code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( lowercase_ ,lowercase_ ,unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionDiffEditPipeline SCREAMING_SNAKE_CASE__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''height''', '''width''', '''image'''} | {'''image_latents'''} SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'''image'''} | {'''image_latents'''} SCREAMING_SNAKE_CASE__ : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE__ : str = frozenset([] ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) _snake_case : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=snake_case , ) _snake_case : Optional[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case , set_alpha_to_one=snake_case , ) _snake_case : List[Any] = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case , set_alpha_to_zero=snake_case , ) torch.manual_seed(0 ) _snake_case : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _snake_case : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _snake_case : List[Any] = CLIPTextModel(snake_case ) _snake_case : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _snake_case : Dict = { 'unet': unet, 'scheduler': scheduler, 'inverse_scheduler': inverse_scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self : Tuple , snake_case : List[Any] , snake_case : str=0 ): """simple docstring""" _snake_case : str = floats_tensor((1, 16, 16) , rng=random.Random(snake_case ) ).to(snake_case ) _snake_case : Optional[int] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(snake_case ) ).to(snake_case ) if str(snake_case ).startswith('mps' ): _snake_case : int = torch.manual_seed(snake_case ) else: _snake_case : Optional[int] = torch.Generator(device=snake_case ).manual_seed(snake_case ) _snake_case : Optional[Any] = { 'prompt': 'a dog and a newt', 'mask_image': mask, 'image_latents': latents, 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Optional[Any] , snake_case : Optional[int] , snake_case : str=0 ): """simple docstring""" _snake_case : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) _snake_case : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case : List[str] = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ) if str(snake_case ).startswith('mps' ): _snake_case : Optional[int] = torch.manual_seed(snake_case ) else: _snake_case : Union[str, Any] = torch.Generator(device=snake_case ).manual_seed(snake_case ) _snake_case : int = { 'image': image, 'source_prompt': 'a cat and a frog', 'target_prompt': 'a dog and a newt', 'generator': generator, 'num_inference_steps': 2, 'num_maps_per_mask': 2, 'mask_encode_strength': 1.0, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Tuple , snake_case : Dict , snake_case : List[str]=0 ): """simple docstring""" _snake_case : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) _snake_case : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _snake_case : Tuple = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ) if str(snake_case ).startswith('mps' ): _snake_case : Union[str, Any] = torch.manual_seed(snake_case ) else: _snake_case : Any = torch.Generator(device=snake_case ).manual_seed(snake_case ) _snake_case : Optional[Any] = { 'image': image, 'prompt': 'a cat and a frog', 'generator': generator, 'num_inference_steps': 2, 'inpaint_strength': 1.0, 'guidance_scale': 6.0, 'decode_latents': True, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Dict ): """simple docstring""" if not hasattr(self.pipeline_class , '_optional_components' ): return _snake_case : Optional[int] = self.get_dummy_components() _snake_case : Optional[Any] = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(snake_case , snake_case , snake_case ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) _snake_case : int = self.get_dummy_inputs(snake_case ) _snake_case : Optional[Any] = pipe(**snake_case )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(snake_case ) _snake_case : List[str] = self.pipeline_class.from_pretrained(snake_case ) pipe_loaded.to(snake_case ) pipe_loaded.set_progress_bar_config(disable=snake_case ) for optional_component in pipe._optional_components: self.assertTrue( getattr(snake_case , snake_case ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) _snake_case : List[str] = self.get_dummy_inputs(snake_case ) _snake_case : Optional[Any] = pipe_loaded(**snake_case )[0] _snake_case : Tuple = np.abs(output - output_loaded ).max() self.assertLess(snake_case , 1e-4 ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case : List[Any] = 'cpu' _snake_case : Tuple = self.get_dummy_components() _snake_case : str = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _snake_case : str = self.get_dummy_mask_inputs(snake_case ) _snake_case : Union[str, Any] = pipe.generate_mask(**snake_case ) _snake_case : Union[str, Any] = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) _snake_case : str = np.array([0] * 9 ) _snake_case : Union[str, Any] = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case : Tuple = 'cpu' _snake_case : Tuple = self.get_dummy_components() _snake_case : Any = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _snake_case : Union[str, Any] = self.get_dummy_inversion_inputs(snake_case ) _snake_case : str = pipe.invert(**snake_case ).images _snake_case : List[str] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _snake_case : Optional[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) _snake_case : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1e-3 ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case : str = 'cpu' _snake_case : List[Any] = self.get_dummy_components() _snake_case : Any = {'beta_start': 0.0_0085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'} _snake_case : str = DPMSolverMultistepScheduler(**snake_case ) _snake_case : List[Any] = DPMSolverMultistepInverseScheduler(**snake_case ) _snake_case : int = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) _snake_case : Tuple = self.get_dummy_inversion_inputs(snake_case ) _snake_case : List[Any] = pipe.invert(**snake_case ).images _snake_case : Union[str, Any] = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) _snake_case : Dict = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) _snake_case : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(snake_case , 1e-3 ) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __UpperCAmelCase ( cls : Optional[Any] ): """simple docstring""" _snake_case : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' ) _snake_case : List[str] = raw_image.convert('RGB' ).resize((768, 768) ) _snake_case : Tuple = raw_image def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case : Tuple = torch.manual_seed(0 ) _snake_case : Optional[Any] = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=snake_case , torch_dtype=torch.floataa ) _snake_case : str = DDIMScheduler.from_config(pipe.scheduler.config ) _snake_case : Any = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case ) _snake_case : Optional[int] = 'a bowl of fruit' _snake_case : Union[str, Any] = 'a bowl of pears' _snake_case : str = pipe.generate_mask( image=self.raw_image , source_prompt=snake_case , target_prompt=snake_case , generator=snake_case , ) _snake_case : Any = pipe.invert( prompt=snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=snake_case ).latents _snake_case : Optional[Any] = pipe( prompt=snake_case , mask_image=snake_case , image_latents=snake_case , generator=snake_case , negative_prompt=snake_case , inpaint_strength=0.7 , output_type='numpy' , ).images[0] _snake_case : Optional[Any] = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1 def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case : Any = torch.manual_seed(0 ) _snake_case : Any = StableDiffusionDiffEditPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-1' , safety_checker=snake_case , torch_dtype=torch.floataa ) _snake_case : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _snake_case : str = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case ) _snake_case : int = 'a bowl of fruit' _snake_case : List[Any] = 'a bowl of pears' _snake_case : List[str] = pipe.generate_mask( image=self.raw_image , source_prompt=snake_case , target_prompt=snake_case , generator=snake_case , ) _snake_case : Optional[int] = pipe.invert( prompt=snake_case , image=self.raw_image , inpaint_strength=0.7 , generator=snake_case , num_inference_steps=25 , ).latents _snake_case : Optional[int] = pipe( prompt=snake_case , mask_image=snake_case , image_latents=snake_case , generator=snake_case , negative_prompt=snake_case , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0] _snake_case : int = ( np.array( load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/diffedit/pears.png' ).resize((768, 768) ) ) / 255 ) assert np.abs((expected_image - image).max() ) < 5e-1
517
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase__ ( a__) -> Union[str, Any]: """simple docstring""" def decorator(a__): _snake_case : Tuple = getattr(a__ , 'handle_key' , []) handle += [key] setattr(a__ , 'handle_key' , a__) return func return decorator def lowerCamelCase__ ( *a__) -> List[str]: """simple docstring""" def decorator(a__): _snake_case : List[str] = getattr(a__ , 'handle_key' , []) handle += keys setattr(a__ , 'handle_key' , a__) return func return decorator class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' def __new__( cls : int , snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Tuple ): """simple docstring""" _snake_case : int = super().__new__(cls , snake_case , snake_case , snake_case ) if not hasattr(snake_case , 'key_handler' ): setattr(snake_case , 'key_handler' , {} ) setattr(snake_case , 'handle_input' , KeyHandler.handle_input ) for value in attrs.values(): _snake_case : Optional[Any] = getattr(snake_case , 'handle_key' , [] ) for key in handled_keys: _snake_case : str = value return new_cls @staticmethod def __UpperCAmelCase ( cls : List[Any] ): """simple docstring""" _snake_case : Optional[Any] = get_character() if char != KEYMAP["undefined"]: _snake_case : str = ord(snake_case ) _snake_case : str = cls.key_handler.get(snake_case ) if handler: _snake_case : Optional[int] = char return handler(cls ) else: return None def lowerCamelCase__ ( cls) -> Optional[Any]: """simple docstring""" return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy())
517
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType SCREAMING_SNAKE_CASE : Dict = get_logger(__name__) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int=0 ): os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) with FSDP.state_dict_type( _SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCamelCase_ : Optional[int] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCamelCase_ : str = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' UpperCamelCase_ : str = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCamelCase_ : Dict = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) UpperCamelCase_ : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCamelCase_ : int = os.path.join(_SCREAMING_SNAKE_CASE , f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) logger.info(f'''Saving model to {ckpt_dir}''' ) UpperCamelCase_ : Optional[Any] = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=_SCREAMING_SNAKE_CASE , storage_writer=dist_cp.FileSystemWriter(_SCREAMING_SNAKE_CASE ) , planner=DefaultSavePlanner() , ) logger.info(f'''Model saved to {ckpt_dir}''' ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( _SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_SCREAMING_SNAKE_CASE ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return UpperCamelCase_ : Optional[Any] = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' UpperCamelCase_ : Any = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info(f'''Loading model from {input_model_file}''' ) UpperCamelCase_ : Union[str, Any] = torch.load(_SCREAMING_SNAKE_CASE ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCamelCase_ : List[Any] = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) UpperCamelCase_ : Dict = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info(f'''Loading model from {input_model_file}''' ) UpperCamelCase_ : Any = torch.load(_SCREAMING_SNAKE_CASE ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCamelCase_ : List[Any] = ( os.path.join(_SCREAMING_SNAKE_CASE , f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) UpperCamelCase_ : Any = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=_SCREAMING_SNAKE_CASE , storage_reader=dist_cp.FileSystemReader(_SCREAMING_SNAKE_CASE ) , planner=DefaultLoadPlanner() , ) UpperCamelCase_ : Dict = state_dict["""model"""] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any]=0 ): os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) with FSDP.state_dict_type( _SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCamelCase_ : Union[str, Any] = FSDP.optim_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCamelCase_ : Optional[int] = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) UpperCamelCase_ : str = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: UpperCamelCase_ : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(_SCREAMING_SNAKE_CASE ) , planner=DefaultSavePlanner() , ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( _SCREAMING_SNAKE_CASE , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCamelCase_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCamelCase_ : Tuple = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) UpperCamelCase_ : str = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) UpperCamelCase_ : Dict = torch.load(_SCREAMING_SNAKE_CASE ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: UpperCamelCase_ : List[Any] = ( os.path.join(_SCREAMING_SNAKE_CASE , f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) UpperCamelCase_ : List[str] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(_SCREAMING_SNAKE_CASE ) , ) UpperCamelCase_ : List[Any] = optim_state["""optimizer"""] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) UpperCamelCase_ : Any = FSDP.optim_state_dict_to_load(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) optimizer.load_state_dict(_SCREAMING_SNAKE_CASE )
138
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase ( __a ): def __init__(self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> Optional[int]: super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , safety_checker=__UpperCamelCase , feature_extractor=__UpperCamelCase , ) def A_ (self , __UpperCamelCase = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase_ : Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def A_ (self ) -> Union[str, Any]: self.enable_attention_slicing(__UpperCamelCase ) @torch.no_grad() def __call__(self , __UpperCamelCase , __UpperCamelCase = 512 , __UpperCamelCase = 512 , __UpperCamelCase = 50 , __UpperCamelCase = 7.5 , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = 0.0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = "pil" , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = 1 , __UpperCamelCase = None , **__UpperCamelCase , ) -> List[Any]: if isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : Tuple = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : Optional[int] = len(__UpperCamelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__UpperCamelCase )}.''' ) # get prompt text embeddings UpperCamelCase_ : Tuple = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase_ : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase_ : Dict = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase_ : Optional[Any] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCamelCase_ : Tuple = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ : int = text_embeddings.shape UpperCamelCase_ : Union[str, Any] = text_embeddings.repeat(1 , __UpperCamelCase , 1 ) UpperCamelCase_ : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase_ : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase_ : List[str] if negative_prompt is None: UpperCamelCase_ : Union[str, Any] = [""""""] elif type(__UpperCamelCase ) is not type(__UpperCamelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCamelCase )} !=''' f''' {type(__UpperCamelCase )}.''' ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): UpperCamelCase_ : List[Any] = [negative_prompt] elif batch_size != len(__UpperCamelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__UpperCamelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: UpperCamelCase_ : Dict = negative_prompt UpperCamelCase_ : Optional[Any] = text_input_ids.shape[-1] UpperCamelCase_ : List[str] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" , ) UpperCamelCase_ : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase_ : int = uncond_embeddings.shape[1] UpperCamelCase_ : List[str] = uncond_embeddings.repeat(__UpperCamelCase , __UpperCamelCase , 1 ) UpperCamelCase_ : List[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase_ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase_ : Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCamelCase_ : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase_ : int = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to(self.device ) UpperCamelCase_ : Tuple = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device="""cpu""" , dtype=__UpperCamelCase ).to( self.device ) else: UpperCamelCase_ : Optional[Any] = torch.randn( __UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) UpperCamelCase_ : Optional[Any] = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCamelCase_ : Union[str, Any] = latents_reference.to(self.device ) UpperCamelCase_ : Any = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCamelCase_ : int = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCamelCase_ : Union[str, Any] = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCamelCase_ : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCamelCase_ : List[str] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCamelCase_ : str = 0 if dx < 0 else dx UpperCamelCase_ : List[str] = 0 if dy < 0 else dy UpperCamelCase_ : Dict = max(-dx , 0 ) UpperCamelCase_ : str = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCamelCase_ : str = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase_ : Any = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase_ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase_ : str = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase_ : Any = {} if accepts_eta: UpperCamelCase_ : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase_ : str = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual UpperCamelCase_ : str = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase_,UpperCamelCase_ : Any = noise_pred.chunk(2 ) UpperCamelCase_ : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ : int = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : Optional[int] = 1 / 0.18_215 * latents UpperCamelCase_ : List[str] = self.vae.decode(__UpperCamelCase ).sample UpperCamelCase_ : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCamelCase_ : List[Any] = self.feature_extractor(self.numpy_to_pil(__UpperCamelCase ) , return_tensors="""pt""" ).to( self.device ) UpperCamelCase_,UpperCamelCase_ : Optional[Any] = self.safety_checker( images=__UpperCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCamelCase_ : Tuple = None if output_type == "pil": UpperCamelCase_ : Any = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
138
1
'''simple docstring''' from math import sqrt def UpperCamelCase__ ( __magic_name__ : int ) -> int: '''simple docstring''' snake_case__ : Dict = 0 for i in range(1 , int(sqrt(__magic_name__ ) + 1 ) ): if n % i == 0 and i != sqrt(__magic_name__ ): total += i + n // i elif i == sqrt(__magic_name__ ): total += i return total - n def UpperCamelCase__ ( __magic_name__ : int = 1_00_00 ) -> int: '''simple docstring''' snake_case__ : Dict = sum( i for i in range(1 , __magic_name__ ) if sum_of_divisors(sum_of_divisors(__magic_name__ ) ) == i and sum_of_divisors(__magic_name__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
38
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class lowercase_ (lowerCamelCase__ ): """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : str ,**lowercase__ : Any ): self.events.append('''on_init_end''' ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : int ,**lowercase__ : Optional[int] ): self.events.append('''on_train_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Tuple ,lowercase__ : int ,lowercase__ : int ,**lowercase__ : List[str] ): self.events.append('''on_train_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,lowercase__ : Any ,**lowercase__ : Optional[Any] ): self.events.append('''on_epoch_begin''' ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : int ,lowercase__ : Any ,**lowercase__ : Optional[int] ): self.events.append('''on_epoch_end''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_step_begin''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : Optional[int] ,**lowercase__ : Dict ): self.events.append('''on_step_end''' ) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,**lowercase__ : Any ): self.events.append('''on_evaluate''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : int ,**lowercase__ : Optional[Any] ): self.events.append('''on_predict''' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,**lowercase__ : int ): self.events.append('''on_save''' ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Tuple ,lowercase__ : List[str] ,**lowercase__ : List[str] ): self.events.append('''on_log''' ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : str ,lowercase__ : int ,lowercase__ : Dict ,**lowercase__ : str ): self.events.append('''on_prediction_step''' ) @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): shutil.rmtree(self.output_dir ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any]=0 ,lowercase__ : Any=0 ,lowercase__ : Tuple=6_4 ,lowercase__ : Optional[int]=6_4 ,lowercase__ : Optional[Any]=None ,lowercase__ : str=False ,**lowercase__ : Any ): # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionDataset(length=lowercase__ ) __lowercase = RegressionModelConfig(a=lowercase__ ,b=lowercase__ ) __lowercase = RegressionPreTrainedModel(lowercase__ ) __lowercase = TrainingArguments(self.output_dir ,disable_tqdm=lowercase__ ,report_to=[] ,**lowercase__ ) return Trainer( lowercase__ ,lowercase__ ,train_dataset=lowercase__ ,eval_dataset=lowercase__ ,callbacks=lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ): self.assertEqual(len(lowercase__ ) ,len(lowercase__ ) ) # Order doesn't matter __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) __lowercase = sorted(lowercase__ ,key=lambda lowercase__ : cb.__name__ if isinstance(lowercase__ ,lowercase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowercase__ ,lowercase__ ): if isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,lowercase__ ) elif isinstance(lowercase__ ,lowercase__ ) and not isinstance(lowercase__ ,lowercase__ ): self.assertEqual(lowercase__ ,cba.__class__ ) elif not isinstance(lowercase__ ,lowercase__ ) and isinstance(lowercase__ ,lowercase__ ): self.assertEqual(cba.__class__ ,lowercase__ ) else: self.assertEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : Union[str, Any] ): __lowercase = ['''on_init_end''', '''on_train_begin'''] __lowercase = 0 __lowercase = len(trainer.get_eval_dataloader() ) __lowercase = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(lowercase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = self.get_trainer() __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # Callbacks passed at init are added to the default callbacks __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __lowercase = self.get_trainer(disable_tqdm=lowercase__ ) __lowercase = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __lowercase = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(cb.__class__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) # We can also add, pop, or remove by instance __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowercase__ ) expected_callbacks.remove(lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) __lowercase = self.get_trainer() __lowercase = trainer.callback_handler.callbacks[0] __lowercase = trainer.pop_callback(lowercase__ ) self.assertEqual(lowercase__ ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) trainer.add_callback(lowercase__ ) expected_callbacks.insert(0 ,lowercase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' ,category=lowercase__ ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # Independent log/save/eval __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,logging_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,save_steps=5 ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,eval_steps=5 ,evaluation_strategy='''steps''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) __lowercase = self.get_trainer(callbacks=[MyTestTrainerCallback] ,evaluation_strategy='''epoch''' ) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # A bit of everything __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback] ,logging_steps=3 ,save_steps=1_0 ,eval_steps=5 ,evaluation_strategy='''steps''' ,) trainer.train() __lowercase = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowercase__ ,self.get_expected_events(lowercase__ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __lowercase = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] ,) assert str(lowercase__ ) in warn_mock.call_args[0][0]
41
0
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int ): if exponent == 1: return base if exponent % 2 == 0: lowerCAmelCase : Dict = _modexpt(_snake_case , exponent // 2 , _snake_case ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_snake_case , exponent - 1 , _snake_case )) % modulo_value def _snake_case ( _snake_case : int = 1777 , _snake_case : int = 1855 , _snake_case : int = 8 ): lowerCAmelCase : Union[str, Any] = base for _ in range(1 , _snake_case ): lowerCAmelCase : Optional[Any] = _modexpt(_snake_case , _snake_case , 10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
637
"""simple docstring""" class snake_case_: def __init__( self : Union[str, Any] , UpperCamelCase_ : str ): lowerCAmelCase : Dict = val lowerCAmelCase : str = None lowerCAmelCase : Dict = None def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Dict ): if self.val: if val < self.val: if self.left is None: lowerCAmelCase : int = Node(UpperCamelCase_ ) else: self.left.insert(UpperCamelCase_ ) elif val > self.val: if self.right is None: lowerCAmelCase : Any = Node(UpperCamelCase_ ) else: self.right.insert(UpperCamelCase_ ) else: lowerCAmelCase : Optional[Any] = val def _snake_case ( _snake_case : Tuple , _snake_case : str ): # Recursive traversal if root: inorder(root.left , _snake_case ) res.append(root.val ) inorder(root.right , _snake_case ) def _snake_case ( _snake_case : Optional[Any] ): # Build BST if len(_snake_case ) == 0: return arr lowerCAmelCase : Optional[Any] = Node(arr[0] ) for i in range(1 , len(_snake_case ) ): root.insert(arr[i] ) # Traverse BST in order. lowerCAmelCase : Optional[int] = [] inorder(_snake_case , _snake_case ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
637
1
'''simple docstring''' import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCAmelCase_ : List[str] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class lowercase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCAmelCase_ ( cls ): _SCREAMING_SNAKE_CASE : Optional[Any] = TOKEN HfFolder.save_token(__snake_case ) @classmethod def UpperCAmelCase_ ( cls ): try: delete_repo(token=cls._token , repo_id="""test-model-flax""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-model-flax-org""" ) except HTTPError: pass def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _SCREAMING_SNAKE_CASE : List[Any] = FlaxBertModel(__snake_case ) model.push_to_hub("""test-model-flax""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : Optional[int] = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) _SCREAMING_SNAKE_CASE : Optional[int] = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE : int = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""test-model-flax""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id="""test-model-flax""" , push_to_hub=__snake_case , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : Tuple = FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) _SCREAMING_SNAKE_CASE : Optional[Any] = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE : Optional[int] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1e-3 , msg=f"""{key} not identical""" ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) _SCREAMING_SNAKE_CASE : Optional[int] = FlaxBertModel(__snake_case ) model.push_to_hub("""valid_org/test-model-flax-org""" , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : Tuple = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) _SCREAMING_SNAKE_CASE : List[Any] = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE : Any = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE : Any = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1e-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-model-flax-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id="""valid_org/test-model-flax-org""" , push_to_hub=__snake_case , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE : str = FlaxBertModel.from_pretrained("""valid_org/test-model-flax-org""" ) _SCREAMING_SNAKE_CASE : int = flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1e-3 , msg=f"""{key} not identical""" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = True _SCREAMING_SNAKE_CASE : Union[str, Any] = flatten_dict(modela.params ) _SCREAMING_SNAKE_CASE : Union[str, Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: _SCREAMING_SNAKE_CASE : Union[str, Any] = False return models_are_equal @require_flax class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) _SCREAMING_SNAKE_CASE : Tuple = FlaxBertModel(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) _SCREAMING_SNAKE_CASE : Optional[int] = FlaxBertModel(__snake_case ) _SCREAMING_SNAKE_CASE : str = """bert""" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size="""10KB""" ) with self.assertRaises(__snake_case ): _SCREAMING_SNAKE_CASE : Tuple = FlaxBertModel.from_pretrained(__snake_case ) _SCREAMING_SNAKE_CASE : Optional[int] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[int] = """bert""" _SCREAMING_SNAKE_CASE : Tuple = """hf-internal-testing/tiny-random-bert-subfolder""" with self.assertRaises(__snake_case ): _SCREAMING_SNAKE_CASE : Dict = FlaxBertModel.from_pretrained(__snake_case ) _SCREAMING_SNAKE_CASE : int = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[Any] = """bert""" _SCREAMING_SNAKE_CASE : Union[str, Any] = """hf-internal-testing/tiny-random-bert-sharded-subfolder""" with self.assertRaises(__snake_case ): _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case ) _SCREAMING_SNAKE_CASE : Dict = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
533
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
533
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCAmelCase : Tuple = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> Dict: """simple docstring""" lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val def UpperCAmelCase_ ( snake_case__ ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowerCAmelCase__ = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) lowerCAmelCase__ = value else: lowerCAmelCase__ = value return new_state_dict def UpperCAmelCase_ ( snake_case__ , snake_case__=False ) -> str: """simple docstring""" lowerCAmelCase__ = '' if is_panoptic: lowerCAmelCase__ = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) lowerCAmelCase__ = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[:256, :] lowerCAmelCase__ = in_proj_bias[:256] lowerCAmelCase__ = in_proj_weight[256:512, :] lowerCAmelCase__ = in_proj_bias[256:512] lowerCAmelCase__ = in_proj_weight[-256:, :] lowerCAmelCase__ = in_proj_bias[-256:] def UpperCAmelCase_ ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase__ = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: lowerCAmelCase__ = 'resnet101' if "dc5" in model_name: lowerCAmelCase__ = True lowerCAmelCase__ = 'panoptic' in model_name if is_panoptic: lowerCAmelCase__ = 250 else: lowerCAmelCase__ = 91 lowerCAmelCase__ = 'huggingface/label-files' lowerCAmelCase__ = 'coco-detection-id2label.json' lowerCAmelCase__ = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) lowerCAmelCase__ = {int(snake_case__ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} # load image processor lowerCAmelCase__ = 'coco_panoptic' if is_panoptic else 'coco_detection' lowerCAmelCase__ = ConditionalDetrImageProcessor(format=snake_case__ ) # prepare image lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=snake_case__ , return_tensors='pt' ) lowerCAmelCase__ = encoding['pixel_values'] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub lowerCAmelCase__ = torch.hub.load('DeppMeng/ConditionalDETR' , snake_case__ , pretrained=snake_case__ ).eval() lowerCAmelCase__ = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: lowerCAmelCase__ = 'conditional_detr.' + src rename_key(snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase__ = rename_backbone_keys(snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__ , is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase__ = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): lowerCAmelCase__ = state_dict.pop(snake_case__ ) lowerCAmelCase__ = val # finally, create HuggingFace model and load state dict lowerCAmelCase__ = ConditionalDetrForSegmentation(snake_case__ ) if is_panoptic else ConditionalDetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() model.push_to_hub(repo_id=snake_case__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion lowerCAmelCase__ = conditional_detr(snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _lowerCAmelCase : Any = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
710
import heapq import sys import numpy as np _lowerCAmelCase : str = tuple[int, int] class __snake_case : def __init__( self ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = set() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf' ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return len(self.elements ) == 0 def SCREAMING_SNAKE_CASE_ ( self ,a_ ,a_ ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements ,(priority, item) ) self.set.add(a_ ) else: # update # print("update", item) lowerCAmelCase__ = [] ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements ,(pro, xxx) ) def SCREAMING_SNAKE_CASE_ ( self ,a_ ): """simple docstring""" if item in self.set: self.set.remove(a_ ) lowerCAmelCase__ = [] ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements ,(prito, yyy) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.elements[0][1] def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" ((lowerCAmelCase__) , (lowerCAmelCase__)) = heapq.heappop(self.elements ) self.set.remove(a_ ) return (priority, item) def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = np.array(snake_case__ ) lowerCAmelCase__ = np.array(snake_case__ ) return np.linalg.norm(a - b ) def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> Any: """simple docstring""" return consistent_heuristic(snake_case__ , snake_case__ ) // t def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> str: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Tuple: """simple docstring""" lowerCAmelCase__ = g_function[start] + Wa * heuristics[i](snake_case__ , snake_case__ ) return ans def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> Any: """simple docstring""" lowerCAmelCase__ = np.chararray((n, n) ) for i in range(snake_case__ ): for j in range(snake_case__ ): lowerCAmelCase__ = '*' for i in range(snake_case__ ): for j in range(snake_case__ ): if (j, (n - 1) - i) in blocks: lowerCAmelCase__ = '#' lowerCAmelCase__ = '-' lowerCAmelCase__ = back_pointer[goal] while x != start: ((lowerCAmelCase__) , (lowerCAmelCase__)) = x # print(x) lowerCAmelCase__ = '-' lowerCAmelCase__ = back_pointer[x] lowerCAmelCase__ = '-' for i in range(snake_case__ ): for j in range(snake_case__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowerCAmelCase__ = back_pointer[goal] while x != start: print(snake_case__ , end=' ' ) lowerCAmelCase__ = back_pointer[x] print(snake_case__ ) sys.exit() def UpperCAmelCase_ ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> Union[str, Any]: """simple docstring""" for itera in range(snake_case__ ): open_list[itera].remove_element(snake_case__ ) # print("s", s) # print("j", j) ((lowerCAmelCase__) , (lowerCAmelCase__)) = s lowerCAmelCase__ = (x - 1, y) lowerCAmelCase__ = (x + 1, y) lowerCAmelCase__ = (x, y + 1) lowerCAmelCase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(snake_case__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(snake_case__ ) lowerCAmelCase__ = -1 lowerCAmelCase__ = float('inf' ) if valid(snake_case__ ) and g_function[neighbours] > g_function[s] + 1: lowerCAmelCase__ = g_function[s] + 1 lowerCAmelCase__ = s if neighbours not in close_list_anchor: open_list[0].put(snake_case__ , key(snake_case__ , 0 , snake_case__ , snake_case__ ) ) if neighbours not in close_list_inad: for var in range(1 , snake_case__ ): if key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) <= Wa * key( snake_case__ , 0 , snake_case__ , snake_case__ ): open_list[j].put( snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( ) -> List[str]: """simple docstring""" lowerCAmelCase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _lowerCAmelCase : Tuple = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _lowerCAmelCase : Optional[Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] _lowerCAmelCase : Any = make_common_ground() _lowerCAmelCase : List[str] = blocks_blk # hyper parameters _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : int = 2_0 _lowerCAmelCase : str = 3 # one consistent and two other inconsistent # start and end destination _lowerCAmelCase : Tuple = (0, 0) _lowerCAmelCase : List[str] = (n - 1, n - 1) _lowerCAmelCase : str = 1 def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ) -> str: """simple docstring""" lowerCAmelCase__ = {start: 0, goal: float('inf' )} lowerCAmelCase__ = {start: -1, goal: -1} lowerCAmelCase__ = [] lowerCAmelCase__ = set() for i in range(snake_case__ ): open_list.append(PriorityQueue() ) open_list[i].put(snake_case__ , key(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , snake_case__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: lowerCAmelCase__ , lowerCAmelCase__ = open_list[i].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_inad.append(snake_case__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(snake_case__ , snake_case__ , snake_case__ ) else: lowerCAmelCase__ = open_list[0].top_show() visited.add(snake_case__ ) expand_state( snake_case__ , 0 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) close_list_anchor.append(snake_case__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(snake_case__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
604
0
"""simple docstring""" def snake_case_ ( A_ : Optional[Any], A_ : Tuple, A_ : Dict ): '''simple docstring''' if len(__lowercase ) != len(__lowercase ): raise ValueError('''The length of profit and weight must be same.''' ) if max_weight <= 0: raise ValueError('''max_weight must greater than zero.''' ) if any(p < 0 for p in profit ): raise ValueError('''Profit can not be negative.''' ) if any(w < 0 for w in weight ): raise ValueError('''Weight can not be negative.''' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _lowerCamelCase : int = [p / w for p, w in zip(__lowercase, __lowercase )] # Creating a copy of the list and sorting profit/weight in ascending order _lowerCamelCase : Optional[int] = sorted(__lowercase ) # declaring useful variables _lowerCamelCase : Optional[int] = len(__lowercase ) _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : List[Any] = 0 _lowerCamelCase : Optional[int] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _lowerCamelCase : List[str] = sorted_profit_by_weight[length - i - 1] _lowerCamelCase : Optional[Any] = profit_by_weight.index(__lowercase ) _lowerCamelCase : str = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) lowerCAmelCase__ = [int(x) for x in input('''Input profits separated by spaces: ''').split()] lowerCAmelCase__ = [int(x) for x in input('''Input weights separated by spaces: ''').split()] lowerCAmelCase__ = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
83
"""simple docstring""" from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'nielsr/canine-s': 2_048, } # Unicode defines 1,114,112 total “codepoints” __SCREAMING_SNAKE_CASE = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0XE_0_0_0 __SCREAMING_SNAKE_CASE = 0XE_0_0_1 __SCREAMING_SNAKE_CASE = 0XE_0_0_2 __SCREAMING_SNAKE_CASE = 0XE_0_0_3 __SCREAMING_SNAKE_CASE = 0XE_0_0_4 # Maps special codepoints to human-readable names. __SCREAMING_SNAKE_CASE = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __SCREAMING_SNAKE_CASE = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class a__ ( A__ ): UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :List[str] , _lowerCamelCase :Optional[Any]=chr(_lowerCamelCase ) , _lowerCamelCase :List[str]=chr(_lowerCamelCase ) , _lowerCamelCase :Any=chr(_lowerCamelCase ) , _lowerCamelCase :Optional[int]=chr(_lowerCamelCase ) , _lowerCamelCase :Tuple=chr(_lowerCamelCase ) , _lowerCamelCase :Union[str, Any]=chr(_lowerCamelCase ) , _lowerCamelCase :str=False , _lowerCamelCase :Union[str, Any]=2_048 , **_lowerCamelCase :Tuple , ): '''simple docstring''' UpperCamelCase_ : List[Any] =AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else bos_token UpperCamelCase_ : List[str] =AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else eos_token UpperCamelCase_ : List[str] =AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else sep_token UpperCamelCase_ : Tuple =AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else cls_token UpperCamelCase_ : Optional[int] =AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_ : Dict =AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , model_max_length=_lowerCamelCase , **_lowerCamelCase , ) # Creates a mapping for looking up the IDs of special symbols. UpperCamelCase_ : Dict[str, int] ={} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCamelCase_ : List[str] =codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCamelCase_ : Dict[int, str] ={ codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCamelCase_ : str =UNICODE_VOCAB_SIZE UpperCamelCase_ : Any =len(self._special_codepoints ) @property def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' return self._unicode_vocab_size def lowerCamelCase_ ( self :str , _lowerCamelCase :str ): '''simple docstring''' return list(_lowerCamelCase ) def lowerCamelCase_ ( self :str , _lowerCamelCase :str ): '''simple docstring''' try: return ord(_lowerCamelCase ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def lowerCamelCase_ ( self :str , _lowerCamelCase :int ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_lowerCamelCase ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def lowerCamelCase_ ( self :List[Any] , _lowerCamelCase :str ): '''simple docstring''' return "".join(_lowerCamelCase ) def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase_ : str =[self.sep_token_id] UpperCamelCase_ : Tuple =[self.cls_token_id] UpperCamelCase_ : List[str] =cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def lowerCamelCase_ ( self :Union[str, Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None , _lowerCamelCase :bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) UpperCamelCase_ : int =[1] + ([0] * len(_lowerCamelCase )) + [1] if token_ids_a is not None: result += ([0] * len(_lowerCamelCase )) + [1] return result def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase_ : Dict =[self.sep_token_id] UpperCamelCase_ : Optional[int] =[self.cls_token_id] UpperCamelCase_ : Dict =len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :str , _lowerCamelCase :Optional[str] = None ): '''simple docstring''' return ()
357
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowercase = ['''gpt2'''] lowercase = '''gpt2''' if is_tf_available(): class A_ ( tf.Module ): def __init__( self : int , __lowerCamelCase : int ) -> str: super().__init__() __magic_name__ = tokenizer __magic_name__ = AutoConfig.from_pretrained(UpperCAmelCase_ ) __magic_name__ = TFGPTaLMHeadModel.from_config(UpperCAmelCase_ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def _snake_case ( self : Any , __lowerCamelCase : int ) -> List[str]: __magic_name__ = self.tokenizer(UpperCAmelCase_ ) __magic_name__ = tokenized['input_ids'].to_tensor() __magic_name__ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __magic_name__ = self.model(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )['logits'] return outputs @require_tf @require_keras_nlp class A_ ( unittest.TestCase ): def _snake_case ( self : int ) -> str: super().setUp() __magic_name__ = [GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __magic_name__ = [TFGPTaTokenizer.from_pretrained(UpperCAmelCase_ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __magic_name__ = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] __magic_name__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case ( self : str ) -> List[Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __magic_name__ = tokenizer([test_inputs] , return_tensors="tf" ) __magic_name__ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __magic_name__ = python_outputs[key].numpy() __magic_name__ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(UpperCAmelCase_ , tf.intaa ) == tf_outputs_values ) ) @slow def _snake_case ( self : List[Any] ) -> int: for tf_tokenizer in self.tf_tokenizers: __magic_name__ = tf.function(UpperCAmelCase_ ) for test_inputs in self.test_sentences: __magic_name__ = tf.constant(UpperCAmelCase_ ) __magic_name__ = compiled_tokenizer(UpperCAmelCase_ ) __magic_name__ = tf_tokenizer(UpperCAmelCase_ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case ( self : Union[str, Any] ) -> List[Any]: for tf_tokenizer in self.tf_tokenizers: __magic_name__ = ModelToSave(tokenizer=UpperCAmelCase_ ) __magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ = model.serving(UpperCAmelCase_ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __magic_name__ = Path(UpperCAmelCase_ ) / 'saved.model' tf.saved_model.save(UpperCAmelCase_ , UpperCAmelCase_ , signatures={"serving_default": model.serving} ) __magic_name__ = tf.saved_model.load(UpperCAmelCase_ ) __magic_name__ = loaded_model.signatures['serving_default'](UpperCAmelCase_ )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _snake_case ( self : Dict ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: __magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ = tf_tokenizer(UpperCAmelCase_ ) # Build model with some sample inputs __magic_name__ = tf_tokenizer.get_config() __magic_name__ = TFGPTaTokenizer.from_config(UpperCAmelCase_ ) __magic_name__ = model_from_config(UpperCAmelCase_ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _snake_case ( self : List[Any] ) -> List[Any]: for tf_tokenizer in self.tf_tokenizers: # for the test to run __magic_name__ = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: __magic_name__ = tf.convert_to_tensor([self.test_sentences[0]] ) __magic_name__ = tf_tokenizer(UpperCAmelCase_ , max_length=UpperCAmelCase_ ) __magic_name__ = out['input_ids'].numpy().shape[1] assert out_length == max_length
706
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowercase = argparse.ArgumentParser() parser.add_argument('''--user''', type=str, default='''ubuntu''') parser.add_argument('''--host''', type=str, default='''localhost''') parser.add_argument('''--key_path''', type=str, default=None) parser.add_argument('''--instance''', type=str, default='''V100:1''') parser.add_argument('''--provider''', type=str, default='''cheapest''') parser.add_argument('''--use_spot''', type=bool, default=False) parser.add_argument('''--example''', type=str, default='''pytorch/text-generation/run_generation.py''') lowercase , lowercase = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('''Cannot specify both BYO and on-demand cluster args''') lowercase = rh.cluster( name='''rh-cluster''', ips=[args.host], ssh_creds={'''ssh_user''': args.user, '''ssh_private_key''': args.key_path} ) else: lowercase = rh.cluster( name='''rh-cluster''', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowercase = args.example.rsplit('''/''', 1)[0] # Set up remote environment cluster.install_packages(['''pip:./''']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(['''pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117''']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
468
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup UpperCAmelCase = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') UpperCAmelCase = parser.parse_args() if args.check_lib: UpperCAmelCase = importlib.import_module('''transformers''') UpperCAmelCase = Path(transformers_module.__file__).parent else: UpperCAmelCase = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
84
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : List[Any] ): torch.manual_seed(0 ) lowerCamelCase_ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) lowerCamelCase_ = PNDMScheduler(skip_prk_steps=__UpperCamelCase ) torch.manual_seed(0 ) lowerCamelCase_ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) lowerCamelCase_ = CLIPTextModel(__UpperCamelCase ) lowerCamelCase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase_ = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowercase__ ( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any=0 ): lowerCamelCase_ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase_ = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("""RGB""" ) if str(__UpperCamelCase ).startswith("""mps""" ): lowerCamelCase_ = torch.manual_seed(__UpperCamelCase ) else: lowerCamelCase_ = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) lowerCamelCase_ = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Dict ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = sd_pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Dict ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = """french fries""" lowerCamelCase_ = sd_pipe(**__UpperCamelCase , negative_prompt=__UpperCamelCase ) lowerCamelCase_ = output.images lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = [inputs["""prompt"""]] * 2 lowerCamelCase_ = np.array(inputs["""image"""] ).astype(np.floataa ) / 255.0 lowerCamelCase_ = torch.from_numpy(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) lowerCamelCase_ = image / 2 + 0.5 lowerCamelCase_ = image.permute(0 , 3 , 1 , 2 ) lowerCamelCase_ = image.repeat(2 , 1 , 1 , 1 ) lowerCamelCase_ = sd_pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[-1, -3:, -3:, -1] assert image.shape == (2, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : Dict ): lowerCamelCase_ = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = sd_pipe.to(__UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = self.get_dummy_inputs(__UpperCamelCase ) lowerCamelCase_ = sd_pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1] lowerCamelCase_ = [round(__UpperCamelCase , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(__UpperCamelCase ) for x in slice] ) ) assert image.shape == (1, 3_2, 3_2, 3) lowerCamelCase_ = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase__ ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[int] ): lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline(**__UpperCamelCase ) lowerCamelCase_ = VaeImageProcessor(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase ) lowerCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowerCamelCase_ = pipe(**self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type="""pt""" ) )[0] lowerCamelCase_ = components["""vae"""] lowerCamelCase_ = self.get_dummy_inputs_by_type(__UpperCamelCase , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowerCamelCase_ = vae.encode(inputs[image_param] ).latent_dist.mode() lowerCamelCase_ = pipe(**__UpperCamelCase )[0] lowerCamelCase_ = np.abs(out - out_latents_inputs ).max() self.assertLess(__UpperCamelCase , 1E-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class __A( unittest.TestCase ): def lowercase__ ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : List[str] , __UpperCamelCase : Union[str, Any]=0 ): lowerCamelCase_ = torch.manual_seed(__UpperCamelCase ) lowerCamelCase_ = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) lowerCamelCase_ = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase ) lowerCamelCase_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[Any] ): lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase ) lowerCamelCase_ = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ).images lowerCamelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) lowerCamelCase_ = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def lowercase__ ( self : List[str] ): lowerCamelCase_ = 0 def callback_fn(__UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor ) -> None: lowerCamelCase_ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCamelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) lowerCamelCase_ = latents[0, -3:, -3:, -1] lowerCamelCase_ = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: lowerCamelCase_ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 6_4, 6_4) lowerCamelCase_ = latents[0, -3:, -3:, -1] lowerCamelCase_ = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 lowerCamelCase_ = False lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = self.get_inputs() pipe(**__UpperCamelCase , callback=__UpperCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self : int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__UpperCamelCase , torch_dtype=torch.floataa ) lowerCamelCase_ = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase_ = self.get_inputs() lowerCamelCase_ = pipe(**__UpperCamelCase ) lowerCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 1_0**9 def lowercase__ ( self : Tuple ): lowerCamelCase_ = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowerCamelCase_ = inputs["""image"""].resize((5_0_4, 5_0_4) ) lowerCamelCase_ = """timbrooks/instruct-pix2pix""" lowerCamelCase_ = StableDiffusionInstructPixaPixPipeline.from_pretrained( __UpperCamelCase , safety_checker=__UpperCamelCase , ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) pipe.enable_attention_slicing() lowerCamelCase_ = pipe(**__UpperCamelCase ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 5_0_4, 3) lowerCamelCase_ = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
272
0
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : List[Any] = tempfile.mkdtemp() __lowerCamelCase : Union[str, Any] = SamImageProcessor() __lowerCamelCase : int = SamProcessor(_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Tuple , **_lowerCamelCase : Any ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor def _snake_case ( self : List[Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Any = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCamelCase : Optional[int] = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Tuple = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Optional[int] = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) __lowerCamelCase : Optional[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : int = self.get_image_processor() __lowerCamelCase : Tuple = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : Optional[Any] = self.prepare_image_inputs() __lowerCamelCase : List[str] = image_processor(_lowerCamelCase , return_tensors="""np""" ) __lowerCamelCase : List[Any] = processor(images=_lowerCamelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Dict = self.get_image_processor() __lowerCamelCase : Union[str, Any] = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = [torch.ones((1, 3, 5, 5) )] __lowerCamelCase : Any = [[1_7_6_4, 2_6_4_6]] __lowerCamelCase : Any = [[6_8_3, 1_0_2_4]] __lowerCamelCase : Tuple = processor.post_process_masks(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCamelCase : Union[str, Any] = processor.post_process_masks( _lowerCamelCase , torch.tensor(_lowerCamelCase ) , torch.tensor(_lowerCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np __lowerCamelCase : Any = [np.ones((1, 3, 5, 5) )] __lowerCamelCase : int = processor.post_process_masks(_lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCamelCase : List[str] = [[1, 0], [0, 1]] with self.assertRaises(_lowerCamelCase ): __lowerCamelCase : Union[str, Any] = processor.post_process_masks(_lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) ) @require_vision @require_tf class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Optional[Any] = tempfile.mkdtemp() __lowerCamelCase : int = SamImageProcessor() __lowerCamelCase : Dict = SamProcessor(_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : List[str] , **_lowerCamelCase : List[Any] ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor def _snake_case ( self : str ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : List[str] ): '''simple docstring''' __lowerCamelCase : Any = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCamelCase : str = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowerCamelCase : int = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Dict = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) __lowerCamelCase : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = self.get_image_processor() __lowerCamelCase : Tuple = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : str = self.prepare_image_inputs() __lowerCamelCase : List[Any] = image_processor(_lowerCamelCase , return_tensors="""np""" ) __lowerCamelCase : Union[str, Any] = processor(images=_lowerCamelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : List[Any] = self.get_image_processor() __lowerCamelCase : str = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : Any = [tf.ones((1, 3, 5, 5) )] __lowerCamelCase : Optional[Any] = [[1_7_6_4, 2_6_4_6]] __lowerCamelCase : List[str] = [[6_8_3, 1_0_2_4]] __lowerCamelCase : Optional[int] = processor.post_process_masks(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCamelCase : Optional[Any] = processor.post_process_masks( _lowerCamelCase , tf.convert_to_tensor(_lowerCamelCase ) , tf.convert_to_tensor(_lowerCamelCase ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) # should also work with np __lowerCamelCase : Tuple = [np.ones((1, 3, 5, 5) )] __lowerCamelCase : str = processor.post_process_masks( _lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1_7_6_4, 2_6_4_6) ) __lowerCamelCase : Union[str, Any] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowerCamelCase : Optional[Any] = processor.post_process_masks( _lowerCamelCase , np.array(_lowerCamelCase ) , np.array(_lowerCamelCase ) , return_tensors="""tf""" ) @require_vision @require_torchvision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : Optional[int] = tempfile.mkdtemp() __lowerCamelCase : Union[str, Any] = SamImageProcessor() __lowerCamelCase : Dict = SamProcessor(_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Optional[int] , **_lowerCamelCase : Tuple ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ).image_processor def _snake_case ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase : List[str] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCamelCase : str = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = self.get_image_processor() __lowerCamelCase : Tuple = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : str = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowerCamelCase : Tuple = [tf.convert_to_tensor(_lowerCamelCase )] __lowerCamelCase : List[str] = [torch.tensor(_lowerCamelCase )] __lowerCamelCase : Optional[int] = [[1_7_6_4, 2_6_4_6]] __lowerCamelCase : Tuple = [[6_8_3, 1_0_2_4]] __lowerCamelCase : int = processor.post_process_masks( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , return_tensors="""tf""" ) __lowerCamelCase : Any = processor.post_process_masks( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : Optional[int] = self.get_image_processor() __lowerCamelCase : int = SamProcessor(image_processor=_lowerCamelCase ) __lowerCamelCase : Any = self.prepare_image_inputs() __lowerCamelCase : Any = image_processor(_lowerCamelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() __lowerCamelCase : Any = processor(images=_lowerCamelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() __lowerCamelCase : Dict = image_processor(_lowerCamelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() __lowerCamelCase : int = processor(images=_lowerCamelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase ) ) self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase ) ) self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase ) )
710
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _UpperCamelCase : '''simple docstring''' def __init__( self : int , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple=2 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Dict=1_0 , _lowerCamelCase : Union[str, Any]=3 , _lowerCamelCase : Tuple=3_2 * 8 , _lowerCamelCase : int=3_2 * 8 , _lowerCamelCase : str=4 , _lowerCamelCase : List[Any]=6_4 , ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : List[str] = is_training __lowerCamelCase : Dict = use_auxiliary_loss __lowerCamelCase : Optional[int] = num_queries __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = min_size __lowerCamelCase : Optional[Any] = max_size __lowerCamelCase : str = num_labels __lowerCamelCase : Optional[Any] = hidden_dim __lowerCamelCase : Optional[Any] = hidden_dim def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) __lowerCamelCase : Optional[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCamelCase ) __lowerCamelCase : int = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCamelCase ) > 0.5 ).float() __lowerCamelCase : List[Any] = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCamelCase ) > 0.5).long() __lowerCamelCase : Optional[Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _snake_case ( self : Dict ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) __lowerCamelCase : List[Any] = self.num_queries __lowerCamelCase : List[str] = self.num_labels __lowerCamelCase : List[str] = [1, 1, 1, 1] __lowerCamelCase : Optional[int] = self.num_channels __lowerCamelCase : Optional[int] = 6_4 __lowerCamelCase : int = 1_2_8 __lowerCamelCase : Any = self.hidden_dim __lowerCamelCase : List[str] = self.hidden_dim __lowerCamelCase : List[Any] = self.hidden_dim return config def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = self.prepare_config_and_inputs() __lowerCamelCase : Optional[int] = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def _snake_case ( self : str , _lowerCamelCase : int , _lowerCamelCase : Optional[int] ): '''simple docstring''' __lowerCamelCase : Tuple = output.encoder_hidden_states __lowerCamelCase : Any = output.pixel_decoder_hidden_states __lowerCamelCase : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ) , config.decoder_layers ) def _snake_case ( self : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : List[str]=False ): '''simple docstring''' with torch.no_grad(): __lowerCamelCase : Any = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __lowerCamelCase : Dict = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) __lowerCamelCase : Optional[Any] = model(_lowerCamelCase , output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase , _lowerCamelCase ) def _snake_case ( self : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple ): '''simple docstring''' __lowerCamelCase : List[Any] = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(_lowerCamelCase : Optional[int] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __lowerCamelCase : Optional[int] = model(pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase ) __lowerCamelCase : Tuple = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) __lowerCamelCase : str = model( pixel_values=_lowerCamelCase , pixel_mask=_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _UpperCamelCase ( A,A,unittest.TestCase ): '''simple docstring''' a_ : Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a_ : Union[str, Any] = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} a_ : Optional[Any] = False a_ : int = False a_ : List[str] = False a_ : List[Any] = False def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : Dict = MaskaFormerModelTester(self ) __lowerCamelCase : int = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def _snake_case ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def _snake_case ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def _snake_case ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def _snake_case ( self : str ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def _snake_case ( self : int ): '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _snake_case ( self : Any ): '''simple docstring''' pass def _snake_case ( self : Any ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(_lowerCamelCase ) __lowerCamelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Any = [*signature.parameters.keys()] __lowerCamelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) @slow def _snake_case ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: __lowerCamelCase : Dict = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowerCamelCase : List[Any] = (self.model_tester.min_size,) * 2 __lowerCamelCase : Optional[Any] = { """pixel_values""": torch.randn((2, 3, *size) , device=_lowerCamelCase ), """mask_labels""": torch.randn((2, 1_0, *size) , device=_lowerCamelCase ), """class_labels""": torch.zeros(2 , 1_0 , device=_lowerCamelCase ).long(), } __lowerCamelCase : Any = self.model_tester.get_config() __lowerCamelCase : Tuple = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def _snake_case ( self : str ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase , **_lowerCamelCase , output_hidden_states=_lowerCamelCase ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase , __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(_lowerCamelCase ).to(_lowerCamelCase ) __lowerCamelCase : int = model(**_lowerCamelCase , output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def _snake_case ( self : Any ): '''simple docstring''' if not self.model_tester.is_training: return __lowerCamelCase : str = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : List[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() __lowerCamelCase : Tuple = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ).loss loss.backward() def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : List[Any] = self.all_model_classes[1] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() __lowerCamelCase : Optional[int] = True __lowerCamelCase : Any = True __lowerCamelCase : Any = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() __lowerCamelCase : Optional[Any] = model(_lowerCamelCase , mask_labels=_lowerCamelCase , class_labels=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __lowerCamelCase : Any = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() __lowerCamelCase : Optional[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __lowerCamelCase : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) __UpperCamelCase : str = 1E-4 def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def _snake_case ( self : Dict ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _snake_case ( self : List[Any] ): '''simple docstring''' __lowerCamelCase : int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) __lowerCamelCase : str = self.default_image_processor __lowerCamelCase : Dict = prepare_img() __lowerCamelCase : List[Any] = image_processor(_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) __lowerCamelCase : Optional[int] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): __lowerCamelCase : str = model(**_lowerCamelCase ) __lowerCamelCase : Dict = torch.tensor( [[-0.2_790, -1.0_717, -1.1_668], [-0.5_128, -0.3_128, -0.4_987], [-0.5_832, 0.1_971, -0.0_197]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) __lowerCamelCase : Union[str, Any] = torch.tensor( [[0.8_973, 1.1_847, 1.1_776], [1.1_934, 1.5_040, 1.5_128], [1.1_153, 1.4_486, 1.4_951]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) __lowerCamelCase : Tuple = torch.tensor( [[2.1_152, 1.7_000, -0.8_603], [1.5_808, 1.8_004, -0.9_353], [1.6_043, 1.7_495, -0.5_999]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def _snake_case ( self : int ): '''simple docstring''' __lowerCamelCase : int = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() __lowerCamelCase : Any = self.default_image_processor __lowerCamelCase : Union[str, Any] = prepare_img() __lowerCamelCase : int = image_processor(_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) __lowerCamelCase : int = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCamelCase , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): __lowerCamelCase : Dict = model(**_lowerCamelCase ) # masks_queries_logits __lowerCamelCase : Dict = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) __lowerCamelCase : Any = [ [-8.7_839, -9.0_056, -8.8_121], [-7.4_104, -7.0_313, -6.5_401], [-6.6_105, -6.3_427, -6.4_675], ] __lowerCamelCase : List[str] = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) # class_queries_logits __lowerCamelCase : Union[str, Any] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) __lowerCamelCase : List[Any] = torch.tensor( [ [1.8_324, -8.0_835, -4.1_922], [0.8_450, -9.0_050, -3.6_053], [0.3_045, -7.7_293, -3.0_275], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def _snake_case ( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : Tuple = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() __lowerCamelCase : Dict = self.default_image_processor __lowerCamelCase : List[Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="""pt""" , ) __lowerCamelCase : int = inputs["""pixel_values"""].to(_lowerCamelCase ) __lowerCamelCase : Optional[Any] = [el.to(_lowerCamelCase ) for el in inputs["""mask_labels"""]] __lowerCamelCase : Union[str, Any] = [el.to(_lowerCamelCase ) for el in inputs["""class_labels"""]] with torch.no_grad(): __lowerCamelCase : Dict = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
458
0
def _snake_case ( __snake_case = 10**12 ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 1 _UpperCamelCase = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'{solution() = }')
10
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ : List[str] =imread(r'''digital_image_processing/image_data/lena_small.jpg''') A__ : Union[str, Any] =cvtColor(img, COLOR_BGR2GRAY) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = cn.convert_to_negative(lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def UpperCamelCase__ ( ): """simple docstring""" with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowerCAmelCase , 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCAmelCase = canny.canny(lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def UpperCamelCase__ ( ): """simple docstring""" assert gg.gaussian_filter(lowerCAmelCase , 5 , sigma=0.9 ).all() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) _lowerCAmelCase = conv.img_convolve(lowerCAmelCase , lowerCAmelCase ).astype(lowerCAmelCase ) assert res.any() def UpperCamelCase__ ( ): """simple docstring""" assert med.median_filter(lowerCAmelCase , 3 ).any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = sob.sobel_filter(lowerCAmelCase ) assert grad.any() and theta.any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = sp.make_sepia(lowerCAmelCase , 20 ) assert sepia.all() def UpperCamelCase__ ( lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ): """simple docstring""" _lowerCAmelCase = bs.Burkes(imread(lowerCAmelCase , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def UpperCamelCase__ ( lowerCAmelCase = "digital_image_processing/image_data/lena_small.jpg" , ): """simple docstring""" _lowerCAmelCase = rs.NearestNeighbour(imread(lowerCAmelCase , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. _lowerCAmelCase = imread(lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = image[x_coordinate][y_coordinate] _lowerCAmelCase = lbp.get_neighbors_pixel( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCAmelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _lowerCAmelCase = lbp.local_binary_value(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) assert lbp_image.any()
207
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging A_ :List[Any] = logging.get_logger(__name__) def A ( a_ ,a_ ) -> Optional[int]: __UpperCamelCase : int =set() __UpperCamelCase : int =[] def parse_line(a_ ): for line in fp: if isinstance(a_ ,a_ ): __UpperCamelCase : Tuple =line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(a_ ) > 0: __UpperCamelCase : int ='\n'.join(a_ ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(a_ ) buffer.clear() continue else: __UpperCamelCase : int =line.strip() buffer.append(a_ ) if from_gh: for filename in os.listdir(a_ ): __UpperCamelCase : Optional[int] =os.path.join(a_ ,a_ ) if not os.path.isdir(a_ ): # read the file if filename != "warnings.txt": continue with open(a_ ) as fp: parse_line(a_ ) else: try: with zipfile.ZipFile(a_ ) as z: for filename in z.namelist(): if not os.path.isdir(a_ ): # read the file if filename != "warnings.txt": continue with z.open(a_ ) as fp: parse_line(a_ ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def A ( a_ ,a_ ) -> Tuple: __UpperCamelCase : Any =set() __UpperCamelCase : int =[os.path.join(a_ ,a_ ) for p in os.listdir(a_ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(a_ ,a_ ) ) return selected_warnings if __name__ == "__main__": def A ( a_ ) -> Tuple: return values.split(',' ) A_ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) A_ :Optional[int] = parser.parse_args() A_ :List[str] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links A_ :Tuple = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts A_ :Optional[Any] = extract_warnings(args.output_dir, args.targets) A_ :List[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
154
def A ( a_ = 600_851_475_143 ) -> int: try: __UpperCamelCase : int =int(a_ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) __UpperCamelCase : List[str] =2 __UpperCamelCase : Dict =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __UpperCamelCase : Optional[Any] =i while n % i == 0: __UpperCamelCase : Any =n // i i += 1 return int(a_ ) if __name__ == "__main__": print(f"{solution() = }")
154
1
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowercase : List[str] = logging.getLogger(__name__) class _a (a__ ): '''simple docstring''' lowerCAmelCase_ : int = """sequence-classification""" def __init__( self ,__a ) -> Dict: if type(__a ) == dict: snake_case : int = Namespace(**__a ) snake_case : Tuple = glue_output_modes[hparams.task] snake_case : List[Any] = glue_tasks_num_labels[hparams.task] super().__init__(__a ,__a ,self.mode ) def snake_case_ ( self ,**__a ) -> int: return self.model(**__a ) def snake_case_ ( self ,__a ,__a ) -> Any: snake_case : List[str] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case : List[str] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None snake_case : Union[str, Any] = self(**__a ) snake_case : Optional[Any] = outputs[0] snake_case : Any = self.trainer.lr_schedulers[0]["""scheduler"""] snake_case : str = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def snake_case_ ( self ) -> Optional[Any]: snake_case : Any = self.hparams snake_case : Union[str, Any] = processors[args.task]() snake_case : str = processor.get_labels() for mode in ["train", "dev"]: snake_case : Dict = self._feature_file(__a ) if os.path.exists(__a ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,__a ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) snake_case : int = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) snake_case : Union[str, Any] = convert_examples_to_features( __a ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,__a ) torch.save(__a ,__a ) def snake_case_ ( self ,__a ,__a ,__a = False ) -> DataLoader: snake_case : str = """dev""" if mode == """test""" else mode snake_case : Dict = self._feature_file(__a ) logger.info("""Loading features from cached file %s""" ,__a ) snake_case : Dict = torch.load(__a ) snake_case : List[Any] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) snake_case : Union[str, Any] = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) snake_case : Tuple = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": snake_case : Any = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": snake_case : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(__a ,__a ,__a ,__a ) ,batch_size=__a ,shuffle=__a ,) def snake_case_ ( self ,__a ,__a ) -> Optional[int]: snake_case : List[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: snake_case : Union[str, Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None snake_case : Any = self(**__a ) snake_case , snake_case : int = outputs[:2] snake_case : Tuple = logits.detach().cpu().numpy() snake_case : Optional[int] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def snake_case_ ( self ,__a ) -> tuple: snake_case : List[Any] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() snake_case : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": snake_case : Any = np.argmax(__a ,axis=1 ) elif self.hparams.glue_output_mode == "regression": snake_case : List[str] = np.squeeze(__a ) snake_case : List[str] = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) snake_case : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] snake_case : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] snake_case : Tuple = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,__a ,__a )} snake_case : Any = dict(results.items() ) snake_case : List[Any] = results return ret, preds_list, out_label_list def snake_case_ ( self ,__a ) -> dict: snake_case , snake_case , snake_case : int = self._eval_end(__a ) snake_case : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def snake_case_ ( self ,__a ) -> dict: snake_case , snake_case , snake_case : str = self._eval_end(__a ) snake_case : str = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def snake_case_ ( __a ,__a ) -> List[Any]: BaseTransformer.add_model_specific_args(__a ,__a ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=__a ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=__a ,required=__a ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=__a ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def lowerCamelCase__ ( ): snake_case : str = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) snake_case : int = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) snake_case : List[str] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: snake_case : List[str] = os.path.join( """./results""" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) snake_case : Optional[int] = GLUETransformer(__lowercase ) snake_case : Optional[Any] = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: snake_case : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=__lowercase ) ) snake_case : List[Any] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
116
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowercase : Tuple = sys.version_info >= (3, 10) def lowerCamelCase__ ( __lowercase=None , __lowercase=None ): return field(default_factory=lambda: default , metadata=__lowercase ) @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : int lowerCAmelCase_ : float lowerCAmelCase_ : str lowerCAmelCase_ : bool @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : int = 42 lowerCAmelCase_ : str = field(default="""toto""", metadata={"""help""": """help message"""} ) @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = True lowerCAmelCase_ : Optional[bool] = None class _a (a__ ): '''simple docstring''' lowerCAmelCase_ : int = """titi""" lowerCAmelCase_ : Optional[int] = """toto""" class _a (a__ ): '''simple docstring''' lowerCAmelCase_ : Any = """titi""" lowerCAmelCase_ : Dict = """toto""" lowerCAmelCase_ : int = 42 @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : BasicEnum = "toto" def snake_case_ ( self ) -> str: snake_case : Union[str, Any] = BasicEnum(self.foo ) @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : MixedTypeEnum = "toto" def snake_case_ ( self ) -> Tuple: snake_case : List[str] = MixedTypeEnum(self.foo ) @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : Optional[float] = field(default=a__, metadata={"""help""": """help message"""} ) lowerCAmelCase_ : Optional[str] = None lowerCAmelCase_ : Optional[List[str]] = list_field(default=[] ) lowerCAmelCase_ : Optional[List[int]] = list_field(default=[] ) @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : List[int] = list_field(default=[] ) lowerCAmelCase_ : List[int] = list_field(default=[1, 2, 3] ) lowerCAmelCase_ : List[str] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) lowerCAmelCase_ : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : List[int] = field() lowerCAmelCase_ : str = field() lowerCAmelCase_ : BasicEnum = field() def snake_case_ ( self ) -> int: snake_case : Optional[int] = BasicEnum(self.required_enum ) @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : int lowerCAmelCase_ : "BasicEnum" = field() lowerCAmelCase_ : "Optional[bool]" = None lowerCAmelCase_ : "str" = field(default="""toto""", metadata={"""help""": """help message"""} ) lowerCAmelCase_ : "List[str]" = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : bool = False lowerCAmelCase_ : bool = True lowerCAmelCase_ : bool | None = None @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : int | None = None lowerCAmelCase_ : float | None = field(default=a__, metadata={"""help""": """help message"""} ) lowerCAmelCase_ : str | None = None lowerCAmelCase_ : list[str] | None = list_field(default=[] ) lowerCAmelCase_ : list[int] | None = list_field(default=[] ) class _a (unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ,__a ,__a ) -> Optional[int]: self.assertEqual(len(a._actions ) ,len(b._actions ) ) for x, y in zip(a._actions ,b._actions ): snake_case : Optional[int] = {k: v for k, v in vars(__a ).items() if k != """container"""} snake_case : Tuple = {k: v for k, v in vars(__a ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" ,__a ) and yy.get("""choices""" ,__a ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](__a ) ,yy["""type"""](__a ) ) del xx["type"], yy["type"] self.assertEqual(__a ,__a ) def snake_case_ ( self ) -> int: snake_case : str = HfArgumentParser(__a ) snake_case : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" ,type=__a ,required=__a ) expected.add_argument("""--bar""" ,type=__a ,required=__a ) expected.add_argument("""--baz""" ,type=__a ,required=__a ) expected.add_argument("""--flag""" ,type=__a ,default=__a ,const=__a ,nargs="""?""" ) self.argparsersEqual(__a ,__a ) snake_case : Optional[int] = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((snake_case) , ) : Dict = parser.parse_args_into_dataclasses(__a ,look_for_args_file=__a ) self.assertFalse(example.flag ) def snake_case_ ( self ) -> int: snake_case : Optional[int] = HfArgumentParser(__a ) snake_case : str = argparse.ArgumentParser() expected.add_argument("""--foo""" ,default=42 ,type=__a ) expected.add_argument("""--baz""" ,default="""toto""" ,type=__a ,help="""help message""" ) self.argparsersEqual(__a ,__a ) def snake_case_ ( self ) -> Optional[Any]: snake_case : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" ,type=__a ,default=__a ,const=__a ,nargs="""?""" ) expected.add_argument("""--baz""" ,type=__a ,default=__a ,const=__a ,nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" ,action="""store_false""" ,default=__a ,dest="""baz""" ) expected.add_argument("""--opt""" ,type=__a ,default=__a ) snake_case : str = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__a ) for dataclass_type in dataclass_types: snake_case : Optional[int] = HfArgumentParser(__a ) self.argparsersEqual(__a ,__a ) snake_case : List[str] = parser.parse_args([] ) self.assertEqual(__a ,Namespace(foo=__a ,baz=__a ,opt=__a ) ) snake_case : str = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(__a ,Namespace(foo=__a ,baz=__a ,opt=__a ) ) snake_case : Union[str, Any] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(__a ,Namespace(foo=__a ,baz=__a ,opt=__a ) ) snake_case : Union[str, Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(__a ,Namespace(foo=__a ,baz=__a ,opt=__a ) ) snake_case : List[str] = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(__a ,Namespace(foo=__a ,baz=__a ,opt=__a ) ) def snake_case_ ( self ) -> str: snake_case : Any = HfArgumentParser(__a ) snake_case : Union[str, Any] = argparse.ArgumentParser() expected.add_argument( """--foo""" ,default="""toto""" ,choices=["""titi""", """toto""", 42] ,type=make_choice_type_function(["""titi""", """toto""", 42] ) ,) self.argparsersEqual(__a ,__a ) snake_case : Any = parser.parse_args([] ) self.assertEqual(args.foo ,"""toto""" ) snake_case : str = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.toto ) snake_case : Optional[Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo ,"""titi""" ) snake_case : Optional[Any] = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.titi ) snake_case : Any = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo ,42 ) snake_case : Any = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.fourtytwo ) def snake_case_ ( self ) -> Union[str, Any]: @dataclass class _a : '''simple docstring''' lowerCAmelCase_ : Literal["titi", "toto", 42] = "toto" snake_case : Tuple = HfArgumentParser(__a ) snake_case : List[Any] = argparse.ArgumentParser() expected.add_argument( """--foo""" ,default="""toto""" ,choices=("""titi""", """toto""", 42) ,type=make_choice_type_function(["""titi""", """toto""", 42] ) ,) self.argparsersEqual(__a ,__a ) snake_case : Optional[int] = parser.parse_args([] ) self.assertEqual(args.foo ,"""toto""" ) snake_case : int = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo ,"""titi""" ) snake_case : Optional[int] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo ,42 ) def snake_case_ ( self ) -> List[Any]: snake_case : Any = HfArgumentParser(__a ) snake_case : Dict = argparse.ArgumentParser() expected.add_argument("""--foo_int""" ,nargs="""+""" ,default=[] ,type=__a ) expected.add_argument("""--bar_int""" ,nargs="""+""" ,default=[1, 2, 3] ,type=__a ) expected.add_argument("""--foo_str""" ,nargs="""+""" ,default=["""Hallo""", """Bonjour""", """Hello"""] ,type=__a ) expected.add_argument("""--foo_float""" ,nargs="""+""" ,default=[0.1, 0.2, 0.3] ,type=__a ) self.argparsersEqual(__a ,__a ) snake_case : int = parser.parse_args([] ) self.assertEqual( __a ,Namespace(foo_int=[] ,bar_int=[1, 2, 3] ,foo_str=["""Hallo""", """Bonjour""", """Hello"""] ,foo_float=[0.1, 0.2, 0.3] ) ,) snake_case : Optional[int] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(__a ,Namespace(foo_int=[1] ,bar_int=[2, 3] ,foo_str=["""a""", """b""", """c"""] ,foo_float=[0.1, 0.7] ) ) def snake_case_ ( self ) -> Optional[int]: snake_case : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" ,default=__a ,type=__a ) expected.add_argument("""--bar""" ,default=__a ,type=__a ,help="""help message""" ) expected.add_argument("""--baz""" ,default=__a ,type=__a ) expected.add_argument("""--ces""" ,nargs="""+""" ,default=[] ,type=__a ) expected.add_argument("""--des""" ,nargs="""+""" ,default=[] ,type=__a ) snake_case : Optional[Any] = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__a ) for dataclass_type in dataclass_types: snake_case : Any = HfArgumentParser(__a ) self.argparsersEqual(__a ,__a ) snake_case : Any = parser.parse_args([] ) self.assertEqual(__a ,Namespace(foo=__a ,bar=__a ,baz=__a ,ces=[] ,des=[] ) ) snake_case : Any = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(__a ,Namespace(foo=12 ,bar=3.14 ,baz="""42""" ,ces=["""a""", """b""", """c"""] ,des=[1, 2, 3] ) ) def snake_case_ ( self ) -> Any: snake_case : Optional[Any] = HfArgumentParser(__a ) snake_case : List[Any] = argparse.ArgumentParser() expected.add_argument("""--required_list""" ,nargs="""+""" ,type=__a ,required=__a ) expected.add_argument("""--required_str""" ,type=__a ,required=__a ) expected.add_argument( """--required_enum""" ,type=make_choice_type_function(["""titi""", """toto"""] ) ,choices=["""titi""", """toto"""] ,required=__a ,) self.argparsersEqual(__a ,__a ) def snake_case_ ( self ) -> List[Any]: snake_case : Optional[int] = HfArgumentParser(__a ) snake_case : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" ,type=__a ,required=__a ) expected.add_argument( """--required_enum""" ,type=make_choice_type_function(["""titi""", """toto"""] ) ,choices=["""titi""", """toto"""] ,required=__a ,) expected.add_argument("""--opt""" ,type=__a ,default=__a ) expected.add_argument("""--baz""" ,default="""toto""" ,type=__a ,help="""help message""" ) expected.add_argument("""--foo_str""" ,nargs="""+""" ,default=["""Hallo""", """Bonjour""", """Hello"""] ,type=__a ) self.argparsersEqual(__a ,__a ) def snake_case_ ( self ) -> Tuple: snake_case : str = HfArgumentParser(__a ) snake_case : Any = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } snake_case : List[str] = parser.parse_dict(__a )[0] snake_case : str = BasicExample(**__a ) self.assertEqual(__a ,__a ) def snake_case_ ( self ) -> Any: snake_case : Tuple = HfArgumentParser(__a ) snake_case : int = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(__a ,parser.parse_dict ,__a ,allow_extra_keys=__a ) def snake_case_ ( self ) -> Optional[int]: snake_case : List[str] = HfArgumentParser(__a ) snake_case : Any = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Dict = os.path.join(__a ,"""temp_json""" ) os.mkdir(__a ) with open(temp_local_path + """.json""" ,"""w+""" ) as f: json.dump(__a ,__a ) snake_case : Any = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] snake_case : List[str] = BasicExample(**__a ) self.assertEqual(__a ,__a ) def snake_case_ ( self ) -> str: snake_case : Union[str, Any] = HfArgumentParser(__a ) snake_case : Any = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case : str = os.path.join(__a ,"""temp_yaml""" ) os.mkdir(__a ) with open(temp_local_path + """.yaml""" ,"""w+""" ) as f: yaml.dump(__a ,__a ) snake_case : Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] snake_case : Tuple = BasicExample(**__a ) self.assertEqual(__a ,__a ) def snake_case_ ( self ) -> List[str]: snake_case : Union[str, Any] = HfArgumentParser(__a ) self.assertIsNotNone(__a )
116
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
718
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __A(lowerCAmelCase ) -> Any: """simple docstring""" _UpperCamelCase = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def __A(lowerCAmelCase ) -> Optional[int]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase ) _UpperCamelCase = emb.weight.data return lin_layer def __A(lowerCAmelCase ) -> Tuple: """simple docstring""" _UpperCamelCase = torch.load(lowerCAmelCase , map_location="""cpu""" ) _UpperCamelCase = Namespace(**checkpoint["""cfg"""]["""model"""] ) _UpperCamelCase = checkpoint["""model"""] remove_ignore_keys_(lowerCAmelCase ) _UpperCamelCase = state_dict["""decoder.embed_tokens.weight"""].shape[0] _UpperCamelCase = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} _UpperCamelCase = XGLMConfig( vocab_size=lowerCAmelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _UpperCamelCase = XGLMForCausalLM(lowerCAmelCase ) _UpperCamelCase = model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) print(lowerCAmelCase ) _UpperCamelCase = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
202
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy SCREAMING_SNAKE_CASE__ : List[Any] = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ : List[str] = """pytorch_model.bin""" @dataclasses.dataclass class UpperCAmelCase_ : __lowerCamelCase = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) __lowerCamelCase = dataclasses.field( default=__lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class UpperCAmelCase_ : __lowerCamelCase = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) __lowerCamelCase = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) __lowerCamelCase = dataclasses.field( default=__lowerCamelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) __lowerCamelCase = dataclasses.field( default=__lowerCamelCase , metadata={'help': 'The name of the task to train on.'} , ) __lowerCamelCase = dataclasses.field( default=__lowerCamelCase , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class UpperCAmelCase_ : __lowerCamelCase = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) __lowerCamelCase = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) __lowerCamelCase = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) __lowerCamelCase = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) __lowerCamelCase = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) __lowerCamelCase = dataclasses.field( default=__lowerCamelCase , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) __lowerCamelCase = dataclasses.field( default=__lowerCamelCase , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) __lowerCamelCase = dataclasses.field( default=__lowerCamelCase , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) __lowerCamelCase = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) __lowerCamelCase = dataclasses.field( default=100 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) __lowerCamelCase = dataclasses.field( default=__lowerCamelCase , metadata={'help': 'Random seed for initialization.'} , ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase__ : int = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: UpperCAmelCase__ : Any = dataset.filter(lambda __lowerCamelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 UpperCAmelCase__ : int = int(eval_result * len(__lowerCamelCase ) ) print(__lowerCamelCase ) UpperCAmelCase__ : Optional[int] = dataset.sort("""probability""" , reverse=__lowerCamelCase ) UpperCAmelCase__ : Dict = dataset.select(range(__lowerCamelCase ) ) UpperCAmelCase__ : str = dataset.remove_columns(["""label""", """probability"""] ) UpperCAmelCase__ : Any = dataset.rename_column("""prediction""" , """label""" ) UpperCAmelCase__ : int = dataset.map(lambda __lowerCamelCase : {"label": idalabel[example["label"]]} ) UpperCAmelCase__ : Tuple = dataset.shuffle(seed=args.seed ) UpperCAmelCase__ : Dict = os.path.join(__lowerCamelCase , F"train_pseudo.{args.data_file_extension}" ) if args.data_file_extension == "csv": dataset.to_csv(__lowerCamelCase , index=__lowerCamelCase ) else: dataset.to_json(__lowerCamelCase ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ : Dict = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() UpperCAmelCase__ : str = STModelArguments(model_name_or_path=__lowerCamelCase ) UpperCAmelCase__ : int = STDataArguments(train_file=__lowerCamelCase , infer_file=__lowerCamelCase ) UpperCAmelCase__ : Dict = STTrainingArguments(output_dir=__lowerCamelCase ) UpperCAmelCase__ : Dict = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowerCamelCase ).items(): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for key, value in kwargs.items(): if hasattr(__lowerCamelCase , __lowerCamelCase ): setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Sanity checks UpperCAmelCase__ : Tuple = {} UpperCAmelCase__ : Dict = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None UpperCAmelCase__ : Tuple = args.train_file UpperCAmelCase__ : List[str] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None UpperCAmelCase__ : Union[str, Any] = args.eval_file for key in data_files: UpperCAmelCase__ : List[str] = data_files[key].split(""".""" )[-1] assert extension in ["csv", "json"], F"`{key}_file` should be a csv or a json file." if args.data_file_extension is None: UpperCAmelCase__ : Any = extension else: assert extension == args.data_file_extension, F"`{key}_file` should be a {args.data_file_extension} file`." assert ( args.eval_metric in datasets.list_metrics() ), F"{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}." # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("""Creating the initial data directory for self-training...""" ) UpperCAmelCase__ : List[Any] = F"{args.output_dir}/self-train_iter-{{}}".format UpperCAmelCase__ : Any = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) accelerator.wait_for_everyone() UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : Optional[int] = False # Show the progress bar UpperCAmelCase__ : int = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): UpperCAmelCase__ : Tuple = data_dir_format(__lowerCamelCase ) assert os.path.exists(__lowerCamelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 UpperCAmelCase__ : List[str] = os.path.join(__lowerCamelCase , """stage-1""" ) UpperCAmelCase__ : List[Any] = { """accelerator""": accelerator, """model_name_or_path""": args.model_name_or_path, """cache_dir""": args.cache_dir, """do_train""": True, """train_file""": data_files["""train"""] if iteration == 0 else data_files["""train_pseudo"""], """do_eval""": True if args.eval_file is not None else False, """eval_file""": data_files["""eval"""], """do_predict""": True, """infer_file""": data_files["""infer"""], """task_name""": args.task_name, """label_list""": args.label_list, """output_dir""": current_output_dir, """eval_metric""": args.eval_metric, """evaluation_strategy""": args.evaluation_strategy, """early_stopping_patience""": args.early_stopping_patience, """early_stopping_threshold""": args.early_stopping_threshold, """seed""": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowerCamelCase , __lowerCamelCase ): arguments_dict.update({key: value} ) UpperCAmelCase__ : List[Any] = os.path.join(__lowerCamelCase , """best-checkpoint""" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.""" , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 1 *****""" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("""Self-training job completed: iteration: %d, stage: 1.""" , __lowerCamelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data UpperCAmelCase__ : Any = os.path.join(__lowerCamelCase , """best-checkpoint""" ) UpperCAmelCase__ : Any = os.path.join(__lowerCamelCase , """stage-2""" ) # Update arguments_dict UpperCAmelCase__ : Union[str, Any] = model_path UpperCAmelCase__ : Optional[Any] = data_files["""train"""] UpperCAmelCase__ : Tuple = current_output_dir UpperCAmelCase__ : Union[str, Any] = os.path.join(__lowerCamelCase , """best-checkpoint""" , __lowerCamelCase ) if os.path.exists(__lowerCamelCase ): logger.info( """Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.""" , __lowerCamelCase , __lowerCamelCase , ) else: logger.info("""***** Running self-training: iteration: %d, stage: 2 *****""" , __lowerCamelCase ) finetune(**__lowerCamelCase ) accelerator.wait_for_everyone() assert os.path.exists(__lowerCamelCase ) logger.info("""Self-training job completed: iteration: %d, stage: 2.""" , __lowerCamelCase ) UpperCAmelCase__ : str = iteration UpperCAmelCase__ : List[str] = data_dir_format(iteration + 1 ) UpperCAmelCase__ : Any = AutoConfig.from_pretrained(os.path.join(__lowerCamelCase , """best-checkpoint""" ) ) UpperCAmelCase__ : Optional[Any] = config.idalabel UpperCAmelCase__ : Tuple = os.path.join(__lowerCamelCase , """eval_results_best-checkpoint.json""" ) UpperCAmelCase__ : Dict = os.path.join(__lowerCamelCase , """test_results_best-checkpoint.json""" ) assert os.path.exists(__lowerCamelCase ) with open(__lowerCamelCase , """r""" ) as f: UpperCAmelCase__ : Optional[Any] = float(json.load(__lowerCamelCase )[args.eval_metric] ) UpperCAmelCase__ : Tuple = os.path.join(__lowerCamelCase , """infer_output_best-checkpoint.csv""" ) assert os.path.exists(__lowerCamelCase ) # Loading the dataset from local csv or json files. UpperCAmelCase__ : Union[str, Any] = load_dataset(args.data_file_extension , data_files={"""data""": data_files["""infer"""]} )["""data"""] UpperCAmelCase__ : List[Any] = load_dataset("""csv""" , data_files={"""data""": infer_output_file} )["""data"""] if accelerator.is_main_process: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , F"eval_results_iter-{iteration}.json" ) ) if os.path.exists(__lowerCamelCase ): shutil.copy(__lowerCamelCase , os.path.join(__lowerCamelCase , F"test_results_iter-{iteration}.json" ) ) create_pseudo_labeled_data(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.wait_for_everyone() UpperCAmelCase__ : Tuple = os.path.join(__lowerCamelCase , F"train_pseudo.{args.data_file_extension}" ) if args.evaluation_strategy != IntervalStrategy.NO.value: UpperCAmelCase__ : Optional[Any] = eval_result if best_iteration is None: UpperCAmelCase__ : Tuple = new_iteration UpperCAmelCase__ : Tuple = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: UpperCAmelCase__ : List[str] = new_iteration UpperCAmelCase__ : List[str] = new_eval_result UpperCAmelCase__ : Optional[int] = 0 else: if new_eval_result == best_eval_result: UpperCAmelCase__ : Tuple = new_iteration UpperCAmelCase__ : Union[str, Any] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: UpperCAmelCase__ : List[Any] = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("""Best iteration: %d""" , __lowerCamelCase ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , F"eval_results_iter-{iteration}.json" ) , os.path.join(__lowerCamelCase , """eval_results_best-iteration.json""" ) , ) else: # Assume that the last iteration is the best logger.info("""Best iteration: %d""" , args.max_selftrain_iterations - 1 ) logger.info("""Best evaluation result: %s = %f""" , args.eval_metric , __lowerCamelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowerCamelCase , F"eval_results_iter-{args.max_selftrain_iterations - 1}.json" ) , os.path.join(__lowerCamelCase , """eval_results_best-iteration.json""" ) , )
79
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase_ : def __init__( self , _lowerCAmelCase ): UpperCAmelCase__ : Any = data UpperCAmelCase__ : List[Any] = [0X6745_2301, 0Xefcd_ab89, 0X98ba_dcfe, 0X1032_5476, 0Xc3d2_e1f0] @staticmethod def __UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ): return ((n << b) | (n >> (32 - b))) & 0Xffff_ffff def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[Any] = B"""\x80""" + B"""\x00""" * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase__ : Optional[int] = self.data + padding + struct.pack(""">Q""" , 8 * len(self.data ) ) return padded_data def __UpperCAmelCase ( self ): return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __UpperCAmelCase ( self , _lowerCAmelCase ): UpperCAmelCase__ : Dict = list(struct.unpack(""">16L""" , _lowerCAmelCase ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase__ : Optional[int] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __UpperCAmelCase ( self ): UpperCAmelCase__ : List[str] = self.padding() UpperCAmelCase__ : List[str] = self.split_blocks() for block in self.blocks: UpperCAmelCase__ : Tuple = self.expand_block(_lowerCAmelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase__ : Optional[int] = (b & c) | ((~b) & d) UpperCAmelCase__ : int = 0X5a82_7999 elif 20 <= i < 40: UpperCAmelCase__ : Tuple = b ^ c ^ d UpperCAmelCase__ : int = 0X6ed9_eba1 elif 40 <= i < 60: UpperCAmelCase__ : List[str] = (b & c) | (b & d) | (c & d) UpperCAmelCase__ : Tuple = 0X8f1b_bcdc elif 60 <= i < 80: UpperCAmelCase__ : int = b ^ c ^ d UpperCAmelCase__ : str = 0Xca62_c1d6 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = ( self.rotate(_lowerCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0Xffff_ffff, a, self.rotate(_lowerCAmelCase , 30 ), c, d, ) UpperCAmelCase__ : int = ( self.h[0] + a & 0Xffff_ffff, self.h[1] + b & 0Xffff_ffff, self.h[2] + c & 0Xffff_ffff, self.h[3] + d & 0Xffff_ffff, self.h[4] + e & 0Xffff_ffff, ) return ("{:08x}" * 5).format(*self.h ) def _lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = B"""Test String""" assert SHAaHash(__lowerCamelCase ).final_hash() == hashlib.shaa(__lowerCamelCase ).hexdigest() # noqa: S324 def _lowerCamelCase ( ) -> str: '''simple docstring''' UpperCAmelCase__ : Optional[int] = argparse.ArgumentParser(description="""Process some strings or files""" ) parser.add_argument( """--string""" , dest="""input_string""" , default="""Hello World!! Welcome to Cryptography""" , help="""Hash the string""" , ) parser.add_argument("""--file""" , dest="""input_file""" , help="""Hash contents of a file""" ) UpperCAmelCase__ : str = parser.parse_args() UpperCAmelCase__ : Union[str, Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , """rb""" ) as f: UpperCAmelCase__ : List[Any] = f.read() else: UpperCAmelCase__ : int = bytes(__lowerCamelCase , """utf-8""" ) print(SHAaHash(__lowerCamelCase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
79
1
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self ) -> None: lowerCamelCase : Optional[int] = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCamelCase : int = Vector() def _UpperCamelCase ( self ) -> None: lowerCamelCase : int = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase_ ) , '(0,0,0,0,0,1)' ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : Tuple = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase_ ) , 4 ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : Optional[Any] = Vector([1, 2] ) lowerCamelCase : List[Any] = Vector([1, 2, 3, 4, 5] ) lowerCamelCase : Any = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCamelCase : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : List[str] = Vector([1, 2, 3] ) lowerCamelCase : int = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : List[Any] = Vector([1, 2, 3] ) lowerCamelCase : Any = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : Union[str, Any] = Vector([1, 2, 3] ) lowerCamelCase : Tuple = Vector([2, -1, 4] ) # for test of dot product lowerCamelCase : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def _UpperCamelCase ( self ) -> None: self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def _UpperCamelCase ( self ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : Tuple = Vector([1, 2, 3] ) lowerCamelCase : int = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase_ , UpperCAmelCase_ ) ) , '(3,4,7)' ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : int = Vector([1, 0, 0, 0, 0, 0] ) lowerCamelCase : Tuple = x.copy() self.assertEqual(str(UpperCAmelCase_ ) , str(UpperCAmelCase_ ) ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : Optional[int] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase_ ) , '(0,1,0)' ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(UpperCAmelCase_ ) ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase : Optional[int] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase : Dict = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : int = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCamelCase : List[Any] = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(UpperCAmelCase_ ) ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : Optional[int] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase : Dict = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def _UpperCamelCase ( self ) -> None: lowerCamelCase : Union[str, Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCamelCase : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def _UpperCamelCase ( self ) -> None: self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
133
"""simple docstring""" import os import pytest from attr import dataclass _A = 'us-east-1' # defaults region @dataclass class _lowercase : lowercase_ = 42 lowercase_ = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' lowercase_ = { 'task_name': 'mnli', 'per_device_train_batch_size': 1_6, 'per_device_eval_batch_size': 1_6, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 5_0_0, 'save_steps': 5_5_0_0, } lowercase_ = {**hyperparameters, 'max_steps': 1_0_0_0} @property def _UpperCamelCase ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _UpperCamelCase ( self ) -> str: return F"""{self.framework}-transfromers-test""" @property def _UpperCamelCase ( self ) -> str: return F"""./tests/sagemaker/scripts/{self.framework}""" @property def _UpperCamelCase ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : Optional[int] = SageMakerTestEnvironment(framework=request.cls.framework )
133
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase_ = logging.getLogger(__name__) def a__ ( snake_case , snake_case ): """simple docstring""" return (preds == labels).mean() @dataclass class __UpperCamelCase : """simple docstring""" lowerCAmelCase_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCAmelCase_ = field( default=__a , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase_ = field( default=__a , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowerCAmelCase_ = field( default=__a , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class __UpperCamelCase : """simple docstring""" lowerCAmelCase_ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) lowerCAmelCase_ = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) lowerCAmelCase_ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowerCAmelCase_ = field( default=__a , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def a__ ( ): """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) try: __SCREAMING_SNAKE_CASE : Optional[int] = processors[data_args.task_name]() __SCREAMING_SNAKE_CASE : int = processor.get_labels() __SCREAMING_SNAKE_CASE : List[str] = len(lowerCAmelCase_ ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __SCREAMING_SNAKE_CASE : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets __SCREAMING_SNAKE_CASE : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __SCREAMING_SNAKE_CASE : Tuple = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(snake_case ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCAmelCase_ , p.label_ids )} # Data collator __SCREAMING_SNAKE_CASE : int = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __SCREAMING_SNAKE_CASE : Tuple = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __SCREAMING_SNAKE_CASE : List[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = trainer.evaluate() __SCREAMING_SNAKE_CASE : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(lowerCAmelCase_ , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write('''%s = %s\n''' % (key, value) ) results.update(lowerCAmelCase_ ) return results def a__ ( snake_case ): """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
74
'''simple docstring''' from __future__ import annotations def __A ( lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = len(lowerCAmelCase_ ) # We need to create solution object to save path. _UpperCAmelCase : Optional[int] = [[0 for _ in range(lowerCAmelCase_ )] for _ in range(lowerCAmelCase_ )] _UpperCAmelCase : Tuple = run_maze(lowerCAmelCase_ , 0 , 0 , lowerCAmelCase_ ) if solved: print("""\n""".join(str(lowerCAmelCase_ ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def __A ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : int = len(lowerCAmelCase_ ) # Final check point. if i == j == (size - 1): _UpperCAmelCase : Any = 1 return True _UpperCAmelCase : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds _UpperCAmelCase : Union[str, Any] = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. _UpperCAmelCase : Any = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited _UpperCAmelCase : Any = 1 # check for directions if ( run_maze(lowerCAmelCase_ , i + 1 , lowerCAmelCase_ , lowerCAmelCase_ ) or run_maze(lowerCAmelCase_ , lowerCAmelCase_ , j + 1 , lowerCAmelCase_ ) or run_maze(lowerCAmelCase_ , i - 1 , lowerCAmelCase_ , lowerCAmelCase_ ) or run_maze(lowerCAmelCase_ , lowerCAmelCase_ , j - 1 , lowerCAmelCase_ ) ): return True _UpperCAmelCase : int = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
414
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated snake_case__ : Optional[int] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ snake_case__ : str = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=_SCREAMING_SNAKE_CASE )[0] @deprecated(_SCREAMING_SNAKE_CASE , "Please use tf.data to implement this functionality." ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): print("Extracting" , f.name ) with gzip.GzipFile(fileobj=_SCREAMING_SNAKE_CASE ) as bytestream: __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) if magic != 2_0_5_1: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) __lowercase = bytestream.read(rows * cols * num_images ) __lowercase = numpy.frombuffer(_SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) __lowercase = data.reshape(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1 ) return data @deprecated(_SCREAMING_SNAKE_CASE , "Please use tf.one_hot on tensors." ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = labels_dense.shape[0] __lowercase = numpy.arange(_SCREAMING_SNAKE_CASE ) * num_classes __lowercase = numpy.zeros((num_labels, num_classes) ) __lowercase = 1 return labels_one_hot @deprecated(_SCREAMING_SNAKE_CASE , "Please use tf.data to implement this functionality." ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=1_0 ): print("Extracting" , f.name ) with gzip.GzipFile(fileobj=_SCREAMING_SNAKE_CASE ) as bytestream: __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) if magic != 2_0_4_9: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) __lowercase = _readaa(_SCREAMING_SNAKE_CASE ) __lowercase = bytestream.read(_SCREAMING_SNAKE_CASE ) __lowercase = numpy.frombuffer(_SCREAMING_SNAKE_CASE , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return labels class _A : '''simple docstring''' @deprecated( lowerCamelCase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self : List[str] , lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any]=False , lowerCamelCase : str=False , lowerCamelCase : str=dtypes.floataa , lowerCamelCase : Optional[int]=True , lowerCamelCase : int=None , ): '''simple docstring''' __lowercase , __lowercase = random_seed.get_seed(lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __lowercase = dtypes.as_dtype(lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: __lowercase = 10_000 __lowercase = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f"""images.shape: {images.shape} labels.shape: {labels.shape}""" __lowercase = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __lowercase = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __lowercase = images.astype(numpy.floataa ) __lowercase = numpy.multiply(lowerCamelCase , 1.0 / 255.0 ) __lowercase = images __lowercase = labels __lowercase = 0 __lowercase = 0 @property def _snake_case ( self : Union[str, Any] ): '''simple docstring''' return self._images @property def _snake_case ( self : List[str] ): '''simple docstring''' return self._labels @property def _snake_case ( self : Tuple ): '''simple docstring''' return self._num_examples @property def _snake_case ( self : List[str] ): '''simple docstring''' return self._epochs_completed def _snake_case ( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Dict=False , lowerCamelCase : List[str]=True ): '''simple docstring''' if fake_data: __lowercase = [1] * 784 __lowercase = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowerCamelCase )], [fake_label for _ in range(lowerCamelCase )], ) __lowercase = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __lowercase = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) __lowercase = self.images[perma] __lowercase = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __lowercase = self._num_examples - start __lowercase = self._images[start : self._num_examples] __lowercase = self._labels[start : self._num_examples] # Shuffle the data if shuffle: __lowercase = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) __lowercase = self.images[perm] __lowercase = self.labels[perm] # Start next epoch __lowercase = 0 __lowercase = batch_size - rest_num_examples __lowercase = self._index_in_epoch __lowercase = self._images[start:end] __lowercase = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __lowercase = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(_SCREAMING_SNAKE_CASE , "Please write your own downloading logic." ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if not gfile.Exists(_SCREAMING_SNAKE_CASE ): gfile.MakeDirs(_SCREAMING_SNAKE_CASE ) __lowercase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not gfile.Exists(_SCREAMING_SNAKE_CASE ): urllib.request.urlretrieve(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # noqa: S310 with gfile.GFile(_SCREAMING_SNAKE_CASE ) as f: __lowercase = f.size() print("Successfully downloaded" , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "bytes." ) return filepath @deprecated( _SCREAMING_SNAKE_CASE , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=dtypes.floataa , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5_0_0_0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , seed=_SCREAMING_SNAKE_CASE ) __lowercase = fake() __lowercase = fake() __lowercase = fake() return _Datasets(train=_SCREAMING_SNAKE_CASE , validation=_SCREAMING_SNAKE_CASE , test=_SCREAMING_SNAKE_CASE ) if not source_url: # empty string check __lowercase = DEFAULT_SOURCE_URL __lowercase = "train-images-idx3-ubyte.gz" __lowercase = "train-labels-idx1-ubyte.gz" __lowercase = "t10k-images-idx3-ubyte.gz" __lowercase = "t10k-labels-idx1-ubyte.gz" __lowercase = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + train_images_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f: __lowercase = _extract_images(_SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + train_labels_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f: __lowercase = _extract_labels(_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + test_images_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f: __lowercase = _extract_images(_SCREAMING_SNAKE_CASE ) __lowercase = _maybe_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , source_url + test_labels_file ) with gfile.Open(_SCREAMING_SNAKE_CASE , "rb" ) as f: __lowercase = _extract_labels(_SCREAMING_SNAKE_CASE , one_hot=_SCREAMING_SNAKE_CASE ) if not 0 <= validation_size <= len(_SCREAMING_SNAKE_CASE ): __lowercase = ( "Validation size should be between 0 and " F"""{len(_SCREAMING_SNAKE_CASE )}. Received: {validation_size}.""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) __lowercase = train_images[:validation_size] __lowercase = train_labels[:validation_size] __lowercase = train_images[validation_size:] __lowercase = train_labels[validation_size:] __lowercase = {"dtype": dtype, "reshape": reshape, "seed": seed} __lowercase = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowercase = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowercase = _DataSet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return _Datasets(train=_SCREAMING_SNAKE_CASE , validation=_SCREAMING_SNAKE_CASE , test=_SCREAMING_SNAKE_CASE )
655
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = SwinvaConfig() __lowercase = swinva_name.split("_" ) __lowercase = name_split[1] if "to" in name_split[3]: __lowercase = int(name_split[3][-3:] ) else: __lowercase = int(name_split[3] ) if "to" in name_split[2]: __lowercase = int(name_split[2][-2:] ) else: __lowercase = int(name_split[2][6:] ) if model_size == "tiny": __lowercase = 9_6 __lowercase = (2, 2, 6, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "small": __lowercase = 9_6 __lowercase = (2, 2, 1_8, 2) __lowercase = (3, 6, 1_2, 2_4) elif model_size == "base": __lowercase = 1_2_8 __lowercase = (2, 2, 1_8, 2) __lowercase = (4, 8, 1_6, 3_2) else: __lowercase = 1_9_2 __lowercase = (2, 2, 1_8, 2) __lowercase = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: __lowercase = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __lowercase = 2_1_8_4_1 __lowercase = "huggingface/label-files" __lowercase = "imagenet-22k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} else: __lowercase = 1_0_0_0 __lowercase = "huggingface/label-files" __lowercase = "imagenet-1k-id2label.json" __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = img_size __lowercase = num_classes __lowercase = embed_dim __lowercase = depths __lowercase = num_heads __lowercase = window_size return config def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: __lowercase = "encoder." + name if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.self" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __lowercase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __lowercase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __lowercase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __lowercase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": __lowercase = "layernorm.weight" if name == "norm.bias": __lowercase = "layernorm.bias" if "head" in name: __lowercase = name.replace("head" , "classifier" ) else: __lowercase = "swinv2." + name return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: __lowercase = key.split("." ) __lowercase = int(key_split[1] ) __lowercase = int(key_split[3] ) __lowercase = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val[:dim] __lowercase = val[ dim : dim * 2 ] __lowercase = val[-dim:] else: __lowercase = val return orig_state_dict def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = timm.create_model(_SCREAMING_SNAKE_CASE , pretrained=_SCREAMING_SNAKE_CASE ) timm_model.eval() __lowercase = get_swinva_config(_SCREAMING_SNAKE_CASE ) __lowercase = SwinvaForImageClassification(_SCREAMING_SNAKE_CASE ) model.eval() __lowercase = convert_state_dict(timm_model.state_dict() , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) __lowercase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) __lowercase = timm_model(inputs["pixel_values"] ) __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-3 ) print(F"""Saving model {swinva_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub( repo_path_or_name=Path(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) snake_case__ : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
655
1
def _SCREAMING_SNAKE_CASE ( lowercase : dict ): '''simple docstring''' lowerCamelCase_ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowerCamelCase_ = set() return any( node not in visited and depth_first_search(lowercase , lowercase , lowercase , lowercase ) for node in graph ) def _SCREAMING_SNAKE_CASE ( lowercase : dict , lowercase : int , lowercase : set , lowercase : set ): '''simple docstring''' visited.add(lowercase ) rec_stk.add(lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowercase , lowercase , lowercase , lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
70
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : str = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : str = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _lowerCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
0
def lowerCamelCase__ ( A__ : str , A__ : str ): '''simple docstring''' __lowerCamelCase = len(A__ ) + 1 __lowerCamelCase = len(A__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __lowerCamelCase = [[0 for i in range(A__ )] for j in range(A__ )] # since string of zero length match pattern of zero length __lowerCamelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , A__ ): __lowerCamelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , A__ ): __lowerCamelCase = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , A__ ): for j in range(1 , A__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __lowerCamelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __lowerCamelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __lowerCamelCase = dp[i - 1][j] else: __lowerCamelCase = 0 else: __lowerCamelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") UpperCAmelCase_ = 'aab' UpperCAmelCase_ = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
80
class lowerCamelCase__: # Public class to implement a graph def __init__( self: Dict , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): __lowerCamelCase = row __lowerCamelCase = col __lowerCamelCase = graph def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): # Checking all 8 elements surrounding nth element __lowerCamelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __lowerCamelCase = [-1, 0, 1, -1, 1, -1, 0, 1] __lowerCamelCase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): # And finally, count all islands. __lowerCamelCase = [[False for j in range(self.COL )] for i in range(self.ROW )] __lowerCamelCase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += 1 return count
80
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = '''data2vec-vision''' def __init__( self : List[str] ,__A : Optional[Any]=768 ,__A : List[str]=12 ,__A : Tuple=12 ,__A : List[str]=3072 ,__A : Dict="gelu" ,__A : Any=0.0 ,__A : List[str]=0.0 ,__A : str=0.02 ,__A : Union[str, Any]=1e-12 ,__A : List[Any]=224 ,__A : List[str]=16 ,__A : Any=3 ,__A : Dict=False ,__A : str=False ,__A : Optional[Any]=False ,__A : Any=False ,__A : List[Any]=0.1 ,__A : int=0.1 ,__A : Optional[int]=True ,__A : Optional[Any]=[3, 5, 7, 11] ,__A : List[str]=[1, 2, 3, 6] ,__A : Optional[Any]=True ,__A : Tuple=0.4 ,__A : Tuple=256 ,__A : List[str]=1 ,__A : List[Any]=False ,__A : Tuple=255 ,**__A : Tuple ,) -> Any: super().__init__(**__A ) _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = initializer_range _lowercase = layer_norm_eps _lowercase = image_size _lowercase = patch_size _lowercase = num_channels _lowercase = use_mask_token _lowercase = use_absolute_position_embeddings _lowercase = use_relative_position_bias _lowercase = use_shared_relative_position_bias _lowercase = layer_scale_init_value _lowercase = drop_path_rate _lowercase = use_mean_pooling # decode head attributes (semantic segmentation) _lowercase = out_indices _lowercase = pool_scales # auxiliary head attributes (semantic segmentation) _lowercase = use_auxiliary_head _lowercase = auxiliary_loss_weight _lowercase = auxiliary_channels _lowercase = auxiliary_num_convs _lowercase = auxiliary_concat_input _lowercase = semantic_loss_ignore_index class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self : Tuple ) -> float: return 1e-4
67
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase : List[str] = logging.get_logger(__name__) lowerCamelCase : Any = { "Helsinki-NLP/opus-mt-en-de": "https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json", # See all Marian models at https://huggingface.co/models?filter=marian } class A__ ( A__ ): A__ = 'marian' A__ = ['past_key_values'] A__ = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : List[Any] , _a : List[Any]=5_8101 , _a : Union[str, Any]=None , _a : Dict=1024 , _a : List[str]=12 , _a : Tuple=4096 , _a : Optional[Any]=16 , _a : Optional[Any]=12 , _a : List[Any]=4096 , _a : Optional[int]=16 , _a : List[Any]=0.0 , _a : Dict=0.0 , _a : List[str]=True , _a : Tuple=True , _a : List[str]="gelu" , _a : Optional[int]=1024 , _a : str=0.1 , _a : Dict=0.0 , _a : Optional[int]=0.0 , _a : Any=0.02 , _a : str=5_8100 , _a : Union[str, Any]=False , _a : Optional[int]=5_8100 , _a : Any=0 , _a : List[str]=0 , _a : str=True , **_a : Union[str, Any] , ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =decoder_vocab_size or vocab_size _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =d_model _SCREAMING_SNAKE_CASE =encoder_ffn_dim _SCREAMING_SNAKE_CASE =encoder_layers _SCREAMING_SNAKE_CASE =encoder_attention_heads _SCREAMING_SNAKE_CASE =decoder_ffn_dim _SCREAMING_SNAKE_CASE =decoder_layers _SCREAMING_SNAKE_CASE =decoder_attention_heads _SCREAMING_SNAKE_CASE =dropout _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =activation_dropout _SCREAMING_SNAKE_CASE =activation_function _SCREAMING_SNAKE_CASE =init_std _SCREAMING_SNAKE_CASE =encoder_layerdrop _SCREAMING_SNAKE_CASE =decoder_layerdrop _SCREAMING_SNAKE_CASE =use_cache _SCREAMING_SNAKE_CASE =encoder_layers _SCREAMING_SNAKE_CASE =scale_embedding # scale factor will be sqrt(d_model) if True _SCREAMING_SNAKE_CASE =share_encoder_decoder_embeddings super().__init__( pad_token_id=_a , eos_token_id=_a , is_encoder_decoder=_a , decoder_start_token_id=_a , forced_eos_token_id=_a , **_a , ) class A__ ( A__ ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def A ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _SCREAMING_SNAKE_CASE =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _SCREAMING_SNAKE_CASE ={0: 'batch'} _SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'decoder_sequence'} _SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_a , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _SCREAMING_SNAKE_CASE =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.num_layers for i in range(_a ): _SCREAMING_SNAKE_CASE ={0: 'batch', 2: 'past_sequence + sequence'} _SCREAMING_SNAKE_CASE ={0: 'batch', 2: 'past_sequence + sequence'} else: _SCREAMING_SNAKE_CASE =OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def A ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _SCREAMING_SNAKE_CASE =super().outputs else: _SCREAMING_SNAKE_CASE =super(_a , self ).outputs if self.use_past: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.num_layers for i in range(_a ): _SCREAMING_SNAKE_CASE ={0: 'batch', 2: 'past_sequence + sequence'} _SCREAMING_SNAKE_CASE ={0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def A ( self : str , _a : PreTrainedTokenizer , _a : int = -1 , _a : int = -1 , _a : bool = False , _a : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._generate_dummy_inputs_for_encoder_and_decoder( _a , _a , _a , _a , _a ) # Generate decoder inputs _SCREAMING_SNAKE_CASE =seq_length if not self.use_past else 1 _SCREAMING_SNAKE_CASE =self._generate_dummy_inputs_for_encoder_and_decoder( _a , _a , _a , _a , _a ) _SCREAMING_SNAKE_CASE ={f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} _SCREAMING_SNAKE_CASE =dict(**_a , **_a ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =common_inputs['input_ids'].shape _SCREAMING_SNAKE_CASE =common_inputs['decoder_input_ids'].shape[1] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.num_attention_heads _SCREAMING_SNAKE_CASE =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _SCREAMING_SNAKE_CASE =decoder_seq_length + 3 _SCREAMING_SNAKE_CASE =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _SCREAMING_SNAKE_CASE =torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(_a , _a )] , dim=1 ) _SCREAMING_SNAKE_CASE =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.num_layers _SCREAMING_SNAKE_CASE =min(_a , _a ) _SCREAMING_SNAKE_CASE =max(_a , _a ) - min_num_layers _SCREAMING_SNAKE_CASE ='encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(_a ): common_inputs["past_key_values"].append( ( torch.zeros(_a ), torch.zeros(_a ), torch.zeros(_a ), torch.zeros(_a ), ) ) # TODO: test this. _SCREAMING_SNAKE_CASE =encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(_a , _a ): common_inputs["past_key_values"].append((torch.zeros(_a ), torch.zeros(_a )) ) return common_inputs def A ( self : int , _a : PreTrainedTokenizer , _a : int = -1 , _a : int = -1 , _a : bool = False , _a : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self._generate_dummy_inputs_for_encoder_and_decoder( _a , _a , _a , _a , _a ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =common_inputs['input_ids'].shape # Not using the same length for past_key_values _SCREAMING_SNAKE_CASE =seqlen + 2 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.num_layers _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.num_attention_heads _SCREAMING_SNAKE_CASE =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _SCREAMING_SNAKE_CASE =common_inputs['attention_mask'].dtype _SCREAMING_SNAKE_CASE =torch.cat( [common_inputs['attention_mask'], torch.ones(_a , _a , dtype=_a )] , dim=1 ) _SCREAMING_SNAKE_CASE =[ (torch.zeros(_a ), torch.zeros(_a )) for _ in range(_a ) ] return common_inputs def A ( self : Optional[int] , _a : PreTrainedTokenizer , _a : int = -1 , _a : int = -1 , _a : bool = False , _a : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =compute_effective_axis_dimension( _a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _SCREAMING_SNAKE_CASE =tokenizer.num_special_tokens_to_add(_a ) _SCREAMING_SNAKE_CASE =compute_effective_axis_dimension( _a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_a ) # Generate dummy inputs according to compute batch and sequence _SCREAMING_SNAKE_CASE =[' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _SCREAMING_SNAKE_CASE =dict(tokenizer(_a , return_tensors=_a ) ) return common_inputs def A ( self : List[Any] , _a : PreTrainedTokenizer , _a : int = -1 , _a : int = -1 , _a : bool = False , _a : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _SCREAMING_SNAKE_CASE =self._generate_dummy_inputs_for_default_and_seqaseq_lm( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) else: _SCREAMING_SNAKE_CASE =self._generate_dummy_inputs_for_causal_lm( _a , batch_size=_a , seq_length=_a , is_pair=_a , framework=_a ) return common_inputs def A ( self : int , _a : Dict , _a : Optional[Any] , _a : Dict , _a : Union[str, Any] ) -> List[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _SCREAMING_SNAKE_CASE =super()._flatten_past_key_values_(_a , _a , _a , _a ) else: _SCREAMING_SNAKE_CASE =super(_a , self )._flatten_past_key_values_( _a , _a , _a , _a ) @property def A ( self : Union[str, Any] ) -> float: '''simple docstring''' return 1e-4
405
0
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def _lowerCAmelCase ( lowerCamelCase__ : int, lowerCamelCase__ : Any, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[str], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Any, ) -> int: _SCREAMING_SNAKE_CASE : List[Any] = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } _SCREAMING_SNAKE_CASE : Union[str, Any] = input_paths_and_base_extractors[compression_format] if input_path is None: _SCREAMING_SNAKE_CASE : List[Any] = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase__ ) assert base_extractor.is_extractable(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : int = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(lowerCamelCase__, lowerCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _SCREAMING_SNAKE_CASE : int = file_path.read_text(encoding="utf-8" ) else: _SCREAMING_SNAKE_CASE : Any = output_path.read_text(encoding="utf-8" ) _SCREAMING_SNAKE_CASE : Optional[Any] = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive", [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ], ) def _lowerCAmelCase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : int, lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : int, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Tuple, lowerCamelCase__ : int, lowerCamelCase__ : str, lowerCamelCase__ : Union[str, Any], ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Dict = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } _SCREAMING_SNAKE_CASE : str = input_paths[compression_format] if input_path is None: _SCREAMING_SNAKE_CASE : Optional[int] = f'''for \'{compression_format}\' compression_format, ''' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : str = Extractor.infer_extractor_format(lowerCamelCase__ ) assert extractor_format is not None _SCREAMING_SNAKE_CASE : int = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _SCREAMING_SNAKE_CASE : Optional[Any] = file_path.read_text(encoding="utf-8" ) else: _SCREAMING_SNAKE_CASE : List[str] = output_path.read_text(encoding="utf-8" ) _SCREAMING_SNAKE_CASE : Optional[Any] = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def _lowerCAmelCase ( lowerCamelCase__ : int, lowerCamelCase__ : str ) -> Union[str, Any]: import tarfile _SCREAMING_SNAKE_CASE : List[str] = tmp_path / "data_dot_dot" directory.mkdir() _SCREAMING_SNAKE_CASE : Union[str, Any] = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(lowerCamelCase__, "w" ) as f: f.add(lowerCamelCase__, arcname=os.path.join("..", text_file.name ) ) return path @pytest.fixture def _lowerCAmelCase ( lowerCamelCase__ : Optional[int] ) -> Any: import tarfile _SCREAMING_SNAKE_CASE : Dict = tmp_path / "data_sym_link" directory.mkdir() _SCREAMING_SNAKE_CASE : Union[str, Any] = directory / "tar_file_with_sym_link.tar" os.symlink("..", directory / "subdir", target_is_directory=lowerCamelCase__ ) with tarfile.TarFile(lowerCamelCase__, "w" ) as f: f.add(str(directory / "subdir" ), arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log", [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")], ) def _lowerCAmelCase ( lowerCamelCase__ : Dict, lowerCamelCase__ : str, lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : str, lowerCamelCase__ : int ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : str = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } _SCREAMING_SNAKE_CASE : int = insecure_tar_files[insecure_tar_file] _SCREAMING_SNAKE_CASE : List[Any] = tmp_path / "extracted" TarExtractor.extract(lowerCamelCase__, lowerCamelCase__ ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _lowerCAmelCase ( lowerCamelCase__ : int ) -> int: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _SCREAMING_SNAKE_CASE : Optional[Any] = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 _SCREAMING_SNAKE_CASE : Dict = ( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(lowerCamelCase__ ) assert zipfile.is_zipfile(str(lowerCamelCase__ ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowerCamelCase__ ) # but we're right
701
"""simple docstring""" import operator as op def _lowerCAmelCase ( lowerCamelCase__ : Tuple ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = [] _SCREAMING_SNAKE_CASE : str = lambda lowerCamelCase__, lowerCamelCase__ : int(x / y ) # noqa: E731 integer division operation _SCREAMING_SNAKE_CASE : Any = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ), "Action".center(1_2 ), "Stack", sep=" | " ) print("-" * (3_0 + len(lowerCamelCase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowerCamelCase__ ) # append x to stack # output in tabular format print(x.rjust(8 ), ("push(" + x + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) else: _SCREAMING_SNAKE_CASE : Dict = stack.pop() # pop stack # output in tabular format print("".rjust(8 ), ("pop(" + b + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) _SCREAMING_SNAKE_CASE : Any = stack.pop() # pop stack # output in tabular format print("".rjust(8 ), ("pop(" + a + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | " ) stack.append( str(opr[x](int(lowerCamelCase__ ), int(lowerCamelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ("push(" + a + x + b + ")").ljust(1_2 ), ",".join(lowerCamelCase__ ), sep=" | ", ) return int(stack[0] ) if __name__ == "__main__": lowercase_ : int = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
295
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class snake_case__ : """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = None # Automatically constructed _SCREAMING_SNAKE_CASE = """dict""" _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = field(default="""Translation""" , init=__lowercase , repr=__lowercase ) def __call__( self : Any ) ->Tuple: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self : int ) ->Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class snake_case__ : """simple docstring""" _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None # Automatically constructed _SCREAMING_SNAKE_CASE = """dict""" _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = field(default="""TranslationVariableLanguages""" , init=__lowercase , repr=__lowercase ) def lowercase_ ( self : Union[str, Any] ) ->Optional[Any]: snake_case__ : List[Any] = sorted(set(self.languages ) ) if self.languages else None snake_case__ : int = len(self.languages ) if self.languages else None def __call__( self : List[str] ) ->str: return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self : Any, _snake_case : Optional[Any] ) ->int: snake_case__ : Dict = set(self.languages ) if self.languages and set(_a ) - lang_set: raise ValueError( F'''Some languages in example ({", ".join(sorted(set(_a ) - lang_set ) )}) are not in valid set ({", ".join(_a )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. snake_case__ : List[Any] = [] for lang, text in translation_dict.items(): if isinstance(_a, _a ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. snake_case__ , snake_case__ : Union[str, Any] = zip(*sorted(_a ) ) return {"language": languages, "translation": translations} def lowercase_ ( self : Any ) ->Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
478
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = StableDiffusionXLImgaImgPipeline lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __a ( self ) -> Any: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=_a , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCAmelCase_ = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=32 , ) lowerCAmelCase_ = CLIPTextModel(_a ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_a ) lowerCAmelCase_ = CLIPTextModelWithProjection(_a ) lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=_a ) lowerCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __a ( self , _a , _a=0 ) -> Dict: lowerCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) lowerCAmelCase_ = image / 2 + 0.5 if str(_a ).startswith("mps" ): lowerCAmelCase_ = torch.manual_seed(_a ) else: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.7_5, } return inputs def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionXLImgaImgPipeline(**_a ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = sd_pipe(**_a ).images lowerCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Union[str, Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def __a ( self ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __a ( self ) -> str: pass def __a ( self ) -> int: lowerCAmelCase_ = self.get_dummy_components() lowerCAmelCase_ = StableDiffusionXLImgaImgPipeline(**_a ) lowerCAmelCase_ = sd_pipe.to(_a ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) # forward without prompt embeds lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = 3 * ["this is a negative prompt"] lowerCAmelCase_ = negative_prompt lowerCAmelCase_ = 3 * [inputs["prompt"]] lowerCAmelCase_ = sd_pipe(**_a ) lowerCAmelCase_ = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase_ = self.get_dummy_inputs(_a ) lowerCAmelCase_ = 3 * ["this is a negative prompt"] lowerCAmelCase_ = 3 * [inputs.pop("prompt" )] ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = sd_pipe.encode_prompt(_a , negative_prompt=_a ) lowerCAmelCase_ = sd_pipe( **_a , prompt_embeds=_a , negative_prompt_embeds=_a , pooled_prompt_embeds=_a , negative_pooled_prompt_embeds=_a , ) lowerCAmelCase_ = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ) -> Optional[int]: lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(_a ) lowerCAmelCase_ = np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase_ = torch.from_numpy(_a ).to(device=_a , dtype=_a ) lowerCAmelCase_ = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __a ( self ) -> Optional[int]: lowerCAmelCase_ = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = self.get_inputs(_a ) lowerCAmelCase_ = pipe(**_a ).images lowerCAmelCase_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase_ = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
122
0
'''simple docstring''' from typing import Any def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if not input_list: return [] lowerCAmelCase__ : List[str] = [input_list.count(UpperCamelCase ) for value in input_list] lowerCAmelCase__ : Dict = max(UpperCamelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(UpperCamelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable _lowerCAmelCase = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
0
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __UpperCAmelCase ( _a ): """simple docstring""" def __init__( self : Tuple , A_ : List[str] , A_ : Any=13 , A_ : List[str]=7 , A_ : Tuple=True , A_ : Dict=True , A_ : Any=False , A_ : Optional[int]=True , A_ : Tuple=99 , A_ : List[Any]=32 , A_ : Tuple=5 , A_ : Optional[int]=4 , A_ : Optional[int]=37 , A_ : Any="gelu" , A_ : Optional[int]=0.1 , A_ : Dict=0.1 , A_ : List[Any]=5_12 , A_ : str=16 , A_ : Optional[int]=2 , A_ : Dict=0.02 , A_ : List[str]=3 , A_ : int=4 , A_ : Optional[int]=None , )-> Dict: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A ( self : Optional[Any] )-> str: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Any )-> Optional[int]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A ( self : List[Any] , A_ : Union[str, Any] , A_ : int , A_ : Dict , A_ : str , A_ : Union[str, Any] , A_ : Any )-> Optional[Any]: __UpperCamelCase = DistilBertModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_ , A_ ) __UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[str] , A_ : Optional[Any] , A_ : Optional[Any] , A_ : List[str] , A_ : List[str] , A_ : int , A_ : List[Any] )-> Any: __UpperCamelCase = DistilBertForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , A_ : List[Any] , A_ : Optional[Any] , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : Any )-> int: __UpperCamelCase = DistilBertForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model( A_ , attention_mask=A_ , start_positions=A_ , end_positions=A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : str , A_ : int , A_ : Any , A_ : List[str] , A_ : List[Any] , A_ : Dict , A_ : Optional[Any] )-> Any: __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Union[str, Any] , A_ : List[str] , A_ : Union[str, Any] , A_ : Tuple , A_ : List[Any] , A_ : List[Any] , A_ : Optional[int] )-> str: __UpperCamelCase = self.num_labels __UpperCamelCase = DistilBertForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Any , A_ : Union[str, Any] , A_ : Dict , A_ : List[Any] , A_ : List[Any] , A_ : Dict , A_ : str )-> List[str]: __UpperCamelCase = self.num_choices __UpperCamelCase = DistilBertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( A_ , attention_mask=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Dict )-> Union[str, Any]: __UpperCamelCase = self.prepare_config_and_inputs() (__UpperCamelCase) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( _a , _a , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _snake_case : str = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _snake_case : Optional[Any] = True _snake_case : List[Any] = True _snake_case : int = True _snake_case : str = True def A ( self : Union[str, Any] )-> Optional[int]: __UpperCamelCase = DistilBertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=A_ , dim=37 ) def A ( self : Tuple )-> int: self.config_tester.run_common_tests() def A ( self : List[str] )-> Union[str, Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*A_ ) def A ( self : int )-> Any: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*A_ ) def A ( self : Any )-> List[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*A_ ) def A ( self : Dict )-> Optional[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*A_ ) def A ( self : Union[str, Any] )-> List[Any]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*A_ ) def A ( self : List[Any] )-> List[str]: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*A_ ) @slow def A ( self : List[str] )-> Tuple: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = DistilBertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @slow @require_torch_gpu def A ( self : Optional[Any] )-> Dict: __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase = True __UpperCamelCase = model_class(config=A_ ) __UpperCamelCase = self._prepare_for_class(A_ , A_ ) __UpperCamelCase = torch.jit.trace( A_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A_ , os.path.join(A_ , "traced_model.pt" ) ) __UpperCamelCase = torch.jit.load(os.path.join(A_ , "traced_model.pt" ) , map_location=A_ ) loaded(inputs_dict["input_ids"].to(A_ ) , inputs_dict["attention_mask"].to(A_ ) ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def A ( self : int )-> Tuple: __UpperCamelCase = DistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCamelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase = model(A_ , attention_mask=A_ )[0] __UpperCamelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , A_ ) __UpperCamelCase = torch.tensor( [[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1e-4 ) )
505
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase : def __init__(self , __magic_name__ , __magic_name__ ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[int] = question_encoder snake_case_ : Optional[int] = generator snake_case_ : Optional[Any] = self.question_encoder def lowerCamelCase (self , __magic_name__ ) -> Dict: '''simple docstring''' if os.path.isfile(__magic_name__ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) snake_case_ : str = os.path.join(__magic_name__ , '''question_encoder_tokenizer''' ) snake_case_ : List[Any] = os.path.join(__magic_name__ , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(__magic_name__ ) self.generator.save_pretrained(__magic_name__ ) @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer snake_case_ : List[str] = kwargs.pop('''config''' , __magic_name__ ) if config is None: snake_case_ : int = RagConfig.from_pretrained(__magic_name__ ) snake_case_ : Dict = AutoTokenizer.from_pretrained( __magic_name__ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) snake_case_ : Dict = AutoTokenizer.from_pretrained( __magic_name__ , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=__magic_name__ , generator=__magic_name__ ) def __call__(self , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' return self.current_tokenizer(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' return self.generator.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' return self.generator.decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.question_encoder def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Dict = self.generator def lowerCamelCase (self , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = "longest" , __magic_name__ = None , __magic_name__ = True , **__magic_name__ , ) -> BatchEncoding: '''simple docstring''' warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , __magic_name__ , ) if max_length is None: snake_case_ : Dict = self.current_tokenizer.model_max_length snake_case_ : List[str] = self( __magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , max_length=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , **__magic_name__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: snake_case_ : Optional[int] = self.current_tokenizer.model_max_length snake_case_ : Union[str, Any] = self( text_target=__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , padding=__magic_name__ , max_length=__magic_name__ , truncation=__magic_name__ , **__magic_name__ , ) snake_case_ : str = labels['''input_ids'''] return model_inputs
60
0
'''simple docstring''' from math import pi, sqrt, tan def a_ ( lowerCamelCase : float ): if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def a_ ( lowerCamelCase : float , lowerCamelCase : float , lowerCamelCase : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def a_ ( lowerCamelCase : float ): if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def a_ ( lowerCamelCase : float ): if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def a_ ( lowerCamelCase : float , lowerCamelCase : float ): if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def a_ ( lowerCamelCase : float , lowerCamelCase : float , lowerCamelCase : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def a_ ( lowerCamelCase : float , lowerCamelCase : float ): if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def a_ ( lowerCamelCase : float , lowerCamelCase : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(lowerCamelCase , 2 ) * torus_radius * tube_radius def a_ ( lowerCamelCase : float , lowerCamelCase : float ): if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def a_ ( lowerCamelCase : float ): if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def a_ ( lowerCamelCase : float , lowerCamelCase : float ): if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def a_ ( lowerCamelCase : float , lowerCamelCase : float , lowerCamelCase : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase = (sidea + sidea + sidea) / 2 lowerCAmelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def a_ ( lowerCamelCase : float , lowerCamelCase : float ): if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def a_ ( lowerCamelCase : float , lowerCamelCase : float , lowerCamelCase : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def a_ ( lowerCamelCase : float ): if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def a_ ( lowerCamelCase : float , lowerCamelCase : float ): if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def a_ ( lowerCamelCase : float , lowerCamelCase : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def a_ ( lowerCamelCase : int , lowerCamelCase : float ): if not isinstance(lowerCamelCase , lowerCamelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(F'''Rectangle: {area_rectangle(10, 20) = }''') print(F'''Square: {area_square(10) = }''') print(F'''Triangle: {area_triangle(10, 10) = }''') print(F'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(F'''Parallelogram: {area_parallelogram(10, 20) = }''') print(F'''Rhombus: {area_rhombus(10, 20) = }''') print(F'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(F'''Circle: {area_circle(20) = }''') print(F'''Ellipse: {area_ellipse(10, 20) = }''') print("""\nSurface Areas of various geometric shapes: \n""") print(F'''Cube: {surface_area_cube(20) = }''') print(F'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(F'''Sphere: {surface_area_sphere(20) = }''') print(F'''Hemisphere: {surface_area_hemisphere(20) = }''') print(F'''Cone: {surface_area_cone(10, 20) = }''') print(F'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(F'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(F'''Torus: {surface_area_torus(20, 10) = }''') print(F'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(F'''Square: {area_reg_polygon(4, 10) = }''') print(F'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
700
'''simple docstring''' import math def a_ ( lowerCamelCase : int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( lowerCamelCase : int = 10001 ): try: lowerCAmelCase = int(lowerCamelCase ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) lowerCAmelCase = [] lowerCAmelCase = 2 while len(lowerCamelCase ) < nth: if is_prime(lowerCamelCase ): primes.append(lowerCamelCase ) num += 1 else: num += 1 return primes[len(lowerCamelCase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
513
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : Dict , __A : Union[str, Any] , __A : bool = True , __A : bool = False ): __A : Any = scheduler __A : Optional[Any] = optimizers if isinstance(__A , (list, tuple) ) else [optimizers] __A : Union[str, Any] = split_batches __A : List[str] = step_with_optimizer __A : int = GradientState() def lowerCAmelCase_ ( self : Dict , *__A : int , **__A : List[Any] ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__A , **__A ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__A , **__A ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __A : str = AcceleratorState().num_processes for _ in range(__A ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__A , **__A ) else: self.scheduler.step(*__A , **__A ) def lowerCAmelCase_ ( self : Any ): return self.scheduler.get_last_lr() def lowerCAmelCase_ ( self : Optional[Any] ): return self.scheduler.state_dict() def lowerCAmelCase_ ( self : int , __A : int ): self.scheduler.load_state_dict(__A ) def lowerCAmelCase_ ( self : Optional[int] ): return self.scheduler.get_lr() def lowerCAmelCase_ ( self : List[Any] , *__A : Optional[Any] , **__A : List[str] ): return self.scheduler.print_lr(*__A , **__A )
17
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase: List[Any] = logging.get_logger(__name__) __UpperCamelCase: Dict = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class __lowerCAmelCase ( _UpperCamelCase ): '''simple docstring''' _A = "luke" def __init__( self: Union[str, Any], lowerCamelCase_: str=50267, lowerCamelCase_: Dict=500000, lowerCamelCase_: Union[str, Any]=768, lowerCamelCase_: Dict=256, lowerCamelCase_: int=12, lowerCamelCase_: Union[str, Any]=12, lowerCamelCase_: str=3072, lowerCamelCase_: List[Any]="gelu", lowerCamelCase_: int=0.1, lowerCamelCase_: Optional[Any]=0.1, lowerCamelCase_: Any=512, lowerCamelCase_: List[str]=2, lowerCamelCase_: str=0.0_2, lowerCamelCase_: Union[str, Any]=1E-12, lowerCamelCase_: List[Any]=True, lowerCamelCase_: List[Any]=None, lowerCamelCase_: Optional[Any]=1, lowerCamelCase_: Dict=0, lowerCamelCase_: List[Any]=2, **lowerCamelCase_: Optional[Any], ): super().__init__(pad_token_id=lowerCamelCase_, bos_token_id=lowerCamelCase_, eos_token_id=lowerCamelCase_, **lowerCamelCase_ ) lowercase__ : Tuple = vocab_size lowercase__ : Any = entity_vocab_size lowercase__ : Tuple = hidden_size lowercase__ : List[str] = entity_emb_size lowercase__ : Tuple = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = hidden_act lowercase__ : Optional[int] = intermediate_size lowercase__ : List[str] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : Union[str, Any] = max_position_embeddings lowercase__ : int = type_vocab_size lowercase__ : Optional[Any] = initializer_range lowercase__ : Dict = layer_norm_eps lowercase__ : List[Any] = use_entity_aware_attention lowercase__ : Optional[Any] = classifier_dropout
266
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : List[Any] = logging.get_logger(__name__) __A : Dict = torch.device("cpu") def lowercase ( ): '''simple docstring''' _UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCAmelCase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im def lowercase ( _SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' _UpperCAmelCase = dct.pop(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = val def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = [] for k in state_dict.keys(): _UpperCAmelCase = k if ".pwconv" in k: _UpperCAmelCase = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: _UpperCAmelCase = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: _UpperCAmelCase = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: _UpperCAmelCase = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: _UpperCAmelCase = k_new.split('''.''' ) if ls[2].isdigit(): _UpperCAmelCase = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: _UpperCAmelCase = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size _UpperCAmelCase = 1000 _UpperCAmelCase = '''huggingface/label-files''' _UpperCAmelCase = '''imagenet-1k-id2label.json''' _UpperCAmelCase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) _UpperCAmelCase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": _UpperCAmelCase = [3, 3, 6, 4] _UpperCAmelCase = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": _UpperCAmelCase = [3, 3, 9, 6] _UpperCAmelCase = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": _UpperCAmelCase = [4, 3, 10, 5] _UpperCAmelCase = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": _UpperCAmelCase = [4, 4, 12, 6] _UpperCAmelCase = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): _UpperCAmelCase = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' , check_hash=_SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _UpperCAmelCase = checkpoint _UpperCAmelCase = create_rename_keys(_SCREAMING_SNAKE_CASE ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model _UpperCAmelCase = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ).eval() hf_model.load_state_dict(_SCREAMING_SNAKE_CASE ) # prepare test inputs _UpperCAmelCase = prepare_img() _UpperCAmelCase = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) _UpperCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) # compare outputs from both models _UpperCAmelCase = get_expected_output(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") __A : Dict = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
710
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' random.seed(_SCREAMING_SNAKE_CASE ) np.random.seed(_SCREAMING_SNAKE_CASE ) torch.manual_seed(_SCREAMING_SNAKE_CASE ) torch.cuda.manual_seed_all(_SCREAMING_SNAKE_CASE ) # ^^ safe to call this function even if cuda is not available class _a : """simple docstring""" def __init__( self : Optional[Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] , __UpperCamelCase : float = 0.9_9_9_9 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 0 , __UpperCamelCase : bool = False , __UpperCamelCase : Union[float, int] = 1.0 , __UpperCamelCase : Union[float, int] = 2 / 3 , __UpperCamelCase : Optional[Any] = None , __UpperCamelCase : Dict[str, Any] = None , **__UpperCamelCase : Optional[Any] , )->Tuple: if isinstance(__UpperCamelCase , torch.nn.Module ): _UpperCAmelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase , ) _UpperCAmelCase = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility _UpperCAmelCase = True if kwargs.get('''max_value''' , __UpperCamelCase ) is not None: _UpperCAmelCase = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''max_value'''] if kwargs.get('''min_value''' , __UpperCamelCase ) is not None: _UpperCAmelCase = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) _UpperCAmelCase = kwargs['''min_value'''] _UpperCAmelCase = list(__UpperCamelCase ) _UpperCAmelCase = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , __UpperCamelCase ) is not None: _UpperCAmelCase = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase ) self.to(device=kwargs['''device'''] ) _UpperCAmelCase = None _UpperCAmelCase = decay _UpperCAmelCase = min_decay _UpperCAmelCase = update_after_step _UpperCAmelCase = use_ema_warmup _UpperCAmelCase = inv_gamma _UpperCAmelCase = power _UpperCAmelCase = 0 _UpperCAmelCase = None # set in `step()` _UpperCAmelCase = model_cls _UpperCAmelCase = model_config @classmethod def lowercase__ ( cls : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Any )->"EMAModel": _UpperCAmelCase , _UpperCAmelCase = model_cls.load_config(__UpperCamelCase , return_unused_kwargs=__UpperCamelCase ) _UpperCAmelCase = model_cls.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = cls(model.parameters() , model_cls=__UpperCamelCase , model_config=model.config ) ema_model.load_state_dict(__UpperCamelCase ) return ema_model def lowercase__ ( self : str , __UpperCamelCase : Any )->Optional[Any]: if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) _UpperCAmelCase = self.model_cls.from_config(self.model_config ) _UpperCAmelCase = self.state_dict() state_dict.pop('''shadow_params''' , __UpperCamelCase ) model.register_to_config(**__UpperCamelCase ) self.copy_to(model.parameters() ) model.save_pretrained(__UpperCamelCase ) def lowercase__ ( self : int , __UpperCamelCase : int )->float: _UpperCAmelCase = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: _UpperCAmelCase = 1 - (1 + step / self.inv_gamma) ** -self.power else: _UpperCAmelCase = (1 + step) / (1_0 + step) _UpperCAmelCase = min(__UpperCamelCase , self.decay ) # make sure decay is not smaller than min_decay _UpperCAmelCase = max(__UpperCamelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowercase__ ( self : List[Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] )->Optional[Any]: if isinstance(__UpperCamelCase , torch.nn.Module ): _UpperCAmelCase = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , __UpperCamelCase , standard_warn=__UpperCamelCase , ) _UpperCAmelCase = parameters.parameters() _UpperCAmelCase = list(__UpperCamelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. _UpperCAmelCase = self.get_decay(self.optimization_step ) _UpperCAmelCase = decay _UpperCAmelCase = 1 - decay _UpperCAmelCase = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __UpperCamelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): _UpperCAmelCase = deepspeed.zero.GatheredParameters(__UpperCamelCase , modifier_rank=__UpperCamelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__UpperCamelCase ) def lowercase__ ( self : List[Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] )->None: _UpperCAmelCase = list(__UpperCamelCase ) for s_param, param in zip(self.shadow_params , __UpperCamelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowercase__ ( self : List[str] , __UpperCamelCase : str=None , __UpperCamelCase : Union[str, Any]=None )->None: _UpperCAmelCase = [ p.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if p.is_floating_point() else p.to(device=__UpperCamelCase ) for p in self.shadow_params ] def lowercase__ ( self : Optional[Any] )->dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowercase__ ( self : Any , __UpperCamelCase : Iterable[torch.nn.Parameter] )->None: _UpperCAmelCase = [param.detach().cpu().clone() for param in parameters] def lowercase__ ( self : List[Any] , __UpperCamelCase : Iterable[torch.nn.Parameter] )->None: if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , __UpperCamelCase ): param.data.copy_(c_param.data ) # Better memory-wise. _UpperCAmelCase = None def lowercase__ ( self : Any , __UpperCamelCase : dict )->None: _UpperCAmelCase = copy.deepcopy(__UpperCamelCase ) _UpperCAmelCase = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) _UpperCAmelCase = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , __UpperCamelCase ): raise ValueError('''Invalid min_decay''' ) _UpperCAmelCase = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , __UpperCamelCase ): raise ValueError('''Invalid optimization_step''' ) _UpperCAmelCase = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , __UpperCamelCase ): raise ValueError('''Invalid update_after_step''' ) _UpperCAmelCase = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __UpperCamelCase ): raise ValueError('''Invalid use_ema_warmup''' ) _UpperCAmelCase = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) _UpperCAmelCase = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) _UpperCAmelCase = state_dict.get('''shadow_params''' , __UpperCamelCase ) if shadow_params is not None: _UpperCAmelCase = shadow_params if not isinstance(self.shadow_params , __UpperCamelCase ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(__UpperCamelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
95
0
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _lowerCamelCase ={ """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } _lowerCamelCase =AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _a ( lowerCamelCase, lowerCamelCase=False ): lowerCamelCase , lowerCamelCase : Union[str, Any] = create_model( """HTSAT-tiny""", """roberta""", lowerCAmelCase_, precision="""fp32""", device="""cuda:0""" if torch.cuda.is_available() else """cpu""", enable_fusion=lowerCAmelCase_, fusion_type="""aff_2d""" if enable_fusion else None, ) return model, model_cfg def _a ( lowerCamelCase ): lowerCamelCase : str = {} lowerCamelCase : str = R""".*sequential.(\d+).*""" lowerCamelCase : Optional[int] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCamelCase : List[str] = key.replace(lowerCAmelCase_, lowerCAmelCase_ ) if re.match(lowerCAmelCase_, lowerCAmelCase_ ): # replace sequential layers with list lowerCamelCase : Dict = re.match(lowerCAmelCase_, lowerCAmelCase_ ).group(1 ) lowerCamelCase : Tuple = key.replace(F'''sequential.{sequential_layer}.''', F'''layers.{int(lowerCAmelCase_ )//3}.linear.''' ) elif re.match(lowerCAmelCase_, lowerCAmelCase_ ): lowerCamelCase : str = int(re.match(lowerCAmelCase_, lowerCAmelCase_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... lowerCamelCase : int = 1 if projecton_layer == 0 else 2 lowerCamelCase : Optional[Any] = key.replace(F'''_projection.{projecton_layer}.''', F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value lowerCamelCase : Dict = value lowerCamelCase : List[str] = mixed_qkv.size(0 ) // 3 lowerCamelCase : Optional[int] = mixed_qkv[:qkv_dim] lowerCamelCase : Dict = mixed_qkv[qkv_dim : qkv_dim * 2] lowerCamelCase : Optional[Any] = mixed_qkv[qkv_dim * 2 :] lowerCamelCase : Optional[Any] = query_layer lowerCamelCase : Any = key_layer lowerCamelCase : Union[str, Any] = value_layer else: lowerCamelCase : List[str] = value return model_state_dict def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=False ): lowerCamelCase , lowerCamelCase : List[str] = init_clap(lowerCAmelCase_, enable_fusion=lowerCAmelCase_ ) clap_model.eval() lowerCamelCase : Union[str, Any] = clap_model.state_dict() lowerCamelCase : str = rename_state_dict(lowerCAmelCase_ ) lowerCamelCase : int = ClapConfig() lowerCamelCase : Optional[Any] = enable_fusion lowerCamelCase : int = ClapModel(lowerCAmelCase_ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) transformers_config.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") _lowerCamelCase =parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
681
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor UpperCamelCase = logging.get_logger(__name__) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , SCREAMING_SNAKE_CASE__ , ) super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
61
0
import argparse import datetime def a_ ( _A ) -> str: """simple docstring""" snake_case__ = { '0': 'Sunday', '1': 'Monday', '2': 'Tuesday', '3': 'Wednesday', '4': 'Thursday', '5': 'Friday', '6': 'Saturday', } snake_case__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_A ) < 11: raise ValueError('Must be 10 characters long' ) # Get month snake_case__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError('Month must be between 1 - 12' ) snake_case__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get day snake_case__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError('Date must be between 1 - 31' ) # Get second separator snake_case__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError('Date separator must be \'-\' or \'/\'' ) # Get year snake_case__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( 'Year out of range. There has to be some sort of limit...right?' ) # Get datetime obj for validation snake_case__ = datetime.date(int(_A ) , int(_A ) , int(_A ) ) # Start math if m <= 2: snake_case__ = y - 1 snake_case__ = m + 12 # maths var snake_case__ = int(str(_A )[:2] ) snake_case__ = int(str(_A )[2:] ) snake_case__ = int(2.6 * m - 5.39 ) snake_case__ = int(c / 4 ) snake_case__ = int(k / 4 ) snake_case__ = int(d + k ) snake_case__ = int(t + u + v + x ) snake_case__ = int(z - (2 * c) ) snake_case__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError('The date was evaluated incorrectly. Contact developer.' ) # Response snake_case__ = f'''Your date {date_input}, is a {days[str(_A )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : str = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) __UpperCamelCase : List[Any] = parser.parse_args() zeller(args.date_input)
372
from __future__ import annotations from collections.abc import Iterator from typing import Any class __SCREAMING_SNAKE_CASE: def __init__( self: int , UpperCamelCase: Any ) -> List[Any]: snake_case__ = data snake_case__ = None class __SCREAMING_SNAKE_CASE: def __init__( self: Dict ) -> Optional[Any]: snake_case__ = None snake_case__ = None def __iter__( self: Optional[int] ) -> Iterator[Any]: snake_case__ = self.head while self.head: yield node.data snake_case__ = node.next if node == self.head: break def __len__( self: int ) -> int: return sum(1 for _ in self ) def __repr__( self: int ) -> Optional[int]: return "->".join(str(UpperCamelCase ) for item in iter(self ) ) def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: Any ) -> None: self.insert_nth(len(self ) , UpperCamelCase ) def lowerCAmelCase_ ( self: Tuple , UpperCamelCase: Any ) -> None: self.insert_nth(0 , UpperCamelCase ) def lowerCAmelCase_ ( self: int , UpperCamelCase: int , UpperCamelCase: Any ) -> None: if index < 0 or index > len(self ): raise IndexError('list index out of range.' ) snake_case__ = Node(UpperCamelCase ) if self.head is None: snake_case__ = new_node # first node points itself snake_case__ = snake_case__ = new_node elif index == 0: # insert at head snake_case__ = self.head snake_case__ = snake_case__ = new_node else: snake_case__ = self.head for _ in range(index - 1 ): snake_case__ = temp.next snake_case__ = temp.next snake_case__ = new_node if index == len(self ) - 1: # insert at tail snake_case__ = new_node def lowerCAmelCase_ ( self: Optional[int] ) -> Union[str, Any]: return self.delete_nth(0 ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> Any: return self.delete_nth(len(self ) - 1 ) def lowerCAmelCase_ ( self: str , UpperCamelCase: int = 0 ) -> Any: if not 0 <= index < len(self ): raise IndexError('list index out of range.' ) snake_case__ = self.head if self.head == self.tail: # just one node snake_case__ = snake_case__ = None elif index == 0: # delete head node snake_case__ = self.tail.next.next snake_case__ = self.head.next else: snake_case__ = self.head for _ in range(index - 1 ): snake_case__ = temp.next snake_case__ = temp.next snake_case__ = temp.next.next if index == len(self ) - 1: # delete at tail snake_case__ = temp return delete_node.data def lowerCAmelCase_ ( self: Union[str, Any] ) -> bool: return len(self ) == 0 def a_ ( ) -> None: """simple docstring""" snake_case__ = CircularLinkedList() assert len(_A ) == 0 assert circular_linked_list.is_empty() is True assert str(_A ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(_A ) == i circular_linked_list.insert_nth(_A , i + 1 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(_A ) == "->".join(str(_A ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(_A ) == "->".join(str(_A ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(_A ) == "->".join(str(_A ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
372
1
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A__ ( lowercase_): """simple docstring""" snake_case__ : Tuple =['''image_processor''', '''tokenizer'''] snake_case__ : str ='''AutoImageProcessor''' snake_case__ : Optional[int] ='''AutoTokenizer''' def __init__( self: Optional[int] , __a: int=None , __a: List[Any]=None , **__a: Dict )-> Tuple: lowerCamelCase : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase_ , ) lowerCamelCase : Optional[int] = kwargs.pop("""feature_extractor""" ) lowerCamelCase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase : List[str] = self.image_processor lowerCamelCase : List[Any] = False def __call__( self: Dict , *__a: Union[str, Any] , **__a: List[Any] )-> Union[str, Any]: if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_ , **lowerCamelCase_ ) lowerCamelCase : List[Any] = kwargs.pop("""images""" , lowerCamelCase_ ) lowerCamelCase : List[str] = kwargs.pop("""text""" , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: lowerCamelCase : Dict = args[0] lowerCamelCase : List[Any] = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: lowerCamelCase : int = self.image_processor(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) if text is not None: lowerCamelCase : Dict = self.tokenizer(lowerCamelCase_ , **lowerCamelCase_ ) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase : Optional[Any] = encodings["""input_ids"""] return inputs def a__ ( self: Any , *__a: Union[str, Any] , **__a: Optional[int] )-> Optional[Any]: return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def a__ ( self: str , *__a: Tuple , **__a: List[str] )-> List[str]: return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @contextmanager def a__ ( self: List[str] )-> Tuple: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) lowerCamelCase : Optional[int] = True lowerCamelCase : str = self.tokenizer yield lowerCamelCase : List[Any] = self.image_processor lowerCamelCase : Optional[Any] = False def a__ ( self: Tuple , __a: List[Any] , __a: Tuple=False , __a: List[Any]=None )-> List[Any]: if added_vocab is None: lowerCamelCase : Optional[int] = self.tokenizer.get_added_vocab() lowerCamelCase : Any = {} while tokens: lowerCamelCase : Optional[Any] = re.search(r"""<s_(.*?)>""" , lowerCamelCase_ , re.IGNORECASE ) if start_token is None: break lowerCamelCase : Optional[int] = start_token.group(1 ) lowerCamelCase : List[str] = re.search(rf'</s_{key}>' , lowerCamelCase_ , re.IGNORECASE ) lowerCamelCase : Optional[int] = start_token.group() if end_token is None: lowerCamelCase : Tuple = tokens.replace(lowerCamelCase_ , """""" ) else: lowerCamelCase : Any = end_token.group() lowerCamelCase : Union[str, Any] = re.escape(lowerCamelCase_ ) lowerCamelCase : Any = re.escape(lowerCamelCase_ ) lowerCamelCase : int = re.search(f'{start_token_escaped}(.*?){end_token_escaped}' , lowerCamelCase_ , re.IGNORECASE ) if content is not None: lowerCamelCase : str = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase : Any = self.tokenajson(lowerCamelCase_ , is_inner_value=lowerCamelCase_ , added_vocab=lowerCamelCase_ ) if value: if len(lowerCamelCase_ ) == 1: lowerCamelCase : List[Any] = value[0] lowerCamelCase : List[str] = value else: # leaf nodes lowerCamelCase : str = [] for leaf in content.split(r"""<sep/>""" ): lowerCamelCase : Union[str, Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase : int = leaf[1:-2] # for categorical special tokens output[key].append(lowerCamelCase_ ) if len(output[key] ) == 1: lowerCamelCase : Optional[Any] = output[key][0] lowerCamelCase : Union[str, Any] = tokens[tokens.find(lowerCamelCase_ ) + len(lowerCamelCase_ ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowerCamelCase_ , added_vocab=lowerCamelCase_ ) if len(lowerCamelCase_ ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def a__ ( self: Optional[int] )-> List[Any]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCamelCase_ , ) return self.image_processor_class @property def a__ ( self: List[str] )-> Union[str, Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCamelCase_ , ) return self.image_processor
222
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = """▁""" __UpperCAmelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = BigBirdTokenizer SCREAMING_SNAKE_CASE__ = BigBirdTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer_class(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = """<s>""" SCREAMING_SNAKE_CASE : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """[MASK]""" ) self.assertEqual(len(lowerCamelCase_ ) , 10_04 ) def lowerCamelCase_ ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def lowerCamelCase_ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : str = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Optional[Any] = """I was born in 92000, and this is falsé.""" SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.encode(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = BigBirdTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [2_85, 46, 10, 1_70, 3_82] , ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = """Hello World!""" SCREAMING_SNAKE_CASE : Tuple = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off SCREAMING_SNAKE_CASE : Dict = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @require_torch @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence SCREAMING_SNAKE_CASE : int = list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE : List[str] = """ """.join(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = self.big_tokenizer.encode_plus(lowerCamelCase_ , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = BigBirdConfig(attention_type="""original_full""" ) SCREAMING_SNAKE_CASE : Tuple = BigBirdModel(lowerCamelCase_ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase_ ) model(**lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {"""input_ids""": [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="""google/bigbird-roberta-base""" , revision="""215c99f1600e06f83acce68422f2035b2b5c3510""" , )
379
0
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowercase__ :Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') lowercase__ :Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_bpe.model') lowercase__ :Dict = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class snake_case ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = CamembertTokenizer _A : Optional[int] = CamembertTokenizerFast _A : str = True _A : str = True def A_ ( self : Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : List[str] = CamembertTokenizer(__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Tuple = '''<pad>''' __UpperCAmelCase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) , __lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) , __lowercase ) def A_ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowercase ) , 1_004 ) def A_ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def A_ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : List[str] = CamembertTokenizer(__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Dict = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[Any] = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : str = tokenizer.encode(__lowercase ) __UpperCAmelCase : Dict = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __UpperCAmelCase : List[Any] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __UpperCAmelCase : List[str] = rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(__lowercase ) __UpperCAmelCase : List[str] = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def A_ ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : List[str] = self.get_rust_tokenizer() __UpperCAmelCase : Optional[int] = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowercase ) __UpperCAmelCase : Optional[int] = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __UpperCAmelCase : int = rust_tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) self.assertListEqual(__lowercase , __lowercase ) __UpperCAmelCase : int = self.get_rust_tokenizer() __UpperCAmelCase : Tuple = tokenizer.encode(__lowercase ) __UpperCAmelCase : Optional[int] = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) @slow def A_ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = {'''input_ids''': [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __UpperCAmelCase : Tuple = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__lowercase , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=__lowercase , )
713
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowerCamelCase_ ( UpperCAmelCase_ ) ->Dict: """simple docstring""" __UpperCAmelCase : Optional[Any] = checkpoints.load_tax_checkpoint(UpperCAmelCase_ ) __UpperCAmelCase : Any = flatten_dict(UpperCAmelCase_ ) return flax_params def lowerCamelCase_ ( UpperCAmelCase_ ) ->List[str]: """simple docstring""" __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Any = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } __UpperCAmelCase : Optional[int] = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCAmelCase : Optional[Any] = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCAmelCase : List[str] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCAmelCase : Dict = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCAmelCase : Dict = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCAmelCase : Any = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , UpperCAmelCase_ ) __UpperCAmelCase : Dict = flax_dict[key] __UpperCAmelCase : Tuple = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCAmelCase : List[str] = torch.from_numpy(converted_dict[key].T ) else: __UpperCAmelCase : Optional[int] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=False , UpperCAmelCase_=False ) ->Dict: """simple docstring""" __UpperCAmelCase : List[Any] = get_flax_param(UpperCAmelCase_ ) if not use_large: __UpperCAmelCase : List[str] = PixaStructVisionConfig() __UpperCAmelCase : Optional[Any] = PixaStructTextConfig() else: __UpperCAmelCase : Optional[Any] = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCAmelCase : Optional[Any] = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCAmelCase : Dict = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=UpperCAmelCase_ ) __UpperCAmelCase : Optional[Any] = PixaStructForConditionalGeneration(UpperCAmelCase_ ) __UpperCAmelCase : Any = rename_and_convert_flax_params(UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) __UpperCAmelCase : Union[str, Any] = PixaStructImageProcessor() __UpperCAmelCase : Optional[int] = PixaStructProcessor(image_processor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) if use_large: __UpperCAmelCase : str = 40_96 __UpperCAmelCase : str = True # mkdir if needed os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) processor.save_pretrained(UpperCAmelCase_ ) print('''Model saved in {}'''.format(UpperCAmelCase_ ) ) if __name__ == "__main__": lowercase__ :List[str] = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') lowercase__ :Optional[Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
374
0
'''simple docstring''' UpperCAmelCase = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
119
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _SCREAMING_SNAKE_CASE : Dict = random.Random() if is_torch_available(): import torch def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__=1.0 , UpperCamelCase__=None , UpperCamelCase__=None ): """simple docstring""" if rng is None: __magic_name__ : Optional[Any] = global_rng __magic_name__ : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self: str , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: int=7 , __UpperCamelCase: Union[str, Any]=400 , __UpperCamelCase: Dict=2000 , __UpperCamelCase: int=1 , __UpperCamelCase: List[str]=0.0 , __UpperCamelCase: List[Any]=1_6000 , __UpperCamelCase: str=True , __UpperCamelCase: Union[str, Any]=True , ) -> Dict: __magic_name__ : List[Any] = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = min_seq_length __magic_name__ : Optional[int] = max_seq_length __magic_name__ : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __magic_name__ : List[str] = feature_size __magic_name__ : Union[str, Any] = padding_value __magic_name__ : int = sampling_rate __magic_name__ : str = return_attention_mask __magic_name__ : List[str] = do_normalize def lowerCAmelCase__ ( self: Any ) -> Optional[int]: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase__ ( self: str , __UpperCamelCase: Tuple=False , __UpperCamelCase: List[Any]=False ) -> Union[str, Any]: def _flatten(__UpperCamelCase: Union[str, Any] ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: __magic_name__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __magic_name__ : Tuple = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __magic_name__ : Tuple = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _snake_case ( snake_case_ , unittest.TestCase ): '''simple docstring''' __snake_case = ASTFeatureExtractor def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[int]: __magic_name__ : str = ASTFeatureExtractionTester(self ) def lowerCAmelCase__ ( self: Union[str, Any] ) -> Optional[Any]: # Tests that all call wrap to encode_plus and batch_encode_plus __magic_name__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __magic_name__ : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __magic_name__ : str = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input __magic_name__ : List[Any] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __magic_name__ : Any = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) # Test batched __magic_name__ : List[str] = feat_extract(__UpperCamelCase , padding=__UpperCamelCase , return_tensors="np" ).input_values __magic_name__ : List[str] = feat_extract(__UpperCamelCase , padding=__UpperCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __magic_name__ : List[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] __magic_name__ : Tuple = np.asarray(__UpperCamelCase ) __magic_name__ : List[Any] = feat_extract(__UpperCamelCase , return_tensors="np" ).input_values __magic_name__ : Dict = feat_extract(__UpperCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) ) @require_torch def lowerCAmelCase__ ( self: Union[str, Any] ) -> Union[str, Any]: import torch __magic_name__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __magic_name__ : Tuple = np.random.rand(100 ).astype(np.floataa ) __magic_name__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __magic_name__ : Optional[Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __magic_name__ : List[Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowerCAmelCase__ ( self: Optional[int] , __UpperCamelCase: Dict ) -> Tuple: from datasets import load_dataset __magic_name__ : Optional[int] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __magic_name__ : Optional[int] = ds.sort("id" ).select(range(__UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def lowerCAmelCase__ ( self: Any ) -> int: # fmt: off __magic_name__ : str = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9] ) # fmt: on __magic_name__ : List[Any] = self._load_datasamples(1 ) __magic_name__ : Any = ASTFeatureExtractor() __magic_name__ : Tuple = feature_extractor(__UpperCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __UpperCamelCase , atol=1E-4 ) )
436
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = '''camembert''' def __init__( self : str , UpperCAmelCase_ : Optional[Any]=3_0522 , UpperCAmelCase_ : Optional[int]=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[Any]=3072 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : List[str]=1E-12 , UpperCAmelCase_ : int=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : int="absolute" , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Optional[int] , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Any = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Tuple = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Dict = position_embedding_type SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : str = classifier_dropout class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' @property def _A ( self : Optional[int] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
488
0
from __future__ import annotations from cmath import sqrt def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) lowerCamelCase : str = b * b - 4 * a * c lowerCamelCase : str = (-b + sqrt(lowerCamelCase )) / (2 * a) lowerCamelCase : Any = (-b - sqrt(lowerCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ): lowerCamelCase , lowerCamelCase : Optional[Any] = quadratic_roots(a=5, b=6, c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
681
import pytest _lowerCamelCase ="""__dummy_dataset1__""" _lowerCamelCase =""" import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def _a ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def _a ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowerCamelCase : Union[str, Any] = dataset_loading_script_name lowerCamelCase : Dict = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCamelCase ) lowerCamelCase : str = script_dir / F'''{script_name}.py''' with open(lowerCamelCase, """w""" ) as f: f.write(lowerCamelCase ) return str(lowerCamelCase )
681
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) UpperCamelCase = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 1000, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } UpperCamelCase = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 1000, 'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } UpperCamelCase = { 'sample_size': 256, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } UpperCamelCase = { 'num_train_timesteps': 40, 'sigma_min': 0.002, 'sigma_max': 80.0, } UpperCamelCase = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } UpperCamelCase = { 'num_train_timesteps': 151, 'sigma_min': 0.002, 'sigma_max': 80.0, } def _A ( lowerCAmelCase_ : int ): """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : str=False ): """simple docstring""" lowerCAmelCase__ = checkpoint[F'{old_prefix}.in_layers.0.weight'] lowerCAmelCase__ = checkpoint[F'{old_prefix}.in_layers.0.bias'] lowerCAmelCase__ = checkpoint[F'{old_prefix}.in_layers.2.weight'] lowerCAmelCase__ = checkpoint[F'{old_prefix}.in_layers.2.bias'] lowerCAmelCase__ = checkpoint[F'{old_prefix}.emb_layers.1.weight'] lowerCAmelCase__ = checkpoint[F'{old_prefix}.emb_layers.1.bias'] lowerCAmelCase__ = checkpoint[F'{old_prefix}.out_layers.0.weight'] lowerCAmelCase__ = checkpoint[F'{old_prefix}.out_layers.0.bias'] lowerCAmelCase__ = checkpoint[F'{old_prefix}.out_layers.3.weight'] lowerCAmelCase__ = checkpoint[F'{old_prefix}.out_layers.3.bias'] if has_skip: lowerCAmelCase__ = checkpoint[F'{old_prefix}.skip_connection.weight'] lowerCAmelCase__ = checkpoint[F'{old_prefix}.skip_connection.bias'] return new_checkpoint def _A ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : int=None ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = checkpoint[F'{old_prefix}.qkv.weight'].chunk(3 , dim=0 ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = checkpoint[F'{old_prefix}.qkv.bias'].chunk(3 , dim=0 ) lowerCAmelCase__ = checkpoint[F'{old_prefix}.norm.weight'] lowerCAmelCase__ = checkpoint[F'{old_prefix}.norm.bias'] lowerCAmelCase__ = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase__ = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase__ = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase__ = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase__ = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase__ = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCAmelCase__ = ( checkpoint[F'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 ) ) lowerCAmelCase__ = checkpoint[F'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple ): """simple docstring""" lowerCAmelCase__ = torch.load(lowerCAmelCase_ , map_location="cpu" ) lowerCAmelCase__ = {} lowerCAmelCase__ = checkpoint["time_embed.0.weight"] lowerCAmelCase__ = checkpoint["time_embed.0.bias"] lowerCAmelCase__ = checkpoint["time_embed.2.weight"] lowerCAmelCase__ = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: lowerCAmelCase__ = checkpoint["label_emb.weight"] lowerCAmelCase__ = checkpoint["input_blocks.0.0.weight"] lowerCAmelCase__ = checkpoint["input_blocks.0.0.bias"] lowerCAmelCase__ = unet_config["down_block_types"] lowerCAmelCase__ = unet_config["layers_per_block"] lowerCAmelCase__ = unet_config["attention_head_dim"] lowerCAmelCase__ = unet_config["block_out_channels"] lowerCAmelCase__ = 1 lowerCAmelCase__ = channels_list[0] for i, layer_type in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ = channels_list[i] lowerCAmelCase__ = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(lowerCAmelCase_ ): lowerCAmelCase__ = F'down_blocks.{i}.resnets.{j}' lowerCAmelCase__ = F'input_blocks.{current_layer}.0' lowerCAmelCase__ = True if j == 0 and downsample_block_has_skip else False lowerCAmelCase__ = convert_resnet(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , has_skip=lowerCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(lowerCAmelCase_ ): lowerCAmelCase__ = F'down_blocks.{i}.resnets.{j}' lowerCAmelCase__ = F'input_blocks.{current_layer}.0' lowerCAmelCase__ = True if j == 0 and downsample_block_has_skip else False lowerCAmelCase__ = convert_resnet(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , has_skip=lowerCAmelCase_ ) lowerCAmelCase__ = F'down_blocks.{i}.attentions.{j}' lowerCAmelCase__ = F'input_blocks.{current_layer}.1' lowerCAmelCase__ = convert_attention( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) current_layer += 1 if i != len(lowerCAmelCase_ ) - 1: lowerCAmelCase__ = F'down_blocks.{i}.downsamplers.0' lowerCAmelCase__ = F'input_blocks.{current_layer}.0' lowerCAmelCase__ = convert_resnet(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) current_layer += 1 lowerCAmelCase__ = current_channels # hardcoded the mid-block for now lowerCAmelCase__ = "mid_block.resnets.0" lowerCAmelCase__ = "middle_block.0" lowerCAmelCase__ = convert_resnet(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = "mid_block.attentions.0" lowerCAmelCase__ = "middle_block.1" lowerCAmelCase__ = convert_attention(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = "mid_block.resnets.1" lowerCAmelCase__ = "middle_block.2" lowerCAmelCase__ = convert_resnet(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = 0 lowerCAmelCase__ = unet_config["up_block_types"] for i, layer_type in enumerate(lowerCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCAmelCase__ = F'up_blocks.{i}.resnets.{j}' lowerCAmelCase__ = F'output_blocks.{current_layer}.0' lowerCAmelCase__ = convert_resnet(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , has_skip=lowerCAmelCase_ ) current_layer += 1 if i != len(lowerCAmelCase_ ) - 1: lowerCAmelCase__ = F'up_blocks.{i}.upsamplers.0' lowerCAmelCase__ = F'output_blocks.{current_layer-1}.1' lowerCAmelCase__ = convert_resnet(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCAmelCase__ = F'up_blocks.{i}.resnets.{j}' lowerCAmelCase__ = F'output_blocks.{current_layer}.0' lowerCAmelCase__ = convert_resnet(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , has_skip=lowerCAmelCase_ ) lowerCAmelCase__ = F'up_blocks.{i}.attentions.{j}' lowerCAmelCase__ = F'output_blocks.{current_layer}.1' lowerCAmelCase__ = convert_attention( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) current_layer += 1 if i != len(lowerCAmelCase_ ) - 1: lowerCAmelCase__ = F'up_blocks.{i}.upsamplers.0' lowerCAmelCase__ = F'output_blocks.{current_layer-1}.2' lowerCAmelCase__ = convert_resnet(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = checkpoint["out.0.weight"] lowerCAmelCase__ = checkpoint["out.0.bias"] lowerCAmelCase__ = checkpoint["out.2.weight"] lowerCAmelCase__ = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') UpperCamelCase = parser.parse_args() UpperCamelCase = strabool(args.class_cond) UpperCamelCase = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: UpperCamelCase = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: UpperCamelCase = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: UpperCamelCase = None UpperCamelCase = con_pt_to_diffuser(args.unet_path, unet_config) UpperCamelCase = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: UpperCamelCase = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: UpperCamelCase = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") UpperCamelCase = CMStochasticIterativeScheduler(**scheduler_config) UpperCamelCase = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
125
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCamelCase = logging.getLogger(__name__) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=-1 ) -> str: # in NER datasets, the last column is usually reserved for NER label lowerCAmelCase__ = label_idx def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[Split, str] ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = mode.value lowerCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , f'{mode}.txt' ) lowerCAmelCase__ = 1 lowerCAmelCase__ = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: lowerCAmelCase__ = [] lowerCAmelCase__ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 lowerCAmelCase__ = [] lowerCAmelCase__ = [] else: lowerCAmelCase__ = line.split(" " ) words.append(splits[0] ) if len(SCREAMING_SNAKE_CASE__ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) return examples def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : List ) -> Dict: lowerCAmelCase__ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(SCREAMING_SNAKE_CASE__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCAmelCase__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(SCREAMING_SNAKE_CASE__ ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: lowerCAmelCase__ = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def __init__( self : Dict ) -> List[str]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def a ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: lowerCAmelCase__ = f.read().splitlines() if "O" not in labels: lowerCAmelCase__ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[Split, str] ) -> List[InputExample]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = mode.value lowerCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , f'{mode}.txt' ) lowerCAmelCase__ = 1 lowerCAmelCase__ = [] with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = [] lowerCAmelCase__ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) if words: examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) ) guid_index += 1 return examples def a ( self : int , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : List ) -> int: lowerCAmelCase__ = 0 for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = preds_list[example_id] lowerCAmelCase__ = "" for token in sentence: out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ' out += "\n" writer.write(SCREAMING_SNAKE_CASE__ ) example_id += 1 def a ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: if path: with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
125
1
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training') # TF training parameters lowercase__ =False lowercase__ =False def __UpperCamelCase ( lowerCAmelCase__ : Namespace ): return TrainCommand(__A ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): @staticmethod def lowerCAmelCase (snake_case_ : ArgumentParser ): __a : Dict = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=__SCREAMING_SNAKE_CASE , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=__SCREAMING_SNAKE_CASE , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=__SCREAMING_SNAKE_CASE , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=__SCREAMING_SNAKE_CASE , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=__SCREAMING_SNAKE_CASE , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=__SCREAMING_SNAKE_CASE , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=__SCREAMING_SNAKE_CASE , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=__SCREAMING_SNAKE_CASE , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=__SCREAMING_SNAKE_CASE , default=3_2 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=__SCREAMING_SNAKE_CASE , default=6_4 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=__SCREAMING_SNAKE_CASE , default=3E-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=__SCREAMING_SNAKE_CASE , default=1E-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__(self : Optional[Any] , snake_case_ : Namespace ): __a : Any = logging.get_logger('''transformers-cli/training''' ) __a : int = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=__SCREAMING_SNAKE_CASE ) __a : Tuple = args.output __a : List[Any] = args.column_label __a : Dict = args.column_text __a : int = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": __a : int = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}" ) __a : Optional[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __a : Optional[Any] = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}" ) __a : Any = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __a : List[Any] = args.validation_split __a : Tuple = args.train_batch_size __a : Dict = args.valid_batch_size __a : List[str] = args.learning_rate __a : Optional[int] = args.adam_epsilon def lowerCAmelCase (self : Tuple ): if self.framework == "tf": return self.run_tf() return self.run_torch() def lowerCAmelCase (self : Optional[int] ): raise NotImplementedError def lowerCAmelCase (self : Optional[int] ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
521
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def _UpperCAmelCase ( __A : Any ): a_ : List[str] = fname.split(os.path.sep )[-1] return re.search(R'''^(.*)_\d+\.jpg$''' , __A ).groups()[0] class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ): def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Any=None ) -> Optional[Any]: a_ : List[str] = file_names a_ : str = image_transform a_ : Optional[Any] = label_to_id def __len__( self : List[str] ) -> Dict: return len(self.file_names ) def __getitem__( self : List[str] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: a_ : Union[str, Any] = self.file_names[idx] a_ : Union[str, Any] = PIL.Image.open(__SCREAMING_SNAKE_CASE ) a_ : int = raw_image.convert('''RGB''' ) if self.image_transform is not None: a_ : str = self.image_transform(__SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = extract_label(__SCREAMING_SNAKE_CASE ) if self.label_to_id is not None: a_ : Any = self.label_to_id[label] return {"image": image, "label": label} def _UpperCAmelCase ( __A : List[Any] , __A : Any ): # Initialize accelerator if args.with_tracking: a_ : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: a_ : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a_ : Dict = config['''lr'''] a_ : str = int(config['''num_epochs'''] ) a_ : Any = int(config['''seed'''] ) a_ : Any = int(config['''batch_size'''] ) a_ : Optional[Any] = config['''image_size'''] if not isinstance(__A , (list, tuple) ): a_ : Union[str, Any] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": a_ : List[str] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): a_ : List[str] = int(args.checkpointing_steps ) else: raise ValueError( f'Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.' ) else: a_ : str = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: a_ : Dict = os.path.split(__A )[-1].split('''.''' )[0] accelerator.init_trackers(__A , __A ) # Grab all the image filenames a_ : str = [os.path.join(args.data_dir , __A ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences a_ : Dict = [extract_label(__A ) for fname in file_names] a_ : Optional[Any] = list(set(__A ) ) id_to_label.sort() a_ : Any = {lbl: i for i, lbl in enumerate(__A )} # Set the seed before splitting the data. np.random.seed(__A ) torch.manual_seed(__A ) torch.cuda.manual_seed_all(__A ) # Split our filenames between train and validation a_ : Optional[Any] = np.random.permutation(len(__A ) ) a_ : Dict = int(0.8 * len(__A ) ) a_ : Optional[Any] = random_perm[:cut] a_ : Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop a_ : Optional[int] = Compose([RandomResizedCrop(__A , scale=(0.5, 1.0) ), ToTensor()] ) a_ : str = PetsDataset( [file_names[i] for i in train_split] , image_transform=__A , label_to_id=__A ) # For evaluation, we use a deterministic Resize a_ : Any = Compose([Resize(__A ), ToTensor()] ) a_ : Tuple = PetsDataset([file_names[i] for i in eval_split] , image_transform=__A , label_to_id=__A ) # Instantiate dataloaders. a_ : Dict = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) a_ : str = DataLoader(__A , shuffle=__A , batch_size=__A , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a_ : Union[str, Any] = create_model('''resnet50d''' , pretrained=__A , num_classes=len(__A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a_ : Tuple = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): a_ : int = False for param in model.get_classifier().parameters(): a_ : Tuple = True # We normalize the batches of images to be a bit faster. a_ : Union[str, Any] = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) a_ : Union[str, Any] = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer a_ : str = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler a_ : Tuple = OneCycleLR(optimizer=__A , max_lr=__A , epochs=__A , steps_per_epoch=len(__A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a_ , a_ , a_ , a_ , a_ : Tuple = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over a_ : Dict = 0 # We also need to keep track of the starting epoch so files are named properly a_ : Dict = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f'Resumed from checkpoint: {args.resume_from_checkpoint}' ) accelerator.load_state(args.resume_from_checkpoint ) a_ : Optional[Any] = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint a_ : List[str] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) a_ : Tuple = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` a_ : List[str] = os.path.splitext(__A )[0] if "epoch" in training_difference: a_ : Tuple = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 a_ : str = None else: a_ : List[Any] = int(training_difference.replace('''step_''' , '''''' ) ) a_ : Union[str, Any] = resume_step // len(__A ) resume_step -= starting_epoch * len(__A ) # Now we train the model for epoch in range(__A , __A ): model.train() if args.with_tracking: a_ : List[str] = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step a_ : Union[str, Any] = accelerator.skip_first_batches(__A , __A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader a_ : List[Any] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. a_ : str = {k: v.to(accelerator.device ) for k, v in batch.items()} a_ : int = (batch['''image'''] - mean) / std a_ : Any = model(__A ) a_ : List[Any] = torch.nn.functional.cross_entropy(__A , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(__A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(__A , __A ): a_ : int = f'step_{overall_step}' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: a_ : Union[str, Any] = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) model.eval() a_ : str = 0 a_ : List[Any] = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. a_ : Optional[Any] = {k: v.to(accelerator.device ) for k, v in batch.items()} a_ : List[Any] = (batch['''image'''] - mean) / std with torch.no_grad(): a_ : Union[str, Any] = model(__A ) a_ : List[str] = outputs.argmax(dim=-1 ) a_ , a_ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''label''']) ) a_ : Union[str, Any] = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() a_ : Any = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}: {1_00 * eval_metric:.2f}' ) if args.with_tracking: accelerator.log( { '''accuracy''': 1_00 * eval_metric, '''train_loss''': total_loss.item() / len(__A ), '''epoch''': epoch, } , step=__A , ) if checkpointing_steps == "epoch": a_ : Dict = f'epoch_{epoch}' if args.output_dir is not None: a_ : int = os.path.join(args.output_dir , __A ) accelerator.save_state(__A ) if args.with_tracking: accelerator.end_training() def _UpperCAmelCase ( ): a_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=__A , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=__A , default=__A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=__A , default=__A , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=__A , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=__A , default=__A , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=__A , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) a_ : Union[str, Any] = parser.parse_args() a_ : List[Any] = {'''lr''': 3E-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 2_24} training_function(__A , __A ) if __name__ == "__main__": main()
466
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class _A ( __lowercase ): __a = """gpt_bigcode""" __a = ["""past_key_values"""] __a = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="gelu_pytorch_tanh" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ): _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = n_inner _UpperCAmelCase = activation_function _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = scale_attn_weights _UpperCAmelCase = use_cache _UpperCAmelCase = attention_softmax_in_fpaa _UpperCAmelCase = scale_attention_softmax_in_fpaa _UpperCAmelCase = multi_query _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
175
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a = logging.get_logger(__name__) class _A : def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): if not conversation_id: _UpperCAmelCase = uuid.uuida() if past_user_inputs is None: _UpperCAmelCase = [] if generated_responses is None: _UpperCAmelCase = [] _UpperCAmelCase = conversation_id _UpperCAmelCase = past_user_inputs _UpperCAmelCase = generated_responses _UpperCAmelCase = text def __eq__( self , _SCREAMING_SNAKE_CASE ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): if self.new_user_input: if overwrite: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten " F"with: \"{text}\"." ) _UpperCAmelCase = text else: logger.warning( F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input " F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" ) else: _UpperCAmelCase = text def UpperCAmelCase ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _UpperCAmelCase = None def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): self.generated_responses.append(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): _UpperCAmelCase = F"Conversation id: {self.uuid} \n" for is_user, text in self.iter_texts(): _UpperCAmelCase = """user""" if is_user else """bot""" output += F"{name} >> {text} \n" return output @add_end_docstrings( __lowercase , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class _A ( __lowercase ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.tokenizer.pad_token_id is None: _UpperCAmelCase = self.tokenizer.eos_token def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = {} _UpperCAmelCase = {} _UpperCAmelCase = {} if min_length_for_response is not None: _UpperCAmelCase = min_length_for_response if minimum_tokens is not None: _UpperCAmelCase = minimum_tokens if "max_length" in generate_kwargs: _UpperCAmelCase = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _UpperCAmelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_SCREAMING_SNAKE_CASE ) return preprocess_params, forward_params, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = super().__call__(_SCREAMING_SNAKE_CASE , num_workers=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=32 ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. " """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): _UpperCAmelCase = self.tokenizer._build_conversation_input_ids(_SCREAMING_SNAKE_CASE ) else: # If the tokenizer cannot handle conversations, we default to only the old version _UpperCAmelCase = self._legacy_parse_and_tokenize(_SCREAMING_SNAKE_CASE ) if self.framework == "pt": _UpperCAmelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": _UpperCAmelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=10 , **_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) _UpperCAmelCase = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" ) _UpperCAmelCase = max_length - minimum_tokens _UpperCAmelCase = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: _UpperCAmelCase = model_inputs["""attention_mask"""][:, -trim:] _UpperCAmelCase = model_inputs.pop("""conversation""" ) _UpperCAmelCase = max_length _UpperCAmelCase = self.model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.model.config.is_encoder_decoder: _UpperCAmelCase = 1 else: _UpperCAmelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): _UpperCAmelCase = model_outputs["""output_ids"""] _UpperCAmelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(_SCREAMING_SNAKE_CASE ) return conversation def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = self.tokenizer.eos_token_id _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > self.tokenizer.model_max_length: _UpperCAmelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
175
1
"""simple docstring""" from __future__ import annotations from typing import Any class A_ : def __init__( self: Tuple ,__lowerCAmelCase: int = 6 ): '''simple docstring''' _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None self.create_linked_list(__lowerCAmelCase ) def _lowercase ( self: Dict ,__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : List[Any] = Node() _lowerCamelCase : Optional[int] = current_node _lowerCamelCase : Any = current_node _lowerCamelCase : int = current_node for _ in range(1 ,__lowerCAmelCase ): _lowerCamelCase : Union[str, Any] = Node() _lowerCamelCase : Any = current_node _lowerCamelCase : Tuple = previous_node _lowerCamelCase : Optional[Any] = current_node _lowerCamelCase : Union[str, Any] = self.front _lowerCamelCase : Any = previous_node def _lowercase ( self: Optional[Any] ): '''simple docstring''' return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _lowercase ( self: Any ): '''simple docstring''' self.check_can_perform_operation() return self.front.data if self.front else None def _lowercase ( self: List[Any] ,__lowerCAmelCase: Any ): '''simple docstring''' if self.rear is None: return self.check_is_full() if not self.is_empty(): _lowerCamelCase : List[str] = self.rear.next if self.rear: _lowerCamelCase : List[str] = data def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: _lowerCamelCase : Any = self.front.data _lowerCamelCase : Dict = None return data _lowerCamelCase : List[Any] = self.front _lowerCamelCase : Optional[Any] = old_front.next _lowerCamelCase : str = old_front.data _lowerCamelCase : List[str] = None return data def _lowercase ( self: List[str] ): '''simple docstring''' if self.is_empty(): raise Exception("Empty Queue" ) def _lowercase ( self: Dict ): '''simple docstring''' if self.rear and self.rear.next == self.front: raise Exception("Full Queue" ) class A_ : def __init__( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Any | None = None _lowerCamelCase : Node | None = None _lowerCamelCase : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
46
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self : int ,a__ : List[Any] ,): a__ = parent a__ = 13 a__ = 7 a__ = True a__ = True a__ = True a__ = True a__ = True a__ = False a__ = False a__ = False a__ = 2 a__ = 99 a__ = 0 a__ = 32 a__ = 2 a__ = 4 a__ = 0.1 a__ = 0.1 a__ = 5_12 a__ = 16 a__ = 2 a__ = 0.02 a__ = 3 a__ = 4 a__ = "last" a__ = True a__ = None a__ = 0 def lowerCAmelCase_ ( self : Optional[Any] ): a__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a__ = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) a__ = None if self.use_input_lengths: a__ = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) a__ = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) a__ = ids_tensor([self.batch_size] ,self.num_choices ) a__ = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase_ ( self : int ,a__ : List[Any] ,a__ : Optional[int] ,a__ : Union[str, Any] ,a__ : Union[str, Any] ,a__ : int ,a__ : Optional[int] ,a__ : int ,a__ : Dict ,a__ : Any ,): a__ = TFFlaubertModel(config=a__ ) a__ = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} a__ = model(a__ ) a__ = [input_ids, input_mask] a__ = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Optional[int] ,a__ : List[str] ,a__ : Optional[Any] ,a__ : int ,a__ : Any ,a__ : Optional[int] ,a__ : Optional[int] ,a__ : Dict ,a__ : Dict ,a__ : Union[str, Any] ,): a__ = TFFlaubertWithLMHeadModel(a__ ) a__ = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} a__ = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : int ,a__ : str ,a__ : Dict ,a__ : List[str] ,a__ : str ,a__ : Tuple ,a__ : int ,a__ : int ,a__ : str ,a__ : str ,): a__ = TFFlaubertForQuestionAnsweringSimple(a__ ) a__ = {"input_ids": input_ids, "lengths": input_lengths} a__ = model(a__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Union[str, Any] ,a__ : int ,a__ : Optional[int] ,a__ : Any ,a__ : List[Any] ,a__ : Optional[Any] ,a__ : Dict ,a__ : int ,a__ : List[str] ,a__ : Tuple ,): a__ = TFFlaubertForSequenceClassification(a__ ) a__ = {"input_ids": input_ids, "lengths": input_lengths} a__ = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Dict ,a__ : Union[str, Any] ,a__ : Tuple ,a__ : List[str] ,a__ : List[str] ,a__ : Dict ,a__ : List[Any] ,a__ : Tuple ,a__ : List[str] ,a__ : Tuple ,): a__ = self.num_labels a__ = TFFlaubertForTokenClassification(config=a__ ) a__ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} a__ = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Tuple ,a__ : Optional[Any] ,a__ : Optional[Any] ,a__ : int ,a__ : Union[str, Any] ,a__ : List[str] ,a__ : Optional[Any] ,a__ : List[Any] ,a__ : str ,a__ : str ,): a__ = self.num_choices a__ = TFFlaubertForMultipleChoice(config=a__ ) a__ = tf.tile(tf.expand_dims(a__ ,1 ) ,(1, self.num_choices, 1) ) a__ = tf.tile(tf.expand_dims(a__ ,1 ) ,(1, self.num_choices, 1) ) a__ = tf.tile(tf.expand_dims(a__ ,1 ) ,(1, self.num_choices, 1) ) a__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } a__ = model(a__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : Tuple ): a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class lowerCamelCase__ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase__ = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase__ = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowerCAmelCase_ ( self : str ,a__ : Any ,a__ : List[str] ,a__ : Optional[int] ,a__ : Dict ,a__ : str ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase_ ( self : Dict ): a__ = TFFlaubertModelTester(self ) a__ = ConfigTester(self ,config_class=a__ ,emb_dim=37 ) def lowerCAmelCase_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Dict ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a__ ) def lowerCAmelCase_ ( self : Any ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a__ ) def lowerCAmelCase_ ( self : List[str] ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a__ ) def lowerCAmelCase_ ( self : List[str] ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a__ ) def lowerCAmelCase_ ( self : Union[str, Any] ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*a__ ) def lowerCAmelCase_ ( self : int ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*a__ ) @slow def lowerCAmelCase_ ( self : Tuple ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = TFFlaubertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase_ ( self : Any ): a__ = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) a__ = tf.convert_to_tensor( [[0, 1_58, 7_35, 25_92, 14_24, 67_27, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" a__ = model(a__ )[0] a__ = tf.TensorShape((1, 8, 5_12) ) self.assertEqual(output.shape ,a__ ) # compare the actual values for a slice. a__ = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
331
0
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} lowerCAmelCase__ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } lowerCAmelCase__ = { 'abeja/gpt-neox-japanese-2.7b': 20_48, } def lowerCAmelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" with open(UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: snake_case__ : Union[str, Any] = json.loads(f.read() ) snake_case__ : Optional[int] = collections.OrderedDict() snake_case__ : str = collections.OrderedDict() snake_case__ : Any = collections.OrderedDict() with open(UpperCAmelCase , """r""" , encoding="""utf-8""" ) as f: snake_case__ : List[str] = f.readlines() snake_case__ : Tuple = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(UpperCAmelCase ): snake_case__ : Dict = b snake_case__ : Any = idx for wd in b: snake_case__ : Tuple = idx return vocab, raw_vocab, ids_to_tokens, emoji class _A ( UpperCamelCase ): '''simple docstring''' _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Any="<|endoftext|>" , lowerCamelCase : Dict="<|endoftext|>" , lowerCamelCase : Optional[Any]="<|startoftext|>" , lowerCamelCase : str="<|endoftext|>" , lowerCamelCase : str=False , **lowerCamelCase : int , )-> Optional[int]: super().__init__( unk_token=lowerCamelCase , pad_token=lowerCamelCase , bos_token=lowerCamelCase , eos_token=lowerCamelCase , do_clean_text=lowerCamelCase , **lowerCamelCase , ) if not os.path.isfile(lowerCamelCase ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(lowerCamelCase ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) snake_case__ : List[str] = do_clean_text snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = load_vocab_and_emoji(lowerCamelCase , lowerCamelCase ) snake_case__ : str = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __lowerCAmelCase ( self : Any )-> Optional[int]: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __lowerCAmelCase ( self : List[Any] )-> int: return dict(self.raw_vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : List[str] )-> Tuple: return self.subword_tokenizer.tokenize(lowerCamelCase , clean=self.do_clean_text ) def __lowerCAmelCase ( self : str , lowerCamelCase : Optional[Any] )-> Union[str, Any]: return self.vocab.get(lowerCamelCase , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self : Optional[Any] , lowerCamelCase : Any )-> str: return self.subword_tokenizer.convert_id_to_token(lowerCamelCase ) def __lowerCAmelCase ( self : int , lowerCamelCase : str )-> Optional[int]: snake_case__ : Optional[int] = """""".join(lowerCamelCase ).strip() return out_string def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : "Conversation" )-> List[int]: snake_case__ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) + [self.eos_token_id] ) if len(lowerCamelCase ) > self.model_max_length: snake_case__ : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids def __lowerCAmelCase ( self : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : Optional[str] = None )-> Tuple[str]: snake_case__ : Any = 0 if os.path.isdir(lowerCamelCase ): snake_case__ : List[str] = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Dict = os.path.join( lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: snake_case__ : Tuple = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Optional[int] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) snake_case__ : Tuple = token_index writer.write(""",""".join(lowerCamelCase ) + """\n""" ) index += 1 with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , lowerCamelCase ) return vocab_file, emoji_file class _A ( UpperCamelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] )-> Optional[int]: snake_case__ : Tuple = vocab # same as swe snake_case__ : str = ids_to_tokens # same as bpe snake_case__ : Tuple = emoji snake_case__ : int = np.max([len(lowerCamelCase ) for w in self.vocab.keys()] ) snake_case__ : Dict = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) snake_case__ : List[Any] = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) snake_case__ : Any = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) snake_case__ : Dict = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) snake_case__ : Union[str, Any] = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) snake_case__ : List[Any] = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) snake_case__ : str = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" snake_case__ : List[Any] = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" snake_case__ : Optional[int] = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self : List[Any] )-> Dict: return len(self.ids_to_tokens ) def __lowerCAmelCase ( self : str , lowerCamelCase : Union[str, Any] )-> Optional[int]: snake_case__ : int = self.content_repattera.sub("""<URL>""" , lowerCamelCase ) snake_case__ : Dict = self.content_repattera.sub("""<EMAIL>""" , lowerCamelCase ) snake_case__ : List[Any] = self.content_repattera.sub("""<TEL>""" , lowerCamelCase ) snake_case__ : Union[str, Any] = self.content_repattera.sub("""<DATE>""" , lowerCamelCase ) snake_case__ : str = self.content_repattera.sub("""<DATE>""" , lowerCamelCase ) snake_case__ : Dict = self.content_repattera.sub("""<PRICE>""" , lowerCamelCase ) snake_case__ : int = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: snake_case__ : Dict = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def __lowerCAmelCase ( self : List[str] , lowerCamelCase : List[str] , lowerCamelCase : Tuple=False )-> Optional[Any]: snake_case__ : List[str] = text.replace(""" """ , """<SP>""" ) snake_case__ : Dict = text.replace(""" """ , """<SP>""" ) snake_case__ : int = text.replace("""\r\n""" , """<BR>""" ) snake_case__ : Optional[int] = text.replace("""\n""" , """<BR>""" ) snake_case__ : Optional[Any] = text.replace("""\r""" , """<BR>""" ) snake_case__ : Optional[Any] = text.replace("""\t""" , """<TAB>""" ) snake_case__ : int = text.replace("""—""" , """ー""" ) snake_case__ : Tuple = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: snake_case__ : Union[str, Any] = text.replace(lowerCamelCase , lowerCamelCase ) if clean: snake_case__ : Optional[int] = self.clean_text(lowerCamelCase ) def check_simbol(lowerCamelCase : Optional[int] ): snake_case__ : Any = x.encode() if len(lowerCamelCase ) == 1 and len(lowerCamelCase ) == 2: snake_case__ : Tuple = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2_a1 and c <= 0xc2_bf) or (c >= 0xc7_80 and c <= 0xc7_83) or (c >= 0xca_b9 and c <= 0xcb_bf) or (c >= 0xcc_80 and c <= 0xcd_a2) ): return True return False def checkuae(lowerCamelCase : Union[str, Any] ): snake_case__ : str = x.encode() if len(lowerCamelCase ) == 1 and len(lowerCamelCase ) == 3: snake_case__ : List[str] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe2_80_80 and c <= 0xe2_b0_7f: return True return False snake_case__ : int = 0 snake_case__ : Dict = [] while pos < len(lowerCamelCase ): snake_case__ : str = min(len(lowerCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 snake_case__ : List[str] = [] # (token_id, token, pos) for e in range(lowerCamelCase , lowerCamelCase , -1 ): snake_case__ : Union[str, Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCamelCase ) > 2: snake_case__ : Any = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCamelCase ) > 0: # the smallest token_id is adopted snake_case__ , snake_case__ , snake_case__ : Optional[Any] = sorted(lowerCamelCase , key=lambda lowerCamelCase : x[0] )[0] result.append(lowerCamelCase ) snake_case__ : str = e else: snake_case__ : str = pos + 1 snake_case__ : Optional[Any] = text[pos:end] if check_simbol(lowerCamelCase ): result.append("""<KIGOU>""" ) elif checkuae(lowerCamelCase ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) snake_case__ : Dict = end return result def __lowerCAmelCase ( self : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : Any="\n" )-> Optional[int]: snake_case__ : Any = [] snake_case__ : Dict = [] snake_case__ : Optional[Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCamelCase ) > 0: words.append(bytearray(lowerCamelCase ).decode("""utf-8""" , errors="""replace""" ) ) snake_case__ : Any = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(lowerCamelCase ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(lowerCamelCase ) if len(lowerCamelCase ) > 0: words.append(bytearray(lowerCamelCase ).decode("""utf-8""" , errors="""replace""" ) ) snake_case__ : Dict = """""".join(lowerCamelCase ) return text
172
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def lowerCAmelCase__ ( UpperCAmelCase ): """simple docstring""" snake_case__ : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(UpperCAmelCase , max_perimeter + 1 ): snake_case__ : Tuple = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(UpperCAmelCase ): snake_case__ : List[str] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCAmelCase__ ( UpperCAmelCase = 1000 ): """simple docstring""" snake_case__ : Optional[int] = pythagorean_triple(UpperCAmelCase ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
172
1
from math import factorial def __SCREAMING_SNAKE_CASE ( a__ : int = 100 ) -> int: return sum(int(a__ ) for x in str(factorial(a__ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
17
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class A ( unittest.TestCase ): def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=18 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , ) -> List[str]: '''simple docstring''' lowercase__ = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize def A__ ( self ) -> List[Any]: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.88_66_44_36_34_03_32_03, 0.66_18_82_93_69_54_49_83, 0.38_91_74_64_01_78_68_04], [-0.60_42_55_91_46_88_11_04, -0.0_22_95_00_88_60_52_84_69, 0.54_23_79_73_69_00_32_96], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class A ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : int = ImageGPTImageProcessor if is_vision_available() else None def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = ImageGPTImageProcessingTester(self ) @property def A__ ( self ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """clusters""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_normalize""" ) ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def A__ ( self ) -> str: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) lowercase__ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , obj[key] ) ) else: self.assertEqual(obj[key] , lowerCamelCase__ ) def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase__ = os.path.join(lowerCamelCase__ , """image_processor.json""" ) image_processor_first.to_json_file(lowerCamelCase__ ) lowercase__ = self.image_processing_class.from_json_file(lowerCamelCase__ ).to_dict() lowercase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(lowerCamelCase__ ) lowercase__ = self.image_processing_class.from_pretrained(lowerCamelCase__ ).to_dict() lowercase__ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(lowerCamelCase__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , lowerCamelCase__ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' pass def _A ( ): lowercase__ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) lowercase__ = Image.open(dataset[4]["""file"""] ) lowercase__ = Image.open(dataset[5]["""file"""] ) lowercase__ = [imagea, imagea] return images @require_vision @require_torch class A ( unittest.TestCase ): @slow def A__ ( self ) -> str: '''simple docstring''' lowercase__ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) lowercase__ = prepare_images() # test non-batched lowercase__ = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) lowercase__ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , lowerCamelCase__ ) # test batched lowercase__ = image_processing(lowerCamelCase__ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) lowercase__ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , lowerCamelCase__ )
325
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor __lowerCAmelCase : Any = logging.get_logger(__name__) class A ( UpperCAmelCase__ ): def __init__( self : Dict , *__a : Union[str, Any] , **__a : Union[str, Any] ) -> None: warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , __lowerCAmelCase , ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
710
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCAmelCase ( UpperCamelCase__ : str = "AAPL" ): """simple docstring""" __UpperCAmelCase = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" __UpperCAmelCase = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) __UpperCAmelCase = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
654
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class lowerCamelCase__ ( _A): """simple docstring""" a__ : Any = "xlnet" a__ : Dict = ["mems"] a__ : List[str] = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , __lowerCAmelCase : Dict=3_20_00 , __lowerCAmelCase : List[str]=10_24 , __lowerCAmelCase : Dict=24 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Dict=40_96 , __lowerCAmelCase : Any="gelu" , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]="bi" , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Union[str, Any]=1E-12 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : Optional[Any]=5_12 , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Union[str, Any]=-1 , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Any="last" , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Tuple="tanh" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : str=5 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=5 , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : Optional[int]=2 , **__lowerCAmelCase : List[str] , ) -> Tuple: _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(f'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'''`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , __lowerCAmelCase , ) _A = kwargs['''use_cache'''] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def snake_case_ ( self : Optional[Any] ) -> Union[str, Any]: logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def snake_case_ ( self : Tuple , __lowerCAmelCase : Optional[Any] ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
2
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) class __lowerCamelCase ( __lowercase ): def __init__(self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' warnings.warn( """The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ImageGPTImageProcessor instead.""" , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
156
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = """table-transformer""" SCREAMING_SNAKE_CASE__ = ["""past_key_values"""] SCREAMING_SNAKE_CASE__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__(self , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=1_00 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=2_56 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="sine" , SCREAMING_SNAKE_CASE_="resnet50" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.1 , **SCREAMING_SNAKE_CASE_ , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = backbone_config.get("""model_type""" ) UpperCamelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) # set timm attributes to None UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None, None, None UpperCamelCase__ = use_timm_backbone UpperCamelCase__ = backbone_config UpperCamelCase__ = num_channels UpperCamelCase__ = num_queries UpperCamelCase__ = d_model UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = init_xavier_std UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = decoder_layerdrop UpperCamelCase__ = encoder_layers UpperCamelCase__ = auxiliary_loss UpperCamelCase__ = position_embedding_type UpperCamelCase__ = backbone UpperCamelCase__ = use_pretrained_backbone UpperCamelCase__ = dilation # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = mask_loss_coefficient UpperCamelCase__ = dice_loss_coefficient UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def UpperCAmelCase_ (self ): return self.encoder_attention_heads @property def UpperCAmelCase_ (self ): return self.d_model class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = version.parse("""1.11""" ) @property def UpperCAmelCase_ (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def UpperCAmelCase_ (self ): return 1E-5 @property def UpperCAmelCase_ (self ): return 12
720
import os from datetime import datetime as dt from github import Github lowerCamelCase_ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCamelCase__ = g.get_repo("""huggingface/diffusers""" ) UpperCamelCase__ = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCamelCase__ = sorted(issue.get_comments() , key=lambda __a : i.created_at , reverse=__a ) UpperCamelCase__ = comments[0] if len(__a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
86
0
import gc import threading import time import psutil import torch class _UpperCamelCase : '''simple docstring''' def __init__( self : Optional[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = psutil.Process() SCREAMING_SNAKE_CASE : int = False def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = -1 while True: SCREAMING_SNAKE_CASE : Tuple = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Tuple = threading.Thread(target=self.peak_monitor ) SCREAMING_SNAKE_CASE : Union[str, Any] = True self.thread.start() def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = False self.thread.join() return self.cpu_memory_peak a_ = PeakCPUMemory() def lowerCamelCase__ ( ): # Time SCREAMING_SNAKE_CASE : Optional[int] = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE : List[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count()): SCREAMING_SNAKE_CASE : Dict = torch.cuda.memory_allocated(_a) torch.cuda.reset_peak_memory_stats() return measures def lowerCamelCase__ ( _a): # Time SCREAMING_SNAKE_CASE : Optional[int] = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE : Tuple = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 SCREAMING_SNAKE_CASE : Optional[Any] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count()): SCREAMING_SNAKE_CASE : Tuple = (torch.cuda.memory_allocated(_a) - start_measures[str(_a)]) / 2**20 SCREAMING_SNAKE_CASE : Optional[Any] = (torch.cuda.max_memory_allocated(_a) - start_measures[str(_a)]) / 2**20 return measures def lowerCamelCase__ ( _a , _a): print(f"{description}:") print(f"- Time: {measures['time']:.2f}s") for i in range(torch.cuda.device_count()): print(f"- GPU {i} allocated: {measures[str(_a)]:.2f}MiB") SCREAMING_SNAKE_CASE : Tuple = measures[f"{i}-peak"] print(f"- GPU {i} peak: {peak:.2f}MiB") print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB") print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB")
25
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging __magic_name__ : str = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_A , speech_processor=_A , vae=_A , text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , feature_extractor=_A , ) def _a ( self , _A = "auto" ): '''simple docstring''' if slice_size == "auto": UpperCamelCase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def _a ( self ): '''simple docstring''' self.enable_attention_slicing(_A ) @torch.no_grad() def __call__( self , _A , _A=1_6_0_0_0 , _A = 5_1_2 , _A = 5_1_2 , _A = 5_0 , _A = 7.5 , _A = None , _A = 1 , _A = 0.0 , _A = None , _A = None , _A = "pil" , _A = True , _A = None , _A = 1 , **_A , ): '''simple docstring''' UpperCamelCase : str = self.speech_processor.feature_extractor( _A , return_tensors="""pt""" , sampling_rate=_A ).input_features.to(self.device ) UpperCamelCase : List[Any] = self.speech_model.generate(_A , max_length=4_8_0_0_0_0 ) UpperCamelCase : Optional[int] = self.speech_processor.tokenizer.batch_decode(_A , skip_special_tokens=_A , normalize=_A )[ 0 ] if isinstance(_A , _A ): UpperCamelCase : Tuple = 1 elif isinstance(_A , _A ): UpperCamelCase : List[Any] = len(_A ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(_A )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_A )}.""" ) # get prompt text embeddings UpperCamelCase : Dict = self.tokenizer( _A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) UpperCamelCase : Dict = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase : Tuple = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) UpperCamelCase : int = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase : List[str] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = text_embeddings.shape UpperCamelCase : Optional[int] = text_embeddings.repeat(1 , _A , 1 ) UpperCamelCase : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase : List[str] if negative_prompt is None: UpperCamelCase : str = [""""""] * batch_size elif type(_A ) is not type(_A ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=""" f""" {type(_A )}.""" ) elif isinstance(_A , _A ): UpperCamelCase : Tuple = [negative_prompt] elif batch_size != len(_A ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: UpperCamelCase : Any = negative_prompt UpperCamelCase : Optional[int] = text_input_ids.shape[-1] UpperCamelCase : List[str] = self.tokenizer( _A , padding="""max_length""" , max_length=_A , truncation=_A , return_tensors="""pt""" , ) UpperCamelCase : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase : List[Any] = uncond_embeddings.shape[1] UpperCamelCase : Dict = uncond_embeddings.repeat(1 , _A , 1 ) UpperCamelCase : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase : str = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase : int = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase : Tuple = torch.randn(_A , generator=_A , device="""cpu""" , dtype=_A ).to( self.device ) else: UpperCamelCase : Any = torch.randn(_A , generator=_A , device=self.device , dtype=_A ) else: if latents.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) UpperCamelCase : Optional[Any] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase : Tuple = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase : List[Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase : str = {} if accepts_eta: UpperCamelCase : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : str = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual UpperCamelCase : Optional[Any] = self.unet(_A , _A , encoder_hidden_states=_A ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase : str = noise_pred.chunk(2 ) UpperCamelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : Any = self.scheduler.step(_A , _A , _A , **_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) UpperCamelCase : Optional[Any] = 1 / 0.1_82_15 * latents UpperCamelCase : Union[str, Any] = self.vae.decode(_A ).sample UpperCamelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase : Optional[Any] = self.numpy_to_pil(_A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_A , nsfw_content_detected=_A )
102
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = """distilbert""" _lowerCamelCase = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self ,lowercase=30522 ,lowercase=512 ,lowercase=False ,lowercase=6 ,lowercase=12 ,lowercase=768 ,lowercase=4 * 768 ,lowercase=0.1 ,lowercase=0.1 ,lowercase="gelu" ,lowercase=0.02 ,lowercase=0.1 ,lowercase=0.2 ,lowercase=0 ,**lowercase ,): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[Any] = sinusoidal_pos_embds UpperCAmelCase_ : Optional[Any] = n_layers UpperCAmelCase_ : str = n_heads UpperCAmelCase_ : List[str] = dim UpperCAmelCase_ : Dict = hidden_dim UpperCAmelCase_ : Optional[Any] = dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Optional[int] = activation UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Tuple = qa_dropout UpperCAmelCase_ : Optional[Any] = seq_classif_dropout super().__init__(**lowercase ,pad_token_id=lowercase) class snake_case_ (lowercase__ ): """simple docstring""" @property def A_ ( self): """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase_ : int = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
455
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
455
1
def a_ ( __magic_name__ , __magic_name__ ) -> Dict: """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
598
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : Dict = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
447
0
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def _lowerCAmelCase ( self ): A : Tuple = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__, """embed_dim""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase__, """num_heads""" ) ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=13, lowerCamelCase__=64, lowerCamelCase__=3, lowerCamelCase__=[16, 48, 96], lowerCamelCase__=[1, 3, 6], lowerCamelCase__=[1, 2, 10], lowerCamelCase__=[7, 3, 3], lowerCamelCase__=[4, 2, 2], lowerCamelCase__=[2, 1, 1], lowerCamelCase__=[2, 2, 2], lowerCamelCase__=[False, False, True], lowerCamelCase__=[0.0, 0.0, 0.0], lowerCamelCase__=0.02, lowerCamelCase__=1e-12, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=2, ): A : Optional[Any] = parent A : Tuple = batch_size A : Union[str, Any] = image_size A : Any = patch_sizes A : Tuple = patch_stride A : List[Any] = patch_padding A : int = is_training A : List[Any] = use_labels A : List[str] = num_labels A : str = num_channels A : List[Any] = embed_dim A : Any = num_heads A : Optional[int] = stride_kv A : str = depth A : Dict = cls_token A : str = attention_drop_rate A : str = initializer_range A : Tuple = layer_norm_eps def _lowerCAmelCase ( self ): A : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Dict = None if self.use_labels: # create a random int32 tensor of given shape A : Tuple = ids_tensor([self.batch_size], self.num_labels ) A : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self ): return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Any = TFCvtModel(config=lowerCamelCase__ ) A : Union[str, Any] = model(lowerCamelCase__, training=lowerCamelCase__ ) A : List[str] = (self.image_size, self.image_size) A , A : int = image_size[0], image_size[1] for i in range(len(self.depth ) ): A : List[str] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) A : int = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Union[str, Any] = self.num_labels A : List[str] = TFCvtForImageClassification(lowerCamelCase__ ) A : str = model(lowerCamelCase__, labels=lowerCamelCase__, training=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self ): A : Any = self.prepare_config_and_inputs() A , A , A : Optional[int] = config_and_inputs A : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : int = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () __lowerCamelCase : Optional[Any] = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[str] = False __lowerCamelCase : Tuple = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : Dict = False def _lowerCAmelCase ( self ): A : Optional[int] = TFCvtModelTester(self ) A : Tuple = TFCvtConfigTester(self, config_class=lowerCamelCase__, has_text_modality=lowerCamelCase__, hidden_size=37 ) def _lowerCAmelCase ( self ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def _lowerCAmelCase ( self ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def _lowerCAmelCase ( self ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0, reason="""TF does not support backprop for grouped convolutions on CPU.""", ) def _lowerCAmelCase ( self ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0, reason="""TF does not support backprop for grouped convolutions on CPU.""", ) @slow def _lowerCAmelCase ( self ): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def _lowerCAmelCase ( self ): A : Optional[int] = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(lowerCamelCase__ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def _lowerCAmelCase ( self ): A , A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Any = model_class(lowerCamelCase__ ) A : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : Dict = [*signature.parameters.keys()] A : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1], lowerCamelCase__ ) def _lowerCAmelCase ( self ): def check_hidden_states_output(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Tuple = model_class(lowerCamelCase__ ) A : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase__, lowerCamelCase__ ) ) A : int = outputs.hidden_states A : List[str] = len(self.model_tester.depth ) self.assertEqual(len(lowerCamelCase__ ), lowerCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) A , A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : List[str] = True check_hidden_states_output(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A : Dict = True check_hidden_states_output(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def _lowerCAmelCase ( self ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Dict = TFCvtModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __UpperCamelCase ( ) -> int: """simple docstring""" A : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCAmelCase ( self ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _lowerCAmelCase ( self ): A : List[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A : Dict = self.default_image_processor A : Any = prepare_img() A : Dict = image_processor(images=lowerCamelCase__, return_tensors="""tf""" ) # forward pass A : int = model(**lowerCamelCase__ ) # verify the logits A : Tuple = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape, lowerCamelCase__ ) A : int = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), lowerCamelCase__, atol=1e-4 ) )
520
from __future__ import annotations from math import gcd def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase = 2 , _lowerCAmelCase = 1 , _lowerCAmelCase = 3 , ) -> int | None: """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: return (pow(_lowerCAmelCase , 2 ) + step) % modulus for _ in range(_lowerCAmelCase ): # These track the position within the cycle detection logic. A : Optional[Any] = seed A : List[Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. A : Any = rand_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A : List[str] = rand_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A : Optional[Any] = rand_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. A : str = gcd(hare - tortoise , _lowerCAmelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. A : Tuple = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse SCREAMING_SNAKE_CASE_:List[str] = argparse.ArgumentParser() parser.add_argument( """num""", type=int, help="""The value to find a divisor of""", ) parser.add_argument( """--attempts""", type=int, default=3, help="""The number of attempts before giving up""", ) SCREAMING_SNAKE_CASE_:Any = parser.parse_args() SCREAMING_SNAKE_CASE_:int = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"""{args.num} is probably prime""") else: SCREAMING_SNAKE_CASE_:Optional[int] = args.num // divisor print(F"""{args.num} = {divisor} * {quotient}""")
520
1
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = None if token is not None: snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json() snake_case__ : Dict = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 ) for i in range(__magic_name__ ): snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict: '''simple docstring''' snake_case__ : Optional[Any] = None if token is not None: snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"} snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : Any = result.headers["""Location"""] snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ ) snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" ) with open(__magic_name__ , """wb""" ) as fp: fp.write(response.content ) def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Union[str, Any] = [] snake_case__ : Any = None with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__magic_name__ ) as f: for line in f: snake_case__ : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs snake_case__ : str = line[: line.index(""": """ )] snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed snake_case__ : Dict = line[len("""FAILED """ ) :] failed_tests.append(__magic_name__ ) elif filename == "job_name.txt": snake_case__ : Optional[Any] = line if len(__magic_name__ ) != len(__magic_name__ ): raise ValueError( f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` " f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" """ problem.""" ) snake_case__ : Optional[Any] = None if job_name and job_links: snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ ) # A list with elements of the form (line of error, error, failed test) snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )] return result def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = [] snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) ) return errors def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]: '''simple docstring''' snake_case__ : Any = Counter() counter.update([x[1] for x in logs] ) snake_case__ : Dict = counter.most_common() snake_case__ : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]: '''simple docstring''' snake_case__ : str = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): snake_case__ : Tuple = test.split("""/""" )[2] else: snake_case__ : Any = None return test def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]: '''simple docstring''' snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs] snake_case__ : List[Any] = [x for x in logs if x[2] is not None] snake_case__ : Any = {x[2] for x in logs} snake_case__ : Optional[Any] = {} for test in tests: snake_case__ : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) snake_case__ : Optional[int] = counter.most_common() snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} snake_case__ : int = sum(error_counts.values() ) if n_errors > 0: snake_case__ : str = {"""count""": n_errors, """errors""": error_counts} snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) ) return r def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[Any] = """| no. | error | status |""" snake_case__ : int = """|-:|:-|:-|""" snake_case__ : int = [header, sep] for error in reduced_by_error: snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""] snake_case__ : Dict = f"| {count} | {error[:1_00]} | |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]: '''simple docstring''' snake_case__ : List[Any] = """| model | no. of errors | major error | count |""" snake_case__ : Optional[int] = """|-:|-:|-:|-:|""" snake_case__ : Dict = [header, sep] for model in reduced_by_model: snake_case__ : Tuple = reduced_by_model[model]["""count"""] snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0] snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |" lines.append(__magic_name__ ) return "\n".join(__magic_name__ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") A_ : int = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token) A_ : Optional[Any] = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: A_ : int = k.find(" / ") A_ : List[Any] = k[index + len(" / ") :] A_ : List[str] = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) A_ : str = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error A_ : List[str] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors A_ : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) A_ : Any = reduce_by_error(errors) A_ : Union[str, Any] = reduce_by_model(errors) A_ : Any = make_github_table(reduced_by_error) A_ : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
38
"""simple docstring""" import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = CanineTokenizer _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Any: super().setUp() lowerCAmelCase = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self ) -> Union[str, Any]: return CanineTokenizer.from_pretrained("""google/canine-s""" ) def _snake_case ( self , **lowercase ) -> CanineTokenizer: lowerCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) lowerCAmelCase = 1_024 return tokenizer @require_torch def _snake_case ( self ) -> str: lowerCAmelCase = self.canine_tokenizer lowerCAmelCase = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off lowerCAmelCase = [57_344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57_345, 0, 0, 0, 0] # fmt: on lowerCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors="""pt""" ) self.assertIsInstance(lowercase , lowercase ) lowerCAmelCase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowercase , lowercase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.canine_tokenizer lowerCAmelCase = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] lowerCAmelCase = tokenizer(lowercase , padding=lowercase , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , lowercase ) self.assertIn("""attention_mask""" , lowercase ) self.assertIn("""token_type_ids""" , lowercase ) @require_torch def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.canine_tokenizer lowerCAmelCase = [ """What's the weater?""", """It's about 25 degrees.""", ] lowerCAmelCase = tokenizer( text_target=lowercase , max_length=32 , padding="""max_length""" , truncation=lowercase , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def _snake_case ( self ) -> Tuple: # safety check on max_len default value so we are sure the test works lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = """ He is very happy, UNwant\u00E9d,running""" lowerCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) lowerCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) lowerCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) shutil.rmtree(lowercase ) lowerCAmelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = """ He is very happy, UNwant\u00E9d,running""" lowerCAmelCase = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCAmelCase = chr(0XE_007 ) additional_special_tokens.append(lowercase ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) lowerCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) tokenizer.save_pretrained(lowercase ) lowerCAmelCase = tokenizer.__class__.from_pretrained(lowercase ) lowerCAmelCase = after_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) self.assertIn(lowercase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCAmelCase = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowercase ) def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.get_tokenizers(do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowerCAmelCase , lowerCAmelCase = self.get_clean_sequence(lowercase ) # a special token for Canine can be defined as follows: lowerCAmelCase = 0XE_005 lowerCAmelCase = chr(lowercase ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) lowerCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertEqual(len(lowercase ) , 1 ) lowerCAmelCase = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowercase ) lowerCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) lowerCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) lowerCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertEqual(lowercase , input_encoded + special_token_id ) lowerCAmelCase = tokenizer.decode(lowercase , skip_special_tokens=lowercase ) self.assertTrue(special_token not in decoded ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.get_tokenizers(do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowerCAmelCase = chr(0XE_005 ) lowerCAmelCase = chr(0XE_006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowercase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) lowerCAmelCase = tokenizer.tokenize(lowercase ) lowerCAmelCase = tokenizer.tokenize(lowercase ) self.assertEqual(len(lowercase ) , 1 ) self.assertEqual(len(lowercase ) , 1 ) self.assertEqual(token_a[0] , lowercase ) self.assertEqual(token_a[0] , lowercase ) @require_tokenizers def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.get_tokenizers(do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: lowerCAmelCase = 0XE_006 lowerCAmelCase = chr(lowercase ) lowerCAmelCase = AddedToken(lowercase , lstrip=lowercase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowercase ) tokenizer.from_pretrained(lowercase ) def _snake_case ( self ) -> Dict: lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowercase ) with open(os.path.join(lowercase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: lowerCAmelCase = json.load(lowercase ) with open(os.path.join(lowercase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: lowerCAmelCase = json.load(lowercase ) # a special token for Canine can be defined as follows: lowerCAmelCase = 0XE_006 lowerCAmelCase = chr(lowercase ) lowerCAmelCase = [new_token_a] lowerCAmelCase = [new_token_a] with open(os.path.join(lowercase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowercase , lowercase ) with open(os.path.join(lowercase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowercase , lowercase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCAmelCase = tokenizer_class.from_pretrained(lowercase , extra_ids=0 ) self.assertIn(lowercase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCAmelCase = 0XE_007 lowerCAmelCase = chr(lowercase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCAmelCase = [AddedToken(lowercase , lstrip=lowercase )] lowerCAmelCase = tokenizer_class.from_pretrained( lowercase , additional_special_tokens=lowercase , extra_ids=0 ) self.assertIn(lowercase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.get_tokenizers(do_lower_case=lowercase ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowerCAmelCase = """hello world""" if self.space_between_special_tokens: lowerCAmelCase = """[CLS] hello world [SEP]""" else: lowerCAmelCase = input lowerCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) lowerCAmelCase = tokenizer.decode(lowercase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowercase , [output, output.lower()] ) def _snake_case ( self ) -> List[str]: lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowerCAmelCase = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] lowerCAmelCase = """a""" lowerCAmelCase = ord(lowercase ) for attr in attributes_list: setattr(lowercase , attr + """_id""" , lowercase ) self.assertEqual(getattr(lowercase , lowercase ) , lowercase ) self.assertEqual(getattr(lowercase , attr + """_id""" ) , lowercase ) setattr(lowercase , attr + """_id""" , lowercase ) self.assertEqual(getattr(lowercase , lowercase ) , lowercase ) self.assertEqual(getattr(lowercase , attr + """_id""" ) , lowercase ) setattr(lowercase , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(lowercase , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(lowercase , """additional_special_tokens_ids""" ) , [] ) lowerCAmelCase = 0XE_006 lowerCAmelCase = chr(lowercase ) setattr(lowercase , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(lowercase , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(lowercase , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def _snake_case ( self ) -> Tuple: pass def _snake_case ( self ) -> Optional[Any]: pass def _snake_case ( self ) -> Dict: pass def _snake_case ( self ) -> str: pass def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Optional[int]: pass def _snake_case ( self ) -> Union[str, Any]: pass def _snake_case ( self ) -> Optional[Any]: pass
532
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a= {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a= _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
701
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a= logging.get_logger(__name__) a= '''▁''' a= { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } a= { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } a= { '''facebook/s2t-small-librispeech-asr''': 1_0_2_4, } a= ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] a= {'''mustc''': MUSTC_LANGS} class __lowercase ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = MAX_MODEL_INPUT_SIZES SCREAMING_SNAKE_CASE__ = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ = [] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<unk>" , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = None , **_lowerCamelCase , ): __UpperCamelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , do_upper_case=_lowerCamelCase , do_lower_case=_lowerCamelCase , tgt_lang=_lowerCamelCase , lang_codes=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) __UpperCamelCase : Union[str, Any] = do_upper_case __UpperCamelCase : Dict = do_lower_case __UpperCamelCase : List[str] = load_json(_lowerCamelCase ) __UpperCamelCase : List[Any] = {v: k for k, v in self.encoder.items()} __UpperCamelCase : int = spm_file __UpperCamelCase : List[Any] = load_spm(_lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: __UpperCamelCase : Any = lang_codes __UpperCamelCase : Any = LANGUAGES[lang_codes] __UpperCamelCase : str = [f"""<lang:{lang}>""" for lang in self.langs] __UpperCamelCase : List[str] = {lang: self.sp_model.PieceToId(f"""<lang:{lang}>""" ) for lang in self.langs} __UpperCamelCase : str = self.lang_tokens __UpperCamelCase : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __UpperCamelCase : Dict = {} @property def lowerCAmelCase ( self ): return len(self.encoder ) @property def lowerCAmelCase ( self ): return self._tgt_lang @tgt_lang.setter def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : Optional[int] = new_tgt_lang self.set_tgt_lang_special_tokens(_lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : int = self.lang_code_to_id[tgt_lang] __UpperCamelCase : List[str] = [lang_code_id] def lowerCAmelCase ( self , _lowerCamelCase ): return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase ): return self.encoder.get(_lowerCamelCase , self.encoder[self.unk_token] ) def lowerCAmelCase ( self , _lowerCamelCase ): return self.decoder.get(_lowerCamelCase , self.unk_token ) def lowerCAmelCase ( self , _lowerCamelCase ): __UpperCamelCase : Optional[Any] = [] __UpperCamelCase : List[str] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __UpperCamelCase : int = self.sp_model.decode(_lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __UpperCamelCase : int = [] else: current_sub_tokens.append(_lowerCamelCase ) __UpperCamelCase : str = self.sp_model.decode(_lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase ) __UpperCamelCase : Union[str, Any] = [1] * len(self.prefix_tokens ) __UpperCamelCase : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(_lowerCamelCase )) + ([0] * len(_lowerCamelCase )) + suffix_ones def lowerCAmelCase ( self ): __UpperCamelCase : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __UpperCamelCase : int = self.__dict__.copy() __UpperCamelCase : Dict = None return state def __setstate__( self , _lowerCamelCase ): __UpperCamelCase : List[str] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase : Optional[int] = {} __UpperCamelCase : Union[str, Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ): __UpperCamelCase : List[str] = Path(_lowerCamelCase ) assert save_dir.is_dir(), f"""{save_directory} should be a directory""" __UpperCamelCase : Optional[int] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(_lowerCamelCase , 'wb' ) as fi: __UpperCamelCase : Dict = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (str(_lowerCamelCase ), str(_lowerCamelCase )) def _UpperCamelCase ( _a : str , _a : Dict[str, Any] ): """simple docstring""" __UpperCamelCase : List[Any] = sentencepiece.SentencePieceProcessor(**_a ) spm.Load(str(_a ) ) return spm def _UpperCamelCase ( _a : str ): """simple docstring""" with open(_a , 'r' ) as f: return json.load(_a ) def _UpperCamelCase ( _a : Any , _a : str ): """simple docstring""" with open(_a , 'w' ) as f: json.dump(_a , _a , indent=2 )
287
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'sentencepiece.bpe.model'} a_ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } a_ = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } a_ = '▁' class UpperCAmelCase_ ( snake_case ): UpperCamelCase =VOCAB_FILES_NAMES UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase =["input_ids", "attention_mask"] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __lowercase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token __lowercase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __lowercase : Optional[Any] = vocab_file __lowercase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) __lowercase : List[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} __lowercase : str = len(self.sp_model ) - 1 __lowercase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase : int = [self.cls_token_id] __lowercase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[int]: __lowercase : Any = [self.sep_token_id] __lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCamelCase ( self ) -> Optional[Any]: return len(self.sp_model ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : List[str] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[str]: return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowercase : Optional[Any] = self.sp_model.PieceToId(UpperCamelCase_ ) return spm_id if spm_id else self.unk_token_id def _lowerCamelCase ( self , UpperCamelCase_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(UpperCamelCase_ ) def _lowerCamelCase ( self , UpperCamelCase_ ) -> int: __lowercase : Union[str, Any] = [] __lowercase : int = '''''' __lowercase : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token __lowercase : List[str] = True __lowercase : Optional[int] = [] else: current_sub_tokens.append(UpperCamelCase_ ) __lowercase : int = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def __getstate__( self ) -> Any: __lowercase : Optional[Any] = self.__dict__.copy() __lowercase : Optional[int] = None return state def __setstate__( self , UpperCamelCase_ ) -> Tuple: __lowercase : str = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowercase : Any = {} __lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: if not os.path.isdir(UpperCamelCase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowercase : Tuple = os.path.join( UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , '''wb''' ) as fi: __lowercase : Any = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
76
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> np.ndarray: _SCREAMING_SNAKE_CASE : List[Any] = int(np.ceil((x_end - xa) / step_size ) ) _SCREAMING_SNAKE_CASE : List[str] = np.zeros((n + 1,) ) _SCREAMING_SNAKE_CASE : Optional[Any] = ya _SCREAMING_SNAKE_CASE : Tuple = xa for k in range(__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : List[str] = y[k] + step_size * ode_func(__SCREAMING_SNAKE_CASE , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
338
0
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = '▁' lowercase_ = {'vocab_file': 'prophetnet.tokenizer'} lowercase_ = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } lowercase_ = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } lowercase_ = { 'microsoft/xprophetnet-large-wiki100-cased': 512, } def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = collections.OrderedDict() with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' ) as reader: __A = reader.readlines() for index, token in enumerate(__UpperCamelCase ): __A = token.rstrip('''\n''' ) __A = index return vocab class snake_case ( _lowerCAmelCase ): '''simple docstring''' A_ : Tuple = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[int] = ["input_ids", "attention_mask"] def __init__( self : Dict, _lowerCamelCase : str, _lowerCamelCase : Union[str, Any]="[SEP]", _lowerCamelCase : Tuple="[SEP]", _lowerCamelCase : List[Any]="[SEP]", _lowerCamelCase : Tuple="[UNK]", _lowerCamelCase : Union[str, Any]="[PAD]", _lowerCamelCase : List[Any]="[CLS]", _lowerCamelCase : Tuple="[MASK]", _lowerCamelCase : Optional[Dict[str, Any]] = None, **_lowerCamelCase : Optional[Any], ): '''simple docstring''' __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCamelCase, eos_token=_lowerCamelCase, sep_token=_lowerCamelCase, unk_token=_lowerCamelCase, pad_token=_lowerCamelCase, cls_token=_lowerCamelCase, mask_token=_lowerCamelCase, sp_model_kwargs=self.sp_model_kwargs, **_lowerCamelCase, ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowerCamelCase ) ) __A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __A = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10 ): __A = f'[unused{i}]' __A = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __A = 12 __A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_lowerCamelCase ) def __getstate__( self : List[str] ): '''simple docstring''' __A = self.__dict__.copy() __A = None return state def __setstate__( self : Dict, _lowerCamelCase : List[Any] ): '''simple docstring''' __A = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : List[int], _lowerCamelCase : Optional[List[int]] = None, _lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCamelCase, token_ids_a=_lowerCamelCase, already_has_special_tokens=_lowerCamelCase ) if token_ids_a is None: return ([0] * len(_lowerCamelCase )) + [1] return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1] def _SCREAMING_SNAKE_CASE ( self : str, _lowerCamelCase : List[int], _lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __A = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' __A = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : str ): '''simple docstring''' return self.sp_model.encode(_lowerCamelCase, out_type=_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Dict, _lowerCamelCase : Optional[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __A = self.sp_model.PieceToId(_lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : List[str] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : Dict ): '''simple docstring''' __A = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase, ''' ''' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : int, _lowerCamelCase : str, _lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_lowerCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __A = os.path.join( _lowerCamelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase, '''wb''' ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : List[int], _lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] __A = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
710
"""simple docstring""" lowercase_ = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowercase_ = [{'type': 'code', 'content': INSTALL_CONTENT}] lowercase_ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
215
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : int=3 , lowerCAmelCase_ : Dict=2_2_4 , lowerCAmelCase_ : Union[str, Any]=3_0 , lowerCAmelCase_ : Any=4_0_0 , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Any=[0.5, 0.5, 0.5] , lowerCAmelCase_ : int=[0.5, 0.5, 0.5] , ): """simple docstring""" lowercase_ = size if size is not None else {"""height""": 1_8, """width""": 1_8} lowercase_ = parent lowercase_ = batch_size lowercase_ = num_channels lowercase_ = image_size lowercase_ = min_resolution lowercase_ = max_resolution lowercase_ = do_resize lowercase_ = size lowercase_ = do_normalize lowercase_ = image_mean lowercase_ = image_std def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = EfficientFormerImageProcessorTester(self) @property def _UpperCAmelCase ( self : int): """simple docstring""" return self.image_proc_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""")) self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""")) self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""")) self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase_ , """size""")) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" pass def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase_ = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , Image.Image) # Test not batched input lowercase_ = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase_ = image_processor(lowerCAmelCase_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase_ = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , np.ndarray) # Test not batched input lowercase_ = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase_ = image_processor(lowerCAmelCase_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase_ = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_) for image in image_inputs: self.assertIsInstance(lowerCAmelCase_ , torch.Tensor) # Test not batched input lowercase_ = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase_ = image_processor(lowerCAmelCase_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
567
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase : Optional[Any] = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
567
1
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME __lowercase = ['''small''', '''medium''', '''large'''] __lowercase = '''lm_head.decoder.weight''' __lowercase = '''lm_head.weight''' def snake_case__ ( _A: str , _A: str ) -> Dict: '''simple docstring''' lowerCAmelCase = torch.load(_A ) lowerCAmelCase = d.pop(_A ) os.makedirs(_A , exist_ok=_A ) torch.save(_A , os.path.join(_A , _A ) ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) __lowercase = parser.parse_args() for MODEL in DIALOGPT_MODELS: __lowercase = os.path.join(args.dialogpt_path, f'{MODEL}_ft.pkl') __lowercase = f'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
605
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def snake_case__ ( _A: np.ndarray , _A: np.ndarray , _A: np.ndarray , _A: int , _A: int ) -> np.ndarray: '''simple docstring''' lowerCAmelCase = cva.getAffineTransform(_A , _A ) return cva.warpAffine(_A , _A , (rows, cols) ) if __name__ == "__main__": # read original image __lowercase = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __lowercase = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __lowercase , __lowercase = gray_img.shape # set different points to rotate image __lowercase = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) __lowercase = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) __lowercase = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) __lowercase = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list __lowercase = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __lowercase = plt.figure(1) __lowercase = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
605
1
"""simple docstring""" import requests from bsa import BeautifulSoup def _lowercase ( __lowerCAmelCase = "https://www.worldometers.info/coronavirus" ) -> dict: SCREAMING_SNAKE_CASE__ : Any = BeautifulSoup(requests.get(_A ).text , """html.parser""" ) SCREAMING_SNAKE_CASE__ : Tuple = soup.findAll("""h1""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = soup.findAll("""div""" , {"""class""": """maincounter-number"""} ) keys += soup.findAll("""span""" , {"""class""": """panel-title"""} ) values += soup.findAll("""div""" , {"""class""": """number-table-main"""} ) return {key.text.strip(): value.text.strip() for key, value in zip(_A , _A )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(f'{key}\n{value}\n')
680
def UpperCamelCase ( _A : int )-> int: """simple docstring""" if not isinstance(_A , _A ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) A__ = 0 A__ = str(_A ) while len(_A ) != 1: A__ = [int(_A ) for i in num_string] A__ = 1 for i in range(0 , len(_A ) ): total *= numbers[i] A__ = str(_A ) steps += 1 return steps def UpperCamelCase ( _A : int )-> int: """simple docstring""" if not isinstance(_A , _A ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) A__ = 0 A__ = str(_A ) while len(_A ) != 1: A__ = [int(_A ) for i in num_string] A__ = 0 for i in range(0 , len(_A ) ): total += numbers[i] A__ = str(_A ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
491
0
import math def _UpperCAmelCase ( __lowerCamelCase : int ) -> list[int]: _snake_case = [] _snake_case = 2 _snake_case = int(math.sqrt(lowerCAmelCase__ ) ) # Size of every segment _snake_case = [True] * (end + 1) _snake_case = [] while start <= end: if temp[start] is True: in_prime.append(lowerCAmelCase__ ) for i in range(start * start , end + 1 , lowerCAmelCase__ ): _snake_case = False start += 1 prime += in_prime _snake_case = end + 1 _snake_case = min(2 * end , lowerCAmelCase__ ) while low <= n: _snake_case = [True] * (high - low + 1) for each in in_prime: _snake_case = math.floor(low / each ) * each if t < low: t += each for j in range(lowerCAmelCase__ , high + 1 , lowerCAmelCase__ ): _snake_case = False for j in range(len(lowerCAmelCase__ ) ): if temp[j] is True: prime.append(j + low ) _snake_case = high + 1 _snake_case = min(high + end , lowerCAmelCase__ ) return prime print(sieve(10**6))
721
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : float , __lowerCamelCase : float ) -> float: return price * (1 + tax_rate) if __name__ == "__main__": print(F"{price_plus_tax(100, 0.25) = }") print(F"{price_plus_tax(1_25.50, 0.05) = }")
430
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : Dict = 10 , lowercase : str = 22 ) -> int: """simple docstring""" snake_case : Tuple = range(1 , lowercase ) snake_case : Tuple = range(1 , lowercase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F'''{solution(10, 22) = }''')
178
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def __magic_name__( *__UpperCAmelCase , **__UpperCAmelCase ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def __magic_name__( self ): lowerCAmelCase__ : int = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCAmelCase__ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : List[str] = image_classifier(__UpperCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__UpperCAmelCase ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) lowerCAmelCase__ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], ] , ) @require_tf def __magic_name__( self ): lowerCAmelCase__ : List[Any] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCAmelCase__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : str = image_classifier(__UpperCAmelCase , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) lowerCAmelCase__ : List[Any] = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], [ {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, {'''score''': 0.333, '''label''': ANY(__UpperCAmelCase )}, ], ] , ) @slow @require_torch def __magic_name__( self ): lowerCAmelCase__ : str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase__ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : str = image_classifier(__UpperCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCAmelCase__ : Tuple = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def __magic_name__( self ): lowerCAmelCase__ : Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase__ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCAmelCase__ : Union[str, Any] = image_classifier(__UpperCAmelCase , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowerCAmelCase__ : Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
678
0
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = [0] * len(SCREAMING_SNAKE_CASE_ ) for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): # use last results for better performance - dynamic programming lowercase__ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: lowercase__ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 lowercase__ = j return prefix_result def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return max(prefix_function(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod()
714
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase_ = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } lowercase_ = { """allenai/led-base-16384""": 1_6384, } class _snake_case ( lowercase__): UpperCamelCase__ : int =VOCAB_FILES_NAMES UpperCamelCase__ : Any =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : List[Any] =LEDTokenizer UpperCamelCase__ : Tuple =["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any], __lowercase : Optional[Any]=None, __lowercase : Dict=None, __lowercase : Tuple=None, __lowercase : Union[str, Any]="replace", __lowercase : Tuple="<s>", __lowercase : Optional[Any]="</s>", __lowercase : Tuple="</s>", __lowercase : List[str]="<s>", __lowercase : Tuple="<unk>", __lowercase : Dict="<pad>", __lowercase : Dict="<mask>", __lowercase : Any=False, __lowercase : Any=True, **__lowercase : List[Any], ): super().__init__( __lowercase, __lowercase, tokenizer_file=__lowercase, errors=__lowercase, bos_token=__lowercase, eos_token=__lowercase, sep_token=__lowercase, cls_token=__lowercase, unk_token=__lowercase, pad_token=__lowercase, mask_token=__lowercase, add_prefix_space=__lowercase, trim_offsets=__lowercase, **__lowercase, ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space", __lowercase ) != add_prefix_space: lowercase__ = getattr(__lowercase, pre_tok_state.pop("type" ) ) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**__lowercase ) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = "post_processor" lowercase__ = getattr(self.backend_tokenizer, __lowercase, __lowercase ) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state["sep"] ) if "cls" in state: lowercase__ = tuple(state["cls"] ) lowercase__ = False if state.get("add_prefix_space", __lowercase ) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get("trim_offsets", __lowercase ) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(__lowercase, state.pop("type" ) ) lowercase__ = component_class(**__lowercase ) setattr(self.backend_tokenizer, __lowercase, __lowercase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def A__ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self : Optional[int], __lowercase : Dict ): lowercase__ = AddedToken(__lowercase, lstrip=__lowercase, rstrip=__lowercase ) if isinstance(__lowercase, __lowercase ) else value lowercase__ = value def A__ ( self : Any, *__lowercase : List[Any], **__lowercase : Optional[Any] ): lowercase__ = kwargs.get("is_split_into_words", __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowercase, **__lowercase ) def A__ ( self : int, *__lowercase : Union[str, Any], **__lowercase : List[str] ): lowercase__ = kwargs.get("is_split_into_words", __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowercase, **__lowercase ) def A__ ( self : Optional[Any], __lowercase : str, __lowercase : Optional[str] = None ): lowercase__ = self._tokenizer.model.save(__lowercase, name=__lowercase ) return tuple(__lowercase ) def A__ ( self : List[str], __lowercase : int, __lowercase : Optional[int]=None ): lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self : int, __lowercase : List[int], __lowercase : Optional[List[int]] = None ): lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Union[str, Any], __lowercase : Union[Dict[str, EncodedInput], BatchEncoding], __lowercase : Optional[int] = None, __lowercase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD, __lowercase : Optional[int] = None, __lowercase : Optional[bool] = None, ): lowercase__ = super()._pad( encoded_inputs=__lowercase, max_length=__lowercase, padding_strategy=__lowercase, pad_to_multiple_of=__lowercase, return_attention_mask=__lowercase, ) # Load from model defaults if return_attention_mask is None: lowercase__ = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase__ = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase__ = len(encoded_inputs["global_attention_mask"] ) != len(__lowercase ) if needs_to_be_padded: lowercase__ = len(__lowercase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase__ = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowercase__ = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
37
0
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def lowerCAmelCase ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" __magic_name__ : Optional[Any] = np.inf def set_batch_size(UpperCAmelCase ) -> None: nonlocal batch_size if isinstance(UpperCAmelCase, UpperCAmelCase ): __magic_name__ : Optional[int] = min(UpperCAmelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(UpperCAmelCase, UpperCAmelCase ): __magic_name__ : Union[str, Any] = min(UpperCAmelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(UpperCAmelCase, UpperCAmelCase ) and feature.dtype == "binary": __magic_name__ : str = min(UpperCAmelCase, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(UpperCAmelCase, UpperCAmelCase ) return None if batch_size is np.inf else batch_size class A__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = None , **lowerCamelCase , ) -> Optional[int]: """simple docstring""" super().__init__( lowerCamelCase , split=lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase , streaming=lowerCamelCase , num_proc=lowerCamelCase , **lowerCamelCase , ) __magic_name__ : Union[str, Any] = path_or_paths if isinstance(lowerCamelCase , lowerCamelCase ) else {self.split: path_or_paths} __magic_name__ : int = _PACKAGED_DATASETS_MODULES['''parquet'''][1] __magic_name__ : Dict = Parquet( cache_dir=lowerCamelCase , data_files=lowerCamelCase , features=lowerCamelCase , hash=lowerCamelCase , **lowerCamelCase , ) def lowercase ( self ) -> int: """simple docstring""" if self.streaming: __magic_name__ : Dict = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __magic_name__ : Tuple = None __magic_name__ : int = None __magic_name__ : Optional[Any] = None __magic_name__ : Optional[int] = None self.builder.download_and_prepare( download_config=lowerCamelCase , download_mode=lowerCamelCase , verification_mode=lowerCamelCase , base_path=lowerCamelCase , num_proc=self.num_proc , ) __magic_name__ : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase , in_memory=self.keep_in_memory ) return dataset class A__ : def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) -> List[str]: """simple docstring""" __magic_name__ : Any = dataset __magic_name__ : Dict = path_or_buf __magic_name__ : List[Any] = batch_size or get_writer_batch_size(dataset.features ) __magic_name__ : int = parquet_writer_kwargs def lowercase ( self ) -> int: """simple docstring""" __magic_name__ : Tuple = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: __magic_name__ : Tuple = self._write(file_obj=lowerCamelCase , batch_size=lowerCamelCase , **self.parquet_writer_kwargs ) else: __magic_name__ : Union[str, Any] = self._write(file_obj=self.path_or_buf , batch_size=lowerCamelCase , **self.parquet_writer_kwargs ) return written def lowercase ( self , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> int: """simple docstring""" __magic_name__ : List[Any] = 0 __magic_name__ : Optional[int] = parquet_writer_kwargs.pop('''path_or_buf''' , lowerCamelCase ) __magic_name__ : List[Any] = self.dataset.features.arrow_schema __magic_name__ : int = pq.ParquetWriter(lowerCamelCase , schema=lowerCamelCase , **lowerCamelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , lowerCamelCase ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): __magic_name__ : List[str] = query_table( table=self.dataset._data , key=slice(lowerCamelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowerCamelCase ) written += batch.nbytes writer.close() return written
154
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Union[str, Any] ="xlm" lowerCamelCase__ : Any ={ "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self , lowerCamelCase=30145 , lowerCamelCase=2048 , lowerCamelCase=12 , lowerCamelCase=16 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=True , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=1 , lowerCamelCase=True , lowerCamelCase=512 , lowerCamelCase=2048**-0.5 , lowerCamelCase=1e-12 , lowerCamelCase=0.0_2 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=3 , lowerCamelCase=5 , lowerCamelCase=True , lowerCamelCase="first" , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=0.1 , lowerCamelCase=5 , lowerCamelCase=5 , lowerCamelCase=0 , lowerCamelCase=0 , lowerCamelCase=2 , lowerCamelCase=0 , **lowerCamelCase , ) -> Dict: """simple docstring""" __magic_name__ : List[Any] = vocab_size __magic_name__ : str = emb_dim __magic_name__ : Union[str, Any] = n_layers __magic_name__ : Optional[Any] = n_heads __magic_name__ : Dict = dropout __magic_name__ : List[str] = attention_dropout __magic_name__ : Optional[Any] = gelu_activation __magic_name__ : Any = sinusoidal_embeddings __magic_name__ : List[Any] = causal __magic_name__ : Optional[Any] = asm __magic_name__ : Tuple = n_langs __magic_name__ : Union[str, Any] = use_lang_emb __magic_name__ : str = layer_norm_eps __magic_name__ : int = bos_index __magic_name__ : int = eos_index __magic_name__ : Any = pad_index __magic_name__ : int = unk_index __magic_name__ : Tuple = mask_index __magic_name__ : int = is_encoder __magic_name__ : Any = max_position_embeddings __magic_name__ : List[Any] = embed_init_std __magic_name__ : int = init_std __magic_name__ : Optional[Any] = summary_type __magic_name__ : List[str] = summary_use_proj __magic_name__ : Optional[Any] = summary_activation __magic_name__ : Union[str, Any] = summary_proj_to_labels __magic_name__ : int = summary_first_dropout __magic_name__ : Dict = start_n_top __magic_name__ : int = end_n_top __magic_name__ : Optional[int] = mask_token_id __magic_name__ : Dict = lang_id if "n_words" in kwargs: __magic_name__ : str = kwargs['''n_words'''] super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , **lowerCamelCase ) class A__ ( __SCREAMING_SNAKE_CASE ): @property def lowercase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": __magic_name__ : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __magic_name__ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
154
1
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ): _snake_case = inspect.getfile(accelerate.test_utils ) _snake_case = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) _snake_case = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCamelCase( self ): _snake_case = F''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() _snake_case = [sys.executable] + distributed_args execute_subprocess_async(lowerCamelCase , env=os.environ.copy() )
368
'''simple docstring''' import functools def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = len(SCREAMING_SNAKE_CASE__ ) _snake_case = len(SCREAMING_SNAKE_CASE__ ) @functools.cache def min_distance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _snake_case = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , SCREAMING_SNAKE_CASE__ ) , 1 + min_distance(SCREAMING_SNAKE_CASE__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
368
1
import os import pytest from transformers.dynamic_module_utils import get_imports _SCREAMING_SNAKE_CASE : str = "\nimport os\n" _SCREAMING_SNAKE_CASE : List[Any] = "\ndef foo():\n import os\n return False\n" _SCREAMING_SNAKE_CASE : str = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" _SCREAMING_SNAKE_CASE : Any = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" _SCREAMING_SNAKE_CASE : Optional[Any] = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" _SCREAMING_SNAKE_CASE : List[Any] = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" _SCREAMING_SNAKE_CASE : List[str] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" _SCREAMING_SNAKE_CASE : Optional[Any] = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" _SCREAMING_SNAKE_CASE : Optional[Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" _SCREAMING_SNAKE_CASE : int = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" _SCREAMING_SNAKE_CASE : List[Any] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' ,UpperCamelCase_ ) def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = os.path.join(UpperCamelCase_ ,'''test_file.py''' ) with open(UpperCamelCase_ ,'''w''' ) as _tmp_file: _tmp_file.write(UpperCamelCase_ ) snake_case = get_imports(UpperCamelCase_ ) assert parsed_imports == ["os"]
550
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = 'deit' def __init__( self , __snake_case=7_6_8 , __snake_case=1_2 , __snake_case=1_2 , __snake_case=3_0_7_2 , __snake_case="gelu" , __snake_case=0.0 , __snake_case=0.0 , __snake_case=0.02 , __snake_case=1E-12 , __snake_case=2_2_4 , __snake_case=1_6 , __snake_case=3 , __snake_case=True , __snake_case=1_6 , **__snake_case , ): super().__init__(**__snake_case ) snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = layer_norm_eps snake_case = image_size snake_case = patch_size snake_case = num_channels snake_case = qkv_bias snake_case = encoder_stride class A__ ( snake_case__ ): """simple docstring""" __magic_name__ = version.parse('1.11' ) @property def a_ ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def a_ ( self ): return 1E-4
550
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''image_processor''', '''tokenizer'''] UpperCamelCase_ = '''CLIPImageProcessor''' UpperCamelCase_ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : int , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase , ) lowercase : Tuple =kwargs.pop('''feature_extractor''' ) lowercase : List[str] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : int=None , UpperCAmelCase : str=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : List[str] ) -> str: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowercase : int =self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: lowercase : Union[str, Any] =self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: lowercase : Optional[Any] =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def A__ ( self : Tuple , *UpperCAmelCase : Any , **UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Optional[int] , *UpperCAmelCase : Tuple , **UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A__ ( self : List[str] ) -> str: '''simple docstring''' lowercase : Union[str, Any] =self.tokenizer.model_input_names lowercase : List[str] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A__ ( self : Dict ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase , ) return self.image_processor_class @property def A__ ( self : Any ) -> Dict: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase , ) return self.image_processor
8
'''simple docstring''' def lowercase_ ( __A : float , __A : int ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(__A ) , __A ) return number - int(__A ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
1
from typing import TYPE_CHECKING from ...utils import _LazyModule __A = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
def snake_case__ ( lowercase , lowercase ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
613
0
'''simple docstring''' import math def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = [True] * n UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Tuple = False UpperCAmelCase : str = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCAmelCase : Dict = i * 2 while index < n: UpperCAmelCase : Tuple = False UpperCAmelCase : Tuple = index + i UpperCAmelCase : List[str] = [2] for i in range(3 , __magic_name__ , 2 ): if is_prime[i]: primes.append(__magic_name__ ) return primes def lowercase ( __magic_name__ = 9999_6666_3333 ): '''simple docstring''' UpperCAmelCase : Optional[Any] = math.floor(math.sqrt(__magic_name__ ) ) + 100 UpperCAmelCase : List[str] = prime_sieve(__magic_name__ ) UpperCAmelCase : List[str] = 0 UpperCAmelCase : Any = 0 UpperCAmelCase : Union[str, Any] = primes[prime_index] while (last_prime**2) <= limit: UpperCAmelCase : List[str] = primes[prime_index + 1] UpperCAmelCase : Dict = last_prime**2 UpperCAmelCase : Tuple = next_prime**2 # Get numbers divisible by lps(current) UpperCAmelCase : Union[str, Any] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCAmelCase : List[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCAmelCase : List[str] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCAmelCase : List[Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
716
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : str = "▁" a : Union[str, Any] = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} a : Tuple = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } a : List[str] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } a : List[str] = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } a : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCamelCase__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ["input_ids"] SCREAMING_SNAKE_CASE__ : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Any = RESOURCE_FILES_NAMES def __init__( self , snake_case , snake_case=None , snake_case=False , snake_case="utf8" , snake_case="[UNK]" , snake_case="[SEP]" , snake_case="[PAD]" , snake_case="[CLS]" , snake_case="[MASK]" , snake_case = None , **snake_case , ): '''simple docstring''' UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , vocab_file=snake_case , encoding=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) UpperCAmelCase : Tuple = do_lower_case UpperCAmelCase : str = sentencepiece_model_ckpt UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase : Optional[int] = self.load_vocab(filepath=snake_case ) else: UpperCAmelCase : Optional[Any] = {self.sp_model.id_to_piece(snake_case ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase : Optional[Any] = {v: k for k, v in self.vocab.items()} def A_ ( self , snake_case ): '''simple docstring''' if text is None: return None UpperCAmelCase : List[str] = self.tokenize(snake_case ) UpperCAmelCase , UpperCAmelCase : str = "", [] for i, ch in enumerate(snake_case ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase : Tuple = self.SP_CHAR_MAPPING.get(snake_case ) else: UpperCAmelCase : Optional[Any] = unicodedata.normalize("NFKC" , snake_case ) if self.is_whitespace(snake_case ): continue normalized_text += ch char_mapping.extend([i] * len(snake_case ) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : List[str] = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase : List[str] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase : Optional[Any] = token[1:] UpperCAmelCase : List[str] = text[offset:].index(snake_case ) + offset UpperCAmelCase : Optional[int] = start + len(snake_case ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase : List[Any] = end return token_mapping @property def A_ ( self ): '''simple docstring''' return len(self.vocab ) def A_ ( self ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): '''simple docstring''' UpperCAmelCase : int = self.__dict__.copy() UpperCAmelCase : List[str] = None return state def __setstate__( self , snake_case ): '''simple docstring''' UpperCAmelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase : int = {} UpperCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def A_ ( self , snake_case ): '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(snake_case , snake_case ) for c in text) ) def A_ ( self , snake_case , snake_case=False , snake_case=6_4 , snake_case=0.1 ): '''simple docstring''' if self.sp_model_kwargs.get("enable_sampling" ) is True: UpperCAmelCase : Any = True if self.sp_model_kwargs.get("alpha" ) is not None: UpperCAmelCase : List[str] = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: UpperCAmelCase : Optional[int] = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: UpperCAmelCase : Dict = self.sp_model.EncodeAsPieces(snake_case ) else: UpperCAmelCase : List[str] = self.sp_model.SampleEncodeAsPieces(snake_case , snake_case , snake_case ) UpperCAmelCase : Dict = [] for pi, piece in enumerate(snake_case ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(snake_case ) and pi != 0: new_pieces.append(snake_case ) continue else: continue UpperCAmelCase : Optional[int] = 0 for i, chunk in enumerate(snake_case ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(snake_case ) or self.is_punct(snake_case ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(snake_case ) UpperCAmelCase : Optional[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase : Dict = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase : int = i if len(snake_case ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[Any] = "".join(snake_case ).replace(snake_case , " " ).strip() return out_string def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : str = self.convert_ids_to_tokens(snake_case ) UpperCAmelCase : List[Any] = "".join(snake_case ).replace(snake_case , " " ).strip() return out_string def A_ ( self , snake_case ): '''simple docstring''' return self.vocab.get(snake_case , self.vocab.get(self.unk_token ) ) def A_ ( self , snake_case ): '''simple docstring''' return self.reverse_vocab.get(snake_case , self.unk_token ) def A_ ( self , snake_case , snake_case=None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] UpperCAmelCase : Optional[int] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def A_ ( self , snake_case , snake_case=None ): '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def A_ ( self , snake_case , snake_case=None , snake_case=False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1] def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(snake_case ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(snake_case ) + 1) + [1] * (len(snake_case ) + 3) def A_ ( self , snake_case ): '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def A_ ( self , snake_case ): '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def A_ ( self , snake_case ): '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def A_ ( self , snake_case ): '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(snake_case ) == 1: UpperCAmelCase : List[str] = unicodedata.category(snake_case ) if cat == "Zs": return True return False def A_ ( self , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = {} with io.open(snake_case , "r" , encoding="utf-8" ) as f: for index, line in enumerate(snake_case ): UpperCAmelCase : Union[str, Any] = line.rstrip("\n" ) UpperCAmelCase : Tuple = int(snake_case ) return token_to_idx def A_ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCAmelCase : Any = 0 if os.path.isdir(snake_case ): UpperCAmelCase : int = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: UpperCAmelCase : List[str] = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(snake_case , "w" , encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) UpperCAmelCase : Optional[Any] = token_index writer.write(token + "\n" ) index += 1 UpperCAmelCase : List[str] = os.path.join(snake_case , "sentencepiece.bpe.model" ) with open(snake_case , "wb" ) as fi: UpperCAmelCase : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (vocab_file,)
609
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''neck_hidden_sizes''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''num_attention_heads''' ) ) class __lowerCAmelCase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any]=13 , lowerCAmelCase__ : Any=32 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : List[Any]=640 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]="silu" , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Optional[int]=32 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=10 , lowerCAmelCase__ : List[str]=None , ) -> str: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = last_hidden_size _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = conv_kernel_size _UpperCamelCase = output_stride _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = classifier_dropout_prob _UpperCamelCase = use_labels _UpperCamelCase = is_training _UpperCamelCase = num_labels _UpperCamelCase = initializer_range _UpperCamelCase = scope def snake_case__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = MobileViTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] ) -> str: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = MobileViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int ) -> Any: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = MobileViTForSemanticSegmentation(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) _UpperCamelCase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def snake_case__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : List[str] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _snake_case : Any = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _snake_case : List[Any] = False _snake_case : Tuple = False _snake_case : Dict = False _snake_case : List[str] = False def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = MobileViTModelTester(self ) _UpperCamelCase = MobileViTConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViT does not use inputs_embeds''' ) def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''MobileViT does not support input and output embeddings''' ) def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''MobileViT does not output attentions''' ) def snake_case__ ( self : Dict ) -> List[str]: '''simple docstring''' pass def snake_case__ ( self : List[Any] ) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case__ ( self : str ) -> Any: '''simple docstring''' pass def snake_case__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ): _UpperCamelCase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = 5 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _UpperCamelCase = 2 for i in range(len(lowerCAmelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__ ) @slow def snake_case__ ( self : str ) -> str: '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = MobileViTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def a__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' return MobileViTImageProcessor.from_pretrained('''apple/mobilevit-xx-small''' ) if is_vision_available() else None @slow def snake_case__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = MobileViTForImageClassification.from_pretrained('''apple/mobilevit-xx-small''' ).to(lowerCAmelCase__ ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) # verify the logits _UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def snake_case__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _UpperCamelCase = model.to(lowerCAmelCase__ ) _UpperCamelCase = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) _UpperCamelCase = outputs.logits # verify the logits _UpperCamelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCAmelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def snake_case__ ( self : Optional[Any] ) -> str: '''simple docstring''' _UpperCamelCase = MobileViTForSemanticSegmentation.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _UpperCamelCase = model.to(lowerCAmelCase__ ) _UpperCamelCase = MobileViTImageProcessor.from_pretrained('''apple/deeplabv3-mobilevit-xx-small''' ) _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase = model(**lowerCAmelCase__ ) _UpperCamelCase = outputs.logits.detach().cpu() _UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(50, 60)] ) _UpperCamelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ ) _UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ) _UpperCamelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ )
98
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) __A : str = logging.getLogger(__name__) @dataclass class __snake_case : """simple docstring""" lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowercase = field( default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowercase = field( default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'}) lowercase = field( default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} ,) lowercase = field(default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Whether tp freeze the encoder.'}) lowercase = field(default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Whether to freeze the embeddings.'}) @dataclass class __snake_case : """simple docstring""" lowercase = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'}) lowercase = field( default='summarization' ,metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} ,) lowercase = field( default=10_24 ,metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowercase = field( default=1_28 ,metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowercase = field( default=1_42 ,metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } ,) lowercase = field( default=1_42 ,metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } ,) lowercase = field(default=-1 ,metadata={'help': '# training examples. -1 means use all.'}) lowercase = field(default=-1 ,metadata={'help': '# validation examples. -1 means use all.'}) lowercase = field(default=-1 ,metadata={'help': '# test examples. -1 means use all.'}) lowercase = field(default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Source language id for translation.'}) lowercase = field(default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'Target language id for translation.'}) lowercase = field(default=_SCREAMING_SNAKE_CASE ,metadata={'help': '# num_beams to use for evaluation.'}) lowercase = field( default=_SCREAMING_SNAKE_CASE ,metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} ,) def UpperCamelCase_ ( A__ : Tuple , A__ : List[str] , A__ : str ): '''simple docstring''' logger.info(f'***** {split} metrics *****' ) for key in sorted(metrics.keys() ): logger.info(f' {key} = {metrics[key]}' ) save_json(A__ , os.path.join(A__ , f'{split}_results.json' ) ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = parser.parse_args_into_dataclasses() check_output_dir(A__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , A__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase_ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ : List[Any] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(A__ , A__ , A__ ): assert hasattr(A__ , A__ ), f'({config.__class__.__name__}) doesn\'t have a `{p}` attribute' setattr(A__ , A__ , getattr(A__ , A__ ) ) lowerCAmelCase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=A__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(A__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowerCAmelCase_ : List[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(A__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(A__ , A__ ): lowerCAmelCase_ : List[str] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowerCAmelCase_ : int = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(A__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowerCAmelCase_ : Any = SeqaSeqDataset # Get datasets lowerCAmelCase_ : List[str] = ( dataset_class( A__ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) lowerCAmelCase_ : List[Any] = ( dataset_class( A__ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowerCAmelCase_ : List[Any] = ( dataset_class( A__ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer lowerCAmelCase_ : Dict = ( build_compute_metrics_fn(data_args.task , A__ ) if training_args.predict_with_generate else None ) lowerCAmelCase_ : str = SeqaSeqTrainer( model=A__ , args=A__ , data_args=A__ , train_dataset=A__ , eval_dataset=A__ , data_collator=SeqaSeqDataCollator( A__ , A__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=A__ , tokenizer=A__ , ) lowerCAmelCase_ : Dict = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) lowerCAmelCase_ : Optional[int] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowerCAmelCase_ : Union[str, Any] = train_result.metrics lowerCAmelCase_ : Optional[int] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , A__ , training_args.output_dir ) all_metrics.update(A__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowerCAmelCase_ : Any = trainer.evaluate(metric_key_prefix="""val""" ) lowerCAmelCase_ : Optional[int] = data_args.n_val lowerCAmelCase_ : Any = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) lowerCAmelCase_ : Union[str, Any] = trainer.predict(test_dataset=A__ , metric_key_prefix="""test""" ) lowerCAmelCase_ : Optional[int] = test_output.metrics lowerCAmelCase_ : List[Any] = data_args.n_test if trainer.is_world_process_zero(): lowerCAmelCase_ : int = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , A__ , training_args.output_dir ) all_metrics.update(A__ ) if training_args.predict_with_generate: lowerCAmelCase_ : int = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ ) lowerCAmelCase_ : List[Any] = lmap(str.strip , A__ ) write_txt_file(A__ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(A__ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def UpperCamelCase_ ( A__ : Optional[int] ): '''simple docstring''' main() if __name__ == "__main__": main()
275
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = ['DeiTFeatureExtractor'] __SCREAMING_SNAKE_CASE = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
340
'''simple docstring''' def __a ( lowerCAmelCase__ : list ): if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] a__ : List[str] = grid[0] for row_n in range(1 , len(lowerCAmelCase__ ) ): a__ : Tuple = grid[row_n] a__ : Union[str, Any] = fill_row(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Optional[Any] = grid[row_n] return grid[-1][-1] def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list ): current_row[0] += row_above[0] for cell_n in range(1 , len(lowerCAmelCase__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
340
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any] ): A_ = parent def __A ( self : List[str] ): return {} def __snake_case ( ): """simple docstring""" A_ = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" A_ = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Dict = MarkupLMFeatureExtractor if is_bsa_available() else None def __A ( self : int ): A_ = MarkupLMFeatureExtractionTester(self ) @property def __A ( self : List[str] ): return self.feature_extract_tester.prepare_feat_extract_dict() def __A ( self : Tuple ): # Initialize feature_extractor A_ = self.feature_extraction_class() # Test not batched input A_ = get_html_strings()[0] A_ = feature_extractor(UpperCAmelCase ) # fmt: off A_ = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] A_ = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , UpperCAmelCase ) self.assertEqual(encoding.xpaths , UpperCAmelCase ) # Test batched A_ = get_html_strings() A_ = feature_extractor(UpperCAmelCase ) # fmt: off A_ = expected_nodes + [["My First Heading", "My first paragraph."]] A_ = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , UpperCAmelCase ) self.assertEqual(encoding.xpaths , UpperCAmelCase )
86
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase_ ( nn.Module ): _A : int _A : jnp.dtype = jnp.floataa def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , snake_case__ ) -> Tuple: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = hidden_states.shape UpperCAmelCase = jax.image.resize( snake_case__ , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) UpperCAmelCase = self.conv(snake_case__ ) return hidden_states class UpperCamelCase_ ( nn.Module ): _A : int _A : jnp.dtype = jnp.floataa def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , snake_case__ ) -> Any: """simple docstring""" UpperCAmelCase = self.conv(snake_case__ ) return hidden_states class UpperCamelCase_ ( nn.Module ): _A : int _A : int = None _A : float = 0.0 _A : bool = None _A : jnp.dtype = jnp.floataa def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.in_channels if self.out_channels is None else self.out_channels UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) UpperCAmelCase = nn.Conv( snake_case__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase = nn.Dense(snake_case__ , dtype=self.dtype ) UpperCAmelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) UpperCAmelCase = nn.Dropout(self.dropout_prob ) UpperCAmelCase = nn.Conv( snake_case__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) UpperCAmelCase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut UpperCAmelCase = None if use_nin_shortcut: UpperCAmelCase = nn.Conv( snake_case__ , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self , snake_case__ , snake_case__ , snake_case__=True ) -> List[Any]: """simple docstring""" UpperCAmelCase = hidden_states UpperCAmelCase = self.norma(snake_case__ ) UpperCAmelCase = nn.swish(snake_case__ ) UpperCAmelCase = self.conva(snake_case__ ) UpperCAmelCase = self.time_emb_proj(nn.swish(snake_case__ ) ) UpperCAmelCase = jnp.expand_dims(jnp.expand_dims(snake_case__ , 1 ) , 1 ) UpperCAmelCase = hidden_states + temb UpperCAmelCase = self.norma(snake_case__ ) UpperCAmelCase = nn.swish(snake_case__ ) UpperCAmelCase = self.dropout(snake_case__ , snake_case__ ) UpperCAmelCase = self.conva(snake_case__ ) if self.conv_shortcut is not None: UpperCAmelCase = self.conv_shortcut(snake_case__ ) return hidden_states + residual
673
0
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' with open(__a ) as metadata_file: lowercase__ : List[Any] = json.load(__a ) lowercase__ : Dict = LukeConfig(use_entity_aware_attention=__a , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path lowercase__ : Optional[Any] = torch.load(__a , map_location="""cpu""" ) # Load the entity vocab file lowercase__ : Optional[Any] = load_entity_vocab(__a ) lowercase__ : Dict = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks lowercase__ : List[str] = AddedToken("""<ent>""" , lstrip=__a , rstrip=__a ) lowercase__ : int = AddedToken("""<ent2>""" , lstrip=__a , rstrip=__a ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(__a ) with open(os.path.join(__a , LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(__a , __a ) lowercase__ : Optional[Any] = LukeTokenizer.from_pretrained(__a ) # Initialize the embeddings of the special tokens lowercase__ : List[str] = state_dict["""embeddings.word_embeddings.weight"""] lowercase__ : Union[str, Any] = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) lowercase__ : Dict = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) lowercase__ : List[str] = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase__ : str = F'encoder.layer.{layer_index}.attention.self.' lowercase__ : Optional[int] = state_dict[prefix + matrix_name] lowercase__ : Any = state_dict[prefix + matrix_name] lowercase__ : Optional[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase__ : Tuple = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowercase__ : Union[str, Any] = entity_emb[entity_vocab["""[MASK]"""]] lowercase__ : Tuple = LukeModel(config=__a ).eval() lowercase__ , lowercase__ : Optional[int] = model.load_state_dict(__a , strict=__a ) if not (len(__a ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(__a )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs lowercase__ : List[Any] = LukeTokenizer.from_pretrained(__a , task="""entity_classification""" ) lowercase__ : Tuple = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) lowercase__ : Union[str, Any] = (39, 42) lowercase__ : Union[str, Any] = tokenizer(__a , entity_spans=[span] , add_prefix_space=__a , return_tensors="""pt""" ) lowercase__ : Tuple = model(**__a ) # Verify word hidden states if model_size == "large": lowercase__ : List[str] = torch.Size((1, 42, 10_24) ) lowercase__ : Optional[Any] = torch.tensor( [[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]] ) else: # base lowercase__ : int = torch.Size((1, 42, 7_68) ) lowercase__ : List[str] = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __a , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": lowercase__ : Dict = torch.Size((1, 1, 10_24) ) lowercase__ : str = torch.tensor([[0.0466, -0.0106, -0.0179]] ) else: # base lowercase__ : Union[str, Any] = torch.Size((1, 1, 7_68) ) lowercase__ : Dict = torch.tensor([[0.1457, 0.1044, 0.0174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __a , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(__a ) ) model.save_pretrained(__a ) def UpperCamelCase ( lowercase_ ) -> Optional[Any]: '''simple docstring''' lowercase__ : Tuple = {} with open(__a , """r""" , encoding="""utf-8""" ) as f: for index, line in enumerate(__a ): lowercase__ , lowercase__ : Dict = line.rstrip().split("""\t""" ) lowercase__ : Tuple = index return entity_vocab if __name__ == "__main__": lowerCamelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCamelCase__ : Dict = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
720
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : Any = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : Any = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : int = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : Optional[Any] = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : Tuple = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : List[str] = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : Union[str, Any] = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : Optional[Any] = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : Dict = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : Optional[Any] = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : Optional[Any] = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) class _snake_case ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase : List[Any] = ['flax'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(self , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""]) @classmethod def lowercase__ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' requires_backends(cls , ["""flax"""])
495
0
'''simple docstring''' import numpy as np __snake_case : Optional[Any] = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class A : def __init__( self ) -> None: _a = np.array(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> np.ndarray: _a , _a = np.where(letter == self.SQUARE ) _a = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> str: _a = self.SQUARE[indexa - 1, indexa - 1] return letter def __lowerCAmelCase ( self , snake_case_ ) -> str: _a = message.lower() _a = message.replace(" " , "" ) _a = message.replace("j" , "i" ) _a = np.empty((2, len(snake_case_ )) ) for letter_index in range(len(snake_case_ ) ): _a = self.letter_to_numbers(message[letter_index] ) _a = numbers[0] _a = numbers[1] _a = first_step.reshape(2 * len(snake_case_ ) ) _a = "" for numbers_index in range(len(snake_case_ ) ): _a = int(second_step[numbers_index * 2] ) _a = int(second_step[(numbers_index * 2) + 1] ) _a = self.numbers_to_letter(snake_case_ , snake_case_ ) _a = encoded_message + letter return encoded_message def __lowerCAmelCase ( self , snake_case_ ) -> str: _a = message.lower() message.replace(" " , "" ) _a = np.empty(2 * len(snake_case_ ) ) for letter_index in range(len(snake_case_ ) ): _a = self.letter_to_numbers(message[letter_index] ) _a = numbers[0] _a = numbers[1] _a = first_step.reshape((2, len(snake_case_ )) ) _a = "" for numbers_index in range(len(snake_case_ ) ): _a = int(second_step[0, numbers_index] ) _a = int(second_step[1, numbers_index] ) _a = self.numbers_to_letter(snake_case_ , snake_case_ ) _a = decoded_message + letter return decoded_message
131
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : int | str ): _a = str(lowerCamelCase__ ) return n == n[::-1] def _lowercase ( lowerCamelCase__ : int = 1_000_000 ): _a = 0 for i in range(1, lowerCamelCase__ ): if is_palindrome(lowerCamelCase__ ) and is_palindrome(bin(lowerCamelCase__ ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
131
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''uw-madison/mra-base-512-4''': '''https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json''', } class a__ ( UpperCamelCase_ ): snake_case__ = '''mra''' def __init__( self : str ,a__ : List[Any]=5_0265 ,a__ : Optional[Any]=768 ,a__ : List[Any]=12 ,a__ : Any=12 ,a__ : List[Any]=3072 ,a__ : Optional[Any]="gelu" ,a__ : int=0.1 ,a__ : Any=0.1 ,a__ : List[Any]=512 ,a__ : Dict=1 ,a__ : List[str]=0.02 ,a__ : List[Any]=1E-5 ,a__ : Union[str, Any]="absolute" ,a__ : int=4 ,a__ : Dict="full" ,a__ : Dict=0 ,a__ : Optional[Any]=0 ,a__ : Tuple=1 ,a__ : str=0 ,a__ : List[Any]=2 ,**a__ : Optional[int] ,) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=a__ ,bos_token_id=a__ ,eos_token_id=a__ ,**a__) _lowerCAmelCase:List[str] = vocab_size _lowerCAmelCase:Optional[int] = max_position_embeddings _lowerCAmelCase:List[Any] = hidden_size _lowerCAmelCase:List[str] = num_hidden_layers _lowerCAmelCase:List[Any] = num_attention_heads _lowerCAmelCase:str = intermediate_size _lowerCAmelCase:Optional[int] = hidden_act _lowerCAmelCase:Tuple = hidden_dropout_prob _lowerCAmelCase:Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase:Tuple = initializer_range _lowerCAmelCase:Tuple = type_vocab_size _lowerCAmelCase:List[str] = layer_norm_eps _lowerCAmelCase:List[str] = position_embedding_type _lowerCAmelCase:Optional[Any] = block_per_row _lowerCAmelCase:Dict = approx_mode _lowerCAmelCase:Optional[Any] = initial_prior_first_n_blocks _lowerCAmelCase:int = initial_prior_diagonal_n_blocks
705
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCAmelCase ( snake_case : Tuple ): _lowerCAmelCase:Tuple = 384 if "tiny" in model_name: _lowerCAmelCase:Any = [3, 3, 9, 3] _lowerCAmelCase:Union[str, Any] = [96, 192, 384, 768] if "small" in model_name: _lowerCAmelCase:List[str] = [3, 3, 27, 3] _lowerCAmelCase:Any = [96, 192, 384, 768] if "base" in model_name: _lowerCAmelCase:int = [3, 3, 27, 3] _lowerCAmelCase:int = [128, 256, 512, 1024] _lowerCAmelCase:Any = 512 if "large" in model_name: _lowerCAmelCase:Optional[int] = [3, 3, 27, 3] _lowerCAmelCase:List[str] = [192, 384, 768, 1536] _lowerCAmelCase:List[Any] = 768 if "xlarge" in model_name: _lowerCAmelCase:str = [3, 3, 27, 3] _lowerCAmelCase:Optional[int] = [256, 512, 1024, 2048] _lowerCAmelCase:Optional[int] = 1024 # set label information _lowerCAmelCase:Tuple = 150 _lowerCAmelCase:int = '''huggingface/label-files''' _lowerCAmelCase:Optional[int] = '''ade20k-id2label.json''' _lowerCAmelCase:List[str] = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowerCAmelCase:Dict = {int(snake_case ): v for k, v in idalabel.items()} _lowerCAmelCase:Tuple = {v: k for k, v in idalabel.items()} _lowerCAmelCase:str = ConvNextConfig( depths=snake_case , hidden_sizes=snake_case , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) _lowerCAmelCase:Union[str, Any] = UperNetConfig( backbone_config=snake_case , auxiliary_in_channels=snake_case , num_labels=snake_case , idalabel=snake_case , labelaid=snake_case , ) return config def UpperCAmelCase ( snake_case : List[Any] ): _lowerCAmelCase:List[str] = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def UpperCAmelCase ( snake_case : int , snake_case : Tuple , snake_case : Optional[int] ): _lowerCAmelCase:int = dct.pop(snake_case ) _lowerCAmelCase:Union[str, Any] = val def UpperCAmelCase ( snake_case : List[str] , snake_case : int , snake_case : Optional[Any] ): _lowerCAmelCase:Dict = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } _lowerCAmelCase:Optional[Any] = model_name_to_url[model_name] _lowerCAmelCase:Optional[Any] = torch.hub.load_state_dict_from_url(snake_case , map_location='''cpu''' )['''state_dict'''] _lowerCAmelCase:Tuple = get_upernet_config(snake_case ) _lowerCAmelCase:Union[str, Any] = UperNetForSemanticSegmentation(snake_case ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase:str = state_dict.pop(snake_case ) if "bn" in key: _lowerCAmelCase:str = key.replace('''bn''' , '''batch_norm''' ) _lowerCAmelCase:Optional[Any] = val # rename keys _lowerCAmelCase:int = create_rename_keys(snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) model.load_state_dict(snake_case ) # verify on image _lowerCAmelCase:Optional[int] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' _lowerCAmelCase:Optional[int] = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('''RGB''' ) _lowerCAmelCase:int = SegformerImageProcessor() _lowerCAmelCase:Optional[int] = processor(snake_case , return_tensors='''pt''' ).pixel_values with torch.no_grad(): _lowerCAmelCase:str = model(snake_case ) if model_name == "upernet-convnext-tiny": _lowerCAmelCase:Union[str, Any] = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ) elif model_name == "upernet-convnext-small": _lowerCAmelCase:List[str] = torch.tensor( [[-8.82_36, -8.82_36, -8.67_71], [-8.82_36, -8.82_36, -8.67_71], [-8.76_38, -8.76_38, -8.62_40]] ) elif model_name == "upernet-convnext-base": _lowerCAmelCase:Dict = torch.tensor( [[-8.85_58, -8.85_58, -8.69_05], [-8.85_58, -8.85_58, -8.69_05], [-8.76_69, -8.76_69, -8.60_21]] ) elif model_name == "upernet-convnext-large": _lowerCAmelCase:Union[str, Any] = torch.tensor( [[-8.66_60, -8.66_60, -8.62_10], [-8.66_60, -8.66_60, -8.62_10], [-8.63_10, -8.63_10, -8.59_64]] ) elif model_name == "upernet-convnext-xlarge": _lowerCAmelCase:List[str] = torch.tensor( [[-8.49_80, -8.49_80, -8.39_77], [-8.49_80, -8.49_80, -8.39_77], [-8.43_79, -8.43_79, -8.34_12]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(snake_case ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F"upernet-convnext-{size}" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCamelCase__ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
439
0
import itertools import string from collections.abc import Generator, Iterable def _snake_case ( lowerCAmelCase : Iterable[str] , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = iter(lowerCAmelCase ) while True: SCREAMING_SNAKE_CASE_ : List[Any] = tuple(itertools.islice(lowerCAmelCase , lowerCAmelCase ) ) if not chunk: return yield chunk def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = "" if len(lowerCAmelCase ) < 2: return dirty for i in range(len(lowerCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowerCAmelCase ) & 1: clean += "X" return clean def _snake_case ( lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler SCREAMING_SNAKE_CASE_ : Tuple = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowerCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowerCAmelCase ) return table def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = generate_table(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : int = prepare_input(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCAmelCase , 2 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = divmod(table.index(lowerCAmelCase ) , 5 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = divmod(table.index(lowerCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = generate_table(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowerCAmelCase , 2 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = divmod(table.index(lowerCAmelCase ) , 5 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = divmod(table.index(lowerCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
216
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Optional[Any] = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
216
1
'''simple docstring''' import os def _lowerCAmelCase ( ): with open(os.path.dirname(lowerCamelCase_ ) + '''/p022_names.txt''' ) as file: __lowercase = str(file.readlines()[0] ) __lowercase = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() __lowercase = 0 __lowercase = 0 for i, name in enumerate(lowerCamelCase_ ): for letter in name: name_score += ord(lowerCamelCase_ ) - 6_4 total_score += (i + 1) * name_score __lowercase = 0 return total_score if __name__ == "__main__": print(solution())
56
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _SCREAMING_SNAKE_CASE = {'''configuration_van''': ['''VAN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VanConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ '''VAN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''VanForImageClassification''', '''VanModel''', '''VanPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
56
1
def lowerCAmelCase_ ( _snake_case : int ) -> bool: '''simple docstring''' return str(_snake_case ) == str(_snake_case )[::-1] def lowerCAmelCase_ ( _snake_case : int ) -> int: '''simple docstring''' return int(_snake_case ) + int(str(_snake_case )[::-1] ) def lowerCAmelCase_ ( _snake_case : int = 10000 ) -> int: '''simple docstring''' __magic_name__ : str = [] for num in range(1 , _snake_case ): __magic_name__ : Optional[int] = 0 __magic_name__ : Tuple = num while iterations < 50: __magic_name__ : List[str] = sum_reverse(_snake_case ) iterations += 1 if is_palindrome(_snake_case ): break else: lychrel_nums.append(_snake_case ) return len(_snake_case ) if __name__ == "__main__": print(F"{solution() = }")
124
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=True , _a=False , _a=False , _a=False , _a=2 , _a=99 , _a=0 , _a=32 , _a=5 , _a=4 , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=2 , _a=4 , _a="last" , _a=True , _a=None , _a=0 , ): __magic_name__ : List[Any] = parent __magic_name__ : Optional[int] = batch_size __magic_name__ : Optional[Any] = seq_length __magic_name__ : Tuple = is_training __magic_name__ : str = use_input_lengths __magic_name__ : List[str] = use_token_type_ids __magic_name__ : Optional[Any] = use_labels __magic_name__ : Union[str, Any] = gelu_activation __magic_name__ : Optional[int] = sinusoidal_embeddings __magic_name__ : Tuple = causal __magic_name__ : Tuple = asm __magic_name__ : Dict = n_langs __magic_name__ : Tuple = vocab_size __magic_name__ : Tuple = n_special __magic_name__ : Optional[Any] = hidden_size __magic_name__ : List[str] = num_hidden_layers __magic_name__ : Dict = num_attention_heads __magic_name__ : Tuple = hidden_dropout_prob __magic_name__ : Tuple = attention_probs_dropout_prob __magic_name__ : Any = max_position_embeddings __magic_name__ : str = type_sequence_label_size __magic_name__ : int = initializer_range __magic_name__ : Optional[int] = num_labels __magic_name__ : Tuple = num_choices __magic_name__ : int = summary_type __magic_name__ : int = use_proj __magic_name__ : Any = scope __magic_name__ : Optional[Any] = bos_token_id def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[str] = None if self.use_input_lengths: __magic_name__ : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __magic_name__ : Optional[int] = None if self.use_token_type_ids: __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __magic_name__ : Dict = None __magic_name__ : Union[str, Any] = None __magic_name__ : int = None if self.use_labels: __magic_name__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : str = ids_tensor([self.batch_size] , 2 ).float() __magic_name__ : int = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[int] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def SCREAMING_SNAKE_CASE ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): __magic_name__ : int = XLMModel(config=_a ) model.to(_a ) model.eval() __magic_name__ : Any = model(_a , lengths=_a , langs=_a ) __magic_name__ : Any = model(_a , langs=_a ) __magic_name__ : str = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): __magic_name__ : Union[str, Any] = XLMWithLMHeadModel(_a ) model.to(_a ) model.eval() __magic_name__ : str = model(_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): __magic_name__ : Optional[Any] = XLMForQuestionAnsweringSimple(_a ) model.to(_a ) model.eval() __magic_name__ : int = model(_a ) __magic_name__ : Optional[int] = model(_a , start_positions=_a , end_positions=_a ) __magic_name__ : List[str] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): __magic_name__ : Tuple = XLMForQuestionAnswering(_a ) model.to(_a ) model.eval() __magic_name__ : List[Any] = model(_a ) __magic_name__ : Union[str, Any] = model( _a , start_positions=_a , end_positions=_a , cls_index=_a , is_impossible=_a , p_mask=_a , ) __magic_name__ : str = model( _a , start_positions=_a , end_positions=_a , cls_index=_a , is_impossible=_a , ) ((__magic_name__) , ) : Optional[Any] = result_with_labels.to_tuple() __magic_name__ : int = model(_a , start_positions=_a , end_positions=_a ) ((__magic_name__) , ) : Optional[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): __magic_name__ : List[str] = XLMForSequenceClassification(_a ) model.to(_a ) model.eval() __magic_name__ : Union[str, Any] = model(_a ) __magic_name__ : Union[str, Any] = model(_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): __magic_name__ : Optional[int] = self.num_labels __magic_name__ : Union[str, Any] = XLMForTokenClassification(_a ) model.to(_a ) model.eval() __magic_name__ : List[Any] = model(_a , attention_mask=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): __magic_name__ : List[Any] = self.num_choices __magic_name__ : Optional[int] = XLMForMultipleChoice(config=_a ) model.to(_a ) model.eval() __magic_name__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ : List[str] = model( _a , attention_mask=_a , token_type_ids=_a , labels=_a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Any = config_and_inputs __magic_name__ : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class _snake_case ( snake_case , snake_case , snake_case , unittest.TestCase ): UpperCamelCase__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase__ = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def SCREAMING_SNAKE_CASE ( self , _a , _a , _a=False ): __magic_name__ : Union[str, Any] = super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __magic_name__ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) __magic_name__ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_a ) return inputs_dict def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = XLMModelTester(self ) __magic_name__ : str = ConfigTester(self , config_class=_a , emb_dim=37 ) def SCREAMING_SNAKE_CASE ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_a ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a=False , _a=1 ): self.assertIsInstance(_a , _a ) self.assertListEqual( [isinstance(_a , _a ) for iter_attentions in attentions] , [True] * len(_a ) ) self.assertEqual(len(_a ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_a ): # adds PAD dummy token __magic_name__ : str = min_length + idx + 1 __magic_name__ : Dict = min_length + idx + 1 __magic_name__ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_a ) ) def SCREAMING_SNAKE_CASE ( self , _a , _a , _a , _a , _a , _a=False , _a=1 ): self.assertIsInstance(_a , _a ) self.assertListEqual( [isinstance(_a , _a ) for iter_hidden_states in hidden_states] , [True] * len(_a ) , ) self.assertEqual(len(_a ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_a ): # adds PAD dummy token __magic_name__ : str = min_length + idx + 1 __magic_name__ : List[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_a ) , ) pass @slow def SCREAMING_SNAKE_CASE ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Any = XLMModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_torch class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Tuple = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(_a ) __magic_name__ : Optional[int] = torch.tensor([[14, 447]] , dtype=torch.long , device=_a ) # the president __magic_name__ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __magic_name__ : Optional[int] = model.generate(_a , do_sample=_a ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _a )
124
1
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def __a(): '''simple docstring''' _lowerCAmelCase = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=SCREAMING_SNAKE_CASE_ , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=SCREAMING_SNAKE_CASE_ , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=SCREAMING_SNAKE_CASE_ , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=SCREAMING_SNAKE_CASE_ , default=1000 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=SCREAMING_SNAKE_CASE_ , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=SCREAMING_SNAKE_CASE_ , type=SCREAMING_SNAKE_CASE_ , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=SCREAMING_SNAKE_CASE_ , default=512 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=SCREAMING_SNAKE_CASE_ , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) _lowerCAmelCase = parser.parse_args() return args def __a(SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' def fn(SCREAMING_SNAKE_CASE_ : Optional[int] ): return tokenizer(examples["text"] ) return fn def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = [] for i in range(len(tokenized_data["input_ids"] ) ): _lowerCAmelCase = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } _lowerCAmelCase = tf.train.Features(feature=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = tf.train.Example(features=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = example.SerializeToString() records.append(SCREAMING_SNAKE_CASE_ ) return records def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: _lowerCAmelCase = min(len(SCREAMING_SNAKE_CASE_ ) , args.limit ) _lowerCAmelCase = dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) print(F'''Limiting the dataset to {args.limit} entries.''' ) _lowerCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _lowerCAmelCase = os.path.join(args.output_dir , args.split ) if not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) else: _lowerCAmelCase = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. _lowerCAmelCase = tokenize_function(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = dataset.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(SCREAMING_SNAKE_CASE_ : Optional[Any] ): # Concatenate all texts. _lowerCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()} _lowerCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _lowerCAmelCase = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _lowerCAmelCase = { k: [t[i : i + args.max_length] for i in range(0 , SCREAMING_SNAKE_CASE_ , args.max_length )] for k, t in concatenated_examples.items() } return result _lowerCAmelCase = dataset_tokenized.map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , batch_size=1000 , num_proc=4 ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 for shard in range(0 , len(SCREAMING_SNAKE_CASE_ ) , args.shard_size ): _lowerCAmelCase = grouped_dataset[shard : shard + args.shard_size] _lowerCAmelCase = len(dataset_snapshot["input_ids"] ) _lowerCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , F'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _lowerCAmelCase = get_serialized_examples(SCREAMING_SNAKE_CASE_ ) with tf.io.TFRecordWriter(SCREAMING_SNAKE_CASE_ ) as out_file: for i in range(len(SCREAMING_SNAKE_CASE_ ) ): _lowerCAmelCase = serialized_examples[i] out_file.write(SCREAMING_SNAKE_CASE_ ) print("Wrote file {} containing {} records".format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shard_count += 1 total_records += records_containing with open(F'''split-{args.split}-records-count.txt''' , "w" ) as f: print(F'''Total {args.split} records: {total_records}''' , file=SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = parse_args() main(args)
489
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure)
489
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''0.12.2'''): raise Exception('''requires fairseq >= 0.12.2''') if version.parse(fairseq.__version__) > version.parse('''2'''): raise Exception('''requires fairseq < v2''') logging.set_verbosity_info() __a: Dict = logging.get_logger(__name__) __a: Any = '''Hello, World!''' __a: List[Any] = '''en_XX''' def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> List[str]: _UpperCAmelCase = Path("""data_bin""" ) _UpperCAmelCase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__snake_case ).parent ) , checkpoint_file=Path(__snake_case ).name , _name="""xmod_base""" , arch="""xmod_base""" , task="""multilingual_masked_lm""" , data_name_or_path=str(__snake_case ) , bpe="""sentencepiece""" , sentencepiece_model=str(Path(__snake_case ).parent / """sentencepiece.bpe.model""" ) , src_dict=str(data_dir / """dict.txt""" ) , ) xmod.eval() # disable dropout print(__snake_case ) _UpperCAmelCase = xmod.model.encoder.sentence_encoder _UpperCAmelCase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , """bottleneck""" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: _UpperCAmelCase = xmod.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our X-MOD config:""" , __snake_case ) _UpperCAmelCase = XmodForSequenceClassification(__snake_case ) if classification_head else XmodForMaskedLM(__snake_case ) model.eval() # Now let's copy all the weights. # Embeddings _UpperCAmelCase = xmod_sent_encoder.embed_tokens.weight _UpperCAmelCase = xmod_sent_encoder.embed_positions.weight _UpperCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. _UpperCAmelCase = xmod_sent_encoder.layernorm_embedding.weight _UpperCAmelCase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _UpperCAmelCase = model.roberta.encoder.layer[i] _UpperCAmelCase = xmod_sent_encoder.layers[i] # self attention _UpperCAmelCase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("""Dimensions of self-attention weights do not match.""" ) _UpperCAmelCase = xmod_layer.self_attn.q_proj.weight _UpperCAmelCase = xmod_layer.self_attn.q_proj.bias _UpperCAmelCase = xmod_layer.self_attn.k_proj.weight _UpperCAmelCase = xmod_layer.self_attn.k_proj.bias _UpperCAmelCase = xmod_layer.self_attn.v_proj.weight _UpperCAmelCase = xmod_layer.self_attn.v_proj.bias # self-attention output _UpperCAmelCase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("""Dimensions of self-attention output weights do not match.""" ) _UpperCAmelCase = xmod_layer.self_attn.out_proj.weight _UpperCAmelCase = xmod_layer.self_attn.out_proj.bias _UpperCAmelCase = xmod_layer.self_attn_layer_norm.weight _UpperCAmelCase = xmod_layer.self_attn_layer_norm.bias # intermediate _UpperCAmelCase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of intermediate weights do not match.""" ) _UpperCAmelCase = xmod_layer.fca.weight _UpperCAmelCase = xmod_layer.fca.bias # output _UpperCAmelCase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("""Dimensions of feed-forward weights do not match.""" ) _UpperCAmelCase = xmod_layer.fca.weight _UpperCAmelCase = xmod_layer.fca.bias _UpperCAmelCase = xmod_layer.final_layer_norm.weight _UpperCAmelCase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: _UpperCAmelCase = xmod_layer.adapter_layer_norm.weight _UpperCAmelCase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("""Lists of language adapters do not match.""" ) for lang_code, adapter in xmod_layer.adapter_modules.items(): _UpperCAmelCase = bert_output.adapter_modules[lang_code] _UpperCAmelCase = xmod_layer.adapter_modules[lang_code] _UpperCAmelCase = from_adapter.fca.weight _UpperCAmelCase = from_adapter.fca.bias _UpperCAmelCase = from_adapter.fca.weight _UpperCAmelCase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: _UpperCAmelCase = xmod_sent_encoder.layer_norm.weight _UpperCAmelCase = xmod_sent_encoder.layer_norm.bias if classification_head: _UpperCAmelCase = xmod.model.classification_heads["""mnli"""].dense.weight _UpperCAmelCase = xmod.model.classification_heads["""mnli"""].dense.bias _UpperCAmelCase = xmod.model.classification_heads["""mnli"""].out_proj.weight _UpperCAmelCase = xmod.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head _UpperCAmelCase = xmod.model.encoder.lm_head.dense.weight _UpperCAmelCase = xmod.model.encoder.lm_head.dense.bias _UpperCAmelCase = xmod.model.encoder.lm_head.layer_norm.weight _UpperCAmelCase = xmod.model.encoder.lm_head.layer_norm.bias _UpperCAmelCase = xmod.model.encoder.lm_head.weight _UpperCAmelCase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. _UpperCAmelCase = xmod.encode(__snake_case ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__snake_case ) _UpperCAmelCase = model(__snake_case )[0] if classification_head: _UpperCAmelCase = xmod.model.classification_heads["""mnli"""](xmod.extract_features(__snake_case ) ) else: _UpperCAmelCase = xmod.model(__snake_case , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) _UpperCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 _UpperCAmelCase = torch.allclose(__snake_case , __snake_case , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) Path(__snake_case ).mkdir(parents=__snake_case , exist_ok=__snake_case ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__snake_case ) if __name__ == "__main__": __a: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xmod_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) __a: Union[str, Any] = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
108
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def __UpperCAmelCase ( )-> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(UpperCAmelCase ): requests.request('''GET''', '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''', '''https://huggingface.co''', timeout=1.0 ) @pytest.mark.integration def __UpperCAmelCase ( )-> Union[str, Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''', '''https://huggingface.co''' ) def __UpperCAmelCase ( )-> Tuple: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(UpperCAmelCase ): http_head('''https://huggingface.co''' )
604
0
from collections.abc import Callable import numpy as np def __lowerCamelCase ( __a : Callable , __a : float , __a : float , __a : float , __a : float ) -> np.ndarray: _lowercase =int(np.ceil((x_end - xa) / step_size ) ) _lowercase =np.zeros((n + 1,) ) _lowercase =ya _lowercase =xa for k in range(_A ): _lowercase =y[k] + step_size * ode_func(_A , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
709
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCAmelCase__ = None lowerCAmelCase__ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCAmelCase__ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class _a : """simple docstring""" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None # Automatically constructed __SCREAMING_SNAKE_CASE = "PIL.Image.Image" __SCREAMING_SNAKE_CASE = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __SCREAMING_SNAKE_CASE = field(default='Image' , init=lowerCamelCase_ , repr=lowerCamelCase_ ) def __call__( self ): return self.pa_type def __lowerCAmelCase ( self , lowerCAmelCase_ ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase =np.array(lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": value, "bytes": None} elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {"path": None, "bytes": value} elif isinstance(lowerCAmelCase_ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(lowerCAmelCase_ ) elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowerCAmelCase_ ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( F'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: _lowercase ={} _lowercase , _lowercase =value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(F'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(lowerCAmelCase_ ): _lowercase =PIL.Image.open(lowerCAmelCase_ ) else: _lowercase =path.split("::" )[-1] try: _lowercase =string_to_dict(lowerCAmelCase_ , config.HUB_DATASETS_URL )["repo_id"] _lowercase =token_per_repo_id.get(lowerCAmelCase_ ) except ValueError: _lowercase =None with xopen(lowerCAmelCase_ , "rb" , use_auth_token=lowerCAmelCase_ ) as f: _lowercase =BytesIO(f.read() ) _lowercase =PIL.Image.open(bytes_ ) else: _lowercase =PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __lowerCAmelCase ( self ): from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): if pa.types.is_string(storage.type ): _lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) _lowercase =pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) _lowercase =pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: _lowercase =storage.field("bytes" ) else: _lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: _lowercase =storage.field("path" ) else: _lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) _lowercase =pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _lowercase =pa.array( [encode_np_array(np.array(lowerCAmelCase_ ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _lowercase =pa.array([None] * len(lowerCAmelCase_ ) , type=pa.string() ) _lowercase =pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def __lowerCAmelCase ( self , lowerCAmelCase_ ): @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase_ ): with xopen(lowerCAmelCase_ , "rb" ) as f: _lowercase =f.read() return bytes_ _lowercase =pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _lowercase =pa.array( [os.path.basename(lowerCAmelCase_ ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) _lowercase =pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(lowerCAmelCase_ , self.pa_type ) def __lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _lowercase =list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCamelCase ( __a : "PIL.Image.Image" ) -> bytes: _lowercase =BytesIO() if image.format in list_image_compression_formats(): _lowercase =image.format else: _lowercase ="PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(__a , format=__a ) return buffer.getvalue() def __lowerCamelCase ( __a : "PIL.Image.Image" ) -> dict: if hasattr(__a , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__a )} def __lowerCamelCase ( __a : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) _lowercase =array.dtype _lowercase =dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER _lowercase =dtype.kind _lowercase =dtype.itemsize _lowercase =None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _lowercase =np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _lowercase =dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _lowercase =dtype_byteorder + dtype_kind + str(__a ) _lowercase =np.dtype(__a ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) _lowercase =PIL.Image.fromarray(array.astype(__a ) ) return {"path": None, "bytes": image_to_bytes(__a )} def __lowerCamelCase ( __a : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: _lowercase , _lowercase =first_non_null_value(__a ) if isinstance(__a , __a ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__a , np.ndarray ): _lowercase =no_op_if_value_is_null(__a ) return [obj_to_image_dict_func(__a ) for obj in objs] elif isinstance(__a , PIL.Image.Image ): _lowercase =no_op_if_value_is_null(__a ) return [obj_to_image_dict_func(__a ) for obj in objs] else: return objs else: return objs
594
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a_ = 6_378_137.0 a_ = 6_356_752.314_245 a_ = 6378137 def __lowerCAmelCase ( A_ : float , A_ : float , A_ : float , A_ : float ) -> float: __UpperCAmelCase = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __UpperCAmelCase = atan((1 - flattening) * tan(radians(A_ ) ) ) __UpperCAmelCase = atan((1 - flattening) * tan(radians(A_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __UpperCAmelCase = haversine_distance(A_ , A_ , A_ , A_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values __UpperCAmelCase = (b_lata + b_lata) / 2 __UpperCAmelCase = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __UpperCAmelCase = (sin(A_ ) ** 2) * (cos(A_ ) ** 2) __UpperCAmelCase = cos(sigma / 2 ) ** 2 __UpperCAmelCase = (sigma - sin(A_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __UpperCAmelCase = (cos(A_ ) ** 2) * (sin(A_ ) ** 2) __UpperCAmelCase = sin(sigma / 2 ) ** 2 __UpperCAmelCase = (sigma + sin(A_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
221
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": a_ = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") a_ = F"https://www.google.com/search?q={query}&num=100" a_ = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: a_ = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: a_ = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
221
1
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging A_ : Tuple = logging.get_logger(__name__) def __UpperCamelCase ( a, a) ->Any: lowerCamelCase__ = nn.functional.normalize(a) lowerCamelCase__ = nn.functional.normalize(a) return torch.mm(a, normalized_text_embeds.t()) class SCREAMING_SNAKE_CASE_ ( lowercase_ ): """simple docstring""" A__ = CLIPConfig A__ = ["CLIPEncoderLayer"] def __init__( self , _lowerCAmelCase ): super().__init__(_lowerCAmelCase ) lowerCamelCase__ = CLIPVisionModel(config.vision_config ) lowerCamelCase__ = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowerCAmelCase ) lowerCamelCase__ = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_lowerCAmelCase ) lowerCamelCase__ = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowerCAmelCase ) lowerCamelCase__ = nn.Parameter(torch.ones(17 ) , requires_grad=_lowerCAmelCase ) lowerCamelCase__ = nn.Parameter(torch.ones(3 ) , requires_grad=_lowerCAmelCase ) @torch.no_grad() def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = self.vision_model(_lowerCAmelCase )[1] # pooled_output lowerCamelCase__ = self.visual_projection(_lowerCAmelCase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase__ = cosine_distance(_lowerCAmelCase , self.special_care_embeds ).cpu().float().numpy() lowerCamelCase__ = cosine_distance(_lowerCAmelCase , self.concept_embeds ).cpu().float().numpy() lowerCamelCase__ = [] lowerCamelCase__ = image_embeds.shape[0] for i in range(_lowerCAmelCase ): lowerCamelCase__ = {"special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase__ = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCamelCase__ = special_cos_dist[i][concept_idx] lowerCamelCase__ = self.special_care_embeds_weights[concept_idx].item() lowerCamelCase__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["special_scores"][concept_idx]} ) lowerCamelCase__ = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCamelCase__ = cos_dist[i][concept_idx] lowerCamelCase__ = self.concept_embeds_weights[concept_idx].item() lowerCamelCase__ = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowerCAmelCase ) result.append(_lowerCAmelCase ) lowerCamelCase__ = [len(res["bad_concepts"] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def __magic_name__ ( self , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ = self.vision_model(_lowerCAmelCase )[1] # pooled_output lowerCamelCase__ = self.visual_projection(_lowerCAmelCase ) lowerCamelCase__ = cosine_distance(_lowerCAmelCase , self.special_care_embeds ) lowerCamelCase__ = cosine_distance(_lowerCAmelCase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase__ = 0.0 lowerCamelCase__ = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCamelCase__ = torch.any(special_scores > 0 , dim=1 ) lowerCamelCase__ = special_care * 0.01 lowerCamelCase__ = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowerCamelCase__ = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCamelCase__ = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
701
from typing import TYPE_CHECKING from ...utils import _LazyModule A_ = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
360
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase__ = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } lowercase__ = { "squeezebert/squeezebert-uncased": 5_1_2, "squeezebert/squeezebert-mnli": 5_1_2, "squeezebert/squeezebert-mnli-headless": 5_1_2, } lowercase__ = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_INIT_CONFIGURATION lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = SqueezeBertTokenizer def __init__( self : Optional[Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="[UNK]" , UpperCamelCase__ : Optional[int]="[SEP]" , UpperCamelCase__ : str="[PAD]" , UpperCamelCase__ : int="[CLS]" , UpperCamelCase__ : List[Any]="[MASK]" , UpperCamelCase__ : str=True , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : Optional[int] , ) -> str: """simple docstring""" super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase__ ) != tokenize_chinese_chars ): snake_case : Union[str, Any] = getattr(UpperCamelCase__ , normalizer_state.pop('''type''' ) ) snake_case : Tuple = do_lower_case snake_case : Optional[int] = strip_accents snake_case : Any = tokenize_chinese_chars snake_case : List[str] = normalizer_class(**UpperCamelCase__ ) snake_case : Dict = do_lower_case def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int=None ) -> Any: """simple docstring""" snake_case : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self : List[str] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case : Dict = [self.sep_token_id] snake_case : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case : Tuple = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
638
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" snake_case : Any = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) snake_case : List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" snake_case : Any = model(UpperCamelCase__ )['''last_hidden_state'''] snake_case : int = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice. snake_case : Dict = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
638
1
'''simple docstring''' from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) lowercase__ : str = 2_99_79_24_58 # Symbols lowercase__ : Dict = symbols('''ct x y z''') def _lowerCAmelCase ( __snake_case : float ) -> float: if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!' ) return velocity / c def _lowerCAmelCase ( __snake_case : float ) -> float: return 1 / sqrt(1 - beta(__snake_case ) ** 2 ) def _lowerCAmelCase ( __snake_case : float ) -> np.ndarray: return np.array( [ [gamma(__snake_case ), -gamma(__snake_case ) * beta(__snake_case ), 0, 0], [-gamma(__snake_case ) * beta(__snake_case ), gamma(__snake_case ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def _lowerCAmelCase ( __snake_case : float , __snake_case : np.ndarray | None = None ) -> np.ndarray: # Ensure event is not empty if event is None: __A : Dict = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__snake_case ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: lowercase__ : int = transform(29_97_92_45) print('''Example of four vector: ''') print(f"""ct' = {four_vector[0]}""") print(f"""x' = {four_vector[1]}""") print(f"""y' = {four_vector[2]}""") print(f"""z' = {four_vector[3]}""") # Substitute symbols with numerical values lowercase__ : Optional[int] = {ct: c, x: 1, y: 1, z: 1} lowercase__ : int = [four_vector[i].subs(sub_dict) for i in range(4)] print(f"""\n{numerical_vector}""")
710
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : str = logging.get_logger(__name__) lowercase__ : Any = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''git_vision_model''' def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=3072 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase="quick_gelu" , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : str = hidden_size __A : List[Any] = intermediate_size __A : Any = num_hidden_layers __A : Tuple = num_attention_heads __A : Dict = num_channels __A : int = patch_size __A : str = image_size __A : Union[str, Any] = initializer_range __A : int = attention_dropout __A : Dict = layer_norm_eps __A : int = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase) __A ,__A : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type') == "git": __A : List[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''git''' def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=6 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=101 , _UpperCAmelCase=102 , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) if vision_config is None: __A : str = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.') __A : List[Any] = GitVisionConfig(**_UpperCAmelCase) __A : int = vocab_size __A : Optional[Any] = hidden_size __A : List[Any] = num_hidden_layers __A : Tuple = num_attention_heads __A : Dict = hidden_act __A : Optional[int] = intermediate_size __A : str = hidden_dropout_prob __A : str = attention_probs_dropout_prob __A : int = max_position_embeddings __A : str = initializer_range __A : int = layer_norm_eps __A : Tuple = position_embedding_type __A : Dict = use_cache __A : Tuple = tie_word_embeddings __A : Optional[Any] = num_image_with_embedding __A : Dict = bos_token_id __A : Tuple = eos_token_id def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = copy.deepcopy(self.__dict__) __A : Any = self.vision_config.to_dict() __A : List[str] = self.__class__.model_type return output
338
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = tempfile.mkdtemp() # fmt: off lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowerCAmelCase = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } lowerCAmelCase = os.path.join(self.tmpdirname , _snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_snake_case , _snake_case ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(_snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase = self.get_image_processor(do_normalize=_snake_case , padding_value=1.0 ) lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_snake_case , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(_snake_case , return_tensors='np' ) lowerCAmelCase = processor(images=_snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = 'lower newer' lowerCAmelCase = processor(text=_snake_case ) lowerCAmelCase = tokenizer(_snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = 'lower newer' lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(_snake_case ): processor() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(_snake_case ) lowerCAmelCase = tokenizer.batch_decode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=_snake_case , image_processor=_snake_case ) lowerCAmelCase = 'lower newer' lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=_snake_case , images=_snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
4
def lowerCAmelCase_ ( __A ) -> list: '''simple docstring''' for i in range(len(__A ) - 1, 0, -1 ): UpperCAmelCase__ = False for j in range(__A, 0, -1 ): if unsorted[j] < unsorted[j - 1]: UpperCAmelCase__ , UpperCAmelCase__ = unsorted[j - 1], unsorted[j] UpperCAmelCase__ = True for j in range(__A ): if unsorted[j] > unsorted[j + 1]: UpperCAmelCase__ , UpperCAmelCase__ = unsorted[j + 1], unsorted[j] UpperCAmelCase__ = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase__ = [int(item) for item in user_input.split(',')] print(f'''{cocktail_shaker_sort(unsorted) = }''')
486
0
"""simple docstring""" UpperCAmelCase : str = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase : List[Any] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase : Union[str, Any] = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' assert len(str(__lowerCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowercase_ = year // 1_00 lowercase_ = (5 * (century % 4) + 2) % 7 lowercase_ = year % 1_00 lowercase_ = centurian % 12 lowercase_ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowercase_ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) lowercase_ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
721
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> None: '''simple docstring''' lowercase_ , lowercase_ = analyze_text(__lowerCAmelCase ) lowercase_ = list(""" """ + ascii_lowercase ) # what is our total sum of probabilities. lowercase_ = sum(single_char_strings.values() ) # one length string lowercase_ = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowercase_ = single_char_strings[ch] lowercase_ = my_str / all_sum my_fir_sum += prob * math.loga(__lowerCAmelCase ) # entropy formula. # print entropy print(F'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string lowercase_ = sum(two_char_strings.values() ) lowercase_ = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowercase_ = cha + cha if sequence in two_char_strings: lowercase_ = two_char_strings[sequence] lowercase_ = int(__lowerCAmelCase ) / all_sum my_sec_sum += prob * math.loga(__lowerCAmelCase ) # print second entropy print(F'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(F'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> tuple[dict, dict]: '''simple docstring''' lowercase_ = Counter() # type: ignore lowercase_ = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(__lowerCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _SCREAMING_SNAKE_CASE () -> str: '''simple docstring''' import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
100
0
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" __magic_name__ : str = ProphetNetTokenizer __magic_name__ : Dict = False def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" super().setUp() __UpperCamelCase : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __UpperCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : int ) -> List[str]: """simple docstring""" __UpperCamelCase : Union[str, Any] = """UNwant\u00E9d,running""" __UpperCamelCase : List[str] = """unwanted, running""" return input_text, output_text def lowerCamelCase__ ( self : List[Any] ) -> int: """simple docstring""" __UpperCamelCase : Optional[int] = self.tokenizer_class(self.vocab_file ) __UpperCamelCase : List[str] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def lowerCamelCase__ ( self : str ) -> List[Any]: """simple docstring""" __UpperCamelCase : List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCamelCase__ ( self : int ) -> Tuple: """simple docstring""" __UpperCamelCase : Any = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self : Dict ) -> List[str]: """simple docstring""" __UpperCamelCase : List[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def lowerCamelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __UpperCamelCase : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __UpperCamelCase : Dict = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __UpperCamelCase : List[str] = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __UpperCamelCase : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __UpperCamelCase : List[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __UpperCamelCase : int = BasicTokenizer(do_lower_case=lowerCAmelCase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __UpperCamelCase : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __UpperCamelCase : List[Any] = {} for i, token in enumerate(lowerCAmelCase ): __UpperCamelCase : Dict = i __UpperCamelCase : Any = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __UpperCamelCase : str = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __UpperCamelCase : int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCamelCase : Optional[int] = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __UpperCamelCase : Optional[int] = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) __UpperCamelCase : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def lowerCamelCase__ ( self : int ) -> List[Any]: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCamelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCamelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def lowerCamelCase__ ( self : str ) -> Tuple: """simple docstring""" __UpperCamelCase : List[str] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __UpperCamelCase : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase ) __UpperCamelCase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase ) __UpperCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
279
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def A__ (snake_case : List[Any] ) -> Optional[Any]: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def A__ (snake_case : int ) -> Any: __UpperCamelCase : List[str] = create_tensor(snake_case ) __UpperCamelCase : List[Any] = gather(snake_case ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def A__ (snake_case : Optional[Any] ) -> Dict: __UpperCamelCase : Any = [state.process_index] __UpperCamelCase : int = gather_object(snake_case ) assert len(snake_case ) == state.num_processes, F'''{gathered_obj}, {len(snake_case )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), F'''{gathered_obj} != {list(range(state.num_processes ) )}''' def A__ (snake_case : Any ) -> Optional[Any]: __UpperCamelCase : Optional[Any] = create_tensor(snake_case ) __UpperCamelCase : Any = broadcast(snake_case ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def A__ (snake_case : Tuple ) -> Dict: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: __UpperCamelCase : List[Any] = torch.arange(state.num_processes + 1 ).to(state.device ) else: __UpperCamelCase : List[str] = torch.arange(state.num_processes ).to(state.device ) __UpperCamelCase : List[str] = pad_across_processes(snake_case ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def A__ (snake_case : Tuple ) -> Dict: # For now runs on only two processes if state.num_processes != 2: return __UpperCamelCase : Optional[int] = create_tensor(snake_case ) __UpperCamelCase : str = reduce(snake_case , """sum""" ) __UpperCamelCase : Optional[int] = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case , snake_case ), F'''{reduced_tensor} != {truth_tensor}''' def A__ (snake_case : Optional[Any] ) -> Optional[Any]: # For now runs on only two processes if state.num_processes != 2: return __UpperCamelCase : List[Any] = create_tensor(snake_case ) __UpperCamelCase : str = reduce(snake_case , """mean""" ) __UpperCamelCase : Union[str, Any] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case , snake_case ), F'''{reduced_tensor} != {truth_tensor}''' def A__ (snake_case : Tuple ) -> int: # For xla_spawn (TPUs) main() def A__ () -> List[Any]: __UpperCamelCase : List[Any] = PartialState() state.print(F'''State: {state}''' ) state.print("""testing gather""" ) test_gather(snake_case ) state.print("""testing gather_object""" ) test_gather_object(snake_case ) state.print("""testing broadcast""" ) test_broadcast(snake_case ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case ) if __name__ == "__main__": main()
279
1
def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate UpperCAmelCase_ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCAmelCase_ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
704
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa UpperCamelCase_ = logging.getLogger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="summarization" UpperCamelCase__ : Union[str, Any] =["loss"] UpperCamelCase__ : Tuple =ROUGE_KEYS UpperCamelCase__ : List[Any] ="rouge2" def __init__( self :int , _lowercase :List[Any] , **_lowercase :Tuple) -> Union[str, Any]: if hparams.sortish_sampler and hparams.gpus > 1: UpperCAmelCase_ = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('''Dynamic Batch size does not work for multi-gpu training''') if hparams.sortish_sampler: raise ValueError('''--sortish_sampler and --max_tokens_per_batch may not be used simultaneously''') super().__init__(_lowercase , num_labels=_lowercase , mode=self.mode , **_lowercase) use_task_specific_params(self.model , '''summarization''') save_git_info(self.hparams.output_dir) UpperCAmelCase_ = Path(self.output_dir) / '''metrics.json''' UpperCAmelCase_ = Path(self.output_dir) / '''hparams.pkl''' pickle_save(self.hparams , self.hparams_save_path) UpperCAmelCase_ = 0 UpperCAmelCase_ = defaultdict(_lowercase) UpperCAmelCase_ = self.config.model_type UpperCAmelCase_ = self.config.tgt_vocab_size if self.model_type == '''fsmt''' else self.config.vocab_size UpperCAmelCase_ = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } UpperCAmelCase_ = { '''train''': self.hparams.n_train, '''val''': self.hparams.n_val, '''test''': self.hparams.n_test, } UpperCAmelCase_ = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} UpperCAmelCase_ = { '''train''': self.hparams.max_target_length, '''val''': self.hparams.val_max_target_length, '''test''': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}" assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}" if self.hparams.freeze_embeds: freeze_embeds(self.model) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder()) assert_all_frozen(self.model.get_encoder()) UpperCAmelCase_ = get_git_info()['''repo_sha'''] UpperCAmelCase_ = hparams.num_workers UpperCAmelCase_ = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _lowercase): UpperCAmelCase_ = self.tokenizer.lang_code_to_id[hparams.tgt_lang] UpperCAmelCase_ = self.decoder_start_token_id UpperCAmelCase_ = ( SeqaSeqDataset if hasattr(self.tokenizer , '''prepare_seq2seq_batch''') else LegacySeqaSeqDataset ) UpperCAmelCase_ = False UpperCAmelCase_ = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: UpperCAmelCase_ = self.hparams.eval_max_gen_length else: UpperCAmelCase_ = self.model.config.max_length UpperCAmelCase_ = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def __a ( self :List[Any] , _lowercase :Dict[str, torch.Tensor]) -> Dict[str, List[str]]: UpperCAmelCase_ = { k: self.tokenizer.batch_decode(v.tolist()) if '''mask''' not in k else v.shape for k, v in batch.items() } save_json(_lowercase , Path(self.output_dir) / '''text_batch.json''') save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir) / '''tok_batch.json''') UpperCAmelCase_ = True return readable_batch def __a ( self :Dict , _lowercase :Optional[Any] , **_lowercase :List[Any]) -> str: return self.model(_lowercase , **_lowercase) def __a ( self :Tuple , _lowercase :List[int]) -> str: UpperCAmelCase_ = self.tokenizer.batch_decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase) return lmap(str.strip , _lowercase) def __a ( self :List[str] , _lowercase :dict) -> Tuple: UpperCAmelCase_ = self.tokenizer.pad_token_id UpperCAmelCase_ , UpperCAmelCase_ = batch['''input_ids'''], batch['''attention_mask'''] UpperCAmelCase_ = batch['''labels'''] if isinstance(self.model , _lowercase): UpperCAmelCase_ = self.model._shift_right(_lowercase) else: UpperCAmelCase_ = shift_tokens_right(_lowercase , _lowercase) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero UpperCAmelCase_ = decoder_input_ids self.save_readable_batch(_lowercase) UpperCAmelCase_ = self(_lowercase , attention_mask=_lowercase , decoder_input_ids=_lowercase , use_cache=_lowercase) UpperCAmelCase_ = outputs['''logits'''] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id UpperCAmelCase_ = nn.CrossEntropyLoss(ignore_index=_lowercase) assert lm_logits.shape[-1] == self.vocab_size UpperCAmelCase_ = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1]) , tgt_ids.view(-1)) else: UpperCAmelCase_ = nn.functional.log_softmax(_lowercase , dim=-1) UpperCAmelCase_ , UpperCAmelCase_ = label_smoothed_nll_loss( _lowercase , _lowercase , self.hparams.label_smoothing , ignore_index=_lowercase) return (loss,) @property def __a ( self :List[Any]) -> int: return self.tokenizer.pad_token_id def __a ( self :Any , _lowercase :Tuple , _lowercase :Optional[int]) -> Dict: UpperCAmelCase_ = self._step(_lowercase) UpperCAmelCase_ = dict(zip(self.loss_names , _lowercase)) # tokens per batch UpperCAmelCase_ = batch['''input_ids'''].ne(self.pad).sum() + batch['''labels'''].ne(self.pad).sum() UpperCAmelCase_ = batch['''input_ids'''].shape[0] UpperCAmelCase_ = batch['''input_ids'''].eq(self.pad).sum() UpperCAmelCase_ = batch['''input_ids'''].eq(self.pad).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def __a ( self :Union[str, Any] , _lowercase :int , _lowercase :List[Any]) -> Dict: return self._generative_step(_lowercase) def __a ( self :int , _lowercase :List[str] , _lowercase :List[Any]="val") -> Dict: self.step_count += 1 UpperCAmelCase_ = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names} UpperCAmelCase_ = losses['''loss'''] UpperCAmelCase_ = { k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ['''gen_time''', '''gen_len'''] } UpperCAmelCase_ = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) UpperCAmelCase_ = torch.tensor(_lowercase).type_as(_lowercase) generative_metrics.update({k: v.item() for k, v in losses.items()}) losses.update(_lowercase) UpperCAmelCase_ = {f"{prefix}_avg_{k}": x for k, x in losses.items()} UpperCAmelCase_ = self.step_count self.metrics[prefix].append(_lowercase) # callback writes this to self.metrics_save_path UpperCAmelCase_ = flatten_list([x['''preds'''] for x in outputs]) return { "log": all_metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": metric_tensor, } def __a ( self :int , _lowercase :Optional[int] , _lowercase :Dict) -> Dict: return calculate_rouge(_lowercase , _lowercase) def __a ( self :Optional[Any] , _lowercase :dict) -> dict: UpperCAmelCase_ = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') UpperCAmelCase_ = self.model.generate( batch['''input_ids'''] , attention_mask=batch['''attention_mask'''] , use_cache=_lowercase , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) UpperCAmelCase_ = (time.time() - ta) / batch['''input_ids'''].shape[0] UpperCAmelCase_ = self.ids_to_clean_text(_lowercase) UpperCAmelCase_ = self.ids_to_clean_text(batch['''labels''']) UpperCAmelCase_ = self._step(_lowercase) UpperCAmelCase_ = dict(zip(self.loss_names , _lowercase)) UpperCAmelCase_ = self.calc_generative_metrics(_lowercase , _lowercase) UpperCAmelCase_ = np.mean(lmap(_lowercase , _lowercase)) base_metrics.update(gen_time=_lowercase , gen_len=_lowercase , preds=_lowercase , target=_lowercase , **_lowercase) return base_metrics def __a ( self :Optional[Any] , _lowercase :int , _lowercase :Optional[Any]) -> Optional[int]: return self._generative_step(_lowercase) def __a ( self :str , _lowercase :List[Any]) -> List[Any]: return self.validation_epoch_end(_lowercase , prefix='''test''') def __a ( self :Union[str, Any] , _lowercase :Optional[int]) -> SeqaSeqDataset: UpperCAmelCase_ = self.n_obs[type_path] UpperCAmelCase_ = self.target_lens[type_path] UpperCAmelCase_ = self.dataset_class( self.tokenizer , type_path=_lowercase , n_obs=_lowercase , max_target_length=_lowercase , **self.dataset_kwargs , ) return dataset def __a ( self :str , _lowercase :str , _lowercase :int , _lowercase :bool = False) -> DataLoader: UpperCAmelCase_ = self.get_dataset(_lowercase) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": UpperCAmelCase_ = dataset.make_sortish_sampler(_lowercase , distributed=self.hparams.gpus > 1) return DataLoader( _lowercase , batch_size=_lowercase , collate_fn=dataset.collate_fn , shuffle=_lowercase , num_workers=self.num_workers , sampler=_lowercase , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": UpperCAmelCase_ = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1) return DataLoader( _lowercase , batch_sampler=_lowercase , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( _lowercase , batch_size=_lowercase , collate_fn=dataset.collate_fn , shuffle=_lowercase , num_workers=self.num_workers , sampler=_lowercase , ) def __a ( self :int) -> DataLoader: UpperCAmelCase_ = self.get_dataloader('''train''' , batch_size=self.hparams.train_batch_size , shuffle=_lowercase) return dataloader def __a ( self :int) -> DataLoader: return self.get_dataloader('''val''' , batch_size=self.hparams.eval_batch_size) def __a ( self :List[str]) -> DataLoader: return self.get_dataloader('''test''' , batch_size=self.hparams.eval_batch_size) @staticmethod def __a ( _lowercase :List[Any] , _lowercase :str) -> List[Any]: BaseTransformer.add_model_specific_args(_lowercase , _lowercase) add_generic_args(_lowercase , _lowercase) parser.add_argument( '''--max_source_length''' , default=1024 , type=_lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--max_target_length''' , default=56 , type=_lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--val_max_target_length''' , default=142 , type=_lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--test_max_target_length''' , default=142 , type=_lowercase , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument('''--freeze_encoder''' , action='''store_true''') parser.add_argument('''--freeze_embeds''' , action='''store_true''') parser.add_argument('''--sortish_sampler''' , action='''store_true''' , default=_lowercase) parser.add_argument('''--overwrite_output_dir''' , action='''store_true''' , default=_lowercase) parser.add_argument('''--max_tokens_per_batch''' , type=_lowercase , default=_lowercase) parser.add_argument('''--logger_name''' , type=_lowercase , choices=['''default''', '''wandb''', '''wandb_shared'''] , default='''default''') parser.add_argument('''--n_train''' , type=_lowercase , default=-1 , required=_lowercase , help='''# examples. -1 means use all.''') parser.add_argument('''--n_val''' , type=_lowercase , default=500 , required=_lowercase , help='''# examples. -1 means use all.''') parser.add_argument('''--n_test''' , type=_lowercase , default=-1 , required=_lowercase , help='''# examples. -1 means use all.''') parser.add_argument( '''--task''' , type=_lowercase , default='''summarization''' , required=_lowercase , help='''# examples. -1 means use all.''') parser.add_argument('''--label_smoothing''' , type=_lowercase , default=0.0 , required=_lowercase) parser.add_argument('''--src_lang''' , type=_lowercase , default='''''' , required=_lowercase) parser.add_argument('''--tgt_lang''' , type=_lowercase , default='''''' , required=_lowercase) parser.add_argument('''--eval_beams''' , type=_lowercase , default=_lowercase , required=_lowercase) parser.add_argument( '''--val_metric''' , type=_lowercase , default=_lowercase , required=_lowercase , choices=['''bleu''', '''rouge2''', '''loss''', None]) parser.add_argument('''--eval_max_gen_length''' , type=_lowercase , default=_lowercase , help='''never generate more than n tokens''') parser.add_argument('''--save_top_k''' , type=_lowercase , default=1 , required=_lowercase , help='''How many checkpoints to save''') parser.add_argument( '''--early_stopping_patience''' , type=_lowercase , default=-1 , required=_lowercase , help=( '''-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So''' ''' val_check_interval will effect it.''' ) , ) return parser class a_ ( _snake_case ): UpperCamelCase__ : str ="translation" UpperCamelCase__ : str =["loss"] UpperCamelCase__ : Optional[int] =["bleu"] UpperCamelCase__ : List[str] ="bleu" def __init__( self :Optional[int] , _lowercase :Optional[Any] , **_lowercase :Union[str, Any]) -> int: super().__init__(_lowercase , **_lowercase) UpperCAmelCase_ = hparams.src_lang UpperCAmelCase_ = hparams.tgt_lang def __a ( self :Dict , _lowercase :str , _lowercase :List[Any]) -> dict: return calculate_bleu(_lowercase , _lowercase) def A ( __UpperCAmelCase , __UpperCAmelCase=None ) -> SummarizationModule: '''simple docstring''' Path(args.output_dir ).mkdir(exist_ok=__UpperCAmelCase ) check_output_dir(__UpperCAmelCase , expected_items=3 ) if model is None: if "summarization" in args.task: UpperCAmelCase_ = SummarizationModule(__UpperCAmelCase ) else: UpperCAmelCase_ = TranslationModule(__UpperCAmelCase ) UpperCAmelCase_ = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('''/tmp''' ) or str(args.output_dir ).startswith('''/var''' ) ): UpperCAmelCase_ = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase_ = os.environ.get('''WANDB_PROJECT''' , __UpperCAmelCase ) UpperCAmelCase_ = WandbLogger(name=model.output_dir.name , project=__UpperCAmelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger UpperCAmelCase_ = WandbLogger(name=model.output_dir.name , project=f"hf_{dataset}" ) if args.early_stopping_patience >= 0: UpperCAmelCase_ = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: UpperCAmelCase_ = False UpperCAmelCase_ = args.val_metric == '''loss''' UpperCAmelCase_ = generic_train( __UpperCAmelCase , __UpperCAmelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __UpperCAmelCase ) , early_stopping_callback=__UpperCAmelCase , logger=__UpperCAmelCase , ) pickle_save(model.hparams , model.output_dir / '''hparams.pkl''' ) if not args.do_predict: return model UpperCAmelCase_ = '''''' UpperCAmelCase_ = sorted(glob.glob(os.path.join(args.output_dir , '''*.ckpt''' ) , recursive=__UpperCAmelCase ) ) if checkpoints: UpperCAmelCase_ = checkpoints[-1] UpperCAmelCase_ = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() UpperCamelCase_ = pl.Trainer.add_argparse_args(parser) UpperCamelCase_ = SummarizationModule.add_model_specific_args(parser, os.getcwd()) UpperCamelCase_ = parser.parse_args() main(args)
561
0
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig UpperCamelCase__ : int = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = '''T5Config''' class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Any = '''mt5''' _A : Optional[Any] = MTaConfig class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Union[str, Any] = '''mt5''' _A : Optional[int] = MTaConfig class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : int = '''mt5''' _A : Union[str, Any] = MTaConfig
578
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class _UpperCamelCase : '''simple docstring''' _A : Optional[int] = None _A : Optional[jnp.ndarray] = None _A : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def UpperCamelCase__ ( cls : List[Any] ): """simple docstring""" return cls() @dataclass class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : jnp.ndarray _A : jnp.ndarray _A : KarrasVeSchedulerState class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' @property def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" return True @register_to_config def __init__( self : Tuple , lowerCAmelCase__ : float = 0.02 , lowerCAmelCase__ : float = 1_0_0 , lowerCAmelCase__ : float = 1.0_07 , lowerCAmelCase__ : float = 8_0 , lowerCAmelCase__ : float = 0.05 , lowerCAmelCase__ : float = 5_0 , ): """simple docstring""" pass def UpperCamelCase__ ( self : Any ): """simple docstring""" return KarrasVeSchedulerState.create() def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : KarrasVeSchedulerState , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple = () ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = jnp.arange(0 , lowerCAmelCase__ )[::-1].copy() __SCREAMING_SNAKE_CASE : int = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCAmelCase__ , schedule=jnp.array(lowerCAmelCase__ , dtype=jnp.floataa ) , timesteps=lowerCAmelCase__ , ) def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : KarrasVeSchedulerState , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : random.KeyArray , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __SCREAMING_SNAKE_CASE : Dict = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: __SCREAMING_SNAKE_CASE : Dict = 0 # sample eps ~ N(0, S_noise^2 * I) __SCREAMING_SNAKE_CASE : Any = random.split(lowerCAmelCase__ , num=1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.config.s_noise * random.normal(key=lowerCAmelCase__ , shape=sample.shape ) __SCREAMING_SNAKE_CASE : Union[str, Any] = sigma + gamma * sigma __SCREAMING_SNAKE_CASE : Tuple = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : KarrasVeSchedulerState , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = sample_hat + sigma_hat * model_output __SCREAMING_SNAKE_CASE : List[Any] = (sample_hat - pred_original_sample) / sigma_hat __SCREAMING_SNAKE_CASE : Any = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase__ , derivative=lowerCAmelCase__ , state=lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : KarrasVeSchedulerState , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : jnp.ndarray , lowerCAmelCase__ : bool = True , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = sample_prev + sigma_prev * model_output __SCREAMING_SNAKE_CASE : Dict = (sample_prev - pred_original_sample) / sigma_prev __SCREAMING_SNAKE_CASE : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase__ , derivative=lowerCAmelCase__ , state=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : KarrasVeSchedulerState , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ): """simple docstring""" raise NotImplementedError()
578
1
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ): '''simple docstring''' print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def __lowerCAmelCase ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] ): '''simple docstring''' snake_case_ : Optional[Any] = [[float("""inf""" ) for _ in range(__UpperCamelCase )] for _ in range(__UpperCamelCase )] for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): snake_case_ : List[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__UpperCamelCase ): # looping through rows of graph array for i in range(__UpperCamelCase ): # looping through columns of graph array for j in range(__UpperCamelCase ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): snake_case_ : Optional[Any] = dist[i][k] + dist[k][j] _print_dist(__UpperCamelCase , __UpperCamelCase ) return dist, v if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = int(input('''Enter number of vertices: ''')) __lowerCAmelCase : Optional[Any] = int(input('''Enter number of edges: ''')) __lowerCAmelCase : Any = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): __lowerCAmelCase : Tuple = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) __lowerCAmelCase : List[Any] = int(input('''Enter source:''')) __lowerCAmelCase : Tuple = int(input('''Enter destination:''')) __lowerCAmelCase : List[Any] = float(input('''Enter weight:''')) __lowerCAmelCase : Dict = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
21
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) snake_case_ : List[str] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : Union[str, Any] = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" snake_case_ : int = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: lowerCamelCase : Union[str, Any] = TapasConfig.from_json_file(lowerCamelCase_ ) # set absolute/relative position embeddings parameter lowerCamelCase : Optional[int] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCamelCase : List[str] = TapasForQuestionAnswering(config=lowerCamelCase_ ) elif task == "WTQ": # run_task_main.py hparams lowerCamelCase : int = 4 lowerCamelCase : int = True # hparam_utils.py hparams lowerCamelCase : Dict = 0.664694 lowerCamelCase : Dict = 0.207951 lowerCamelCase : Union[str, Any] = 0.121194 lowerCamelCase : int = True lowerCamelCase : List[str] = True lowerCamelCase : Optional[Any] = False lowerCamelCase : List[str] = 0.0352513 lowerCamelCase : Union[str, Any] = TapasForQuestionAnswering(config=lowerCamelCase_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCamelCase : Union[str, Any] = 4 lowerCamelCase : Union[str, Any] = False # hparam_utils.py hparams lowerCamelCase : int = 36.4519 lowerCamelCase : Dict = 0.903421 lowerCamelCase : Any = 222.088 lowerCamelCase : Dict = True lowerCamelCase : Optional[Any] = True lowerCamelCase : int = True lowerCamelCase : str = 0.763141 lowerCamelCase : int = TapasForQuestionAnswering(config=lowerCamelCase_ ) elif task == "TABFACT": lowerCamelCase : List[str] = TapasForSequenceClassification(config=lowerCamelCase_ ) elif task == "MLM": lowerCamelCase : Union[str, Any] = TapasForMaskedLM(config=lowerCamelCase_ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCamelCase : List[str] = TapasModel(config=lowerCamelCase_ ) else: raise ValueError(f'''Task {task} not supported.''' ) print(f'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) # Save pytorch-model (weights and configuration) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCamelCase_ ) # Save tokenizer files print(f'''Save tokenizer files to {pytorch_dump_path}''' ) lowerCamelCase : Dict = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" ,model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase_ ) print("Used relative position embeddings:" ,model.config.reset_position_index_per_cell ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
311
import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=13 ,__lowerCamelCase=7 ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=99 ,__lowerCamelCase=32 ,__lowerCamelCase=5 ,__lowerCamelCase=4 ,__lowerCamelCase=37 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=1_28 ,__lowerCamelCase=32 ,__lowerCamelCase=16 ,__lowerCamelCase=2 ,__lowerCamelCase=0.02 ,__lowerCamelCase=3 ,__lowerCamelCase=4 ,__lowerCamelCase=None ,) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : int = parent lowerCAmelCase__ : Optional[int] = batch_size lowerCAmelCase__ : int = seq_length lowerCAmelCase__ : int = is_training lowerCAmelCase__ : Dict = use_input_mask lowerCAmelCase__ : Optional[Any] = use_token_type_ids lowerCAmelCase__ : List[Any] = use_labels lowerCAmelCase__ : int = vocab_size lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : Dict = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Optional[Any] = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : Optional[int] = hidden_dropout_prob lowerCAmelCase__ : Any = attention_probs_dropout_prob lowerCAmelCase__ : List[Any] = max_position_embeddings lowerCAmelCase__ : Optional[int] = type_vocab_size lowerCAmelCase__ : Union[str, Any] = type_sequence_label_size lowerCAmelCase__ : Union[str, Any] = initializer_range lowerCAmelCase__ : int = num_labels lowerCAmelCase__ : Optional[int] = num_choices lowerCAmelCase__ : Optional[int] = scope def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowerCAmelCase__ : Any = None if self.use_input_mask: lowerCAmelCase__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCAmelCase__ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) lowerCAmelCase__ : List[Any] = None lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : str = None if self.use_labels: lowerCAmelCase__ : Optional[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowerCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowerCAmelCase__ : int = ids_tensor([self.batch_size] ,self.num_choices ) lowerCAmelCase__ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowerCamelCase ,initializer_range=self.initializer_range ,) def lowerCAmelCase__ (self ) -> str: """simple docstring""" ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : str = self.prepare_config_and_inputs() lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : int = NezhaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,token_type_ids=__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Union[str, Any] = NezhaModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : int = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,encoder_attention_mask=__lowerCamelCase ,) lowerCAmelCase__ : Dict = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,) lowerCAmelCase__ : Dict = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Any = NezhaForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[Any] = NezhaForNextSentencePrediction(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : str = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : str = NezhaForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : List[str] = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ,next_sentence_label=__lowerCamelCase ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[str] = NezhaForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : int = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,start_positions=__lowerCamelCase ,end_positions=__lowerCamelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.num_labels lowerCAmelCase__ : List[Any] = NezhaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> Tuple: """simple docstring""" lowerCAmelCase__ : str = self.num_labels lowerCAmelCase__ : int = NezhaForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : Optional[Any] = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : int = self.num_choices lowerCAmelCase__ : List[Any] = NezhaForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCAmelCase__ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCAmelCase__ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCAmelCase__ : Tuple = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() lowerCAmelCase__ : List[Any] = model( __lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : List[Any] = config_and_inputs lowerCAmelCase__ : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) snake_case_ =( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) snake_case_ =True def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase=False ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = super()._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ,return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCAmelCase__ : str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=__lowerCamelCase ) lowerCAmelCase__ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = NezhaModelTester(self ) lowerCAmelCase__ : Any = ConfigTester(self ,config_class=__lowerCamelCase ,hidden_size=37 ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase__ : Dict = None self.model_tester.create_and_check_model_as_decoder( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : List[str] = NezhaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @slow @require_torch_gpu def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return lowerCAmelCase__ : List[Any] = True lowerCAmelCase__ : str = model_class(config=__lowerCamelCase ) lowerCAmelCase__ : Dict = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.jit.trace( __lowerCamelCase ,(inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCamelCase ,os.path.join(__lowerCamelCase ,'''bert.pt''' ) ) lowerCAmelCase__ : Union[str, Any] = torch.jit.load(os.path.join(__lowerCamelCase ,'''bert.pt''' ) ,map_location=__lowerCamelCase ) loaded(inputs_dict['''input_ids'''].to(__lowerCamelCase ) ,inputs_dict['''attention_mask'''].to(__lowerCamelCase ) ) @require_torch class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : str = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : int = model(__lowerCamelCase ,attention_mask=__lowerCamelCase )[0] lowerCAmelCase__ : Optional[int] = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape ,__lowerCamelCase ) lowerCAmelCase__ : Tuple = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,__lowerCamelCase ,atol=1e-4 ) ) @slow def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : str = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) lowerCAmelCase__ : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase__ : Tuple = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,attention_mask=__lowerCamelCase )[0] lowerCAmelCase__ : Optional[Any] = torch.Size((1, 6, 2_11_28) ) self.assertEqual(output.shape ,__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] ,__lowerCamelCase ,atol=1e-4 ) )
647
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
213
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __lowerCamelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCamelCase = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } __lowerCamelCase = { 'unc-nlp/lxmert-base-uncased': 5_12, } __lowerCamelCase = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = LxmertTokenizer def __init__( self : Union[str, Any] , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=None , __snake_case : Tuple=True , __snake_case : Optional[int]="[UNK]" , __snake_case : Tuple="[SEP]" , __snake_case : int="[PAD]" , __snake_case : Optional[Any]="[CLS]" , __snake_case : int="[MASK]" , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=None , **__snake_case : List[str] , ) -> Optional[int]: super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , tokenize_chinese_chars=__snake_case , strip_accents=__snake_case , **__snake_case , ) __magic_name__: List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __snake_case ) != do_lower_case or normalizer_state.get("""strip_accents""" , __snake_case ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __snake_case ) != tokenize_chinese_chars ): __magic_name__: List[Any] = getattr(__snake_case , normalizer_state.pop("""type""" ) ) __magic_name__: Dict = do_lower_case __magic_name__: List[Any] = strip_accents __magic_name__: List[str] = tokenize_chinese_chars __magic_name__: Tuple = normalizer_class(**__snake_case ) __magic_name__: Tuple = do_lower_case def lowerCamelCase__ ( self : List[Any] , __snake_case : str , __snake_case : int=None ) -> List[str]: __magic_name__: int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: __magic_name__: List[str] = [self.sep_token_id] __magic_name__: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: __magic_name__: List[str] = self._tokenizer.model.save(__snake_case , name=__snake_case ) return tuple(__snake_case )
213
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: a = None a = logging.get_logger(__name__) a = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} a = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } a = { "google/rembert": 256, } a = "▁" class _A ( __lowercase ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = RemBertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , **_SCREAMING_SNAKE_CASE , ): _UpperCAmelCase = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(__A ): logger.error("""Vocabulary path ({}) should be a directory""".format(__A ) ) return _UpperCAmelCase = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
518
def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function" ) lowerCamelCase : str = hex_num[0] == "-" if is_negative: lowerCamelCase : Dict = hex_num[1:] try: lowerCamelCase : List[Any] = int(SCREAMING_SNAKE_CASE_ , 16 ) except ValueError: raise ValueError("Invalid value was passed to the function" ) lowerCamelCase : Dict = "" while int_num > 0: lowerCamelCase : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
def a(lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' snake_case_ = len(snake_case__ ) snake_case_ = [[0] * n for i in range(snake_case__ )] for i in range(snake_case__ ): snake_case_ = y_points[i] for i in range(2 , snake_case__ ): for j in range(snake_case__ , snake_case__ ): snake_case_ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
700
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): '''simple docstring''' # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file snake_case_ = TapasConfig.from_json_file(lowercase__ ) # set absolute/relative position embeddings parameter snake_case_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WTQ": # run_task_main.py hparams snake_case_ = 4 snake_case_ = True # hparam_utils.py hparams snake_case_ = 0.66_4694 snake_case_ = 0.20_7951 snake_case_ = 0.12_1194 snake_case_ = True snake_case_ = True snake_case_ = False snake_case_ = 0.035_2513 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams snake_case_ = 4 snake_case_ = False # hparam_utils.py hparams snake_case_ = 36.4519 snake_case_ = 0.90_3421 snake_case_ = 222.088 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = 0.76_3141 snake_case_ = TapasForQuestionAnswering(config=lowercase__ ) elif task == "TABFACT": snake_case_ = TapasForSequenceClassification(config=lowercase__ ) elif task == "MLM": snake_case_ = TapasForMaskedLM(config=lowercase__ ) elif task == "INTERMEDIATE_PRETRAINING": snake_case_ = TapasModel(config=lowercase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowercase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) snake_case_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(lowercase__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
46
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: '''simple docstring''' snake_case : Tuple = 0 while b > 0: if b & 1: snake_case : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
638
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = """yolos""" def __init__( self : Any , UpperCamelCase__ : Optional[Any]=768 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : Optional[int]=12 , UpperCamelCase__ : Union[str, Any]=3072 , UpperCamelCase__ : str="gelu" , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : List[Any]=1e-1_2 , UpperCamelCase__ : List[Any]=[512, 864] , UpperCamelCase__ : int=16 , UpperCamelCase__ : Union[str, Any]=3 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : int=100 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : int=False , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Optional[int]=5 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : int=0.1 , **UpperCamelCase__ : Optional[Any] , ) -> Any: """simple docstring""" super().__init__(**UpperCamelCase__ ) snake_case : List[str] = hidden_size snake_case : Union[str, Any] = num_hidden_layers snake_case : List[str] = num_attention_heads snake_case : Any = intermediate_size snake_case : int = hidden_act snake_case : Optional[Any] = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : Union[str, Any] = initializer_range snake_case : List[Any] = layer_norm_eps snake_case : Tuple = image_size snake_case : Any = patch_size snake_case : str = num_channels snake_case : Optional[int] = qkv_bias snake_case : Optional[Any] = num_detection_tokens snake_case : Dict = use_mid_position_embeddings snake_case : List[Any] = auxiliary_loss # Hungarian matcher snake_case : List[str] = class_cost snake_case : Optional[Any] = bbox_cost snake_case : Tuple = giou_cost # Loss coefficients snake_case : Union[str, Any] = bbox_loss_coefficient snake_case : List[Any] = giou_loss_coefficient snake_case : Tuple = eos_coefficient class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = version.parse("""1.11""" ) @property def lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase ( self : int ) -> float: """simple docstring""" return 1e-4 @property def lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" return 12
638
1
'''simple docstring''' def snake_case_ ( a__ : int = 10_00 ): """simple docstring""" return sum(e for e in range(3 ,a__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"""{solution() = }""")
163
'''simple docstring''' import pprint import requests A : str = """https://zenquotes.io/api""" def snake_case_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def snake_case_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": A : int = random_quotes() pprint.pprint(response)
163
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = VideoToVideoSDPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} snake_case__ = False # No `output_type`. snake_case__ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def a ( self : int ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) lowerCAmelCase__ = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict=0 ) -> Tuple: # 3 frames lowerCAmelCase__ = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def a ( self : Union[str, Any] ) -> str: lowerCAmelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = VideoToVideoSDPipeline(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "np" lowerCAmelCase__ = sd_pipe(**SCREAMING_SNAKE_CASE__ ).frames lowerCAmelCase__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) lowerCAmelCase__ = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def a ( self : List[Any] ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=5e-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def a ( self : List[Any] ) -> str: pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def a ( self : int ) -> Optional[Any]: pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def a ( self : List[str] ) -> Optional[int]: pass def a ( self : Optional[Any] ) -> Tuple: return super().test_progress_bar() @slow @skip_mps class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : str ) -> int: lowerCAmelCase__ = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames lowerCAmelCase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ = torch.randn((1, 10, 3, 1_024, 576) , generator=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = video.to("cuda" ) lowerCAmelCase__ = "Spiderman is surfing" lowerCAmelCase__ = pipe(SCREAMING_SNAKE_CASE__ , video=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=3 , output_type="pt" ).frames lowerCAmelCase__ = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
61
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase : Any = imread(R"""digital_image_processing/image_data/lena_small.jpg""") lowercase : List[str] = cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase__ ( ): snake_case : Optional[int] = cn.convert_to_negative(__lowercase ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase__ ( ): with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(__lowercase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def lowerCamelCase__ ( ): snake_case : Union[str, Any] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase__ ( ): snake_case : Optional[Any] = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() snake_case : Any = canny.canny(__lowercase ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase__ ( ): assert gg.gaussian_filter(__lowercase , 5 , sigma=0.9 ).all() def lowerCamelCase__ ( ): # laplace diagonals snake_case : int = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) snake_case : Tuple = conv.img_convolve(__lowercase , __lowercase ).astype(__lowercase ) assert res.any() def lowerCamelCase__ ( ): assert med.median_filter(__lowercase , 3 ).any() def lowerCamelCase__ ( ): snake_case , snake_case : Dict = sob.sobel_filter(__lowercase ) assert grad.any() and theta.any() def lowerCamelCase__ ( ): snake_case : int = sp.make_sepia(__lowercase , 20 ) assert sepia.all() def lowerCamelCase__ ( __lowercase = "digital_image_processing/image_data/lena_small.jpg" ): snake_case : int = bs.Burkes(imread(__lowercase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase__ ( __lowercase = "digital_image_processing/image_data/lena_small.jpg" , ): snake_case : Dict = rs.NearestNeighbour(imread(__lowercase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCamelCase__ ( ): snake_case : int = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. snake_case : Tuple = imread(__lowercase , 0 ) # Test for get_neighbors_pixel function() return not None snake_case : Optional[int] = 0 snake_case : Tuple = 0 snake_case : Any = image[x_coordinate][y_coordinate] snake_case : Any = lbp.get_neighbors_pixel( __lowercase , __lowercase , __lowercase , __lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image snake_case : List[Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): snake_case : Optional[Any] = lbp.local_binary_value(__lowercase , __lowercase , __lowercase ) assert lbp_image.any()
116
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Any = '''beit''' def __init__( self , UpperCamelCase__=8192 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=224 , UpperCamelCase__=16 , UpperCamelCase__=3 , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=True , UpperCamelCase__=[3, 5, 7, 11] , UpperCamelCase__=[1, 2, 3, 6] , UpperCamelCase__=True , UpperCamelCase__=0.4 , UpperCamelCase__=256 , UpperCamelCase__=1 , UpperCamelCase__=False , UpperCamelCase__=255 , **UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase__ ) snake_case : Optional[int] = vocab_size snake_case : List[Any] = hidden_size snake_case : str = num_hidden_layers snake_case : Dict = num_attention_heads snake_case : Tuple = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Optional[Any] = hidden_dropout_prob snake_case : Dict = attention_probs_dropout_prob snake_case : Any = initializer_range snake_case : int = layer_norm_eps snake_case : str = image_size snake_case : int = patch_size snake_case : Dict = num_channels snake_case : Optional[Any] = use_mask_token snake_case : Tuple = use_absolute_position_embeddings snake_case : Tuple = use_relative_position_bias snake_case : Optional[Any] = use_shared_relative_position_bias snake_case : Dict = layer_scale_init_value snake_case : Any = drop_path_rate snake_case : str = use_mean_pooling # decode head attributes (semantic segmentation) snake_case : List[Any] = out_indices snake_case : Optional[int] = pool_scales # auxiliary head attributes (semantic segmentation) snake_case : Tuple = use_auxiliary_head snake_case : int = auxiliary_loss_weight snake_case : List[Any] = auxiliary_channels snake_case : Optional[Any] = auxiliary_num_convs snake_case : Optional[Any] = auxiliary_concat_input snake_case : Dict = semantic_loss_ignore_index class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Optional[int] = version.parse('''1.11''' ) @property def lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCamelCase ( self ) -> float: '''simple docstring''' return 1e-4
117
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __snake_case = """src/diffusers""" # Matches is_xxx_available() __snake_case = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla __snake_case = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") __snake_case = """ {0} = None """ __snake_case = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ __snake_case = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def __lowerCAmelCase ( lowercase : Tuple ) -> str: """simple docstring""" snake_case : Optional[Any] = _re_backend.findall(lowercase ) if len(lowercase ) == 0: return None return "_and_".join(lowercase ) def __lowerCAmelCase ( ) -> Tuple: """simple docstring""" with open(os.path.join(lowercase , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case : Tuple = f.readlines() # Get to the point we do the actual imports for type checking snake_case : Tuple = 0 snake_case : Optional[Any] = {} # Go through the end of the file while line_index < len(lowercase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block snake_case : List[Any] = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 snake_case : str = [] # Until we unindent, add backend objects to the list while line_index < len(lowercase ) and len(lines[line_index] ) > 1: snake_case : List[str] = lines[line_index] snake_case : Any = _re_single_line_import.search(lowercase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowercase ) > 0: snake_case : Any = objects else: line_index += 1 return backend_specific_objects def __lowerCAmelCase ( lowercase : Union[str, Any] , lowercase : Tuple ) -> int: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(lowercase ) elif name.islower(): return DUMMY_FUNCTION.format(lowercase , lowercase ) else: return DUMMY_CLASS.format(lowercase , lowercase ) def __lowerCAmelCase ( lowercase : Union[str, Any]=None ) -> Optional[int]: """simple docstring""" if backend_specific_objects is None: snake_case : List[str] = read_init() # For special correspondence backend to module name as used in the function requires_modulename snake_case : Dict = {} for backend, objects in backend_specific_objects.items(): snake_case : Union[str, Any] = "[" + ", ".join(F'"{b}"' for b in backend.split("_and_" ) ) + "]" snake_case : Union[str, Any] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowercase , lowercase ) for o in objects] ) snake_case : Optional[Any] = dummy_file return dummy_files def __lowerCAmelCase ( lowercase : Optional[Any]=False ) -> Any: """simple docstring""" snake_case : str = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py snake_case : Dict = {"torch": "pt"} # Locate actual dummy modules and read their content. snake_case : Optional[Any] = os.path.join(lowercase , "utils" ) snake_case : Union[str, Any] = { backend: os.path.join(lowercase , F'dummy_{short_names.get(lowercase , lowercase )}_objects.py' ) for backend in dummy_files.keys() } snake_case : Optional[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowercase ): with open(lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: snake_case : int = f.read() else: snake_case : Optional[Any] = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'Updating diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py as the main ' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'diffusers.utils.dummy_{short_names.get(lowercase , lowercase )}_objects.py. Run `make fix-copies` ' "to fix this." ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
117
1
'''simple docstring''' import sys _UpperCAmelCase : Optional[int] = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _SCREAMING_SNAKE_CASE ( __snake_case : str = N ): _A = -sys.maxsize - 1 for i in range(len(__snake_case ) - 1_2 ): _A = 1 for j in range(1_3 ): product *= int(n[i + j] ) if product > largest_product: _A = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
107
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a =logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : List[str] ,SCREAMING_SNAKE_CASE__ : Path ,SCREAMING_SNAKE_CASE__ : Union[str, None] = None ,SCREAMING_SNAKE_CASE__ : Union[List[str], None] = None ,SCREAMING_SNAKE_CASE__ : Union[str, List[str], None] = None ,SCREAMING_SNAKE_CASE__ : bool = True ,): __lowerCamelCase : List[str] = [file for file in os.listdir(SCREAMING_SNAKE_CASE__) if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__))] if identifier is not None: __lowerCamelCase : str = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__): for n_ in n_identifier: __lowerCamelCase : Optional[int] = [file for file in files if n_ not in file] else: __lowerCamelCase : Dict = [file for file in files if n_identifier not in file] __lowerCamelCase : str = ignore_files or [] ignore_files.append('__init__.py') __lowerCamelCase : Tuple = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' ,SCREAMING_SNAKE_CASE__) if only_modules: __lowerCamelCase : Optional[int] = file.split('.')[0] try: __lowerCamelCase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : List[str] = doctest.DocTestSuite(SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = unittest.TextTestRunner().run(SCREAMING_SNAKE_CASE__) self.assertIs(len(result.failures) ,0) except AttributeError: logger.info(F"{module_identifier} is not a module.") else: __lowerCamelCase : int = doctest.testfile(str('..' / directory / file) ,optionflags=doctest.ELLIPSIS) self.assertIs(result.failed ,0) def lowerCAmelCase ( self : List[Any]): __lowerCamelCase : Dict = Path('src/transformers') __lowerCamelCase : Any = 'modeling' __lowerCamelCase : Dict = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__ ,ignore_files=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict): __lowerCamelCase : Tuple = Path('src/transformers') __lowerCamelCase : Optional[int] = 'tokenization' self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple): __lowerCamelCase : List[Any] = Path('src/transformers') __lowerCamelCase : str = 'configuration' self.analyze_directory(SCREAMING_SNAKE_CASE__ ,identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : Dict = Path('src/transformers') __lowerCamelCase : Any = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,n_identifier=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : int): __lowerCamelCase : List[Any] = Path('docs/source') __lowerCamelCase : str = ['favicon.ico'] self.analyze_directory(SCREAMING_SNAKE_CASE__ ,ignore_files=SCREAMING_SNAKE_CASE__ ,only_modules=SCREAMING_SNAKE_CASE__)
652
0
'''simple docstring''' from typing import Any class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = data SCREAMING_SNAKE_CASE : List[str] = None class _a : '''simple docstring''' def __init__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.head while temp is not None: print(temp.data, end=' ' ) SCREAMING_SNAKE_CASE : Tuple = temp.next print() def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = Node(A ) SCREAMING_SNAKE_CASE : Any = self.head SCREAMING_SNAKE_CASE : Optional[Any] = new_node def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if node_data_a == node_data_a: return else: SCREAMING_SNAKE_CASE : Optional[int] = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE : List[Any] = node_a.next SCREAMING_SNAKE_CASE : Any = self.head while node_a is not None and node_a.data != node_data_a: SCREAMING_SNAKE_CASE : Any = node_a.next if node_a is None or node_a is None: return SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = node_a.data, node_a.data if __name__ == "__main__": UpperCamelCase_ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("After swapping") ll.print_list()
508
'''simple docstring''' def lowercase__( __UpperCamelCase: Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE : int = [0] * len(__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : Dict = [1] * len(__UpperCamelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__UpperCamelCase ) ): if indegree[i] == 0: queue.append(__UpperCamelCase ) while queue: SCREAMING_SNAKE_CASE : str = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: SCREAMING_SNAKE_CASE : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__UpperCamelCase ) print(max(__UpperCamelCase ) ) # Adjacency list of Graph UpperCamelCase_ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
508
1
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for i in range(len(_lowercase ) - 1 , 0 , -1 ): lowerCAmelCase = False for j in range(_lowercase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowerCAmelCase = unsorted[j - 1], unsorted[j] lowerCAmelCase = True for j in range(_lowercase ): if unsorted[j] > unsorted[j + 1]: lowerCAmelCase = unsorted[j + 1], unsorted[j] lowerCAmelCase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE__ = [int(item) for item in user_input.split(",")] print(f'{cocktail_shaker_sort(unsorted) = }')
532
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: '''simple docstring''' lowerCamelCase_ : str = [True] * limit lowerCamelCase_ : List[str] = False lowerCamelCase_ : List[Any] = False lowerCamelCase_ : Union[str, Any] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCamelCase_ : List[Any] = i * 2 while index < limit: lowerCamelCase_ : List[Any] = False lowerCamelCase_ : str = index + i lowerCamelCase_ : str = [2] for i in range(3 , _lowercase , 2 ): if is_prime[i]: primes.append(_lowercase ) return primes def lowercase_ ( _lowercase = 1_000_000 ) -> int: '''simple docstring''' lowerCamelCase_ : int = prime_sieve(_lowercase ) lowerCamelCase_ : int = 0 lowerCamelCase_ : Union[str, Any] = 0 for i in range(len(_lowercase ) ): for j in range(i + length , len(_lowercase ) ): lowerCamelCase_ : Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCamelCase_ : int = j - i lowerCamelCase_ : Any = sol return largest if __name__ == "__main__": print(f'{solution() = }')
422
0
'''simple docstring''' from __future__ import annotations from math import gcd def __A ( lowerCAmelCase_ , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: return (pow(lowerCAmelCase_ , 2 ) + step) % modulus for _ in range(lowerCAmelCase_ ): # These track the position within the cycle detection logic. _UpperCAmelCase : List[str] = seed _UpperCAmelCase : int = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. _UpperCAmelCase : Optional[Any] = rand_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = rand_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = rand_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. _UpperCAmelCase : List[str] = gcd(hare - tortoise , lowerCAmelCase_ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. _UpperCAmelCase : str = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : Optional[Any] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: lowerCAmelCase_ : Dict = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
711
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCAmelCase_ : List[Any] = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCAmelCase_ : int = logging.get_logger(__name__) class __lowerCAmelCase ( __a ): snake_case : List[str] = """maskformer""" snake_case : str = {"""hidden_size""": """mask_feature_size"""} snake_case : Union[str, Any] = ["""resnet""", """swin"""] snake_case : Optional[Any] = ["""detr"""] def __init__(self , lowerCAmelCase__ = 2_5_6 , lowerCAmelCase__ = 2_5_6 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0.0_2 , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = 1.0 , lowerCAmelCase__ = 2_0.0 , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k _UpperCAmelCase : Optional[int] = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : List[str] = backbone_config.pop("""model_type""" ) _UpperCAmelCase : List[Any] = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase : Any = config_class.from_dict(lowerCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 _UpperCAmelCase : Union[str, Any] = DetrConfig() else: # verify that the decoder is supported _UpperCAmelCase : List[Any] = ( decoder_config.pop("""model_type""" ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported )}" ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCAmelCase : int = CONFIG_MAPPING[decoder_type] _UpperCAmelCase : List[str] = config_class.from_dict(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = backbone_config _UpperCAmelCase : List[str] = decoder_config # main feature dimension for the model _UpperCAmelCase : str = fpn_feature_size _UpperCAmelCase : Any = mask_feature_size # initializer _UpperCAmelCase : Tuple = init_std _UpperCAmelCase : Union[str, Any] = init_xavier_std # Hungarian matcher && loss _UpperCAmelCase : Any = cross_entropy_weight _UpperCAmelCase : int = dice_weight _UpperCAmelCase : int = mask_weight _UpperCAmelCase : int = use_auxiliary_loss _UpperCAmelCase : Dict = no_object_weight _UpperCAmelCase : List[Any] = output_auxiliary_logits _UpperCAmelCase : Optional[Any] = self.decoder_config.encoder_attention_heads _UpperCAmelCase : List[str] = self.decoder_config.num_hidden_layers super().__init__(**lowerCAmelCase__ ) @classmethod def snake_case_ (cls , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): return cls( backbone_config=lowerCAmelCase__ , decoder_config=lowerCAmelCase__ , **lowerCAmelCase__ , ) def snake_case_ (self ): _UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : str = self.backbone_config.to_dict() _UpperCAmelCase : Any = self.decoder_config.to_dict() _UpperCAmelCase : str = self.__class__.model_type return output
156
0
UpperCAmelCase_ = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase_ = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" assert len(str(SCREAMING_SNAKE_CASE_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: _UpperCAmelCase = year // 1_00 _UpperCAmelCase = (5 * (century % 4) + 2) % 7 _UpperCAmelCase = year % 1_00 _UpperCAmelCase = centurian % 12 _UpperCAmelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 _UpperCAmelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) _UpperCAmelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
32
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case__ : Tuple = pd.read_csv('''sample_data.csv''', header=None) snake_case__ : List[str] = df.shape[:1][0] # If you're using some other dataset input the target column snake_case__ : Dict = df.iloc[:, 1:2] snake_case__ : List[str] = actual_data.values.reshape(len_data, 1) snake_case__ : Union[str, Any] = MinMaxScaler().fit_transform(actual_data) snake_case__ : Tuple = 1_0 snake_case__ : str = 5 snake_case__ : Any = 2_0 snake_case__ : Union[str, Any] = len_data - periods * look_back snake_case__ : Union[str, Any] = actual_data[:division] snake_case__ : Optional[Any] = actual_data[division - look_back :] snake_case__ , snake_case__ : Dict = [], [] snake_case__ , snake_case__ : Dict = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case__ : int = np.array(train_x) snake_case__ : List[str] = np.array(test_x) snake_case__ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) snake_case__ : int = np.array([list(i.ravel()) for i in test_y]) snake_case__ : List[Any] = Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') snake_case__ : List[str] = model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) snake_case__ : Optional[int] = model.predict(x_test)
392
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available snake_case = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
406
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=1 ): if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ): SCREAMING_SNAKE_CASE = [] for old_item in old_list: SCREAMING_SNAKE_CASE = old_item.replace('in_layers.0', 'norm1' ) SCREAMING_SNAKE_CASE = new_item.replace('in_layers.2', 'conv1' ) SCREAMING_SNAKE_CASE = new_item.replace('out_layers.0', 'norm2' ) SCREAMING_SNAKE_CASE = new_item.replace('out_layers.3', 'conv2' ) SCREAMING_SNAKE_CASE = new_item.replace('emb_layers.1', 'time_emb_proj' ) SCREAMING_SNAKE_CASE = new_item.replace('skip_connection', 'conv_shortcut' ) SCREAMING_SNAKE_CASE = shave_segments(SCREAMING_SNAKE_CASE_, n_shave_prefix_segments=SCREAMING_SNAKE_CASE_ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ): SCREAMING_SNAKE_CASE = [] for old_item in old_list: SCREAMING_SNAKE_CASE = old_item SCREAMING_SNAKE_CASE = new_item.replace('norm.weight', 'group_norm.weight' ) SCREAMING_SNAKE_CASE = new_item.replace('norm.bias', 'group_norm.bias' ) SCREAMING_SNAKE_CASE = new_item.replace('proj_out.weight', 'proj_attn.weight' ) SCREAMING_SNAKE_CASE = new_item.replace('proj_out.bias', 'proj_attn.bias' ) SCREAMING_SNAKE_CASE = shave_segments(SCREAMING_SNAKE_CASE_, n_shave_prefix_segments=SCREAMING_SNAKE_CASE_ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None ): assert isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): SCREAMING_SNAKE_CASE = old_checkpoint[path] SCREAMING_SNAKE_CASE = old_tensor.shape[0] // 3 SCREAMING_SNAKE_CASE = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) SCREAMING_SNAKE_CASE = old_tensor.shape[0] // config['num_head_channels'] // 3 SCREAMING_SNAKE_CASE = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = old_tensor.split(channels // num_heads, dim=1 ) SCREAMING_SNAKE_CASE = query.reshape(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = key.reshape(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = value.reshape(SCREAMING_SNAKE_CASE_ ) for path in paths: SCREAMING_SNAKE_CASE = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here SCREAMING_SNAKE_CASE = new_path.replace('middle_block.0', 'mid_block.resnets.0' ) SCREAMING_SNAKE_CASE = new_path.replace('middle_block.1', 'mid_block.attentions.0' ) SCREAMING_SNAKE_CASE = new_path.replace('middle_block.2', 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: SCREAMING_SNAKE_CASE = new_path.replace(replacement['old'], replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: SCREAMING_SNAKE_CASE = old_checkpoint[path['old']][:, :, 0] else: SCREAMING_SNAKE_CASE = old_checkpoint[path['old']] def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = checkpoint['time_embed.0.weight'] SCREAMING_SNAKE_CASE = checkpoint['time_embed.0.bias'] SCREAMING_SNAKE_CASE = checkpoint['time_embed.2.weight'] SCREAMING_SNAKE_CASE = checkpoint['time_embed.2.bias'] SCREAMING_SNAKE_CASE = checkpoint['input_blocks.0.0.weight'] SCREAMING_SNAKE_CASE = checkpoint['input_blocks.0.0.bias'] SCREAMING_SNAKE_CASE = checkpoint['out.0.weight'] SCREAMING_SNAKE_CASE = checkpoint['out.0.bias'] SCREAMING_SNAKE_CASE = checkpoint['out.2.weight'] SCREAMING_SNAKE_CASE = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only SCREAMING_SNAKE_CASE = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) SCREAMING_SNAKE_CASE = { layer_id: [key for key in checkpoint if f'''input_blocks.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } # Retrieves the keys for the middle blocks only SCREAMING_SNAKE_CASE = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) SCREAMING_SNAKE_CASE = { layer_id: [key for key in checkpoint if f'''middle_block.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } # Retrieves the keys for the output blocks only SCREAMING_SNAKE_CASE = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) SCREAMING_SNAKE_CASE = { layer_id: [key for key in checkpoint if f'''output_blocks.{layer_id}''' in key] for layer_id in range(SCREAMING_SNAKE_CASE_ ) } for i in range(1, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = (i - 1) // (config['num_res_blocks'] + 1) SCREAMING_SNAKE_CASE = (i - 1) % (config['num_res_blocks'] + 1) SCREAMING_SNAKE_CASE = [key for key in input_blocks[i] if f'''input_blocks.{i}.0''' in key] SCREAMING_SNAKE_CASE = [key for key in input_blocks[i] if f'''input_blocks.{i}.1''' in key] if f'''input_blocks.{i}.0.op.weight''' in checkpoint: SCREAMING_SNAKE_CASE = checkpoint[ f'''input_blocks.{i}.0.op.weight''' ] SCREAMING_SNAKE_CASE = checkpoint[ f'''input_blocks.{i}.0.op.bias''' ] continue SCREAMING_SNAKE_CASE = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = {'old': f'''input_blocks.{i}.0''', 'new': f'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} SCREAMING_SNAKE_CASE = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, additional_replacements=[meta_path, resnet_op], config=SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'old': f'''input_blocks.{i}.1''', 'new': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } SCREAMING_SNAKE_CASE = { f'''input_blocks.{i}.1.qkv.bias''': { 'key': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''input_blocks.{i}.1.qkv.weight''': { 'key': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': f'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, additional_replacements=[meta_path], attention_paths_to_split=SCREAMING_SNAKE_CASE_, config=SCREAMING_SNAKE_CASE_, ) SCREAMING_SNAKE_CASE = middle_blocks[0] SCREAMING_SNAKE_CASE = middle_blocks[1] SCREAMING_SNAKE_CASE = middle_blocks[2] SCREAMING_SNAKE_CASE = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) assign_to_checkpoint(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, config=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) assign_to_checkpoint(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, config=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, attention_paths_to_split=SCREAMING_SNAKE_CASE_, config=SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = i // (config['num_res_blocks'] + 1) SCREAMING_SNAKE_CASE = i % (config['num_res_blocks'] + 1) SCREAMING_SNAKE_CASE = [shave_segments(SCREAMING_SNAKE_CASE_, 2 ) for name in output_blocks[i]] SCREAMING_SNAKE_CASE = {} for layer in output_block_layers: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = layer.split('.' )[0], shave_segments(SCREAMING_SNAKE_CASE_, 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE = [layer_name] if len(SCREAMING_SNAKE_CASE_ ) > 1: SCREAMING_SNAKE_CASE = [key for key in output_blocks[i] if f'''output_blocks.{i}.0''' in key] SCREAMING_SNAKE_CASE = [key for key in output_blocks[i] if f'''output_blocks.{i}.1''' in key] SCREAMING_SNAKE_CASE = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = renew_resnet_paths(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = {'old': f'''output_blocks.{i}.0''', 'new': f'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, additional_replacements=[meta_path], config=SCREAMING_SNAKE_CASE_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): SCREAMING_SNAKE_CASE = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) SCREAMING_SNAKE_CASE = checkpoint[ f'''output_blocks.{i}.{index}.conv.weight''' ] SCREAMING_SNAKE_CASE = checkpoint[ f'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(SCREAMING_SNAKE_CASE_ ) == 2: SCREAMING_SNAKE_CASE = [] if len(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = renew_attention_paths(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = { 'old': f'''output_blocks.{i}.1''', 'new': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } SCREAMING_SNAKE_CASE = { f'''output_blocks.{i}.1.qkv.bias''': { 'key': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', 'query': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', 'value': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, f'''output_blocks.{i}.1.qkv.weight''': { 'key': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', 'query': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', 'value': f'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, additional_replacements=[meta_path], attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None, config=SCREAMING_SNAKE_CASE_, ) else: SCREAMING_SNAKE_CASE = renew_resnet_paths(SCREAMING_SNAKE_CASE_, n_shave_prefix_segments=1 ) for path in resnet_0_paths: SCREAMING_SNAKE_CASE = '.'.join(['output_blocks', str(SCREAMING_SNAKE_CASE_ ), path['old']] ) SCREAMING_SNAKE_CASE = '.'.join(['up_blocks', str(SCREAMING_SNAKE_CASE_ ), 'resnets', str(SCREAMING_SNAKE_CASE_ ), path['new']] ) SCREAMING_SNAKE_CASE = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') snake_case = parser.parse_args() snake_case = torch.load(args.checkpoint_path) with open(args.config_file) as f: snake_case = json.loads(f.read()) snake_case = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] snake_case = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: snake_case = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) snake_case = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) snake_case = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
406
1