = hidden_size if n_embed is None else n_embed
_SCREAMING_SNAKE_CASE = n_layer
_SCREAMING_SNAKE_CASE = n_head
_SCREAMING_SNAKE_CASE = layer_norm_epsilon
_SCREAMING_SNAKE_CASE = initializer_range
_SCREAMING_SNAKE_CASE = use_cache
_SCREAMING_SNAKE_CASE = pretraining_tp
_SCREAMING_SNAKE_CASE = apply_residual_connection_post_layernorm
_SCREAMING_SNAKE_CASE = hidden_dropout
_SCREAMING_SNAKE_CASE = attention_dropout
_SCREAMING_SNAKE_CASE = bos_token_id
_SCREAMING_SNAKE_CASE = eos_token_id
_SCREAMING_SNAKE_CASE = slow_but_exact
super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ )
class __lowercase ( UpperCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = version.parse("1.12" )
def __init__( self , A_ , A_ = "default" , A_ = None , A_ = False , )-> List[str]:
super().__init__(A_ , task=A_ , patching_specs=A_ , use_past=A_ )
if not getattr(self._config , 'pad_token_id' , A_ ):
# TODO: how to do that better?
_SCREAMING_SNAKE_CASE = 0
@property
def __magic_name__ ( self )-> Mapping[str, Mapping[int, str]]:
_SCREAMING_SNAKE_CASE = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} )
if self.use_past:
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
self.fill_with_past_key_values_(A_ , direction='inputs' , inverted_values_shape=A_ )
_SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'past_sequence + sequence'}
else:
_SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'}
return common_inputs
@property
def __magic_name__ ( self )-> int:
return self._config.n_layer
@property
def __magic_name__ ( self )-> int:
return self._config.n_head
@property
def __magic_name__ ( self )-> float:
return 1e-3
def __magic_name__ ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , )-> Mapping[str, Any]:
_SCREAMING_SNAKE_CASE = super(A_ , self ).generate_dummy_inputs(
A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ )
# We need to order the input in the way they appears in the forward()
_SCREAMING_SNAKE_CASE = OrderedDict({'input_ids': common_inputs['input_ids']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
_SCREAMING_SNAKE_CASE = seqlen + 2
_SCREAMING_SNAKE_CASE = self._config.hidden_size // self.num_attention_heads
_SCREAMING_SNAKE_CASE = (
batch * self.num_attention_heads,
head_dim,
past_key_values_length,
)
_SCREAMING_SNAKE_CASE = (
batch * self.num_attention_heads,
past_key_values_length,
head_dim,
)
_SCREAMING_SNAKE_CASE = [
(torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(self.num_layers )
]
_SCREAMING_SNAKE_CASE = common_inputs['attention_mask']
if self.use_past:
_SCREAMING_SNAKE_CASE = ordered_inputs['attention_mask'].dtype
_SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 )
return ordered_inputs
@property
def __magic_name__ ( self )-> int:
return 13
| 605 |
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class __lowercase ( unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = MODEL_FOR_MASKED_LM_MAPPING
SCREAMING_SNAKE_CASE : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING
def __magic_name__ ( self )-> Dict:
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def __magic_name__ ( self )-> List[str]:
_SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' )
_SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(A_ , decimals=6 ) , [
{'sequence': 'My name is grouped', 'score': 2.1e-0_5, 'token': 38015, 'token_str': ' grouped'},
{'sequence': 'My name is accuser', 'score': 2.1e-0_5, 'token': 25506, 'token_str': ' accuser'},
] , )
_SCREAMING_SNAKE_CASE = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(A_ , decimals=6 ) , [
{
'sequence': 'The largest city in France is grouped',
'score': 2.1e-0_5,
'token': 38015,
'token_str': ' grouped',
},
{
'sequence': 'The largest city in France is accuser',
'score': 2.1e-0_5,
'token': 25506,
'token_str': ' accuser',
},
] , )
_SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(A_ , decimals=6 ) , [
{'sequence': 'My name is Clara', 'score': 2e-0_5, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Patrick', 'score': 2e-0_5, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 1.9e-0_5, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def __magic_name__ ( self )-> Tuple:
_SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' )
_SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(A_ , decimals=6 ) , [
{'sequence': 'My name is Maul', 'score': 2.2e-0_5, 'token': 35676, 'token_str': ' Maul'},
{'sequence': 'My name isELS', 'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS'},
] , )
_SCREAMING_SNAKE_CASE = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(A_ , decimals=6 ) , [
{
'sequence': 'The largest city in France is Maul',
'score': 2.2e-0_5,
'token': 35676,
'token_str': ' Maul',
},
{'sequence': 'The largest city in France isELS', 'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS'},
] , )
_SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(A_ , decimals=6 ) , [
{'sequence': 'My name is Patrick', 'score': 2.1e-0_5, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 2e-0_5, 'token': 2941, 'token_str': ' Te'},
{'sequence': 'My name is Clara', 'score': 2e-0_5, 'token': 13606, 'token_str': ' Clara'},
] , )
_SCREAMING_SNAKE_CASE = unmasker('My name is <mask> <mask>' , top_k=2 )
self.assertEqual(
nested_simplify(A_ , decimals=6 ) , [
[
{
'score': 2.2e-0_5,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is Maul<mask></s>',
},
{'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'},
],
[
{
'score': 2.2e-0_5,
'token': 35676,
'token_str': ' Maul',
'sequence': '<s>My name is<mask> Maul</s>',
},
{'score': 2.2e-0_5, 'token': 16416, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'},
],
] , )
@require_torch_gpu
def __magic_name__ ( self )-> int:
_SCREAMING_SNAKE_CASE = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' )
# convert model to fp16
pipe.model.half()
_SCREAMING_SNAKE_CASE = pipe('Paris is the [MASK] of France.' )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(A_ , A_ )
@slow
@require_torch
def __magic_name__ ( self )-> Optional[int]:
_SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' )
self.run_large_test(A_ )
@slow
@require_tf
def __magic_name__ ( self )-> str:
_SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' )
self.run_large_test(A_ )
def __magic_name__ ( self , A_ )-> List[str]:
_SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(A_ ) , [
{'sequence': 'My name is John', 'score': 0.008, 'token': 610, 'token_str': ' John'},
{'sequence': 'My name is Chris', 'score': 0.007, 'token': 1573, 'token_str': ' Chris'},
] , )
_SCREAMING_SNAKE_CASE = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(A_ ) , [
{
'sequence': 'The largest city in France is Paris',
'score': 0.251,
'token': 2201,
'token_str': ' Paris',
},
{
'sequence': 'The largest city in France is Lyon',
'score': 0.214,
'token': 12790,
'token_str': ' Lyon',
},
] , )
_SCREAMING_SNAKE_CASE = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(A_ ) , [
{'sequence': 'My name is Patrick', 'score': 0.005, 'token': 3499, 'token_str': ' Patrick'},
{'sequence': 'My name is Clara', 'score': 0.000, 'token': 13606, 'token_str': ' Clara'},
{'sequence': 'My name is Te', 'score': 0.000, 'token': 2941, 'token_str': ' Te'},
] , )
@require_torch
def __magic_name__ ( self )-> Dict:
_SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' )
_SCREAMING_SNAKE_CASE = None
_SCREAMING_SNAKE_CASE = None
self.run_pipeline_test(A_ , [] )
@require_tf
def __magic_name__ ( self )-> Any:
_SCREAMING_SNAKE_CASE = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' )
_SCREAMING_SNAKE_CASE = None
_SCREAMING_SNAKE_CASE = None
self.run_pipeline_test(A_ , [] )
def __magic_name__ ( self , A_ , A_ , A_ )-> Optional[int]:
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' )
_SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ )
_SCREAMING_SNAKE_CASE = [
F'''This is another {tokenizer.mask_token} test''',
]
return fill_masker, examples
def __magic_name__ ( self , A_ , A_ )-> Optional[int]:
_SCREAMING_SNAKE_CASE = fill_masker.tokenizer
_SCREAMING_SNAKE_CASE = fill_masker.model
_SCREAMING_SNAKE_CASE = fill_masker(
F'''This is a {tokenizer.mask_token}''' , )
self.assertEqual(
A_ , [
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
] , )
_SCREAMING_SNAKE_CASE = fill_masker([F'''This is a {tokenizer.mask_token}'''] )
self.assertEqual(
A_ , [
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
] , )
_SCREAMING_SNAKE_CASE = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] )
self.assertEqual(
A_ , [
[
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
],
[
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
],
] , )
with self.assertRaises(A_ ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(A_ ):
fill_masker('This is' )
self.run_test_top_k(A_ , A_ )
self.run_test_targets(A_ , A_ )
self.run_test_top_k_targets(A_ , A_ )
self.fill_mask_with_duplicate_targets_and_top_k(A_ , A_ )
self.fill_mask_with_multiple_masks(A_ , A_ )
def __magic_name__ ( self , A_ , A_ )-> List[Any]:
_SCREAMING_SNAKE_CASE = tokenizer.get_vocab()
_SCREAMING_SNAKE_CASE = sorted(vocab.keys() )[:2]
# Pipeline argument
_SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ , targets=A_ )
_SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' )
self.assertEqual(
A_ , [
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
] , )
_SCREAMING_SNAKE_CASE = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , A_ )
_SCREAMING_SNAKE_CASE = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(A_ ) )
# Call argument
_SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ )
_SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=A_ )
self.assertEqual(
A_ , [
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
] , )
_SCREAMING_SNAKE_CASE = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , A_ )
_SCREAMING_SNAKE_CASE = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(A_ ) )
# Score equivalence
_SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=A_ )
_SCREAMING_SNAKE_CASE = [top_mask['token_str'] for top_mask in outputs]
_SCREAMING_SNAKE_CASE = [top_mask['score'] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(A_ ) == set(A_ ):
_SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=A_ )
_SCREAMING_SNAKE_CASE = [top_mask['score'] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) )
# Raises with invalid
with self.assertRaises(A_ ):
_SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(A_ ):
_SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[''] )
with self.assertRaises(A_ ):
_SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets='' )
def __magic_name__ ( self , A_ , A_ )-> List[str]:
_SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ , top_k=2 )
_SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' )
self.assertEqual(
A_ , [
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
] , )
_SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ )
_SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 )
self.assertEqual(
A_ , [
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
] , )
self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) )
def __magic_name__ ( self , A_ , A_ )-> Dict:
_SCREAMING_SNAKE_CASE = tokenizer.get_vocab()
_SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ )
# top_k=2, ntargets=3
_SCREAMING_SNAKE_CASE = sorted(vocab.keys() )[:3]
_SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=A_ )
# If we use the most probably targets, and filter differently, we should still
# have the same results
_SCREAMING_SNAKE_CASE = [el['token_str'] for el in sorted(A_ , key=lambda A_ : x["score"] , reverse=A_ )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(A_ ).issubset(A_ ):
_SCREAMING_SNAKE_CASE = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=A_ )
# They should yield exactly the same result
self.assertEqual(nested_simplify(A_ ) , nested_simplify(A_ ) )
def __magic_name__ ( self , A_ , A_ )-> Dict:
_SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ )
_SCREAMING_SNAKE_CASE = tokenizer.get_vocab()
# String duplicates + id duplicates
_SCREAMING_SNAKE_CASE = sorted(vocab.keys() )[:3]
_SCREAMING_SNAKE_CASE = [targets[0], targets[1], targets[0], targets[2], targets[1]]
_SCREAMING_SNAKE_CASE = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=A_ , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(A_ ) , 3 )
def __magic_name__ ( self , A_ , A_ )-> int:
_SCREAMING_SNAKE_CASE = FillMaskPipeline(model=A_ , tokenizer=A_ )
_SCREAMING_SNAKE_CASE = fill_masker(
F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 )
self.assertEqual(
A_ , [
[
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
],
[
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
],
[
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
{'sequence': ANY(A_ ), 'score': ANY(A_ ), 'token': ANY(A_ ), 'token_str': ANY(A_ )},
],
] , )
| 605 | 1 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 713 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : int ):
"""simple docstring"""
if not isinstance(snake_case__ , snake_case__ ) or number < 0:
raise ValueError("""Input must be a non-negative integer""" )
_snake_case : Dict = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 0 |
'''simple docstring'''
from math import factorial
def A_( A : int = 20):
UpperCamelCase = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
UpperCamelCase = n // 2
return int(factorial(A) / (factorial(A) * factorial(n - k)))
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
lowerCAmelCase : int = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 3 | '''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Any = {"configuration_focalnet": ["FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FocalNetConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : int = [
"FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"FocalNetForImageClassification",
"FocalNetForMaskedImageModeling",
"FocalNetBackbone",
"FocalNetModel",
"FocalNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
lowercase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 390 | 0 |
'''simple docstring'''
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
lowercase__ = re.compile(R"\b(a|an|the)\b", re.UNICODE)
lowercase__ = None
def __UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
_a = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." )
parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." )
parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." )
parser.add_argument(
"--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." )
parser.add_argument(
"--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." )
parser.add_argument(
"--na-prob-thresh" , "-t" , type=__lowerCamelCase , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , )
parser.add_argument(
"--out-image-dir" , "-p" , metavar="out_images" , default=__lowerCamelCase , help="Save precision-recall curves to directory." )
parser.add_argument("--verbose" , "-v" , action="store_true" )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def __UpperCamelCase ( __lowerCamelCase : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_a = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
_a = bool(qa["answers"]["text"] )
return qid_to_has_ans
def __UpperCamelCase ( __lowerCamelCase : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
def remove_articles(__lowerCamelCase : Optional[int] ):
return ARTICLES_REGEX.sub(" " , __lowerCamelCase )
def white_space_fix(__lowerCamelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(__lowerCamelCase : str ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__lowerCamelCase : Optional[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) )
def __UpperCamelCase ( __lowerCamelCase : Tuple ) -> List[Any]:
'''simple docstring'''
if not s:
return []
return normalize_answer(__lowerCamelCase ).split()
def __UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] ) -> Tuple:
'''simple docstring'''
return int(normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) )
def __UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ) -> int:
'''simple docstring'''
_a = get_tokens(__lowerCamelCase )
_a = get_tokens(__lowerCamelCase )
_a = collections.Counter(__lowerCamelCase ) & collections.Counter(__lowerCamelCase )
_a = sum(common.values() )
if len(__lowerCamelCase ) == 0 or len(__lowerCamelCase ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
_a = 1.0 * num_same / len(__lowerCamelCase )
_a = 1.0 * num_same / len(__lowerCamelCase )
_a = (2 * precision * recall) / (precision + recall)
return fa
def __UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ) -> List[Any]:
'''simple docstring'''
_a = {}
_a = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
_a = qa["id"]
_a = [t for t in qa["answers"]["text"] if normalize_answer(__lowerCamelCase )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
_a = [""]
if qid not in preds:
print(F"Missing prediction for {qid}" )
continue
_a = preds[qid]
# Take max over all gold answers
_a = max(compute_exact(__lowerCamelCase , __lowerCamelCase ) for a in gold_answers )
_a = max(compute_fa(__lowerCamelCase , __lowerCamelCase ) for a in gold_answers )
return exact_scores, fa_scores
def __UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_a = {}
for qid, s in scores.items():
_a = na_probs[qid] > na_prob_thresh
if pred_na:
_a = float(not qid_to_has_ans[qid] )
else:
_a = s
return new_scores
def __UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Any=None ) -> str:
'''simple docstring'''
if not qid_list:
_a = len(__lowerCamelCase )
return collections.OrderedDict(
[
("exact", 1_00.0 * sum(exact_scores.values() ) / total),
("f1", 1_00.0 * sum(fa_scores.values() ) / total),
("total", total),
] )
else:
_a = len(__lowerCamelCase )
return collections.OrderedDict(
[
("exact", 1_00.0 * sum(exact_scores[k] for k in qid_list ) / total),
("f1", 1_00.0 * sum(fa_scores[k] for k in qid_list ) / total),
("total", total),
] )
def __UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ) -> Optional[int]:
'''simple docstring'''
for k in new_eval:
_a = new_eval[k]
def __UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ) -> Tuple:
'''simple docstring'''
plt.step(__lowerCamelCase , __lowerCamelCase , color="b" , alpha=0.2 , where="post" )
plt.fill_between(__lowerCamelCase , __lowerCamelCase , step="post" , alpha=0.2 , color="b" )
plt.xlabel("Recall" )
plt.ylabel("Precision" )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(__lowerCamelCase )
plt.savefig(__lowerCamelCase )
plt.clf()
def __UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int=None , __lowerCamelCase : int=None ) -> Optional[int]:
'''simple docstring'''
_a = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : na_probs[k] )
_a = 0.0
_a = 1.0
_a = 0.0
_a = [1.0]
_a = [0.0]
_a = 0.0
for i, qid in enumerate(__lowerCamelCase ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
_a = true_pos / float(i + 1 )
_a = true_pos / float(__lowerCamelCase )
if i == len(__lowerCamelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(__lowerCamelCase )
recalls.append(__lowerCamelCase )
if out_image:
plot_pr_curve(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return {"ap": 1_00.0 * avg_prec}
def __UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ) -> Optional[Any]:
'''simple docstring'''
if out_image_dir and not os.path.exists(__lowerCamelCase ):
os.makedirs(__lowerCamelCase )
_a = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
_a = make_precision_recall_eval(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , out_image=os.path.join(__lowerCamelCase , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , )
_a = make_precision_recall_eval(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , out_image=os.path.join(__lowerCamelCase , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , )
_a = {k: float(__lowerCamelCase ) for k, v in qid_to_has_ans.items()}
_a = make_precision_recall_eval(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , out_image=os.path.join(__lowerCamelCase , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , )
merge_eval(__lowerCamelCase , __lowerCamelCase , "pr_exact" )
merge_eval(__lowerCamelCase , __lowerCamelCase , "pr_f1" )
merge_eval(__lowerCamelCase , __lowerCamelCase , "pr_oracle" )
def __UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] ) -> Any:
'''simple docstring'''
if not qid_list:
return
_a = [na_probs[k] for k in qid_list]
_a = np.ones_like(__lowerCamelCase ) / float(len(__lowerCamelCase ) )
plt.hist(__lowerCamelCase , weights=__lowerCamelCase , bins=20 , range=(0.0, 1.0) )
plt.xlabel("Model probability of no-answer" )
plt.ylabel("Proportion of dataset" )
plt.title(F"Histogram of no-answer probability: {name}" )
plt.savefig(os.path.join(__lowerCamelCase , F"na_prob_hist_{name}.png" ) )
plt.clf()
def __UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Tuple ) -> int:
'''simple docstring'''
_a = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
_a = num_no_ans
_a = cur_score
_a = 0.0
_a = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : na_probs[k] )
for i, qid in enumerate(__lowerCamelCase ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
_a = scores[qid]
else:
if preds[qid]:
_a = -1
else:
_a = 0
cur_score += diff
if cur_score > best_score:
_a = cur_score
_a = na_probs[qid]
return 1_00.0 * best_score / len(__lowerCamelCase ), best_thresh
def __UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ) -> List[Any]:
'''simple docstring'''
_a , _a = find_best_thresh(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
_a , _a = find_best_thresh(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
_a = best_exact
_a = exact_thresh
_a = best_fa
_a = fa_thresh
def __UpperCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
with open(OPTS.data_file ) as f:
_a = json.load(__lowerCamelCase )
_a = dataset_json["data"]
with open(OPTS.pred_file ) as f:
_a = json.load(__lowerCamelCase )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
_a = json.load(__lowerCamelCase )
else:
_a = {k: 0.0 for k in preds}
_a = make_qid_to_has_ans(__lowerCamelCase ) # maps qid to True/False
_a = [k for k, v in qid_to_has_ans.items() if v]
_a = [k for k, v in qid_to_has_ans.items() if not v]
_a , _a = get_raw_scores(__lowerCamelCase , __lowerCamelCase )
_a = apply_no_ans_threshold(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , OPTS.na_prob_thresh )
_a = apply_no_ans_threshold(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , OPTS.na_prob_thresh )
_a = make_eval_dict(__lowerCamelCase , __lowerCamelCase )
if has_ans_qids:
_a = make_eval_dict(__lowerCamelCase , __lowerCamelCase , qid_list=__lowerCamelCase )
merge_eval(__lowerCamelCase , __lowerCamelCase , "HasAns" )
if no_ans_qids:
_a = make_eval_dict(__lowerCamelCase , __lowerCamelCase , qid_list=__lowerCamelCase )
merge_eval(__lowerCamelCase , __lowerCamelCase , "NoAns" )
if OPTS.na_prob_file:
find_all_best_thresh(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , OPTS.out_image_dir )
histogram_na_prob(__lowerCamelCase , __lowerCamelCase , OPTS.out_image_dir , "hasAns" )
histogram_na_prob(__lowerCamelCase , __lowerCamelCase , OPTS.out_image_dir , "noAns" )
if OPTS.out_file:
with open(OPTS.out_file , "w" ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase )
else:
print(json.dumps(__lowerCamelCase , indent=2 ) )
if __name__ == "__main__":
lowercase__ = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
main()
| 276 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 276 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCamelCase = {'''configuration_fnet''': ['''FNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FNetConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ['''FNetTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = ['''FNetTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase = [
'''FNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FNetForMaskedLM''',
'''FNetForMultipleChoice''',
'''FNetForNextSentencePrediction''',
'''FNetForPreTraining''',
'''FNetForQuestionAnswering''',
'''FNetForSequenceClassification''',
'''FNetForTokenClassification''',
'''FNetLayer''',
'''FNetModel''',
'''FNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 247 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__UpperCamelCase = logging.get_logger(__name__)
__UpperCamelCase = {
'''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''',
}
class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ : Tuple = """convnextv2"""
def __init__( self , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.02 , lowerCAmelCase__=1e-12 , lowerCAmelCase__=0.0 , lowerCAmelCase__=224 , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> int:
super().__init__(**lowerCAmelCase__ )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = num_stages
SCREAMING_SNAKE_CASE = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
SCREAMING_SNAKE_CASE = [3, 3, 9, 3] if depths is None else depths
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = ['stem'] + [F'stage{idx}' for idx in range(1 , len(self.depths ) + 1 )]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names )
| 247 | 1 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class _UpperCamelCase :
def __init__( self :Optional[Any] , lowerCamelCase :Collection[float] | None = None ) -> List[Any]:
if components is None:
UpperCAmelCase__ = []
UpperCAmelCase__ = list(__UpperCamelCase )
def __len__( self :str ) -> List[str]:
return len(self.__components )
def __str__( self :Tuple ) -> Union[str, Any]:
return "(" + ",".join(map(__UpperCamelCase , self.__components ) ) + ")"
def __add__( self :Any , lowerCamelCase :Vector ) -> Dict:
UpperCAmelCase__ = len(self )
if size == len(__UpperCamelCase ):
UpperCAmelCase__ = [self.__components[i] + other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )]
return Vector(__UpperCamelCase )
else:
raise Exception("must have the same size" )
def __sub__( self :Union[str, Any] , lowerCamelCase :Vector ) -> Union[str, Any]:
UpperCAmelCase__ = len(self )
if size == len(__UpperCamelCase ):
UpperCAmelCase__ = [self.__components[i] - other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )]
return Vector(__UpperCamelCase )
else: # error case
raise Exception("must have the same size" )
@overload
def __mul__( self :Dict , lowerCamelCase :float ) -> Union[str, Any]:
...
@overload
def __mul__( self :Optional[Any] , lowerCamelCase :Vector ) -> Optional[int]:
...
def __mul__( self :Tuple , lowerCamelCase :float | Vector ) -> List[Any]:
if isinstance(__UpperCamelCase , (float, int) ):
UpperCAmelCase__ = [c * other for c in self.__components]
return Vector(__UpperCamelCase )
elif isinstance(__UpperCamelCase , __UpperCamelCase ) and len(self ) == len(__UpperCamelCase ):
UpperCAmelCase__ = len(self )
UpperCAmelCase__ = [self.__components[i] * other.component(__UpperCamelCase ) for i in range(__UpperCamelCase )]
return sum(__UpperCamelCase )
else: # error case
raise Exception("invalid operand!" )
def UpperCAmelCase_ ( self :str ) -> Any:
return Vector(self.__components )
def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :int ) -> Optional[int]:
if isinstance(__UpperCamelCase , __UpperCamelCase ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("index out of range" )
def UpperCAmelCase_ ( self :Dict , lowerCamelCase :int , lowerCamelCase :float ) -> Optional[Any]:
assert -len(self.__components ) <= pos < len(self.__components )
UpperCAmelCase__ = value
def UpperCAmelCase_ ( self :Optional[Any] ) -> str:
if len(self.__components ) == 0:
raise Exception("Vector is empty" )
UpperCAmelCase__ = [c**2 for c in self.__components]
return math.sqrt(sum(__UpperCamelCase ) )
def UpperCAmelCase_ ( self :Any , lowerCamelCase :Vector , lowerCamelCase :bool = False ) -> int:
UpperCAmelCase__ = self * other
UpperCAmelCase__ = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def lowerCAmelCase ( _lowerCAmelCase : int ):
"""simple docstring"""
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
return Vector([0] * dimension )
def lowerCAmelCase ( _lowerCAmelCase : int , _lowerCAmelCase : int ):
"""simple docstring"""
assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and (isinstance(UpperCAmelCase__ , UpperCAmelCase__ ))
UpperCAmelCase__ = [0] * dimension
UpperCAmelCase__ = 1
return Vector(UpperCAmelCase__ )
def lowerCAmelCase ( _lowerCAmelCase : float , _lowerCAmelCase : Vector , _lowerCAmelCase : Vector ):
"""simple docstring"""
assert (
isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
and isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
and (isinstance(UpperCAmelCase__ , (int, float) ))
)
return x * scalar + y
def lowerCAmelCase ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ):
"""simple docstring"""
random.seed(UpperCAmelCase__ )
UpperCAmelCase__ = [random.randint(UpperCAmelCase__ , UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )]
return Vector(UpperCAmelCase__ )
class _UpperCamelCase :
def __init__( self :Dict , lowerCamelCase :list[list[float]] , lowerCamelCase :int , lowerCamelCase :int ) -> Any:
UpperCAmelCase__ = matrix
UpperCAmelCase__ = w
UpperCAmelCase__ = h
def __str__( self :Dict ) -> List[Any]:
UpperCAmelCase__ = ""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self :Dict , lowerCamelCase :Matrix ) -> int:
if self.__width == other.width() and self.__height == other.height():
UpperCAmelCase__ = []
for i in range(self.__height ):
UpperCAmelCase__ = [
self.__matrix[i][j] + other.component(__UpperCamelCase , __UpperCamelCase )
for j in range(self.__width )
]
matrix.append(__UpperCamelCase )
return Matrix(__UpperCamelCase , self.__width , self.__height )
else:
raise Exception("matrix must have the same dimension!" )
def __sub__( self :Tuple , lowerCamelCase :Matrix ) -> Union[str, Any]:
if self.__width == other.width() and self.__height == other.height():
UpperCAmelCase__ = []
for i in range(self.__height ):
UpperCAmelCase__ = [
self.__matrix[i][j] - other.component(__UpperCamelCase , __UpperCamelCase )
for j in range(self.__width )
]
matrix.append(__UpperCamelCase )
return Matrix(__UpperCamelCase , self.__width , self.__height )
else:
raise Exception("matrices must have the same dimension!" )
@overload
def __mul__( self :Optional[int] , lowerCamelCase :float ) -> Tuple:
...
@overload
def __mul__( self :List[str] , lowerCamelCase :Vector ) -> Dict:
...
def __mul__( self :Union[str, Any] , lowerCamelCase :float | Vector ) -> str:
if isinstance(__UpperCamelCase , __UpperCamelCase ): # matrix-vector
if len(__UpperCamelCase ) == self.__width:
UpperCAmelCase__ = zero_vector(self.__height )
for i in range(self.__height ):
UpperCAmelCase__ = [
self.__matrix[i][j] * other.component(__UpperCamelCase )
for j in range(self.__width )
]
ans.change_component(__UpperCamelCase , sum(__UpperCamelCase ) )
return ans
else:
raise Exception(
"vector must have the same size as the "
"number of columns of the matrix!" )
elif isinstance(__UpperCamelCase , (int, float) ): # matrix-scalar
UpperCAmelCase__ = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(__UpperCamelCase , self.__width , self.__height )
return None
def UpperCAmelCase_ ( self :Any ) -> int:
return self.__height
def UpperCAmelCase_ ( self :Tuple ) -> Union[str, Any]:
return self.__width
def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :int , lowerCamelCase :int ) -> Dict:
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("change_component: indices out of bounds" )
def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :int , lowerCamelCase :int , lowerCamelCase :float ) -> Dict:
if 0 <= x < self.__height and 0 <= y < self.__width:
UpperCAmelCase__ = value
else:
raise Exception("change_component: indices out of bounds" )
def UpperCAmelCase_ ( self :Optional[int] , lowerCamelCase :int , lowerCamelCase :int ) -> int:
if self.__height != self.__width:
raise Exception("Matrix is not square" )
UpperCAmelCase__ = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(__UpperCamelCase ) ):
UpperCAmelCase__ = minor[i][:y] + minor[i][y + 1 :]
return Matrix(__UpperCamelCase , self.__width - 1 , self.__height - 1 ).determinant()
def UpperCAmelCase_ ( self :Optional[Any] , lowerCamelCase :int , lowerCamelCase :int ) -> List[Any]:
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(__UpperCamelCase , __UpperCamelCase )
else:
raise Exception("Indices out of bounds" )
def UpperCAmelCase_ ( self :Dict ) -> Tuple:
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if self.__height < 1:
raise Exception("Matrix has no element" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
UpperCAmelCase__ = [
self.__matrix[0][y] * self.cofactor(0 , __UpperCamelCase ) for y in range(self.__width )
]
return sum(__UpperCamelCase )
def lowerCAmelCase ( _lowerCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = [[0] * n for _ in range(UpperCAmelCase__ )]
return Matrix(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
def lowerCAmelCase ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ):
"""simple docstring"""
random.seed(UpperCAmelCase__ )
UpperCAmelCase__ = [
[random.randint(UpperCAmelCase__ , UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )
]
return Matrix(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
| 715 |
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = BigBirdConfig.from_json_file(_lowerCAmelCase )
print(F'''Building PyTorch model from configuration: {config}''' )
if is_trivia_qa:
UpperCAmelCase__ = BigBirdForQuestionAnswering(_lowerCAmelCase )
else:
UpperCAmelCase__ = BigBirdForPreTraining(_lowerCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(_lowerCAmelCase , _lowerCAmelCase , is_trivia_qa=_lowerCAmelCase )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
_lowerCAmelCase : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--big_bird_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head."
)
_lowerCAmelCase : Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 364 | 0 |
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
_lowerCamelCase : str = datasets.logging.get_logger(__name__)
_lowerCamelCase : List[Any] = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n"
_lowerCamelCase : Optional[Any] = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n"
_lowerCamelCase : str = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n"
_lowerCamelCase : Union[str, Any] = {
"bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip",
"bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip",
"bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip",
"bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip",
"bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip",
"bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip",
"BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip",
"BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip",
"BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip",
"BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip",
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case (datasets.Metric ):
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , )
def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : List[str] ) -> Any:
'''simple docstring'''
if self.config_name == "default":
logger.warning(
"""Using default BLEURT-Base checkpoint for sequence maximum length 128. """
"""You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512').""" )
_lowerCAmelCase : str = """bleurt-base-128"""
if self.config_name.lower() in CHECKPOINT_URLS:
_lowerCAmelCase : Dict = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
_lowerCAmelCase : Optional[int] = self.config_name.upper()
else:
raise KeyError(
f"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" )
# download the model checkpoint specified by self.config_name and set up the scorer
_lowerCAmelCase : str = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
_lowerCAmelCase : Optional[Any] = score.BleurtScorer(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE ( self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> Dict:
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.scorer.score(references=_UpperCAmelCase , candidates=_UpperCAmelCase )
return {"scores": scores}
| 429 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : List[str] = logging.get_logger(__name__)
_lowerCamelCase : Optional[int] = {}
class __snake_case (_a ):
lowerCAmelCase__ = "llama"
lowerCAmelCase__ = ["past_key_values"]
def __init__( self : str , _UpperCAmelCase : Optional[int]=3_2000 , _UpperCAmelCase : Union[str, Any]=4096 , _UpperCAmelCase : Union[str, Any]=1_1008 , _UpperCAmelCase : str=32 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[Any]="silu" , _UpperCAmelCase : Union[str, Any]=2048 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Tuple=1E-6 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict , ) -> Union[str, Any]:
'''simple docstring'''
_lowerCAmelCase : int = vocab_size
_lowerCAmelCase : Optional[int] = max_position_embeddings
_lowerCAmelCase : str = hidden_size
_lowerCAmelCase : Optional[Any] = intermediate_size
_lowerCAmelCase : int = num_hidden_layers
_lowerCAmelCase : int = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
_lowerCAmelCase : Union[str, Any] = num_attention_heads
_lowerCAmelCase : List[str] = num_key_value_heads
_lowerCAmelCase : int = hidden_act
_lowerCAmelCase : int = initializer_range
_lowerCAmelCase : Union[str, Any] = rms_norm_eps
_lowerCAmelCase : Optional[int] = pretraining_tp
_lowerCAmelCase : int = use_cache
_lowerCAmelCase : str = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , **_UpperCAmelCase , )
def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f"got {self.rope_scaling}" )
_lowerCAmelCase : Union[str, Any] = self.rope_scaling.get("""type""" , _UpperCAmelCase )
_lowerCAmelCase : Optional[int] = self.rope_scaling.get("""factor""" , _UpperCAmelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" )
if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
| 429 | 1 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A ( UpperCamelCase__ , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : List[str] = RobertaTokenizer
_SCREAMING_SNAKE_CASE : Any = RobertaTokenizerFast
_SCREAMING_SNAKE_CASE : Optional[int] = True
_SCREAMING_SNAKE_CASE : Any = {'''cls_token''': '''<s>'''}
def lowercase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase_ = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
UpperCamelCase_ = dict(zip(__A , range(len(__A ) ) ) )
UpperCamelCase_ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
UpperCamelCase_ = {'unk_token': '<unk>'}
UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(__A ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(__A ) )
def lowercase__ ( self : List[str] , **__UpperCAmelCase : List[Any] ) -> List[str]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__A )
def lowercase__ ( self : Union[str, Any] , **__UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__A )
def lowercase__ ( self : str , __UpperCAmelCase : Dict ) -> Any:
"""simple docstring"""
UpperCamelCase_ = 'lower newer'
UpperCamelCase_ = 'lower newer'
return input_text, output_text
def lowercase__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCamelCase_ = 'lower newer'
UpperCamelCase_ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er']
UpperCamelCase_ = tokenizer.tokenize(__A ) # , add_prefix_space=True)
self.assertListEqual(__A , __A )
UpperCamelCase_ = tokens + [tokenizer.unk_token]
UpperCamelCase_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A )
def lowercase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCamelCase_ = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=__A ) , [0, 31414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=__A ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , )
@slow
def lowercase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
UpperCamelCase_ = self.tokenizer_class.from_pretrained('roberta-base' )
UpperCamelCase_ = tokenizer.encode('sequence builders' , add_special_tokens=__A )
UpperCamelCase_ = tokenizer.encode('multi-sequence build' , add_special_tokens=__A )
UpperCamelCase_ = tokenizer.encode(
'sequence builders' , add_special_tokens=__A , add_prefix_space=__A )
UpperCamelCase_ = tokenizer.encode(
'sequence builders' , 'multi-sequence build' , add_special_tokens=__A , add_prefix_space=__A )
UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(__A )
UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(__A , __A )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def lowercase__ ( self : Any ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ = self.get_tokenizer()
UpperCamelCase_ = 'Encode this sequence.'
UpperCamelCase_ = tokenizer.byte_encoder[' '.encode('utf-8' )[0]]
# Testing encoder arguments
UpperCamelCase_ = tokenizer.encode(__A , add_special_tokens=__A , add_prefix_space=__A )
UpperCamelCase_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__A , __A )
UpperCamelCase_ = tokenizer.encode(__A , add_special_tokens=__A , add_prefix_space=__A )
UpperCamelCase_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__A , __A )
tokenizer.add_special_tokens({'bos_token': '<s>'} )
UpperCamelCase_ = tokenizer.encode(__A , add_special_tokens=__A )
UpperCamelCase_ = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__A , __A )
# Testing spaces after special tokens
UpperCamelCase_ = '<mask>'
tokenizer.add_special_tokens(
{'mask_token': AddedToken(__A , lstrip=__A , rstrip=__A )} ) # mask token has a left space
UpperCamelCase_ = tokenizer.convert_tokens_to_ids(__A )
UpperCamelCase_ = 'Encode <mask> sequence'
UpperCamelCase_ = 'Encode <mask>sequence'
UpperCamelCase_ = tokenizer.encode(__A )
UpperCamelCase_ = encoded.index(__A )
UpperCamelCase_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__A , __A )
UpperCamelCase_ = tokenizer.encode(__A )
UpperCamelCase_ = encoded.index(__A )
UpperCamelCase_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__A , __A )
def lowercase__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
pass
def lowercase__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(__A , **__A )
UpperCamelCase_ = self.tokenizer_class.from_pretrained(__A , **__A )
UpperCamelCase_ = 'A, <mask> AllenNLP sentence.'
UpperCamelCase_ = tokenizer_r.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A )
UpperCamelCase_ = tokenizer_p.encode_plus(__A , add_special_tokens=__A , return_token_type_ids=__A )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , )
UpperCamelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
UpperCamelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(
__A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
__A , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
def lowercase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=__A , add_prefix_space=__A , trim_offsets=__A )
UpperCamelCase_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
UpperCamelCase_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['add_prefix_space'] , __A )
self.assertEqual(post_processor_state['add_prefix_space'] , __A )
self.assertEqual(post_processor_state['trim_offsets'] , __A )
def lowercase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
UpperCamelCase_ = 'hello' # `hello` is a token in the vocabulary of `pretrained_name`
UpperCamelCase_ = f'''{text_of_1_token} {text_of_1_token}'''
UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(
__A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A )
UpperCamelCase_ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__A ) + 1, len(__A ) + 1 + len(__A )) , )
UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(
__A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A )
UpperCamelCase_ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__A ) + 1, len(__A ) + 1 + len(__A )) , )
UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(
__A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A )
UpperCamelCase_ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__A ), len(__A ) + 1 + len(__A )) , )
UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(
__A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A )
UpperCamelCase_ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__A ), len(__A ) + 1 + len(__A )) , )
UpperCamelCase_ = f''' {text}'''
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(
__A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A )
UpperCamelCase_ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__A ) + 1, 1 + len(__A ) + 1 + len(__A )) , )
UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(
__A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A )
UpperCamelCase_ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) , )
UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(
__A , use_fast=__A , add_prefix_space=__A , trim_offsets=__A )
UpperCamelCase_ = tokenizer_r(__A , return_offsets_mapping=__A , add_special_tokens=__A )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__A )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__A ), 1 + len(__A ) + 1 + len(__A )) , )
| 715 |
from sklearn.metrics import mean_squared_error
import datasets
__a : Union[str, Any] = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
__a : Dict = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
__a : Any = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A ( datasets.Metric ):
def lowercase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html'
] , )
def lowercase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value('float' ) ),
"references": datasets.Sequence(datasets.Value('float' ) ),
}
else:
return {
"predictions": datasets.Value('float' ),
"references": datasets.Value('float' ),
}
def lowercase__ ( self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Union[str, Any]="uniform_average" , __UpperCAmelCase : List[Any]=True ) -> int:
"""simple docstring"""
UpperCamelCase_ = mean_squared_error(
__UpperCAmelCase , __UpperCAmelCase , sample_weight=__UpperCAmelCase , multioutput=__UpperCAmelCase , squared=__UpperCAmelCase )
return {"mse": mse}
| 559 | 0 |
def __UpperCamelCase ( _lowerCAmelCase ):
"""simple docstring"""
try:
UpperCAmelCase = float(_lowerCAmelCase )
except ValueError:
raise ValueError("Please enter a valid number" )
UpperCAmelCase = decimal - int(_lowerCAmelCase )
if fractional_part == 0:
return int(_lowerCAmelCase ), 1
else:
UpperCAmelCase = len(str(_lowerCAmelCase ).split("." )[1] )
UpperCAmelCase = int(decimal * (10**number_of_frac_digits) )
UpperCAmelCase = 10**number_of_frac_digits
UpperCAmelCase , UpperCAmelCase = denominator, numerator
while True:
UpperCAmelCase = dividend % divisor
if remainder == 0:
break
UpperCAmelCase , UpperCAmelCase = divisor, remainder
UpperCAmelCase , UpperCAmelCase = numerator / divisor, denominator / divisor
return int(_lowerCAmelCase ), int(_lowerCAmelCase )
if __name__ == "__main__":
print(f"{decimal_to_fraction(2) = }")
print(f"{decimal_to_fraction(89.0) = }")
print(f"{decimal_to_fraction('67') = }")
print(f"{decimal_to_fraction('45.0') = }")
print(f"{decimal_to_fraction(1.5) = }")
print(f"{decimal_to_fraction('6.25') = }")
print(f"{decimal_to_fraction('78td') = }")
| 333 |
from __future__ import annotations
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
UpperCAmelCase = []
create_all_state(1 , _lowerCAmelCase , _lowerCAmelCase , [] , _lowerCAmelCase )
return result
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ):
"""simple docstring"""
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_lowerCAmelCase , total_number - level + 2 ):
current_list.append(_lowerCAmelCase )
create_all_state(i + 1 , _lowerCAmelCase , level - 1 , _lowerCAmelCase , _lowerCAmelCase )
current_list.pop()
def __UpperCamelCase ( _lowerCAmelCase ):
"""simple docstring"""
for i in total_list:
print(*_lowerCAmelCase )
if __name__ == "__main__":
__lowerCAmelCase =4
__lowerCAmelCase =2
__lowerCAmelCase =generate_all_combinations(n, k)
print_all_state(total_list)
| 333 | 1 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
torch.set_grad_enabled(False)
SCREAMING_SNAKE_CASE__ = "cuda" if torch.cuda.is_available() else "cpu"
def lowerCAmelCase__ ( _UpperCamelCase : str , _UpperCamelCase : Tuple=1_0_0 , _UpperCamelCase : str=" " ) -> List[str]:
"""simple docstring"""
snake_case = text.split(_UpperCamelCase )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_UpperCamelCase ) , _UpperCamelCase )]
def lowerCAmelCase__ ( _UpperCamelCase : dict ) -> dict:
"""simple docstring"""
snake_case ,snake_case = [], []
for title, text in zip(documents['title'] , documents['text'] ):
if text is not None:
for passage in split_text(_UpperCamelCase ):
titles.append(title if title is not None else '' )
texts.append(_UpperCamelCase )
return {"title": titles, "text": texts}
def lowerCAmelCase__ ( _UpperCamelCase : dict , _UpperCamelCase : DPRContextEncoder , _UpperCamelCase : DPRContextEncoderTokenizerFast ) -> dict:
"""simple docstring"""
snake_case = ctx_tokenizer(
documents['title'] , documents['text'] , truncation=_UpperCamelCase , padding='longest' , return_tensors='pt' )['input_ids']
snake_case = ctx_encoder(input_ids.to(device=_UpperCamelCase ) , return_dict=_UpperCamelCase ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowerCAmelCase__ ( _UpperCamelCase : "RagExampleArguments" , _UpperCamelCase : "ProcessingArguments" , _UpperCamelCase : "IndexHnswArguments" , ) -> Tuple:
"""simple docstring"""
logger.info('Step 1 - Create the dataset' )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
snake_case = load_dataset(
'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
snake_case = dataset.map(_UpperCamelCase , batched=_UpperCamelCase , num_proc=processing_args.num_proc )
# And compute the embeddings
snake_case = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_UpperCamelCase )
snake_case = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
snake_case = Features(
{'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space
snake_case = dataset.map(
partial(_UpperCamelCase , ctx_encoder=_UpperCamelCase , ctx_tokenizer=_UpperCamelCase ) , batched=_UpperCamelCase , batch_size=processing_args.batch_size , features=_UpperCamelCase , )
# And finally save your dataset
snake_case = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' )
dataset.save_to_disk(_UpperCamelCase )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info('Step 2 - Index the dataset' )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
snake_case = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index('embeddings' , custom_index=_UpperCamelCase )
# And save the index
snake_case = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' )
dataset.get_index('embeddings' ).save(_UpperCamelCase )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class lowerCAmelCase_ :
"""simple docstring"""
_lowerCAmelCase : str = field(
default=str(Path(lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , )
_lowerCAmelCase : Optional[str] = field(
default=lowerCAmelCase , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , )
_lowerCAmelCase : str = field(
default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , )
_lowerCAmelCase : str = field(
default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={
"""help""": (
"""The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"""
""" 'facebook/dpr-ctx_encoder-multiset-base'"""
)
} , )
_lowerCAmelCase : Optional[str] = field(
default=str(Path(lowerCAmelCase ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , )
@dataclass
class lowerCAmelCase_ :
"""simple docstring"""
_lowerCAmelCase : Optional[int] = field(
default=lowerCAmelCase , metadata={
"""help""": """The number of processes to use to split the documents into passages. Default is single process."""
} , )
_lowerCAmelCase : int = field(
default=16 , metadata={
"""help""": """The batch size to use when computing the passages embeddings using the DPR context encoder."""
} , )
@dataclass
class lowerCAmelCase_ :
"""simple docstring"""
_lowerCAmelCase : int = field(
default=768 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , )
_lowerCAmelCase : int = field(
default=128 , metadata={
"""help""": (
"""The number of bi-directional links created for every new element during the HNSW index construction."""
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
SCREAMING_SNAKE_CASE__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE__ = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 719 | """simple docstring"""
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
SCREAMING_SNAKE_CASE__ = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
SCREAMING_SNAKE_CASE__ = {
"facebook/bart-base": 1_024,
"facebook/bart-large": 1_024,
"facebook/bart-large-mnli": 1_024,
"facebook/bart-large-cnn": 1_024,
"facebook/bart-large-xsum": 1_024,
"yjernite/bart_eli5": 1_024,
}
@lru_cache()
def lowerCAmelCase__ ( ) -> Union[str, Any]:
"""simple docstring"""
snake_case = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
snake_case = bs[:]
snake_case = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_UpperCamelCase )
cs.append(2**8 + n )
n += 1
snake_case = [chr(_UpperCamelCase ) for n in cs]
return dict(zip(_UpperCamelCase , _UpperCamelCase ) )
def lowerCAmelCase__ ( _UpperCamelCase : List[Any] ) -> List[str]:
"""simple docstring"""
snake_case = set()
snake_case = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
snake_case = char
return pairs
class lowerCAmelCase_ ( lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES
_lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP
_lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCAmelCase : str = ["""input_ids""", """attention_mask"""]
def __init__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase="replace" , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase=False , **lowerCAmelCase , ):
"""simple docstring"""
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else bos_token
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else eos_token
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else sep_token
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else cls_token
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else unk_token
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
snake_case = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token
super().__init__(
errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , **lowerCAmelCase , )
with open(lowerCAmelCase , encoding='utf-8' ) as vocab_handle:
snake_case = json.load(lowerCAmelCase )
snake_case = {v: k for k, v in self.encoder.items()}
snake_case = errors # how to handle errors in decoding
snake_case = bytes_to_unicode()
snake_case = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase , encoding='utf-8' ) as merges_handle:
snake_case = merges_handle.read().split('\n' )[1:-1]
snake_case = [tuple(merge.split() ) for merge in bpe_merges]
snake_case = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) )
snake_case = {}
snake_case = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
snake_case = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
def snake_case ( self ):
"""simple docstring"""
return len(self.encoder )
def snake_case ( self ):
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def snake_case ( self , lowerCAmelCase ):
"""simple docstring"""
if token in self.cache:
return self.cache[token]
snake_case = tuple(lowerCAmelCase )
snake_case = get_pairs(lowerCAmelCase )
if not pairs:
return token
while True:
snake_case = min(lowerCAmelCase , key=lambda lowerCAmelCase : self.bpe_ranks.get(lowerCAmelCase , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
snake_case ,snake_case = bigram
snake_case = []
snake_case = 0
while i < len(lowerCAmelCase ):
try:
snake_case = word.index(lowerCAmelCase , lowerCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
snake_case = j
if word[i] == first and i < len(lowerCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
snake_case = tuple(lowerCAmelCase )
snake_case = new_word
if len(lowerCAmelCase ) == 1:
break
else:
snake_case = get_pairs(lowerCAmelCase )
snake_case = ' '.join(lowerCAmelCase )
snake_case = word
return word
def snake_case ( self , lowerCAmelCase ):
"""simple docstring"""
snake_case = []
for token in re.findall(self.pat , lowerCAmelCase ):
snake_case = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase ).split(' ' ) )
return bpe_tokens
def snake_case ( self , lowerCAmelCase ):
"""simple docstring"""
return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token ) )
def snake_case ( self , lowerCAmelCase ):
"""simple docstring"""
return self.decoder.get(lowerCAmelCase )
def snake_case ( self , lowerCAmelCase ):
"""simple docstring"""
snake_case = ''.join(lowerCAmelCase )
snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ):
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
snake_case = os.path.join(
lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase ) + '\n' )
snake_case = 0
with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
snake_case = token_index
writer.write(' '.join(lowerCAmelCase ) + '\n' )
index += 1
return vocab_file, merge_file
def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
snake_case = [self.cls_token_id]
snake_case = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase )) + [1]
return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1]
def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ):
"""simple docstring"""
snake_case = [self.sep_token_id]
snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def snake_case ( self , lowerCAmelCase , lowerCAmelCase=False , **lowerCAmelCase ):
"""simple docstring"""
snake_case = kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase ) > 0 and not text[0].isspace()):
snake_case = ' ' + text
return (text, kwargs)
| 104 | 0 |
'''simple docstring'''
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
UpperCamelCase_ = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __SCREAMING_SNAKE_CASE ( lowercase__ ):
def __init__( self : Optional[int] , *UpperCAmelCase__ : Any , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : Optional[int]=None , **UpperCAmelCase__ : Tuple ):
'''simple docstring'''
super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
lowercase : Any =eval_examples
lowercase : Optional[int] =post_process_function
lowercase : List[Any] =quant_trainer_args
lowercase : Optional[int] =128 # default number of calibration samples
def lowerCamelCase_ ( self : str , UpperCAmelCase__ : Dict=None ):
'''simple docstring'''
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('''Trainer: calibration requires an calib_dataset.''' )
lowercase : Tuple =calib_dataset if calib_dataset is not None else self.calib_dataset
lowercase : Union[str, Any] =self._remove_unused_columns(UpperCAmelCase__ , description='''Calibration''' )
return DataLoader(
UpperCAmelCase__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCAmelCase__ , )
def lowerCamelCase_ ( self : Optional[int] , UpperCAmelCase__ : List[Any]=None ):
'''simple docstring'''
lowercase : Optional[int] =self.train_dataset if calib_dataset is None else calib_dataset
lowercase : List[Any] =self.get_calib_dataloader(UpperCAmelCase__ )
lowercase : Optional[int] =self.model
quant_trainer.configure_model(UpperCAmelCase__ , self.quant_trainer_args , calib=UpperCAmelCase__ )
model.eval()
quant_trainer.enable_calibration(UpperCAmelCase__ )
logger.info('''***** Running calibration *****''' )
logger.info(F''' Num examples = {self.calib_num}''' )
logger.info(F''' Batch size = {calib_dataloader.batch_size}''' )
for step, inputs in enumerate(UpperCAmelCase__ ):
# Prediction step
lowercase , lowercase , lowercase : Optional[int] =self.prediction_step(UpperCAmelCase__ , UpperCAmelCase__ , prediction_loss_only=UpperCAmelCase__ )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(UpperCAmelCase__ , self.quant_trainer_args )
lowercase : int =model
def lowerCamelCase_ ( self : int , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : str = "eval" ):
'''simple docstring'''
lowercase : Tuple =self.eval_dataset if eval_dataset is None else eval_dataset
lowercase : str =self.get_eval_dataloader(UpperCAmelCase__ )
lowercase : str =self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
lowercase : int =self.compute_metrics
lowercase : Optional[Any] =None
lowercase : Tuple =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowercase : Any =eval_loop(
UpperCAmelCase__ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , )
finally:
lowercase : Dict =compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
lowercase : int =self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , output.predictions )
lowercase : Union[str, Any] =self.compute_metrics(UpperCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
lowercase : Tuple =metrics.pop(UpperCAmelCase__ )
self.log(UpperCAmelCase__ )
else:
lowercase : int ={}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
lowercase : List[Any] =self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase__ )
return metrics
def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : str = "test" ):
'''simple docstring'''
lowercase : str =self.get_test_dataloader(UpperCAmelCase__ )
# Temporarily disable metric computation, we will do it in the loop here.
lowercase : List[Any] =self.compute_metrics
lowercase : List[Any] =None
lowercase : Optional[Any] =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowercase : Any =eval_loop(
UpperCAmelCase__ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , )
finally:
lowercase : Union[str, Any] =compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
lowercase : str =self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , output.predictions , '''predict''' )
lowercase : Dict =self.compute_metrics(UpperCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
lowercase : Any =metrics.pop(UpperCAmelCase__ )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase__ )
def lowerCamelCase_ ( self : Optional[Any] , UpperCAmelCase__ : int="./" ):
'''simple docstring'''
lowercase : List[Any] =self.eval_dataset
lowercase : Any =self.get_eval_dataloader(UpperCAmelCase__ )
lowercase : Tuple =next(iter(UpperCAmelCase__ ) )
# saving device - to make it consistent
lowercase : int =torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
# convert to tuple
lowercase : Optional[Any] =tuple(v.to(UpperCAmelCase__ ) for k, v in batch.items() )
logger.info('''Converting model to be onnx compatible''' )
from pytorch_quantization.nn import TensorQuantizer
lowercase : List[Any] =True
lowercase : Optional[int] =self.model.to(UpperCAmelCase__ )
model.eval()
model.float()
lowercase : List[Any] =model.module if hasattr(UpperCAmelCase__ , '''module''' ) else model
quant_trainer.configure_model(UpperCAmelCase__ , self.quant_trainer_args )
lowercase : List[str] =os.path.join(UpperCAmelCase__ , '''model.onnx''' )
logger.info(F'''exporting model to {output_model_file}''' )
lowercase : Dict ={0: '''batch_size''', 1: '''seq_len'''}
torch.onnx.export(
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , export_params=UpperCAmelCase__ , opset_version=13 , do_constant_folding=UpperCAmelCase__ , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={
'''input_ids''': axes,
'''attention_mask''': axes,
'''token_type_ids''': axes,
'''output_start_logits''': axes,
'''output_end_logits''': axes,
} , verbose=UpperCAmelCase__ , )
logger.info('''onnx export finished''' )
| 92 |
def __a ( SCREAMING_SNAKE_CASE ) -> list:
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE ) < 2:
return collection
def circle_sort_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool:
__UpperCAmelCase = False
if low == high:
return swapped
__UpperCAmelCase = low
__UpperCAmelCase = high
while left < right:
if collection[left] > collection[right]:
__UpperCAmelCase , __UpperCAmelCase = (
collection[right],
collection[left],
)
__UpperCAmelCase = True
left += 1
right -= 1
if left == right and collection[left] > collection[right + 1]:
__UpperCAmelCase , __UpperCAmelCase = (
collection[right + 1],
collection[left],
)
__UpperCAmelCase = True
__UpperCAmelCase = low + int((high - low) / 2 )
__UpperCAmelCase = circle_sort_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__UpperCAmelCase = circle_sort_util(SCREAMING_SNAKE_CASE , mid + 1 , SCREAMING_SNAKE_CASE )
return swapped or left_swap or right_swap
__UpperCAmelCase = True
while is_not_sorted is True:
__UpperCAmelCase = circle_sort_util(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) - 1 )
return collection
if __name__ == "__main__":
A_ : str = input('Enter numbers separated by a comma:\n').strip()
A_ : List[str] = [int(item) for item in user_input.split(',')]
print(circle_sort(unsorted))
| 303 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
def __a ( A__ , A__ , A__ , A__ , A__ ) -> int:
if depth < 0:
raise ValueError("Depth cannot be less than 0" )
if len(A__ ) == 0:
raise ValueError("Scores cannot be empty" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , A__ , A__ , A__ ) , minimax(depth + 1 , node_index * 2 + 1 , A__ , A__ , A__ ) , )
return min(
minimax(depth + 1 , node_index * 2 , A__ , A__ , A__ ) , minimax(depth + 1 , node_index * 2 + 1 , A__ , A__ , A__ ) , )
def __a ( ) -> None:
lowerCAmelCase = [90, 23, 6, 33, 21, 65, 123, 3_4423]
lowerCAmelCase = math.log(len(A__ ) , 2 )
print("Optimal value : " , end="" )
print(minimax(0 , 0 , A__ , A__ , A__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 159 |
'''simple docstring'''
import torch
from torch import nn
class _lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str]=1 , SCREAMING_SNAKE_CASE : int=False ) -> str:
"""simple docstring"""
super().__init__()
lowerCAmelCase = n_token
lowerCAmelCase = d_embed
lowerCAmelCase = d_proj
lowerCAmelCase = cutoffs + [n_token]
lowerCAmelCase = [0] + self.cutoffs
lowerCAmelCase = div_val
lowerCAmelCase = self.cutoffs[0]
lowerCAmelCase = len(self.cutoffs ) - 1
lowerCAmelCase = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
lowerCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) )
lowerCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) )
lowerCAmelCase = nn.ModuleList()
lowerCAmelCase = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs ) ):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) )
else:
self.out_projs.append(SCREAMING_SNAKE_CASE )
self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
else:
for i in range(len(self.cutoffs ) ):
lowerCAmelCase , lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowerCAmelCase = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) )
self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE , r_idx - l_idx ) )
lowerCAmelCase = keep_order
def __A ( self : int , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] ) -> int:
"""simple docstring"""
if proj is None:
lowerCAmelCase = nn.functional.linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
lowerCAmelCase = nn.functional.linear(SCREAMING_SNAKE_CASE , proj.t().contiguous() )
lowerCAmelCase = nn.functional.linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def __A ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : str=False ) -> Any:
"""simple docstring"""
if labels is not None:
# Shift so that tokens < n predict n
lowerCAmelCase = hidden[..., :-1, :].contiguous()
lowerCAmelCase = labels[..., 1:].contiguous()
lowerCAmelCase = hidden.view(-1 , hidden.size(-1 ) )
lowerCAmelCase = labels.view(-1 )
if hidden.size(0 ) != labels.size(0 ):
raise RuntimeError("Input and labels should have the same size in the batch dimension." )
else:
lowerCAmelCase = hidden.view(-1 , hidden.size(-1 ) )
if self.n_clusters == 0:
lowerCAmelCase = self._compute_logit(SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
if labels is not None:
lowerCAmelCase = labels != -1_0_0
lowerCAmelCase = torch.zeros_like(SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device )
lowerCAmelCase = (
-nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 )
)
else:
lowerCAmelCase = nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=-1 )
else:
# construct weights and biases
lowerCAmelCase , lowerCAmelCase = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
lowerCAmelCase , lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowerCAmelCase = self.out_layers[0].weight[l_idx:r_idx]
lowerCAmelCase = self.out_layers[0].bias[l_idx:r_idx]
else:
lowerCAmelCase = self.out_layers[i].weight
lowerCAmelCase = self.out_layers[i].bias
if i == 0:
lowerCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 )
lowerCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(SCREAMING_SNAKE_CASE )
biases.append(SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = weights[0], biases[0], self.out_projs[0]
lowerCAmelCase = self._compute_logit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowerCAmelCase = nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=1 )
if labels is None:
lowerCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) )
else:
lowerCAmelCase = torch.zeros_like(SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device )
lowerCAmelCase = 0
lowerCAmelCase = [0] + self.cutoffs
for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ):
lowerCAmelCase , lowerCAmelCase = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
lowerCAmelCase = (labels >= l_idx) & (labels < r_idx)
lowerCAmelCase = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
lowerCAmelCase = labels.index_select(0 , SCREAMING_SNAKE_CASE ) - l_idx
lowerCAmelCase = head_logprob.index_select(0 , SCREAMING_SNAKE_CASE )
lowerCAmelCase = hidden.index_select(0 , SCREAMING_SNAKE_CASE )
else:
lowerCAmelCase = hidden
if i == 0:
if labels is not None:
lowerCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 )
else:
lowerCAmelCase = head_logprob[:, : self.cutoffs[0]]
else:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = weights[i], biases[i], self.out_projs[i]
lowerCAmelCase = self._compute_logit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowerCAmelCase = nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=1 )
lowerCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
lowerCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None] ).squeeze(1 )
else:
lowerCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
lowerCAmelCase = logprob_i
if labels is not None:
if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order:
out.index_copy_(0 , SCREAMING_SNAKE_CASE , -logprob_i )
else:
out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i )
offset += logprob_i.size(0 )
return out
def __A ( self : List[str] , SCREAMING_SNAKE_CASE : int ) -> Tuple:
"""simple docstring"""
if self.n_clusters == 0:
lowerCAmelCase = self._compute_logit(SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] )
return nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=-1 )
else:
# construct weights and biases
lowerCAmelCase , lowerCAmelCase = [], []
for i in range(len(self.cutoffs ) ):
if self.div_val == 1:
lowerCAmelCase , lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1]
lowerCAmelCase = self.out_layers[0].weight[l_idx:r_idx]
lowerCAmelCase = self.out_layers[0].bias[l_idx:r_idx]
else:
lowerCAmelCase = self.out_layers[i].weight
lowerCAmelCase = self.out_layers[i].bias
if i == 0:
lowerCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 )
lowerCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 )
weights.append(SCREAMING_SNAKE_CASE )
biases.append(SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = weights[0], biases[0], self.out_projs[0]
lowerCAmelCase = self._compute_logit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowerCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) )
lowerCAmelCase = nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=1 )
lowerCAmelCase = [0] + self.cutoffs
for i in range(len(SCREAMING_SNAKE_CASE ) - 1 ):
lowerCAmelCase , lowerCAmelCase = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
lowerCAmelCase = head_logprob[:, : self.cutoffs[0]]
else:
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = weights[i], biases[i], self.out_projs[i]
lowerCAmelCase = self._compute_logit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
lowerCAmelCase = nn.functional.log_softmax(SCREAMING_SNAKE_CASE , dim=1 )
lowerCAmelCase = head_logprob[:, -i] + tail_logprob_i
lowerCAmelCase = logprob_i
return out
| 159 | 1 |
'''simple docstring'''
import os
def UpperCamelCase ( ) -> str:
'''simple docstring'''
with open(os.path.dirname(lowercase_ ) + '''/grid.txt''' ) as f:
lowercase =[] # noqa: E741
for _ in range(2_0 ):
l.append([int(lowercase_ ) for x in f.readline().split()] )
lowercase =0
# right
for i in range(2_0 ):
for j in range(1_7 ):
lowercase =l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3]
if temp > maximum:
lowercase =temp
# down
for i in range(1_7 ):
for j in range(2_0 ):
lowercase =l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j]
if temp > maximum:
lowercase =temp
# diagonal 1
for i in range(1_7 ):
for j in range(1_7 ):
lowercase =l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3]
if temp > maximum:
lowercase =temp
# diagonal 2
for i in range(1_7 ):
for j in range(3 , 2_0 ):
lowercase =l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3]
if temp > maximum:
lowercase =temp
return maximum
if __name__ == "__main__":
print(solution())
| 72 |
import PIL.Image
import PIL.ImageOps
from packaging import version
from PIL import Image
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""):
_lowerCamelCase ={
"""linear""": PIL.Image.Resampling.BILINEAR,
"""bilinear""": PIL.Image.Resampling.BILINEAR,
"""bicubic""": PIL.Image.Resampling.BICUBIC,
"""lanczos""": PIL.Image.Resampling.LANCZOS,
"""nearest""": PIL.Image.Resampling.NEAREST,
}
else:
_lowerCamelCase ={
"""linear""": PIL.Image.LINEAR,
"""bilinear""": PIL.Image.BILINEAR,
"""bicubic""": PIL.Image.BICUBIC,
"""lanczos""": PIL.Image.LANCZOS,
"""nearest""": PIL.Image.NEAREST,
}
def _a ( lowerCamelCase ):
lowerCamelCase : Optional[Any] = (images / 2 + 0.5).clamp(0, 1 )
lowerCamelCase : Optional[Any] = images.cpu().permute(0, 2, 3, 1 ).float().numpy()
lowerCamelCase : Any = numpy_to_pil(lowerCamelCase )
return images
def _a ( lowerCamelCase ):
if images.ndim == 3:
lowerCamelCase : Optional[Any] = images[None, ...]
lowerCamelCase : List[Any] = (images * 255).round().astype("""uint8""" )
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
lowerCamelCase : Optional[int] = [Image.fromarray(image.squeeze(), mode="""L""" ) for image in images]
else:
lowerCamelCase : int = [Image.fromarray(lowerCamelCase ) for image in images]
return pil_images
| 681 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
snake_case_ : Optional[Any] = {
"configuration_squeezebert": [
"SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SqueezeBertConfig",
"SqueezeBertOnnxConfig",
],
"tokenization_squeezebert": ["SqueezeBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : str = ["SqueezeBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[str] = [
"SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"SqueezeBertForMaskedLM",
"SqueezeBertForMultipleChoice",
"SqueezeBertForQuestionAnswering",
"SqueezeBertForSequenceClassification",
"SqueezeBertForTokenClassification",
"SqueezeBertModel",
"SqueezeBertModule",
"SqueezeBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_squeezebert import (
SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
SqueezeBertConfig,
SqueezeBertOnnxConfig,
)
from .tokenization_squeezebert import SqueezeBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_squeezebert import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
SqueezeBertModule,
SqueezeBertPreTrainedModel,
)
else:
import sys
snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 253 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def __a ( __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any]=0 ) -> Tuple:
"""simple docstring"""
if name is None:
lowerCamelCase_ : Dict = None
else:
lowerCamelCase_ : Any = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}"
lowerCamelCase_ : Dict = fmt.format(__UpperCAmelCase )
# Print and recurse (if needed).
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
if msg is not None:
print(__UpperCAmelCase )
for k in val.keys():
recursive_print(__UpperCAmelCase , val[k] , spaces + 2 )
elif isinstance(__UpperCAmelCase , torch.Tensor ):
print(__UpperCAmelCase , ":" , val.size() )
else:
print(__UpperCAmelCase , ":" , __UpperCAmelCase )
def __a ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_ : Tuple = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
lowerCamelCase_ : Dict = (num_heads, hidden_size, num_splits) + input_shape[1:]
lowerCamelCase_ : Optional[Any] = param.view(*__UpperCAmelCase )
lowerCamelCase_ : Optional[Any] = param.transpose(0 , 2 )
lowerCamelCase_ : Any = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
lowerCamelCase_ : Optional[int] = (num_heads, num_splits, hidden_size) + input_shape[1:]
lowerCamelCase_ : Optional[Any] = param.view(*__UpperCAmelCase )
lowerCamelCase_ : Optional[int] = param.transpose(0 , 1 ).contiguous()
lowerCamelCase_ : Union[str, Any] = param.view(*__UpperCAmelCase )
return param
def __a ( __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
lowerCamelCase_ : Tuple = {}
# old versions did not store training args
lowerCamelCase_ : Optional[Any] = input_state_dict.get("args" , __UpperCAmelCase )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
lowerCamelCase_ : List[str] = ds_args.padded_vocab_size
lowerCamelCase_ : Optional[int] = ds_args.max_position_embeddings
lowerCamelCase_ : Union[str, Any] = ds_args.hidden_size
lowerCamelCase_ : Tuple = ds_args.num_layers
lowerCamelCase_ : List[str] = ds_args.num_attention_heads
lowerCamelCase_ : List[str] = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
lowerCamelCase_ : List[Any] = config.n_head
# The hidden_size per head.
lowerCamelCase_ : Tuple = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
lowerCamelCase_ : Any = input_state_dict["checkpoint_version"]
else:
lowerCamelCase_ : int = 0.0
# The model.
lowerCamelCase_ : int = input_state_dict["model"]
# The language model.
lowerCamelCase_ : Dict = model["language_model"]
# The embeddings.
lowerCamelCase_ : Optional[int] = lm["embedding"]
# The word embeddings.
lowerCamelCase_ : Union[str, Any] = embeddings["word_embeddings"]["weight"]
# Truncate the embedding table to vocab_size rows.
lowerCamelCase_ : int = word_embeddings[: config.vocab_size, :]
lowerCamelCase_ : int = word_embeddings
# The position embeddings.
lowerCamelCase_ : List[str] = embeddings["position_embeddings"]["weight"]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
lowerCamelCase_ : List[Any] = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" )
# Store the position embeddings.
lowerCamelCase_ : Optional[int] = pos_embeddings
# The transformer.
lowerCamelCase_ : List[str] = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"]
# The regex to extract layer names.
lowerCamelCase_ : Optional[int] = re.compile(R"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" )
# The simple map of names for "automated" rules.
lowerCamelCase_ : Optional[Any] = {
"attention.dense": ".attn.c_proj.",
"self_attention.dense": ".attn.c_proj.",
"mlp.dense_h_to_4h": ".mlp.c_fc.",
"mlp.dense_4h_to_h": ".mlp.c_proj.",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
lowerCamelCase_ : Optional[int] = layer_re.match(__UpperCAmelCase )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
lowerCamelCase_ : str = int(m.group(1 ) )
# The name of the operation.
lowerCamelCase_ : Optional[int] = m.group(2 )
# Is it a weight or a bias?
lowerCamelCase_ : int = m.group(3 )
# The name of the layer.
lowerCamelCase_ : Optional[Any] = f"transformer.h.{layer_idx}"
# For layernorm(s), simply store the layer norm.
if op_name.endswith("layernorm" ):
lowerCamelCase_ : Optional[int] = "ln_1" if op_name.startswith("input" ) else "ln_2"
lowerCamelCase_ : int = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
lowerCamelCase_ : Union[str, Any] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , __UpperCAmelCase , __UpperCAmelCase )
lowerCamelCase_ : str = causal_mask
# Insert a "dummy" tensor for masked_bias.
lowerCamelCase_ : Any = torch.tensor(-1e4 , dtype=torch.floataa )
lowerCamelCase_ : Union[str, Any] = masked_bias
lowerCamelCase_ : Union[str, Any] = fix_query_key_value_ordering(__UpperCAmelCase , __UpperCAmelCase , 3 , __UpperCAmelCase , __UpperCAmelCase )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
lowerCamelCase_ : Dict = out_val.transpose(0 , 1 ).contiguous()
# Store.
lowerCamelCase_ : Tuple = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
lowerCamelCase_ : Union[str, Any] = fix_query_key_value_ordering(__UpperCAmelCase , __UpperCAmelCase , 3 , __UpperCAmelCase , __UpperCAmelCase )
# Store. No change of shape.
lowerCamelCase_ : Dict = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
lowerCamelCase_ : Union[str, Any] = megatron_to_transformers[op_name]
lowerCamelCase_ : int = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
lowerCamelCase_ : Optional[int] = megatron_to_transformers[op_name]
lowerCamelCase_ : Dict = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
lowerCamelCase_ : List[Any] = transformer["final_layernorm.weight"]
lowerCamelCase_ : List[Any] = transformer["final_layernorm.bias"]
# For LM head, transformers' wants the matrix to weight embeddings.
lowerCamelCase_ : Union[str, Any] = word_embeddings
# It should be done!
return output_state_dict
def __a ( ) -> int:
"""simple docstring"""
lowerCamelCase_ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("--print-checkpoint-structure" , action="store_true" )
parser.add_argument(
"path_to_checkpoint" , type=__UpperCAmelCase , help="Path to the checkpoint file (.zip archive or direct .pt file)" , )
parser.add_argument(
"--config_file" , default="" , type=__UpperCAmelCase , help="An optional config json file describing the pre-trained model." , )
lowerCamelCase_ : str = parser.parse_args()
# Extract the basename.
lowerCamelCase_ : Tuple = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" )
if args.path_to_checkpoint.endswith(".zip" ):
with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint:
with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict:
lowerCamelCase_ : int = torch.load(__UpperCAmelCase , map_location="cpu" )
else:
lowerCamelCase_ : int = torch.load(args.path_to_checkpoint , map_location="cpu" )
lowerCamelCase_ : Any = input_state_dict.get("args" , __UpperCAmelCase )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
lowerCamelCase_ : Optional[int] = "gelu_fast"
elif ds_args.openai_gelu:
lowerCamelCase_ : List[str] = "gelu_new"
else:
lowerCamelCase_ : int = "gelu"
else:
# in the very early days this used to be "gelu_new"
lowerCamelCase_ : Any = "gelu_new"
# Spell out all parameters in case the defaults change.
lowerCamelCase_ : int = GPTaConfig(
vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=__UpperCAmelCase , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.0_2 , summary_type="cls_index" , summary_use_proj=__UpperCAmelCase , summary_activation=__UpperCAmelCase , summary_proj_to_labels=__UpperCAmelCase , summary_first_dropout=0.1 , scale_attn_weights=__UpperCAmelCase , use_cache=__UpperCAmelCase , bos_token_id=50256 , eos_token_id=50256 , )
else:
lowerCamelCase_ : Dict = GPTaConfig.from_json_file(args.config_file )
lowerCamelCase_ : Tuple = ["GPT2LMHeadModel"]
# Convert.
print("Converting" )
lowerCamelCase_ : Dict = convert_megatron_checkpoint(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(__UpperCAmelCase , __UpperCAmelCase )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
lowerCamelCase_ : List[Any] = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
lowerCamelCase_ : Union[str, Any] = "gpt2"
elif tokenizer_type == "PretrainedFromHF":
lowerCamelCase_ : Union[str, Any] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}" )
else:
lowerCamelCase_ : List[Any] = "gpt2"
lowerCamelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(__UpperCAmelCase )
lowerCamelCase_ : Union[str, Any] = type(__UpperCAmelCase ).__name__
lowerCamelCase_ : Dict = tokenizer_class
# Store the config to file.
print("Saving config" )
config.save_pretrained(__UpperCAmelCase )
# Save tokenizer based on args
print(f"Adding {tokenizer_class} tokenizer files" )
tokenizer.save_pretrained(__UpperCAmelCase )
# Store the state_dict to file.
lowerCamelCase_ : List[str] = os.path.join(__UpperCAmelCase , "pytorch_model.bin" )
print(f"Saving checkpoint to \"{output_checkpoint_file}\"" )
torch.save(__UpperCAmelCase , __UpperCAmelCase )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 253 | 1 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : int = {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json',
}
class __magic_name__ ( __UpperCamelCase ):
_lowerCAmelCase = """xlnet"""
_lowerCAmelCase = ["""mems"""]
_lowerCAmelCase = {
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Optional[int] , lowerCamelCase__ : Dict=3_2_0_0_0 , lowerCamelCase__ : Optional[Any]=1_0_2_4 , lowerCamelCase__ : int=2_4 , lowerCamelCase__ : int=1_6 , lowerCamelCase__ : int=4_0_9_6 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple="bi" , lowerCamelCase__ : List[str]=0.0_2 , lowerCamelCase__ : Optional[int]=1E-12 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : List[str]=5_1_2 , lowerCamelCase__ : int=None , lowerCamelCase__ : Any=True , lowerCamelCase__ : Dict=False , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Tuple=-1 , lowerCamelCase__ : str=False , lowerCamelCase__ : Any="last" , lowerCamelCase__ : Any=True , lowerCamelCase__ : str="tanh" , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : str=5 , lowerCamelCase__ : Tuple=5 , lowerCamelCase__ : List[Any]=5 , lowerCamelCase__ : Dict=1 , lowerCamelCase__ : Dict=2 , **lowerCamelCase__ : Union[str, Any] , ):
lowerCAmelCase : Optional[int] = vocab_size
lowerCAmelCase : int = d_model
lowerCAmelCase : List[str] = n_layer
lowerCAmelCase : List[Any] = n_head
if d_model % n_head != 0:
raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
f'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
lowerCAmelCase : int = d_model // n_head
lowerCAmelCase : Tuple = ff_activation
lowerCAmelCase : Optional[int] = d_inner
lowerCAmelCase : Dict = untie_r
lowerCAmelCase : List[Any] = attn_type
lowerCAmelCase : int = initializer_range
lowerCAmelCase : List[str] = layer_norm_eps
lowerCAmelCase : Optional[int] = dropout
lowerCAmelCase : str = mem_len
lowerCAmelCase : Dict = reuse_len
lowerCAmelCase : Optional[int] = bi_data
lowerCAmelCase : List[str] = clamp_len
lowerCAmelCase : Dict = same_length
lowerCAmelCase : Optional[Any] = summary_type
lowerCAmelCase : List[Any] = summary_use_proj
lowerCAmelCase : List[Any] = summary_activation
lowerCAmelCase : Tuple = summary_last_dropout
lowerCAmelCase : Tuple = start_n_top
lowerCAmelCase : List[str] = end_n_top
lowerCAmelCase : List[str] = bos_token_id
lowerCAmelCase : Any = pad_token_id
lowerCAmelCase : int = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'''
''' instead.''' , lowerCamelCase__ , )
lowerCAmelCase : Union[str, Any] = kwargs["""use_cache"""]
lowerCAmelCase : Tuple = use_mems_eval
lowerCAmelCase : Union[str, Any] = use_mems_train
super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ )
@property
def _A ( self : List[Any] ):
logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def _A ( self : int , lowerCamelCase__ : Optional[int] ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 348 |
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def __UpperCamelCase ( lowercase__ : Any ) -> List[Any]:
'''simple docstring'''
return EnvironmentCommand()
class __a ( __UpperCamelCase ):
@staticmethod
def A ( UpperCAmelCase : ArgumentParser ):
lowerCAmelCase_ : Optional[Any] = parser.add_parser("""env""" )
download_parser.set_defaults(func=UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ : int = huggingface_hub.__version__
lowerCAmelCase_ : int = """not installed"""
lowerCAmelCase_ : List[str] = """NA"""
if is_torch_available():
import torch
lowerCAmelCase_ : Any = torch.__version__
lowerCAmelCase_ : Tuple = torch.cuda.is_available()
lowerCAmelCase_ : List[str] = """not installed"""
if is_transformers_available():
import transformers
lowerCAmelCase_ : Optional[int] = transformers.__version__
lowerCAmelCase_ : int = """not installed"""
if is_accelerate_available():
import accelerate
lowerCAmelCase_ : Optional[int] = accelerate.__version__
lowerCAmelCase_ : Tuple = """not installed"""
if is_xformers_available():
import xformers
lowerCAmelCase_ : Tuple = xformers.__version__
lowerCAmelCase_ : Dict = {
"""`diffusers` version""": version,
"""Platform""": platform.platform(),
"""Python version""": platform.python_version(),
"""PyTorch version (GPU?)""": F'{pt_version} ({pt_cuda_available})',
"""Huggingface_hub version""": hub_version,
"""Transformers version""": transformers_version,
"""Accelerate version""": accelerate_version,
"""xFormers version""": xformers_version,
"""Using GPU in script?""": """<fill in>""",
"""Using distributed or parallel set-up in script?""": """<fill in>""",
}
print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" )
print(self.format_dict(UpperCAmelCase ) )
return info
@staticmethod
def A ( UpperCAmelCase : Any ):
return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
| 600 | 0 |
import logging
from transformers.configuration_utils import PretrainedConfig
_lowerCamelCase : Union[str, Any] = logging.getLogger(__name__)
class __snake_case (_a ):
lowerCAmelCase__ = "masked_bert"
def __init__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=3_0522 , _UpperCAmelCase : Optional[Any]=768 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : List[str]=3072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : int=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : str=1E-12 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Dict="topK" , _UpperCAmelCase : List[str]="constant" , _UpperCAmelCase : Optional[Any]=0.0 , **_UpperCAmelCase : str , ) -> Tuple:
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_lowerCAmelCase : str = vocab_size
_lowerCAmelCase : List[str] = hidden_size
_lowerCAmelCase : Any = num_hidden_layers
_lowerCAmelCase : Optional[Any] = num_attention_heads
_lowerCAmelCase : Optional[Any] = hidden_act
_lowerCAmelCase : Union[str, Any] = intermediate_size
_lowerCAmelCase : Tuple = hidden_dropout_prob
_lowerCAmelCase : Optional[int] = attention_probs_dropout_prob
_lowerCAmelCase : str = max_position_embeddings
_lowerCAmelCase : int = type_vocab_size
_lowerCAmelCase : List[str] = initializer_range
_lowerCAmelCase : Optional[Any] = layer_norm_eps
_lowerCAmelCase : Tuple = pruning_method
_lowerCAmelCase : str = mask_init
_lowerCAmelCase : List[str] = mask_scale
| 196 |
import inspect
import math
import tempfile
import unittest
import numpy as np
from transformers import ViTMAEConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMAEForPreTraining, ViTMAEModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __snake_case :
def __init__( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : int=13 , _UpperCAmelCase : Union[str, Any]=30 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=32 , _UpperCAmelCase : List[Any]=5 , _UpperCAmelCase : int=4 , _UpperCAmelCase : Union[str, Any]=37 , _UpperCAmelCase : Optional[Any]="gelu" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : List[Any]=10 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=0.6 , _UpperCAmelCase : Any=None , ) -> Tuple:
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = parent
_lowerCAmelCase : Any = batch_size
_lowerCAmelCase : List[str] = image_size
_lowerCAmelCase : Tuple = patch_size
_lowerCAmelCase : int = num_channels
_lowerCAmelCase : Optional[int] = is_training
_lowerCAmelCase : int = use_labels
_lowerCAmelCase : List[str] = hidden_size
_lowerCAmelCase : Optional[Any] = num_hidden_layers
_lowerCAmelCase : Optional[int] = num_attention_heads
_lowerCAmelCase : Any = intermediate_size
_lowerCAmelCase : str = hidden_act
_lowerCAmelCase : List[Any] = hidden_dropout_prob
_lowerCAmelCase : List[str] = attention_probs_dropout_prob
_lowerCAmelCase : str = type_sequence_label_size
_lowerCAmelCase : Optional[Any] = initializer_range
_lowerCAmelCase : Tuple = mask_ratio
_lowerCAmelCase : Tuple = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_lowerCAmelCase : Any = (image_size // patch_size) ** 2
_lowerCAmelCase : Any = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any:
'''simple docstring'''
_lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase : int = None
if self.use_labels:
_lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE ( self : str ) -> Dict:
'''simple docstring'''
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def SCREAMING_SNAKE_CASE ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict ) -> Optional[int]:
'''simple docstring'''
_lowerCAmelCase : int = ViTMAEModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase : List[Any] = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ) -> Any:
'''simple docstring'''
_lowerCAmelCase : Optional[int] = ViTMAEForPreTraining(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase : int = model(_UpperCAmelCase )
_lowerCAmelCase : Union[str, Any] = (self.image_size // self.patch_size) ** 2
_lowerCAmelCase : Union[str, Any] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_lowerCAmelCase : Dict = 1
_lowerCAmelCase : Dict = ViTMAEForPreTraining(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
_lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase : str = model(_UpperCAmelCase )
_lowerCAmelCase : Optional[int] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def SCREAMING_SNAKE_CASE ( self : int ) -> Any:
'''simple docstring'''
_lowerCAmelCase : int = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = config_and_inputs
_lowerCAmelCase : List[str] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __snake_case (_a , _a , unittest.TestCase ):
lowerCAmelCase__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else ()
lowerCAmelCase__ = {"feature-extraction": ViTMAEModel} if is_torch_available() else {}
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]:
'''simple docstring'''
_lowerCAmelCase : List[str] = ViTMAEModelTester(self )
_lowerCAmelCase : int = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def SCREAMING_SNAKE_CASE ( self : str ) -> int:
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : int = model_class(_UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def SCREAMING_SNAKE_CASE ( self : int ) -> Any:
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : List[Any] = model_class(_UpperCAmelCase )
_lowerCAmelCase : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()]
_lowerCAmelCase : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int:
'''simple docstring'''
_lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> List[Any]:
'''simple docstring'''
np.random.seed(2 )
_lowerCAmelCase : Optional[int] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 )
_lowerCAmelCase : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_lowerCAmelCase : Tuple = torch.from_numpy(_UpperCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_lowerCAmelCase : Any = pt_noise
super().check_pt_tf_models(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]:
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : Optional[int] = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCAmelCase : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
_lowerCAmelCase : List[Any] = outputs[0].cpu().numpy()
_lowerCAmelCase : Union[str, Any] = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase )
_lowerCAmelCase : str = model_class.from_pretrained(_UpperCAmelCase )
model.to(_UpperCAmelCase )
# make random mask reproducible
torch.manual_seed(2 )
with torch.no_grad():
_lowerCAmelCase : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
# Make sure we don't have nans
_lowerCAmelCase : int = after_outputs[0].cpu().numpy()
_lowerCAmelCase : Optional[Any] = 0
_lowerCAmelCase : List[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_UpperCAmelCase , 1E-5 )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def SCREAMING_SNAKE_CASE ( self : Any ) -> str:
'''simple docstring'''
pass
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def SCREAMING_SNAKE_CASE ( self : str ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
pass
@slow
def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any:
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase : str = ViTMAEModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def _UpperCAmelCase ():
'''simple docstring'''
_lowerCAmelCase : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __snake_case (unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int:
'''simple docstring'''
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]:
'''simple docstring'''
np.random.seed(2 )
_lowerCAmelCase : str = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(_UpperCAmelCase )
_lowerCAmelCase : Union[str, Any] = self.default_image_processor
_lowerCAmelCase : Optional[int] = prepare_img()
_lowerCAmelCase : Any = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_lowerCAmelCase : Optional[int] = ViTMAEConfig()
_lowerCAmelCase : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_lowerCAmelCase : List[Any] = np.random.uniform(size=(1, num_patches) )
# forward pass
with torch.no_grad():
_lowerCAmelCase : Dict = model(**_UpperCAmelCase , noise=torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase ) )
# verify the logits
_lowerCAmelCase : Optional[Any] = torch.Size((1, 196, 768) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
_lowerCAmelCase : str = torch.tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_UpperCAmelCase ) , atol=1E-4 ) )
| 196 | 1 |
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
lowerCAmelCase_ = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
lowerCAmelCase_ = '''main'''
# Default branch name
lowerCAmelCase_ = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2'''
# One particular commit (not the top of `main`)
lowerCAmelCase_ = '''aaaaaaa'''
# This commit does not exist, so we should 404.
lowerCAmelCase_ = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684'''
# Sha-1 of config.json on the top of `main`, for checking purposes
lowerCAmelCase_ = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3'''
@contextlib.contextmanager
def lowerCamelCase_ ( ) -> Any:
"""simple docstring"""
print('''Welcome!''' )
yield
print('''Bye!''' )
@contextlib.contextmanager
def lowerCamelCase_ ( ) -> Any:
"""simple docstring"""
print('''Bonjour!''' )
yield
print('''Au revoir!''' )
class __lowerCAmelCase ( unittest.TestCase ):
def lowerCamelCase (self ) -> Tuple:
'''simple docstring'''
assert transformers.__spec__ is not None
assert importlib.util.find_spec('''transformers''' ) is not None
class __lowerCAmelCase ( unittest.TestCase ):
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def lowerCamelCase (self , __magic_name__ ) -> Any:
'''simple docstring'''
with ContextManagers([] ):
print('''Transformers are awesome!''' )
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def lowerCamelCase (self , __magic_name__ ) -> List[str]:
'''simple docstring'''
with ContextManagers([context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def lowerCamelCase (self , __magic_name__ ) -> Tuple:
'''simple docstring'''
with ContextManagers([context_fr(), context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' )
@require_torch
def lowerCamelCase (self ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] )
self.assertEqual(find_labels(__magic_name__ ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(__magic_name__ ) , ['''start_positions''', '''end_positions'''] )
class __lowerCAmelCase ( _a ):
pass
self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] )
@require_tf
def lowerCamelCase (self ) -> str:
'''simple docstring'''
self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] )
self.assertEqual(find_labels(__magic_name__ ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(__magic_name__ ) , ['''start_positions''', '''end_positions'''] )
class __lowerCAmelCase ( _a ):
pass
self.assertEqual(find_labels(__magic_name__ ) , ['''labels'''] )
@require_flax
def lowerCamelCase (self ) -> str:
'''simple docstring'''
self.assertEqual(find_labels(__magic_name__ ) , [] )
self.assertEqual(find_labels(__magic_name__ ) , [] )
self.assertEqual(find_labels(__magic_name__ ) , [] )
class __lowerCAmelCase ( _a ):
pass
self.assertEqual(find_labels(__magic_name__ ) , [] )
| 60 |
import tensorflow as tf
from ...tf_utils import shape_list
class __lowerCAmelCase ( tf.keras.layers.Layer ):
def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=1 , __magic_name__=False , **__magic_name__ ) -> Dict:
'''simple docstring'''
super().__init__(**__magic_name__ )
snake_case_ : List[Any] = vocab_size
snake_case_ : Dict = d_embed
snake_case_ : Union[str, Any] = d_proj
snake_case_ : str = cutoffs + [vocab_size]
snake_case_ : int = [0] + self.cutoffs
snake_case_ : Optional[int] = div_val
snake_case_ : int = self.cutoffs[0]
snake_case_ : Any = len(self.cutoffs ) - 1
snake_case_ : Union[str, Any] = self.shortlist_size + self.n_clusters
snake_case_ : str = keep_order
snake_case_ : int = []
snake_case_ : Union[str, Any] = []
def lowerCamelCase (self , __magic_name__ ) -> Union[str, Any]:
'''simple docstring'''
if self.n_clusters > 0:
snake_case_ : Tuple = self.add_weight(
shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=__magic_name__ , name='''cluster_weight''' )
snake_case_ : Optional[Any] = self.add_weight(
shape=(self.n_clusters,) , initializer='''zeros''' , trainable=__magic_name__ , name='''cluster_bias''' )
if self.div_val == 1:
for i in range(len(self.cutoffs ) ):
if self.d_proj != self.d_embed:
snake_case_ : List[str] = self.add_weight(
shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_projs_._{i}''' , )
self.out_projs.append(__magic_name__ )
else:
self.out_projs.append(__magic_name__ )
snake_case_ : Optional[Any] = self.add_weight(
shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_layers_._{i}_._weight''' , )
snake_case_ : List[str] = self.add_weight(
shape=(self.vocab_size,) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_layers_._{i}_._bias''' , )
self.out_layers.append((weight, bias) )
else:
for i in range(len(self.cutoffs ) ):
snake_case_ , snake_case_ : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
snake_case_ : Optional[Any] = self.d_embed // (self.div_val**i)
snake_case_ : int = self.add_weight(
shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_projs_._{i}''' )
self.out_projs.append(__magic_name__ )
snake_case_ : int = self.add_weight(
shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_layers_._{i}_._weight''' , )
snake_case_ : Any = self.add_weight(
shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=__magic_name__ , name=F'''out_layers_._{i}_._bias''' , )
self.out_layers.append((weight, bias) )
super().build(__magic_name__ )
@staticmethod
def lowerCamelCase (__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = x
if proj is not None:
snake_case_ : List[str] = tf.einsum('''ibd,ed->ibe''' , __magic_name__ , __magic_name__ )
return tf.einsum('''ibd,nd->ibn''' , __magic_name__ , __magic_name__ ) + b
@staticmethod
def lowerCamelCase (__magic_name__ , __magic_name__ ) -> Any:
'''simple docstring'''
snake_case_ : Union[str, Any] = shape_list(__magic_name__ )
snake_case_ : Tuple = tf.range(lp_size[0] , dtype=target.dtype )
snake_case_ : Dict = tf.stack([r, target] , 1 )
return tf.gather_nd(__magic_name__ , __magic_name__ )
def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__=True , __magic_name__=False ) -> str:
'''simple docstring'''
snake_case_ : Optional[Any] = 0
if self.n_clusters == 0:
snake_case_ : Any = self._logit(__magic_name__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] )
if target is not None:
snake_case_ : Union[str, Any] = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=__magic_name__ , logits=__magic_name__ )
snake_case_ : Optional[Any] = tf.nn.log_softmax(__magic_name__ , axis=-1 )
else:
snake_case_ : Optional[int] = shape_list(__magic_name__ )
snake_case_ : int = []
snake_case_ : List[Any] = tf.zeros(hidden_sizes[:2] )
for i in range(len(self.cutoffs ) ):
snake_case_ , snake_case_ : Optional[int] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
if target is not None:
snake_case_ : str = (target >= l_idx) & (target < r_idx)
snake_case_ : Dict = tf.where(__magic_name__ )
snake_case_ : List[str] = tf.boolean_mask(__magic_name__ , __magic_name__ ) - l_idx
if self.div_val == 1:
snake_case_ : Any = self.out_layers[0][0][l_idx:r_idx]
snake_case_ : Dict = self.out_layers[0][1][l_idx:r_idx]
else:
snake_case_ : Union[str, Any] = self.out_layers[i][0]
snake_case_ : int = self.out_layers[i][1]
if i == 0:
snake_case_ : List[Any] = tf.concat([cur_W, self.cluster_weight] , 0 )
snake_case_ : Tuple = tf.concat([cur_b, self.cluster_bias] , 0 )
snake_case_ : Optional[int] = self._logit(__magic_name__ , __magic_name__ , __magic_name__ , self.out_projs[0] )
snake_case_ : Any = tf.nn.log_softmax(__magic_name__ )
out.append(head_logprob[..., : self.cutoffs[0]] )
if target is not None:
snake_case_ : Optional[Any] = tf.boolean_mask(__magic_name__ , __magic_name__ )
snake_case_ : Tuple = self._gather_logprob(__magic_name__ , __magic_name__ )
else:
snake_case_ : Optional[int] = self._logit(__magic_name__ , __magic_name__ , __magic_name__ , self.out_projs[i] )
snake_case_ : Union[str, Any] = tf.nn.log_softmax(__magic_name__ )
snake_case_ : Optional[Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster
snake_case_ : Optional[int] = head_logprob[..., cluster_prob_idx, None] + tail_logprob
out.append(__magic_name__ )
if target is not None:
snake_case_ : Any = tf.boolean_mask(__magic_name__ , __magic_name__ )
snake_case_ : Optional[Any] = tf.boolean_mask(__magic_name__ , __magic_name__ )
snake_case_ : str = self._gather_logprob(__magic_name__ , __magic_name__ )
cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1]
if target is not None:
loss += tf.scatter_nd(__magic_name__ , -cur_logprob , shape_list(__magic_name__ ) )
snake_case_ : str = tf.concat(__magic_name__ , axis=-1 )
if target is not None:
if return_mean:
snake_case_ : int = tf.reduce_mean(__magic_name__ )
# Add the training-time loss value to the layer using `self.add_loss()`.
self.add_loss(__magic_name__ )
# Log the loss as a metric (we could log arbitrary metrics,
# including different metrics for training and inference.
self.add_metric(__magic_name__ , name=self.name , aggregation='''mean''' if return_mean else '''''' )
return out
| 60 | 1 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
_snake_case = logging.getLogger(__name__)
@dataclass
class _a :
a_ : Optional[int] = field(
default=128 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
a_ : bool = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
a_ : bool = field(
default=SCREAMING_SNAKE_CASE_ , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
a_ : Optional[int] = field(
default=SCREAMING_SNAKE_CASE_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
a_ : Optional[int] = field(
default=SCREAMING_SNAKE_CASE_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
a_ : Optional[int] = field(
default=SCREAMING_SNAKE_CASE_ , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
@dataclass
class _a :
a_ : str = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
a_ : str = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} )
a_ : Optional[str] = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Train language if it is different from the evaluation language.'} )
a_ : Optional[str] = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a_ : Optional[str] = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
a_ : Optional[str] = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
a_ : Optional[bool] = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , )
a_ : bool = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
a_ : str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
a_ : bool = field(
default=SCREAMING_SNAKE_CASE_ , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
a_ : bool = field(
default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , )
def snake_case ( )-> Dict:
'''simple docstring'''
lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_xnli' , _a )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
lowerCamelCase__ = training_args.get_process_log_level()
logger.setLevel(_a )
datasets.utils.logging.set_verbosity(_a )
transformers.utils.logging.set_verbosity(_a )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
lowerCamelCase__ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
lowerCamelCase__ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. '
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None:
logger.info(
F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
lowerCamelCase__ = load_dataset(
'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
lowerCamelCase__ = load_dataset(
'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase__ = train_dataset.features['label'].names
if training_args.do_eval:
lowerCamelCase__ = load_dataset(
'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase__ = eval_dataset.features['label'].names
if training_args.do_predict:
lowerCamelCase__ = load_dataset(
'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase__ = predict_dataset.features['label'].names
# Labels
lowerCamelCase__ = len(_a )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase__ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_a , idalabel={str(_a ): label for i, label in enumerate(_a )} , labelaid={label: i for i, label in enumerate(_a )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase__ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
lowerCamelCase__ = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
lowerCamelCase__ = 'max_length'
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
lowerCamelCase__ = False
def preprocess_function(_a: List[str] ):
# Tokenize the texts
return tokenizer(
examples['premise'] , examples['hypothesis'] , padding=_a , max_length=data_args.max_seq_length , truncation=_a , )
if training_args.do_train:
if data_args.max_train_samples is not None:
lowerCamelCase__ = min(len(_a ) , data_args.max_train_samples )
lowerCamelCase__ = train_dataset.select(range(_a ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
lowerCamelCase__ = train_dataset.map(
_a , batched=_a , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , )
# Log a few random samples from the training set:
for index in random.sample(range(len(_a ) ) , 3 ):
logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
lowerCamelCase__ = min(len(_a ) , data_args.max_eval_samples )
lowerCamelCase__ = eval_dataset.select(range(_a ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
lowerCamelCase__ = eval_dataset.map(
_a , batched=_a , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
lowerCamelCase__ = min(len(_a ) , data_args.max_predict_samples )
lowerCamelCase__ = predict_dataset.select(range(_a ) )
with training_args.main_process_first(desc='prediction dataset map pre-processing' ):
lowerCamelCase__ = predict_dataset.map(
_a , batched=_a , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , )
# Get the metric function
lowerCamelCase__ = evaluate.load('xnli' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(_a: EvalPrediction ):
lowerCamelCase__ = p.predictions[0] if isinstance(p.predictions , _a ) else p.predictions
lowerCamelCase__ = np.argmax(_a , axis=1 )
return metric.compute(predictions=_a , references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
lowerCamelCase__ = default_data_collator
elif training_args.fpaa:
lowerCamelCase__ = DataCollatorWithPadding(_a , pad_to_multiple_of=8 )
else:
lowerCamelCase__ = None
# Initialize our Trainer
lowerCamelCase__ = Trainer(
model=_a , args=_a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_a , tokenizer=_a , data_collator=_a , )
# Training
if training_args.do_train:
lowerCamelCase__ = None
if training_args.resume_from_checkpoint is not None:
lowerCamelCase__ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
lowerCamelCase__ = last_checkpoint
lowerCamelCase__ = trainer.train(resume_from_checkpoint=_a )
lowerCamelCase__ = train_result.metrics
lowerCamelCase__ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(_a )
)
lowerCamelCase__ = min(_a , len(_a ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('train' , _a )
trainer.save_metrics('train' , _a )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
lowerCamelCase__ = trainer.evaluate(eval_dataset=_a )
lowerCamelCase__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_a )
lowerCamelCase__ = min(_a , len(_a ) )
trainer.log_metrics('eval' , _a )
trainer.save_metrics('eval' , _a )
# Prediction
if training_args.do_predict:
logger.info('*** Predict ***' )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = trainer.predict(_a , metric_key_prefix='predict' )
lowerCamelCase__ = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_a )
)
lowerCamelCase__ = min(_a , len(_a ) )
trainer.log_metrics('predict' , _a )
trainer.save_metrics('predict' , _a )
lowerCamelCase__ = np.argmax(_a , axis=1 )
lowerCamelCase__ = os.path.join(training_args.output_dir , 'predictions.txt' )
if trainer.is_world_process_zero():
with open(_a , 'w' ) as writer:
writer.write('index\tprediction\n' )
for index, item in enumerate(_a ):
lowerCamelCase__ = label_list[item]
writer.write(F'{index}\t{item}\n' )
if __name__ == "__main__":
main()
| 714 |
"""simple docstring"""
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
_snake_case = WebClient(token=os.environ["CI_SLACK_BOT_TOKEN"])
def snake_case ( _a: Any )-> Optional[Any]:
'''simple docstring'''
lowerCamelCase__ = test_results.split(' ' )
lowerCamelCase__ = 0
lowerCamelCase__ = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
lowerCamelCase__ = expressions[-2] if '=' in expressions[-1] else expressions[-1]
for i, expression in enumerate(_a ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def snake_case ( _a: Optional[int] )-> Optional[int]:
'''simple docstring'''
lowerCamelCase__ = {}
lowerCamelCase__ = None
lowerCamelCase__ = False
for line in failures_short_lines.split('\n' ):
if re.search(R'_ \[doctest\]' , _a ):
lowerCamelCase__ = True
lowerCamelCase__ = line.split(' ' )[2]
elif in_error and not line.split(' ' )[0].isdigit():
lowerCamelCase__ = line
lowerCamelCase__ = False
return failures
class _a :
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ):
lowerCamelCase__ = title
lowerCamelCase__ = doc_test_results['time_spent'].split(',' )[0]
lowerCamelCase__ = doc_test_results['success']
lowerCamelCase__ = doc_test_results['failures']
lowerCamelCase__ = self.n_success + self.n_failures
# Failures and success of the modeling tests
lowerCamelCase__ = doc_test_results
@property
def _UpperCamelCase ( self : List[str] ):
lowerCamelCase__ = [self._time_spent]
lowerCamelCase__ = 0
for time in time_spent:
lowerCamelCase__ = time.split(':' )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(SCREAMING_SNAKE_CASE__ ) == 1:
lowerCamelCase__ = [0, 0, time_parts[0]]
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return F'{int(SCREAMING_SNAKE_CASE__ )}h{int(SCREAMING_SNAKE_CASE__ )}m{int(SCREAMING_SNAKE_CASE__ )}s'
@property
def _UpperCamelCase ( self : Dict ):
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def _UpperCamelCase ( self : Dict ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.',
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def _UpperCamelCase ( self : Any ):
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in'
F' {self.time}.'
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
@property
def _UpperCamelCase ( self : Union[str, Any] ):
lowerCamelCase__ = 40
lowerCamelCase__ = {k: v['failed'] for k, v in doc_test_results.items() if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )}
lowerCamelCase__ = ''
for category, failures in category_failures.items():
if len(SCREAMING_SNAKE_CASE__ ) == 0:
continue
if report != "":
report += "\n\n"
report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(SCREAMING_SNAKE_CASE__ )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'The following examples had failures:\n\n\n{report}\n',
},
}
@property
def _UpperCamelCase ( self : str ):
lowerCamelCase__ = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(SCREAMING_SNAKE_CASE__ )
@staticmethod
def _UpperCamelCase ( ):
lowerCamelCase__ = [
{
'type': 'section',
'text': {
'type': 'plain_text',
'text': 'There was an issue running the tests.',
},
'accessory': {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'Check Action results', 'emoji': True},
'url': F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}',
},
}
]
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(SCREAMING_SNAKE_CASE__ )} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=SCREAMING_SNAKE_CASE__ , )
def _UpperCamelCase ( self : Optional[int] ):
print('Sending the following payload' )
print(json.dumps({'blocks': json.loads(self.payload )} ) )
lowerCamelCase__ = F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else 'All tests passed.'
lowerCamelCase__ = client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=SCREAMING_SNAKE_CASE__ , )
def _UpperCamelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple ):
lowerCamelCase__ = ''
for key, value in failures.items():
lowerCamelCase__ = value[:2_00] + ' [Truncated]' if len(SCREAMING_SNAKE_CASE__ ) > 2_50 else value
failures_text += F'*{key}*\n_{value}_\n\n'
lowerCamelCase__ = job_name
lowerCamelCase__ = {'type': 'section', 'text': {'type': 'mrkdwn', 'text': text}}
if job_link is not None:
lowerCamelCase__ = {
'type': 'button',
'text': {'type': 'plain_text', 'text': 'GitHub Action job', 'emoji': True},
'url': job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def _UpperCamelCase ( self : Optional[int] ):
if self.thread_ts is None:
raise ValueError('Can only post reply if a post has been made.' )
lowerCamelCase__ = self.doc_test_results.pop('job_link' )
self.doc_test_results.pop('failures' )
self.doc_test_results.pop('success' )
self.doc_test_results.pop('time_spent' )
lowerCamelCase__ = sorted(self.doc_test_results.items() , key=lambda SCREAMING_SNAKE_CASE__ : t[0] )
for job, job_result in sorted_dict:
if len(job_result['failures'] ):
lowerCamelCase__ = F'*Num failures* :{len(job_result["failed"] )} \n'
lowerCamelCase__ = job_result['failures']
lowerCamelCase__ = self.get_reply_blocks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , text=SCREAMING_SNAKE_CASE__ )
print('Sending the following reply' )
print(json.dumps({'blocks': blocks} ) )
client.chat_postMessage(
channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F'Results for {job}' , blocks=SCREAMING_SNAKE_CASE__ , thread_ts=self.thread_ts['ts'] , )
time.sleep(1 )
def snake_case ( )-> Optional[Any]:
'''simple docstring'''
lowerCamelCase__ = os.environ['GITHUB_RUN_ID']
lowerCamelCase__ = F'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100'
lowerCamelCase__ = requests.get(_a ).json()
lowerCamelCase__ = {}
try:
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
lowerCamelCase__ = math.ceil((result['total_count'] - 100) / 100 )
for i in range(_a ):
lowerCamelCase__ = requests.get(url + F'&page={i + 2}' ).json()
jobs.update({job['name']: job['html_url'] for job in result['jobs']} )
return jobs
except Exception as e:
print('Unknown error, could not fetch links.' , _a )
return {}
def snake_case ( _a: str )-> Dict:
'''simple docstring'''
lowerCamelCase__ = {}
if os.path.exists(_a ):
lowerCamelCase__ = os.listdir(_a )
for file in files:
try:
with open(os.path.join(_a , _a ) , encoding='utf-8' ) as f:
lowerCamelCase__ = f.read()
except UnicodeDecodeError as e:
raise ValueError(F'Could not open {os.path.join(_a , _a )}.' ) from e
return _artifact
def snake_case ( )-> Optional[int]:
'''simple docstring'''
class _a :
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str ):
lowerCamelCase__ = name
lowerCamelCase__ = []
def __str__( self : Dict ):
return self.name
def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ):
self.paths.append({'name': self.name, 'path': path} )
lowerCamelCase__ = {}
lowerCamelCase__ = filter(os.path.isdir , os.listdir() )
for directory in directories:
lowerCamelCase__ = directory
if artifact_name not in _available_artifacts:
lowerCamelCase__ = Artifact(_a )
_available_artifacts[artifact_name].add_path(_a )
return _available_artifacts
if __name__ == "__main__":
_snake_case = get_job_links()
_snake_case = retrieve_available_artifacts()
_snake_case = collections.OrderedDict(
[
("*.py", "API Examples"),
("*.md", "MD Examples"),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
_snake_case = {
v: {
"failed": [],
"failures": {},
}
for v in docs.values()
}
# Link to the GitHub Action job
_snake_case = github_actions_job_links.get("run_doctests")
_snake_case = available_artifacts["doc_tests_gpu_test_reports"].paths[0]
_snake_case = retrieve_artifact(artifact_path["name"])
if "stats" in artifact:
_snake_case , _snake_case , _snake_case = handle_test_results(artifact["stats"])
_snake_case = failed
_snake_case = success
_snake_case = time_spent[1:-1] + ", "
_snake_case = extract_first_line_failure(artifact["failures_short"])
for line in artifact["summary_short"].split("\n"):
if re.search("FAILED", line):
_snake_case = line.replace("FAILED ", "")
_snake_case = line.split()[0].replace("\n", "")
if "::" in line:
_snake_case , _snake_case = line.split("::")
else:
_snake_case , _snake_case = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
_snake_case = docs[file_regex]
doc_test_results[category]["failed"].append(test)
_snake_case = all_failures[test] if test in all_failures else "N/A"
_snake_case = failure
break
_snake_case = Message("🤗 Results of the doc tests.", doc_test_results)
message.post()
message.post_reply()
| 659 | 0 |
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCAmelCase ):
A_ : int = ['torch', 'transformers', 'onnx']
def __init__(self : Tuple , *a__ : List[Any] , **a__ : Optional[int] ):
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : List[Any] , *a__ : Optional[Any] , **a__ : int ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : List[Any] , *a__ : Union[str, Any] , **a__ : Any ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCAmelCase ):
A_ : str = ['torch', 'transformers', 'onnx']
def __init__(self : List[Any] , *a__ : List[Any] , **a__ : Tuple ):
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : Union[str, Any] , *a__ : int , **a__ : List[str] ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : Tuple , *a__ : str , **a__ : Optional[int] ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCAmelCase ):
A_ : Any = ['torch', 'transformers', 'onnx']
def __init__(self : int , *a__ : str , **a__ : Dict ):
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : int , *a__ : Tuple , **a__ : Tuple ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : Dict , *a__ : int , **a__ : List[Any] ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCAmelCase ):
A_ : Any = ['torch', 'transformers', 'onnx']
def __init__(self : Any , *a__ : List[str] , **a__ : Dict ):
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : Any , *a__ : int , **a__ : Any ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : List[Any] , *a__ : int , **a__ : List[Any] ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCAmelCase ):
A_ : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__(self : Union[str, Any] , *a__ : int , **a__ : Optional[int] ):
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : int , *a__ : Tuple , **a__ : List[str] ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : List[str] , *a__ : List[str] , **a__ : int ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCAmelCase ):
A_ : Optional[Any] = ['torch', 'transformers', 'onnx']
def __init__(self : Any , *a__ : Any , **a__ : Dict ):
"""simple docstring"""
requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : Optional[int] , *a__ : str , **a__ : Optional[Any] ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def a (cls : str , *a__ : Optional[Any] , **a__ : List[str] ):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
| 592 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 592 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a: int = logging.get_logger(__name__)
_a: Optional[int] = {
"""BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""",
"""BridgeTower/bridgetower-base-itm-mlm""": (
"""https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json"""
),
}
class __UpperCamelCase ( snake_case__ ):
SCREAMING_SNAKE_CASE__ = 'bridgetower_vision_model'
def __init__( self : Union[str, Any] , lowerCAmelCase : Union[str, Any]=768 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : Dict=3 , lowerCAmelCase : Any=16 , lowerCAmelCase : List[str]=288 , lowerCAmelCase : Any=1 , lowerCAmelCase : Optional[int]=1e-05 , lowerCAmelCase : Dict=False , lowerCAmelCase : Any=True , lowerCAmelCase : Union[str, Any]=False , **lowerCAmelCase : List[Any] , ):
'''simple docstring'''
super().__init__(**lowercase_ )
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = initializer_factor
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = stop_gradient
UpperCAmelCase_ = share_layernorm
UpperCAmelCase_ = remove_last_layer
@classmethod
def __A ( cls : Any , lowerCAmelCase : int , **lowerCAmelCase : Any ):
'''simple docstring'''
UpperCAmelCase_ = cls.get_config_dict(lowercase_ , **lowercase_ )
if config_dict.get("model_type" ) == "bridgetower":
UpperCAmelCase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(lowercase_ , **lowercase_ )
class __UpperCamelCase ( snake_case__ ):
SCREAMING_SNAKE_CASE__ = 'bridgetower_text_model'
def __init__( self : List[Any] , lowerCAmelCase : List[str]=50_265 , lowerCAmelCase : Optional[int]=768 , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : int=1 , lowerCAmelCase : Union[str, Any]=3_072 , lowerCAmelCase : Optional[Any]="gelu" , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : List[Any]=514 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : str=1e-05 , lowerCAmelCase : List[Any]=1 , lowerCAmelCase : str=0 , lowerCAmelCase : Dict=2 , lowerCAmelCase : str="absolute" , lowerCAmelCase : Dict=True , **lowerCAmelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(**lowercase_ )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = initializer_factor
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = position_embedding_type
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = pad_token_id
UpperCAmelCase_ = bos_token_id
UpperCAmelCase_ = eos_token_id
@classmethod
def __A ( cls : List[str] , lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] ):
'''simple docstring'''
UpperCAmelCase_ = cls.get_config_dict(lowercase_ , **lowercase_ )
if config_dict.get("model_type" ) == "bridgetower":
UpperCAmelCase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(lowercase_ , **lowercase_ )
class __UpperCamelCase ( snake_case__ ):
SCREAMING_SNAKE_CASE__ = 'bridgetower'
def __init__( self : int , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : List[Any]=768 , lowerCAmelCase : int=1 , lowerCAmelCase : Dict=1e-05 , lowerCAmelCase : List[str]=False , lowerCAmelCase : Union[str, Any]="add" , lowerCAmelCase : Optional[int]=12 , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=False , lowerCAmelCase : str=None , lowerCAmelCase : List[str]=None , **lowerCAmelCase : List[str] , ):
'''simple docstring'''
UpperCAmelCase_ = kwargs.pop("text_config_dict" , lowercase_ )
UpperCAmelCase_ = kwargs.pop("vision_config_dict" , lowercase_ )
super().__init__(**lowercase_ )
UpperCAmelCase_ = share_cross_modal_transformer_layers
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = initializer_factor
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = share_link_tower_layers
UpperCAmelCase_ = link_tower_type
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = tie_word_embeddings
UpperCAmelCase_ = init_layernorm_from_vision_encoder
if text_config is None:
UpperCAmelCase_ = {}
logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." )
if vision_config is None:
UpperCAmelCase_ = {}
logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." )
UpperCAmelCase_ = BridgeTowerTextConfig(**lowercase_ )
UpperCAmelCase_ = BridgeTowerVisionConfig(**lowercase_ )
@classmethod
def __A ( cls : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , **lowerCAmelCase : str ):
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase_ )
def __A ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase_ = copy.deepcopy(self.__dict__ )
UpperCAmelCase_ = self.text_config.to_dict()
UpperCAmelCase_ = self.vision_config.to_dict()
UpperCAmelCase_ = self.__class__.model_type
return output | 704 |
from sklearn.metrics import mean_squared_error
import datasets
_a: Any = """\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
"""
_a: List[Any] = """\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
"""
_a: List[str] = """
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
\"raw_values\" : Returns a full set of errors in case of multioutput input.
\"uniform_average\" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric(\"mse\")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{'mse': 0.6123724356957945}
If you're using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'mse': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{'mse': array([0.41666667, 1. ])}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __UpperCamelCase ( datasets.Metric ):
def __A ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
] , )
def __A ( self : Optional[Any] ):
'''simple docstring'''
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float" ) ),
"references": datasets.Sequence(datasets.Value("float" ) ),
}
else:
return {
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
}
def __A ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Dict , lowerCAmelCase : str=None , lowerCAmelCase : str="uniform_average" , lowerCAmelCase : Any=True ):
'''simple docstring'''
UpperCAmelCase_ = mean_squared_error(
lowerCAmelCase , lowerCAmelCase , sample_weight=lowerCAmelCase , multioutput=lowerCAmelCase , squared=lowerCAmelCase )
return {"mse": mse} | 268 | 0 |
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__magic_name__ = 16
__magic_name__ = 32
def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ):
return int(x / 2**20 )
class _SCREAMING_SNAKE_CASE :
def __enter__( self ):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
snake_case__ = torch.cuda.memory_allocated()
return self
def __exit__( self , *lowerCamelCase ):
gc.collect()
torch.cuda.empty_cache()
snake_case__ = torch.cuda.memory_allocated()
snake_case__ = torch.cuda.max_memory_allocated()
snake_case__ = bamb(self.end - self.begin )
snake_case__ = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase = 16 , __lowerCAmelCase = "bert-base-cased" , __lowerCAmelCase = 320 , __lowerCAmelCase = 160 , ):
snake_case__ = AutoTokenizer.from_pretrained(A__ )
snake_case__ = load_dataset(
"glue" , "mrpc" , split={"train": F"""train[:{n_train}]""", "validation": F"""validation[:{n_val}]"""} )
def tokenize_function(__lowerCAmelCase ):
# max_length=None => use the model max length (it's actually the default)
snake_case__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A__ , max_length=A__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
snake_case__ = datasets.map(
A__ , batched=A__ , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case__ = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(__lowerCAmelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(A__ , padding="max_length" , max_length=128 , return_tensors="pt" )
return tokenizer.pad(A__ , padding="longest" , return_tensors="pt" )
# Instantiate dataloaders.
snake_case__ = DataLoader(
tokenized_datasets["train"] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
snake_case__ = DataLoader(
tokenized_datasets["validation"] , shuffle=A__ , collate_fn=A__ , batch_size=A__ )
return train_dataloader, eval_dataloader
def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase ):
# Initialize accelerator
snake_case__ = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case__ = config['lr']
snake_case__ = int(config["num_epochs"] )
snake_case__ = int(config["seed"] )
snake_case__ = int(config["batch_size"] )
snake_case__ = args.model_name_or_path
set_seed(A__ )
snake_case__ = get_dataloaders(A__ , A__ , A__ , args.n_train , args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case__ = AutoModelForSequenceClassification.from_pretrained(A__ , return_dict=A__ )
# Instantiate optimizer
snake_case__ = (
AdamW
if accelerator.state.deepspeed_plugin is None
or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
snake_case__ = optimizer_cls(params=model.parameters() , lr=A__ )
if accelerator.state.deepspeed_plugin is not None:
snake_case__ = accelerator.state.deepspeed_plugin.deepspeed_config[
'gradient_accumulation_steps'
]
else:
snake_case__ = 1
snake_case__ = (len(A__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
snake_case__ = get_linear_schedule_with_warmup(
optimizer=A__ , num_warmup_steps=0 , num_training_steps=A__ , )
else:
snake_case__ = DummyScheduler(A__ , total_num_steps=A__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case__ = accelerator.prepare(
A__ , A__ , A__ , A__ , A__ )
# We need to keep track of how many total steps we have iterated over
snake_case__ = 0
# We also need to keep track of the stating epoch so files are named properly
snake_case__ = 0
# Now we train the model
snake_case__ = {}
for epoch in range(A__ , A__ ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(A__ ):
snake_case__ = model(**A__ )
snake_case__ = outputs.loss
snake_case__ = loss / gradient_accumulation_steps
accelerator.backward(A__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print("Memory before entering the train : {}".format(bamb(tracemalloc.begin ) ) )
accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used ) )
accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked ) )
accelerator.print(
"Total Peak Memory consumed during the train (max): {}".format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
snake_case__ = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[F"""epoch-{epoch}"""] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , "peak_memory_utilization.json" ) , "w" ) as f:
json.dump(A__ , A__ )
def SCREAMING_SNAKE_CASE__ ( ):
snake_case__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." )
parser.add_argument(
"--model_name_or_path" , type=A__ , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A__ , )
parser.add_argument(
"--output_dir" , type=A__ , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , )
parser.add_argument(
"--peak_memory_upper_bound" , type=A__ , default=A__ , help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value." , )
parser.add_argument(
"--n_train" , type=A__ , default=320 , help="Number of training examples to use." , )
parser.add_argument(
"--n_val" , type=A__ , default=160 , help="Number of validation examples to use." , )
parser.add_argument(
"--num_epochs" , type=A__ , default=1 , help="Number of train epochs." , )
snake_case__ = parser.parse_args()
snake_case__ = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16}
training_function(A__ , A__ )
if __name__ == "__main__":
main()
| 276 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowercase( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
__a : int = StableDiffusionXLImgaImgPipeline
__a : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'}
__a : Optional[Any] = PipelineTesterMixin.required_optional_params - {'latents'}
__a : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
__a : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
__a : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def snake_case_ ( self ):
torch.manual_seed(0 )
__lowerCamelCase : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=__a , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , )
__lowerCamelCase : Union[str, Any] = EulerDiscreteScheduler(
beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , )
torch.manual_seed(0 )
__lowerCamelCase : Dict = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
__lowerCamelCase : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=32 , )
__lowerCamelCase : List[Any] = CLIPTextModel(__a )
__lowerCamelCase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__a )
__lowerCamelCase : List[Any] = CLIPTextModelWithProjection(__a )
__lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=__a )
__lowerCamelCase : List[str] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'text_encoder_2': text_encoder_a,
'tokenizer_2': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def snake_case_ ( self , __a , __a=0 ):
__lowerCamelCase : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a )
__lowerCamelCase : Any = image / 2 + 0.5
if str(__a ).startswith('mps' ):
__lowerCamelCase : Dict = torch.manual_seed(__a )
else:
__lowerCamelCase : Optional[int] = torch.Generator(device=__a ).manual_seed(__a )
__lowerCamelCase : Union[str, Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 5.0,
'output_type': 'numpy',
'strength': 0.75,
}
return inputs
def snake_case_ ( self ):
__lowerCamelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator
__lowerCamelCase : Tuple = self.get_dummy_components()
__lowerCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline(**__a )
__lowerCamelCase : Dict = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
__lowerCamelCase : Any = self.get_dummy_inputs(__a )
__lowerCamelCase : Tuple = sd_pipe(**__a ).images
__lowerCamelCase : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__lowerCamelCase : List[str] = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def snake_case_ ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def snake_case_ ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def snake_case_ ( self ):
pass
def snake_case_ ( self ):
__lowerCamelCase : int = self.get_dummy_components()
__lowerCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline(**__a )
__lowerCamelCase : List[Any] = sd_pipe.to(__a )
__lowerCamelCase : Optional[int] = sd_pipe.to(__a )
sd_pipe.set_progress_bar_config(disable=__a )
# forward without prompt embeds
__lowerCamelCase : Tuple = self.get_dummy_inputs(__a )
__lowerCamelCase : Dict = 3 * ['this is a negative prompt']
__lowerCamelCase : Optional[int] = negative_prompt
__lowerCamelCase : List[str] = 3 * [inputs['prompt']]
__lowerCamelCase : Any = sd_pipe(**__a )
__lowerCamelCase : Any = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
__lowerCamelCase : Dict = self.get_dummy_inputs(__a )
__lowerCamelCase : str = 3 * ['this is a negative prompt']
__lowerCamelCase : List[str] = 3 * [inputs.pop('prompt' )]
(
(
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) , (
__lowerCamelCase
) ,
) : List[str] = sd_pipe.encode_prompt(__a , negative_prompt=__a )
__lowerCamelCase : Union[str, Any] = sd_pipe(
**__a , prompt_embeds=__a , negative_prompt_embeds=__a , pooled_prompt_embeds=__a , negative_pooled_prompt_embeds=__a , )
__lowerCamelCase : Any = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class __lowercase( unittest.TestCase ):
'''simple docstring'''
def snake_case_ ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self , __a , __a="cpu" , __a=torch.floataa , __a=0 ):
__lowerCamelCase : List[Any] = torch.Generator(device=__a ).manual_seed(__a )
__lowerCamelCase : List[str] = np.random.RandomState(__a ).standard_normal((1, 4, 64, 64) )
__lowerCamelCase : Tuple = torch.from_numpy(__a ).to(device=__a , dtype=__a )
__lowerCamelCase : Optional[int] = {
'prompt': 'a photograph of an astronaut riding a horse',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def snake_case_ ( self ):
__lowerCamelCase : Optional[Any] = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' )
pipe.to(__a )
pipe.set_progress_bar_config(disable=__a )
__lowerCamelCase : Dict = self.get_inputs(__a )
__lowerCamelCase : Optional[Any] = pipe(**__a ).images
__lowerCamelCase : int = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__lowerCamelCase : str = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 594 | 0 |
from __future__ import annotations
A : Optional[int] = 8.988e9 # units = N * m^s * C^-2
def __lowerCamelCase ( __a :float , __a :float , __a :float , __a :float ) -> dict[str, float]:
"""simple docstring"""
A__ = abs(chargea * chargea )
if (force, chargea, chargea, distance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if distance < 0:
raise ValueError("""Distance cannot be negative""" )
if force == 0:
A__ = COULOMBS_CONSTANT * charge_product / (distance**2)
return {"force": force}
elif chargea == 0:
A__ = abs(__a ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge1": chargea}
elif chargea == 0:
A__ = abs(__a ) * (distance**2) / (COULOMBS_CONSTANT * chargea)
return {"charge2": chargea}
elif distance == 0:
A__ = (COULOMBS_CONSTANT * charge_product / abs(__a )) ** 0.5
return {"distance": distance}
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 247 |
def __lowerCamelCase ( __a :int ) -> list[int]:
"""simple docstring"""
if num <= 0:
raise ValueError("""Input must be a positive integer""" )
A__ = [True] * (num + 1)
A__ = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , __a ):
A__ = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
A : Any = int(input('''Enter a positive integer: ''').strip())
print(prime_sieve_eratosthenes(user_num))
| 247 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[int] , a_ : int , a_ : int , a_ : float = 0 ):
"""simple docstring"""
__snake_case , __snake_case = row, column
__snake_case = [[default_value for c in range(a_ )] for r in range(a_ )]
def __str__( self : Dict ):
"""simple docstring"""
__snake_case = f'''Matrix consist of {self.row} rows and {self.column} columns\n'''
# Make string identifier
__snake_case = 0
for row_vector in self.array:
for obj in row_vector:
__snake_case = max(a_ , len(str(a_ ) ) )
__snake_case = f'''%{max_element_length}s'''
# Make string and return
def single_line(a_ : list[float] ) -> str:
nonlocal string_format_identifier
__snake_case = "["
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(a_ ) for row_vector in self.array )
return s
def __repr__( self : Any ):
"""simple docstring"""
return str(self )
def A ( self : List[str] , a_ : tuple[int, int] ):
"""simple docstring"""
if not (isinstance(a_ , (list, tuple) ) and len(a_ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Tuple , a_ : tuple[int, int] ):
"""simple docstring"""
assert self.validate_indicies(a_ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : Tuple , a_ : tuple[int, int] , a_ : float ):
"""simple docstring"""
assert self.validate_indicies(a_ )
__snake_case = value
def __add__( self : Any , a_ : Matrix ):
"""simple docstring"""
assert isinstance(a_ , a_ )
assert self.row == another.row and self.column == another.column
# Add
__snake_case = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__snake_case = self[r, c] + another[r, c]
return result
def __neg__( self : List[str] ):
"""simple docstring"""
__snake_case = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__snake_case = -self[r, c]
return result
def __sub__( self : int , a_ : Matrix ):
"""simple docstring"""
return self + (-another)
def __mul__( self : Tuple , a_ : int | float | Matrix ):
"""simple docstring"""
if isinstance(a_ , (int, float) ): # Scalar multiplication
__snake_case = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
__snake_case = self[r, c] * another
return result
elif isinstance(a_ , a_ ): # Matrix multiplication
assert self.column == another.row
__snake_case = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
__snake_case = f'''Unsupported type given for another ({type(a_ )})'''
raise TypeError(a_ )
def A ( self : Union[str, Any] ):
"""simple docstring"""
__snake_case = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
__snake_case = self[r, c]
return result
def A ( self : List[Any] , a_ : Matrix , a_ : Matrix ):
"""simple docstring"""
assert isinstance(a_ , a_ ) and isinstance(a_ , a_ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
__snake_case = v.transpose()
__snake_case = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def __UpperCAmelCase ( ) -> None:
# a^(-1)
__snake_case = Matrix(3 , 3 , 0 )
for i in range(3 ):
__snake_case = 1
print(F'''a^(-1) is {ainv}''' )
# u, v
__snake_case = Matrix(3 , 1 , 0 )
__snake_case , __snake_case , __snake_case = 1, 2, -3
__snake_case = Matrix(3 , 1 , 0 )
__snake_case , __snake_case , __snake_case = 4, -2, 5
print(F'''u is {u}''' )
print(F'''v is {v}''' )
print(F'''uv^T is {u * v.transpose()}''' )
# Sherman Morrison
print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(_UpperCAmelCase , _UpperCAmelCase )}''' )
def __UpperCAmelCase ( ) -> None:
import doctest
doctest.testmod()
testa()
| 69 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_imagegpt import ImageGPTImageProcessor
snake_case_ : List[str] = logging.get_logger(__name__)
class lowercase__ ( snake_case_ ):
'''simple docstring'''
def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ):
'''simple docstring'''
warnings.warn(
'''The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ImageGPTImageProcessor instead.''' , lowerCamelCase__ , )
super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
| 212 | 0 |
def A ( snake_case__ : Optional[Any] ) -> int:
'''simple docstring'''
__snake_case = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def A ( snake_case__ : List[Any] = 100 ) -> int:
'''simple docstring'''
__snake_case = 1
__snake_case = 2
for i in range(2 , max_n + 1 ):
__snake_case = pre_numerator
__snake_case = 2 * i // 3 if i % 3 == 0 else 1
__snake_case = cur_numerator
__snake_case = e_cont * pre_numerator + temp
return sum_digits(__snake_case )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 712 |
def A ( snake_case__ : int ) -> bool:
'''simple docstring'''
if p < 2:
raise ValueError('p should not be less than 2!' )
elif p == 2:
return True
__snake_case = 4
__snake_case = (1 << p) - 1
for _ in range(p - 2 ):
__snake_case = ((s * s) - 2) % m
return s == 0
if __name__ == "__main__":
print(lucas_lehmer_test(7))
print(lucas_lehmer_test(11))
| 676 | 0 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
A_ : Union[str, Any] ={'''LayoutLMv2Config''', '''LayoutLMv3Config'''}
@is_pipeline_test
class __UpperCAmelCase ( unittest.TestCase ):
__A : Tuple = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__A : Any = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
__A : Dict = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
__A : str = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
lowerCAmelCase_ = ZeroShotClassificationPipeline(
model=_lowerCamelCase , tokenizer=_lowerCamelCase , candidate_labels=['''polics''', '''health'''] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ):
lowerCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' )
self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} )
# No kwarg
lowerCAmelCase_ = classifier('''Who are you voting for in 2020?''' , ['''politics'''] )
self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} )
lowerCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] )
self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} )
lowerCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' )
self.assertEqual(
_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 )
lowerCAmelCase_ = classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] )
self.assertEqual(
_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 )
lowerCAmelCase_ = classifier(
'''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' )
self.assertEqual(_lowerCamelCase , {'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase )]} )
# https://github.com/huggingface/transformers/issues/13846
lowerCAmelCase_ = classifier(['''I am happy'''] , ['''positive''', '''negative'''] )
self.assertEqual(
_lowerCamelCase , [
{'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]}
for i in range(1 )
] , )
lowerCAmelCase_ = classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] )
self.assertEqual(
_lowerCamelCase , [
{'''sequence''': ANY(_lowerCamelCase ), '''labels''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )], '''scores''': [ANY(_lowerCamelCase ), ANY(_lowerCamelCase )]}
for i in range(2 )
] , )
with self.assertRaises(_lowerCamelCase ):
classifier('''''' , candidate_labels='''politics''' )
with self.assertRaises(_lowerCamelCase ):
classifier(_lowerCamelCase , candidate_labels='''politics''' )
with self.assertRaises(_lowerCamelCase ):
classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' )
with self.assertRaises(_lowerCamelCase ):
classifier('''Who are you voting for in 2020?''' , candidate_labels=_lowerCamelCase )
with self.assertRaises(_lowerCamelCase ):
classifier(
'''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , )
with self.assertRaises(_lowerCamelCase ):
classifier(
'''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=_lowerCamelCase , )
self.run_entailment_id(_lowerCamelCase )
def UpperCAmelCase_ ( self , _lowerCamelCase ):
lowerCAmelCase_ = zero_shot_classifier.model.config
lowerCAmelCase_ = config.labelaid
lowerCAmelCase_ = zero_shot_classifier.entailment_id
lowerCAmelCase_ = {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
lowerCAmelCase_ = {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
lowerCAmelCase_ = {'''ENTAIL''': 0, '''NON-ENTAIL''': 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
lowerCAmelCase_ = {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
lowerCAmelCase_ = original_labelaid
self.assertEqual(_lowerCamelCase , zero_shot_classifier.entailment_id )
@require_torch
def UpperCAmelCase_ ( self ):
lowerCAmelCase_ = pipeline(
'''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
'''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] )
@require_torch
def UpperCAmelCase_ ( self ):
lowerCAmelCase_ = pipeline(
'''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , )
lowerCAmelCase_ = zero_shot_classifier(
'''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] )
self.assertEqual(
nested_simplify(_lowerCamelCase ) , {
'''sequence''': '''Who are you voting for in 2020?''',
'''labels''': ['''science''', '''public health''', '''politics'''],
'''scores''': [0.3_33, 0.3_33, 0.3_33],
} , )
@require_tf
def UpperCAmelCase_ ( self ):
lowerCAmelCase_ = pipeline(
'''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , )
lowerCAmelCase_ = zero_shot_classifier(
'''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] )
self.assertEqual(
nested_simplify(_lowerCamelCase ) , {
'''sequence''': '''Who are you voting for in 2020?''',
'''labels''': ['''science''', '''public health''', '''politics'''],
'''scores''': [0.3_33, 0.3_33, 0.3_33],
} , )
@slow
@require_torch
def UpperCAmelCase_ ( self ):
lowerCAmelCase_ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' )
lowerCAmelCase_ = zero_shot_classifier(
'''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] )
self.assertEqual(
nested_simplify(_lowerCamelCase ) , {
'''sequence''': '''Who are you voting for in 2020?''',
'''labels''': ['''politics''', '''public health''', '''science'''],
'''scores''': [0.9_76, 0.0_15, 0.0_09],
} , )
lowerCAmelCase_ = zero_shot_classifier(
'''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'''
''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'''
''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'''
''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'''
''' machine translation tasks show these models to be superior in quality while being more parallelizable'''
''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'''
''' English-to-German translation task, improving over the existing best results, including ensembles by'''
''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'''
''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'''
''' fraction of the training costs of the best models from the literature. We show that the Transformer'''
''' generalizes well to other tasks by applying it successfully to English constituency parsing both with'''
''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_lowerCamelCase , )
self.assertEqual(
nested_simplify(_lowerCamelCase ) , {
'''sequence''': (
'''The dominant sequence transduction models are based on complex recurrent or convolutional neural'''
''' networks in an encoder-decoder configuration. The best performing models also connect the'''
''' encoder and decoder through an attention mechanism. We propose a new simple network'''
''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'''
''' and convolutions entirely. Experiments on two machine translation tasks show these models to be'''
''' superior in quality while being more parallelizable and requiring significantly less time to'''
''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'''
''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'''
''' English-to-French translation task, our model establishes a new single-model state-of-the-art'''
''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'''
''' costs of the best models from the literature. We show that the Transformer generalizes well to'''
''' other tasks by applying it successfully to English constituency parsing both with large and'''
''' limited training data.'''
),
'''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''],
'''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18],
} , )
@slow
@require_tf
def UpperCAmelCase_ ( self ):
lowerCAmelCase_ = pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' )
lowerCAmelCase_ = zero_shot_classifier(
'''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] )
self.assertEqual(
nested_simplify(_lowerCamelCase ) , {
'''sequence''': '''Who are you voting for in 2020?''',
'''labels''': ['''politics''', '''public health''', '''science'''],
'''scores''': [0.9_76, 0.0_15, 0.0_09],
} , )
lowerCAmelCase_ = zero_shot_classifier(
'''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'''
''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder'''
''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based'''
''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two'''
''' machine translation tasks show these models to be superior in quality while being more parallelizable'''
''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014'''
''' English-to-German translation task, improving over the existing best results, including ensembles by'''
''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new'''
''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small'''
''' fraction of the training costs of the best models from the literature. We show that the Transformer'''
''' generalizes well to other tasks by applying it successfully to English constituency parsing both with'''
''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=_lowerCamelCase , )
self.assertEqual(
nested_simplify(_lowerCamelCase ) , {
'''sequence''': (
'''The dominant sequence transduction models are based on complex recurrent or convolutional neural'''
''' networks in an encoder-decoder configuration. The best performing models also connect the'''
''' encoder and decoder through an attention mechanism. We propose a new simple network'''
''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence'''
''' and convolutions entirely. Experiments on two machine translation tasks show these models to be'''
''' superior in quality while being more parallelizable and requiring significantly less time to'''
''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,'''
''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014'''
''' English-to-French translation task, our model establishes a new single-model state-of-the-art'''
''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training'''
''' costs of the best models from the literature. We show that the Transformer generalizes well to'''
''' other tasks by applying it successfully to English constituency parsing both with large and'''
''' limited training data.'''
),
'''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''],
'''scores''': [0.8_17, 0.7_13, 0.0_18, 0.0_18],
} , )
| 274 | '''simple docstring'''
import colorsys
from PIL import Image # type: ignore
def snake_case_ ( __snake_case : float , __snake_case : float , __snake_case : int) -> float:
lowerCAmelCase_ = x
lowerCAmelCase_ = y
for step in range(__snake_case): # noqa: B007
lowerCAmelCase_ = a * a - b * b + x
lowerCAmelCase_ = 2 * a * b + y
lowerCAmelCase_ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def snake_case_ ( __snake_case : float) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def snake_case_ ( __snake_case : float) -> tuple:
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255) for i in colorsys.hsv_to_rgb(__snake_case , 1 , 1))
def snake_case_ ( __snake_case : int = 800 , __snake_case : int = 600 , __snake_case : float = -0.6 , __snake_case : float = 0 , __snake_case : float = 3.2 , __snake_case : int = 50 , __snake_case : bool = True , ) -> Image.Image:
lowerCAmelCase_ = Image.new('''RGB''' , (image_width, image_height))
lowerCAmelCase_ = img.load()
# loop through the image-coordinates
for image_x in range(__snake_case):
for image_y in range(__snake_case):
# determine the figure-coordinates based on the image-coordinates
lowerCAmelCase_ = figure_width / image_width * image_height
lowerCAmelCase_ = figure_center_x + (image_x / image_width - 0.5) * figure_width
lowerCAmelCase_ = figure_center_y + (image_y / image_height - 0.5) * figure_height
lowerCAmelCase_ = get_distance(__snake_case , __snake_case , __snake_case)
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
lowerCAmelCase_ = get_color_coded_rgb(__snake_case)
else:
lowerCAmelCase_ = get_black_and_white_rgb(__snake_case)
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
A_ : List[str] =get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 274 | 1 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
a = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
['''memory_attention''', '''encoder_attn'''],
['''attention''', '''attn'''],
['''/''', '''.'''],
['''.LayerNorm.gamma''', '''_layer_norm.weight'''],
['''.LayerNorm.beta''', '''_layer_norm.bias'''],
['''r.layer_''', '''r.layers.'''],
['''output_proj''', '''out_proj'''],
['''ffn.dense_1.''', '''fc2.'''],
['''ffn.dense.''', '''fc1.'''],
['''ffn_layer_norm''', '''final_layer_norm'''],
['''kernel''', '''weight'''],
['''encoder_layer_norm.''', '''encoder.layer_norm.'''],
['''decoder_layer_norm.''', '''decoder.layer_norm.'''],
['''embeddings.weights''', '''shared.weight'''],
]
def _snake_case ( _snake_case : Tuple ) -> int:
'''simple docstring'''
for pegasus_name, hf_name in PATTERNS:
_A = k.replace(__A , __A )
return k
def _snake_case ( _snake_case : dict , _snake_case : dict ) -> PegasusForConditionalGeneration:
'''simple docstring'''
_A = DEFAULTS.copy()
cfg_kwargs.update(__A )
_A = PegasusConfig(**__A )
_A = PegasusForConditionalGeneration(__A )
_A = torch_model.model.state_dict()
_A = {}
for k, v in tf_weights.items():
_A = rename_state_dict_key(__A )
if new_k not in sd:
raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' )
if "dense" in k or "proj" in new_k:
_A = v.T
_A = torch.tensor(__A , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F'''{new_k}, {k}, {v.shape}, {sd[new_k].shape}'''
# make sure embedding.padding_idx is respected
_A = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] )
_A = mapping['''shared.weight''']
_A = mapping['''shared.weight''']
_A = {k: torch.zeros_like(__A ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping}
mapping.update(**__A )
_A = torch_model.model.load_state_dict(__A , strict=__A )
_A = [
k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight''']
]
assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], F'''no matches found for the following tf keys {extra}'''
return torch_model
def _snake_case ( _snake_case : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict:
'''simple docstring'''
_A = tf.train.list_variables(__A )
_A = {}
_A = ['''Adafactor''', '''global_step''']
for name, shape in tqdm(__A , desc='converting tf checkpoint to dict' ):
_A = any(pat in name for pat in ignore_name )
if skip_key:
continue
_A = tf.train.load_variable(__A , __A )
_A = array
return tf_weights
def _snake_case ( _snake_case : str , _snake_case : str ) -> Dict:
'''simple docstring'''
_A = Path(__A ).parent.name
_A = task_specific_params[F'''summarization_{dataset}''']['''max_position_embeddings''']
_A = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=__A )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(__A )
# convert model
_A = get_tf_weights_as_numpy(__A )
_A = task_specific_params[F'''summarization_{dataset}''']
if dataset == "large":
_A = task_specific_params
_A = convert_pegasus(__A , __A )
torch_model.save_pretrained(__A )
_A = torch_model.state_dict()
sd.pop('model.decoder.embed_positions.weight' )
sd.pop('model.encoder.embed_positions.weight' )
torch.save(__A , Path(__A ) / 'pytorch_model.bin' )
if __name__ == "__main__":
a = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
a = parser.parse_args()
if args.save_dir is None:
a = Path(args.tf_ckpt_path).parent.name
a = os.path.join('''pegasus''', dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 708 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''tanreinama/GPTSAN-2.8B-spout_is_uniform''': (
'''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json'''
),
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''gptsan-japanese'''
UpperCAmelCase : List[Any] = [
'''past_key_values''',
]
UpperCAmelCase : List[Any] = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self : Any , _UpperCAmelCase : List[Any]=36_000 , _UpperCAmelCase : str=1_280 , _UpperCAmelCase : Tuple=1_024 , _UpperCAmelCase : Union[str, Any]=8_192 , _UpperCAmelCase : Any=4_096 , _UpperCAmelCase : Optional[int]=128 , _UpperCAmelCase : int=10 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Optional[Any]=128 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[Any]=1E-5 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[str]="float32" , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : str=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Optional[Any]=0.002 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=35_998 , _UpperCAmelCase : Any=35_995 , _UpperCAmelCase : Any=35_999 , **_UpperCAmelCase : Any , ):
_A = vocab_size
_A = max_position_embeddings
_A = d_model
_A = d_ff
_A = d_ext
_A = d_spout
_A = num_switch_layers
_A = num_ext_layers
_A = num_switch_layers + num_ext_layers
_A = num_heads
_A = num_experts
_A = expert_capacity
_A = dropout_rate
_A = layer_norm_epsilon
_A = router_bias
_A = router_jitter_noise
_A = router_dtype
_A = router_ignore_padding_tokens
_A = output_hidden_states
_A = output_attentions
_A = initializer_factor
_A = output_router_logits
_A = use_cache
super().__init__(
separator_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
| 505 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowercase__ : Any = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Union[str, Any] = ['''MBartTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Dict = ['''MBartTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : List[str] = [
'''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MBartForCausalLM''',
'''MBartForConditionalGeneration''',
'''MBartForQuestionAnswering''',
'''MBartForSequenceClassification''',
'''MBartModel''',
'''MBartPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Dict = [
'''TFMBartForConditionalGeneration''',
'''TFMBartModel''',
'''TFMBartPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : str = [
'''FlaxMBartForConditionalGeneration''',
'''FlaxMBartForQuestionAnswering''',
'''FlaxMBartForSequenceClassification''',
'''FlaxMBartModel''',
'''FlaxMBartPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart import MBartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart_fast import MBartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mbart import (
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
MBartForCausalLM,
MBartForConditionalGeneration,
MBartForQuestionAnswering,
MBartForSequenceClassification,
MBartModel,
MBartPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
FlaxMBartPreTrainedModel,
)
else:
import sys
lowercase__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 8 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class _a :
'''simple docstring'''
def __init__( self, A = "cpu", A = "openai/clip-vit-large-patch14" ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = device
SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizerFast.from_pretrained(A )
SCREAMING_SNAKE_CASE : int = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
SCREAMING_SNAKE_CASE : str = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
SCREAMING_SNAKE_CASE : Dict = torchvision.transforms.Normalize(self.image_mean, self.image_std )
SCREAMING_SNAKE_CASE : List[str] = torchvision.transforms.Resize(224 )
SCREAMING_SNAKE_CASE : List[Any] = torchvision.transforms.CenterCrop(224 )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = self.resize(A )
SCREAMING_SNAKE_CASE : Any = self.center_crop(A )
SCREAMING_SNAKE_CASE : str = self.normalize(A )
return images
def __call__( self, A=None, A=None, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.tokenizer(text=A, **A )
SCREAMING_SNAKE_CASE : Tuple = self.preprocess_img(A )
SCREAMING_SNAKE_CASE : List[str] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class _a ( nn.Module ):
'''simple docstring'''
def __init__( self, A=10, A=0.01, A=None, A=None, A=None, A=None, A=None, A=None, A=False, A=True, A="image", A=True, A=False, A=False, A=False, ):
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : List[Any] = device if device else get_device()
if vqgan:
SCREAMING_SNAKE_CASE : Optional[Any] = vqgan
else:
SCREAMING_SNAKE_CASE : Tuple = load_vqgan(self.device, conf_path=A, ckpt_path=A )
self.vqgan.eval()
if clip:
SCREAMING_SNAKE_CASE : List[str] = clip
else:
SCREAMING_SNAKE_CASE : Any = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' )
self.clip.to(self.device )
SCREAMING_SNAKE_CASE : Optional[int] = ProcessorGradientFlow(device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = iterations
SCREAMING_SNAKE_CASE : Tuple = lr
SCREAMING_SNAKE_CASE : Tuple = log
SCREAMING_SNAKE_CASE : str = make_grid
SCREAMING_SNAKE_CASE : Dict = return_val
SCREAMING_SNAKE_CASE : Union[str, Any] = quantize
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decoder.z_shape
def UpperCamelCase_ ( self, A=None, A=None, A=5, A=True ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = []
if output_path is None:
SCREAMING_SNAKE_CASE : int = './animation.gif'
if input_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = self.save_path
SCREAMING_SNAKE_CASE : Optional[Any] = sorted(glob(input_path + '/*' ) )
if not len(A ):
raise ValueError(
'No images found in save path, aborting (did you pass save_intermediate=True to the generate'
' function?)' )
if len(A ) == 1:
print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' )
SCREAMING_SNAKE_CASE : Optional[Any] = total_duration / len(A )
SCREAMING_SNAKE_CASE : int = [frame_duration] * len(A )
if extend_frames:
SCREAMING_SNAKE_CASE : List[str] = 1.5
SCREAMING_SNAKE_CASE : int = 3
for file_name in paths:
if file_name.endswith('.png' ):
images.append(imageio.imread(A ) )
imageio.mimsave(A, A, duration=A )
print(F"gif saved to {output_path}" )
def UpperCamelCase_ ( self, A=None, A=None ):
'''simple docstring'''
if not (path or img):
raise ValueError('Input either path or tensor' )
if img is not None:
raise NotImplementedError
SCREAMING_SNAKE_CASE : str = preprocess(Image.open(A ), target_image_size=256 ).to(self.device )
SCREAMING_SNAKE_CASE : Any = preprocess_vqgan(A )
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : Tuple = self.vqgan.encode(A )
return z
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : int = self.latent.detach().requires_grad_()
SCREAMING_SNAKE_CASE : Union[str, Any] = base_latent + transform_vector
if self.quantize:
SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.quantize(A )
else:
SCREAMING_SNAKE_CASE : Optional[Any] = trans_latent
return self.vqgan.decode(A )
def UpperCamelCase_ ( self, A, A, A=None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.clip_preprocessor(text=A, images=A, return_tensors='pt', padding=A )
SCREAMING_SNAKE_CASE : str = self.clip(**A )
SCREAMING_SNAKE_CASE : Any = clip_outputs.logits_per_image
if weights is not None:
SCREAMING_SNAKE_CASE : List[Any] = similarity_logits * weights
return similarity_logits.sum()
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_clip_similarity(pos_prompts['prompts'], A, weights=(1 / pos_prompts['weights']) )
if neg_prompts:
SCREAMING_SNAKE_CASE : List[Any] = self._get_clip_similarity(neg_prompts['prompts'], A, weights=neg_prompts['weights'] )
else:
SCREAMING_SNAKE_CASE : str = torch.tensor([1], device=self.device )
SCREAMING_SNAKE_CASE : List[Any] = -torch.log(A ) + torch.log(A )
return loss
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = torch.randn_like(self.latent, requires_grad=A, device=self.device )
SCREAMING_SNAKE_CASE : Optional[int] = torch.optim.Adam([vector], lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_vector(A )
SCREAMING_SNAKE_CASE : Dict = loop_post_process(A )
SCREAMING_SNAKE_CASE : List[str] = self._get_CLIP_loss(A, A, A )
print('CLIP loss', A )
if self.log:
wandb.log({'CLIP Loss': clip_loss} )
clip_loss.backward(retain_graph=A )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def UpperCamelCase_ ( self, A, A, A ):
'''simple docstring'''
wandb.init(reinit=A, project='face-editor' )
wandb.config.update({'Positive Prompts': positive_prompts} )
wandb.config.update({'Negative Prompts': negative_prompts} )
wandb.config.update({'lr': self.lr, 'iterations': self.iterations} )
if image_path:
SCREAMING_SNAKE_CASE : Tuple = Image.open(A )
SCREAMING_SNAKE_CASE : int = image.resize((256, 256) )
wandb.log('Original Image', wandb.Image(A ) )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
if not prompts:
return []
SCREAMING_SNAKE_CASE : List[str] = []
SCREAMING_SNAKE_CASE : Dict = []
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )]
for prompt in prompts:
if isinstance(A, (tuple, list) ):
SCREAMING_SNAKE_CASE : List[str] = prompt[0]
SCREAMING_SNAKE_CASE : Any = float(prompt[1] )
elif ":" in prompt:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = prompt.split(':' )
SCREAMING_SNAKE_CASE : Any = float(A )
else:
SCREAMING_SNAKE_CASE : Dict = prompt
SCREAMING_SNAKE_CASE : List[Any] = 1.0
processed_prompts.append(A )
weights.append(A )
return {
"prompts": processed_prompts,
"weights": torch.tensor(A, device=self.device ),
}
def UpperCamelCase_ ( self, A, A=None, A=None, A=True, A=False, A=True, A=True, A=None, ):
'''simple docstring'''
if image_path:
SCREAMING_SNAKE_CASE : int = self._get_latent(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.randn(self.latent_dim, device=self.device )
if self.log:
self._init_logging(A, A, A )
assert pos_prompts, "You must provide at least one positive prompt."
SCREAMING_SNAKE_CASE : Dict = self.process_prompts(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = self.process_prompts(A )
if save_final and save_path is None:
SCREAMING_SNAKE_CASE : Optional[int] = os.path.join('./outputs/', '_'.join(pos_prompts['prompts'] ) )
if not os.path.exists(A ):
os.makedirs(A )
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path + '_' + get_timestamp()
os.makedirs(A )
SCREAMING_SNAKE_CASE : Union[str, Any] = save_path
SCREAMING_SNAKE_CASE : List[Any] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('Original Image' )
show_pil(custom_to_pil(A ) )
SCREAMING_SNAKE_CASE : int = loop_post_process(A )
for iter, transformed_img in enumerate(self._optimize_CLIP(A, A, A ) ):
if show_intermediate:
show_pil(A )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({'Image': wandb.Image(A )} )
if show_final:
show_pil(A )
if save_final:
transformed_img.save(os.path.join(self.save_path, F"iter_{iter:03d}_final.png" ) )
| 28 | 0 |
"""simple docstring"""
from collections.abc import Iterable
from typing import Any
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self , lowerCAmelCase__ = None ):
'''simple docstring'''
_UpperCamelCase : Dict = value
_UpperCamelCase : Node | None = None # Added in order to delete a node easier
_UpperCamelCase : Node | None = None
_UpperCamelCase : Node | None = None
def __repr__(self ):
'''simple docstring'''
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"{self.value}": (self.left, self.right)} , indent=1 )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self , lowerCAmelCase__ = None ):
'''simple docstring'''
_UpperCamelCase : Optional[int] = root
def __str__(self ):
'''simple docstring'''
return str(self.root )
def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
if new_children is not None: # reset its kids
_UpperCamelCase : List[str] = node.parent
if node.parent is not None: # reset its parent
if self.is_right(lowerCAmelCase__ ): # If it is the right children
_UpperCamelCase : Union[str, Any] = new_children
else:
_UpperCamelCase : List[Any] = new_children
else:
_UpperCamelCase : int = new_children
def lowercase_ (self , lowerCAmelCase__ ):
'''simple docstring'''
if node.parent and node.parent.right:
return node == node.parent.right
return False
def lowercase_ (self ):
'''simple docstring'''
return self.root is None
def lowercase_ (self , lowerCAmelCase__ ):
'''simple docstring'''
_UpperCamelCase : int = Node(lowerCAmelCase__ ) # create a new Node
if self.empty(): # if Tree is empty
_UpperCamelCase : Optional[Any] = new_node # set its root
else: # Tree is not empty
_UpperCamelCase : Any = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
_UpperCamelCase : Any = new_node # We insert the new node in a leaf
break
else:
_UpperCamelCase : Dict = parent_node.left
else:
if parent_node.right is None:
_UpperCamelCase : Tuple = new_node
break
else:
_UpperCamelCase : Optional[Any] = parent_node.right
_UpperCamelCase : Optional[Any] = parent_node
def lowercase_ (self , *lowerCAmelCase__ ):
'''simple docstring'''
for value in values:
self.__insert(lowerCAmelCase__ )
def lowercase_ (self , lowerCAmelCase__ ):
'''simple docstring'''
if self.empty():
raise IndexError("Warning: Tree is empty! please use another." )
else:
_UpperCamelCase : Optional[int] = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
_UpperCamelCase : Union[str, Any] = node.left if value < node.value else node.right
return node
def lowercase_ (self , lowerCAmelCase__ = None ):
'''simple docstring'''
if node is None:
if self.root is None:
return None
_UpperCamelCase : str = self.root
if not self.empty():
while node.right is not None:
_UpperCamelCase : Dict = node.right
return node
def lowercase_ (self , lowerCAmelCase__ = None ):
'''simple docstring'''
if node is None:
_UpperCamelCase : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
_UpperCamelCase : List[Any] = self.root
while node.left is not None:
_UpperCamelCase : Union[str, Any] = node.left
return node
def lowercase_ (self , lowerCAmelCase__ ):
'''simple docstring'''
_UpperCamelCase : Optional[int] = self.search(lowerCAmelCase__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(lowerCAmelCase__ , lowerCAmelCase__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(lowerCAmelCase__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(lowerCAmelCase__ , node.left )
else:
_UpperCamelCase : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
_UpperCamelCase : Union[str, Any] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def lowercase_ (self , lowerCAmelCase__ ):
'''simple docstring'''
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def lowercase_ (self , lowerCAmelCase__=None ):
'''simple docstring'''
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
if node:
self.inorder(lowerCAmelCase__ , node.left )
arr.append(node.value )
self.inorder(lowerCAmelCase__ , node.right )
def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
_UpperCamelCase : list[int] = []
self.inorder(lowerCAmelCase__ , lowerCAmelCase__ ) # append all values to list using inorder traversal
return arr[k - 1]
def __lowerCAmelCase ( __lowerCAmelCase : Node | None ) -> list[Node]:
_UpperCamelCase : int = []
if curr_node is not None:
_UpperCamelCase : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def __lowerCAmelCase ( ) -> None:
_UpperCamelCase : Any = (8, 3, 6, 1, 10, 14, 13, 4, 7)
_UpperCamelCase : Optional[int] = BinarySearchTree()
for i in testlist:
t.insert(__lowerCAmelCase )
# Prints all the elements of the list in order traversal
print(__lowerCAmelCase )
if t.search(6 ) is not None:
print("The value 6 exists" )
else:
print("The value 6 doesn't exist" )
if t.search(-1 ) is not None:
print("The value -1 exists" )
else:
print("The value -1 doesn't exist" )
if not t.empty():
print("Max Value: " , t.get_max().value ) # type: ignore
print("Min Value: " , t.get_min().value ) # type: ignore
for i in testlist:
t.remove(__lowerCAmelCase )
print(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 717 |
"""simple docstring"""
import numpy as np
def __lowerCAmelCase ( __lowerCAmelCase : np.ndarray ) -> np.ndarray:
return 1 / (1 + np.exp(-vector ))
def __lowerCAmelCase ( __lowerCAmelCase : np.ndarray ) -> np.ndarray:
return vector * sigmoid(__lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 239 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ):
a__: str = AltDiffusionPipeline
a__: List[str] = TEXT_TO_IMAGE_PARAMS
a__: Any = TEXT_TO_IMAGE_BATCH_PARAMS
a__: int = TEXT_TO_IMAGE_IMAGE_PARAMS
a__: Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS
def UpperCAmelCase__ ( self ):
torch.manual_seed(0 )
lowerCamelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
lowerCamelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , )
torch.manual_seed(0 )
lowerCamelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
lowerCamelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , )
lowerCamelCase_ = CLIPTextModel(UpperCAmelCase )
lowerCamelCase_ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
lowerCamelCase_ = 77
lowerCamelCase_ = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=0 ):
if str(UpperCAmelCase ).startswith('''mps''' ):
lowerCamelCase_ = torch.manual_seed(UpperCAmelCase )
else:
lowerCamelCase_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCamelCase_ = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self ):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def UpperCAmelCase__ ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ = self.get_dummy_components()
torch.manual_seed(0 )
lowerCamelCase_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCamelCase_ = RobertaSeriesModelWithTransformation(UpperCAmelCase )
lowerCamelCase_ = text_encoder
lowerCamelCase_ = AltDiffusionPipeline(**UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase )
lowerCamelCase_ = '''A photo of an astronaut'''
lowerCamelCase_ = alt_pipe(**UpperCAmelCase )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase_ = np.array(
[0.5_7_4_8_1_6_2, 0.6_0_4_4_7_1_4_5, 0.4_8_8_2_1_2_1_7, 0.5_0_1_0_0_6_3_6, 0.5_4_3_1_1_8_5, 0.4_5_7_6_3_6_8_3, 0.4_9_6_5_7_6_9_6, 0.4_8_1_3_2_7_3_3, 0.4_7_5_7_3_0_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator
lowerCamelCase_ = self.get_dummy_components()
lowerCamelCase_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase )
torch.manual_seed(0 )
lowerCamelCase_ = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
lowerCamelCase_ = RobertaSeriesModelWithTransformation(UpperCAmelCase )
lowerCamelCase_ = text_encoder
lowerCamelCase_ = AltDiffusionPipeline(**UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = self.get_dummy_inputs(UpperCAmelCase )
lowerCamelCase_ = alt_pipe(**UpperCAmelCase )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase_ = np.array(
[0.5_1_6_0_5_0_9_3, 0.5_7_0_7_2_4_1, 0.4_7_3_6_5_5_0_7, 0.5_0_5_7_8_8_8_6, 0.5_6_3_3_8_7_7, 0.4_6_4_2_5_0_3, 0.5_1_8_2_0_8_1, 0.4_8_7_6_3_4_8_4, 0.4_9_0_8_4_2_3_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __lowerCamelCase ( unittest.TestCase ):
def UpperCAmelCase__ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self ):
# make sure here that pndm scheduler skips prk
lowerCamelCase_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ = torch.manual_seed(0 )
lowerCamelCase_ = alt_pipe([prompt] , generator=UpperCAmelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase_ = np.array([0.1_0_1_0, 0.0_8_0_0, 0.0_7_9_4, 0.0_8_8_5, 0.0_8_4_3, 0.0_7_6_2, 0.0_7_6_9, 0.0_7_2_9, 0.0_5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def UpperCAmelCase__ ( self ):
lowerCamelCase_ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' )
lowerCamelCase_ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase )
lowerCamelCase_ = alt_pipe.to(UpperCAmelCase )
alt_pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCamelCase_ = '''A painting of a squirrel eating a burger'''
lowerCamelCase_ = torch.manual_seed(0 )
lowerCamelCase_ = alt_pipe([prompt] , generator=UpperCAmelCase , num_inference_steps=2 , output_type='''numpy''' )
lowerCamelCase_ = output.images
lowerCamelCase_ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase_ = np.array([0.4_0_1_9, 0.4_0_5_2, 0.3_8_1_0, 0.4_1_1_9, 0.3_9_1_6, 0.3_9_8_2, 0.4_6_5_1, 0.4_1_9_5, 0.5_3_2_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 29 |
"""simple docstring"""
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class UpperCAmelCase_ (lowerCamelCase_ ):
"""simple docstring"""
def __init__( self : List[Any] , a_ : str = "▁" , a_ : bool = True , a_ : Union[str, AddedToken] = "<unk>" , a_ : Union[str, AddedToken] = "</s>" , a_ : Union[str, AddedToken] = "<pad>" , )-> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = {
"""pad""": {"""id""": 0, """token""": pad_token},
"""eos""": {"""id""": 1, """token""": eos_token},
"""unk""": {"""id""": 2, """token""": unk_token},
}
UpperCAmelCase_ : Dict = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
UpperCAmelCase_ : Optional[int] = token_dict["""token"""]
UpperCAmelCase_ : Tuple = Tokenizer(Unigram() )
UpperCAmelCase_ : Optional[Any] = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(""" {2,}""" ) , """ """ ),
normalizers.Lowercase(),
] )
UpperCAmelCase_ : Any = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=a_ , add_prefix_space=a_ ),
pre_tokenizers.Digits(individual_digits=a_ ),
pre_tokenizers.Punctuation(),
] )
UpperCAmelCase_ : str = decoders.Metaspace(replacement=a_ , add_prefix_space=a_ )
UpperCAmelCase_ : List[Any] = TemplateProcessing(
single=f'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , )
UpperCAmelCase_ : Dict = {
"""model""": """SentencePieceUnigram""",
"""replacement""": replacement,
"""add_prefix_space""": add_prefix_space,
}
super().__init__(a_ , a_ )
def a ( self : int , a_ : Union[str, List[str]] , a_ : int = 80_00 , a_ : bool = True , )-> int:
"""simple docstring"""
UpperCAmelCase_ : int = trainers.UnigramTrainer(
vocab_size=a_ , special_tokens=self.special_tokens_list , show_progress=a_ , )
if isinstance(a_ , a_ ):
UpperCAmelCase_ : str = [files]
self._tokenizer.train(a_ , trainer=a_ )
self.add_unk_id()
def a ( self : List[Any] , a_ : Union[Iterator[str], Iterator[Iterator[str]]] , a_ : int = 80_00 , a_ : bool = True , )-> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = trainers.UnigramTrainer(
vocab_size=a_ , special_tokens=self.special_tokens_list , show_progress=a_ , )
self._tokenizer.train_from_iterator(a_ , trainer=a_ )
self.add_unk_id()
def a ( self : Dict )-> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = json.loads(self._tokenizer.to_str() )
UpperCAmelCase_ : Any = self.special_tokens["""unk"""]["""id"""]
UpperCAmelCase_ : Tuple = Tokenizer.from_str(json.dumps(a_ ) )
| 470 | 0 |
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 8 ) -> str:
_snake_case : List[Any] = ascii_letters + digits + punctuation
return "".join(secrets.choice(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ) )
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[Any] = i // 3
_snake_case : List[Any] = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
_snake_case : Any = (
chars_incl
+ random(SCREAMING_SNAKE_CASE__ , quotient + remainder )
+ random(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
+ random(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
)
_snake_case : Any = list(SCREAMING_SNAKE_CASE__ )
shuffle(SCREAMING_SNAKE_CASE__ )
return "".join(SCREAMING_SNAKE_CASE__ )
# random is a generalised function for letters, characters and numbers
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str:
return "".join(secrets.choice(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ) )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> int:
pass # Put your code here...
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]:
pass # Put your code here...
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[str]:
pass # Put your code here...
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 8 ) -> bool:
if len(SCREAMING_SNAKE_CASE__ ) < min_length:
# Your Password must be at least 8 characters long
return False
_snake_case : List[Any] = any(char in ascii_uppercase for char in password )
_snake_case : List[str] = any(char in ascii_lowercase for char in password )
_snake_case : Tuple = any(char in digits for char in password )
_snake_case : Optional[Any] = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def lowercase ( ) -> Tuple:
_snake_case : Optional[Any] = int(input("""Please indicate the max length of your password: """ ).strip() )
_snake_case : Any = input(
"""Please indicate the characters that must be in your password: """ ).strip()
print("""Password generated:""" , password_generator(SCREAMING_SNAKE_CASE__ ) )
print(
"""Alternative Password generated:""" , alternative_password_generator(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , )
print("""[If you are thinking of using this passsword, You better save it.]""" )
if __name__ == "__main__":
main()
| 198 |
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> Union[str, Any]:
_snake_case : str = [False] * len(SCREAMING_SNAKE_CASE__ )
_snake_case : Dict = [-1] * len(SCREAMING_SNAKE_CASE__ )
def dfs(SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
_snake_case : Optional[Any] = True
_snake_case : Tuple = c
for u in graph[v]:
if not visited[u]:
dfs(SCREAMING_SNAKE_CASE__ , 1 - c )
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
if not visited[i]:
dfs(SCREAMING_SNAKE_CASE__ , 0 )
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
a__ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 198 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowerCAmelCase ( unittest.TestCase ):
def snake_case ( self : Tuple ):
"""simple docstring"""
__lowercase =tempfile.mkdtemp()
# fmt: off
__lowercase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest']
# fmt: on
__lowercase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
__lowercase ={
'do_resize': True,
'size': {'height': 18, 'width': 18},
'do_normalize': True,
'image_mean': [0.5, 0.5, 0.5],
'image_std': [0.5, 0.5, 0.5],
}
__lowercase =os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(__lowercase , __lowercase )
def snake_case ( self : List[str] , **__lowercase : int ):
"""simple docstring"""
return BertTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def snake_case ( self : Union[str, Any] , **__lowercase : Any ):
"""simple docstring"""
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def snake_case ( self : List[Any] ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def snake_case ( self : Dict ):
"""simple docstring"""
__lowercase =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
__lowercase =[Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def snake_case ( self : Optional[int] ):
"""simple docstring"""
__lowercase =self.get_tokenizer()
__lowercase =self.get_image_processor()
__lowercase =VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor.save_pretrained(self.tmpdirname )
__lowercase =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def snake_case ( self : int ):
"""simple docstring"""
__lowercase =VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
__lowercase =self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 )
__lowercase =VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def snake_case ( self : Dict ):
"""simple docstring"""
__lowercase =self.get_image_processor()
__lowercase =self.get_tokenizer()
__lowercase =VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowercase =self.prepare_image_inputs()
__lowercase =image_processor(__lowercase , return_tensors='np' )
__lowercase =processor(images=__lowercase , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def snake_case ( self : Dict ):
"""simple docstring"""
__lowercase =self.get_image_processor()
__lowercase =self.get_tokenizer()
__lowercase =VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowercase ='lower newer'
__lowercase =processor(text=__lowercase )
__lowercase =tokenizer(__lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def snake_case ( self : Any ):
"""simple docstring"""
__lowercase =self.get_image_processor()
__lowercase =self.get_tokenizer()
__lowercase =VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowercase ='lower newer'
__lowercase =self.prepare_image_inputs()
__lowercase =processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with self.assertRaises(__lowercase ):
processor()
def snake_case ( self : Union[str, Any] ):
"""simple docstring"""
__lowercase =self.get_image_processor()
__lowercase =self.get_tokenizer()
__lowercase =VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowercase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowercase =processor.batch_decode(__lowercase )
__lowercase =tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
def snake_case ( self : Dict ):
"""simple docstring"""
__lowercase =self.get_image_processor()
__lowercase =self.get_tokenizer()
__lowercase =VisionTextDualEncoderProcessor(tokenizer=__lowercase , image_processor=__lowercase )
__lowercase ='lower newer'
__lowercase =self.prepare_image_inputs()
__lowercase =processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 119 |
'''simple docstring'''
from __future__ import annotations
def __UpperCamelCase ( lowercase__ : float, lowercase__ : float, lowercase__ : float ):
'''simple docstring'''
if (voltage, current, resistance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if resistance < 0:
raise ValueError('Resistance cannot be negative' )
if voltage == 0:
return {"voltage": float(current * resistance )}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 119 | 1 |
"""simple docstring"""
from manim import *
class __snake_case ( __lowerCAmelCase ):
def lowerCamelCase_ ( self) -> Any:
'''simple docstring'''
a__: str = Rectangle(height=0.5 , width=0.5)
a__: int = Rectangle(height=0.46 , width=0.46).set_stroke(width=0)
a__: Union[str, Any] = [mem.copy() for i in range(6)]
a__: Optional[int] = [mem.copy() for i in range(6)]
a__: List[Any] = VGroup(*lowercase).arrange(lowercase , buff=0)
a__: Dict = VGroup(*lowercase).arrange(lowercase , buff=0)
a__: Optional[int] = VGroup(lowercase , lowercase).arrange(lowercase , buff=0)
a__: Union[str, Any] = Text('CPU' , font_size=24)
a__: Optional[Any] = Group(lowercase , lowercase).arrange(lowercase , buff=0.5 , aligned_edge=lowercase)
cpu.move_to([-2.5, -0.5, 0])
self.add(lowercase)
a__: Any = [mem.copy() for i in range(4)]
a__: Union[str, Any] = VGroup(*lowercase).arrange(lowercase , buff=0)
a__: List[Any] = Text('GPU' , font_size=24)
a__: int = Group(lowercase , lowercase).arrange(lowercase , buff=0.5 , aligned_edge=lowercase)
gpu.move_to([-1, -1, 0])
self.add(lowercase)
a__: Union[str, Any] = [mem.copy() for i in range(6)]
a__: Optional[Any] = VGroup(*lowercase).arrange(lowercase , buff=0)
a__: int = Text('Model' , font_size=24)
a__: int = Group(lowercase , lowercase).arrange(lowercase , buff=0.5 , aligned_edge=lowercase)
model.move_to([3, -1.0, 0])
self.add(lowercase)
a__: Dict = []
for i, rect in enumerate(lowercase):
rect.set_stroke(lowercase)
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
a__: Optional[Any] = Rectangle(height=0.46 / 4 , width=0.46 / 3).set_stroke(width=0.0).set_fill(lowercase , opacity=0.7)
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT) , buff=0.02 , direction=lowercase)
cpu_target.set_x(cpu_target.get_x() + 0.1)
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=lowercase , buff=0.0)
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase , buff=0.0)
self.add(lowercase)
cpu_targs.append(lowercase)
a__: Dict = [mem.copy() for i in range(6)]
a__: Optional[Any] = VGroup(*lowercase).arrange(lowercase , buff=0)
a__: Optional[int] = Text('Loaded Checkpoint' , font_size=24)
a__: Union[str, Any] = Group(lowercase , lowercase).arrange(lowercase , aligned_edge=lowercase , buff=0.4)
checkpoint.move_to([3, 0.5, 0])
a__: str = Square(side_length=2.2)
key.move_to([-5, 2, 0])
a__: Union[str, Any] = MarkupText(
f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , )
key_text.move_to([-5, 2.4, 0])
self.add(lowercase , lowercase)
a__: Optional[Any] = MarkupText(
f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , )
blue_text.next_to(lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left())
a__: Optional[Any] = MarkupText(
f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , )
step_a.move_to([2, 2, 0])
self.play(Write(lowercase) , Write(lowercase))
self.play(Write(lowercase , run_time=1) , Create(lowercase , run_time=1))
a__: Optional[Any] = []
a__: str = []
for i, rect in enumerate(lowercase):
a__: Any = fill.copy().set_fill(lowercase , opacity=0.7)
target.move_to(lowercase)
first_animations.append(GrowFromCenter(lowercase , run_time=1))
a__: str = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1])
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5])
second_animations.append(MoveToTarget(lowercase , run_time=1.5))
self.play(*lowercase)
self.play(*lowercase)
self.wait()
| 217 | """simple docstring"""
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class __snake_case ( __lowerCAmelCase , unittest.TestCase ):
a__ = BarthezTokenizer
a__ = BarthezTokenizerFast
a__ = True
a__ = True
def lowerCamelCase_ ( self) -> List[str]:
'''simple docstring'''
super().setUp()
a__: List[Any] = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez')
tokenizer.save_pretrained(self.tmpdirname)
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowercase)
a__: List[str] = tokenizer
def lowerCamelCase_ ( self) -> Optional[int]:
'''simple docstring'''
a__: str = '<pad>'
a__: Union[str, Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase) , lowercase)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase) , lowercase)
def lowerCamelCase_ ( self) -> List[Any]:
'''simple docstring'''
a__: str = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , '<s>')
self.assertEqual(vocab_keys[1] , '<pad>')
self.assertEqual(vocab_keys[-1] , '<mask>')
self.assertEqual(len(lowercase) , 10_11_22)
def lowerCamelCase_ ( self) -> Any:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 10_11_22)
@require_torch
def lowerCamelCase_ ( self) -> Optional[int]:
'''simple docstring'''
a__: Optional[int] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
a__: int = [0, 57, 30_18, 7_03_07, 91, 2]
a__: Optional[int] = self.tokenizer(
lowercase , max_length=len(lowercase) , padding=lowercase , truncation=lowercase , return_tensors='pt')
self.assertIsInstance(lowercase , lowercase)
self.assertEqual((2, 6) , batch.input_ids.shape)
self.assertEqual((2, 6) , batch.attention_mask.shape)
a__: Optional[Any] = batch.input_ids.tolist()[0]
self.assertListEqual(lowercase , lowercase)
def lowerCamelCase_ ( self) -> List[str]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
a__: int = self.get_tokenizer()
a__: Union[str, Any] = self.get_rust_tokenizer()
a__: int = 'I was born in 92000, and this is falsé.'
a__: int = tokenizer.tokenize(lowercase)
a__: str = rust_tokenizer.tokenize(lowercase)
self.assertListEqual(lowercase , lowercase)
a__: int = tokenizer.encode(lowercase , add_special_tokens=lowercase)
a__: Dict = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase)
self.assertListEqual(lowercase , lowercase)
a__: Union[str, Any] = self.get_rust_tokenizer()
a__: Optional[Any] = tokenizer.encode(lowercase)
a__: int = rust_tokenizer.encode(lowercase)
self.assertListEqual(lowercase , lowercase)
@slow
def lowerCamelCase_ ( self) -> Optional[int]:
'''simple docstring'''
a__: Tuple = {'input_ids': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
a__: int = [
'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '
'utilisé principalement dans le domaine du traitement automatique des langues (TAL).',
'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '
'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '
'telles que la traduction et la synthèse de texte.',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=lowercase , )
| 217 | 1 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class __SCREAMING_SNAKE_CASE (__A ):
"""simple docstring"""
_a : List[Any] = '''MCTCTFeatureExtractor'''
_a : List[Any] = '''AutoTokenizer'''
def __init__( self , UpperCamelCase__ , UpperCamelCase__ ):
"""simple docstring"""
super().__init__(UpperCamelCase__ , UpperCamelCase__ )
a_ = self.feature_extractor
a_ = False
def __call__( self , *UpperCamelCase__ , **UpperCamelCase__ ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ )
if "raw_speech" in kwargs:
warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' )
a_ = kwargs.pop('raw_speech' )
else:
a_ = kwargs.pop('audio' , UpperCamelCase__ )
a_ = kwargs.pop('sampling_rate' , UpperCamelCase__ )
a_ = kwargs.pop('text' , UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
a_ = args[0]
a_ = args[1:]
if audio is None and text is None:
raise ValueError('You need to specify either an `audio` or `text` input to process.' )
if audio is not None:
a_ = self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ )
if text is not None:
a_ = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
a_ = encodings['input_ids']
return inputs
def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ):
"""simple docstring"""
return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ )
def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ):
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor.pad(*UpperCamelCase__ , **UpperCamelCase__ )
a_ = kwargs.pop('input_features' , UpperCamelCase__ )
a_ = kwargs.pop('labels' , UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
a_ = args[0]
a_ = args[1:]
if input_features is not None:
a_ = self.feature_extractor.pad(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ )
if labels is not None:
a_ = self.tokenizer.pad(UpperCamelCase__ , **UpperCamelCase__ )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
a_ = labels['input_ids']
return input_features
def _a ( self , *UpperCamelCase__ , **UpperCamelCase__ ):
"""simple docstring"""
return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ )
@contextmanager
def _a ( self ):
"""simple docstring"""
warnings.warn(
'`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '
'labels by using the argument `text` of the regular `__call__` method (either in the same call as '
'your audio inputs, or in a separate call.' )
a_ = True
a_ = self.tokenizer
yield
a_ = self.feature_extractor
a_ = False
| 536 |
'''simple docstring'''
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
__lowerCAmelCase = logging.getLogger(__name__)
def __UpperCamelCase ( lowercase_ : str ):
"""simple docstring"""
a_ = git.Repo(search_parent_directories=lowercase_ )
a_ = {
'repo_id': str(lowercase_ ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
}
with open(os.path.join(lowercase_ , 'git_log.json' ) , 'w' ) as f:
json.dump(lowercase_ , lowercase_ , indent=4 )
def __UpperCamelCase ( lowercase_ : List[Any] ):
"""simple docstring"""
if params.n_gpu <= 0:
a_ = 0
a_ = -1
a_ = True
a_ = False
return
assert torch.cuda.is_available()
logger.info('Initializing GPUs' )
if params.n_gpu > 1:
assert params.local_rank != -1
a_ = int(os.environ['WORLD_SIZE'] )
a_ = int(os.environ['N_GPU_NODE'] )
a_ = int(os.environ['RANK'] )
# number of nodes / node ID
a_ = params.world_size // params.n_gpu_per_node
a_ = params.global_rank // params.n_gpu_per_node
a_ = True
assert params.n_nodes == int(os.environ['N_NODES'] )
assert params.node_id == int(os.environ['NODE_RANK'] )
# local job (single GPU)
else:
assert params.local_rank == -1
a_ = 1
a_ = 0
a_ = 0
a_ = 0
a_ = 1
a_ = 1
a_ = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
a_ = params.node_id == 0 and params.local_rank == 0
a_ = params.n_nodes > 1
# summary
a_ = F'--- Global rank: {params.global_rank} - '
logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes )
logger.info(PREFIX + 'Node ID : %i' % params.node_id )
logger.info(PREFIX + 'Local rank : %i' % params.local_rank )
logger.info(PREFIX + 'World size : %i' % params.world_size )
logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node )
logger.info(PREFIX + 'Master : %s' % str(params.is_master ) )
logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node ) )
logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu ) )
logger.info(PREFIX + 'Hostname : %s' % socket.gethostname() )
# set GPU device
torch.cuda.set_device(params.local_rank )
# initialize multi-GPU
if params.multi_gpu:
logger.info('Initializing PyTorch distributed' )
torch.distributed.init_process_group(
init_method='env://' , backend='nccl' , )
def __UpperCamelCase ( lowercase_ : Union[str, Any] ):
"""simple docstring"""
np.random.seed(args.seed )
torch.manual_seed(args.seed )
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed )
| 536 | 1 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : Tuple , a : Union[str, Any] , a : Dict=13 , a : str=32 , a : List[Any]=2 , a : Optional[Any]=3 , a : Optional[Any]=16 , a : Optional[int]=[32, 64, 128] , a : Union[str, Any]=[1, 2, 1] , a : List[str]=[2, 2, 4] , a : Dict=2 , a : Optional[int]=2.0 , a : Tuple=True , a : Optional[Any]=0.0 , a : List[str]=0.0 , a : List[str]=0.1 , a : Any="gelu" , a : Optional[int]=False , a : List[str]=True , a : Optional[int]=0.02 , a : Tuple=1e-5 , a : int=True , a : List[Any]=None , a : List[str]=True , a : Dict=10 , a : List[str]=8 , a : Tuple=["stage1", "stage2"] , a : Dict=[1, 2] , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = parent
SCREAMING_SNAKE_CASE : Union[str, Any] = batch_size
SCREAMING_SNAKE_CASE : List[Any] = image_size
SCREAMING_SNAKE_CASE : Dict = patch_size
SCREAMING_SNAKE_CASE : Optional[int] = num_channels
SCREAMING_SNAKE_CASE : List[str] = embed_dim
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_sizes
SCREAMING_SNAKE_CASE : List[Any] = depths
SCREAMING_SNAKE_CASE : List[Any] = num_heads
SCREAMING_SNAKE_CASE : List[str] = window_size
SCREAMING_SNAKE_CASE : Any = mlp_ratio
SCREAMING_SNAKE_CASE : str = qkv_bias
SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Tuple = drop_path_rate
SCREAMING_SNAKE_CASE : Tuple = hidden_act
SCREAMING_SNAKE_CASE : Tuple = use_absolute_embeddings
SCREAMING_SNAKE_CASE : Any = patch_norm
SCREAMING_SNAKE_CASE : Dict = layer_norm_eps
SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range
SCREAMING_SNAKE_CASE : Tuple = is_training
SCREAMING_SNAKE_CASE : str = scope
SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels
SCREAMING_SNAKE_CASE : int = type_sequence_label_size
SCREAMING_SNAKE_CASE : int = encoder_stride
SCREAMING_SNAKE_CASE : Optional[int] = out_features
SCREAMING_SNAKE_CASE : Dict = out_indices
def __UpperCamelCase ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Any = None
if self.use_labels:
SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE : Optional[int] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def __UpperCamelCase ( self : List[Any] , a : Any , a : Any , a : Any ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = FocalNetModel(config=a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : int = model(a )
SCREAMING_SNAKE_CASE : int = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
SCREAMING_SNAKE_CASE : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __UpperCamelCase ( self : Optional[Any] , a : List[Any] , a : Union[str, Any] , a : Optional[int] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = FocalNetBackbone(config=a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = model(a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = FocalNetBackbone(config=a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : int = model(a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __UpperCamelCase ( self : Optional[int] , a : Optional[Any] , a : Dict , a : Optional[int] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = FocalNetForMaskedImageModeling(config=a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : Tuple = model(a )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
SCREAMING_SNAKE_CASE : str = 1
SCREAMING_SNAKE_CASE : List[str] = FocalNetForMaskedImageModeling(a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : Dict = model(a )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __UpperCamelCase ( self : Optional[Any] , a : Optional[Any] , a : Any , a : List[str] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = self.type_sequence_label_size
SCREAMING_SNAKE_CASE : List[Any] = FocalNetForImageClassification(a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : Union[str, Any] = model(a , labels=a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE : Dict = 1
SCREAMING_SNAKE_CASE : List[Any] = FocalNetForImageClassification(a )
model.to(a )
model.eval()
SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE : int = model(a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE : Any = config_and_inputs
SCREAMING_SNAKE_CASE : Tuple = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _UpperCamelCase ( __A , __A , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__ =(
{'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__ =False
lowerCamelCase__ =False
lowerCamelCase__ =False
lowerCamelCase__ =False
lowerCamelCase__ =False
def __UpperCamelCase ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = FocalNetModelTester(self )
SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=a , embed_dim=37 , has_text_modality=a )
def __UpperCamelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __UpperCamelCase ( self : Any ) -> Any:
"""simple docstring"""
return
def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a )
def __UpperCamelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*a )
def __UpperCamelCase ( self : str ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*a )
def __UpperCamelCase ( self : str ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a )
@unittest.skip(reason="FocalNet does not use inputs_embeds" )
def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip(reason="FocalNet does not use feedforward chunking" )
def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
pass
def __UpperCamelCase ( self : str ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
SCREAMING_SNAKE_CASE : Tuple = model_class(a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
SCREAMING_SNAKE_CASE : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a , nn.Linear ) )
def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
SCREAMING_SNAKE_CASE : Optional[Any] = model_class(a )
SCREAMING_SNAKE_CASE : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE : Optional[Any] = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , a )
def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : Union[str, Any] , a : Union[str, Any] , a : Union[str, Any] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = model_class(a )
model.to(a )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(a , a ) )
SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states
SCREAMING_SNAKE_CASE : Tuple = getattr(
self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(a ) , a )
# FocalNet has a different seq_length
SCREAMING_SNAKE_CASE : Optional[Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
SCREAMING_SNAKE_CASE : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
SCREAMING_SNAKE_CASE : List[str] = outputs.reshaped_hidden_states
self.assertEqual(len(a ) , a )
SCREAMING_SNAKE_CASE : List[Any] = reshaped_hidden_states[0].shape
SCREAMING_SNAKE_CASE : str = (
reshaped_hidden_states[0].view(a , a , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __UpperCamelCase ( self : List[str] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : Any = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
SCREAMING_SNAKE_CASE : Tuple = True
self.check_hidden_states_output(a , a , a , a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : Optional[int] = True
self.check_hidden_states_output(a , a , a , a )
def __UpperCamelCase ( self : int ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : Optional[Any] = 3
SCREAMING_SNAKE_CASE : Optional[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
SCREAMING_SNAKE_CASE : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
SCREAMING_SNAKE_CASE : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
SCREAMING_SNAKE_CASE : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
SCREAMING_SNAKE_CASE : Union[str, Any] = True
self.check_hidden_states_output(a , a , a , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE : List[str] = True
self.check_hidden_states_output(a , a , a , (padded_height, padded_width) )
@slow
def __UpperCamelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE : int = FocalNetModel.from_pretrained(a )
self.assertIsNotNone(a )
def __UpperCamelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE : int = _config_zero_init(a )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE : Optional[int] = model_class(config=a )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
@require_vision
@require_torch
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCamelCase ( self : List[Any] ) -> Any:
"""simple docstring"""
return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None
@slow
def __UpperCamelCase ( self : int ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(a )
SCREAMING_SNAKE_CASE : Optional[Any] = self.default_image_processor
SCREAMING_SNAKE_CASE : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=a , return_tensors="pt" ).to(a )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE : Dict = model(**a )
# verify the logits
SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , a )
SCREAMING_SNAKE_CASE : Dict = torch.tensor([0.2166, -0.4368, 0.2191] ).to(a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 )
@require_torch
class _UpperCamelCase ( __A , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(FocalNetBackbone,) if is_torch_available() else ()
lowerCamelCase__ =FocalNetConfig
lowerCamelCase__ =False
def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = FocalNetModelTester(self ) | 707 |
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , a : int ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = size
SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * size
SCREAMING_SNAKE_CASE : Union[str, Any] = [0] * size
@staticmethod
def __UpperCamelCase ( a : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def __UpperCamelCase ( a : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def __UpperCamelCase ( self : Any , a : int , a : int ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = value
while index < self.size:
SCREAMING_SNAKE_CASE : Dict = self.get_prev(a ) + 1
if current_left_border == index:
SCREAMING_SNAKE_CASE : Optional[int] = value
else:
SCREAMING_SNAKE_CASE : Tuple = max(a , a , a )
SCREAMING_SNAKE_CASE : Optional[Any] = self.get_next(a )
def __UpperCamelCase ( self : Optional[int] , a : int , a : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
SCREAMING_SNAKE_CASE : Optional[int] = 0
while left <= right:
SCREAMING_SNAKE_CASE : List[Any] = self.get_prev(a )
if left <= current_left:
SCREAMING_SNAKE_CASE : List[Any] = max(a , self.tree[right] )
SCREAMING_SNAKE_CASE : str = current_left
else:
SCREAMING_SNAKE_CASE : List[str] = max(a , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod() | 193 | 0 |
"""simple docstring"""
from __future__ import annotations
from typing import TypedDict
class A_ ( _a ):
lowerCAmelCase__ = 42
lowerCAmelCase__ = 42
def lowerCamelCase_( _lowerCamelCase ) -> list[str]:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("The parameter s type must be str." )
return [s[i:] + s[:i] for i in range(len(_lowerCamelCase ) )]
def lowerCamelCase_( _lowerCamelCase ) -> BWTTransformDict:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("The parameter s type must be str." )
if not s:
raise ValueError("The parameter s must not be empty." )
_lowerCamelCase : List[str] = all_rotations(_lowerCamelCase )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
_lowerCamelCase : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(_lowerCamelCase ),
}
return response
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
raise TypeError("The parameter bwt_string type must be str." )
if not bwt_string:
raise ValueError("The parameter bwt_string must not be empty." )
try:
_lowerCamelCase : Tuple = int(_lowerCamelCase )
except ValueError:
raise TypeError(
"The parameter idx_original_string type must be int or passive"
" of cast to int." )
if idx_original_string < 0:
raise ValueError("The parameter idx_original_string must not be lower than 0." )
if idx_original_string >= len(_lowerCamelCase ):
raise ValueError(
"The parameter idx_original_string must be lower than" " len(bwt_string)." )
_lowerCamelCase : Dict = [""] * len(_lowerCamelCase )
for _ in range(len(_lowerCamelCase ) ):
for i in range(len(_lowerCamelCase ) ):
_lowerCamelCase : Tuple = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
_lowerCAmelCase : Any = '''Provide a string that I will generate its BWT transform: '''
_lowerCAmelCase : Optional[Any] = input(entry_msg).strip()
_lowerCAmelCase : List[str] = bwt_transform(s)
print(
f'''Burrows Wheeler transform for string \'{s}\' results '''
f'''in \'{result['bwt_string']}\''''
)
_lowerCAmelCase : str = reverse_bwt(result['''bwt_string'''], result['''idx_original_string'''])
print(
f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
f'''we get original string \'{original_string}\''''
) | 46 |
'''simple docstring'''
import math
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from ...models import TaFilmDecoder
from ...schedulers import DDPMScheduler
from ...utils import is_onnx_available, logging, randn_tensor
if is_onnx_available():
from ..onnx_utils import OnnxRuntimeModel
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
from .continous_encoder import SpectrogramContEncoder
from .notes_encoder import SpectrogramNotesEncoder
_UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
_UpperCamelCase = 256
class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
a_ =["""melgan"""]
def __init__( self : Dict , _a : SpectrogramNotesEncoder , _a : SpectrogramContEncoder , _a : TaFilmDecoder , _a : DDPMScheduler , _a : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None:
super().__init__()
# From MELGAN
__lowerCamelCase : Any = math.log(1e-5 ) # Matches MelGAN training.
__lowerCamelCase : List[Any] = 4.0 # Largest value for most examples
__lowerCamelCase : Tuple = 128
self.register_modules(
notes_encoder=_a , continuous_encoder=_a , decoder=_a , scheduler=_a , melgan=_a , )
def _lowercase ( self : Tuple , _a : int , _a : List[Any]=(-1.0, 1.0) , _a : Any=False ) -> Dict:
__lowerCamelCase ,__lowerCamelCase : Any = output_range
if clip:
__lowerCamelCase : List[Any] = torch.clip(_a , self.min_value , self.max_value )
# Scale to [0, 1].
__lowerCamelCase : Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value)
# Scale to [min_out, max_out].
return zero_one * (max_out - min_out) + min_out
def _lowercase ( self : Dict , _a : List[str] , _a : int=(-1.0, 1.0) , _a : Dict=False ) -> List[str]:
__lowerCamelCase ,__lowerCamelCase : List[Any] = input_range
__lowerCamelCase : Optional[Any] = torch.clip(_a , _a , _a ) if clip else outputs
# Scale to [0, 1].
__lowerCamelCase : str = (outputs - min_out) / (max_out - min_out)
# Scale to [self.min_value, self.max_value].
return zero_one * (self.max_value - self.min_value) + self.min_value
def _lowercase ( self : int , _a : Dict , _a : List[str] , _a : Tuple ) -> Any:
__lowerCamelCase : Tuple = input_tokens > 0
__lowerCamelCase ,__lowerCamelCase : int = self.notes_encoder(
encoder_input_tokens=_a , encoder_inputs_mask=_a )
__lowerCamelCase ,__lowerCamelCase : Tuple = self.continuous_encoder(
encoder_inputs=_a , encoder_inputs_mask=_a )
return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)]
def _lowercase ( self : Tuple , _a : Tuple , _a : List[Any] , _a : int ) -> Dict:
__lowerCamelCase : Any = noise_time
if not torch.is_tensor(_a ):
__lowerCamelCase : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
__lowerCamelCase : List[str] = timesteps[None].to(input_tokens.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__lowerCamelCase : Tuple = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device )
__lowerCamelCase : int = self.decoder(
encodings_and_masks=_a , decoder_input_tokens=_a , decoder_noise_time=_a )
return logits
@torch.no_grad()
def __call__( self : Optional[int] , _a : List[List[int]] , _a : Optional[torch.Generator] = None , _a : int = 100 , _a : bool = True , _a : str = "numpy" , _a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _a : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]:
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0)
):
raise ValueError(
f'`callback_steps` has to be a positive integer but is {callback_steps} of type'
f' {type(_a )}.' )
__lowerCamelCase : Optional[int] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa )
__lowerCamelCase : Dict = np.zeros([1, 0, self.n_dims] , np.floataa )
__lowerCamelCase : List[Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device )
for i, encoder_input_tokens in enumerate(_a ):
if i == 0:
__lowerCamelCase : List[str] = torch.from_numpy(pred_mel[:1].copy() ).to(
device=self.device , dtype=self.decoder.dtype )
# The first chunk has no previous context.
__lowerCamelCase : List[Any] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_a , device=self.device )
else:
# The full song pipeline does not feed in a context feature, so the mask
# will be all 0s after the feature converter. Because we know we're
# feeding in a full context chunk from the previous prediction, set it
# to all 1s.
__lowerCamelCase : int = ones
__lowerCamelCase : int = self.scale_features(
_a , output_range=[-1.0, 1.0] , clip=_a )
__lowerCamelCase : Tuple = self.encode(
input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_a , continuous_mask=_a , )
# Sample encoder_continuous_inputs shaped gaussian noise to begin loop
__lowerCamelCase : Optional[int] = randn_tensor(
shape=encoder_continuous_inputs.shape , generator=_a , device=self.device , dtype=self.decoder.dtype , )
# set step values
self.scheduler.set_timesteps(_a )
# Denoising diffusion loop
for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__lowerCamelCase : List[Any] = self.decode(
encodings_and_masks=_a , input_tokens=_a , noise_time=t / self.scheduler.config.num_train_timesteps , )
# Compute previous output: x_t -> x_t-1
__lowerCamelCase : Optional[int] = self.scheduler.step(_a , _a , _a , generator=_a ).prev_sample
__lowerCamelCase : List[Any] = self.scale_to_features(_a , input_range=[-1.0, 1.0] )
__lowerCamelCase : Union[str, Any] = mel[:1]
__lowerCamelCase : Union[str, Any] = mel.cpu().float().numpy()
__lowerCamelCase : Dict = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 )
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(_a , _a )
logger.info('Generated segment' , _a )
if output_type == "numpy" and not is_onnx_available():
raise ValueError(
'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.' )
elif output_type == "numpy" and self.melgan is None:
raise ValueError(
'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.' )
if output_type == "numpy":
__lowerCamelCase : Tuple = self.melgan(input_features=full_pred_mel.astype(np.floataa ) )
else:
__lowerCamelCase : List[str] = full_pred_mel
if not return_dict:
return (output,)
return AudioPipelineOutput(audios=_a )
| 459 | 0 |
'''simple docstring'''
def _UpperCamelCase ( lowerCAmelCase__: Optional[Any] = 100 ) -> int:
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = 0
for i in range(1 ,n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(f"{solution() = }")
| 712 |
'''simple docstring'''
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class snake_case ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def a__ ( self ) -> Optional[int]:
return datasets.DatasetInfo(
features=datasets.Features({'content': datasets.Value('string' )} ), supervised_keys=_lowercase, )
def a__ ( self, _lowercase, _lowercase ) -> Optional[int]:
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'examples': get_test_dummy_examples()} )]
def a__ ( self, _lowercase, _lowercase ) -> Dict:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_lowercase )
class snake_case ( datasets.BeamBasedBuilder ):
"""simple docstring"""
def a__ ( self ) -> Dict:
return datasets.DatasetInfo(
features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ), supervised_keys=_lowercase, )
def a__ ( self, _lowercase, _lowercase ) -> Union[str, Any]:
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'examples': get_test_nested_examples()} )
]
def a__ ( self, _lowercase, _lowercase ) -> Dict:
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(_lowercase )
def _UpperCamelCase ( ) -> str:
return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )]
def _UpperCamelCase ( ) -> List[str]:
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )]
class snake_case ( lowercase_ ):
"""simple docstring"""
@require_beam
def a__ ( self ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE_ = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
SCREAMING_SNAKE_CASE_ = DummyBeamDataset(cache_dir=_lowercase, beam_runner='DirectRunner' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_lowercase, builder.name, 'default', '0.0.0', f"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(builder.info.features, datasets.Features({'content': datasets.Value('string' )} ) )
SCREAMING_SNAKE_CASE_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows, _lowercase )
self.assertEqual(dset['train'].info.splits['train'].num_examples, _lowercase )
self.assertDictEqual(dset['train'][0], get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset['train'][expected_num_examples - 1], get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_lowercase, builder.name, 'default', '0.0.0', 'dataset_info.json' ) ) )
del dset
@require_beam
def a__ ( self ) -> List[str]:
import apache_beam as beam
SCREAMING_SNAKE_CASE_ = beam.io.parquetio.WriteToParquet
SCREAMING_SNAKE_CASE_ = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
SCREAMING_SNAKE_CASE_ = DummyBeamDataset(cache_dir=_lowercase, beam_runner='DirectRunner' )
with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock:
SCREAMING_SNAKE_CASE_ = partial(_lowercase, num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
_lowercase, builder.name, 'default', '0.0.0', f"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
_lowercase, builder.name, 'default', '0.0.0', f"""{builder.name}-train-00000-of-00002.arrow""" ) ) )
self.assertDictEqual(builder.info.features, datasets.Features({'content': datasets.Value('string' )} ) )
SCREAMING_SNAKE_CASE_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows, _lowercase )
self.assertEqual(dset['train'].info.splits['train'].num_examples, _lowercase )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset['train']['content'] ), sorted(['foo', 'bar', 'foobar'] ) )
self.assertTrue(
os.path.exists(os.path.join(_lowercase, builder.name, 'default', '0.0.0', 'dataset_info.json' ) ) )
del dset
@require_beam
def a__ ( self ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmp_cache_dir:
SCREAMING_SNAKE_CASE_ = DummyBeamDataset(cache_dir=_lowercase )
self.assertRaises(datasets.builder.MissingBeamOptions, builder.download_and_prepare )
@require_beam
def a__ ( self ) -> Any:
SCREAMING_SNAKE_CASE_ = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
SCREAMING_SNAKE_CASE_ = NestedBeamDataset(cache_dir=_lowercase, beam_runner='DirectRunner' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(_lowercase, builder.name, 'default', '0.0.0', f"""{builder.name}-train.arrow""" ) ) )
self.assertDictEqual(
builder.info.features, datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) )
SCREAMING_SNAKE_CASE_ = builder.as_dataset()
self.assertEqual(dset['train'].num_rows, _lowercase )
self.assertEqual(dset['train'].info.splits['train'].num_examples, _lowercase )
self.assertDictEqual(dset['train'][0], get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset['train'][expected_num_examples - 1], get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(_lowercase, builder.name, 'default', '0.0.0', 'dataset_info.json' ) ) )
del dset
| 238 | 0 |
from sklearn.metrics import mean_squared_error
import datasets
lowerCAmelCase__: Optional[int] = '\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n'
lowerCAmelCase__: int = '\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n'
lowerCAmelCase__: Union[str, Any] = '\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n "raw_values" : Returns a full set of errors in case of multioutput input.\n\n "uniform_average" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric("mse")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {\'mse\': 0.6123724356957945}\n\n If you\'re using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric("mse", "multilist")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'mse\': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mse\': array([0.41666667, 1. ])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case_ ( datasets.Metric ):
def __A ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html'
] , )
def __A ( self ):
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value('float' ) ),
"references": datasets.Sequence(datasets.Value('float' ) ),
}
else:
return {
"predictions": datasets.Value('float' ),
"references": datasets.Value('float' ),
}
def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase="uniform_average" , __lowerCAmelCase=True ):
SCREAMING_SNAKE_CASE_ : Optional[int] = mean_squared_error(
__lowerCAmelCase , __lowerCAmelCase , sample_weight=__lowerCAmelCase , multioutput=__lowerCAmelCase , squared=__lowerCAmelCase )
return {"mse": mse}
| 345 |
'''simple docstring'''
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
lowerCamelCase : Optional[int] = logging.get_logger(__name__)
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Optional[int] = ["""pixel_values"""]
def __init__(self : str , UpperCamelCase : bool = True , UpperCamelCase : Union[int, float] = 1 / 255 , UpperCamelCase : bool = True , UpperCamelCase : int = 8 , **UpperCamelCase : Dict , ):
'''simple docstring'''
super().__init__(**UpperCamelCase )
lowercase__ = do_rescale
lowercase__ = rescale_factor
lowercase__ = do_pad
lowercase__ = pad_size
def UpperCamelCase__ (self : Dict , UpperCamelCase : np.ndarray , UpperCamelCase : float , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase : Tuple ):
'''simple docstring'''
return rescale(UpperCamelCase , scale=UpperCamelCase , data_format=UpperCamelCase , **UpperCamelCase )
def UpperCamelCase__ (self : Tuple , UpperCamelCase : np.ndarray , UpperCamelCase : int , UpperCamelCase : Optional[Union[str, ChannelDimension]] = None ):
'''simple docstring'''
lowercase__ ,lowercase__ = get_image_size(UpperCamelCase )
lowercase__ = (old_height // size + 1) * size - old_height
lowercase__ = (old_width // size + 1) * size - old_width
return pad(UpperCamelCase , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=UpperCamelCase )
def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : ImageInput , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[float] = None , UpperCamelCase : Optional[bool] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[Union[str, TensorType]] = None , UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase : int , ):
'''simple docstring'''
lowercase__ = do_rescale if do_rescale is not None else self.do_rescale
lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor
lowercase__ = do_pad if do_pad is not None else self.do_pad
lowercase__ = pad_size if pad_size is not None else self.pad_size
lowercase__ = make_list_of_images(UpperCamelCase )
if not valid_images(UpperCamelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
# All transformations expect numpy arrays.
lowercase__ = [to_numpy_array(UpperCamelCase ) for image in images]
if do_rescale:
lowercase__ = [self.rescale(image=UpperCamelCase , scale=UpperCamelCase ) for image in images]
if do_pad:
lowercase__ = [self.pad(UpperCamelCase , size=UpperCamelCase ) for image in images]
lowercase__ = [to_channel_dimension_format(UpperCamelCase , UpperCamelCase ) for image in images]
lowercase__ = {'''pixel_values''': images}
return BatchFeature(data=UpperCamelCase , tensor_type=UpperCamelCase )
| 460 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_flax, require_tf, require_torch
from transformers.utils import (
expand_dims,
flatten_dict,
is_flax_available,
is_tf_available,
is_torch_available,
reshape,
squeeze,
transpose,
)
if is_flax_available():
import jax.numpy as jnp
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase__ ( self : Optional[int] ):
_a = {
"task_specific_params": {
"summarization": {"length_penalty": 1.0, "max_length": 1_28, "min_length": 12, "num_beams": 4},
"summarization_cnn": {"length_penalty": 2.0, "max_length": 1_42, "min_length": 56, "num_beams": 4},
"summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6},
}
}
_a = {
"task_specific_params.summarization.length_penalty": 1.0,
"task_specific_params.summarization.max_length": 1_28,
"task_specific_params.summarization.min_length": 12,
"task_specific_params.summarization.num_beams": 4,
"task_specific_params.summarization_cnn.length_penalty": 2.0,
"task_specific_params.summarization_cnn.max_length": 1_42,
"task_specific_params.summarization_cnn.min_length": 56,
"task_specific_params.summarization_cnn.num_beams": 4,
"task_specific_params.summarization_xsum.length_penalty": 1.0,
"task_specific_params.summarization_xsum.max_length": 62,
"task_specific_params.summarization_xsum.min_length": 11,
"task_specific_params.summarization_xsum.num_beams": 6,
}
self.assertEqual(flatten_dict(__a ) , __a )
def UpperCamelCase__ ( self : Tuple ):
_a = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(transpose(__a ) , x.transpose() ) )
_a = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) )
@require_torch
def UpperCamelCase__ ( self : Union[str, Any] ):
_a = np.random.randn(3 , 4 )
_a = torch.tensor(__a )
self.assertTrue(np.allclose(transpose(__a ) , transpose(__a ).numpy() ) )
_a = np.random.randn(3 , 4 , 5 )
_a = torch.tensor(__a )
self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , transpose(__a , axes=(1, 2, 0) ).numpy() ) )
@require_tf
def UpperCamelCase__ ( self : Dict ):
_a = np.random.randn(3 , 4 )
_a = tf.constant(__a )
self.assertTrue(np.allclose(transpose(__a ) , transpose(__a ).numpy() ) )
_a = np.random.randn(3 , 4 , 5 )
_a = tf.constant(__a )
self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , transpose(__a , axes=(1, 2, 0) ).numpy() ) )
@require_flax
def UpperCamelCase__ ( self : Tuple ):
_a = np.random.randn(3 , 4 )
_a = jnp.array(__a )
self.assertTrue(np.allclose(transpose(__a ) , np.asarray(transpose(__a ) ) ) )
_a = np.random.randn(3 , 4 , 5 )
_a = jnp.array(__a )
self.assertTrue(np.allclose(transpose(__a , axes=(1, 2, 0) ) , np.asarray(transpose(__a , axes=(1, 2, 0) ) ) ) )
def UpperCamelCase__ ( self : Optional[int] ):
_a = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , np.reshape(__a , (4, 3) ) ) )
_a = np.random.randn(3 , 4 , 5 )
self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , np.reshape(__a , (12, 5) ) ) )
@require_torch
def UpperCamelCase__ ( self : Dict ):
_a = np.random.randn(3 , 4 )
_a = torch.tensor(__a )
self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , reshape(__a , (4, 3) ).numpy() ) )
_a = np.random.randn(3 , 4 , 5 )
_a = torch.tensor(__a )
self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , reshape(__a , (12, 5) ).numpy() ) )
@require_tf
def UpperCamelCase__ ( self : Optional[int] ):
_a = np.random.randn(3 , 4 )
_a = tf.constant(__a )
self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , reshape(__a , (4, 3) ).numpy() ) )
_a = np.random.randn(3 , 4 , 5 )
_a = tf.constant(__a )
self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , reshape(__a , (12, 5) ).numpy() ) )
@require_flax
def UpperCamelCase__ ( self : int ):
_a = np.random.randn(3 , 4 )
_a = jnp.array(__a )
self.assertTrue(np.allclose(reshape(__a , (4, 3) ) , np.asarray(reshape(__a , (4, 3) ) ) ) )
_a = np.random.randn(3 , 4 , 5 )
_a = jnp.array(__a )
self.assertTrue(np.allclose(reshape(__a , (12, 5) ) , np.asarray(reshape(__a , (12, 5) ) ) ) )
def UpperCamelCase__ ( self : str ):
_a = np.random.randn(1 , 3 , 4 )
self.assertTrue(np.allclose(squeeze(__a ) , np.squeeze(__a ) ) )
_a = np.random.randn(1 , 4 , 1 , 5 )
self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , np.squeeze(__a , axis=2 ) ) )
@require_torch
def UpperCamelCase__ ( self : Optional[Any] ):
_a = np.random.randn(1 , 3 , 4 )
_a = torch.tensor(__a )
self.assertTrue(np.allclose(squeeze(__a ) , squeeze(__a ).numpy() ) )
_a = np.random.randn(1 , 4 , 1 , 5 )
_a = torch.tensor(__a )
self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , squeeze(__a , axis=2 ).numpy() ) )
@require_tf
def UpperCamelCase__ ( self : Optional[int] ):
_a = np.random.randn(1 , 3 , 4 )
_a = tf.constant(__a )
self.assertTrue(np.allclose(squeeze(__a ) , squeeze(__a ).numpy() ) )
_a = np.random.randn(1 , 4 , 1 , 5 )
_a = tf.constant(__a )
self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , squeeze(__a , axis=2 ).numpy() ) )
@require_flax
def UpperCamelCase__ ( self : Any ):
_a = np.random.randn(1 , 3 , 4 )
_a = jnp.array(__a )
self.assertTrue(np.allclose(squeeze(__a ) , np.asarray(squeeze(__a ) ) ) )
_a = np.random.randn(1 , 4 , 1 , 5 )
_a = jnp.array(__a )
self.assertTrue(np.allclose(squeeze(__a , axis=2 ) , np.asarray(squeeze(__a , axis=2 ) ) ) )
def UpperCamelCase__ ( self : str ):
_a = np.random.randn(3 , 4 )
self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , np.expand_dims(__a , axis=1 ) ) )
@require_torch
def UpperCamelCase__ ( self : Optional[Any] ):
_a = np.random.randn(3 , 4 )
_a = torch.tensor(__a )
self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , expand_dims(__a , axis=1 ).numpy() ) )
@require_tf
def UpperCamelCase__ ( self : List[str] ):
_a = np.random.randn(3 , 4 )
_a = tf.constant(__a )
self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , expand_dims(__a , axis=1 ).numpy() ) )
@require_flax
def UpperCamelCase__ ( self : Dict ):
_a = np.random.randn(3 , 4 )
_a = jnp.array(__a )
self.assertTrue(np.allclose(expand_dims(__a , axis=1 ) , np.asarray(expand_dims(__a , axis=1 ) ) ) )
| 521 |
'''simple docstring'''
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
lowerCAmelCase_ : List[Any] = logging.get_logger(__name__)
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='vision-encoder-decoder'
__a =True
def __init__( self : Optional[int] , **__a : Any ):
super().__init__(**__a )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
f'A configuraton of type {self.model_type} cannot be instantiated because '
f'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' )
_a = kwargs.pop("encoder" )
_a = encoder_config.pop("model_type" )
_a = kwargs.pop("decoder" )
_a = decoder_config.pop("model_type" )
_a = AutoConfig.for_model(__a , **__a )
_a = AutoConfig.for_model(__a , **__a )
_a = True
@classmethod
def UpperCamelCase__ ( cls : int , __a : PretrainedConfig , __a : PretrainedConfig , **__a : Any ):
logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" )
_a = True
_a = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__a )
def UpperCamelCase__ ( self : int ):
_a = copy.deepcopy(self.__dict__ )
_a = self.encoder.to_dict()
_a = self.decoder.to_dict()
_a = self.__class__.model_type
return output
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a =version.parse('1.11' )
@property
def UpperCamelCase__ ( self : Optional[int] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def UpperCamelCase__ ( self : List[str] ):
return 1e-4
@property
def UpperCamelCase__ ( self : List[Any] ):
return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} )
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
@property
def UpperCamelCase__ ( self : Optional[Any] ):
_a = OrderedDict()
_a = {0: "batch", 1: "past_decoder_sequence + sequence"}
_a = {0: "batch", 1: "past_decoder_sequence + sequence"}
_a = {0: "batch", 1: "encoder_sequence"}
return common_inputs
def UpperCamelCase__ ( self : List[str] , __a : "PreTrainedTokenizerBase" , __a : int = -1 , __a : int = -1 , __a : bool = False , __a : Optional["TensorType"] = None , ):
import torch
_a = OrderedDict()
_a = super().generate_dummy_inputs(
__a , batch_size=__a , seq_length=__a , is_pair=__a , framework=__a )
_a , _a = dummy_input["input_ids"].shape
_a = (batch, encoder_sequence, self._config.encoder_hidden_size)
_a = dummy_input.pop("input_ids" )
_a = dummy_input.pop("attention_mask" )
_a = torch.zeros(__a )
return common_inputs
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
@property
def UpperCamelCase__ ( self : int ):
pass
def UpperCamelCase__ ( self : List[str] , __a : PretrainedConfig ):
return VisionEncoderDecoderEncoderOnnxConfig(__a )
def UpperCamelCase__ ( self : Any , __a : PretrainedConfig , __a : PretrainedConfig , __a : str = "default" ):
_a = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(__a , __a )
| 521 | 1 |
'''simple docstring'''
def snake_case_ ( _lowerCAmelCase : int ) -> List[Any]:
return str(lowerCamelCase_ ) == str(lowerCamelCase_ )[::-1]
def snake_case_ ( _lowerCAmelCase : int ) -> Union[str, Any]:
return int(lowerCamelCase_ ) + int(str(lowerCamelCase_ )[::-1] )
def snake_case_ ( _lowerCAmelCase : int = 10000 ) -> Optional[int]:
UpperCAmelCase : Any = []
for num in range(1 , lowerCamelCase_ ):
UpperCAmelCase : int = 0
UpperCAmelCase : int = num
while iterations < 50:
UpperCAmelCase : Optional[int] = sum_reverse(lowerCamelCase_ )
iterations += 1
if is_palindrome(lowerCamelCase_ ):
break
else:
lychrel_nums.append(lowerCamelCase_ )
return len(lowerCamelCase_ )
if __name__ == "__main__":
print(F"{solution() = }")
| 127 |
'''simple docstring'''
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class __lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
a : Dict = VQModel
a : Optional[int] = "sample"
@property
def _UpperCAmelCase (self ,_lowerCamelCase=(32, 32) ) -> int:
'''simple docstring'''
__lowercase = 4
__lowercase = 3
__lowercase = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase )
return {"sample": image}
@property
def _UpperCAmelCase (self ) -> int:
'''simple docstring'''
return (3, 32, 32)
@property
def _UpperCAmelCase (self ) -> List[Any]:
'''simple docstring'''
return (3, 32, 32)
def _UpperCAmelCase (self ) -> str:
'''simple docstring'''
__lowercase = {
'''block_out_channels''': [32, 64],
'''in_channels''': 3,
'''out_channels''': 3,
'''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''],
'''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''],
'''latent_channels''': 3,
}
__lowercase = self.dummy_input
return init_dict, inputs_dict
def _UpperCAmelCase (self ) -> Dict:
'''simple docstring'''
pass
def _UpperCAmelCase (self ) -> Optional[Any]:
'''simple docstring'''
pass
def _UpperCAmelCase (self ) -> int:
'''simple docstring'''
__lowercase , __lowercase = VQModel.from_pretrained('''fusing/vqgan-dummy''' ,output_loading_info=_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 )
model.to(_lowerCamelCase )
__lowercase = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def _UpperCAmelCase (self ) -> int:
'''simple docstring'''
__lowercase = VQModel.from_pretrained('''fusing/vqgan-dummy''' )
model.to(_lowerCamelCase ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
__lowercase = torch.randn(1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size )
__lowercase = image.to(_lowerCamelCase )
with torch.no_grad():
__lowercase = model(_lowerCamelCase ).sample
__lowercase = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
__lowercase = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] )
# fmt: on
self.assertTrue(torch.allclose(_lowerCamelCase ,_lowerCamelCase ,atol=1E-3 ) )
| 502 | 0 |
'''simple docstring'''
import numpy as np
UpperCamelCase__: Any = [
["a", "b", "c", "d", "e"],
["f", "g", "h", "i", "k"],
["l", "m", "n", "o", "p"],
["q", "r", "s", "t", "u"],
["v", "w", "x", "y", "z"],
]
class SCREAMING_SNAKE_CASE:
"""simple docstring"""
def __init__( self : Any ) -> None:
UpperCAmelCase : Optional[int] = np.array(__snake_case )
def A ( self : str , __snake_case : str ) -> np.ndarray:
UpperCAmelCase , UpperCAmelCase : Dict = np.where(letter == self.SQUARE )
UpperCAmelCase : Dict = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def A ( self : Union[str, Any] , __snake_case : int , __snake_case : int ) -> str:
UpperCAmelCase : int = self.SQUARE[indexa - 1, indexa - 1]
return letter
def A ( self : List[Any] , __snake_case : str ) -> str:
UpperCAmelCase : Any = message.lower()
UpperCAmelCase : List[Any] = message.replace(''' ''' , '''''' )
UpperCAmelCase : List[Any] = message.replace('''j''' , '''i''' )
UpperCAmelCase : Tuple = np.empty((2, len(__snake_case )) )
for letter_index in range(len(__snake_case ) ):
UpperCAmelCase : str = self.letter_to_numbers(message[letter_index] )
UpperCAmelCase : Any = numbers[0]
UpperCAmelCase : Optional[Any] = numbers[1]
UpperCAmelCase : List[str] = first_step.reshape(2 * len(__snake_case ) )
UpperCAmelCase : Union[str, Any] = ''''''
for numbers_index in range(len(__snake_case ) ):
UpperCAmelCase : Dict = int(second_step[numbers_index * 2] )
UpperCAmelCase : Union[str, Any] = int(second_step[(numbers_index * 2) + 1] )
UpperCAmelCase : Dict = self.numbers_to_letter(__snake_case , __snake_case )
UpperCAmelCase : int = encoded_message + letter
return encoded_message
def A ( self : Optional[Any] , __snake_case : str ) -> str:
UpperCAmelCase : str = message.lower()
message.replace(''' ''' , '''''' )
UpperCAmelCase : Optional[int] = np.empty(2 * len(__snake_case ) )
for letter_index in range(len(__snake_case ) ):
UpperCAmelCase : int = self.letter_to_numbers(message[letter_index] )
UpperCAmelCase : Optional[Any] = numbers[0]
UpperCAmelCase : List[Any] = numbers[1]
UpperCAmelCase : Tuple = first_step.reshape((2, len(__snake_case )) )
UpperCAmelCase : str = ''''''
for numbers_index in range(len(__snake_case ) ):
UpperCAmelCase : Tuple = int(second_step[0, numbers_index] )
UpperCAmelCase : List[str] = int(second_step[1, numbers_index] )
UpperCAmelCase : Union[str, Any] = self.numbers_to_letter(__snake_case , __snake_case )
UpperCAmelCase : Union[str, Any] = decoded_message + letter
return decoded_message
| 528 |
'''simple docstring'''
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__: Optional[Any] = logging.get_logger(__name__)
UpperCamelCase__: Tuple = {
"huggingface/time-series-transformer-tourism-monthly": (
"https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json"
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class SCREAMING_SNAKE_CASE( A__ ):
"""simple docstring"""
lowerCamelCase__ = """time_series_transformer"""
lowerCamelCase__ = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
"""num_hidden_layers""": """encoder_layers""",
}
def __init__( self : str , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "student_t" , __snake_case : str = "nll" , __snake_case : int = 1 , __snake_case : List[int] = [1, 2, 3, 4, 5, 6, 7] , __snake_case : Optional[Union[str, bool]] = "mean" , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : int = 0 , __snake_case : Optional[List[int]] = None , __snake_case : Optional[List[int]] = None , __snake_case : int = 32 , __snake_case : int = 32 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : int = 2 , __snake_case : bool = True , __snake_case : str = "gelu" , __snake_case : int = 64 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , __snake_case : int = 100 , __snake_case : float = 0.02 , __snake_case : Optional[Any]=True , **__snake_case : List[Any] , ) -> List[str]:
# time series specific configuration
UpperCAmelCase : List[Any] = prediction_length
UpperCAmelCase : List[Any] = context_length or prediction_length
UpperCAmelCase : Tuple = distribution_output
UpperCAmelCase : Optional[Any] = loss
UpperCAmelCase : Tuple = input_size
UpperCAmelCase : Optional[int] = num_time_features
UpperCAmelCase : Dict = lags_sequence
UpperCAmelCase : Any = scaling
UpperCAmelCase : Tuple = num_dynamic_real_features
UpperCAmelCase : Any = num_static_real_features
UpperCAmelCase : Optional[int] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(__snake_case ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
UpperCAmelCase : Any = cardinality
else:
UpperCAmelCase : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(__snake_case ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
UpperCAmelCase : Optional[int] = embedding_dimension
else:
UpperCAmelCase : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
UpperCAmelCase : List[Any] = num_parallel_samples
# Transformer architecture configuration
UpperCAmelCase : int = input_size * len(__snake_case ) + self._number_of_features
UpperCAmelCase : int = d_model
UpperCAmelCase : str = encoder_attention_heads
UpperCAmelCase : str = decoder_attention_heads
UpperCAmelCase : List[str] = encoder_ffn_dim
UpperCAmelCase : Any = decoder_ffn_dim
UpperCAmelCase : Any = encoder_layers
UpperCAmelCase : str = decoder_layers
UpperCAmelCase : Optional[int] = dropout
UpperCAmelCase : Union[str, Any] = attention_dropout
UpperCAmelCase : List[Any] = activation_dropout
UpperCAmelCase : Optional[int] = encoder_layerdrop
UpperCAmelCase : Dict = decoder_layerdrop
UpperCAmelCase : Tuple = activation_function
UpperCAmelCase : Dict = init_std
UpperCAmelCase : Optional[int] = use_cache
super().__init__(is_encoder_decoder=__snake_case , **__snake_case )
@property
def A ( self : Union[str, Any] ) -> int:
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 528 | 1 |
SCREAMING_SNAKE_CASE :Union[str, Any] = {str(digit): digit**5 for digit in range(10)}
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> int:
"""simple docstring"""
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(SCREAMING_SNAKE_CASE_ ) )
def lowerCAmelCase( )-> int:
"""simple docstring"""
return sum(
number
for number in range(1_0_0_0 , 1_0_0_0_0_0_0 )
if number == digits_fifth_powers_sum(SCREAMING_SNAKE_CASE_ ) )
if __name__ == "__main__":
print(solution())
| 628 |
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int:
"""simple docstring"""
if exponent == 1:
return base
if exponent % 2 == 0:
UpperCamelCase_ = _modexpt(SCREAMING_SNAKE_CASE_ , exponent // 2 , SCREAMING_SNAKE_CASE_ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(SCREAMING_SNAKE_CASE_ , exponent - 1 , SCREAMING_SNAKE_CASE_ )) % modulo_value
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ = 1_7_7_7 , SCREAMING_SNAKE_CASE_ = 1_8_5_5 , SCREAMING_SNAKE_CASE_ = 8 )-> int:
"""simple docstring"""
UpperCamelCase_ = base
for _ in range(1 , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase_ = _modexpt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1_0**digits )
return result
if __name__ == "__main__":
print(F'''{solution() = }''')
| 628 | 1 |
"""simple docstring"""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
lowercase_ : int = logging.get_logger(__name__)
lowercase_ : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
lowercase_ : List[str] = {
'''vocab_file''': {
'''facebook/dpr-ctx_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt'''
),
'''facebook/dpr-ctx_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''facebook/dpr-ctx_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json'''
),
'''facebook/dpr-ctx_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json'''
),
},
}
lowercase_ : Any = {
'''vocab_file''': {
'''facebook/dpr-question_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt'''
),
'''facebook/dpr-question_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''facebook/dpr-question_encoder-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json'''
),
'''facebook/dpr-question_encoder-multiset-base''': (
'''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json'''
),
},
}
lowercase_ : Dict = {
'''vocab_file''': {
'''facebook/dpr-reader-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt'''
),
'''facebook/dpr-reader-multiset-base''': (
'''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''facebook/dpr-reader-single-nq-base''': (
'''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json'''
),
'''facebook/dpr-reader-multiset-base''': (
'''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json'''
),
},
}
lowercase_ : Dict = {
'''facebook/dpr-ctx_encoder-single-nq-base''': 5_12,
'''facebook/dpr-ctx_encoder-multiset-base''': 5_12,
}
lowercase_ : Union[str, Any] = {
'''facebook/dpr-question_encoder-single-nq-base''': 5_12,
'''facebook/dpr-question_encoder-multiset-base''': 5_12,
}
lowercase_ : Any = {
'''facebook/dpr-reader-single-nq-base''': 5_12,
'''facebook/dpr-reader-multiset-base''': 5_12,
}
lowercase_ : Dict = {
'''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True},
'''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True},
}
lowercase_ : Optional[Any] = {
'''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True},
'''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True},
}
lowercase_ : Tuple = {
'''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True},
'''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True},
}
class UpperCamelCase ( __SCREAMING_SNAKE_CASE ):
A__ = VOCAB_FILES_NAMES
A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class UpperCamelCase ( __SCREAMING_SNAKE_CASE ):
A__ = VOCAB_FILES_NAMES
A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase_ : Optional[Any] = collections.namedtuple(
'''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text''']
)
lowercase_ : Dict = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits'''])
lowercase_ : int = R'''
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
```
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
```
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `\'tf\'`: Return TensorFlow `tf.constant` objects.
- `\'pt\'`: Return PyTorch `torch.Tensor` objects.
- `\'np\'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer\'s default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Returns:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
'''
@add_start_docstrings(__SCREAMING_SNAKE_CASE )
class UpperCamelCase :
def __call__( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = None , snake_case__ = None , snake_case__ = None , **snake_case__ , ):
"""simple docstring"""
if titles is None and texts is None:
return super().__call__(
snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , )
elif titles is None or texts is None:
_SCREAMING_SNAKE_CASE : str = titles if texts is None else texts
return super().__call__(
snake_case__ , snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , )
_SCREAMING_SNAKE_CASE : Optional[int] = titles if not isinstance(snake_case__ , snake_case__ ) else [titles]
_SCREAMING_SNAKE_CASE : Dict = texts if not isinstance(snake_case__ , snake_case__ ) else [texts]
_SCREAMING_SNAKE_CASE : Optional[int] = len(snake_case__ )
_SCREAMING_SNAKE_CASE : List[str] = questions if not isinstance(snake_case__ , snake_case__ ) else [questions] * n_passages
if len(snake_case__ ) != len(snake_case__ ):
raise ValueError(
F'''There should be as many titles than texts but got {len(snake_case__ )} titles and {len(snake_case__ )} texts.''' )
_SCREAMING_SNAKE_CASE : Optional[int] = super().__call__(snake_case__ , snake_case__ , padding=snake_case__ , truncation=snake_case__ )["input_ids"]
_SCREAMING_SNAKE_CASE : List[str] = super().__call__(snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ )["input_ids"]
_SCREAMING_SNAKE_CASE : Any = {
"input_ids": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(snake_case__ , snake_case__ )
]
}
if return_attention_mask is not False:
_SCREAMING_SNAKE_CASE : Optional[int] = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_SCREAMING_SNAKE_CASE : Tuple = attention_mask
return self.pad(snake_case__ , padding=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ )
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ = 16 , snake_case__ = 64 , snake_case__ = 4 , ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : List[str] = reader_input["input_ids"]
_SCREAMING_SNAKE_CASE : Optional[Any] = reader_output[:3]
_SCREAMING_SNAKE_CASE : Optional[Any] = len(snake_case__ )
_SCREAMING_SNAKE_CASE : List[Any] = sorted(range(snake_case__ ) , reverse=snake_case__ , key=relevance_logits.__getitem__ )
_SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_SCREAMING_SNAKE_CASE : Any = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_SCREAMING_SNAKE_CASE : List[str] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_SCREAMING_SNAKE_CASE : int = sequence_ids.index(self.pad_token_id )
else:
_SCREAMING_SNAKE_CASE : Optional[int] = len(snake_case__ )
_SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case__ , top_spans=snake_case__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case__ , start_index=snake_case__ , end_index=snake_case__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(snake_case__ ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Any = []
for start_index, start_score in enumerate(snake_case__ ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_SCREAMING_SNAKE_CASE : Any = sorted(snake_case__ , key=lambda snake_case__ : x[1] , reverse=snake_case__ )
_SCREAMING_SNAKE_CASE : Optional[int] = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' )
_SCREAMING_SNAKE_CASE : str = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(snake_case__ ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
A__ = VOCAB_FILES_NAMES
A__ = READER_PRETRAINED_VOCAB_FILES_MAP
A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = READER_PRETRAINED_INIT_CONFIGURATION
A__ = ["""input_ids""", """attention_mask"""]
| 717 |
"""simple docstring"""
from collections.abc import Iterable
from typing import Any
class UpperCamelCase :
def __init__( self , snake_case__ = None ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : List[str] = value
_SCREAMING_SNAKE_CASE : Node | None = None # Added in order to delete a node easier
_SCREAMING_SNAKE_CASE : Node | None = None
_SCREAMING_SNAKE_CASE : Node | None = None
def __repr__( self ):
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F'''{self.value}''': (self.left, self.right)} , indent=1 )
class UpperCamelCase :
def __init__( self , snake_case__ = None ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : List[str] = root
def __str__( self ):
"""simple docstring"""
return str(self.root )
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ):
"""simple docstring"""
if new_children is not None: # reset its kids
_SCREAMING_SNAKE_CASE : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(snake_case__ ): # If it is the right children
_SCREAMING_SNAKE_CASE : Any = new_children
else:
_SCREAMING_SNAKE_CASE : Union[str, Any] = new_children
else:
_SCREAMING_SNAKE_CASE : Any = new_children
def __SCREAMING_SNAKE_CASE ( self , snake_case__ ):
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def __SCREAMING_SNAKE_CASE ( self ):
"""simple docstring"""
return self.root is None
def __SCREAMING_SNAKE_CASE ( self , snake_case__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[int] = Node(snake_case__ ) # create a new Node
if self.empty(): # if Tree is empty
_SCREAMING_SNAKE_CASE : str = new_node # set its root
else: # Tree is not empty
_SCREAMING_SNAKE_CASE : Dict = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
_SCREAMING_SNAKE_CASE : int = parent_node.left
else:
if parent_node.right is None:
_SCREAMING_SNAKE_CASE : str = new_node
break
else:
_SCREAMING_SNAKE_CASE : Optional[int] = parent_node.right
_SCREAMING_SNAKE_CASE : Any = parent_node
def __SCREAMING_SNAKE_CASE ( self , *snake_case__ ):
"""simple docstring"""
for value in values:
self.__insert(snake_case__ )
def __SCREAMING_SNAKE_CASE ( self , snake_case__ ):
"""simple docstring"""
if self.empty():
raise IndexError("Warning: Tree is empty! please use another." )
else:
_SCREAMING_SNAKE_CASE : Optional[int] = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
_SCREAMING_SNAKE_CASE : List[Any] = node.left if value < node.value else node.right
return node
def __SCREAMING_SNAKE_CASE ( self , snake_case__ = None ):
"""simple docstring"""
if node is None:
if self.root is None:
return None
_SCREAMING_SNAKE_CASE : Optional[Any] = self.root
if not self.empty():
while node.right is not None:
_SCREAMING_SNAKE_CASE : Dict = node.right
return node
def __SCREAMING_SNAKE_CASE ( self , snake_case__ = None ):
"""simple docstring"""
if node is None:
_SCREAMING_SNAKE_CASE : List[Any] = self.root
if self.root is None:
return None
if not self.empty():
_SCREAMING_SNAKE_CASE : Any = self.root
while node.left is not None:
_SCREAMING_SNAKE_CASE : Optional[int] = node.left
return node
def __SCREAMING_SNAKE_CASE ( self , snake_case__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Dict = self.search(snake_case__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(snake_case__ , snake_case__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(snake_case__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(snake_case__ , node.left )
else:
_SCREAMING_SNAKE_CASE : Dict = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
_SCREAMING_SNAKE_CASE : List[Any] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def __SCREAMING_SNAKE_CASE ( self , snake_case__ ):
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def __SCREAMING_SNAKE_CASE ( self , snake_case__=None ):
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ):
"""simple docstring"""
if node:
self.inorder(snake_case__ , node.left )
arr.append(node.value )
self.inorder(snake_case__ , node.right )
def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : list[int] = []
self.inorder(snake_case__ , snake_case__ ) # append all values to list using inorder traversal
return arr[k - 1]
def _lowerCAmelCase ( lowerCamelCase__ : Node | None ) -> list[Node]:
_SCREAMING_SNAKE_CASE : Optional[int] = []
if curr_node is not None:
_SCREAMING_SNAKE_CASE : int = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def _lowerCAmelCase ( ) -> None:
_SCREAMING_SNAKE_CASE : Any = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7)
_SCREAMING_SNAKE_CASE : List[Any] = BinarySearchTree()
for i in testlist:
t.insert(lowerCamelCase__ )
# Prints all the elements of the list in order traversal
print(lowerCamelCase__ )
if t.search(6 ) is not None:
print("The value 6 exists" )
else:
print("The value 6 doesn't exist" )
if t.search(-1 ) is not None:
print("The value -1 exists" )
else:
print("The value -1 doesn't exist" )
if not t.empty():
print("Max Value: ", t.get_max().value ) # type: ignore
print("Min Value: ", t.get_min().value ) # type: ignore
for i in testlist:
t.remove(lowerCamelCase__ )
print(lowerCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 295 | 0 |
"""simple docstring"""
from __future__ import annotations
from typing import Any
class lowerCamelCase :
def __init__( self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float = 0 ) -> List[str]:
SCREAMING_SNAKE_CASE__ = row, column
SCREAMING_SNAKE_CASE__ = [[default_value for c in range(UpperCAmelCase_ )] for r in range(UpperCAmelCase_ )]
def __str__( self : Optional[int] ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ = F"""Matrix consist of {self.row} rows and {self.column} columns\n"""
# Make string identifier
SCREAMING_SNAKE_CASE__ = 0
for row_vector in self.array:
for obj in row_vector:
SCREAMING_SNAKE_CASE__ = max(UpperCAmelCase_ , len(str(UpperCAmelCase_ ) ) )
SCREAMING_SNAKE_CASE__ = F"""%{max_element_length}s"""
# Make string and return
def single_line(__UpperCAmelCase : list[float] ) -> str:
nonlocal string_format_identifier
SCREAMING_SNAKE_CASE__ = "["
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(UpperCAmelCase_ ) for row_vector in self.array )
return s
def __repr__( self : Dict ) -> Optional[int]:
return str(self )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : tuple[int, int] ) -> int:
if not (isinstance(UpperCAmelCase_ , (list, tuple) ) and len(UpperCAmelCase_ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Any , __UpperCAmelCase : tuple[int, int] ) -> Tuple:
assert self.validate_indicies(UpperCAmelCase_ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : int , __UpperCAmelCase : tuple[int, int] , __UpperCAmelCase : float ) -> Dict:
assert self.validate_indicies(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = value
def __add__( self : Optional[int] , __UpperCAmelCase : Matrix ) -> Any:
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
assert self.row == another.row and self.column == another.column
# Add
SCREAMING_SNAKE_CASE__ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
SCREAMING_SNAKE_CASE__ = self[r, c] + another[r, c]
return result
def __neg__( self : Union[str, Any] ) -> str:
SCREAMING_SNAKE_CASE__ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
SCREAMING_SNAKE_CASE__ = -self[r, c]
return result
def __sub__( self : Optional[Any] , __UpperCAmelCase : Matrix ) -> Union[str, Any]:
return self + (-another)
def __mul__( self : Dict , __UpperCAmelCase : int | float | Matrix ) -> Optional[int]:
if isinstance(UpperCAmelCase_ , (int, float) ): # Scalar multiplication
SCREAMING_SNAKE_CASE__ = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
SCREAMING_SNAKE_CASE__ = self[r, c] * another
return result
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): # Matrix multiplication
assert self.column == another.row
SCREAMING_SNAKE_CASE__ = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
SCREAMING_SNAKE_CASE__ = F"""Unsupported type given for another ({type(UpperCAmelCase_ )})"""
raise TypeError(UpperCAmelCase_ )
def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple:
SCREAMING_SNAKE_CASE__ = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
SCREAMING_SNAKE_CASE__ = self[r, c]
return result
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Matrix , __UpperCAmelCase : Matrix ) -> Union[str, Any]:
assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
SCREAMING_SNAKE_CASE__ = v.transpose()
SCREAMING_SNAKE_CASE__ = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def A ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = Matrix(3 , 3 , 0 )
for i in range(3 ):
SCREAMING_SNAKE_CASE__ = 1
print(f"""a^(-1) is {ainv}""" )
# u, v
SCREAMING_SNAKE_CASE__ = Matrix(3 , 1 , 0 )
SCREAMING_SNAKE_CASE__ = 1, 2, -3
SCREAMING_SNAKE_CASE__ = Matrix(3 , 1 , 0 )
SCREAMING_SNAKE_CASE__ = 4, -2, 5
print(f"""u is {u}""" )
print(f"""v is {v}""" )
print(f"""uv^T is {u * v.transpose()}""" )
# Sherman Morrison
print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(snake_case__ , snake_case__ )}""" )
def A ( ):
'''simple docstring'''
import doctest
doctest.testmod()
testa()
| 196 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
snake_case = datasets.load_iris()
snake_case = np.array(data["""data"""])
snake_case = np.array(data["""target"""])
snake_case = data["""target_names"""]
snake_case , snake_case , snake_case , snake_case = train_test_split(X, y)
def lowerCamelCase__ ( lowercase , lowercase ):
"""simple docstring"""
return np.linalg.norm(np.array(lowercase ) - np.array(lowercase ) )
def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase , lowercase=5 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = zip(lowercase , lowercase )
# List of distances of all points from the point to be classified
SCREAMING_SNAKE_CASE : Optional[int] = []
for data_point in data:
SCREAMING_SNAKE_CASE : Tuple = euclidean_distance(data_point[0] , lowercase )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
SCREAMING_SNAKE_CASE : List[Any] = [i[1] for i in sorted(lowercase )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
SCREAMING_SNAKE_CASE : List[Any] = Counter(lowercase ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
| 62 | 0 |
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
pass
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
pass
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Any ):
__snake_case : int = [
[],
[],
[],
]
def snake_case__ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : int ):
try:
if len(self.queues[priority] ) >= 1_00:
raise OverflowError("""Maximum queue size is 100""" )
self.queues[priority].append(_lowerCAmelCase )
except IndexError:
raise ValueError("""Valid priorities are 0, 1, and 2""" )
def snake_case__ ( self : List[Any] ):
for queue in self.queues:
if queue:
return queue.pop(0 )
raise UnderFlowError("""All queues are empty""" )
def __str__( self : str ):
return "\n".join(f'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) )
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Union[str, Any] ):
__snake_case : Dict = []
def snake_case__ ( self : Dict , _lowerCAmelCase : int ):
if len(self.queue ) == 1_00:
raise OverFlowError("""Maximum queue size is 100""" )
self.queue.append(_lowerCAmelCase )
def snake_case__ ( self : Dict ):
if not self.queue:
raise UnderFlowError("""The queue is empty""" )
else:
__snake_case : Tuple = min(self.queue )
self.queue.remove(_lowerCAmelCase )
return data
def __str__( self : Union[str, Any] ):
return str(self.queue )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Optional[int] = FixedPriorityQueue()
fpq.enqueue(0 , 1_0 )
fpq.enqueue(1 , 7_0 )
fpq.enqueue(0 , 1_0_0 )
fpq.enqueue(2 , 1 )
fpq.enqueue(2 , 5 )
fpq.enqueue(1 , 7 )
fpq.enqueue(2 , 4 )
fpq.enqueue(1 , 6_4 )
fpq.enqueue(0 , 1_2_8 )
print(__SCREAMING_SNAKE_CASE )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(__SCREAMING_SNAKE_CASE )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
def __lowerCAmelCase ( ):
'''simple docstring'''
__snake_case : Union[str, Any] = ElementPriorityQueue()
epq.enqueue(1_0 )
epq.enqueue(7_0 )
epq.enqueue(1_0_0 )
epq.enqueue(1 )
epq.enqueue(5 )
epq.enqueue(7 )
epq.enqueue(4 )
epq.enqueue(6_4 )
epq.enqueue(1_2_8 )
print(__SCREAMING_SNAKE_CASE )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(__SCREAMING_SNAKE_CASE )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
if __name__ == "__main__":
fixed_priority_queue()
element_priority_queue()
| 708 | from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __lt__( self : Tuple , _lowerCAmelCase : Optional[int] ):
return self[-1] < other[-1]
def __eq__( self : Tuple , _lowerCAmelCase : Tuple ):
return self[-1] == other[-1]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
__snake_case : list[Stack] = []
# sort into stacks
for element in collection:
__snake_case : Dict = Stack([element] )
__snake_case : int = bisect_left(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if i != len(__SCREAMING_SNAKE_CASE ):
stacks[i].append(__SCREAMING_SNAKE_CASE )
else:
stacks.append(__SCREAMING_SNAKE_CASE )
# use a heap-based merge to merge stack efficiently
__snake_case : int = merge(*(reversed(__SCREAMING_SNAKE_CASE ) for stack in stacks) )
return collection
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item) for item in user_input.split(",")]
print(patience_sort(unsorted))
| 390 | 0 |
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 79 |
'''simple docstring'''
from __future__ import annotations
def snake_case ( a_ : list[int] , a_ : list[int] , a_ : list[int] , a_ : list[list[str]] , a_ : int , ) -> None:
"""simple docstring"""
UpperCamelCase_ : List[Any] = len(a_ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(a_ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , a_ , a_ , )
def snake_case ( a_ : int ) -> None:
"""simple docstring"""
UpperCamelCase_ : list[list[str]] = []
depth_first_search([] , [] , [] , a_ , a_ )
# Print all the boards
for board in boards:
for column in board:
print(a_ )
print("""""" )
print(len(a_ ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 208 | 0 |
class _lowerCAmelCase :
def __init__( self : int , __snake_case : int , __snake_case : List[Any]=None , __snake_case : List[str]=None ):
lowerCamelCase :Union[str, Any] = data
lowerCamelCase :str = previous
lowerCamelCase :Optional[int] = next_node
def __str__( self : List[Any] ):
return F"{self.data}"
def snake_case ( self : List[str] ):
return self.data
def snake_case ( self : int ):
return self.next
def snake_case ( self : str ):
return self.previous
class _lowerCAmelCase :
def __init__( self : Union[str, Any] , __snake_case : Any ):
lowerCamelCase :str = head
def __iter__( self : Union[str, Any] ):
return self
def snake_case ( self : Any ):
if not self.current:
raise StopIteration
else:
lowerCamelCase :Dict = self.current.get_data()
lowerCamelCase :Union[str, Any] = self.current.get_next()
return value
class _lowerCAmelCase :
def __init__( self : str ):
lowerCamelCase :Optional[Any] = None # First node in list
lowerCamelCase :Union[str, Any] = None # Last node in list
def __str__( self : Dict ):
lowerCamelCase :Tuple = self.head
lowerCamelCase :Any = []
while current is not None:
nodes.append(current.get_data() )
lowerCamelCase :Optional[Any] = current.get_next()
return " ".join(str(__snake_case ) for node in nodes )
def __contains__( self : List[Any] , __snake_case : int ):
lowerCamelCase :Optional[int] = self.head
while current:
if current.get_data() == value:
return True
lowerCamelCase :Union[str, Any] = current.get_next()
return False
def __iter__( self : Any ):
return LinkedListIterator(self.head )
def snake_case ( self : Union[str, Any] ):
if self.head:
return self.head.get_data()
return None
def snake_case ( self : List[str] ):
if self.tail:
return self.tail.get_data()
return None
def snake_case ( self : Optional[Any] , __snake_case : Node ):
if self.head is None:
lowerCamelCase :Optional[int] = node
lowerCamelCase :Dict = node
else:
self.insert_before_node(self.head , __snake_case )
def snake_case ( self : List[str] , __snake_case : Node ):
if self.head is None:
self.set_head(__snake_case )
else:
self.insert_after_node(self.tail , __snake_case )
def snake_case ( self : int , __snake_case : int ):
lowerCamelCase :List[Any] = Node(__snake_case )
if self.head is None:
self.set_head(__snake_case )
else:
self.set_tail(__snake_case )
def snake_case ( self : Tuple , __snake_case : Node , __snake_case : Node ):
lowerCamelCase :Any = node
lowerCamelCase :Dict = node.previous
if node.get_previous() is None:
lowerCamelCase :Optional[Any] = node_to_insert
else:
lowerCamelCase :Optional[Any] = node_to_insert
lowerCamelCase :int = node_to_insert
def snake_case ( self : Optional[Any] , __snake_case : Node , __snake_case : Node ):
lowerCamelCase :Dict = node
lowerCamelCase :Optional[int] = node.next
if node.get_next() is None:
lowerCamelCase :Union[str, Any] = node_to_insert
else:
lowerCamelCase :Dict = node_to_insert
lowerCamelCase :List[str] = node_to_insert
def snake_case ( self : int , __snake_case : int , __snake_case : int ):
lowerCamelCase :Tuple = 1
lowerCamelCase :int = Node(__snake_case )
lowerCamelCase :List[Any] = self.head
while node:
if current_position == position:
self.insert_before_node(__snake_case , __snake_case )
return
current_position += 1
lowerCamelCase :str = node.next
self.insert_after_node(self.tail , __snake_case )
def snake_case ( self : Any , __snake_case : int ):
lowerCamelCase :Dict = self.head
while node:
if node.get_data() == item:
return node
lowerCamelCase :List[Any] = node.get_next()
raise Exception('''Node not found''' )
def snake_case ( self : Any , __snake_case : Tuple ):
if (node := self.get_node(__snake_case )) is not None:
if node == self.head:
lowerCamelCase :Optional[Any] = self.head.get_next()
if node == self.tail:
lowerCamelCase :Optional[Any] = self.tail.get_previous()
self.remove_node_pointers(__snake_case )
@staticmethod
def snake_case ( __snake_case : Node ):
if node.get_next():
lowerCamelCase :Any = node.previous
if node.get_previous():
lowerCamelCase :Any = node.next
lowerCamelCase :Any = None
lowerCamelCase :Tuple = None
def snake_case ( self : List[str] ):
return self.head is None
def _lowerCamelCase ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 710 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A__ = {
"""configuration_nllb_moe""": [
"""NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""NllbMoeConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = [
"""NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NllbMoeForConditionalGeneration""",
"""NllbMoeModel""",
"""NllbMoePreTrainedModel""",
"""NllbMoeTop2Router""",
"""NllbMoeSparseMLP""",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 49 | 0 |
def a_ ( lowerCAmelCase_ : str ):
if len(lowerCAmelCase_ ) <= 1:
return [tuple(lowerCAmelCase_ )]
__lowerCAmelCase = []
def generate(lowerCAmelCase_ : int, lowerCAmelCase_ : List[str] ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1, lowerCAmelCase_ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
__lowerCAmelCase , __lowerCAmelCase = arr[k - 1], arr[i]
else: # k is odd
__lowerCAmelCase , __lowerCAmelCase = arr[k - 1], arr[0]
generate(k - 1, lowerCAmelCase_ )
generate(len(lowerCAmelCase_ ), lowerCAmelCase_ )
return res
if __name__ == "__main__":
_snake_case : int = input('Enter numbers separated by a comma:\n').strip()
_snake_case : List[Any] = [int(item) for item in user_input.split(',')]
print(heaps(arr))
| 53 | import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor
class lowerCamelCase__ ( unittest.TestCase ):
def __init__( self : List[str] , lowercase__ : Any , lowercase__ : List[Any]=7 , lowercase__ : List[str]=3 , lowercase__ : str=18 , lowercase__ : List[Any]=30 , lowercase__ : Optional[int]=4_00 , lowercase__ : Dict=True , lowercase__ : List[str]=None , lowercase__ : int=True , lowercase__ : Tuple=None , lowercase__ : int=True , lowercase__ : Tuple=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowercase__ : Optional[int]=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowercase__ : Any=True , ):
_lowerCAmelCase = size if size is not None else {'height': 2_24, 'width': 2_24}
_lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18}
_lowerCAmelCase = parent
_lowerCAmelCase = batch_size
_lowerCAmelCase = num_channels
_lowerCAmelCase = image_size
_lowerCAmelCase = min_resolution
_lowerCAmelCase = max_resolution
_lowerCAmelCase = do_resize
_lowerCAmelCase = size
_lowerCAmelCase = do_center_crop
_lowerCAmelCase = crop_size
_lowerCAmelCase = do_normalize
_lowerCAmelCase = image_mean
_lowerCAmelCase = image_std
_lowerCAmelCase = do_convert_rgb
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tuple=False , lowercase__ : List[Any]=False , lowercase__ : str=False ):
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
_lowerCAmelCase = []
for i in range(self.batch_size ):
image_inputs.append(
np.random.randint(
2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) )
else:
_lowerCAmelCase = []
for i in range(self.batch_size ):
_lowerCAmelCase , _lowerCAmelCase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 )
image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) )
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
_lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs]
if torchify:
_lowerCAmelCase = [torch.from_numpy(lowercase__ ) for x in image_inputs]
return image_inputs
@require_torch
@require_vision
class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ):
UpperCamelCase__ =ChineseCLIPImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
_lowerCAmelCase = ChineseCLIPImageProcessingTester(self , do_center_crop=lowercase__ )
@property
def SCREAMING_SNAKE_CASE__ ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase__ , 'do_resize' ) )
self.assertTrue(hasattr(lowercase__ , 'size' ) )
self.assertTrue(hasattr(lowercase__ , 'do_center_crop' ) )
self.assertTrue(hasattr(lowercase__ , 'center_crop' ) )
self.assertTrue(hasattr(lowercase__ , 'do_normalize' ) )
self.assertTrue(hasattr(lowercase__ , 'image_mean' ) )
self.assertTrue(hasattr(lowercase__ , 'image_std' ) )
self.assertTrue(hasattr(lowercase__ , 'do_convert_rgb' ) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 2_24, 'width': 2_24} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
_lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
pass
def SCREAMING_SNAKE_CASE__ ( self : str ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self : Any ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , numpify=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , np.ndarray )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self : int ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , torchify=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , torch.Tensor )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
@require_torch
@require_vision
class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ):
UpperCamelCase__ =ChineseCLIPImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
_lowerCAmelCase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowercase__ )
_lowerCAmelCase = 3
@property
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ):
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase__ , 'do_resize' ) )
self.assertTrue(hasattr(lowercase__ , 'size' ) )
self.assertTrue(hasattr(lowercase__ , 'do_center_crop' ) )
self.assertTrue(hasattr(lowercase__ , 'center_crop' ) )
self.assertTrue(hasattr(lowercase__ , 'do_normalize' ) )
self.assertTrue(hasattr(lowercase__ , 'image_mean' ) )
self.assertTrue(hasattr(lowercase__ , 'image_std' ) )
self.assertTrue(hasattr(lowercase__ , 'do_convert_rgb' ) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ):
pass
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
# Initialize image_processing
_lowerCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ )
for image in image_inputs:
self.assertIsInstance(lowercase__ , Image.Image )
# Test not batched input
_lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.expected_encoded_image_num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 192 | 0 |
_lowercase : int = [0, 2, 4, 6, 8]
_lowercase : int = [1, 3, 5, 7, 9]
def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__):
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
lowerCAmelCase_ : Tuple = 0
for digit in range(10):
lowerCAmelCase_ : Optional[int] = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 10 , snake_case__ , snake_case__)
return result
lowerCAmelCase_ : str = 0
for digita in range(10):
lowerCAmelCase_ : int = digita
if (remainder + digita) % 2 == 0:
lowerCAmelCase_ : str = ODD_DIGITS
else:
lowerCAmelCase_ : str = EVEN_DIGITS
for digita in other_parity_digits:
lowerCAmelCase_ : Dict = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 10 , snake_case__ , snake_case__ , )
return result
def UpperCamelCase ( snake_case__ = 9):
lowerCAmelCase_ : Tuple = 0
for length in range(1 , max_power + 1):
result += reversible_numbers(snake_case__ , 0 , [0] * length , snake_case__)
return result
if __name__ == "__main__":
print(f"{solution() = }")
| 720 |
from multiprocessing import Lock, Pipe, Process
# lock used to ensure that two processes do not access a pipe at the same time
_lowercase = Lock()
def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__):
global process_lock
# we perform n swaps since after n swaps we know we are sorted
# we *could* stop early if we are sorted already, but it takes as long to
# find out we are sorted as it does to sort the list with this algorithm
for i in range(0 , 10):
if (i + position) % 2 == 0 and r_send is not None:
# send your value to your right neighbor
process_lock.acquire()
r_send[1].send(snake_case__)
process_lock.release()
# receive your right neighbor's value
process_lock.acquire()
lowerCAmelCase_ : Optional[Any] = rr_cv[0].recv()
process_lock.release()
# take the lower value since you are on the left
lowerCAmelCase_ : Any = min(snake_case__ , snake_case__)
elif (i + position) % 2 != 0 and l_send is not None:
# send your value to your left neighbor
process_lock.acquire()
l_send[1].send(snake_case__)
process_lock.release()
# receive your left neighbor's value
process_lock.acquire()
lowerCAmelCase_ : str = lr_cv[0].recv()
process_lock.release()
# take the higher value since you are on the right
lowerCAmelCase_ : Dict = max(snake_case__ , snake_case__)
# after all swaps are performed, send the values back to main
result_pipe[1].send(snake_case__)
def UpperCamelCase ( snake_case__):
lowerCAmelCase_ : Union[str, Any] = []
lowerCAmelCase_ : int = []
# initialize the list of pipes where the values will be retrieved
for _ in arr:
result_pipe.append(Pipe())
# creates the processes
# the first and last process only have one neighbor so they are made outside
# of the loop
lowerCAmelCase_ : Tuple = Pipe()
lowerCAmelCase_ : Optional[int] = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ))
lowerCAmelCase_ : int = temp_rs
lowerCAmelCase_ : List[Any] = temp_rr
for i in range(1 , len(snake_case__) - 1):
lowerCAmelCase_ : Dict = Pipe()
lowerCAmelCase_ : List[str] = Pipe()
process_array_.append(
Process(
target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ))
lowerCAmelCase_ : Dict = temp_rs
lowerCAmelCase_ : Optional[Any] = temp_rr
process_array_.append(
Process(
target=snake_case__ , args=(
len(snake_case__) - 1,
arr[len(snake_case__) - 1],
temp_ls,
None,
temp_lr,
None,
result_pipe[len(snake_case__) - 1],
) , ))
# start the processes
for p in process_array_:
p.start()
# wait for the processes to end and write their values to the list
for p in range(0 , len(snake_case__)):
lowerCAmelCase_ : Union[str, Any] = result_pipe[p][0].recv()
process_array_[p].join()
return arr
def UpperCamelCase ( ):
lowerCAmelCase_ : Optional[Any] = list(range(10 , 0 , -1))
print("Initial List")
print(*snake_case__)
lowerCAmelCase_ : Tuple = odd_even_transposition(snake_case__)
print("Sorted List\n")
print(*snake_case__)
if __name__ == "__main__":
main()
| 683 | 0 |
"""simple docstring"""
from __future__ import annotations
__snake_case = {
'A': ['B', 'C', 'E'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F', 'G'],
'D': ['B'],
'E': ['A', 'B', 'D'],
'F': ['C'],
'G': ['C'],
}
class _lowerCAmelCase :
def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> None:
'''simple docstring'''
snake_case : Any = graph
# mapping node to its parent in resulting breadth first tree
snake_case : dict[str, str | None] = {}
snake_case : Any = source_vertex
def lowerCamelCase ( self ) -> None:
'''simple docstring'''
snake_case : Tuple = {self.source_vertex}
snake_case : Any = None
snake_case : List[str] = [self.source_vertex] # first in first out queue
while queue:
snake_case : List[Any] = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(__a )
snake_case : int = vertex
queue.append(__a )
def lowerCamelCase ( self , UpperCamelCase__ ) -> str:
'''simple docstring'''
if target_vertex == self.source_vertex:
return self.source_vertex
snake_case : int = self.parent.get(__a )
if target_vertex_parent is None:
snake_case : Union[str, Any] = (
F'No path from vertex: {self.source_vertex} to vertex: {target_vertex}'
)
raise ValueError(__a )
return self.shortest_path(__a ) + F'->{target_vertex}'
if __name__ == "__main__":
__snake_case = Graph(graph, """G""")
g.breath_first_search()
print(g.shortest_path("""D"""))
print(g.shortest_path("""G"""))
print(g.shortest_path("""Foo"""))
| 178 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case__ : Union[str, Any] = logging.get_logger(__name__)
snake_case__ : Tuple = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class SCREAMING_SNAKE_CASE_ (a__ ):
'''simple docstring'''
_a = "unispeech-sat"
def __init__( self : List[str] , __a : Dict=32 , __a : int=768 , __a : int=12 , __a : Tuple=12 , __a : Optional[int]=3_072 , __a : int="gelu" , __a : Optional[int]=0.1 , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : str=0.0 , __a : List[str]=0.0 , __a : int=0.1 , __a : List[Any]=0.1 , __a : Tuple=0.02 , __a : str=1e-5 , __a : Optional[int]="group" , __a : Any="gelu" , __a : Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , __a : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , __a : List[Any]=(10, 3, 3, 3, 3, 2, 2) , __a : Optional[Any]=False , __a : Optional[int]=128 , __a : Dict=16 , __a : str=False , __a : List[Any]=True , __a : Tuple=0.05 , __a : str=10 , __a : Any=2 , __a : Any=0.0 , __a : List[Any]=10 , __a : str=0 , __a : str=320 , __a : int=2 , __a : Optional[Any]=0.1 , __a : Optional[int]=100 , __a : Any=256 , __a : Optional[int]=256 , __a : int=0.1 , __a : Tuple="mean" , __a : List[str]=False , __a : Optional[Any]=False , __a : List[Any]=256 , __a : Dict=(512, 512, 512, 512, 1_500) , __a : int=(5, 3, 3, 1, 1) , __a : str=(1, 2, 3, 1, 1) , __a : str=512 , __a : str=0 , __a : List[Any]=1 , __a : Optional[Any]=2 , __a : Optional[int]=504 , **__a : Tuple , ) ->Dict:
super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a )
lowerCamelCase_ : Any = hidden_size
lowerCamelCase_ : Optional[int] = feat_extract_norm
lowerCamelCase_ : Dict = feat_extract_activation
lowerCamelCase_ : List[Any] = list(__a )
lowerCamelCase_ : Any = list(__a )
lowerCamelCase_ : List[Any] = list(__a )
lowerCamelCase_ : str = conv_bias
lowerCamelCase_ : int = num_conv_pos_embeddings
lowerCamelCase_ : List[Any] = num_conv_pos_embedding_groups
lowerCamelCase_ : str = len(self.conv_dim )
lowerCamelCase_ : Any = num_hidden_layers
lowerCamelCase_ : List[str] = intermediate_size
lowerCamelCase_ : Tuple = hidden_act
lowerCamelCase_ : List[str] = num_attention_heads
lowerCamelCase_ : Any = hidden_dropout
lowerCamelCase_ : Optional[int] = attention_dropout
lowerCamelCase_ : Tuple = activation_dropout
lowerCamelCase_ : str = feat_proj_dropout
lowerCamelCase_ : Any = final_dropout
lowerCamelCase_ : Optional[Any] = layerdrop
lowerCamelCase_ : str = layer_norm_eps
lowerCamelCase_ : str = initializer_range
lowerCamelCase_ : Optional[Any] = vocab_size
lowerCamelCase_ : Optional[int] = num_clusters
lowerCamelCase_ : List[Any] = do_stable_layer_norm
lowerCamelCase_ : Tuple = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase_ : List[str] = apply_spec_augment
lowerCamelCase_ : str = mask_time_prob
lowerCamelCase_ : List[Any] = mask_time_length
lowerCamelCase_ : Optional[int] = mask_time_min_masks
lowerCamelCase_ : List[Any] = mask_feature_prob
lowerCamelCase_ : Optional[int] = mask_feature_length
lowerCamelCase_ : Dict = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
lowerCamelCase_ : Dict = num_codevectors_per_group
lowerCamelCase_ : List[str] = num_codevector_groups
lowerCamelCase_ : Union[str, Any] = contrastive_logits_temperature
lowerCamelCase_ : Optional[int] = feat_quantizer_dropout
lowerCamelCase_ : List[Any] = num_negatives
lowerCamelCase_ : Optional[int] = codevector_dim
lowerCamelCase_ : str = proj_codevector_dim
lowerCamelCase_ : List[Any] = diversity_loss_weight
# ctc loss
lowerCamelCase_ : Optional[int] = ctc_loss_reduction
lowerCamelCase_ : int = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
lowerCamelCase_ : Dict = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
lowerCamelCase_ : List[Any] = list(__a )
lowerCamelCase_ : Any = list(__a )
lowerCamelCase_ : List[Any] = list(__a )
lowerCamelCase_ : Optional[int] = xvector_output_dim
@property
def _lowerCAmelCase ( self : int ) ->Optional[Any]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 278 | 0 |
'''simple docstring'''
import os
import sys
import unittest
UpperCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
UpperCamelCase__ = os.path.join(git_repo_path, '''src''', '''diffusers''')
class lowerCamelCase_ ( unittest.TestCase ):
def lowercase_ ( self : Optional[int] ):
'''simple docstring'''
UpperCAmelCase__ : Optional[Any] = find_backend(''' if not is_torch_available():''' )
self.assertEqual(_A , '''torch''' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
UpperCAmelCase__ : Optional[Any] = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' )
self.assertEqual(_A , '''torch_and_transformers''' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
UpperCAmelCase__ : int = find_backend(
''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' )
self.assertEqual(_A , '''torch_and_transformers_and_onnx''' )
def lowercase_ ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase__ : Dict = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('''torch''' , _A )
self.assertIn('''torch_and_transformers''' , _A )
self.assertIn('''flax_and_transformers''' , _A )
self.assertIn('''torch_and_transformers_and_onnx''' , _A )
# Likewise, we can't assert on the exact content of a key
self.assertIn('''UNet2DModel''' , objects['''torch'''] )
self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax'''] )
self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers'''] )
self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers'''] )
self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy'''] )
self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx'''] )
def lowercase_ ( self : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = create_dummy_object('''CONSTANT''' , '''\'torch\'''' )
self.assertEqual(_A , '''\nCONSTANT = None\n''' )
UpperCAmelCase__ : List[str] = create_dummy_object('''function''' , '''\'torch\'''' )
self.assertEqual(
_A , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' )
UpperCAmelCase__ : Optional[int] = '''
class FakeClass(metaclass=DummyObject):
_backends = \'torch\'
def __init__(self, *args, **kwargs):
requires_backends(self, \'torch\')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, \'torch\')
'''
UpperCAmelCase__ : int = create_dummy_object('''FakeClass''' , '''\'torch\'''' )
self.assertEqual(_A , _A )
def lowercase_ ( self : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Tuple = '''# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
'''
UpperCAmelCase__ : Optional[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} )
self.assertEqual(dummy_files['''torch'''] , _A )
| 312 |
'''simple docstring'''
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
UpperCamelCase__ = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''')
UpperCamelCase__ = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split()
UpperCamelCase__ = '''|'''.join(sys.argv[1:])
UpperCamelCase__ = re.compile(RF"""^({joined_dirs}).*?\.py$""")
UpperCamelCase__ = [x for x in modified_files if regex.match(x)]
print(''' '''.join(relevant_modified_files), end='''''')
| 312 | 1 |
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def lowerCamelCase_ ( __UpperCamelCase ):
A_ , A_ = analyze_text(_SCREAMING_SNAKE_CASE )
A_ = list(''' ''' + ascii_lowercase )
# what is our total sum of probabilities.
A_ = sum(single_char_strings.values() )
# one length string
A_ = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
A_ = single_char_strings[ch]
A_ = my_str / all_sum
my_fir_sum += prob * math.loga(_SCREAMING_SNAKE_CASE ) # entropy formula.
# print entropy
print(F"{round(-1 * my_fir_sum ):.1f}" )
# two len string
A_ = sum(two_char_strings.values() )
A_ = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
A_ = cha + cha
if sequence in two_char_strings:
A_ = two_char_strings[sequence]
A_ = int(_SCREAMING_SNAKE_CASE ) / all_sum
my_sec_sum += prob * math.loga(_SCREAMING_SNAKE_CASE )
# print second entropy
print(F"{round(-1 * my_sec_sum ):.1f}" )
# print the difference between them
print(F"{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}" )
def lowerCamelCase_ ( __UpperCamelCase ):
A_ = Counter() # type: ignore
A_ = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def lowerCamelCase_ ( ):
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main() | 141 |
'''simple docstring'''
import argparse
import json
from tqdm import tqdm
def _snake_case ( ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--src_path""" , type=_SCREAMING_SNAKE_CASE , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , )
parser.add_argument(
"""--evaluation_set""" , type=_SCREAMING_SNAKE_CASE , help="""where to store parsed evaluation_set file""" , )
parser.add_argument(
"""--gold_data_path""" , type=_SCREAMING_SNAKE_CASE , help="""where to store parsed gold_data_path file""" , )
lowerCAmelCase = parser.parse_args()
with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open(
args.gold_data_path , """w""" ) as gold_file:
lowerCAmelCase = json.load(_SCREAMING_SNAKE_CASE )
for dpr_record in tqdm(_SCREAMING_SNAKE_CASE ):
lowerCAmelCase = dpr_record["""question"""]
lowerCAmelCase = [context["""title"""] for context in dpr_record["""positive_ctxs"""]]
eval_file.write(question + """\n""" )
gold_file.write("""\t""".join(_SCREAMING_SNAKE_CASE ) + """\n""" )
if __name__ == "__main__":
main() | 433 | 0 |
def UpperCamelCase_ ( a_ = 1000 ) ->int:
A , A =1, 1
A =[]
for i in range(1 , n + 1 ):
A =prev_numerator + 2 * prev_denominator
A =prev_numerator + prev_denominator
if len(str(a_ ) ) > len(str(a_ ) ):
result.append(a_ )
A =numerator
A =denominator
return len(a_ )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 689 |
import collections
import os
from typing import List, Optional, Tuple
from transformers.utils import is_jieba_available, requires_backends
if is_jieba_available():
import jieba
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {"""vocab_file""": """vocab.txt"""}
__a = {
"""vocab_file""": {
"""openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""",
},
}
__a = {
"""openbmb/cpm-ant-10b""": 1_0_2_4,
}
def UpperCamelCase_ ( a_ ) ->List[Any]:
A =collections.OrderedDict()
with open(a_ , "r" , encoding="utf-8" ) as reader:
A =reader.readlines()
for index, token in enumerate(a_ ):
A =token.rstrip("\n" )
A =index
return vocab
class UpperCamelCase__( lowerCAmelCase__ ):
"""simple docstring"""
def __init__( self : Tuple , snake_case__ : int , snake_case__ : int="<unk>" , snake_case__ : Optional[Any]=2_00 ):
"""simple docstring"""
A =vocab
A =unk_token
A =max_input_chars_per_word
def _a ( self : Optional[Any] , snake_case__ : Tuple ):
"""simple docstring"""
A =list(snake_case__ )
if len(snake_case__ ) > self.max_input_chars_per_word:
return [self.unk_token]
A =0
A =[]
while start < len(snake_case__ ):
A =len(snake_case__ )
A =None
while start < end:
A ="".join(chars[start:end] )
if substr in self.vocab:
A =substr
break
end -= 1
if cur_substr is None:
sub_tokens.append(self.unk_token )
start += 1
else:
sub_tokens.append(snake_case__ )
A =end
return sub_tokens
class UpperCamelCase__( lowerCAmelCase__ ):
"""simple docstring"""
_A = VOCAB_FILES_NAMES
_A = PRETRAINED_VOCAB_FILES_MAP
_A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_A = ["input_ids", "attention_mask"]
_A = False
def __init__( self : Dict , snake_case__ : Union[str, Any] , snake_case__ : Any="<d>" , snake_case__ : Optional[int]="</d>" , snake_case__ : Optional[int]="<s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : List[str]="<pad>" , snake_case__ : Any="<unk>" , snake_case__ : List[str]="</n>" , snake_case__ : Any="</_>" , snake_case__ : List[str]="left" , **snake_case__ : Optional[int] , ):
"""simple docstring"""
requires_backends(self , ["jieba"] )
super().__init__(
bod_token=snake_case__ , eod_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , unk_token=snake_case__ , line_token=snake_case__ , space_token=snake_case__ , padding_side=snake_case__ , **snake_case__ , )
A =bod_token
A =eod_token
A =load_vocab(snake_case__ )
A =self.encoder[space_token]
A =self.encoder[line_token]
del self.encoder[space_token]
del self.encoder[line_token]
A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) )
A ={v: k for k, v in self.encoder.items()}
A =WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token )
@property
def _a ( self : Dict ):
"""simple docstring"""
return self.encoder[self.bod_token]
@property
def _a ( self : List[str] ):
"""simple docstring"""
return self.encoder[self.eod_token]
@property
def _a ( self : Any ):
"""simple docstring"""
return self.encoder["\n"]
@property
def _a ( self : List[str] ):
"""simple docstring"""
return len(self.encoder )
def _a ( self : Tuple ):
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def _a ( self : Tuple , snake_case__ : int ):
"""simple docstring"""
A =[]
for x in jieba.cut(snake_case__ , cut_all=snake_case__ ):
output_tokens.extend(self.wordpiece_tokenizer.tokenize(snake_case__ ) )
return output_tokens
def _a ( self : List[Any] , snake_case__ : List[Any] , **snake_case__ : str ):
"""simple docstring"""
A =[i for i in token_ids if i >= 0]
A =[
x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id
]
return super()._decode(snake_case__ , **snake_case__ )
def _a ( self : List[Any] , snake_case__ : int ):
"""simple docstring"""
return token in self.encoder
def _a ( self : Optional[Any] , snake_case__ : List[str] ):
"""simple docstring"""
return "".join(snake_case__ )
def _a ( self : List[Any] , snake_case__ : Optional[Any] ):
"""simple docstring"""
return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) )
def _a ( self : Dict , snake_case__ : Optional[int] ):
"""simple docstring"""
return self.decoder.get(snake_case__ , self.unk_token )
def _a ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ):
"""simple docstring"""
if os.path.isdir(snake_case__ ):
A =os.path.join(
snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
else:
A =(filename_prefix + "-" if filename_prefix else "") + save_directory
A =0
if " " in self.encoder:
A =self.encoder[" "]
del self.encoder[" "]
if "\n" in self.encoder:
A =self.encoder["\n"]
del self.encoder["\n"]
A =collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) )
with open(snake_case__ , "w" , encoding="utf-8" ) as writer:
for token, token_index in self.encoder.items():
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
" Please check that the vocabulary is not corrupted!" )
A =token_index
writer.write(token + "\n" )
index += 1
return (vocab_file,)
def _a ( self : Any , snake_case__ : List[int] , snake_case__ : List[int] = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.bos_token_id] + token_ids_a
return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a
def _a ( self : Optional[int] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ )
if token_ids_a is not None:
return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ ))
return [1] + ([0] * len(snake_case__ ))
| 689 | 1 |
import os
import pytest
from attr import dataclass
_snake_case = '''us-east-1''' # defaults region
@dataclass
class lowerCAmelCase_ :
"""simple docstring"""
UpperCAmelCase__ = 42
UpperCAmelCase__ = "arn:aws:iam::558105141721:role/sagemaker_execution_role"
UpperCAmelCase__ = {
"task_name": "mnli",
"per_device_train_batch_size": 16,
"per_device_eval_batch_size": 16,
"do_train": True,
"do_eval": True,
"do_predict": True,
"output_dir": "/opt/ml/model",
"overwrite_output_dir": True,
"max_steps": 500,
"save_steps": 5_500,
}
UpperCAmelCase__ = {**hyperparameters, "max_steps": 1_000}
@property
def __lowercase( self ) -> Union[str, Any]:
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def __lowercase( self ) -> Optional[Any]:
return f"""{self.framework}-transfromers-test"""
@property
def __lowercase( self ) -> Optional[Any]:
return f"""./tests/sagemaker/scripts/{self.framework}"""
@property
def __lowercase( self ) -> Optional[Any]:
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope='class' )
def _a ( __lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = SageMakerTestEnvironment(framework=request.cls.framework )
| 383 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A ( lowerCAmelCase , unittest.TestCase ):
lowerCAmelCase_ : Dict = KandinskyInpaintPipeline
lowerCAmelCase_ : Dict = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"]
lowerCAmelCase_ : Any = [
"prompt",
"negative_prompt",
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
lowerCAmelCase_ : List[str] = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
lowerCAmelCase_ : Tuple = False
@property
def lowercase__ ( self : List[str] ):
return 32
@property
def lowercase__ ( self : int ):
return 32
@property
def lowercase__ ( self : str ):
return self.time_input_dim
@property
def lowercase__ ( self : str ):
return self.time_input_dim * 4
@property
def lowercase__ ( self : Any ):
return 100
@property
def lowercase__ ( self : Optional[int] ):
lowerCAmelCase : List[Any] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' )
return tokenizer
@property
def lowercase__ ( self : int ):
torch.manual_seed(0 )
lowerCAmelCase : Optional[Any] = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
lowerCAmelCase : int = MultilingualCLIP(UpperCAmelCase_ )
lowerCAmelCase : Union[str, Any] = text_encoder.eval()
return text_encoder
@property
def lowercase__ ( self : int ):
torch.manual_seed(0 )
lowerCAmelCase : List[str] = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'text_image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'text_image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
lowerCAmelCase : str = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def lowercase__ ( self : Union[str, Any] ):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowercase__ ( self : Tuple ):
torch.manual_seed(0 )
lowerCAmelCase : Optional[Any] = VQModel(**self.dummy_movq_kwargs )
return model
def lowercase__ ( self : str ):
lowerCAmelCase : Dict = self.dummy_text_encoder
lowerCAmelCase : List[Any] = self.dummy_tokenizer
lowerCAmelCase : Optional[int] = self.dummy_unet
lowerCAmelCase : Tuple = self.dummy_movq
lowerCAmelCase : str = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCAmelCase_ , )
lowerCAmelCase : Any = {
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def lowercase__ ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=0 ):
lowerCAmelCase : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
lowerCAmelCase : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCAmelCase_ )
# create init_image
lowerCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
lowerCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase : Any = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert('RGB' ).resize((256, 256) )
# create mask
lowerCAmelCase : Optional[int] = np.ones((64, 64) , dtype=np.floataa )
lowerCAmelCase : List[Any] = 0
if str(UpperCAmelCase_ ).startswith('mps' ):
lowerCAmelCase : List[str] = torch.manual_seed(UpperCAmelCase_ )
else:
lowerCAmelCase : Optional[int] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
lowerCAmelCase : int = {
'prompt': 'horse',
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def lowercase__ ( self : Dict ):
lowerCAmelCase : Dict = 'cpu'
lowerCAmelCase : Tuple = self.get_dummy_components()
lowerCAmelCase : Tuple = self.pipeline_class(**UpperCAmelCase_ )
lowerCAmelCase : Optional[int] = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
lowerCAmelCase : int = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
lowerCAmelCase : int = output.images
lowerCAmelCase : str = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
lowerCAmelCase : List[str] = image[0, -3:, -3:, -1]
lowerCAmelCase : List[Any] = image_from_tuple[0, -3:, -3:, -1]
print(f"image.shape {image.shape}" )
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase : int = np.array(
[0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
def lowercase__ ( self : Tuple ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
def lowercase__ ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase__ ( self : Optional[Any] ):
lowerCAmelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' )
lowerCAmelCase : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa )
lowerCAmelCase : int = 0
lowerCAmelCase : Optional[int] = 'a hat'
lowerCAmelCase : Union[str, Any] = KandinskyPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
lowerCAmelCase : List[Any] = KandinskyInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa )
lowerCAmelCase : Union[str, Any] = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
lowerCAmelCase : Any = torch.Generator(device='cpu' ).manual_seed(0 )
lowerCAmelCase , lowerCAmelCase : Union[str, Any] = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
lowerCAmelCase : Optional[int] = pipeline(
UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , )
lowerCAmelCase : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 343 | 0 |
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse("""3.8"""):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: Union[str, Any]=False ):
'''simple docstring'''
try:
lowercase_ = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
lowercase_ = default
else:
# KEY is set, convert it to True or False.
try:
lowercase_ = strtobool(_SCREAMING_SNAKE_CASE )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'If set, {key} must be yes or no.' )
return _value
SCREAMING_SNAKE_CASE__ = parse_flag_from_env("""RUN_SLOW""", default=False)
SCREAMING_SNAKE_CASE__ = parse_flag_from_env("""RUN_REMOTE""", default=False)
SCREAMING_SNAKE_CASE__ = parse_flag_from_env("""RUN_LOCAL""", default=True)
SCREAMING_SNAKE_CASE__ = parse_flag_from_env("""RUN_PACKAGED""", default=True)
# Compression
SCREAMING_SNAKE_CASE__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""")
SCREAMING_SNAKE_CASE__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""")
SCREAMING_SNAKE_CASE__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""")
# Audio
SCREAMING_SNAKE_CASE__ = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""),
reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """,
)
# Beam
SCREAMING_SNAKE_CASE__ = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""),
reason="""test requires apache-beam and a compatible dill version""",
)
# Dill-cloudpickle compatibility
SCREAMING_SNAKE_CASE__ = pytest.mark.skipif(
config.DILL_VERSION <= version.parse("""0.3.2"""),
reason="""test requires dill>0.3.2 for cloudpickle compatibility""",
)
# Windows
SCREAMING_SNAKE_CASE__ = pytest.mark.skipif(
sys.platform == """win32""",
reason="""test should not be run on Windows""",
)
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ):
'''simple docstring'''
try:
import faiss # noqa
except ImportError:
lowercase_ = unittest.skip("test requires faiss" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ):
'''simple docstring'''
try:
import regex # noqa
except ImportError:
lowercase_ = unittest.skip("test requires regex" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] ):
'''simple docstring'''
try:
import elasticsearch # noqa
except ImportError:
lowercase_ = unittest.skip("test requires elasticsearch" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ):
'''simple docstring'''
try:
import sqlalchemy # noqa
except ImportError:
lowercase_ = unittest.skip("test requires sqlalchemy" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] ):
'''simple docstring'''
if not config.TORCH_AVAILABLE:
lowercase_ = unittest.skip("test requires PyTorch" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] ):
'''simple docstring'''
if not config.TF_AVAILABLE:
lowercase_ = unittest.skip("test requires TensorFlow" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ):
'''simple docstring'''
if not config.JAX_AVAILABLE:
lowercase_ = unittest.skip("test requires JAX" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] ):
'''simple docstring'''
if not config.PIL_AVAILABLE:
lowercase_ = unittest.skip("test requires Pillow" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple ):
'''simple docstring'''
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("test requires transformers" )(_SCREAMING_SNAKE_CASE )
else:
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ):
'''simple docstring'''
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("test requires tiktoken" )(_SCREAMING_SNAKE_CASE )
else:
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ):
'''simple docstring'''
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("test requires spacy" )(_SCREAMING_SNAKE_CASE )
else:
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ):
'''simple docstring'''
def _require_spacy_model(__lowerCamelCase: Tuple ):
try:
import spacy # noqa F401
spacy.load(_SCREAMING_SNAKE_CASE )
except ImportError:
return unittest.skip("test requires spacy" )(_SCREAMING_SNAKE_CASE )
except OSError:
return unittest.skip("test requires spacy model \'{}\'".format(_SCREAMING_SNAKE_CASE ) )(_SCREAMING_SNAKE_CASE )
else:
return test_case
return _require_spacy_model
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str ):
'''simple docstring'''
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("test requires pyspark" )(_SCREAMING_SNAKE_CASE )
else:
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict ):
'''simple docstring'''
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("test requires joblibspark" )(_SCREAMING_SNAKE_CASE )
else:
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict ):
'''simple docstring'''
if not _run_slow_tests or _run_slow_tests == 0:
lowercase_ = unittest.skip("test is slow" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] ):
'''simple docstring'''
if not _run_local_tests or _run_local_tests == 0:
lowercase_ = unittest.skip("test is local" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict ):
'''simple docstring'''
if not _run_packaged_tests or _run_packaged_tests == 0:
lowercase_ = unittest.skip("test is packaged" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] ):
'''simple docstring'''
if not _run_remote_tests or _run_remote_tests == 0:
lowercase_ = unittest.skip("test requires remote" )(_SCREAMING_SNAKE_CASE )
return test_case
def SCREAMING_SNAKE_CASE_ ( *__lowerCamelCase: Tuple ):
'''simple docstring'''
def decorate(cls: Any ):
for name, fn in cls.__dict__.items():
if callable(_SCREAMING_SNAKE_CASE ) and name.startswith("test" ):
for decorator in decorators:
lowercase_ = decorator(_SCREAMING_SNAKE_CASE )
setattr(cls , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return cls
return decorate
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
pass
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
lowerCAmelCase__ = 0
lowerCAmelCase__ = 1
lowerCAmelCase__ = 2
@contextmanager
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Dict=OfflineSimulationMode.CONNECTION_FAILS , __lowerCamelCase: Optional[int]=1E-16 ):
'''simple docstring'''
lowercase_ = requests.Session().request
def timeout_request(__lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , **__lowerCamelCase: Optional[int] ):
# Change the url to an invalid url so that the connection hangs
lowercase_ = "https://10.255.255.1"
if kwargs.get("timeout" ) is None:
raise RequestWouldHangIndefinitelyError(
F'Tried a call to {url} in offline mode with no timeout set. Please set a timeout.' )
lowercase_ = timeout
try:
return online_request(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
lowercase_ = url
lowercase_ = e.args[0]
lowercase_ = (max_retry_error.args[0].replace("10.255.255.1" , F'OfflineMock[{url}]' ),)
lowercase_ = (max_retry_error,)
raise
def raise_connection_error(__lowerCamelCase: str , __lowerCamelCase: int , **__lowerCamelCase: List[str] ):
raise requests.ConnectionError("Offline mode is enabled." , request=_SCREAMING_SNAKE_CASE )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("requests.Session.send" , _SCREAMING_SNAKE_CASE ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("requests.Session.request" , _SCREAMING_SNAKE_CASE ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("datasets.config.HF_DATASETS_OFFLINE" , _SCREAMING_SNAKE_CASE ):
yield
else:
raise ValueError("Please use a value from the OfflineSimulationMode enum." )
@contextmanager
def SCREAMING_SNAKE_CASE_ ( *__lowerCamelCase: List[Any] , **__lowerCamelCase: Optional[Any] ):
'''simple docstring'''
lowercase_ = str(Path().resolve() )
with tempfile.TemporaryDirectory(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) as tmp_dir:
try:
os.chdir(_SCREAMING_SNAKE_CASE )
yield
finally:
os.chdir(_SCREAMING_SNAKE_CASE )
@contextmanager
def SCREAMING_SNAKE_CASE_ ( ):
'''simple docstring'''
import gc
gc.collect()
lowercase_ = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def SCREAMING_SNAKE_CASE_ ( ):
'''simple docstring'''
import gc
gc.collect()
lowercase_ = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] ):
'''simple docstring'''
return deepcopy(_SCREAMING_SNAKE_CASE ).integers(0 , 100 , 10 ).tolist() == deepcopy(_SCREAMING_SNAKE_CASE ).integers(0 , 100 , 10 ).tolist()
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int ):
'''simple docstring'''
import decorator
from requests.exceptions import HTTPError
def _wrapper(__lowerCamelCase: Optional[int] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Tuple ):
try:
return func(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
except HTTPError as err:
if str(_SCREAMING_SNAKE_CASE ).startswith("500" ) or str(_SCREAMING_SNAKE_CASE ).startswith("502" ):
pytest.xfail(str(_SCREAMING_SNAKE_CASE ) )
raise err
return decorator.decorator(_wrapper , _SCREAMING_SNAKE_CASE )
class __lowerCamelCase :
"""simple docstring"""
def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]:
'''simple docstring'''
lowercase_ = returncode
lowercase_ = stdout
lowercase_ = stderr
async def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: List[Any] ):
'''simple docstring'''
while True:
lowercase_ = await stream.readline()
if line:
callback(_SCREAMING_SNAKE_CASE )
else:
break
async def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Any=None , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=False , __lowerCamelCase: Optional[Any]=False ):
'''simple docstring'''
if echo:
print("\nRunning: " , " ".join(_SCREAMING_SNAKE_CASE ) )
lowercase_ = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_SCREAMING_SNAKE_CASE , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_SCREAMING_SNAKE_CASE , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
lowercase_ = []
lowercase_ = []
def tee(__lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple="" ):
lowercase_ = line.decode("utf-8" ).rstrip()
sink.append(_SCREAMING_SNAKE_CASE )
if not quiet:
print(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , file=_SCREAMING_SNAKE_CASE )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda __lowerCamelCase : tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sys.stdout , label="stdout:" ) ),
_read_stream(p.stderr , lambda __lowerCamelCase : tee(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sys.stderr , label="stderr:" ) ),
] , timeout=_SCREAMING_SNAKE_CASE , )
return _RunOutput(await p.wait() , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: str=None , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Any=180 , __lowerCamelCase: Tuple=False , __lowerCamelCase: Dict=True ):
'''simple docstring'''
lowercase_ = asyncio.get_event_loop()
lowercase_ = loop.run_until_complete(
_stream_subprocess(_SCREAMING_SNAKE_CASE , env=_SCREAMING_SNAKE_CASE , stdin=_SCREAMING_SNAKE_CASE , timeout=_SCREAMING_SNAKE_CASE , quiet=_SCREAMING_SNAKE_CASE , echo=_SCREAMING_SNAKE_CASE ) )
lowercase_ = " ".join(_SCREAMING_SNAKE_CASE )
if result.returncode > 0:
lowercase_ = "\n".join(result.stderr )
raise RuntimeError(
F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n'
F'The combined stderr from workers follows:\n{stderr}' )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F'\'{cmd_str}\' produced no output.' )
return result
def SCREAMING_SNAKE_CASE_ ( ):
'''simple docstring'''
lowercase_ = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" )
lowercase_ = re.sub(r"^gw" , "" , _SCREAMING_SNAKE_CASE , 0 , re.M )
return int(_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE_ ( ):
'''simple docstring'''
lowercase_ = 2_9500
lowercase_ = pytest_xdist_worker_id()
return port + uniq_delta
| 701 |
import inspect
import logging
import os
import random
import shutil
import tempfile
import unittest
import pytest
import torch
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str]=2 , __lowerCamelCase: List[Any]=3 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: int = 10 , __lowerCamelCase: int = 2 ):
'''simple docstring'''
def get_dataset(__lowerCamelCase: List[Any] ):
lowercase_ = torch.randn(batch_size * n_batches , 1 )
return TensorDataset(__lowerCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) )
lowercase_ = get_dataset(__lowerCamelCase )
lowercase_ = get_dataset(__lowerCamelCase )
lowercase_ = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 )
lowercase_ = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 )
return (train_dataloader, valid_dataloader)
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=None ):
'''simple docstring'''
lowercase_ = []
for epoch in range(__lowerCamelCase ):
# Train quickly
model.train()
for batch in dataloader:
lowercase_ , lowercase_ = batch
lowercase_ = model(__lowerCamelCase )
lowercase_ = torch.nn.functional.mse_loss(__lowerCamelCase , __lowerCamelCase )
accelerator.backward(__lowerCamelCase )
optimizer.step()
optimizer.zero_grad()
rands.append(random.random() ) # Introduce some randomness
if scheduler is not None:
scheduler.step()
return rands
class __lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self ) -> List[Any]:
'''simple docstring'''
super().__init__()
lowercase_ = nn.Parameter(torch.randn(1 ) )
lowercase_ = nn.Parameter(torch.randn(1 ) )
def A__ ( self , UpperCAmelCase ) -> Tuple:
'''simple docstring'''
return x * self.a + self.b
class __lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
lowercase_ , lowercase_ = dummy_dataloaders()
lowercase_ = ProjectConfiguration(total_limit=1 , project_dir=UpperCAmelCase , automatic_checkpoint_naming=UpperCAmelCase )
# Train baseline
lowercase_ = Accelerator(project_config=UpperCAmelCase )
lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# Save initial
accelerator.save_state()
# Save second state
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 )
def A__ ( self ) -> Any:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
lowercase_ , lowercase_ = dummy_dataloaders()
# Train baseline
lowercase_ = Accelerator()
lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# Save initial
lowercase_ = os.path.join(UpperCAmelCase , "initial" )
accelerator.save_state(UpperCAmelCase )
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
lowercase_ = train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
# Train partially
set_seed(42 )
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
lowercase_ , lowercase_ = dummy_dataloaders()
lowercase_ = Accelerator()
lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
accelerator.load_state(UpperCAmelCase )
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
lowercase_ = train(2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# Save everything
lowercase_ = os.path.join(UpperCAmelCase , "checkpoint" )
accelerator.save_state(UpperCAmelCase )
# Load everything back in and make sure all states work
accelerator.load_state(UpperCAmelCase )
test_rands += train(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def A__ ( self ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
lowercase_ , lowercase_ = dummy_dataloaders()
lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase )
# Train baseline
lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase )
lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# Save initial
accelerator.save_state()
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
lowercase_ = train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
# Train partially
set_seed(42 )
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
lowercase_ , lowercase_ = dummy_dataloaders()
lowercase_ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCAmelCase )
lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase )
lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) )
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
lowercase_ = train(2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# Save everything
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_1" ) )
test_rands += train(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
((lowercase_) , (lowercase_)) = model.a.item(), model.b.item()
lowercase_ = optimizer.state_dict()
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
def A__ ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ = torch.tensor([1, 2, 3] )
lowercase_ = torch.tensor([2, 3, 4] )
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(net.parameters() )
lowercase_ = Accelerator()
with self.assertRaises(UpperCAmelCase ) as ve:
accelerator.register_for_checkpointing(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
lowercase_ = str(ve.exception )
self.assertTrue("Item at index 0" in message )
self.assertTrue("Item at index 1" in message )
self.assertFalse("Item at index 2" in message )
self.assertFalse("Item at index 3" in message )
def A__ ( self ) -> int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
lowercase_ = DummyModel()
lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 )
lowercase_ = torch.optim.lr_scheduler.StepLR(UpperCAmelCase , step_size=1 , gamma=0.99 )
lowercase_ , lowercase_ = dummy_dataloaders()
lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase )
# Train baseline
lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase )
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# Save initial
accelerator.save_state()
lowercase_ = scheduler.state_dict()
train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
self.assertNotEqual(UpperCAmelCase , scheduler.state_dict() )
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) )
self.assertEqual(UpperCAmelCase , scheduler.state_dict() )
def A__ ( self ) -> Optional[int]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
set_seed(42 )
lowercase_ = DummyModel()
lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase , total_limit=2 )
# Train baseline
lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase )
lowercase_ = accelerator.prepare(UpperCAmelCase )
# Save 3 states:
for _ in range(11 ):
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_9" ) ) )
self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_10" ) ) )
@require_cuda
def A__ ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ = ["torchrun", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = """/tmp/accelerate/state_checkpointing"""
SCREAMING_SNAKE_CASE__ = DummyModel()
SCREAMING_SNAKE_CASE__ = torch.optim.Adam(params=model.parameters(), lr=1E-3)
SCREAMING_SNAKE_CASE__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dummy_dataloaders()
SCREAMING_SNAKE_CASE__ = ProjectConfiguration(automatic_checkpoint_naming=True)
# Train baseline
SCREAMING_SNAKE_CASE__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""")
if accelerator.process_index == 0:
if os.path.exists(savedir):
shutil.rmtree(savedir)
os.makedirs(savedir)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(model, optimizer)
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
# Check that the intial optimizer is loaded on the GPU
for group in optimizer.param_groups:
SCREAMING_SNAKE_CASE__ = group["""params"""][0].device
break
assert param_device.type == accelerator.device.type
SCREAMING_SNAKE_CASE__ = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state
accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""")
for group in optimizer.param_groups:
SCREAMING_SNAKE_CASE__ = group["""params"""][0].device
break
assert (
param_device.type == torch.device("""cpu""").type
), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}"
# Check device state
model.to(accelerator.device)
accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""")
for group in optimizer.param_groups:
SCREAMING_SNAKE_CASE__ = group["""params"""][0].device
break
assert (
param_device.type == accelerator.device.type
), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}"
# Check error
with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""):
accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""")
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
shutil.rmtree(savedir)
accelerator.wait_for_everyone()
| 601 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = ort.SessionOptions()
lowerCAmelCase = False
return options
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowerCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/in_paint/overture-creations-5sI6fQgYIuo.png' )
lowerCAmelCase = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/in_paint/overture-creations-5sI6fQgYIuo_mask.png' )
lowerCAmelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy' )
# using the PNDM scheduler by default
lowerCAmelCase = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE )
lowerCAmelCase = 'A red cat sitting on a park bench'
lowerCAmelCase = np.random.RandomState(0 )
lowerCAmelCase = pipe(
prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_SCREAMING_SNAKE_CASE , output_type='np' , )
lowerCAmelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 284 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
_UpperCamelCase : Optional[Any] = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
_UpperCamelCase : Any = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n"
_UpperCamelCase : Dict = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
if version.parse(scb.__version__ ) < version.parse('1.4.12' ):
raise ImportWarning(
'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'
'You can install it with `pip install "sacrebleu>=1.4.12"`.' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ),
} ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[
'https://github.com/jhclark/tercom',
] , )
def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , ):
'''simple docstring'''
lowerCAmelCase = len(references[0] )
if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ):
raise ValueError('Sacrebleu requires the same number of references for each prediction' )
lowerCAmelCase = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )]
lowerCAmelCase = TER(
normalized=_SCREAMING_SNAKE_CASE , no_punct=_SCREAMING_SNAKE_CASE , asian_support=_SCREAMING_SNAKE_CASE , case_sensitive=_SCREAMING_SNAKE_CASE , )
lowerCAmelCase = sb_ter.corpus_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 284 | 1 |
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
snake_case_ : Optional[int] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
snake_case_ : Optional[int] = [0, 25, 50]
snake_case_ : Dict = [25, 50, 75]
snake_case_ : str = fuzz.membership.trimf(X, abca)
snake_case_ : Optional[Any] = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
snake_case_ : Any = np.ones(75)
snake_case_ : Tuple = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
snake_case_ : str = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
snake_case_ : List[Any] = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
snake_case_ : Optional[Any] = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
snake_case_ : Tuple = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
snake_case_ : int = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
snake_case_ : Any = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
snake_case_ : List[str] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
snake_case_ : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("Young")
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("Middle aged")
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("union")
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("intersection")
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("complement_a")
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("difference a/b")
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("alg_sum")
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("alg_product")
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("bdd_sum")
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title("bdd_difference")
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 169 |
from ..utils import DummyObject, requires_backends
class __snake_case ( metaclass=a ):
UpperCAmelCase__ : List[str] = ['''torch''', '''torchsde''']
def __init__( self : Optional[Any] , *_snake_case : Tuple , **_snake_case : List[Any]):
"""simple docstring"""
requires_backends(self , ['''torch''', '''torchsde'''])
@classmethod
def lowerCamelCase ( cls : Optional[int] , *_snake_case : Optional[Any] , **_snake_case : str):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''torchsde'''])
@classmethod
def lowerCamelCase ( cls : Optional[Any] , *_snake_case : Optional[Any] , **_snake_case : str):
"""simple docstring"""
requires_backends(cls , ['''torch''', '''torchsde'''])
| 169 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
A = logging.get_logger(__name__)
A = {
"Visual-Attention-Network/van-base": (
"https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json"
),
}
class lowercase__ ( __SCREAMING_SNAKE_CASE ):
A__= 'van'
def __init__( self : Dict , _lowercase : Optional[int]=2_24 , _lowercase : Any=3 , _lowercase : Dict=[7, 3, 3, 3] , _lowercase : int=[4, 2, 2, 2] , _lowercase : Optional[Any]=[64, 1_28, 3_20, 5_12] , _lowercase : str=[3, 3, 12, 3] , _lowercase : List[Any]=[8, 8, 4, 4] , _lowercase : Union[str, Any]="gelu" , _lowercase : int=0.0_2 , _lowercase : Optional[Any]=1E-6 , _lowercase : List[Any]=1E-2 , _lowercase : Any=0.0 , _lowercase : Optional[Any]=0.0 , **_lowercase : str , ):
"""simple docstring"""
super().__init__(**_lowercase )
UpperCAmelCase__ = image_size
UpperCAmelCase__ = num_channels
UpperCAmelCase__ = patch_sizes
UpperCAmelCase__ = strides
UpperCAmelCase__ = hidden_sizes
UpperCAmelCase__ = depths
UpperCAmelCase__ = mlp_ratios
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = layer_norm_eps
UpperCAmelCase__ = layer_scale_init_value
UpperCAmelCase__ = drop_path_rate
UpperCAmelCase__ = dropout_rate
| 475 |
import math
import unittest
def __UpperCAmelCase ( __A ) -> bool:
'''simple docstring'''
assert isinstance(__A , __A ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class lowercase__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : Tuple ):
"""simple docstring"""
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def _UpperCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
with self.assertRaises(_lowercase ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , )
self.assertFalse(
is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 475 | 1 |
"""simple docstring"""
def lowercase__ ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : list[int] ) -> bool:
"""simple docstring"""
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def lowercase__ ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : list[int] , lowerCAmelCase : int ) -> bool:
"""simple docstring"""
if curr_ind == len(lowerCAmelCase ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0 , len(lowerCAmelCase ) ):
if valid_connection(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
# Insert current vertex into path as next transition
UpperCAmelCase = next_ver
# Validate created path
if util_hamilton_cycle(lowerCAmelCase , lowerCAmelCase , curr_ind + 1 ):
return True
# Backtrack
UpperCAmelCase = -1
return False
def lowercase__ ( lowerCAmelCase : list[list[int]] , lowerCAmelCase : int = 0 ) -> list[int]:
"""simple docstring"""
UpperCAmelCase = [-1] * (len(lowerCAmelCase ) + 1)
# initialize start and end of path with starting index
UpperCAmelCase = UpperCAmelCase = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(lowerCAmelCase , lowerCAmelCase , 1 ) else []
| 183 |
"""simple docstring"""
from __future__ import annotations
import numpy as np
def lowercase__ ( lowerCAmelCase : list[float] ) -> Dict:
"""simple docstring"""
return np.maximum(0 , lowerCAmelCase )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 183 | 1 |
import argparse
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowercase : Tuple = logging.get_logger(__name__)
def A_ ( A__ ) -> Tuple:
a__ : Optional[Any] = OrderedDict()
for key, value in state_dict.items():
if key.startswith('module.encoder' ):
a__ : str = key.replace('module.encoder' , 'glpn.encoder' )
if key.startswith('module.decoder' ):
a__ : List[Any] = key.replace('module.decoder' , 'decoder.stages' )
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
a__ : Union[str, Any] = key[key.find('patch_embed' ) + len('patch_embed' )]
a__ : Any = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(A__ )-1}' )
if "norm" in key:
a__ : Tuple = key.replace('norm' , 'layer_norm' )
if "glpn.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
a__ : List[str] = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )]
a__ : List[Any] = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(A__ )-1}' )
if "layer_norm1" in key:
a__ : List[str] = key.replace('layer_norm1' , 'layer_norm_1' )
if "layer_norm2" in key:
a__ : Any = key.replace('layer_norm2' , 'layer_norm_2' )
if "block" in key:
# replace for example block1 by block.0
a__ : Tuple = key[key.find('block' ) + len('block' )]
a__ : Dict = key.replace(F'block{idx}' , F'block.{int(A__ )-1}' )
if "attn.q" in key:
a__ : Any = key.replace('attn.q' , 'attention.self.query' )
if "attn.proj" in key:
a__ : Optional[Any] = key.replace('attn.proj' , 'attention.output.dense' )
if "attn" in key:
a__ : Optional[Any] = key.replace('attn' , 'attention.self' )
if "fc1" in key:
a__ : Tuple = key.replace('fc1' , 'dense1' )
if "fc2" in key:
a__ : Optional[Any] = key.replace('fc2' , 'dense2' )
if "linear_pred" in key:
a__ : Optional[int] = key.replace('linear_pred' , 'classifier' )
if "linear_fuse" in key:
a__ : Union[str, Any] = key.replace('linear_fuse.conv' , 'linear_fuse' )
a__ : List[str] = key.replace('linear_fuse.bn' , 'batch_norm' )
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
a__ : List[str] = key[key.find('linear_c' ) + len('linear_c' )]
a__ : int = key.replace(F'linear_c{idx}' , F'linear_c.{int(A__ )-1}' )
if "bot_conv" in key:
a__ : Optional[int] = key.replace('bot_conv' , '0.convolution' )
if "skip_conv1" in key:
a__ : Union[str, Any] = key.replace('skip_conv1' , '1.convolution' )
if "skip_conv2" in key:
a__ : Optional[Any] = key.replace('skip_conv2' , '2.convolution' )
if "fusion1" in key:
a__ : Optional[int] = key.replace('fusion1' , '1.fusion' )
if "fusion2" in key:
a__ : Dict = key.replace('fusion2' , '2.fusion' )
if "fusion3" in key:
a__ : Any = key.replace('fusion3' , '3.fusion' )
if "fusion" in key and "conv" in key:
a__ : Optional[Any] = key.replace('conv' , 'convolutional_layer' )
if key.startswith('module.last_layer_depth' ):
a__ : List[str] = key.replace('module.last_layer_depth' , 'head.head' )
a__ : Tuple = value
return new_state_dict
def A_ ( A__ , A__ ) -> Dict:
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks ):
for j in range(config.depths[i] ):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
a__ : List[Any] = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' )
a__ : int = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' )
# next, add keys and values (in that order) to the state dict
a__ : str = kv_weight[
: config.hidden_sizes[i], :
]
a__ : Dict = kv_bias[: config.hidden_sizes[i]]
a__ : str = kv_weight[
config.hidden_sizes[i] :, :
]
a__ : List[Any] = kv_bias[config.hidden_sizes[i] :]
def A_ ( ) -> List[Any]:
a__ : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg'
a__ : Tuple = Image.open(requests.get(A__ , stream=A__ ).raw )
return image
@torch.no_grad()
def A_ ( A__ , A__ , A__=False , A__=None ) -> int:
a__ : Any = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] )
# load image processor (only resize + rescale)
a__ : str = GLPNImageProcessor()
# prepare image
a__ : List[Any] = prepare_img()
a__ : Union[str, Any] = image_processor(images=A__ , return_tensors='pt' ).pixel_values
logger.info('Converting model...' )
# load original state dict
a__ : int = torch.load(A__ , map_location=torch.device('cpu' ) )
# rename keys
a__ : int = rename_keys(A__ )
# key and value matrices need special treatment
read_in_k_v(A__ , A__ )
# create HuggingFace model and load state dict
a__ : Union[str, Any] = GLPNForDepthEstimation(A__ )
model.load_state_dict(A__ )
model.eval()
# forward pass
a__ : Any = model(A__ )
a__ : int = outputs.predicted_depth
# verify output
if model_name is not None:
if "nyu" in model_name:
a__ : List[Any] = torch.tensor(
[[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] )
elif "kitti" in model_name:
a__ : Optional[Any] = torch.tensor(
[[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] )
else:
raise ValueError(F'Unknown model name: {model_name}' )
a__ : Union[str, Any] = torch.Size([1, 480, 640] )
assert predicted_depth.shape == expected_shape
assert torch.allclose(predicted_depth[0, :3, :3] , A__ , atol=1E-4 )
print('Looks ok!' )
# finally, push to hub if required
if push_to_hub:
logger.info('Pushing model and image processor to the hub...' )
model.push_to_hub(
repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=A__ , )
image_processor.push_to_hub(
repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=A__ , )
if __name__ == "__main__":
lowercase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"""--checkpoint_path""",
default=None,
type=str,
help="""Path to the original PyTorch checkpoint (.pth file).""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub."""
)
parser.add_argument(
"""--model_name""",
default="""glpn-kitti""",
type=str,
help="""Name of the model in case you're pushing to the hub.""",
)
lowercase : Optional[Any] = parser.parse_args()
convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 302 |
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def A_ ( A__ , A__ , A__ , A__ , A__ = None , A__ = None , A__ = None , ) -> List[Any]:
if config_name_or_path is None:
a__ : List[str] = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base'
if generator_tokenizer_name_or_path is None:
a__ : int = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
a__ : Dict = question_encoder_name_or_path
a__ : List[str] = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration
# Save model.
a__ : Optional[Any] = RagConfig.from_pretrained(A__ )
a__ : Optional[Any] = AutoConfig.from_pretrained(A__ )
a__ : Optional[int] = AutoConfig.from_pretrained(A__ )
a__ : Tuple = gen_config
a__ : Union[str, Any] = question_encoder_config
a__ : str = model_class.from_pretrained_question_encoder_generator(
A__ , A__ , config=A__ )
rag_model.save_pretrained(A__ )
# Sanity check.
model_class.from_pretrained(A__ )
# Save tokenizers.
a__ : int = AutoTokenizer.from_pretrained(A__ )
gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' )
a__ : Optional[Any] = AutoTokenizer.from_pretrained(A__ )
question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' )
if __name__ == "__main__":
lowercase : Dict = argparse.ArgumentParser()
parser.add_argument(
"""--model_type""",
choices=["""rag_sequence""", """rag_token"""],
required=True,
type=str,
help="""RAG model type: rag_sequence, rag_token""",
)
parser.add_argument("""--dest""", type=str, required=True, help="""Path to the output checkpoint directory.""")
parser.add_argument("""--generator_name_or_path""", type=str, required=True, help="""Generator model identifier""")
parser.add_argument(
"""--question_encoder_name_or_path""", type=str, required=True, help="""Question encoder model identifier"""
)
parser.add_argument(
"""--generator_tokenizer_name_or_path""",
type=str,
help="""Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``""",
)
parser.add_argument(
"""--question_encoder_tokenizer_name_or_path""",
type=str,
help="""Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``""",
)
parser.add_argument(
"""--config_name_or_path""",
type=str,
help=(
"""Identifier of the model config to use, if not provided, resolves to a base config for a given"""
""" ``model_type``"""
),
)
lowercase : List[str] = parser.parse_args()
lowercase : Union[str, Any] = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 302 | 1 |
lowerCAmelCase__ = [
(1_0_0_0, """M"""),
(9_0_0, """CM"""),
(5_0_0, """D"""),
(4_0_0, """CD"""),
(1_0_0, """C"""),
(9_0, """XC"""),
(5_0, """L"""),
(4_0, """XL"""),
(1_0, """X"""),
(9, """IX"""),
(5, """V"""),
(4, """IV"""),
(1, """I"""),
]
def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> int:
'''simple docstring'''
_UpperCamelCase : List[Any] = {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0}
_UpperCamelCase : Union[str, Any] = 0
_UpperCamelCase : Any = 0
while place < len(UpperCAmelCase_ ):
if (place + 1 < len(UpperCAmelCase_ )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> str:
'''simple docstring'''
_UpperCamelCase : Dict = []
for arabic, roman in ROMAN:
((_UpperCamelCase) , (_UpperCamelCase)) : Optional[Any] = divmod(UpperCAmelCase_ , UpperCAmelCase_ )
result.append(roman * factor )
if number == 0:
break
return "".join(UpperCAmelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 648 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""",
"""bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""",
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""",
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""",
"""bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"""
),
"""wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class lowercase ( _lowercase ):
"""simple docstring"""
a__ = "bert"
def __init__( self , __snake_case=3_05_22 , __snake_case=7_68 , __snake_case=12 , __snake_case=12 , __snake_case=30_72 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=5_12 , __snake_case=2 , __snake_case=0.0_2 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=True , __snake_case=None , **__snake_case , ):
super().__init__(pad_token_id=__snake_case , **__snake_case)
_UpperCamelCase : int = vocab_size
_UpperCamelCase : Optional[Any] = hidden_size
_UpperCamelCase : Optional[Any] = num_hidden_layers
_UpperCamelCase : List[str] = num_attention_heads
_UpperCamelCase : int = hidden_act
_UpperCamelCase : Optional[Any] = intermediate_size
_UpperCamelCase : Union[str, Any] = hidden_dropout_prob
_UpperCamelCase : Tuple = attention_probs_dropout_prob
_UpperCamelCase : Optional[int] = max_position_embeddings
_UpperCamelCase : str = type_vocab_size
_UpperCamelCase : Optional[Any] = initializer_range
_UpperCamelCase : List[str] = layer_norm_eps
_UpperCamelCase : Any = position_embedding_type
_UpperCamelCase : Any = use_cache
_UpperCamelCase : Any = classifier_dropout
class lowercase ( _lowercase ):
"""simple docstring"""
@property
def A__ ( self):
if self.task == "multiple-choice":
_UpperCamelCase : Union[str, Any] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_UpperCamelCase : Optional[Any] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
])
| 648 | 1 |
"""simple docstring"""
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append('''.''')
def A__ ( A__ ) -> Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got "
F"""{test_file} instead.""" )
_UpperCAmelCase = components[-1]
if not test_fn.endswith("py" ):
raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" )
if not test_fn.startswith("test_modeling_" ):
raise ValueError(
F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" )
_UpperCAmelCase = components[:-1] + [test_fn.replace(".py" , "" )]
_UpperCAmelCase = ".".join(A__ )
return test_module_path
def A__ ( A__ ) -> Dict:
'''simple docstring'''
_UpperCAmelCase = get_module_path(A__ )
_UpperCAmelCase = importlib.import_module(A__ )
return test_module
def A__ ( A__ ) -> List[str]:
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = get_test_module(A__ )
for attr in dir(A__ ):
if attr.endswith("ModelTester" ):
tester_classes.append(getattr(A__ , A__ ) )
# sort with class names
return sorted(A__ , key=lambda A__ : x.__name__ )
def A__ ( A__ ) -> str:
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = get_test_module(A__ )
for attr in dir(A__ ):
_UpperCAmelCase = getattr(A__ , A__ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
_UpperCAmelCase = getattr(A__ , "all_model_classes" , [] )
if len(A__ ) > 0:
test_classes.append(A__ )
# sort with class names
return sorted(A__ , key=lambda A__ : x.__name__ )
def A__ ( A__ ) -> int:
'''simple docstring'''
_UpperCAmelCase = get_test_classes(A__ )
_UpperCAmelCase = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(A__ , key=lambda A__ : x.__name__ )
def A__ ( A__ ) -> int:
'''simple docstring'''
_UpperCAmelCase = test_class()
if hasattr(A__ , "setUp" ):
test.setUp()
_UpperCAmelCase = None
if hasattr(A__ , "model_tester" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
_UpperCAmelCase = test.model_tester.__class__
return model_tester
def A__ ( A__ , A__ ) -> List[str]:
'''simple docstring'''
_UpperCAmelCase = get_test_classes(A__ )
_UpperCAmelCase = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(A__ )
# sort with class names
return sorted(A__ , key=lambda A__ : x.__name__ )
def A__ ( A__ , A__ ) -> int:
'''simple docstring'''
_UpperCAmelCase = get_test_classes_for_model(A__ , A__ )
_UpperCAmelCase = []
for test_class in test_classes:
_UpperCAmelCase = get_model_tester_from_test_class(A__ )
if tester_class is not None:
tester_classes.append(A__ )
# sort with class names
return sorted(A__ , key=lambda A__ : x.__name__ )
def A__ ( A__ ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase = get_test_classes(A__ )
_UpperCAmelCase = {test_class: get_model_tester_from_test_class(A__ ) for test_class in test_classes}
return test_tester_mapping
def A__ ( A__ ) -> str:
'''simple docstring'''
_UpperCAmelCase = get_model_classes(A__ )
_UpperCAmelCase = {
model_class: get_test_classes_for_model(A__ , A__ ) for model_class in model_classes
}
return model_test_mapping
def A__ ( A__ ) -> List[Any]:
'''simple docstring'''
_UpperCAmelCase = get_model_classes(A__ )
_UpperCAmelCase = {
model_class: get_tester_classes_for_model(A__ , A__ ) for model_class in model_classes
}
return model_to_tester_mapping
def A__ ( A__ ) -> Any:
'''simple docstring'''
if isinstance(A__ , A__ ):
return o
elif isinstance(A__ , A__ ):
return o.__name__
elif isinstance(A__ , (list, tuple) ):
return [to_json(A__ ) for x in o]
elif isinstance(A__ , A__ ):
return {to_json(A__ ): to_json(A__ ) for k, v in o.items()}
else:
return o
| 426 |
"""simple docstring"""
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def A__ ( A__ , A__ , **A__ ) -> Tuple:
'''simple docstring'''
_UpperCAmelCase = AutoConfig.from_pretrained(A__ , **A__ )
_UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(A__ )
model.save_pretrained(A__ )
AutoTokenizer.from_pretrained(A__ ).save_pretrained(A__ )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version)
| 426 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCamelCase : int = logging.get_logger(__name__)
__UpperCamelCase : List[Any] = {
'''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''',
}
class lowerCamelCase__ ( _UpperCAmelCase ):
"""simple docstring"""
__magic_name__ = """roc_bert"""
def __init__( self , UpperCAmelCase__=3_0_5_2_2 , UpperCAmelCase__=7_6_8 , UpperCAmelCase__=1_2 , UpperCAmelCase__=1_2 , UpperCAmelCase__=3_0_7_2 , UpperCAmelCase__="gelu" , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=5_1_2 , UpperCAmelCase__=2 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__=True , UpperCAmelCase__=0 , UpperCAmelCase__="absolute" , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=7_6_8 , UpperCAmelCase__=9_1_0 , UpperCAmelCase__=5_1_2 , UpperCAmelCase__=2_4_8_5_8 , UpperCAmelCase__=True , **UpperCAmelCase__ , ) -> Tuple:
_A : Optional[Any] = vocab_size
_A : List[Any] = max_position_embeddings
_A : str = hidden_size
_A : List[Any] = num_hidden_layers
_A : int = num_attention_heads
_A : List[str] = intermediate_size
_A : Tuple = hidden_act
_A : Optional[Any] = hidden_dropout_prob
_A : int = attention_probs_dropout_prob
_A : List[str] = initializer_range
_A : Optional[Any] = type_vocab_size
_A : List[Any] = layer_norm_eps
_A : str = use_cache
_A : Any = enable_pronunciation
_A : int = enable_shape
_A : Any = pronunciation_embed_dim
_A : int = pronunciation_vocab_size
_A : Dict = shape_embed_dim
_A : Union[str, Any] = shape_vocab_size
_A : List[Any] = concat_input
_A : List[Any] = position_embedding_type
_A : int = classifier_dropout
super().__init__(pad_token_id=lowercase__ , **lowercase__ )
| 704 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__UpperCamelCase : Optional[Any] = {
'''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig''']
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Tuple = ['''ConvNextFeatureExtractor''']
__UpperCamelCase : Union[str, Any] = ['''ConvNextImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Union[str, Any] = [
'''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ConvNextForImageClassification''',
'''ConvNextModel''',
'''ConvNextPreTrainedModel''',
'''ConvNextBackbone''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Dict = [
'''TFConvNextForImageClassification''',
'''TFConvNextModel''',
'''TFConvNextPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
__UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 417 | 0 |
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class snake_case__ (unittest.TestCase ):
"""simple docstring"""
def __init__( self , __lowercase , __lowercase=1_0_0 , __lowercase=1_3 , __lowercase=3_0 , __lowercase=2 , __lowercase=3 , __lowercase=True , __lowercase=True , __lowercase=3_2 , __lowercase=5 , __lowercase=4 , __lowercase=3_7 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1_0 , __lowercase=0.0_2 , __lowercase=3 , ) -> int:
"""simple docstring"""
a__ : Optional[int] = parent
a__ : Union[str, Any] = vocab_size
a__ : Optional[Any] = batch_size
a__ : Union[str, Any] = image_size
a__ : List[Any] = patch_size
a__ : str = num_channels
a__ : List[Any] = is_training
a__ : Optional[int] = use_labels
a__ : Optional[int] = hidden_size
a__ : Dict = num_hidden_layers
a__ : Dict = num_attention_heads
a__ : Dict = intermediate_size
a__ : List[str] = hidden_act
a__ : str = hidden_dropout_prob
a__ : List[str] = attention_probs_dropout_prob
a__ : List[Any] = type_sequence_label_size
a__ : Any = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
a__ : Tuple = (image_size // patch_size) ** 2
a__ : Optional[int] = num_patches + 1
def SCREAMING_SNAKE_CASE__( self ) -> Tuple:
"""simple docstring"""
a__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a__ : Union[str, Any] = None
if self.use_labels:
a__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a__ : str = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowercase , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> Tuple:
"""simple docstring"""
a__ : Optional[Any] = FlaxBeitModel(config=__lowercase )
a__ : Dict = model(__lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> Dict:
"""simple docstring"""
a__ : List[Any] = FlaxBeitForMaskedImageModeling(config=__lowercase )
a__ : List[Any] = model(__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> Any:
"""simple docstring"""
a__ : List[str] = self.type_sequence_label_size
a__ : int = FlaxBeitForImageClassification(config=__lowercase )
a__ : str = model(__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
a__ : int = 1
a__ : int = FlaxBeitForImageClassification(__lowercase )
a__ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
a__ : Union[str, Any] = model(__lowercase )
def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]:
"""simple docstring"""
a__ : str = self.prepare_config_and_inputs()
(
(
a__
) , (
a__
) , (
a__
) ,
) : Tuple = config_and_inputs
a__ : Union[str, Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class snake_case__ (A__ , unittest.TestCase ):
"""simple docstring"""
__lowerCAmelCase :Union[str, Any] = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def SCREAMING_SNAKE_CASE__( self ) -> None:
"""simple docstring"""
a__ : Optional[Any] = FlaxBeitModelTester(self )
a__ : Optional[int] = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=3_7 )
def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__( self ) -> Dict:
"""simple docstring"""
a__ , a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ : List[Any] = model_class(__lowercase )
a__ : Optional[int] = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a__ : Dict = [*signature.parameters.keys()]
a__ : List[str] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __lowercase )
def SCREAMING_SNAKE_CASE__( self ) -> Tuple:
"""simple docstring"""
a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
a__ : List[Any] = self._prepare_for_class(__lowercase , __lowercase )
a__ : List[Any] = model_class(__lowercase )
@jax.jit
def model_jitted(__lowercase , **__lowercase ):
return model(pixel_values=__lowercase , **__lowercase )
with self.subTest("""JIT Enabled""" ):
a__ : Union[str, Any] = model_jitted(**__lowercase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
a__ : Union[str, Any] = model_jitted(**__lowercase ).to_tuple()
self.assertEqual(len(__lowercase ) , len(__lowercase ) )
for jitted_output, output in zip(__lowercase , __lowercase ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE__( self ) -> Any:
"""simple docstring"""
a__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]:
"""simple docstring"""
a__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowercase )
def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]:
"""simple docstring"""
a__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowercase )
@slow
def SCREAMING_SNAKE_CASE__( self ) -> int:
"""simple docstring"""
for model_class_name in self.all_model_classes:
a__ : Union[str, Any] = model_class_name.from_pretrained("""microsoft/beit-base-patch16-224""" )
a__ : Optional[Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) )
self.assertIsNotNone(__lowercase )
def lowerCAmelCase_ ( ) -> Optional[Any]:
"""simple docstring"""
a__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""")
return image
@require_vision
@require_flax
class snake_case__ (unittest.TestCase ):
"""simple docstring"""
@cached_property
def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]:
"""simple docstring"""
return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__( self ) -> Any:
"""simple docstring"""
a__ : Dict = FlaxBeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" )
a__ : str = self.default_image_processor
a__ : Optional[Any] = prepare_img()
a__ : Dict = image_processor(images=__lowercase , return_tensors="""np""" ).pixel_values
# prepare bool_masked_pos
a__ : Optional[int] = np.ones((1, 1_9_6) , dtype=__lowercase )
# forward pass
a__ : Any = model(pixel_values=__lowercase , bool_masked_pos=__lowercase )
a__ : List[str] = outputs.logits
# verify the logits
a__ : Dict = (1, 1_9_6, 8_1_9_2)
self.assertEqual(logits.shape , __lowercase )
a__ : Tuple = np.array(
[[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , __lowercase , atol=1E-2 ) )
@slow
def SCREAMING_SNAKE_CASE__( self ) -> List[Any]:
"""simple docstring"""
a__ : List[Any] = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" )
a__ : Optional[int] = self.default_image_processor
a__ : List[str] = prepare_img()
a__ : Optional[int] = image_processor(images=__lowercase , return_tensors="""np""" )
# forward pass
a__ : Any = model(**__lowercase )
a__ : Any = outputs.logits
# verify the logits
a__ : Dict = (1, 1_0_0_0)
self.assertEqual(logits.shape , __lowercase )
a__ : str = np.array([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] )
self.assertTrue(np.allclose(logits[0, :3] , __lowercase , atol=1E-4 ) )
a__ : Union[str, Any] = 2_8_1
self.assertEqual(logits.argmax(-1 ).item() , __lowercase )
@slow
def SCREAMING_SNAKE_CASE__( self ) -> str:
"""simple docstring"""
a__ : str = FlaxBeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" )
a__ : str = self.default_image_processor
a__ : Any = prepare_img()
a__ : Optional[Any] = image_processor(images=__lowercase , return_tensors="""np""" )
# forward pass
a__ : Any = model(**__lowercase )
a__ : List[Any] = outputs.logits
# verify the logits
a__ : Union[str, Any] = (1, 2_1_8_4_1)
self.assertEqual(logits.shape , __lowercase )
a__ : int = np.array([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] )
self.assertTrue(np.allclose(logits[0, :3] , __lowercase , atol=1E-4 ) )
a__ : Dict = 2_3_9_6
self.assertEqual(logits.argmax(-1 ).item() , __lowercase )
| 136 |
def lowerCAmelCase_ ( _lowercase : list , _lowercase : int , _lowercase : int = 0 , _lowercase : int = 0) -> int:
"""simple docstring"""
a__ : str = right or len(_lowercase) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(_lowercase , _lowercase , left + 1 , right - 1)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 136 | 1 |
'''simple docstring'''
def A__ ( A : str , A : str):
'''simple docstring'''
if not (isinstance(A , A) and isinstance(A , A)):
raise ValueError("longest_common_substring() takes two strings for inputs")
UpperCamelCase : Optional[int] = len(A)
UpperCamelCase : int = len(A)
UpperCamelCase : Dict = [[0] * (texta_length + 1) for _ in range(texta_length + 1)]
UpperCamelCase : Any = 0
UpperCamelCase : Any = 0
for i in range(1 , texta_length + 1):
for j in range(1 , texta_length + 1):
if texta[i - 1] == texta[j - 1]:
UpperCamelCase : Dict = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
UpperCamelCase : Optional[int] = i
UpperCamelCase : int = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 435 |
'''simple docstring'''
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
lowerCAmelCase_ = (
'4S 3H 2C 7S 5H',
'9D 8H 2C 6S 7H',
'2D 6D 9D TH 7D',
'TC 8C 2S JH 6C',
'JH 8S TH AH QH',
'TS KS 5S 9S AC',
'KD 6S 9D TH AD',
'KS 8D 4D 9S 4S', # pair
'8C 4S KH JS 4D', # pair
'QH 8H KD JH 8S', # pair
'KC 4H KS 2H 8D', # pair
'KD 4S KC 3H 8S', # pair
'AH 8S AS KC JH', # pair
'3H 4C 4H 3S 2H', # 2 pairs
'5S 5D 2C KH KH', # 2 pairs
'3C KH 5D 5S KH', # 2 pairs
'AS 3C KH AD KH', # 2 pairs
'7C 7S 3S 7H 5S', # 3 of a kind
'7C 7S KH 2H 7H', # 3 of a kind
'AC KH QH AH AS', # 3 of a kind
'2H 4D 3C AS 5S', # straight (low ace)
'3C 5C 4C 2C 6H', # straight
'6S 8S 7S 5H 9H', # straight
'JS QS 9H TS KH', # straight
'QC KH TS JS AH', # straight (high ace)
'8C 9C 5C 3C TC', # flush
'3S 8S 9S 5S KS', # flush
'4C 5C 9C 8C KC', # flush
'JH 8H AH KH QH', # flush
'3D 2H 3H 2C 2D', # full house
'2H 2C 3S 3H 3D', # full house
'KH KC 3S 3H 3D', # full house
'JC 6H JS JD JH', # 4 of a kind
'JC 7H JS JD JH', # 4 of a kind
'JC KH JS JD JH', # 4 of a kind
'2S AS 4S 5S 3S', # straight flush (low ace)
'2D 6D 3D 4D 5D', # straight flush
'5C 6C 3C 7C 4C', # straight flush
'JH 9H TH KH QH', # straight flush
'JH AH TH KH QH', # royal flush (high ace straight flush)
)
lowerCAmelCase_ = (
('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'),
('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'),
('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'),
('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'),
('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'),
('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'),
('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'),
('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'),
('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'),
('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'),
('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'),
('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'),
('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'),
('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'),
('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'),
('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'),
('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'),
('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'),
('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'),
('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'),
('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'),
('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'),
('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'),
('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'),
('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'),
('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'),
('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'),
('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'),
('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'),
('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'),
('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'),
('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'),
)
lowerCAmelCase_ = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', True),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', False),
('AS 3S 4S 8S 2S', True),
)
lowerCAmelCase_ = (
('2H 3H 4H 5H 6H', True),
('AS AH 2H AD AC', False),
('2H 3H 5H 6H 7H', False),
('KS AS TS QS JS', True),
('8H 9H QS JS TH', True),
)
lowerCAmelCase_ = (
('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]),
('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]),
('JH QD KC AS TS', False, [14, 13, 12, 11, 10]),
('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]),
)
lowerCAmelCase_ = (
('JH AH TH KH QH', 0),
('JH 9H TH KH QH', 0),
('JC KH JS JD JH', 7),
('KH KC 3S 3H 3D', 6),
('8C 9C 5C 3C TC', 0),
('JS QS 9H TS KH', 0),
('7C 7S KH 2H 7H', 3),
('3C KH 5D 5S KH', 2),
('QH 8H KD JH 8S', 1),
('2D 6D 9D TH 7D', 0),
)
lowerCAmelCase_ = (
('JH AH TH KH QH', 23),
('JH 9H TH KH QH', 22),
('JC KH JS JD JH', 21),
('KH KC 3S 3H 3D', 20),
('8C 9C 5C 3C TC', 19),
('JS QS 9H TS KH', 18),
('7C 7S KH 2H 7H', 17),
('3C KH 5D 5S KH', 16),
('QH 8H KD JH 8S', 15),
('2D 6D 9D TH 7D', 14),
)
def A__ ( ):
'''simple docstring'''
UpperCamelCase , UpperCamelCase : List[str] = randrange(len(A)), randrange(len(A))
UpperCamelCase : Tuple = ["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)]
UpperCamelCase , UpperCamelCase : Tuple = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def A__ ( A : int = 1_00):
'''simple docstring'''
return (generate_random_hand() for _ in range(A))
@pytest.mark.parametrize("hand, expected" , A)
def A__ ( A : List[Any] , A : Union[str, Any]):
'''simple docstring'''
assert PokerHand(A)._is_flush() == expected
@pytest.mark.parametrize("hand, expected" , A)
def A__ ( A : Any , A : Any):
'''simple docstring'''
assert PokerHand(A)._is_straight() == expected
@pytest.mark.parametrize("hand, expected, card_values" , A)
def A__ ( A : Optional[Any] , A : Any , A : Optional[int]):
'''simple docstring'''
UpperCamelCase : Dict = PokerHand(A)
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("hand, expected" , A)
def A__ ( A : str , A : Any):
'''simple docstring'''
assert PokerHand(A)._is_same_kind() == expected
@pytest.mark.parametrize("hand, expected" , A)
def A__ ( A : str , A : Optional[int]):
'''simple docstring'''
assert PokerHand(A)._hand_type == expected
@pytest.mark.parametrize("hand, other, expected" , A)
def A__ ( A : List[str] , A : Optional[int] , A : Dict):
'''simple docstring'''
assert PokerHand(A).compare_with(PokerHand(A)) == expected
@pytest.mark.parametrize("hand, other, expected" , generate_random_hands())
def A__ ( A : List[str] , A : Optional[int] , A : str):
'''simple docstring'''
assert PokerHand(A).compare_with(PokerHand(A)) == expected
def A__ ( ):
'''simple docstring'''
UpperCamelCase : Optional[int] = [PokerHand(A) for hand in SORTED_HANDS]
UpperCamelCase : Union[str, Any] = poker_hands.copy()
shuffle(A)
UpperCamelCase : List[Any] = chain(sorted(A))
for index, hand in enumerate(A):
assert hand == poker_hands[index]
def A__ ( ):
'''simple docstring'''
UpperCamelCase : List[Any] = [PokerHand("2D AC 3H 4H 5S"), PokerHand("2S 3H 4H 5S 6C")]
pokerhands.sort(reverse=A)
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def A__ ( ):
'''simple docstring'''
UpperCamelCase : List[Any] = PokerHand("2C 4S AS 3D 5C")
UpperCamelCase : Optional[Any] = True
UpperCamelCase : int = [5, 4, 3, 2, 14]
for _ in range(10):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def A__ ( ):
'''simple docstring'''
UpperCamelCase : List[str] = 0
UpperCamelCase : List[str] = os.path.abspath(os.path.dirname(A))
UpperCamelCase : str = os.path.join(A , "poker_hands.txt")
with open(A) as file_hand:
for line in file_hand:
UpperCamelCase : Any = line[:14].strip()
UpperCamelCase : List[str] = line[15:].strip()
UpperCamelCase , UpperCamelCase : Any = PokerHand(A), PokerHand(A)
UpperCamelCase : Union[str, Any] = player.compare_with(A)
if output == "Win":
answer += 1
assert answer == 3_76
| 435 | 1 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , )
@pytest.mark.usefixtures('sm_env' )
@parameterized_class(
[
{
'framework': 'pytorch',
'script': 'run_glue_model_parallelism.py',
'model_name_or_path': 'roberta-large',
'instance_type': 'ml.p3dn.24xlarge',
'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2},
},
{
'framework': 'pytorch',
'script': 'run_glue.py',
'model_name_or_path': 'roberta-large',
'instance_type': 'ml.p3dn.24xlarge',
'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2},
},
] )
class a ( unittest.TestCase ):
"""simple docstring"""
def UpperCAmelCase ( self : List[str] ) -> Dict:
if self.framework == "pytorch":
subprocess.run(
f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=__lowercase , )
assert hasattr(self , """env""" )
def UpperCAmelCase ( self : List[str] , __lowercase : Optional[Any] ) -> Any:
# configuration for running training on smdistributed Model Parallel
__UpperCAmelCase : List[Any] = {
"""enabled""": True,
"""processes_per_host""": 8,
}
__UpperCAmelCase : Optional[int] = {
"""enabled""": True,
"""parameters""": {
"""microbatches""": 4,
"""placement_strategy""": """spread""",
"""pipeline""": """interleaved""",
"""optimize""": """speed""",
"""partitions""": 4,
"""ddp""": True,
},
}
__UpperCAmelCase : Tuple = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options}
__UpperCAmelCase : Dict = """trainer""" if self.script == """run_glue.py""" else """smtrainer"""
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=__lowercase , instance_type=self.instance_type , debugger_hook_config=__lowercase , hyperparameters={
**self.env.hyperparameters,
"""model_name_or_path""": self.model_name_or_path,
"""max_steps""": 500,
} , metric_definitions=self.env.metric_definitions , distribution=__lowercase , py_version="""py36""" , )
def UpperCAmelCase ( self : List[str] , __lowercase : Optional[int] ) -> str:
TrainingJobAnalytics(__lowercase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def UpperCAmelCase ( self : Dict , __lowercase : Union[str, Any] ) -> Tuple:
# create estimator
__UpperCAmelCase : List[str] = self.create_estimator(__lowercase )
# run training
estimator.fit()
# result dataframe
__UpperCAmelCase : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
__UpperCAmelCase : int = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
__UpperCAmelCase : str = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__UpperCAmelCase : Dict = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __lowercase )
| 63 |
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
a : Optional[int] = logging.get_logger(__name__)
class a ( lowercase__ ):
"""simple docstring"""
a : Tuple = 'linear'
a : int = 'cosine'
a : Optional[Any] = 'cosine_with_restarts'
a : Dict = 'polynomial'
a : Tuple = 'constant'
a : Dict = 'constant_with_warmup'
a : Any = 'piecewise_constant'
def lowerCamelCase__ ( __lowerCamelCase : Optimizer , __lowerCamelCase : int = -1 ):
return LambdaLR(__lowerCamelCase , lambda __lowerCamelCase : 1 , last_epoch=__lowerCamelCase )
def lowerCamelCase__ ( __lowerCamelCase : Optimizer , __lowerCamelCase : int , __lowerCamelCase : int = -1 ):
def lr_lambda(__lowerCamelCase : int ):
if current_step < num_warmup_steps:
return float(__lowerCamelCase ) / float(max(1.0 , __lowerCamelCase ) )
return 1.0
return LambdaLR(__lowerCamelCase , __lowerCamelCase , last_epoch=__lowerCamelCase )
def lowerCamelCase__ ( __lowerCamelCase : Optimizer , __lowerCamelCase : str , __lowerCamelCase : int = -1 ):
__UpperCAmelCase : Union[str, Any] = {}
__UpperCAmelCase : Tuple = step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
__UpperCAmelCase , __UpperCAmelCase : List[str] = rule_str.split(""":""" )
__UpperCAmelCase : Any = int(__lowerCamelCase )
__UpperCAmelCase : List[str] = float(__lowerCamelCase )
__UpperCAmelCase : int = value
__UpperCAmelCase : Any = float(rule_list[-1] )
def create_rules_function(__lowerCamelCase : Dict , __lowerCamelCase : List[Any] ):
def rule_func(__lowerCamelCase : int ) -> float:
__UpperCAmelCase : Tuple = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(__lowerCamelCase ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
__UpperCAmelCase : str = create_rules_function(__lowerCamelCase , __lowerCamelCase )
return LambdaLR(__lowerCamelCase , __lowerCamelCase , last_epoch=__lowerCamelCase )
def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any]=-1 ):
def lr_lambda(__lowerCamelCase : int ):
if current_step < num_warmup_steps:
return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def lowerCamelCase__ ( __lowerCamelCase : Optimizer , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float = 0.5 , __lowerCamelCase : int = -1 ):
def lr_lambda(__lowerCamelCase : Dict ):
if current_step < num_warmup_steps:
return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) )
__UpperCAmelCase : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__lowerCamelCase ) * 2.0 * progress )) )
return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def lowerCamelCase__ ( __lowerCamelCase : Optimizer , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 ):
def lr_lambda(__lowerCamelCase : Union[str, Any] ):
if current_step < num_warmup_steps:
return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) )
__UpperCAmelCase : Union[str, Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__lowerCamelCase ) * progress) % 1.0) )) )
return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any]=1E-7 , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : int=-1 ):
__UpperCAmelCase : Tuple = optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" )
def lr_lambda(__lowerCamelCase : int ):
if current_step < num_warmup_steps:
return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
__UpperCAmelCase : Optional[Any] = lr_init - lr_end
__UpperCAmelCase : Union[str, Any] = num_training_steps - num_warmup_steps
__UpperCAmelCase : int = 1 - (current_step - num_warmup_steps) / decay_steps
__UpperCAmelCase : Optional[int] = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
a : int = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def lowerCamelCase__ ( __lowerCamelCase : Union[str, SchedulerType] , __lowerCamelCase : Optimizer , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 1 , __lowerCamelCase : float = 1.0 , __lowerCamelCase : int = -1 , ):
__UpperCAmelCase : Union[str, Any] = SchedulerType(__lowerCamelCase )
__UpperCAmelCase : int = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(__lowerCamelCase , last_epoch=__lowerCamelCase )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(__lowerCamelCase , step_rules=__lowerCamelCase , last_epoch=__lowerCamelCase )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(__lowerCamelCase , num_warmup_steps=__lowerCamelCase , last_epoch=__lowerCamelCase )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
__lowerCamelCase , num_warmup_steps=__lowerCamelCase , num_training_steps=__lowerCamelCase , num_cycles=__lowerCamelCase , last_epoch=__lowerCamelCase , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
__lowerCamelCase , num_warmup_steps=__lowerCamelCase , num_training_steps=__lowerCamelCase , power=__lowerCamelCase , last_epoch=__lowerCamelCase , )
return schedule_func(
__lowerCamelCase , num_warmup_steps=__lowerCamelCase , num_training_steps=__lowerCamelCase , last_epoch=__lowerCamelCase )
| 63 | 1 |
from collections import defaultdict
def lowercase__( A , A ):
snake_case__ : Dict = first_str.lower().strip()
snake_case__ : int = second_str.lower().strip()
# Remove whitespace
snake_case__ : str = first_str.replace(' ' , '' )
snake_case__ : Optional[int] = second_str.replace(' ' , '' )
# Strings of different lengths are not anagrams
if len(A ) != len(A ):
return False
# Default values for count should be 0
snake_case__ : defaultdict[str, int] = defaultdict(A )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(A ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
lowerCamelCase : Tuple = input('Enter the first string ').strip()
lowerCamelCase : Dict = input('Enter the second string ').strip()
lowerCamelCase : Any = check_anagrams(input_a, input_b)
print(F"""{input_a} and {input_b} are {"" if status else "not "}anagrams.""")
| 303 |
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowerCamelCase : Dict = {
'facebook/maskformer-swin-base-ade': (
'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json'
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowerCamelCase : Optional[int] = logging.get_logger(__name__)
class snake_case__ ( UpperCamelCase_ ):
_lowerCAmelCase ='maskformer'
_lowerCAmelCase ={'hidden_size': 'mask_feature_size'}
_lowerCAmelCase =['resnet', 'swin']
_lowerCAmelCase =['detr']
def __init__( self : Optional[Any] , _lowerCamelCase : int = 2_5_6 , _lowerCamelCase : int = 2_5_6 , _lowerCamelCase : float = 0.1 , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[Dict] = None , _lowerCamelCase : Optional[Dict] = None , _lowerCamelCase : float = 0.02 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : float = 1.0 , _lowerCamelCase : float = 20.0 , _lowerCamelCase : Optional[bool] = None , **_lowerCamelCase : Optional[Any] , ):
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
snake_case__ : Any = SwinConfig(
image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(_lowerCamelCase , _lowerCamelCase ):
snake_case__ : Any = backbone_config.pop('model_type' )
snake_case__ : Any = CONFIG_MAPPING[backbone_model_type]
snake_case__ : str = config_class.from_dict(_lowerCamelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '''
F'''Supported model types: {",".join(self.backbones_supported )}''' )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
snake_case__ : int = DetrConfig()
else:
# verify that the decoder is supported
snake_case__ : Optional[Any] = (
decoder_config.pop('model_type' ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
F'''Transformer Decoder {decoder_type} not supported, please use one of'''
F''' {",".join(self.decoders_supported )}''' )
if isinstance(_lowerCamelCase , _lowerCamelCase ):
snake_case__ : int = CONFIG_MAPPING[decoder_type]
snake_case__ : List[Any] = config_class.from_dict(_lowerCamelCase )
snake_case__ : Tuple = backbone_config
snake_case__ : List[Any] = decoder_config
# main feature dimension for the model
snake_case__ : int = fpn_feature_size
snake_case__ : Any = mask_feature_size
# initializer
snake_case__ : Optional[Any] = init_std
snake_case__ : Optional[Any] = init_xavier_std
# Hungarian matcher && loss
snake_case__ : Optional[Any] = cross_entropy_weight
snake_case__ : Union[str, Any] = dice_weight
snake_case__ : int = mask_weight
snake_case__ : List[str] = use_auxiliary_loss
snake_case__ : Optional[int] = no_object_weight
snake_case__ : Dict = output_auxiliary_logits
snake_case__ : Union[str, Any] = self.decoder_config.encoder_attention_heads
snake_case__ : List[str] = self.decoder_config.num_hidden_layers
super().__init__(**_lowerCamelCase )
@classmethod
def UpperCAmelCase__ ( cls : str , _lowerCamelCase : PretrainedConfig , _lowerCamelCase : PretrainedConfig , **_lowerCamelCase : Tuple ):
return cls(
backbone_config=_lowerCamelCase , decoder_config=_lowerCamelCase , **_lowerCamelCase , )
def UpperCAmelCase__ ( self : Optional[Any] ):
snake_case__ : Optional[int] = copy.deepcopy(self.__dict__ )
snake_case__ : Any = self.backbone_config.to_dict()
snake_case__ : Dict = self.decoder_config.to_dict()
snake_case__ : str = self.__class__.model_type
return output
| 303 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
SCREAMING_SNAKE_CASE :Dict = logging.get_logger(__name__)
class __magic_name__ ( snake_case ):
UpperCamelCase_ :List[str] = ["""pixel_values"""]
def __init__( self , _lowercase = True , _lowercase = None , _lowercase = PILImageResampling.BILINEAR , _lowercase = True , _lowercase = None , _lowercase = True , _lowercase = 1 / 255 , _lowercase = True , _lowercase = None , _lowercase = None , **_lowercase , )-> None:
super().__init__(**_lowercase )
UpperCamelCase_ = size if size is not None else {"shortest_edge": 256}
UpperCamelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase )
UpperCamelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224}
UpperCamelCase_ = get_size_dict(_lowercase )
UpperCamelCase_ = do_resize
UpperCamelCase_ = size
UpperCamelCase_ = resample
UpperCamelCase_ = do_center_crop
UpperCamelCase_ = crop_size
UpperCamelCase_ = do_rescale
UpperCamelCase_ = rescale_factor
UpperCamelCase_ = do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
UpperCamelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD
def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = PILImageResampling.BICUBIC , _lowercase = None , **_lowercase , )-> np.ndarray:
UpperCamelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase )
if "shortest_edge" not in size:
raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" )
UpperCamelCase_ = get_resize_output_image_size(_lowercase , size=size["shortest_edge"] , default_to_square=_lowercase )
return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase )
def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase , )-> np.ndarray:
UpperCamelCase_ = get_size_dict(_lowercase )
return center_crop(_lowercase , size=(size["height"], size["width"]) , data_format=_lowercase , **_lowercase )
def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase = None , **_lowercase )-> np.ndarray:
return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase )
def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase = None , **_lowercase , )-> np.ndarray:
return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase )
def UpperCAmelCase_ ( self , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = ChannelDimension.FIRST , **_lowercase , )-> List[str]:
UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize
UpperCamelCase_ = size if size is not None else self.size
UpperCamelCase_ = get_size_dict(_lowercase , default_to_square=_lowercase )
UpperCamelCase_ = resample if resample is not None else self.resample
UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop
UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size
UpperCamelCase_ = get_size_dict(_lowercase )
UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale
UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor
UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize
UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean
UpperCamelCase_ = image_std if image_std is not None else self.image_std
UpperCamelCase_ = make_list_of_images(_lowercase )
if not valid_images(_lowercase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
UpperCamelCase_ = [to_numpy_array(_lowercase ) for image in images]
if do_resize:
UpperCamelCase_ = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images]
if do_center_crop:
UpperCamelCase_ = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images]
if do_rescale:
UpperCamelCase_ = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images]
if do_normalize:
UpperCamelCase_ = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images]
UpperCamelCase_ = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images]
UpperCamelCase_ = {"pixel_values": images}
return BatchFeature(data=_lowercase , tensor_type=_lowercase )
| 628 |
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.999 , SCREAMING_SNAKE_CASE_="cosine" , )-> int:
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(SCREAMING_SNAKE_CASE_ ):
return math.exp(t * -12.0 )
else:
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" )
UpperCamelCase_ = []
for i in range(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase_ = i / num_diffusion_timesteps
UpperCamelCase_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) )
return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa )
class __magic_name__ ( snake_case , snake_case ):
UpperCamelCase_ :str = [e.name for e in KarrasDiffusionSchedulers]
UpperCamelCase_ :Tuple = 2
@register_to_config
def __init__( self , _lowercase = 1_000 , _lowercase = 0.00_085 , _lowercase = 0.012 , _lowercase = "linear" , _lowercase = None , _lowercase = "epsilon" , _lowercase = "linspace" , _lowercase = 0 , )-> List[Any]:
if trained_betas is not None:
UpperCamelCase_ = torch.tensor(_lowercase , dtype=torch.floataa )
elif beta_schedule == "linear":
UpperCamelCase_ = torch.linspace(_lowercase , _lowercase , _lowercase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
UpperCamelCase_ = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowercase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
UpperCamelCase_ = betas_for_alpha_bar(_lowercase )
else:
raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" )
UpperCamelCase_ = 1.0 - self.betas
UpperCamelCase_ = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_lowercase , _lowercase , _lowercase )
def UpperCAmelCase_ ( self , _lowercase , _lowercase=None )-> Union[str, Any]:
if schedule_timesteps is None:
UpperCamelCase_ = self.timesteps
UpperCamelCase_ = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
UpperCamelCase_ = 1 if len(_lowercase ) > 1 else 0
else:
UpperCamelCase_ = timestep.cpu().item() if torch.is_tensor(_lowercase ) else timestep
UpperCamelCase_ = self._index_counter[timestep_int]
return indices[pos].item()
@property
def UpperCAmelCase_ ( self )-> Tuple:
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def UpperCAmelCase_ ( self , _lowercase , _lowercase , )-> torch.FloatTensor:
UpperCamelCase_ = self.index_for_timestep(_lowercase )
if self.state_in_first_order:
UpperCamelCase_ = self.sigmas[step_index]
else:
UpperCamelCase_ = self.sigmas_interpol[step_index]
UpperCamelCase_ = sample / ((sigma**2 + 1) ** 0.5)
return sample
def UpperCAmelCase_ ( self , _lowercase , _lowercase = None , _lowercase = None , )-> Tuple:
UpperCamelCase_ = num_inference_steps
UpperCamelCase_ = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
UpperCamelCase_ = np.linspace(0 , num_train_timesteps - 1 , _lowercase , dtype=_lowercase )[::-1].copy()
elif self.config.timestep_spacing == "leading":
UpperCamelCase_ = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
UpperCamelCase_ = (np.arange(0 , _lowercase ) * step_ratio).round()[::-1].copy().astype(_lowercase )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
UpperCamelCase_ = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
UpperCamelCase_ = (np.arange(_lowercase , 0 , -step_ratio )).round().copy().astype(_lowercase )
timesteps -= 1
else:
raise ValueError(
F"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." )
UpperCamelCase_ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
UpperCamelCase_ = torch.from_numpy(np.log(_lowercase ) ).to(_lowercase )
UpperCamelCase_ = np.interp(_lowercase , np.arange(0 , len(_lowercase ) ) , _lowercase )
UpperCamelCase_ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
UpperCamelCase_ = torch.from_numpy(_lowercase ).to(device=_lowercase )
# interpolate sigmas
UpperCamelCase_ = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp()
UpperCamelCase_ = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
UpperCamelCase_ = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(_lowercase ).startswith("mps" ):
# mps does not support float64
UpperCamelCase_ = torch.from_numpy(_lowercase ).to(_lowercase , dtype=torch.floataa )
else:
UpperCamelCase_ = torch.from_numpy(_lowercase ).to(_lowercase )
# interpolate timesteps
UpperCamelCase_ = self.sigma_to_t(_lowercase ).to(_lowercase , dtype=timesteps.dtype )
UpperCamelCase_ = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten()
UpperCamelCase_ = torch.cat([timesteps[:1], interleaved_timesteps] )
UpperCamelCase_ = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
UpperCamelCase_ = defaultdict(_lowercase )
def UpperCAmelCase_ ( self , _lowercase )-> Any:
# get log sigma
UpperCamelCase_ = sigma.log()
# get distribution
UpperCamelCase_ = log_sigma - self.log_sigmas[:, None]
# get sigmas range
UpperCamelCase_ = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
UpperCamelCase_ = low_idx + 1
UpperCamelCase_ = self.log_sigmas[low_idx]
UpperCamelCase_ = self.log_sigmas[high_idx]
# interpolate sigmas
UpperCamelCase_ = (low - log_sigma) / (low - high)
UpperCamelCase_ = w.clamp(0 , 1 )
# transform interpolation to time range
UpperCamelCase_ = (1 - w) * low_idx + w * high_idx
UpperCamelCase_ = t.view(sigma.shape )
return t
@property
def UpperCAmelCase_ ( self )-> Any:
return self.sample is None
def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , _lowercase = True , )-> Union[SchedulerOutput, Tuple]:
UpperCamelCase_ = self.index_for_timestep(_lowercase )
# advance index counter by 1
UpperCamelCase_ = timestep.cpu().item() if torch.is_tensor(_lowercase ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
UpperCamelCase_ = self.sigmas[step_index]
UpperCamelCase_ = self.sigmas_interpol[step_index + 1]
UpperCamelCase_ = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
UpperCamelCase_ = self.sigmas[step_index - 1]
UpperCamelCase_ = self.sigmas_interpol[step_index]
UpperCamelCase_ = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
UpperCamelCase_ = 0
UpperCamelCase_ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
UpperCamelCase_ = sigma_hat if self.state_in_first_order else sigma_interpol
UpperCamelCase_ = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
UpperCamelCase_ = sigma_hat if self.state_in_first_order else sigma_interpol
UpperCamelCase_ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample" )
else:
raise ValueError(
F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
UpperCamelCase_ = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
UpperCamelCase_ = sigma_interpol - sigma_hat
# store for 2nd order step
UpperCamelCase_ = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
UpperCamelCase_ = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
UpperCamelCase_ = sigma_next - sigma_hat
UpperCamelCase_ = self.sample
UpperCamelCase_ = None
UpperCamelCase_ = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_lowercase )
def UpperCAmelCase_ ( self , _lowercase , _lowercase , _lowercase , )-> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
UpperCamelCase_ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_lowercase ):
# mps does not support float64
UpperCamelCase_ = self.timesteps.to(original_samples.device , dtype=torch.floataa )
UpperCamelCase_ = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
UpperCamelCase_ = self.timesteps.to(original_samples.device )
UpperCamelCase_ = timesteps.to(original_samples.device )
UpperCamelCase_ = [self.index_for_timestep(_lowercase , _lowercase ) for t in timesteps]
UpperCamelCase_ = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
UpperCamelCase_ = sigma.unsqueeze(-1 )
UpperCamelCase_ = original_samples + noise * sigma
return noisy_samples
def __len__( self )-> Dict:
return self.config.num_train_timesteps
| 628 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/pix2struct-textcaps-base""": (
"""https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json"""
),
}
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = "pix2struct_text_model"
lowerCAmelCase__ = ["past_key_values"]
lowerCAmelCase__ = {
"hidden_size": "hidden_size",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , UpperCAmelCase=50244 , UpperCAmelCase=768 , UpperCAmelCase=64 , UpperCAmelCase=2048 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=32 , UpperCAmelCase=128 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-6 , UpperCAmelCase=1.0 , UpperCAmelCase="gelu_new" , UpperCAmelCase=0 , UpperCAmelCase=False , UpperCAmelCase=0 , UpperCAmelCase=1 , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Any:
'''simple docstring'''
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = d_kv
lowercase_ = d_ff
lowercase_ = num_layers
lowercase_ = num_heads
lowercase_ = relative_attention_num_buckets
lowercase_ = relative_attention_max_distance
lowercase_ = dropout_rate
lowercase_ = layer_norm_epsilon
lowercase_ = initializer_factor
lowercase_ = use_cache
lowercase_ = eos_token_id
lowercase_ = decoder_start_token_id
# for backwards compatibility
lowercase_ = dense_act_fn
super().__init__(
pad_token_id=__A , eos_token_id=__A , decoder_start_token_id=__A , tie_word_embeddings=__A , is_decoder=__A , **__A , )
@classmethod
def A__ ( cls , UpperCAmelCase , **UpperCAmelCase ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__A )
lowercase_ , lowercase_ = cls.get_config_dict(__A , **__A )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get("model_type" ) == "pix2struct":
lowercase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(__A , **__A )
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = "pix2struct_vision_model"
def __init__( self , UpperCAmelCase=768 , UpperCAmelCase=768 , UpperCAmelCase=2048 , UpperCAmelCase=64 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase="gelu_new" , UpperCAmelCase=1e-6 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=1e-10 , UpperCAmelCase=1.0 , UpperCAmelCase=4096 , UpperCAmelCase=32 , UpperCAmelCase=128 , **UpperCAmelCase , ) -> str:
'''simple docstring'''
super().__init__(**__A )
lowercase_ = hidden_size
lowercase_ = patch_embed_hidden_size
lowercase_ = d_ff
lowercase_ = dropout_rate
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = initializer_range
lowercase_ = initializer_factor
lowercase_ = attention_dropout
lowercase_ = layer_norm_eps
lowercase_ = dense_act_fn
lowercase_ = seq_len
lowercase_ = relative_attention_num_buckets
lowercase_ = relative_attention_max_distance
lowercase_ = d_kv
@classmethod
def A__ ( cls , UpperCAmelCase , **UpperCAmelCase ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__A )
lowercase_ , lowercase_ = cls.get_config_dict(__A , **__A )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get("model_type" ) == "pix2struct":
lowercase_ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(__A , **__A )
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
lowerCAmelCase__ = "pix2struct"
lowerCAmelCase__ = True
def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1.0 , UpperCAmelCase=0.02 , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=True , **UpperCAmelCase , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(tie_word_embeddings=__A , is_encoder_decoder=__A , **__A )
if text_config is None:
lowercase_ = {}
logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values." )
if vision_config is None:
lowercase_ = {}
logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values." )
lowercase_ = PixaStructTextConfig(**__A )
lowercase_ = PixaStructVisionConfig(**__A )
lowercase_ = self.text_config.decoder_start_token_id
lowercase_ = self.text_config.pad_token_id
lowercase_ = self.text_config.eos_token_id
lowercase_ = initializer_factor
lowercase_ = initializer_range
lowercase_ = self.initializer_range
lowercase_ = self.initializer_range
lowercase_ = is_vqa
@classmethod
def A__ ( cls , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__A )
def A__ ( self ) -> List[Any]:
'''simple docstring'''
lowercase_ = copy.deepcopy(self.__dict__ )
lowercase_ = self.text_config.to_dict()
lowercase_ = self.vision_config.to_dict()
lowercase_ = self.__class__.model_type
return output
| 715 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class __lowerCamelCase ( enum.Enum ):
"""simple docstring"""
lowerCAmelCase__ = "all_checks"
lowerCAmelCase__ = "basic_checks"
lowerCAmelCase__ = "no_checks"
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[dict] , __lowerCamelCase: dict , __lowerCamelCase: Optional[int]=None ):
'''simple docstring'''
if expected_checksums is None:
logger.info("Unable to verify checksums." )
return
if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) )
if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0:
raise UnexpectedDownloadedFile(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) )
lowercase_ = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
lowercase_ = " for " + verification_name if verification_name is not None else ""
if len(__lowerCamelCase ) > 0:
raise NonMatchingChecksumError(
F'Checksums didn\'t match{for_verification_name}:\n'
F'{bad_urls}\n'
"Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" )
logger.info("All the checksums matched successfully" + for_verification_name )
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
class __lowerCamelCase ( snake_case_ ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[dict] , __lowerCamelCase: dict ):
'''simple docstring'''
if expected_splits is None:
logger.info("Unable to verify splits sizes." )
return
if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0:
raise ExpectedMoreSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) )
if len(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) > 0:
raise UnexpectedSplits(str(set(__lowerCamelCase ) - set(__lowerCamelCase ) ) )
lowercase_ = [
{"expected": expected_splits[name], "recorded": recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(__lowerCamelCase ) > 0:
raise NonMatchingSplitsSizesError(str(__lowerCamelCase ) )
logger.info("All the splits matched successfully." )
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: bool = True ):
'''simple docstring'''
if record_checksum:
lowercase_ = shaaaa()
with open(__lowerCamelCase , "rb" ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , B"" ):
m.update(__lowerCamelCase )
lowercase_ = m.hexdigest()
else:
lowercase_ = None
return {"num_bytes": os.path.getsize(__lowerCamelCase ), "checksum": checksum}
def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple ):
'''simple docstring'''
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 601 | 0 |
"""simple docstring"""
import datasets
from .evaluate import evaluate
__lowerCAmelCase : Tuple = '''\
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={arXiv preprint arXiv:2103.06268},
year={2021}
}
'''
__lowerCAmelCase : Union[str, Any] = '''
This metric wrap the official scoring script for version 1 of the Contract
Understanding Atticus Dataset (CUAD).
Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510
commercial legal contracts that have been manually labeled to identify 41 categories of important
clauses that lawyers look for when reviewing contracts in connection with corporate transactions.
'''
__lowerCAmelCase : Optional[Any] = '''
Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair as given in the references (see below)
- \'prediction_text\': list of possible texts for the answer, as a list of strings
depending on a threshold on the confidence probability of each prediction.
references: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair (see above),
- \'answers\': a Dict in the CUAD dataset format
{
\'text\': list of possible texts for the answer, as a list of strings
\'answer_start\': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
\'exact_match\': Exact match (the normalized answer exactly match the gold answer)
\'f1\': The F-score of predicted tokens versus the gold answer
\'aupr\': Area Under the Precision-Recall curve
\'prec_at_80_recall\': Precision at 80% recall
\'prec_at_90_recall\': Precision at 90% recall
Examples:
>>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]
>>> cuad_metric = datasets.load_metric("cuad")
>>> results = cuad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def UpperCAmelCase__ ( self ) -> int:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": {
"""id""": datasets.Value("""string""" ),
"""prediction_text""": datasets.features.Sequence(datasets.Value("""string""" ) ),
},
"""references""": {
"""id""": datasets.Value("""string""" ),
"""answers""": datasets.features.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
},
} ) , codebase_urls=["""https://www.atticusprojectai.org/cuad"""] , reference_urls=["""https://www.atticusprojectai.org/cuad"""] , )
def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Union[str, Any] = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions}
snake_case_ : Union[str, Any] = [
{
"""paragraphs""": [
{
"""qas""": [
{
"""answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]],
"""id""": ref["""id"""],
}
for ref in references
]
}
]
}
]
snake_case_ : int = evaluate(dataset=_lowercase , predictions=_lowercase )
return score
| 58 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__SCREAMING_SNAKE_CASE = 4
__SCREAMING_SNAKE_CASE = 3
class lowerCAmelCase__ ( lowerCAmelCase_ ):
"""simple docstring"""
pass
def __a ( lowerCAmelCase__ : List[str] ):
for shard in shards:
for i in range(lowerCAmelCase__ ):
yield {"i": i, "shard": shard}
def __a ( ):
a__ : str = int(os.environ['''RANK'''] )
a__ : int = int(os.environ['''WORLD_SIZE'''] )
a__ : str = ArgumentParser()
parser.add_argument('''--streaming''' , type=lowerCAmelCase__ )
parser.add_argument('''--local_rank''' , type=lowerCAmelCase__ )
parser.add_argument('''--num_workers''' , type=lowerCAmelCase__ , default=0 )
a__ : int = parser.parse_args()
a__ : List[str] = args.streaming
a__ : Dict = args.num_workers
a__ : Dict = {'''shards''': [F'shard_{shard_idx}' for shard_idx in range(lowerCAmelCase__ )]}
a__ : Tuple = IterableDataset.from_generator(lowerCAmelCase__ , gen_kwargs=lowerCAmelCase__ )
if not streaming:
a__ : str = Dataset.from_list(list(lowerCAmelCase__ ) )
a__ : Optional[int] = split_dataset_by_node(lowerCAmelCase__ , rank=lowerCAmelCase__ , world_size=lowerCAmelCase__ )
a__ : Dict = torch.utils.data.DataLoader(lowerCAmelCase__ , num_workers=lowerCAmelCase__ )
a__ : str = NUM_SHARDS * NUM_ITEMS_PER_SHARD
a__ : Dict = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
a__ : str = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 688 | 0 |
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class _UpperCamelCase ( __snake_case , unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase = XLMTokenizer
lowerCAmelCase = False
def _UpperCAmelCase ( self ) -> Dict:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
A = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""w</w>""",
"""r</w>""",
"""t</w>""",
"""lo""",
"""low""",
"""er</w>""",
"""low</w>""",
"""lowest</w>""",
"""newer</w>""",
"""wider</w>""",
"""<unk>""",
]
A = dict(zip(a__ , range(len(a__ ) ) ) )
A = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""]
A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" ) as fp:
fp.write(json.dumps(a__ ) )
with open(self.merges_file , """w""" ) as fp:
fp.write("""\n""".join(a__ ) )
def _UpperCAmelCase ( self , a__ ) -> List[str]:
A = """lower newer"""
A = """lower newer"""
return input_text, output_text
def _UpperCAmelCase ( self ) -> Tuple:
A = XLMTokenizer(self.vocab_file , self.merges_file )
A = """lower"""
A = ["""low""", """er</w>"""]
A = tokenizer.tokenize(a__ )
self.assertListEqual(a__ , a__ )
A = tokens + ["""<unk>"""]
A = [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , a__ )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
A = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" )
A = tokenizer.encode("""sequence builders""" , add_special_tokens=a__ )
A = tokenizer.encode("""multi-sequence build""" , add_special_tokens=a__ )
A = tokenizer.build_inputs_with_special_tokens(a__ )
A = tokenizer.build_inputs_with_special_tokens(a__ , a__ )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 546 |
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Any=5 ) -> Optional[Any]:
"""simple docstring"""
assert masked_input.count("""<mask>""" ) == 1
A = torch.tensor(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ).unsqueeze(0 ) # Batch size 1
A = model(UpperCamelCase__ )[0] # The last hidden-state is the first element of the output tuple
A = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
A = logits[0, masked_index, :]
A = logits.softmax(dim=0 )
A , A = prob.topk(k=UpperCamelCase__ , dim=0 )
A = """ """.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(UpperCamelCase__ ) )] )
A = tokenizer.mask_token
A = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ):
A = predicted_token_bpe.replace("""\u2581""" , """ """ )
if " {0}".format(UpperCamelCase__ ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(""" {0}""".format(UpperCamelCase__ ) , UpperCamelCase__ ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(UpperCamelCase__ , UpperCamelCase__ ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
_lowercase : Optional[int] = CamembertTokenizer.from_pretrained("camembert-base")
_lowercase : int = CamembertForMaskedLM.from_pretrained("camembert-base")
model.eval()
_lowercase : Optional[int] = "Le camembert est <mask> :)"
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 546 | 1 |
'''simple docstring'''
def a ( _UpperCAmelCase = 1_0 , _UpperCAmelCase = 1_0_0_0 , _UpperCAmelCase = True ) -> int:
"""simple docstring"""
assert (
isinstance(_UpperCAmelCase , _UpperCAmelCase )
and isinstance(_UpperCAmelCase , _UpperCAmelCase )
and isinstance(_UpperCAmelCase , _UpperCAmelCase )
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' )
return min_val if option else max_val
def a ( _UpperCAmelCase , _UpperCAmelCase ) -> int:
"""simple docstring"""
return int((number_a + number_a) / 2 )
def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None:
"""simple docstring"""
assert (
isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError('argument value for lower and higher must be(lower > higher)' )
if not lower < to_guess < higher:
raise ValueError(
'guess value must be within the range of lower and higher value' )
def answer(_UpperCAmelCase ) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print('started...' )
a_ = lower
a_ = higher
a_ = []
while True:
a_ = get_avg(_UpperCAmelCase , _UpperCAmelCase )
last_numbers.append(_UpperCAmelCase )
if answer(_UpperCAmelCase ) == "low":
a_ = number
elif answer(_UpperCAmelCase ) == "high":
a_ = number
else:
break
print(F'''guess the number : {last_numbers[-1]}''' )
print(F'''details : {last_numbers!s}''' )
def a ( ) -> None:
"""simple docstring"""
a_ = int(input('Enter lower value : ' ).strip() )
a_ = int(input('Enter high value : ' ).strip() )
a_ = int(input('Enter value to guess : ' ).strip() )
guess_the_number(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if __name__ == "__main__":
main()
| 697 |
'''simple docstring'''
from __future__ import annotations
def a ( _UpperCAmelCase ) -> bool:
"""simple docstring"""
a_ = len(_UpperCAmelCase )
# We need to create solution object to save path.
a_ = [[0 for _ in range(_UpperCAmelCase )] for _ in range(_UpperCAmelCase )]
a_ = run_maze(_UpperCAmelCase , 0 , 0 , _UpperCAmelCase )
if solved:
print('\n'.join(str(_UpperCAmelCase ) for row in solutions ) )
else:
print('No solution exists!' )
return solved
def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool:
"""simple docstring"""
a_ = len(_UpperCAmelCase )
# Final check point.
if i == j == (size - 1):
a_ = 1
return True
a_ = (not i < 0) and (not j < 0) # Check lower bounds
a_ = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
a_ = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
a_ = 1
# check for directions
if (
run_maze(_UpperCAmelCase , i + 1 , _UpperCAmelCase , _UpperCAmelCase )
or run_maze(_UpperCAmelCase , _UpperCAmelCase , j + 1 , _UpperCAmelCase )
or run_maze(_UpperCAmelCase , i - 1 , _UpperCAmelCase , _UpperCAmelCase )
or run_maze(_UpperCAmelCase , _UpperCAmelCase , j - 1 , _UpperCAmelCase )
):
return True
a_ = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 697 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
a__ : List[Any] =logging.get_logger(__name__)
def lowercase__ ( __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = WavaVecaForSequenceClassification.from_pretrained(__lowercase , config=__lowercase )
__UpperCamelCase = downstream_dict['projector.weight']
__UpperCamelCase = downstream_dict['projector.bias']
__UpperCamelCase = downstream_dict['model.post_net.linear.weight']
__UpperCamelCase = downstream_dict['model.post_net.linear.bias']
return model
def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : int , __lowercase : str ) -> Optional[Any]:
"""simple docstring"""
__UpperCamelCase = WavaVecaForAudioFrameClassification.from_pretrained(__lowercase , config=__lowercase )
__UpperCamelCase = downstream_dict['model.linear.weight']
__UpperCamelCase = downstream_dict['model.linear.bias']
return model
def lowercase__ ( __lowercase : List[str] , __lowercase : Dict , __lowercase : Dict ) -> Optional[int]:
"""simple docstring"""
__UpperCamelCase = WavaVecaForXVector.from_pretrained(__lowercase , config=__lowercase )
__UpperCamelCase = downstream_dict['connector.weight']
__UpperCamelCase = downstream_dict['connector.bias']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
__UpperCamelCase = downstream_dict[
F'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
__UpperCamelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
__UpperCamelCase = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight']
__UpperCamelCase = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias']
__UpperCamelCase = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight']
__UpperCamelCase = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias']
__UpperCamelCase = downstream_dict['objective.W']
return model
@torch.no_grad()
def lowercase__ ( __lowercase : Union[str, Any] , __lowercase : int , __lowercase : str , __lowercase : Tuple ) -> str:
"""simple docstring"""
__UpperCamelCase = torch.load(__lowercase , map_location='cpu' )
__UpperCamelCase = checkpoint['Downstream']
__UpperCamelCase = WavaVecaConfig.from_pretrained(__lowercase )
__UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(
__lowercase , return_attention_mask=__lowercase , do_normalize=__lowercase )
__UpperCamelCase = hf_config.architectures[0]
if arch.endswith('ForSequenceClassification' ):
__UpperCamelCase = convert_classification(__lowercase , __lowercase , __lowercase )
elif arch.endswith('ForAudioFrameClassification' ):
__UpperCamelCase = convert_diarization(__lowercase , __lowercase , __lowercase )
elif arch.endswith('ForXVector' ):
__UpperCamelCase = convert_xvector(__lowercase , __lowercase , __lowercase )
else:
raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' )
if hf_config.use_weighted_layer_sum:
__UpperCamelCase = checkpoint['Featurizer']['weights']
hf_feature_extractor.save_pretrained(__lowercase )
hf_model.save_pretrained(__lowercase )
if __name__ == "__main__":
a__ : Optional[Any] =argparse.ArgumentParser()
parser.add_argument(
'''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.'''
)
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''')
parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''')
a__ : List[str] =parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 434 |
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class snake_case ( __lowerCamelCase ):
"""simple docstring"""
@staticmethod
@abstractmethod
def _lowerCamelCase ( __A : ArgumentParser ):
raise NotImplementedError()
@abstractmethod
def _lowerCamelCase ( self : int ):
raise NotImplementedError()
| 434 | 1 |
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
import torch.utils.checkpoint
from ...models import UNetaDModel, VQModel
from ...schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from ...utils import PIL_INTERPOLATION, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
def lowercase_ ( __UpperCAmelCase ) -> List[str]:
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = image.size
lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowerCAmelCase__ : List[Any] = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] )
lowerCAmelCase__ : List[Any] = np.array(__UpperCAmelCase ).astype(np.floataa ) / 255.0
lowerCAmelCase__ : Optional[int] = image[None].transpose(0 , 3 , 1 , 2 )
lowerCAmelCase__ : Dict = torch.from_numpy(__UpperCAmelCase )
return 2.0 * image - 1.0
class _lowerCamelCase ( a_ ):
def __init__( self : int , UpperCamelCase : VQModel , UpperCamelCase : UNetaDModel , UpperCamelCase : Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
self.register_modules(vqvae=UpperCamelCase , unet=UpperCamelCase , scheduler=UpperCamelCase )
@torch.no_grad()
def __call__( self : int , UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : Optional[int] = 1_00 , UpperCamelCase : Optional[float] = 0.0 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]:
"""simple docstring"""
if isinstance(UpperCamelCase , PIL.Image.Image ):
lowerCAmelCase__ : List[str] = 1
elif isinstance(UpperCamelCase , torch.Tensor ):
lowerCAmelCase__ : Dict = image.shape[0]
else:
raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCamelCase )}""" )
if isinstance(UpperCamelCase , PIL.Image.Image ):
lowerCAmelCase__ : Union[str, Any] = preprocess(UpperCamelCase )
lowerCAmelCase__ , lowerCAmelCase__ : int = image.shape[-2:]
# in_channels should be 6: 3 for latents, 3 for low resolution image
lowerCAmelCase__ : str = (batch_size, self.unet.config.in_channels // 2, height, width)
lowerCAmelCase__ : Dict = next(self.unet.parameters() ).dtype
lowerCAmelCase__ : Tuple = randn_tensor(UpperCamelCase , generator=UpperCamelCase , device=self.device , dtype=UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = image.to(device=self.device , dtype=UpperCamelCase )
# set timesteps and move to the correct device
self.scheduler.set_timesteps(UpperCamelCase , device=self.device )
lowerCAmelCase__ : Union[str, Any] = self.scheduler.timesteps
# scale the initial noise by the standard deviation required by the scheduler
lowerCAmelCase__ : List[str] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature.
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
lowerCAmelCase__ : Optional[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
lowerCAmelCase__ : Dict = {}
if accepts_eta:
lowerCAmelCase__ : Optional[Any] = eta
for t in self.progress_bar(UpperCamelCase ):
# concat latents and low resolution image in the channel dimension.
lowerCAmelCase__ : Dict = torch.cat([latents, image] , dim=1 )
lowerCAmelCase__ : Dict = self.scheduler.scale_model_input(UpperCamelCase , UpperCamelCase )
# predict the noise residual
lowerCAmelCase__ : Optional[int] = self.unet(UpperCamelCase , UpperCamelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
lowerCAmelCase__ : Optional[int] = self.scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample
# decode the image latents with the VQVAE
lowerCAmelCase__ : List[Any] = self.vqvae.decode(UpperCamelCase ).sample
lowerCAmelCase__ : Tuple = torch.clamp(UpperCamelCase , -1.0 , 1.0 )
lowerCAmelCase__ : List[Any] = image / 2 + 0.5
lowerCAmelCase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCAmelCase__ : Optional[Any] = self.numpy_to_pil(UpperCamelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCamelCase )
| 299 |
"""simple docstring"""
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
_A = 1e-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class _lowerCamelCase :
def __init__( self : List[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : List[str]=16 , UpperCamelCase : List[str]=13 , UpperCamelCase : Any=7 , UpperCamelCase : str=14 , UpperCamelCase : List[Any]=10 , UpperCamelCase : Any=19 , UpperCamelCase : Optional[int]=5 , UpperCamelCase : Union[str, Any]=4 , UpperCamelCase : Optional[int]=True , UpperCamelCase : Any=16 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : List[Any]=4 , UpperCamelCase : str=4 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Union[str, Any]=0.1 , UpperCamelCase : List[Any]=[1, 2, 3, 4, 5] , UpperCamelCase : str=25 , UpperCamelCase : Any=5 , ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ : Optional[Any] = d_model
lowerCAmelCase__ : Tuple = parent
lowerCAmelCase__ : Optional[Any] = batch_size
lowerCAmelCase__ : Dict = prediction_length
lowerCAmelCase__ : Tuple = context_length
lowerCAmelCase__ : Any = cardinality
lowerCAmelCase__ : Any = num_time_features
lowerCAmelCase__ : Tuple = lags_sequence
lowerCAmelCase__ : Tuple = embedding_dimension
lowerCAmelCase__ : str = is_training
lowerCAmelCase__ : Union[str, Any] = hidden_size
lowerCAmelCase__ : List[Any] = num_hidden_layers
lowerCAmelCase__ : Any = num_attention_heads
lowerCAmelCase__ : Dict = intermediate_size
lowerCAmelCase__ : Union[str, Any] = hidden_act
lowerCAmelCase__ : Tuple = hidden_dropout_prob
lowerCAmelCase__ : List[Any] = attention_probs_dropout_prob
lowerCAmelCase__ : int = context_length
lowerCAmelCase__ : Union[str, Any] = prediction_length + label_length
lowerCAmelCase__ : Optional[Any] = label_length
lowerCAmelCase__ : Union[str, Any] = moving_average
lowerCAmelCase__ : Any = autocorrelation_factor
def _lowerCAmelCase ( self : Optional[Any] ) -> Any:
"""simple docstring"""
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def _lowerCAmelCase ( self : str , UpperCamelCase : Optional[int] ) -> str:
"""simple docstring"""
lowerCAmelCase__ : Dict = config.context_length + max(config.lags_sequence )
lowerCAmelCase__ : Any = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
lowerCAmelCase__ : Tuple = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
lowerCAmelCase__ : Dict = floats_tensor([self.batch_size, _past_length] )
lowerCAmelCase__ : int = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
lowerCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
lowerCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length] )
lowerCAmelCase__ : Optional[int] = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def _lowerCAmelCase ( self : int ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : Tuple = self.get_config()
lowerCAmelCase__ : Optional[Any] = self.prepare_autoformer_inputs_dict(UpperCamelCase )
return config, inputs_dict
def _lowerCAmelCase ( self : str ) -> Any:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Tuple , UpperCamelCase : Tuple ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = AutoformerModel(config=UpperCamelCase ).to(UpperCamelCase ).eval()
lowerCAmelCase__ : List[str] = model(**UpperCamelCase )
lowerCAmelCase__ : Any = outputs.encoder_last_hidden_state
lowerCAmelCase__ : Any = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ : List[str] = model.get_encoder()
encoder.save_pretrained(UpperCamelCase )
lowerCAmelCase__ : Any = AutoformerEncoder.from_pretrained(UpperCamelCase ).to(UpperCamelCase )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = model.create_network_inputs(**UpperCamelCase )
lowerCAmelCase__ , lowerCAmelCase__ : Tuple = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
lowerCAmelCase__ : int = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
lowerCAmelCase__ : List[Any] = encoder(inputs_embeds=UpperCamelCase )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 )
lowerCAmelCase__ : Tuple = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
lowerCAmelCase__ : List[str] = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
lowerCAmelCase__ : Tuple = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
lowerCAmelCase__ : List[Any] = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCAmelCase__ : Optional[Any] = model.get_decoder()
decoder.save_pretrained(UpperCamelCase )
lowerCAmelCase__ : List[str] = AutoformerDecoder.from_pretrained(UpperCamelCase ).to(UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = decoder(
trend=UpperCamelCase , inputs_embeds=UpperCamelCase , encoder_hidden_states=UpperCamelCase , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 )
@require_torch
class _lowerCamelCase ( a_ , a_ , unittest.TestCase ):
_lowerCamelCase :Tuple = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
_lowerCamelCase :int = (AutoformerForPrediction,) if is_torch_available() else ()
_lowerCamelCase :int = {"feature-extraction": AutoformerModel} if is_torch_available() else {}
_lowerCamelCase :Tuple = False
_lowerCamelCase :int = False
_lowerCamelCase :List[Any] = False
_lowerCamelCase :Optional[int] = False
_lowerCamelCase :int = False
_lowerCamelCase :Any = False
def _lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
lowerCAmelCase__ : Tuple = AutoformerModelTester(self )
lowerCAmelCase__ : int = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase )
def _lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
lowerCAmelCase__ : Dict = model_class(UpperCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCamelCase )
lowerCAmelCase__ , lowerCAmelCase__ : int = model_class.from_pretrained(UpperCamelCase , output_loading_info=UpperCamelCase )
self.assertEqual(info["""missing_keys"""] , [] )
def _lowerCAmelCase ( self : Tuple ) -> Any:
"""simple docstring"""
lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*UpperCamelCase )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def _lowerCAmelCase ( self : Optional[Any] ) -> Any:
"""simple docstring"""
pass
def _lowerCAmelCase ( self : Tuple ) -> List[str]:
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = inspect.signature(getattr(UpperCamelCase , """forward""" ) )
# The main input is the name of the argument after `self`
lowerCAmelCase__ : str = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , UpperCamelCase )
def _lowerCAmelCase ( self : int ) -> Union[str, Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase__ : str = model_class(UpperCamelCase )
lowerCAmelCase__ : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase__ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase__ : str = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(UpperCamelCase )] , UpperCamelCase )
def _lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase__ : Optional[Any] = True
lowerCAmelCase__ : Optional[int] = getattr(self.model_tester , """seq_length""" , UpperCamelCase )
lowerCAmelCase__ : List[str] = getattr(self.model_tester , """decoder_seq_length""" , UpperCamelCase )
lowerCAmelCase__ : Tuple = getattr(self.model_tester , """encoder_seq_length""" , UpperCamelCase )
lowerCAmelCase__ : List[str] = getattr(self.model_tester , """d_model""" , UpperCamelCase )
lowerCAmelCase__ : Any = getattr(self.model_tester , """num_attention_heads""" , UpperCamelCase )
lowerCAmelCase__ : Optional[int] = d_model // num_attention_heads
for model_class in self.all_model_classes:
lowerCAmelCase__ : str = True
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : Optional[int] = True
lowerCAmelCase__ : Dict = model_class(UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
with torch.no_grad():
lowerCAmelCase__ : List[Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) )
lowerCAmelCase__ : int = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCAmelCase__ : int = True
lowerCAmelCase__ : Tuple = model_class(UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
with torch.no_grad():
lowerCAmelCase__ : List[Any] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) )
lowerCAmelCase__ : str = outputs.encoder_attentions
self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
lowerCAmelCase__ : int = len(UpperCamelCase )
lowerCAmelCase__ : int = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(UpperCamelCase , UpperCamelCase )
# decoder attentions
lowerCAmelCase__ : List[str] = outputs.decoder_attentions
self.assertIsInstance(UpperCamelCase , (list, tuple) )
self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
lowerCAmelCase__ : int = outputs.cross_attentions
self.assertIsInstance(UpperCamelCase , (list, tuple) )
self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
lowerCAmelCase__ : int = True
lowerCAmelCase__ : List[str] = True
lowerCAmelCase__ : Dict = model_class(UpperCamelCase )
model.to(UpperCamelCase )
model.eval()
with torch.no_grad():
lowerCAmelCase__ : Optional[int] = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) )
self.assertEqual(out_len + 2 , len(UpperCamelCase ) )
lowerCAmelCase__ : Dict = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def _lowerCAmelCase ( self : int ) -> Tuple:
"""simple docstring"""
super().test_retain_grad_hidden_states_attentions()
def lowercase_ ( __UpperCAmelCase="train-batch.pt" ) -> Optional[int]:
lowerCAmelCase__ : Any = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=__UpperCAmelCase , repo_type="""dataset""" )
lowerCAmelCase__ : Optional[int] = torch.load(__UpperCAmelCase , map_location=__UpperCAmelCase )
return batch
@require_torch
@slow
class _lowerCamelCase ( unittest.TestCase ):
def _lowerCAmelCase ( self : Tuple ) -> int:
"""simple docstring"""
lowerCAmelCase__ : int = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCamelCase )
lowerCAmelCase__ : List[str] = prepare_batch()
with torch.no_grad():
lowerCAmelCase__ : Dict = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
lowerCAmelCase__ : str = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , UpperCamelCase )
lowerCAmelCase__ : Optional[int] = torch.tensor(
[[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=UpperCamelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) )
def _lowerCAmelCase ( self : Any ) -> Optional[Any]:
"""simple docstring"""
lowerCAmelCase__ : List[str] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCamelCase )
lowerCAmelCase__ : List[Any] = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
lowerCAmelCase__ : Dict = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
lowerCAmelCase__ : int = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , UpperCamelCase )
lowerCAmelCase__ : Union[str, Any] = torch.tensor(
[[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=UpperCamelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , UpperCamelCase , atol=UpperCamelCase ) )
def _lowerCAmelCase ( self : str ) -> int:
"""simple docstring"""
lowerCAmelCase__ : Tuple = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(UpperCamelCase )
lowerCAmelCase__ : str = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
lowerCAmelCase__ : Optional[int] = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
lowerCAmelCase__ : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , UpperCamelCase )
lowerCAmelCase__ : int = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=UpperCamelCase )
lowerCAmelCase__ : List[Any] = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , UpperCamelCase , rtol=1E-1 ) )
| 299 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCamelCase = {
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 717 |
'''simple docstring'''
def _A ( _lowerCAmelCase ):
"""simple docstring"""
if number > 0:
raise ValueError('input must be a negative integer' )
__lowercase =len(bin(_lowerCAmelCase )[3:] )
__lowercase =bin(abs(_lowerCAmelCase ) - (1 << binary_number_length) )[3:]
__lowercase =(
(
'1'
+ '0' * (binary_number_length - len(_lowerCAmelCase ))
+ twos_complement_number
)
if number < 0
else '0'
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 454 | 0 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCAmelCase__ = logging.get_logger(__name__)
UpperCAmelCase__ = {
'''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''',
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class a__ ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : Any = '''wavlm'''
def __init__( self : List[Any] , lowerCAmelCase_ : Dict=32 , lowerCAmelCase_ : List[Any]=768 , lowerCAmelCase_ : Tuple=12 , lowerCAmelCase_ : Union[str, Any]=12 , lowerCAmelCase_ : Dict=3_072 , lowerCAmelCase_ : int="gelu" , lowerCAmelCase_ : Tuple=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Union[str, Any]=1E-5 , lowerCAmelCase_ : Any="group" , lowerCAmelCase_ : Optional[int]="gelu" , lowerCAmelCase_ : Dict=(512, 512, 512, 512, 512, 512, 512) , lowerCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Union[str, Any]=128 , lowerCAmelCase_ : List[str]=16 , lowerCAmelCase_ : List[str]=320 , lowerCAmelCase_ : Tuple=800 , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]=0.05 , lowerCAmelCase_ : Union[str, Any]=10 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[Any]=0.0 , lowerCAmelCase_ : int=10 , lowerCAmelCase_ : Optional[int]=320 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Dict=100 , lowerCAmelCase_ : List[Any]=256 , lowerCAmelCase_ : List[str]=256 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Any="mean" , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : int=256 , lowerCAmelCase_ : Union[str, Any]=(512, 512, 512, 512, 1_500) , lowerCAmelCase_ : Optional[Any]=(5, 3, 3, 1, 1) , lowerCAmelCase_ : Union[str, Any]=(1, 2, 3, 1, 1) , lowerCAmelCase_ : str=512 , lowerCAmelCase_ : int=80 , lowerCAmelCase_ : str=0 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Any=3 , lowerCAmelCase_ : Tuple=None , **lowerCAmelCase_ : Any , ) -> Optional[int]:
super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a )
__A= hidden_size
__A= feat_extract_norm
__A= feat_extract_activation
__A= list(_a )
__A= list(_a )
__A= list(_a )
__A= conv_bias
__A= num_buckets
__A= max_bucket_distance
__A= num_conv_pos_embeddings
__A= num_conv_pos_embedding_groups
__A= len(self.conv_dim )
__A= num_hidden_layers
__A= intermediate_size
__A= hidden_act
__A= num_attention_heads
__A= hidden_dropout
__A= attention_dropout
__A= activation_dropout
__A= feat_proj_dropout
__A= final_dropout
__A= layerdrop
__A= layer_norm_eps
__A= initializer_range
__A= num_ctc_classes
__A= vocab_size
__A= do_stable_layer_norm
__A= use_weighted_layer_sum
__A= classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__A= apply_spec_augment
__A= mask_time_prob
__A= mask_time_length
__A= mask_time_min_masks
__A= mask_feature_prob
__A= mask_feature_length
# parameters for pretraining with codevector quantized representations
__A= num_codevectors_per_group
__A= num_codevector_groups
__A= contrastive_logits_temperature
__A= num_negatives
__A= codevector_dim
__A= proj_codevector_dim
__A= diversity_loss_weight
# ctc loss
__A= ctc_loss_reduction
__A= ctc_zero_infinity
# adapter
__A= add_adapter
__A= adapter_kernel_size
__A= adapter_stride
__A= num_adapter_layers
__A= output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__A= classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__A= list(_a )
__A= list(_a )
__A= list(_a )
__A= xvector_output_dim
@property
def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 186 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__magic_name__ = {
'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'],
'tokenization_deberta': ['DebertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = ['DebertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'DebertaForMaskedLM',
'DebertaForQuestionAnswering',
'DebertaForSequenceClassification',
'DebertaForTokenClassification',
'DebertaModel',
'DebertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFDebertaForMaskedLM',
'TFDebertaForQuestionAnswering',
'TFDebertaForSequenceClassification',
'TFDebertaForTokenClassification',
'TFDebertaModel',
'TFDebertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig
from .tokenization_deberta import DebertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_deberta_fast import DebertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deberta import (
DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
DebertaForMaskedLM,
DebertaForQuestionAnswering,
DebertaForSequenceClassification,
DebertaForTokenClassification,
DebertaModel,
DebertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deberta import (
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDebertaForMaskedLM,
TFDebertaForQuestionAnswering,
TFDebertaForSequenceClassification,
TFDebertaForTokenClassification,
TFDebertaModel,
TFDebertaPreTrainedModel,
)
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 665 | 0 |
'''simple docstring'''
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
SCREAMING_SNAKE_CASE_ : List[str] = logging.getLogger(__name__)
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ : Union[str, Any] = argparse.ArgumentParser(
description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'
)
parser.add_argument(
'--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.'
)
parser.add_argument(
'--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.'
)
parser.add_argument('--vocab_size', default=3_05_22, type=int)
SCREAMING_SNAKE_CASE_ : Any = parser.parse_args()
logger.info(F"""Loading data from {args.data_file}""")
with open(args.data_file, 'rb') as fp:
SCREAMING_SNAKE_CASE_ : List[Any] = pickle.load(fp)
logger.info('Counting occurrences for MLM.')
SCREAMING_SNAKE_CASE_ : str = Counter()
for tk_ids in data:
counter.update(tk_ids)
SCREAMING_SNAKE_CASE_ : Any = [0] * args.vocab_size
for k, v in counter.items():
SCREAMING_SNAKE_CASE_ : Optional[int] = v
logger.info(F"""Dump to {args.token_counts_dump}""")
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL) | 702 | '''simple docstring'''
def UpperCamelCase__ ( _lowercase : List[str] ) -> Union[str, Any]:
__UpperCAmelCase: int = []
__UpperCAmelCase: List[Any] = []
__UpperCAmelCase: List[Any] = {
"""^""": 3,
"""*""": 2,
"""/""": 2,
"""%""": 2,
"""+""": 1,
"""-""": 1,
} # Priority of each operator
__UpperCAmelCase: int = len(_lowercase ) if (len(_lowercase ) > 7) else 7
# Print table header for output
print(
"""Symbol""".center(8 ) , """Stack""".center(_lowercase ) , """Postfix""".center(_lowercase ) , sep=""" | """ , )
print("""-""" * (print_width * 3 + 7) )
for x in infix:
if x.isalpha() or x.isdigit():
post_fix.append(_lowercase ) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
stack.append(_lowercase ) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
while stack[-1] != "(":
post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(_lowercase ) == 0:
stack.append(_lowercase ) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while len(_lowercase ) > 0 and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop() ) # pop stack & add to Postfix
stack.append(_lowercase ) # push x to stack
print(
x.center(8 ) , ("""""".join(_lowercase )).ljust(_lowercase ) , ("""""".join(_lowercase )).ljust(_lowercase ) , sep=""" | """ , ) # Output in tabular format
while len(_lowercase ) > 0: # while stack is not empty
post_fix.append(stack.pop() ) # pop stack & add to Postfix
print(
""" """.center(8 ) , ("""""".join(_lowercase )).ljust(_lowercase ) , ("""""".join(_lowercase )).ljust(_lowercase ) , sep=""" | """ , ) # Output in tabular format
return "".join(_lowercase ) # return Postfix as str
def UpperCamelCase__ ( _lowercase : str ) -> Tuple:
__UpperCAmelCase: Union[str, Any] = list(infix[::-1] ) # reverse the infix equation
for i in range(len(_lowercase ) ):
if infix[i] == "(":
__UpperCAmelCase: Tuple = """)""" # change "(" to ")"
elif infix[i] == ")":
__UpperCAmelCase: Union[str, Any] = """(""" # change ")" to "("
return (infix_2_postfix("""""".join(_lowercase ) ))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_ = input('\nEnter an Infix Equation = ') # Input an Infix equation
SCREAMING_SNAKE_CASE_ = ''.join(Infix.split()) # Remove spaces from the input
print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)') | 466 | 0 |
from collections.abc import Sequence
def UpperCamelCase ( _A : Sequence[int] | None = None )-> int:
"""simple docstring"""
if nums is None or not nums:
raise ValueError("Input sequence should not be empty" )
A__ = nums[0]
for i in range(1 , len(_A ) ):
A__ = nums[i]
A__ = max(_A , ans + num , _A )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
UpperCAmelCase_ : Union[str, Any] = int(input("Enter number of elements : ").strip())
UpperCAmelCase_ : Tuple = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n]
print(max_subsequence_sum(array))
| 491 |
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
@dataclass
class UpperCamelCase :
lowerCAmelCase : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} )
lowerCAmelCase : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
lowerCAmelCase : int = field(
default=128 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
lowerCAmelCase : bool = field(
default=_UpperCAmelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def __A ( self ):
A__ = self.task_name.lower()
class UpperCamelCase ( _UpperCAmelCase ):
lowerCAmelCase : int = """train"""
lowerCAmelCase : Tuple = """dev"""
lowerCAmelCase : Optional[Any] = """test"""
class UpperCamelCase ( _UpperCAmelCase ):
lowerCAmelCase : GlueDataTrainingArguments
lowerCAmelCase : str
lowerCAmelCase : List[InputFeatures]
def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = Split.train , UpperCAmelCase__ = None , ):
warnings.warn(
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
"library. You can have a look at this example script for pointers: "
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , UpperCAmelCase__ , )
A__ = args
A__ = glue_processors[args.task_name]()
A__ = glue_output_modes[args.task_name]
if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ):
try:
A__ = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
# Load data features from cache or dataset file
A__ = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , )
A__ = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
A__ , A__ = label_list[2], label_list[1]
A__ = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
A__ = cached_features_file + ".lock"
with FileLock(UpperCAmelCase__ ):
if os.path.exists(UpperCAmelCase__ ) and not args.overwrite_cache:
A__ = time.time()
A__ = torch.load(UpperCAmelCase__ )
logger.info(
F"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start )
else:
logger.info(F"""Creating features from dataset file at {args.data_dir}""" )
if mode == Split.dev:
A__ = self.processor.get_dev_examples(args.data_dir )
elif mode == Split.test:
A__ = self.processor.get_test_examples(args.data_dir )
else:
A__ = self.processor.get_train_examples(args.data_dir )
if limit_length is not None:
A__ = examples[:limit_length]
A__ = glue_convert_examples_to_features(
UpperCAmelCase__ , UpperCAmelCase__ , max_length=args.max_seq_length , label_list=UpperCAmelCase__ , output_mode=self.output_mode , )
A__ = time.time()
torch.save(self.features , UpperCAmelCase__ )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" )
def __len__( self ):
return len(self.features )
def __getitem__( self , UpperCAmelCase__ ):
return self.features[i]
def __A ( self ):
return self.label_list
| 491 | 1 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
class _A ( _UpperCAmelCase ):
"""simple docstring"""
UpperCamelCase_ : Dict = '''WhisperFeatureExtractor'''
UpperCamelCase_ : Tuple = '''WhisperTokenizer'''
def __init__( self : List[Any] , A_ : int , A_ : Dict ) -> Dict:
super().__init__(A_ , A_ )
__snake_case = self.feature_extractor
__snake_case = False
def lowercase ( self : Any , A_ : Union[str, Any]=None , A_ : Optional[int]=None , A_ : str=True ) -> Optional[Any]:
return self.tokenizer.get_decoder_prompt_ids(task=A_ , language=A_ , no_timestamps=A_ )
def __call__( self : Optional[int] , *A_ : List[Any] , **A_ : List[str] ) -> int:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*A_ , **A_ )
__snake_case = kwargs.pop('''audio''' , A_ )
__snake_case = kwargs.pop('''sampling_rate''' , A_ )
__snake_case = kwargs.pop('''text''' , A_ )
if len(A_ ) > 0:
__snake_case = args[0]
__snake_case = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
__snake_case = self.feature_extractor(A_ , *A_ , sampling_rate=A_ , **A_ )
if text is not None:
__snake_case = self.tokenizer(A_ , **A_ )
if text is None:
return inputs
elif audio is None:
return encodings
else:
__snake_case = encodings['''input_ids''']
return inputs
def lowercase ( self : str , *A_ : List[str] , **A_ : Any ) -> Any:
return self.tokenizer.batch_decode(*A_ , **A_ )
def lowercase ( self : Tuple , *A_ : str , **A_ : Optional[int] ) -> List[Any]:
return self.tokenizer.decode(*A_ , **A_ )
def lowercase ( self : Optional[int] , A_ : str , A_ : Union[str, Any]="np" ) -> Tuple:
return self.tokenizer.get_prompt_ids(A_ , return_tensors=A_ ) | 93 | """simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class _A ( unittest.TestCase ):
"""simple docstring"""
def lowercase ( self : Optional[Any] ) -> Optional[Any]:
__snake_case = tempfile.mkdtemp()
__snake_case = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''的''',
'''价''',
'''格''',
'''是''',
'''15''',
'''便''',
'''alex''',
'''##andra''',
''',''',
'''。''',
'''-''',
'''t''',
'''shirt''',
]
__snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
__snake_case = {
'''do_resize''': True,
'''size''': {'''height''': 224, '''width''': 224},
'''do_center_crop''': True,
'''crop_size''': {'''height''': 18, '''width''': 18},
'''do_normalize''': True,
'''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
'''do_convert_rgb''': True,
}
__snake_case = os.path.join(self.tmpdirname , A_ )
with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp:
json.dump(A_ , A_ )
def lowercase ( self : str , **A_ : str ) -> Dict:
return BertTokenizer.from_pretrained(self.tmpdirname , **A_ )
def lowercase ( self : Optional[int] , **A_ : Optional[int] ) -> Tuple:
return BertTokenizerFast.from_pretrained(self.tmpdirname , **A_ )
def lowercase ( self : Tuple , **A_ : Any ) -> Any:
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A_ )
def lowercase ( self : Optional[Any] ) -> int:
shutil.rmtree(self.tmpdirname )
def lowercase ( self : Dict ) -> Dict:
__snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
__snake_case = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowercase ( self : Tuple ) -> Any:
__snake_case = self.get_tokenizer()
__snake_case = self.get_rust_tokenizer()
__snake_case = self.get_image_processor()
__snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ )
processor_slow.save_pretrained(self.tmpdirname )
__snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A_ )
__snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ )
processor_fast.save_pretrained(self.tmpdirname )
__snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , A_ )
self.assertIsInstance(processor_fast.tokenizer , A_ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , A_ )
self.assertIsInstance(processor_fast.image_processor , A_ )
def lowercase ( self : int ) -> Union[str, Any]:
__snake_case = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__snake_case = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' )
__snake_case = self.get_image_processor(do_normalize=A_ )
__snake_case = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=A_ )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , A_ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A_ )
def lowercase ( self : Optional[int] ) -> int:
__snake_case = self.get_image_processor()
__snake_case = self.get_tokenizer()
__snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ )
__snake_case = self.prepare_image_inputs()
__snake_case = image_processor(A_ , return_tensors='''np''' )
__snake_case = processor(images=A_ , return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase ( self : str ) -> str:
__snake_case = self.get_image_processor()
__snake_case = self.get_tokenizer()
__snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ )
__snake_case = '''Alexandra,T-shirt的价格是15便士。'''
__snake_case = processor(text=A_ )
__snake_case = tokenizer(A_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowercase ( self : Optional[int] ) -> Dict:
__snake_case = self.get_image_processor()
__snake_case = self.get_tokenizer()
__snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ )
__snake_case = '''Alexandra,T-shirt的价格是15便士。'''
__snake_case = self.prepare_image_inputs()
__snake_case = processor(text=A_ , images=A_ )
self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] )
# test if it raises when no input is passed
with pytest.raises(A_ ):
processor()
def lowercase ( self : str ) -> int:
__snake_case = self.get_image_processor()
__snake_case = self.get_tokenizer()
__snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ )
__snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__snake_case = processor.batch_decode(A_ )
__snake_case = tokenizer.batch_decode(A_ )
self.assertListEqual(A_ , A_ )
def lowercase ( self : int ) -> Optional[Any]:
__snake_case = self.get_image_processor()
__snake_case = self.get_tokenizer()
__snake_case = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ )
__snake_case = '''Alexandra,T-shirt的价格是15便士。'''
__snake_case = self.prepare_image_inputs()
__snake_case = processor(text=A_ , images=A_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) | 93 | 1 |
def lowercase ( _lowerCAmelCase ): # noqa: E741
UpperCAmelCase__ = len(_lowercase )
UpperCAmelCase__ = 0
UpperCAmelCase__ = [0] * n
UpperCAmelCase__ = [False] * n
UpperCAmelCase__ = [False] * n
def dfs(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ):
if parent == root:
out_edge_count += 1
UpperCAmelCase__ = True
UpperCAmelCase__ = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
UpperCAmelCase__ = dfs(_lowercase , _lowercase , _lowercase , _lowercase )
UpperCAmelCase__ = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
UpperCAmelCase__ = True
# AP found via cycle
if at == low[to]:
UpperCAmelCase__ = True
else:
UpperCAmelCase__ = min(low[at] , _lowercase )
return out_edge_count
for i in range(_lowercase ):
if not visited[i]:
UpperCAmelCase__ = 0
UpperCAmelCase__ = dfs(_lowercase , _lowercase , -1 , _lowercase )
UpperCAmelCase__ = out_edge_count > 1
for x in range(len(_lowercase ) ):
if is_art[x] is True:
print(_lowercase )
# Adjacency list of graph
snake_case__ : Optional[Any] = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 392 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json',
}
class _a ( lowerCAmelCase__ , lowerCAmelCase__ ):
'''simple docstring'''
lowerCamelCase_ : Union[str, Any] = """bit"""
lowerCamelCase_ : Dict = ["""preactivation""", """bottleneck"""]
lowerCamelCase_ : Dict = ["""SAME""", """VALID"""]
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=[256, 512, 1_024, 2_048] , __UpperCAmelCase=[3, 4, 6, 3] , __UpperCAmelCase="preactivation" , __UpperCAmelCase="relu" , __UpperCAmelCase=None , __UpperCAmelCase=32 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ):
super().__init__(**__UpperCAmelCase )
if layer_type not in self.layer_types:
raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
__A : Optional[int] = global_padding.upper()
else:
raise ValueError(F"Padding strategy {global_padding} not supported" )
__A : Any = num_channels
__A : int = embedding_size
__A : Optional[Any] = hidden_sizes
__A : Dict = depths
__A : Dict = layer_type
__A : int = hidden_act
__A : Any = global_padding
__A : Optional[Any] = num_groups
__A : Any = drop_path_rate
__A : Tuple = embedding_dynamic_padding
__A : Dict = output_stride
__A : Tuple = width_factor
__A : Any = ["stem"] + [F"stage{idx}" for idx in range(1 , len(__UpperCAmelCase ) + 1 )]
__A , __A : Any = get_aligned_output_features_output_indices(
out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
| 520 | 0 |
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
lowerCamelCase_ = TypeVar('''T''')
class __A( Generic[T] ):
"""simple docstring"""
def __init__(self , SCREAMING_SNAKE_CASE_ = True ):
UpperCamelCase__ = {} # dictionary of lists
UpperCamelCase__ = directed
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_ )
self.adj_list[destination_vertex].append(SCREAMING_SNAKE_CASE_ )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
UpperCamelCase__ = [destination_vertex]
UpperCamelCase__ = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_ )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
UpperCamelCase__ = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
UpperCamelCase__ = [destination_vertex]
UpperCamelCase__ = []
return self
def __repr__(self ):
return pformat(self.adj_list )
| 86 |
import math
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler
def __magic_name__ ( __a : int , __a : List[str] , __a : str=[] ):
'''simple docstring'''
UpperCamelCase__ = size[0] - overlap_pixels * 2
UpperCamelCase__ = size[1] - overlap_pixels * 2
for letter in ["l", "r"]:
if letter in remove_borders:
size_x += overlap_pixels
for letter in ["t", "b"]:
if letter in remove_borders:
size_y += overlap_pixels
UpperCamelCase__ = np.ones((size_y, size_x) , dtype=np.uinta ) * 255
UpperCamelCase__ = np.pad(__a , mode="""linear_ramp""" , pad_width=__a , end_values=0 )
if "l" in remove_borders:
UpperCamelCase__ = mask[:, overlap_pixels : mask.shape[1]]
if "r" in remove_borders:
UpperCamelCase__ = mask[:, 0 : mask.shape[1] - overlap_pixels]
if "t" in remove_borders:
UpperCamelCase__ = mask[overlap_pixels : mask.shape[0], :]
if "b" in remove_borders:
UpperCamelCase__ = mask[0 : mask.shape[0] - overlap_pixels, :]
return mask
def __magic_name__ ( __a : int , __a : Dict , __a : Optional[int] ):
'''simple docstring'''
return max(__a , min(__a , __a ) )
def __magic_name__ ( __a : [int] , __a : [int] , __a : [int] ):
'''simple docstring'''
return (
clamp(rect[0] , min[0] , max[0] ),
clamp(rect[1] , min[1] , max[1] ),
clamp(rect[2] , min[0] , max[0] ),
clamp(rect[3] , min[1] , max[1] ),
)
def __magic_name__ ( __a : [int] , __a : int , __a : [int] ):
'''simple docstring'''
UpperCamelCase__ = list(__a )
rect[0] -= overlap
rect[1] -= overlap
rect[2] += overlap
rect[3] += overlap
UpperCamelCase__ = clamp_rect(__a , [0, 0] , [image_size[0], image_size[1]] )
return rect
def __magic_name__ ( __a : Optional[int] , __a : Tuple , __a : str , __a : List[Any] ):
'''simple docstring'''
UpperCamelCase__ = Image.new("""RGB""" , (tile.size[0] + original_slice, tile.size[1]) )
result.paste(
original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop(
(slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , )
result.paste(__a , (original_slice, 0) )
return result
def __magic_name__ ( __a : int , __a : int ):
'''simple docstring'''
UpperCamelCase__ = (original_image_slice * 4, 0, tile.size[0], tile.size[1])
UpperCamelCase__ = tile.crop(__a )
return tile
def __magic_name__ ( __a : List[str] , __a : Any ):
'''simple docstring'''
UpperCamelCase__ = n % d
return n - divisor
class __A( __lowerCamelCase ):
"""simple docstring"""
def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 3_50 , ):
super().__init__(
vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , low_res_scheduler=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , max_noise_level=SCREAMING_SNAKE_CASE_ , )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ):
torch.manual_seed(0 )
UpperCamelCase__ = (
min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ),
min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ),
min(image.size[0] , (x + 1) * tile_size ),
min(image.size[1] , (y + 1) * tile_size ),
)
UpperCamelCase__ = add_overlap_rect(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , image.size )
UpperCamelCase__ = image.crop(SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0]
UpperCamelCase__ = translated_slice_x - (original_image_slice / 2)
UpperCamelCase__ = max(0 , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = squeeze_tile(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = to_input.size
UpperCamelCase__ = to_input.resize((tile_size, tile_size) , Image.BICUBIC )
UpperCamelCase__ = super(SCREAMING_SNAKE_CASE_ , self ).__call__(image=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).images[0]
UpperCamelCase__ = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC )
UpperCamelCase__ = unsqueeze_tile(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC )
UpperCamelCase__ = []
if x == 0:
remove_borders.append("""l""" )
elif crop_rect[2] == image.size[0]:
remove_borders.append("""r""" )
if y == 0:
remove_borders.append("""t""" )
elif crop_rect[3] == image.size[1]:
remove_borders.append("""b""" )
UpperCamelCase__ = Image.fromarray(
make_transparency_mask(
(upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=SCREAMING_SNAKE_CASE_ ) , mode="""L""" , )
final_image.paste(
SCREAMING_SNAKE_CASE_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , SCREAMING_SNAKE_CASE_ )
@torch.no_grad()
def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 75 , SCREAMING_SNAKE_CASE_ = 9.0 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 1_28 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , ):
UpperCamelCase__ = Image.new("""RGB""" , (image.size[0] * 4, image.size[1] * 4) )
UpperCamelCase__ = math.ceil(image.size[0] / tile_size )
UpperCamelCase__ = math.ceil(image.size[1] / tile_size )
UpperCamelCase__ = tcx * tcy
UpperCamelCase__ = 0
for y in range(SCREAMING_SNAKE_CASE_ ):
for x in range(SCREAMING_SNAKE_CASE_ ):
self._process_tile(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prompt=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , noise_level=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , )
current_count += 1
if callback is not None:
callback({"""progress""": current_count / total_tile_count, """image""": final_image} )
return final_image
def __magic_name__ ( ):
'''simple docstring'''
UpperCamelCase__ = """stabilityai/stable-diffusion-x4-upscaler"""
UpperCamelCase__ = StableDiffusionTiledUpscalePipeline.from_pretrained(__a , revision="""fp16""" , torch_dtype=torch.floataa )
UpperCamelCase__ = pipe.to("""cuda""" )
UpperCamelCase__ = Image.open("""../../docs/source/imgs/diffusers_library.jpg""" )
def callback(__a : Optional[int] ):
print(f"progress: {obj['progress']:.4f}" )
obj["image"].save("""diffusers_library_progress.jpg""" )
UpperCamelCase__ = pipe(image=__a , prompt="""Black font, white background, vector""" , noise_level=40 , callback=__a )
final_image.save("""diffusers_library.jpg""" )
if __name__ == "__main__":
main()
| 86 | 1 |
"""simple docstring"""
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase_ ( a_ , unittest.TestCase ):
__magic_name__ : Optional[Any] = LongformerTokenizer
__magic_name__ : Dict = True
__magic_name__ : int = LongformerTokenizerFast
__magic_name__ : Dict = True
def _lowerCAmelCase ( self : int ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowerCAmelCase__ : Optional[int] = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
lowerCAmelCase__ : Dict = dict(zip(_lowercase , range(len(_lowercase ) ) ) )
lowerCAmelCase__ : Any = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
lowerCAmelCase__ : List[str] = {"unk_token": "<unk>"}
lowerCAmelCase__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(_lowercase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(_lowercase ) )
def _lowerCAmelCase ( self : str , **_lowercase : Dict ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase )
def _lowerCAmelCase ( self : Tuple , **_lowercase : List[str] ):
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase )
def _lowerCAmelCase ( self : str , _lowercase : List[Any] ):
lowerCAmelCase__ : str = "lower newer"
lowerCAmelCase__ : str = "lower newer"
return input_text, output_text
def _lowerCAmelCase ( self : int ):
lowerCAmelCase__ : Tuple = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowerCAmelCase__ : Tuple = "lower newer"
lowerCAmelCase__ : Optional[int] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
lowerCAmelCase__ : List[str] = tokenizer.tokenize(_lowercase ) # , add_prefix_space=True)
self.assertListEqual(_lowercase , _lowercase )
lowerCAmelCase__ : Optional[Any] = tokens + [tokenizer.unk_token]
lowerCAmelCase__ : Optional[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase )
def _lowerCAmelCase ( self : Union[str, Any] ):
lowerCAmelCase__ : Dict = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=_lowercase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] )
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=_lowercase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , )
@slow
def _lowerCAmelCase ( self : str ):
lowerCAmelCase__ : Optional[int] = self.tokenizer_class.from_pretrained("allenai/longformer-base-4096" )
lowerCAmelCase__ : Any = tokenizer.encode("sequence builders" , add_special_tokens=_lowercase )
lowerCAmelCase__ : Optional[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=_lowercase )
lowerCAmelCase__ : Any = tokenizer.encode(
"sequence builders" , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
lowerCAmelCase__ : List[Any] = tokenizer.encode(
"sequence builders" , "multi-sequence build" , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
lowerCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowercase )
lowerCAmelCase__ : Any = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def _lowerCAmelCase ( self : Dict ):
lowerCAmelCase__ : Union[str, Any] = self.get_tokenizer()
lowerCAmelCase__ : List[Any] = "Encode this sequence."
lowerCAmelCase__ : List[str] = tokenizer.byte_encoder[" ".encode("utf-8" )[0]]
# Testing encoder arguments
lowerCAmelCase__ : Any = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
lowerCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(_lowercase , _lowercase )
lowerCAmelCase__ : str = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase )
lowerCAmelCase__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(_lowercase , _lowercase )
tokenizer.add_special_tokens({"bos_token": "<s>"} )
lowerCAmelCase__ : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase )
lowerCAmelCase__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(_lowercase , _lowercase )
# Testing spaces after special tokens
lowerCAmelCase__ : List[Any] = "<mask>"
tokenizer.add_special_tokens(
{"mask_token": AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase )} ) # mask token has a left space
lowerCAmelCase__ : str = tokenizer.convert_tokens_to_ids(_lowercase )
lowerCAmelCase__ : Tuple = "Encode <mask> sequence"
lowerCAmelCase__ : Optional[Any] = "Encode <mask>sequence"
lowerCAmelCase__ : Tuple = tokenizer.encode(_lowercase )
lowerCAmelCase__ : Optional[int] = encoded.index(_lowercase )
lowerCAmelCase__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(_lowercase , _lowercase )
lowerCAmelCase__ : int = tokenizer.encode(_lowercase )
lowerCAmelCase__ : Tuple = encoded.index(_lowercase )
lowerCAmelCase__ : Any = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(_lowercase , _lowercase )
def _lowerCAmelCase ( self : Union[str, Any] ):
pass
def _lowerCAmelCase ( self : Dict ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCAmelCase__ : int = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase )
lowerCAmelCase__ : int = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase )
lowerCAmelCase__ : Dict = "A, <mask> AllenNLP sentence."
lowerCAmelCase__ : Any = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase )
lowerCAmelCase__ : Tuple = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
lowerCAmelCase__ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
lowerCAmelCase__ : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
_lowercase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
_lowercase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
def _lowerCAmelCase ( self : Union[str, Any] ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
lowerCAmelCase__ : int = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowerCAmelCase__ : str = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
lowerCAmelCase__ : Tuple = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["add_prefix_space"] , _lowercase )
self.assertEqual(post_processor_state["add_prefix_space"] , _lowercase )
self.assertEqual(post_processor_state["trim_offsets"] , _lowercase )
def _lowerCAmelCase ( self : int ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCAmelCase__ : Tuple = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
lowerCAmelCase__ : Optional[int] = f"{text_of_1_token} {text_of_1_token}"
lowerCAmelCase__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowerCAmelCase__ : str = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , )
lowerCAmelCase__ : Any = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowerCAmelCase__ : str = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , )
lowerCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowerCAmelCase__ : Tuple = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , )
lowerCAmelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowerCAmelCase__ : Dict = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , )
lowerCAmelCase__ : List[str] = f" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
lowerCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowerCAmelCase__ : Dict = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_lowercase ) + 1, 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
lowerCAmelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowerCAmelCase__ : str = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
lowerCAmelCase__ : Tuple = self.rust_tokenizer_class.from_pretrained(
_lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase )
lowerCAmelCase__ : Optional[int] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
| 308 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available
from ...utils import OptionalDependencyNotAvailable
__UpperCAmelCase = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ["DPTFeatureExtractor"]
__UpperCAmelCase = ["DPTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"DPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DPTForDepthEstimation",
"DPTForSemanticSegmentation",
"DPTModel",
"DPTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_dpt import DPTFeatureExtractor
from .image_processing_dpt import DPTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dpt import (
DPT_PRETRAINED_MODEL_ARCHIVE_LIST,
DPTForDepthEstimation,
DPTForSemanticSegmentation,
DPTModel,
DPTPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 308 | 1 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __snake_case ( _lowercase):
@require_torch
def SCREAMING_SNAKE_CASE ( self : Tuple ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_lowerCamelCase : Optional[int] = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_lowerCamelCase : int = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_lowerCamelCase : str = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__lowerCAmelCase )
BertModel.from_pretrained(__lowerCAmelCase )
BertTokenizer.from_pretrained(__lowerCAmelCase )
pipeline(task='''fill-mask''' , model=__lowerCAmelCase )
# baseline - just load from_pretrained with normal network
_lowerCamelCase : List[str] = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_lowerCamelCase : int = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_lowerCamelCase : Optional[int] = '''1'''
_lowerCamelCase : Dict = subprocess.run(__lowerCAmelCase , env=__lowerCAmelCase , check=__lowerCAmelCase , capture_output=__lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_lowerCamelCase : Any = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_lowerCamelCase : List[Any] = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_lowerCamelCase : List[Any] = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__lowerCAmelCase )
BertModel.from_pretrained(__lowerCAmelCase )
BertTokenizer.from_pretrained(__lowerCAmelCase )
pipeline(task='''fill-mask''' , model=__lowerCAmelCase )
# baseline - just load from_pretrained with normal network
_lowerCamelCase : List[str] = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_lowerCamelCase : Optional[int] = self.get_env()
_lowerCamelCase : str = subprocess.run(__lowerCAmelCase , env=__lowerCAmelCase , check=__lowerCAmelCase , capture_output=__lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
_lowerCamelCase : Any = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_lowerCamelCase : int = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_lowerCamelCase : Union[str, Any] = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_lowerCamelCase : int = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_lowerCamelCase : Tuple = self.get_env()
_lowerCamelCase : Dict = subprocess.run(__lowerCAmelCase , env=__lowerCAmelCase , check=__lowerCAmelCase , capture_output=__lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
_lowerCamelCase : Any = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_lowerCamelCase : Union[str, Any] = '''1'''
_lowerCamelCase : Tuple = subprocess.run(__lowerCAmelCase , env=__lowerCAmelCase , check=__lowerCAmelCase , capture_output=__lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
_lowerCamelCase : List[Any] = '''
from transformers import pipeline
'''
_lowerCamelCase : Any = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_lowerCamelCase : Tuple = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_lowerCamelCase : Any = self.get_env()
_lowerCamelCase : int = '''1'''
_lowerCamelCase : int = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_lowerCamelCase : Optional[int] = subprocess.run(__lowerCAmelCase , env=__lowerCAmelCase , check=__lowerCAmelCase , capture_output=__lowerCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
"""simple docstring"""
_lowerCamelCase : str = '''
from transformers import AutoModel
'''
_lowerCamelCase : str = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_lowerCamelCase : Union[str, Any] = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_lowerCamelCase : Tuple = self.get_env()
_lowerCamelCase : Any = subprocess.run(__lowerCAmelCase , env=__lowerCAmelCase , check=__lowerCAmelCase , capture_output=__lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_lowerCamelCase : str = '''1'''
_lowerCamelCase : Union[str, Any] = subprocess.run(__lowerCAmelCase , env=__lowerCAmelCase , check=__lowerCAmelCase , capture_output=__lowerCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 598 |
"""simple docstring"""
import unittest
import torch
from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel
from diffusers.training_utils import set_seed
from diffusers.utils.testing_utils import slow
lowerCAmelCase__ = False
class __snake_case ( unittest.TestCase):
def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Union[str, Any]=3_2 ):
"""simple docstring"""
set_seed(0 )
_lowerCamelCase : str = UNetaDModel(sample_size=__lowerCAmelCase , in_channels=3 , out_channels=3 )
_lowerCamelCase : Optional[int] = torch.optim.SGD(model.parameters() , lr=0.00_01 )
return model, optimizer
@slow
def SCREAMING_SNAKE_CASE ( self : Optional[int] ):
"""simple docstring"""
_lowerCamelCase : Any = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
_lowerCamelCase : str = DDPMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=__lowerCAmelCase , )
_lowerCamelCase : Optional[int] = DDIMScheduler(
num_train_timesteps=1_0_0_0 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=__lowerCAmelCase , )
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
# shared batches for DDPM and DDIM
set_seed(0 )
_lowerCamelCase : int = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(__lowerCAmelCase ) for _ in range(4 )]
_lowerCamelCase : List[Any] = [torch.randn((4, 3, 3_2, 3_2) ).to(__lowerCAmelCase ) for _ in range(4 )]
_lowerCamelCase : Any = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(__lowerCAmelCase ) for _ in range(4 )]
# train with a DDPM scheduler
_lowerCamelCase , _lowerCamelCase : str = self.get_model_optimizer(resolution=3_2 )
model.train().to(__lowerCAmelCase )
for i in range(4 ):
optimizer.zero_grad()
_lowerCamelCase : str = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
_lowerCamelCase : Any = model(__lowerCAmelCase , timesteps[i] ).sample
_lowerCamelCase : List[str] = torch.nn.functional.mse_loss(__lowerCAmelCase , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
# recreate the model and optimizer, and retry with DDIM
_lowerCamelCase , _lowerCamelCase : List[Any] = self.get_model_optimizer(resolution=3_2 )
model.train().to(__lowerCAmelCase )
for i in range(4 ):
optimizer.zero_grad()
_lowerCamelCase : Optional[Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] )
_lowerCamelCase : Tuple = model(__lowerCAmelCase , timesteps[i] ).sample
_lowerCamelCase : List[Any] = torch.nn.functional.mse_loss(__lowerCAmelCase , noise[i] )
loss.backward()
optimizer.step()
del model, optimizer
self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) )
self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-5 ) )
| 598 | 1 |
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str=13 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=24 , SCREAMING_SNAKE_CASE_ : Optional[Any]=16 , SCREAMING_SNAKE_CASE_ : List[str]=True , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=32 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 , SCREAMING_SNAKE_CASE_ : int=4 , SCREAMING_SNAKE_CASE_ : Optional[Any]=37 , SCREAMING_SNAKE_CASE_ : str="gelu" , SCREAMING_SNAKE_CASE_ : str=0.1 , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : List[Any]=10 , SCREAMING_SNAKE_CASE_ : Tuple=0.0_2 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE_ : Any=2 , ):
lowerCamelCase__ = parent
lowerCamelCase__ = batch_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = max_length
lowerCamelCase__ = num_mel_bins
lowerCamelCase__ = is_training
lowerCamelCase__ = use_labels
lowerCamelCase__ = hidden_size
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = type_sequence_label_size
lowerCamelCase__ = initializer_range
lowerCamelCase__ = scope
lowerCamelCase__ = frequency_stride
lowerCamelCase__ = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
lowerCamelCase__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
lowerCamelCase__ = (self.max_length - self.patch_size) // self.time_stride + 1
lowerCamelCase__ = frequency_out_dimension * time_out_dimension
lowerCamelCase__ = num_patches + 2
def __UpperCAmelCase ( self : Union[str, Any] ):
lowerCamelCase__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] )
lowerCamelCase__ = None
if self.use_labels:
lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ = self.get_config()
return config, input_values, labels
def __UpperCAmelCase ( self : int ):
return ASTConfig(
patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , )
def __UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ):
lowerCamelCase__ = ASTModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
lowerCamelCase__ = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self : Optional[Any] ):
lowerCamelCase__ = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) = config_and_inputs
lowerCamelCase__ = {"""input_values""": input_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ):
snake_case = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
snake_case = (
{"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel}
if is_torch_available()
else {}
)
snake_case = False
snake_case = False
snake_case = False
snake_case = False
def __UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ):
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def __UpperCAmelCase ( self : Any ):
lowerCamelCase__ = ASTModelTester(self )
lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def __UpperCAmelCase ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""AST does not use inputs_embeds""" )
def __UpperCAmelCase ( self : List[Any] ):
pass
def __UpperCAmelCase ( self : List[str] ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCamelCase__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) )
def __UpperCAmelCase ( self : List[str] ):
lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ = model_class(SCREAMING_SNAKE_CASE_ )
lowerCamelCase__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ = [*signature.parameters.keys()]
lowerCamelCase__ = ["""input_values"""]
self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ )
def __UpperCAmelCase ( self : Tuple ):
lowerCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
@slow
def __UpperCAmelCase ( self : Optional[Any] ):
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ = ASTModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def _A ( ):
"""simple docstring"""
lowerCamelCase__ = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" )
lowerCamelCase__ , lowerCamelCase__ = torchaudio.load(__lowercase )
return audio, sampling_rate
@require_torch
@require_torchaudio
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@cached_property
def __UpperCAmelCase ( self : Tuple ):
return (
ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" )
if is_torchaudio_available()
else None
)
@slow
def __UpperCAmelCase ( self : Tuple ):
lowerCamelCase__ = self.default_feature_extractor
lowerCamelCase__ = ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(SCREAMING_SNAKE_CASE_ )
lowerCamelCase__ = self.default_feature_extractor
lowerCamelCase__ , lowerCamelCase__ = prepare_audio()
lowerCamelCase__ = audio.squeeze().numpy()
lowerCamelCase__ = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ )
# forward pass
with torch.no_grad():
lowerCamelCase__ = model(**SCREAMING_SNAKE_CASE_ )
# verify the logits
lowerCamelCase__ = torch.Size((1, 527) )
self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ )
lowerCamelCase__ = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
| 129 |
"""simple docstring"""
from importlib import import_module
from .logging import get_logger
__magic_name__ = get_logger(__name__)
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int=None ):
lowerCamelCase__ = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("""__""" ):
setattr(self , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
lowerCamelCase__ = module._original_module if isinstance(SCREAMING_SNAKE_CASE_ , _PatchedModuleObj ) else module
class SCREAMING_SNAKE_CASE__ :
snake_case = []
def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any]=None ):
lowerCamelCase__ = obj
lowerCamelCase__ = target
lowerCamelCase__ = new
lowerCamelCase__ = target.split(""".""" )[0]
lowerCamelCase__ = {}
lowerCamelCase__ = attrs or []
def __enter__( self : Dict ):
*lowerCamelCase__ , lowerCamelCase__ = self.target.split(""".""" )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
try:
lowerCamelCase__ = import_module(""".""".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
lowerCamelCase__ = getattr(self.obj , SCREAMING_SNAKE_CASE_ )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(SCREAMING_SNAKE_CASE_ , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
lowerCamelCase__ = obj_attr
# patch at top level
setattr(self.obj , SCREAMING_SNAKE_CASE_ , _PatchedModuleObj(SCREAMING_SNAKE_CASE_ , attrs=self.attrs ) )
lowerCamelCase__ = getattr(self.obj , SCREAMING_SNAKE_CASE_ )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , _PatchedModuleObj(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , attrs=self.attrs ) )
lowerCamelCase__ = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# finally set the target attribute
setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
lowerCamelCase__ = getattr(import_module(""".""".join(SCREAMING_SNAKE_CASE_ ) ) , SCREAMING_SNAKE_CASE_ )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , SCREAMING_SNAKE_CASE_ ) is attr_value:
lowerCamelCase__ = getattr(self.obj , SCREAMING_SNAKE_CASE_ )
setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
lowerCamelCase__ = globals()["""__builtins__"""][target_attr]
setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.new )
else:
raise RuntimeError(f"""Tried to patch attribute {target_attr} instead of a submodule.""" )
def __exit__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple ):
for attr in list(self.original ):
setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.original.pop(SCREAMING_SNAKE_CASE_ ) )
def __UpperCAmelCase ( self : List[Any] ):
self.__enter__()
self._active_patches.append(self )
def __UpperCAmelCase ( self : str ):
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 129 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
snake_case_ : List[Any] = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Tuple = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : int = ["CLIPFeatureExtractor"]
snake_case_ : Any = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[Any] = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : List[Any] = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Union[str, Any] = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 705 |
# Imports
import numpy as np
class __lowerCamelCase :
def __init__( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None ) -> Union[str, Any]:
"""simple docstring"""
self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case )
def A__ ( self , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None ) -> Dict:
"""simple docstring"""
if red is not None:
UpperCAmelCase: Optional[Any] = red
if green is not None:
UpperCAmelCase: List[Any] = green
if blue is not None:
UpperCAmelCase: Any = blue
if red_edge is not None:
UpperCAmelCase: Optional[int] = red_edge
if nir is not None:
UpperCAmelCase: int = nir
return True
def A__ ( self , __snake_case="" , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None ) -> List[str]:
"""simple docstring"""
self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case )
UpperCAmelCase: Dict = {
"ARVI2": self.arvaa,
"CCCI": self.ccci,
"CVI": self.cvi,
"GLI": self.gli,
"NDVI": self.ndvi,
"BNDVI": self.bndvi,
"redEdgeNDVI": self.red_edge_ndvi,
"GNDVI": self.gndvi,
"GBNDVI": self.gbndvi,
"GRNDVI": self.grndvi,
"RBNDVI": self.rbndvi,
"PNDVI": self.pndvi,
"ATSAVI": self.atsavi,
"BWDRVI": self.bwdrvi,
"CIgreen": self.ci_green,
"CIrededge": self.ci_rededge,
"CI": self.ci,
"CTVI": self.ctvi,
"GDVI": self.gdvi,
"EVI": self.evi,
"GEMI": self.gemi,
"GOSAVI": self.gosavi,
"GSAVI": self.gsavi,
"Hue": self.hue,
"IVI": self.ivi,
"IPVI": self.ipvi,
"I": self.i,
"RVI": self.rvi,
"MRVI": self.mrvi,
"MSAVI": self.m_savi,
"NormG": self.norm_g,
"NormNIR": self.norm_nir,
"NormR": self.norm_r,
"NGRDI": self.ngrdi,
"RI": self.ri,
"S": self.s,
"IF": self._if,
"DVI": self.dvi,
"TVI": self.tvi,
"NDRE": self.ndre,
}
try:
return funcs[index]()
except KeyError:
print("Index not in the list!" )
return False
def A__ ( self ) -> Any:
"""simple docstring"""
return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red)))
def A__ ( self ) -> List[str]:
"""simple docstring"""
return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / (
(self.nir - self.red) / (self.nir + self.red)
)
def A__ ( self ) -> Union[str, Any]:
"""simple docstring"""
return self.nir * (self.red / (self.green**2))
def A__ ( self ) -> Optional[Any]:
"""simple docstring"""
return (2 * self.green - self.red - self.blue) / (
2 * self.green + self.red + self.blue
)
def A__ ( self ) -> Dict:
"""simple docstring"""
return (self.nir - self.red) / (self.nir + self.red)
def A__ ( self ) -> Optional[int]:
"""simple docstring"""
return (self.nir - self.blue) / (self.nir + self.blue)
def A__ ( self ) -> Optional[Any]:
"""simple docstring"""
return (self.redEdge - self.red) / (self.redEdge + self.red)
def A__ ( self ) -> Optional[int]:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green)
def A__ ( self ) -> Optional[Any]:
"""simple docstring"""
return (self.nir - (self.green + self.blue)) / (
self.nir + (self.green + self.blue)
)
def A__ ( self ) -> str:
"""simple docstring"""
return (self.nir - (self.green + self.red)) / (
self.nir + (self.green + self.red)
)
def A__ ( self ) -> Dict:
"""simple docstring"""
return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red))
def A__ ( self ) -> Optional[int]:
"""simple docstring"""
return (self.nir - (self.green + self.red + self.blue)) / (
self.nir + (self.green + self.red + self.blue)
)
def A__ ( self , __snake_case=0.08 , __snake_case=1.22 , __snake_case=0.03 ) -> Optional[int]:
"""simple docstring"""
return a * (
(self.nir - a * self.red - b)
/ (a * self.nir + self.red - a * b + x * (1 + a**2))
)
def A__ ( self ) -> Optional[Any]:
"""simple docstring"""
return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue)
def A__ ( self ) -> Dict:
"""simple docstring"""
return (self.nir / self.green) - 1
def A__ ( self ) -> Optional[int]:
"""simple docstring"""
return (self.nir / self.redEdge) - 1
def A__ ( self ) -> str:
"""simple docstring"""
return (self.red - self.blue) / self.red
def A__ ( self ) -> Any:
"""simple docstring"""
UpperCAmelCase: Union[str, Any] = self.ndvi()
return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2))
def A__ ( self ) -> List[str]:
"""simple docstring"""
return self.nir - self.green
def A__ ( self ) -> Dict:
"""simple docstring"""
return 2.5 * (
(self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1)
)
def A__ ( self ) -> List[str]:
"""simple docstring"""
UpperCAmelCase: str = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / (
self.nir + self.red + 0.5
)
return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red)
def A__ ( self , __snake_case=0.16 ) -> Tuple:
"""simple docstring"""
return (self.nir - self.green) / (self.nir + self.green + y)
def A__ ( self , __snake_case=0.5 ) -> Tuple:
"""simple docstring"""
return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n)
def A__ ( self ) -> int:
"""simple docstring"""
return np.arctan(
((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) )
def A__ ( self , __snake_case=None , __snake_case=None ) -> int:
"""simple docstring"""
return (self.nir - b) / (a * self.red)
def A__ ( self ) -> Union[str, Any]:
"""simple docstring"""
return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1)
def A__ ( self ) -> Any:
"""simple docstring"""
return (self.red + self.green + self.blue) / 30.5
def A__ ( self ) -> str:
"""simple docstring"""
return self.nir / self.red
def A__ ( self ) -> Optional[Any]:
"""simple docstring"""
return (self.rvi() - 1) / (self.rvi() + 1)
def A__ ( self ) -> str:
"""simple docstring"""
return (
(2 * self.nir + 1)
- ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2)
) / 2
def A__ ( self ) -> str:
"""simple docstring"""
return self.green / (self.nir + self.red + self.green)
def A__ ( self ) -> Optional[int]:
"""simple docstring"""
return self.nir / (self.nir + self.red + self.green)
def A__ ( self ) -> int:
"""simple docstring"""
return self.red / (self.nir + self.red + self.green)
def A__ ( self ) -> Optional[int]:
"""simple docstring"""
return (self.green - self.red) / (self.green + self.red)
def A__ ( self ) -> Dict:
"""simple docstring"""
return (self.red - self.green) / (self.red + self.green)
def A__ ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase: int = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] )
UpperCAmelCase: Union[str, Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] )
return (max_value - min_value) / max_value
def A__ ( self ) -> List[Any]:
"""simple docstring"""
return (2 * self.red - self.green - self.blue) / (self.green - self.blue)
def A__ ( self ) -> Union[str, Any]:
"""simple docstring"""
return self.nir / self.red
def A__ ( self ) -> List[str]:
"""simple docstring"""
return (self.ndvi() + 0.5) ** (1 / 2)
def A__ ( self ) -> Any:
"""simple docstring"""
return (self.nir - self.redEdge) / (self.nir + self.redEdge)
| 166 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.