code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections.abc import Generator def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_: Optional[int] = 0, 1 while True: UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = b, a + b yield b def lowerCAmelCase_ (lowerCAmelCase__: int = 1_0_0_0 ): """simple docstring""" UpperCAmelCase_: Any = 1 UpperCAmelCase_: List[str] = fibonacci_generator() while len(str(next(lowerCAmelCase__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
556
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a : Optional[int] = logging.getLogger(__name__) @dataclass class _a ( _lowerCAmelCase ): A = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) A = field(default=_lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) A = field( default=_lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) A = field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
556
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _lowerCamelCase =logging.get_logger(__name__) class a_ : """simple docstring""" def __init__( self : Any ,snake_case : str = None ,snake_case : uuid.UUID = None ,snake_case : Any=None ,snake_case : Optional[int]=None ): if not conversation_id: SCREAMING_SNAKE_CASE =uuid.uuida() if past_user_inputs is None: SCREAMING_SNAKE_CASE =[] if generated_responses is None: SCREAMING_SNAKE_CASE =[] SCREAMING_SNAKE_CASE =conversation_id SCREAMING_SNAKE_CASE =past_user_inputs SCREAMING_SNAKE_CASE =generated_responses SCREAMING_SNAKE_CASE =text def __eq__( self : Tuple ,snake_case : Any ): if not isinstance(snake_case ,snake_case ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _lowerCAmelCase ( self : List[Any] ,snake_case : str ,snake_case : bool = False ): if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) SCREAMING_SNAKE_CASE =text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: SCREAMING_SNAKE_CASE =text def _lowerCAmelCase ( self : Union[str, Any] ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) SCREAMING_SNAKE_CASE =None def _lowerCAmelCase ( self : Dict ,snake_case : str ): self.generated_responses.append(snake_case ) def _lowerCAmelCase ( self : str ): for user_input, generated_response in zip(self.past_user_inputs ,self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): SCREAMING_SNAKE_CASE ='user' if is_user else 'bot' output += f'{name} >> {text} \n' return output @add_end_docstrings( lowerCamelCase_ , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class a_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self : List[Any] ,*snake_case : str ,**snake_case : Any ): super().__init__(*snake_case ,**snake_case ) if self.tokenizer.pad_token_id is None: SCREAMING_SNAKE_CASE =self.tokenizer.eos_token def _lowerCAmelCase ( self : int ,snake_case : str=None ,snake_case : Union[str, Any]=None ,snake_case : Any=None ,**snake_case : Optional[Any] ): SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE ={} SCREAMING_SNAKE_CASE ={} if min_length_for_response is not None: SCREAMING_SNAKE_CASE =min_length_for_response if minimum_tokens is not None: SCREAMING_SNAKE_CASE =minimum_tokens if "max_length" in generate_kwargs: SCREAMING_SNAKE_CASE =generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: SCREAMING_SNAKE_CASE =clean_up_tokenization_spaces if generate_kwargs: forward_params.update(snake_case ) return preprocess_params, forward_params, postprocess_params def __call__( self : Optional[Any] ,snake_case : Union[Conversation, List[Conversation]] ,snake_case : Dict=0 ,**snake_case : List[Any] ): SCREAMING_SNAKE_CASE =super().__call__(snake_case ,num_workers=snake_case ,**snake_case ) if isinstance(snake_case ,snake_case ) and len(snake_case ) == 1: return outputs[0] return outputs def _lowerCAmelCase ( self : List[Any] ,snake_case : Conversation ,snake_case : Tuple=32 ): if not isinstance(snake_case ,snake_case ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer ,'_build_conversation_input_ids' ): SCREAMING_SNAKE_CASE =self.tokenizer._build_conversation_input_ids(snake_case ) else: # If the tokenizer cannot handle conversations, we default to only the old version SCREAMING_SNAKE_CASE =self._legacy_parse_and_tokenize(snake_case ) if self.framework == "pt": SCREAMING_SNAKE_CASE =torch.LongTensor([input_ids] ) elif self.framework == "tf": SCREAMING_SNAKE_CASE =tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : Any ,snake_case : List[str]=10 ,**snake_case : Union[str, Any] ): SCREAMING_SNAKE_CASE =generate_kwargs.get('max_length' ,self.model.config.max_length ) SCREAMING_SNAKE_CASE =model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) SCREAMING_SNAKE_CASE =max_length - minimum_tokens SCREAMING_SNAKE_CASE =model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: SCREAMING_SNAKE_CASE =model_inputs['attention_mask'][:, -trim:] SCREAMING_SNAKE_CASE =model_inputs.pop('conversation' ) SCREAMING_SNAKE_CASE =max_length SCREAMING_SNAKE_CASE =self.model.generate(**snake_case ,**snake_case ) if self.model.config.is_encoder_decoder: SCREAMING_SNAKE_CASE =1 else: SCREAMING_SNAKE_CASE =n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _lowerCAmelCase ( self : Optional[Any] ,snake_case : Dict ,snake_case : Any=True ): SCREAMING_SNAKE_CASE =model_outputs['output_ids'] SCREAMING_SNAKE_CASE =self.tokenizer.decode( output_ids[0] ,skip_special_tokens=snake_case ,clean_up_tokenization_spaces=snake_case ,) SCREAMING_SNAKE_CASE =model_outputs['conversation'] conversation.mark_processed() conversation.append_response(snake_case ) return conversation def _lowerCAmelCase ( self : Optional[int] ,snake_case : Conversation ): SCREAMING_SNAKE_CASE =self.tokenizer.eos_token_id SCREAMING_SNAKE_CASE =[] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(snake_case ,add_special_tokens=snake_case ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(snake_case ,add_special_tokens=snake_case ) ) if len(snake_case ) > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE =input_ids[-self.tokenizer.model_max_length :] return input_ids
252
def snake_case__ ( lowerCAmelCase_ = 1000000 ): """simple docstring""" SCREAMING_SNAKE_CASE =limit + 1 SCREAMING_SNAKE_CASE =[0] * limit for first_term in range(1, lowerCAmelCase_ ): for n in range(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): SCREAMING_SNAKE_CASE =first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a SCREAMING_SNAKE_CASE =sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f'{solution() = }')
252
1
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = nn.functional.normalize(SCREAMING_SNAKE_CASE ) lowerCAmelCase = nn.functional.normalize(SCREAMING_SNAKE_CASE ) return torch.mm(SCREAMING_SNAKE_CASE , normalized_text_embeds.t() ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = CLIPConfig _SCREAMING_SNAKE_CASE = ['CLIPEncoderLayer'] def __init__( self , lowercase ) -> Union[str, Any]: super().__init__(lowercase ) lowerCAmelCase = CLIPVisionModel(config.vision_config ) lowerCAmelCase = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(17 ) , requires_grad=lowercase ) lowerCAmelCase = nn.Parameter(torch.ones(3 ) , requires_grad=lowercase ) @torch.no_grad() def _snake_case ( self , lowercase , lowercase ) -> List[str]: lowerCAmelCase = self.vision_model(lowercase )[1] # pooled_output lowerCAmelCase = self.visual_projection(lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase = cosine_distance(lowercase , self.special_care_embeds ).cpu().float().numpy() lowerCAmelCase = cosine_distance(lowercase , self.concept_embeds ).cpu().float().numpy() lowerCAmelCase = [] lowerCAmelCase = image_embeds.shape[0] for i in range(lowercase ): lowerCAmelCase = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCAmelCase = special_cos_dist[i][concept_idx] lowerCAmelCase = self.special_care_embeds_weights[concept_idx].item() lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) lowerCAmelCase = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCAmelCase = cos_dist[i][concept_idx] lowerCAmelCase = self.concept_embeds_weights[concept_idx].item() lowerCAmelCase = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(lowercase ) result.append(lowercase ) lowerCAmelCase = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def _snake_case ( self , lowercase , lowercase ) -> int: lowerCAmelCase = self.vision_model(lowercase )[1] # pooled_output lowerCAmelCase = self.visual_projection(lowercase ) lowerCAmelCase = cosine_distance(lowercase , self.special_care_embeds ) lowerCAmelCase = cosine_distance(lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCAmelCase = 0.0 lowerCAmelCase = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCAmelCase = torch.any(special_scores > 0 , dim=1 ) lowerCAmelCase = special_care * 0.01 lowerCAmelCase = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) lowerCAmelCase = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCAmelCase = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
532
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'speech_to_text_2' _SCREAMING_SNAKE_CASE = ['past_key_values'] _SCREAMING_SNAKE_CASE = {'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , lowercase=10_000 , lowercase=6 , lowercase=2_048 , lowercase=4 , lowercase=0.0 , lowercase=True , lowercase="relu" , lowercase=256 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=2 , lowercase=True , lowercase=1 , lowercase=0 , lowercase=2 , lowercase=1_024 , **lowercase , ) -> Optional[int]: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , decoder_start_token_id=lowercase , **lowercase , )
532
1
from math import pi, sqrt, tan def _lowerCAmelCase ( __magic_name__ :Optional[int] ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def _lowerCAmelCase ( __magic_name__ :Tuple , __magic_name__ :Optional[Any] , __magic_name__ :List[Any] ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _lowerCAmelCase ( __magic_name__ :Tuple ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def _lowerCAmelCase ( __magic_name__ :List[str] ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def _lowerCAmelCase ( __magic_name__ :int , __magic_name__ :str ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _lowerCAmelCase ( __magic_name__ :Union[str, Any] , __magic_name__ :int , __magic_name__ :str ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) UpperCAmelCase_ = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _lowerCAmelCase ( __magic_name__ :Union[str, Any] , __magic_name__ :Union[str, Any] ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def _lowerCAmelCase ( __magic_name__ :Optional[Any] , __magic_name__ :int ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(snake_case_ , 2 ) * torus_radius * tube_radius def _lowerCAmelCase ( __magic_name__ :Union[str, Any] , __magic_name__ :int ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def _lowerCAmelCase ( __magic_name__ :Any ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def _lowerCAmelCase ( __magic_name__ :int , __magic_name__ :Union[str, Any] ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def _lowerCAmelCase ( __magic_name__ :Tuple , __magic_name__ :Optional[Any] , __magic_name__ :Optional[Any] ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) UpperCAmelCase_ = (sidea + sidea + sidea) / 2 UpperCAmelCase_ = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _lowerCAmelCase ( __magic_name__ :Optional[Any] , __magic_name__ :List[Any] ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def _lowerCAmelCase ( __magic_name__ :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :str ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def _lowerCAmelCase ( __magic_name__ :Optional[Any] ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def _lowerCAmelCase ( __magic_name__ :List[Any] , __magic_name__ :Tuple ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def _lowerCAmelCase ( __magic_name__ :Optional[Any] , __magic_name__ :str ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def _lowerCAmelCase ( __magic_name__ :List[Any] , __magic_name__ :List[Any] ): if not isinstance(snake_case_ , snake_case_ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print('\nSurface Areas of various geometric shapes: \n') print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
710
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class snake_case__ : '''simple docstring''' __A = None __A = None __A = None # sigma(t_i) @classmethod def UpperCamelCase ( cls : Dict ) -> Optional[int]: return cls() @dataclass class snake_case__ ( __snake_case ): '''simple docstring''' __A = 42 __A = 42 __A = 42 class snake_case__ ( __snake_case , __snake_case ): '''simple docstring''' @property def UpperCamelCase ( self : Union[str, Any] ) -> List[str]: return True @register_to_config def __init__( self : Dict , lowerCAmelCase_ : float = 0.02 , lowerCAmelCase_ : float = 1_00 , lowerCAmelCase_ : float = 1.007 , lowerCAmelCase_ : float = 80 , lowerCAmelCase_ : float = 0.05 , lowerCAmelCase_ : float = 50 , ) -> Any: pass def UpperCamelCase ( self : List[Any] ) -> Optional[Any]: return KarrasVeSchedulerState.create() def UpperCamelCase ( self : List[Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple = () ) -> KarrasVeSchedulerState: UpperCAmelCase_ = jnp.arange(0 , lowerCAmelCase_ )[::-1].copy() UpperCAmelCase_ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCAmelCase_ , schedule=jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) , timesteps=lowerCAmelCase_ , ) def UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : random.KeyArray , ) -> Tuple[jnp.ndarray, float]: if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase_ = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: UpperCAmelCase_ = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase_ = random.split(lowerCAmelCase_ , num=1 ) UpperCAmelCase_ = self.config.s_noise * random.normal(key=lowerCAmelCase_ , shape=sample.shape ) UpperCAmelCase_ = sigma + gamma * sigma UpperCAmelCase_ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: UpperCAmelCase_ = sample_hat + sigma_hat * model_output UpperCAmelCase_ = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase_ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , state=lowerCAmelCase_ ) def UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : jnp.ndarray , lowerCAmelCase_ : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: UpperCAmelCase_ = sample_prev + sigma_prev * model_output UpperCAmelCase_ = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase_ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCAmelCase_ , derivative=lowerCAmelCase_ , state=lowerCAmelCase_ ) def UpperCamelCase ( self : str , lowerCAmelCase_ : KarrasVeSchedulerState , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Tuple: raise NotImplementedError()
407
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
90
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Dict = (DDPMScheduler,) def _SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = { 'num_train_timesteps': 10_00, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_SCREAMING_SNAKE_CASE ) return config def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_SCREAMING_SNAKE_CASE , beta_end=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_SCREAMING_SNAKE_CASE ): if i == len(_SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase = -1 else: lowerCAmelCase = timesteps[i + 1] lowerCAmelCase = scheduler.previous_timestep(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = prev_t.item() self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 51, 0] with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [1_00, 87, 50, 1, 0] lowerCAmelCase = len(_SCREAMING_SNAKE_CASE ) with self.assertRaises(_SCREAMING_SNAKE_CASE , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_SCREAMING_SNAKE_CASE , timesteps=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _SCREAMING_SNAKE_CASE , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_SCREAMING_SNAKE_CASE )
284
0
'''simple docstring''' from collections.abc import Callable import numpy as np def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(_UpperCamelCase ): _UpperCamelCase = y[k] + step_size * ode_func(_UpperCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
721
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : List[Any] = StableDiffusionInpaintPipeline UpperCamelCase_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCamelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : int = frozenset([] ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) _UpperCamelCase = PNDMScheduler(skip_prk_steps=a ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) _UpperCamelCase = CLIPTextModel(a ) _UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A_ ( self , a , a=0 ) -> List[Any]: '''simple docstring''' _UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(a ) ).convert("""RGB""" ).resize((64, 64) ) _UpperCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(a ).startswith("""mps""" ): _UpperCamelCase = torch.manual_seed(a ) else: _UpperCamelCase = torch.Generator(device=a ).manual_seed(a ) _UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionInpaintPipeline(**a ) _UpperCamelCase = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) _UpperCamelCase = self.get_dummy_inputs(a ) _UpperCamelCase = sd_pipe(**a ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , torch_dtype=torch.floataa , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A_ ( self ) -> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = PNDMScheduler.from_pretrained(a , subfolder="""scheduler""" ) _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , safety_checker=a , scheduler=a , torch_dtype=torch.floataa , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , num_inference_steps=2 , output_type="""np""" , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
202
0
def _a ( lowercase__ : str ): '''simple docstring''' return "".join(chr(ord(lowercase__ ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
85
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCAmelCase = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""CLIPFeatureExtractor"""] _lowerCAmelCase = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
569
0
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__=28_123 ): """simple docstring""" A__ = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i A__ = set() A__ = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(UpperCamelCase__ ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
718
"""simple docstring""" import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): __lowerCamelCase = yaml.safe_load( "\\nname: \"\"\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: \"Dataset Card for X\" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: \"Table of Contents\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Dataset Description\"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: \"Dataset Summary\"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: \"Supported Tasks and Leaderboards\"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n" ) __lowerCamelCase = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = { "name": "root", "text": "", "is_empty_text": True, "subsections": [ { "name": "Dataset Card for My Dataset", "text": "", "is_empty_text": True, "subsections": [ {"name": "Table of Contents", "text": "Some text here.", "is_empty_text": False, "subsections": []}, { "name": "Dataset Description", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Dataset Summary", "text": "Some text here.", "is_empty_text": False, "subsections": [ { "name": "Extra Ignored Subsection", "text": "", "is_empty_text": True, "subsections": [], } ], }, { "name": "Supported Tasks and Leaderboards", "text": "", "is_empty_text": True, "subsections": [], }, {"name": "Languages", "text": "Language Text", "is_empty_text": False, "subsections": []}, ], }, ], } ], } __lowerCamelCase = "\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = ( "The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README." ) __lowerCamelCase = "\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = ( "The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README." ) __lowerCamelCase = "\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README." __lowerCamelCase = "" __lowerCamelCase = "The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README." __lowerCamelCase = "\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n" __lowerCamelCase = "The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections." @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" assert ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with pytest.raises(UpperCamelCase__ , match=re.escape(expected_error.format(path='root' ) ) ): A__ = ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with pytest.raises(UpperCamelCase__ , match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" ReadMe.from_string(UpperCamelCase__ , UpperCamelCase__ , suppress_parsing_errors=UpperCamelCase__ ) @pytest.mark.parametrize( 'readme_md, expected_dict' , [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / 'README.md' with open(UpperCamelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase__ ) A__ = ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / 'README.md' with open(UpperCamelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase__ ) A__ = expected_error.format(path=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ): A__ = ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error' , [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / 'README.md' with open(UpperCamelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase__ ) A__ = expected_error.format(path=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ): ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( 'readme_md,' , [ (README_MULTIPLE_SAME_HEADING_1), ] , ) def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: A__ = Path(UpperCamelCase__ ) / 'README.md' with open(UpperCamelCase__ , 'w+' ) as readme_file: readme_file.write(UpperCamelCase__ ) ReadMe.from_readme(UpperCamelCase__ , UpperCamelCase__ , suppress_parsing_errors=UpperCamelCase__ )
536
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[int] ): __A : str = get_activation("""swish""" ) self.assertIsInstance(__A , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCAmelCase_ ( self : Optional[int] ): __A : List[str] = get_activation("""silu""" ) self.assertIsInstance(__A , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCAmelCase_ ( self : Tuple ): __A : Optional[int] = get_activation("""mish""" ) self.assertIsInstance(__A , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCAmelCase_ ( self : int ): __A : int = get_activation("""gelu""" ) self.assertIsInstance(__A , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
17
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
5
0
'''simple docstring''' from __future__ import annotations def lowercase__ ( __lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" return [ord(lowerCAmelCase__ ) - 96 for elem in plain] def lowercase__ ( __lowercase : Any ) -> Union[str, Any]: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def lowercase__ ( ) -> List[Any]: """simple docstring""" __UpperCamelCase = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , lowerCAmelCase__ ) print('Decoded:' , decode(lowerCAmelCase__ ) ) if __name__ == "__main__": main()
714
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowercase__ ( __lowercase : List[str] ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def lowercase__ ( __lowercase : Optional[Any] , __lowercase : Dict ) -> Any: """simple docstring""" return (-y * np.log(__lowercase ) - (1 - y) * np.log(1 - h )).mean() def lowercase__ ( __lowercase : str , __lowercase : str , __lowercase : str ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = np.dot(__lowercase , __lowercase ) return np.sum(y * scores - np.log(1 + np.exp(__lowercase ) ) ) def lowercase__ ( __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Optional[Any] , __lowercase : int=70000 ) -> List[str]: """simple docstring""" __UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(__lowercase ): __UpperCamelCase = np.dot(__lowercase , __lowercase ) __UpperCamelCase = sigmoid_function(__lowercase ) __UpperCamelCase = np.dot(x.T , h - y ) / y.size __UpperCamelCase = theta - alpha * gradient # updating the weights __UpperCamelCase = np.dot(__lowercase , __lowercase ) __UpperCamelCase = sigmoid_function(__lowercase ) __UpperCamelCase = cost_function(__lowercase , __lowercase ) if iterations % 100 == 0: print(F'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a__ : Optional[Any] =datasets.load_iris() a__ : List[str] =iris.data[:, :2] a__ : Union[str, Any] =(iris.target != 0) * 1 a__ : List[str] =0.1 a__ : List[str] =logistic_reg(alpha, x, y, max_iterations=70_000) print('''theta: ''', theta) # printing the theta i.e our weights vector def lowercase__ ( __lowercase : Dict ) -> str: """simple docstring""" return sigmoid_function( np.dot(__lowercase , __lowercase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((a__) , (a__)) : Optional[int] =(x[:, 0].min(), x[:, 0].max()) ((a__) , (a__)) : Optional[int] =(x[:, 1].min(), x[:, 1].max()) ((a__) , (a__)) : Optional[Any] =np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a__ : str =np.c_[xxa.ravel(), xxa.ravel()] a__ : Dict =predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
434
0
"""simple docstring""" _lowercase = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } _lowercase = { "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def _snake_case ( snake_case__ : float , snake_case__ : str , snake_case__ : str ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: A = ( F'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' F'Valid values are: {", ".join(snake_case__ )}' ) raise ValueError(snake_case__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
91
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
0
'''simple docstring''' def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: """simple docstring""" snake_case: Optional[int] ='' for word_or_phrase in separated: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise Exception('join() accepts only strings to be joined' ) joined += word_or_phrase + separator return joined.strip(__UpperCAmelCase ) if __name__ == "__main__": from doctest import testmod testmod()
347
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def a_ ( __UpperCAmelCase ) -> Dict: """simple docstring""" snake_case: Optional[int] =[tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class a_ ( snake_case , snake_case , snake_case , unittest.TestCase ): UpperCAmelCase : List[str] = StableDiffusionLatentUpscalePipeline UpperCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } UpperCAmelCase : List[Any] = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} UpperCAmelCase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase : Optional[int] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase : str = frozenset([] ) UpperCAmelCase : Any = True @property def UpperCamelCase ( self : Dict ) -> List[str]: snake_case: Optional[int] =1 snake_case: List[Any] =4 snake_case: Optional[Any] =(1_6, 1_6) snake_case: Union[str, Any] =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a_ ) return image def UpperCamelCase ( self : Any ) -> Tuple: torch.manual_seed(0 ) snake_case: Dict =UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=a_ , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=a_ , only_cross_attention=a_ , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) snake_case: int =AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) snake_case: Optional[int] =EulerDiscreteScheduler(prediction_type='sample' ) snake_case: Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='quick_gelu' , projection_dim=5_1_2 , ) snake_case: Dict =CLIPTextModel(a_ ) snake_case: List[str] =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) snake_case: Tuple ={ 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCamelCase ( self : int , a_ : Optional[int] , a_ : str=0 ) -> List[Any]: if str(a_ ).startswith('mps' ): snake_case: str =torch.manual_seed(a_ ) else: snake_case: List[str] =torch.Generator(device=a_ ).manual_seed(a_ ) snake_case: Optional[Any] ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self : Union[str, Any] ) -> Any: snake_case: Optional[Any] ='cpu' snake_case: List[Any] =self.get_dummy_components() snake_case: str =self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) snake_case: Union[str, Any] =self.get_dummy_inputs(a_ ) snake_case: Any =pipe(**a_ ).images snake_case: Dict =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) snake_case: Dict =np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) snake_case: Any =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a_ , 1E-3 ) def UpperCamelCase ( self : Tuple ) -> List[str]: super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def UpperCamelCase ( self : str ) -> Optional[Any]: super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def UpperCamelCase ( self : Tuple ) -> Optional[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def UpperCamelCase ( self : Union[str, Any] ) -> int: super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def UpperCamelCase ( self : List[str] ) -> Optional[int]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def UpperCamelCase ( self : Optional[int] ) -> Any: super().test_save_load_local(expected_max_difference=3E-3 ) def UpperCamelCase ( self : Dict ) -> Optional[Any]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def UpperCamelCase ( self : List[str] ) -> Union[str, Any]: snake_case: Dict =[ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] snake_case: Union[str, Any] =self.get_dummy_components() snake_case: str =self.pipeline_class(**a_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) snake_case: str =self.get_dummy_inputs(a_ ) snake_case: Optional[int] =2 snake_case: List[str] =[] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue snake_case: int =getattr(a_ , scheduler_enum.name ) snake_case: Optional[Any] =scheduler_cls.from_config(pipe.scheduler.config ) snake_case: str =pipe(**a_ )[0] outputs.append(a_ ) assert check_same_shape(a_ ) @require_torch_gpu @slow class a_ ( unittest.TestCase ): def UpperCamelCase ( self : List[Any] ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : Any ) -> str: snake_case: List[str] =torch.manual_seed(3_3 ) snake_case: Optional[int] =StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) snake_case: Optional[Any] =StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) snake_case: str ='a photo of an astronaut high resolution, unreal engine, ultra realistic' snake_case: Any =pipe(a_ , generator=a_ , output_type='latent' ).images snake_case: Optional[int] =upscaler( prompt=a_ , image=a_ , num_inference_steps=2_0 , guidance_scale=0 , generator=a_ , output_type='np' , ).images[0] snake_case: str =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def UpperCamelCase ( self : Dict ) -> str: snake_case: Optional[Any] =torch.manual_seed(3_3 ) snake_case: Union[str, Any] =StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) snake_case: List[str] ='the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' snake_case: Union[str, Any] =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) snake_case: List[str] =upscaler( prompt=a_ , image=a_ , num_inference_steps=2_0 , guidance_scale=0 , generator=a_ , output_type='np' , ).images[0] snake_case: List[Any] =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
347
1
'''simple docstring''' from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
41
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class A (unittest.TestCase ): '''simple docstring''' def a_ ( self : Optional[int] ) -> Dict: """simple docstring""" A__ = tempfile.mkdtemp() # fmt: off A__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A__ = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) A__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A__ = {"""unk_token""": """<unk>"""} A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCAmelCase ) ) A__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } A__ = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : str , **__lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Dict , **__lowerCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : List[Any] , **__lowerCAmelCase : List[Any] ) -> Tuple: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a_ ( self : int ) -> Tuple: """simple docstring""" A__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = self.get_image_processor() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCAmelCase ) A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) A__ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCAmelCase ) def a_ ( self : int ) -> Any: """simple docstring""" A__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ = self.get_image_processor(do_normalize=__lowerCAmelCase , padding_value=1.0 ) A__ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCAmelCase ) def a_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__lowerCAmelCase , return_tensors="""np""" ) A__ = processor(images=__lowerCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a_ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = processor(text=__lowerCAmelCase ) A__ = tokenizer(__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self : str ) -> Optional[Any]: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCAmelCase ): processor() def a_ ( self : Optional[int] ) -> Tuple: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ = processor.batch_decode(__lowerCAmelCase ) A__ = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def a_ ( self : Dict ) -> str: """simple docstring""" A__ = self.get_image_processor() A__ = self.get_tokenizer() A__ = CLIPProcessor(tokenizer=__lowerCAmelCase , image_processor=__lowerCAmelCase ) A__ = """lower newer""" A__ = self.prepare_image_inputs() A__ = processor(text=__lowerCAmelCase , images=__lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
176
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva __a = "" __a = "" __a = "" __a = 1 # (0 is vertical, 1 is horizontal) def A_ ( ): '''simple docstring''' snake_case_, snake_case_ :Optional[Any] = get_dataset(_lowercase, _lowercase ) print("""Processing...""" ) snake_case_, snake_case_, snake_case_ :str = update_image_and_anno(_lowercase, _lowercase, _lowercase ) for index, image in enumerate(_lowercase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case_ :str = random_chars(32 ) snake_case_ :Optional[Any] = paths[index].split(os.sep )[-1].rsplit(""".""", 1 )[0] snake_case_ :List[str] = f"""{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}""" cva.imwrite(f"""/{file_root}.jpg""", _lowercase, [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"""Success {index+1}/{len(_lowercase )} with {file_name}""" ) snake_case_ :int = [] for anno in new_annos[index]: snake_case_ :Union[str, Any] = f"""{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}""" annos_list.append(_lowercase ) with open(f"""/{file_root}.txt""", """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Dict = [] snake_case_ :List[Any] = [] for label_file in glob.glob(os.path.join(_lowercase, """*.txt""" ) ): snake_case_ :List[str] = label_file.split(os.sep )[-1].rsplit(""".""", 1 )[0] with open(_lowercase ) as in_file: snake_case_ :Any = in_file.readlines() snake_case_ :Any = os.path.join(_lowercase, f"""{label_name}.jpg""" ) snake_case_ :int = [] for obj_list in obj_lists: snake_case_ :List[Any] = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowercase ) labels.append(_lowercase ) return img_paths, labels def A_ ( _lowercase, _lowercase, _lowercase = 1 ): '''simple docstring''' snake_case_ :Union[str, Any] = [] snake_case_ :Optional[int] = [] snake_case_ :Any = [] for idx in range(len(_lowercase ) ): snake_case_ :Union[str, Any] = [] snake_case_ :List[Any] = img_list[idx] path_list.append(_lowercase ) snake_case_ :List[str] = anno_list[idx] snake_case_ :Optional[Any] = cva.imread(_lowercase ) if flip_type == 1: snake_case_ :Optional[Any] = cva.flip(_lowercase, _lowercase ) for bbox in img_annos: snake_case_ :str = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: snake_case_ :List[str] = cva.flip(_lowercase, _lowercase ) for bbox in img_annos: snake_case_ :Optional[Any] = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowercase ) new_imgs_list.append(_lowercase ) return new_imgs_list, new_annos_lists, path_list def A_ ( _lowercase = 32 ): '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" snake_case_ :Any = ascii_lowercase + digits return "".join(random.choice(_lowercase ) for _ in range(_lowercase ) ) if __name__ == "__main__": main() print("DONE ✅")
310
0
def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Tuple = [1] UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__: Optional[Any] = 0, 0, 0 UpperCAmelCase__: Tuple = ugly_nums[ia] * 2 UpperCAmelCase__: Tuple = ugly_nums[ia] * 3 UpperCAmelCase__: Dict = ugly_nums[ia] * 5 for _ in range(1 ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: List[str] = min(SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ) ugly_nums.append(SCREAMING_SNAKE_CASE ) if next_num == next_a: ia += 1 UpperCAmelCase__: List[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCAmelCase__: Union[str, Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCAmelCase__: str = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(2_00) = }")
113
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _lowerCAmelCase : Optional[Any] =logging.getLogger(__name__) @dataclass class __UpperCamelCase : '''simple docstring''' __magic_name__ = field( default=1_2_8 ,metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } ,) __magic_name__ = field( default=_a ,metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __magic_name__ = field( default=_a ,metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } ,) __magic_name__ = field( default=_a ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } ,) __magic_name__ = field( default=_a ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } ,) __magic_name__ = field( default=_a ,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } ,) @dataclass class __UpperCamelCase : '''simple docstring''' __magic_name__ = field( default=_a ,metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __magic_name__ = field( default=_a ,metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) __magic_name__ = field( default=_a ,metadata={"help": "Train language if it is different from the evaluation language."} ) __magic_name__ = field( default=_a ,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __magic_name__ = field( default=_a ,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __magic_name__ = field( default=_a ,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} ,) __magic_name__ = field( default=_a ,metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} ,) __magic_name__ = field( default=_a ,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} ,) __magic_name__ = field( default="main" ,metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} ,) __magic_name__ = field( default=_a ,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } ,) __magic_name__ = field( default=_a ,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} ,) def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase__: Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__: List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" ,SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase__: int = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCAmelCase__: Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: UpperCAmelCase__: Optional[int] = load_dataset( "xnli" ,model_args.language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: UpperCAmelCase__: Optional[Any] = load_dataset( "xnli" ,model_args.train_language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCAmelCase__: List[Any] = train_dataset.features["label"].names if training_args.do_eval: UpperCAmelCase__: List[Any] = load_dataset( "xnli" ,model_args.language ,split="validation" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCAmelCase__: Tuple = eval_dataset.features["label"].names if training_args.do_predict: UpperCAmelCase__: Optional[Any] = load_dataset( "xnli" ,model_args.language ,split="test" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCAmelCase__: List[Any] = predict_dataset.features["label"].names # Labels UpperCAmelCase__: Union[str, Any] = len(SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__: Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=SCREAMING_SNAKE_CASE ,idalabel={str(SCREAMING_SNAKE_CASE ): label for i, label in enumerate(SCREAMING_SNAKE_CASE )} ,labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} ,finetuning_task="xnli" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCAmelCase__: Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,do_lower_case=model_args.do_lower_case ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) UpperCAmelCase__: Optional[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=SCREAMING_SNAKE_CASE ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: UpperCAmelCase__: Union[str, Any] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCAmelCase__: Union[str, Any] = False def preprocess_function(SCREAMING_SNAKE_CASE ): # Tokenize the texts return tokenizer( examples["premise"] ,examples["hypothesis"] ,padding=SCREAMING_SNAKE_CASE ,max_length=data_args.max_seq_length ,truncation=SCREAMING_SNAKE_CASE ,) if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase__: Optional[Any] = min(len(SCREAMING_SNAKE_CASE ) ,data_args.max_train_samples ) UpperCAmelCase__: Optional[Any] = train_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): UpperCAmelCase__: Dict = train_dataset.map( SCREAMING_SNAKE_CASE ,batched=SCREAMING_SNAKE_CASE ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on train dataset" ,) # Log a few random samples from the training set: for index in random.sample(range(len(SCREAMING_SNAKE_CASE ) ) ,3 ): logger.info(f"Sample {index} of the training set: {train_dataset[index]}." ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase__: Optional[int] = min(len(SCREAMING_SNAKE_CASE ) ,data_args.max_eval_samples ) UpperCAmelCase__: List[Any] = eval_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): UpperCAmelCase__: Optional[Any] = eval_dataset.map( SCREAMING_SNAKE_CASE ,batched=SCREAMING_SNAKE_CASE ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on validation dataset" ,) if training_args.do_predict: if data_args.max_predict_samples is not None: UpperCAmelCase__: Dict = min(len(SCREAMING_SNAKE_CASE ) ,data_args.max_predict_samples ) UpperCAmelCase__: Optional[Any] = predict_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): UpperCAmelCase__: int = predict_dataset.map( SCREAMING_SNAKE_CASE ,batched=SCREAMING_SNAKE_CASE ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on prediction dataset" ,) # Get the metric function UpperCAmelCase__: str = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE ): UpperCAmelCase__: str = p.predictions[0] if isinstance(p.predictions ,SCREAMING_SNAKE_CASE ) else p.predictions UpperCAmelCase__: Union[str, Any] = np.argmax(SCREAMING_SNAKE_CASE ,axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE ,references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCAmelCase__: Any = default_data_collator elif training_args.fpaa: UpperCAmelCase__: Any = DataCollatorWithPadding(SCREAMING_SNAKE_CASE ,pad_to_multiple_of=8 ) else: UpperCAmelCase__: Tuple = None # Initialize our Trainer UpperCAmelCase__: Dict = Trainer( model=SCREAMING_SNAKE_CASE ,args=SCREAMING_SNAKE_CASE ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=SCREAMING_SNAKE_CASE ,tokenizer=SCREAMING_SNAKE_CASE ,data_collator=SCREAMING_SNAKE_CASE ,) # Training if training_args.do_train: UpperCAmelCase__: Any = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase__: str = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase__: Any = last_checkpoint UpperCAmelCase__: Dict = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) UpperCAmelCase__: List[Any] = train_result.metrics UpperCAmelCase__: Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__: Tuple = min(SCREAMING_SNAKE_CASE ,len(SCREAMING_SNAKE_CASE ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" ,SCREAMING_SNAKE_CASE ) trainer.save_metrics("train" ,SCREAMING_SNAKE_CASE ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCAmelCase__: Any = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE ) UpperCAmelCase__: int = min(SCREAMING_SNAKE_CASE ,len(SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("eval" ,SCREAMING_SNAKE_CASE ) trainer.save_metrics("eval" ,SCREAMING_SNAKE_CASE ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = trainer.predict(SCREAMING_SNAKE_CASE ,metric_key_prefix="predict" ) UpperCAmelCase__: Optional[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__: Union[str, Any] = min(SCREAMING_SNAKE_CASE ,len(SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("predict" ,SCREAMING_SNAKE_CASE ) trainer.save_metrics("predict" ,SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Any = np.argmax(SCREAMING_SNAKE_CASE ,axis=1 ) UpperCAmelCase__: Optional[int] = os.path.join(training_args.output_dir ,"predictions.txt" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE ,"w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(SCREAMING_SNAKE_CASE ): UpperCAmelCase__: int = label_list[item] writer.write(f"{index}\t{item}\n" ) if __name__ == "__main__": main()
113
1
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[int] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__ : List[str] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __lowercase ( snake_case, snake_case, snake_case, snake_case, snake_case ): """simple docstring""" for attribute in key.split('''.''' ): __magic_name__ :Any = getattr(snake_case, snake_case ) if weight_type is not None: __magic_name__ :str = getattr(snake_case, snake_case ).shape else: __magic_name__ :Tuple = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __magic_name__ :Optional[int] = value elif weight_type == "weight_g": __magic_name__ :Optional[Any] = value elif weight_type == "weight_v": __magic_name__ :Optional[Any] = value elif weight_type == "bias": __magic_name__ :Any = value else: __magic_name__ :Dict = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :Tuple = [] __magic_name__ :Any = fairseq_model.state_dict() __magic_name__ :Tuple = hf_model.feature_extractor for name, value in fairseq_dict.items(): __magic_name__ :Any = False if "conv_layers" in name: load_conv_layer( snake_case, snake_case, snake_case, snake_case, hf_model.config.feat_extract_norm == '''group''', ) __magic_name__ :int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __magic_name__ :Optional[int] = True if "*" in mapped_key: __magic_name__ :int = name.split(snake_case )[0].split('''.''' )[-2] __magic_name__ :int = mapped_key.replace('''*''', snake_case ) if "weight_g" in name: __magic_name__ :List[Any] = '''weight_g''' elif "weight_v" in name: __magic_name__ :str = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: __magic_name__ :Union[str, Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __magic_name__ :List[str] = '''weight''' else: __magic_name__ :Union[str, Any] = None set_recursively(snake_case, snake_case, snake_case, snake_case, snake_case ) continue if not is_used: unused_weights.append(snake_case ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __lowercase ( snake_case, snake_case, snake_case, snake_case, snake_case ): """simple docstring""" __magic_name__ :List[str] = full_name.split('''conv_layers.''' )[-1] __magic_name__ :int = name.split('''.''' ) __magic_name__ :Tuple = int(items[0] ) __magic_name__ :int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __magic_name__ :Dict = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __magic_name__ :int = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __magic_name__ :Optional[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __magic_name__ :Any = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(snake_case ) @torch.no_grad() def __lowercase ( snake_case, snake_case, snake_case=None ): """simple docstring""" __magic_name__ :int = torch.load(snake_case ) __magic_name__ :Any = WavLMConfigOrig(checkpoint['''cfg'''] ) __magic_name__ :str = WavLMOrig(snake_case ) model.load_state_dict(checkpoint['''model'''] ) model.eval() if config_path is not None: __magic_name__ :List[Any] = WavLMConfig.from_pretrained(snake_case ) else: __magic_name__ :int = WavLMConfig() __magic_name__ :Optional[Any] = WavLMModel(snake_case ) recursively_load_weights(snake_case, snake_case ) hf_wavlm.save_pretrained(snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") SCREAMING_SNAKE_CASE__ : Optional[Any] = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
180
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCamelCase_ : a__ = 42 # setable values a__ = 42 a__ = 42 a__ = None @classmethod def A ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" return cls(common=__lowerCAmelCase , init_noise_sigma=__lowerCAmelCase , timesteps=__lowerCAmelCase ) @dataclass class lowerCamelCase_ ( lowerCamelCase ): a__ = 42 class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase ): a__ = [e.name for e in FlaxKarrasDiffusionSchedulers] a__ = 42 @property def A ( self ): """simple docstring""" return True @register_to_config def __init__( self , __lowerCAmelCase = 1_0_0_0 , __lowerCAmelCase = 0.0001 , __lowerCAmelCase = 0.02 , __lowerCAmelCase = "linear" , __lowerCAmelCase = None , __lowerCAmelCase = "fixed_small" , __lowerCAmelCase = True , __lowerCAmelCase = "epsilon" , __lowerCAmelCase = jnp.floataa , ): """simple docstring""" __magic_name__ :Optional[int] = dtype def A ( self , __lowerCAmelCase = None ): """simple docstring""" if common is None: __magic_name__ :Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __magic_name__ :Optional[Any] = jnp.array(1.0 , dtype=self.dtype ) __magic_name__ :str = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__lowerCAmelCase , init_noise_sigma=__lowerCAmelCase , timesteps=__lowerCAmelCase , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" return sample def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = () ): """simple docstring""" __magic_name__ :int = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __magic_name__ :List[Any] = (jnp.arange(0 , __lowerCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__lowerCAmelCase , timesteps=__lowerCAmelCase , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ): """simple docstring""" __magic_name__ :Optional[Any] = state.common.alphas_cumprod[t] __magic_name__ :Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ :Tuple = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __magic_name__ :Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __magic_name__ :Optional[Any] = jnp.clip(__lowerCAmelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __magic_name__ :Dict = jnp.log(jnp.clip(__lowerCAmelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": __magic_name__ :Tuple = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __magic_name__ :Optional[Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __magic_name__ :Union[str, Any] = variance __magic_name__ :List[str] = state.common.betas[t] __magic_name__ :Any = (predicted_variance + 1) / 2 __magic_name__ :str = frac * max_log + (1 - frac) * min_log return variance def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True , ): """simple docstring""" __magic_name__ :List[str] = timestep if key is None: __magic_name__ :Union[str, Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __magic_name__ , __magic_name__ :Dict = jnp.split(__lowerCAmelCase , sample.shape[1] , axis=1 ) else: __magic_name__ :Optional[int] = None # 1. compute alphas, betas __magic_name__ :Any = state.common.alphas_cumprod[t] __magic_name__ :int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __magic_name__ :Optional[int] = 1 - alpha_prod_t __magic_name__ :Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ :List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ :Tuple = model_output elif self.config.prediction_type == "v_prediction": __magic_name__ :Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ :Union[str, Any] = jnp.clip(__lowerCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ :Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __magic_name__ :Union[str, Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ :Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __magic_name__ :Tuple = jax.random.split(__lowerCAmelCase , num=1 ) __magic_name__ :Dict = jax.random.normal(__lowerCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__lowerCAmelCase , __lowerCAmelCase , predicted_variance=__lowerCAmelCase ) ** 0.5) * noise __magic_name__ :List[str] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __magic_name__ :int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__lowerCAmelCase , state=__lowerCAmelCase ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" return add_noise_common(state.common , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" return get_velocity_common(state.common , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
180
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase : '''simple docstring''' def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , ): __SCREAMING_SNAKE_CASE : List[Any] = parent __SCREAMING_SNAKE_CASE : Optional[Any] = batch_size __SCREAMING_SNAKE_CASE : int = seq_length __SCREAMING_SNAKE_CASE : List[str] = is_training __SCREAMING_SNAKE_CASE : Tuple = use_input_mask __SCREAMING_SNAKE_CASE : List[Any] = use_token_type_ids __SCREAMING_SNAKE_CASE : List[Any] = use_labels __SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = type_vocab_size __SCREAMING_SNAKE_CASE : str = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices __SCREAMING_SNAKE_CASE : List[Any] = scope def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : Tuple = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Optional[int] = None __SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[int] = NystromformerModel(config=a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ , token_type_ids=a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[Any] = NystromformerForMaskedLM(config=a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : str = NystromformerForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : Tuple = model( a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[str] = self.num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = NystromformerForSequenceClassification(a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Dict = self.num_labels __SCREAMING_SNAKE_CASE : Tuple = NystromformerForTokenClassification(config=a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : int = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_choices __SCREAMING_SNAKE_CASE : Optional[int] = NystromformerForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE : Optional[Any] = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : Any = config_and_inputs __SCREAMING_SNAKE_CASE : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Tuple = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) snake_case__ : Tuple = ( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : List[Any] = False snake_case__ : Dict = False def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = NystromformerModelTester(self ) __SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE : Tuple = type self.model_tester.create_and_check_model(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) @slow def a_ ( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = NystromformerModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : str = NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[Any] = model(a__ )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , a__ ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) ) @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : int = "the [MASK] of Belgium is Brussels" __SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) __SCREAMING_SNAKE_CASE : Dict = tokenizer(a__ , return_tensors="pt" ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(encoding.input_ids ).logits __SCREAMING_SNAKE_CASE : str = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(a__ ) , "capital" )
211
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets lowercase = datasets.logging.get_logger(__name__) lowercase = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' lowercase = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' lowercase = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def a_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence" ), "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def a_ ( self , a__ ): if self.config_name == "default": __SCREAMING_SNAKE_CASE : Union[str, Any] = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def a_ ( self , a__ , a__ , a__ , a__=None , a__=False ): if gpus is None: __SCREAMING_SNAKE_CASE : List[str] = 1 if torch.cuda.is_available() else 0 __SCREAMING_SNAKE_CASE : Any = {"src": sources, "mt": predictions, "ref": references} __SCREAMING_SNAKE_CASE : int = [dict(zip(a__ , a__ ) ) for t in zip(*data.values() )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = self.scorer.predict(a__ , gpus=a__ , progress_bar=a__ ) return {"mean_score": mean_score, "scores": scores}
211
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase__ : Tuple = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCamelCase__ ( _A , _A=None ): '''simple docstring''' require_version(deps[pkg] , _A )
139
lowercase__ : Optional[int] = range(2, 20 + 1) lowercase__ : List[str] = [10**k for k in range(ks[-1] + 1)] lowercase__ : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = sum(a_i[j] for j in range(_A , len(_A ) ) ) snake_case_ = sum(a_i[j] * base[j] for j in range(min(len(_A ) , _A ) ) ) snake_case_ , snake_case_ = 0, 0 snake_case_ = n - i snake_case_ = memo.get(_A ) if sub_memo is not None: snake_case_ = sub_memo.get(_A ) if jumps is not None and len(_A ) > 0: # find and make the largest jump without going over snake_case_ = -1 for _k in range(len(_A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: snake_case_ = _k break if max_jump >= 0: snake_case_ , snake_case_ , snake_case_ = jumps[max_jump] # since the difference between jumps is cached, add c snake_case_ = diff + c for j in range(min(_A , len(_A ) ) ): snake_case_ , snake_case_ = divmod(_A , 10 ) if new_c > 0: add(_A , _A , _A ) else: snake_case_ = [] else: snake_case_ = {c: []} snake_case_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps snake_case_ , snake_case_ = next_term(_A , k - 1 , i + dn , _A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead snake_case_ , snake_case_ = compute(_A , _A , i + dn , _A ) diff += _diff dn += terms_jumped snake_case_ = sub_memo[c] # keep jumps sorted by # of terms skipped snake_case_ = 0 while j < len(_A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_A , (diff, dn, k) ) return (diff, dn) def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' if i >= n: return 0, i if k > len(_A ): a_i.extend([0 for _ in range(k - len(_A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) snake_case_ = i snake_case_ , snake_case_ , snake_case_ = 0, 0, 0 for j in range(len(_A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 snake_case_ = ds_c + ds_b diff += addend snake_case_ = 0 for j in range(_A ): snake_case_ = a_i[j] + addend snake_case_ , snake_case_ = divmod(_A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_A , _A , _A ) return diff, i - start_i def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' for j in range(_A , len(_A ) ): snake_case_ = digits[j] + addend if s >= 10: snake_case_ , snake_case_ = divmod(_A , 10 ) snake_case_ = addend // 10 + quotient else: snake_case_ = s snake_case_ = addend // 10 if addend == 0: break while addend > 0: snake_case_ , snake_case_ = divmod(_A , 10 ) digits.append(_A ) def lowerCamelCase__ ( _A = 10**15 ): '''simple docstring''' snake_case_ = [1] snake_case_ = 1 snake_case_ = 0 while True: snake_case_ , snake_case_ = next_term(_A , 20 , i + dn , _A ) dn += terms_jumped if dn == n - i: break snake_case_ = 0 for j in range(len(_A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
139
1
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''image_processor''', '''tokenizer'''] __SCREAMING_SNAKE_CASE : Tuple = '''AutoImageProcessor''' __SCREAMING_SNAKE_CASE : Dict = '''AutoTokenizer''' def __init__( self , snake_case , snake_case ): super().__init__(snake_case , snake_case ) snake_case_ = self.image_processor def __call__( self , snake_case=None , snake_case=None , snake_case=None , **snake_case ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: snake_case_ = self.tokenizer(snake_case , return_tensors=snake_case , **snake_case ) if images is not None: snake_case_ = self.image_processor(snake_case , return_tensors=snake_case , **snake_case ) if text is not None and images is not None: snake_case_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case ) , tensor_type=snake_case ) def a ( self , *snake_case , **snake_case ): return self.tokenizer.batch_decode(*snake_case , **snake_case ) def a ( self , *snake_case , **snake_case ): return self.tokenizer.decode(*snake_case , **snake_case ) @property def a ( self ): return ["input_ids", "attention_mask", "pixel_values"]
362
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : Dict = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class lowercase ( lowercase_ , lowercase_ ): __SCREAMING_SNAKE_CASE : List[str] = '''resnet''' __SCREAMING_SNAKE_CASE : Dict = ['''basic''', '''bottleneck'''] def __init__( self , snake_case=3 , snake_case=64 , snake_case=[256, 512, 1024, 2048] , snake_case=[3, 4, 6, 3] , snake_case="bottleneck" , snake_case="relu" , snake_case=False , snake_case=None , snake_case=None , **snake_case , ): super().__init__(**snake_case ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) snake_case_ = num_channels snake_case_ = embedding_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = layer_type snake_case_ = hidden_act snake_case_ = downsample_in_first_stage snake_case_ = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(snake_case ) + 1 )] snake_case_ , snake_case_ = get_aligned_output_features_output_indices( out_features=snake_case , out_indices=snake_case , stage_names=self.stage_names ) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : List[Any] = version.parse('''1.11''' ) @property def a ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a ( self ): return 1e-3
362
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : int = PegasusTokenizer __lowerCamelCase : Union[str, Any] = PegasusTokenizerFast __lowerCamelCase : Tuple = True __lowerCamelCase : Dict = True def _snake_case ( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = PegasusTokenizer(_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self ) -> Optional[int]: return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def _snake_case ( self , **_lowerCAmelCase ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> str: return ("This is a test", "This is a test") def _snake_case ( self ) -> str: _lowerCAmelCase = "</s>" _lowerCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(_lowerCAmelCase ) , 1103 ) def _snake_case ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _snake_case ( self ) -> List[str]: _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) _lowerCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] _lowerCAmelCase = py_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> Dict: _lowerCAmelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _lowerCAmelCase = "<mask_1> To ensure a <mask_2> flow of bank resolutions." _lowerCAmelCase = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] _lowerCAmelCase = tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def _snake_case ( self ) -> int: _lowerCAmelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _lowerCAmelCase = "To ensure a smooth flow of bank resolutions." _lowerCAmelCase = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] _lowerCAmelCase = tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = ["This is going to be way too long." * 150, "short example"] _lowerCAmelCase = ["not super long but more than 5 tokens", "tiny"] _lowerCAmelCase = self._large_tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) _lowerCAmelCase = self._large_tokenizer( text_target=_lowerCAmelCase , max_length=5 , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCAmelCase ) == 2 # input_ids, attention_mask. @slow def _snake_case ( self ) -> Dict: # fmt: off _lowerCAmelCase = {"input_ids": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): __lowerCamelCase : Optional[Any] = PegasusTokenizer __lowerCamelCase : str = PegasusTokenizerFast __lowerCamelCase : List[Any] = True __lowerCamelCase : int = True def _snake_case ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = PegasusTokenizer(_lowerCAmelCase , offset=0 , mask_token_sent=_lowerCAmelCase , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self ) -> List[Any]: return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def _snake_case ( self , **_lowerCAmelCase ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Dict: return ("This is a test", "This is a test") def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _lowerCAmelCase = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) _lowerCAmelCase = rust_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] _lowerCAmelCase = py_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @require_torch def _snake_case ( self ) -> str: _lowerCAmelCase = ["This is going to be way too long." * 1000, "short example"] _lowerCAmelCase = ["not super long but more than 5 tokens", "tiny"] _lowerCAmelCase = self._large_tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) _lowerCAmelCase = self._large_tokenizer( text_target=_lowerCAmelCase , max_length=5 , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCAmelCase ) == 2 # input_ids, attention_mask. def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) _lowerCAmelCase = self._large_tokenizer(_lowerCAmelCase ).input_ids self.assertListEqual( _lowerCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
18
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "blenderbot-small" __lowerCamelCase : Optional[Any] = ["past_key_values"] __lowerCamelCase : str = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=512 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=8 , _lowerCAmelCase=2048 , _lowerCAmelCase=16 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase="gelu" , _lowerCAmelCase=512 , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=2 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Dict: _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = d_model _lowerCAmelCase = encoder_ffn_dim _lowerCAmelCase = encoder_layers _lowerCAmelCase = encoder_attention_heads _lowerCAmelCase = decoder_ffn_dim _lowerCAmelCase = decoder_layers _lowerCAmelCase = decoder_attention_heads _lowerCAmelCase = dropout _lowerCAmelCase = attention_dropout _lowerCAmelCase = activation_dropout _lowerCAmelCase = activation_function _lowerCAmelCase = init_std _lowerCAmelCase = encoder_layerdrop _lowerCAmelCase = decoder_layerdrop _lowerCAmelCase = use_cache _lowerCAmelCase = encoder_layers _lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , forced_eos_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) class lowerCAmelCase_ ( __magic_name__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase = {0: "batch"} _lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} _lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: _lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super().outputs else: _lowerCAmelCase = super(_lowerCAmelCase , self ).outputs if self.use_past: _lowerCAmelCase , _lowerCAmelCase = self.num_layers for i in range(_lowerCAmelCase ): _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} _lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Generate decoder inputs _lowerCAmelCase = seq_length if not self.use_past else 1 _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowerCAmelCase = dict(**_lowerCAmelCase , **_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape _lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = decoder_seq_length + 3 _lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase = min(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = max(_lowerCAmelCase , _lowerCAmelCase ) - min_num_layers _lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. _lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_lowerCAmelCase , _lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _lowerCAmelCase , _lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values _lowerCAmelCase = seqlen + 2 _lowerCAmelCase , _lowerCAmelCase = self.num_layers _lowerCAmelCase , _lowerCAmelCase = self.num_attention_heads _lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowerCAmelCase = common_inputs["attention_mask"].dtype _lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(_lowerCAmelCase , _lowerCAmelCase , dtype=_lowerCAmelCase )] , dim=1 ) _lowerCAmelCase = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCAmelCase = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) _lowerCAmelCase = compute_effective_axis_dimension( _lowerCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence _lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _lowerCAmelCase = dict(tokenizer(_lowerCAmelCase , return_tensors=_lowerCAmelCase ) ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = -1 , _lowerCAmelCase = -1 , _lowerCAmelCase = False , _lowerCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) elif self.task == "causal-lm": _lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) else: _lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowerCAmelCase , batch_size=_lowerCAmelCase , seq_length=_lowerCAmelCase , is_pair=_lowerCAmelCase , framework=_lowerCAmelCase ) return common_inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: if self.task in ["default", "seq2seq-lm"]: _lowerCAmelCase = super()._flatten_past_key_values_(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _lowerCAmelCase = super(_lowerCAmelCase , self )._flatten_past_key_values_( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
18
1
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake lowerCAmelCase_ : Any = numpy.array([0, 0]) lowerCAmelCase_ : Optional[int] = numpy.array([0.5, 0.8660254]) lowerCAmelCase_ : List[str] = numpy.array([1, 0]) lowerCAmelCase_ : Union[str, Any] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __a ( __lowerCamelCase : list[numpy.ndarray] , __lowerCamelCase : int ) -> list[numpy.ndarray]: '''simple docstring''' lowercase_ = initial_vectors for _ in range(__lowerCamelCase ): lowercase_ = iteration_step(__lowerCamelCase ) return vectors def __a ( __lowerCamelCase : list[numpy.ndarray] ) -> list[numpy.ndarray]: '''simple docstring''' lowercase_ = [] for i, start_vector in enumerate(vectors[:-1] ): lowercase_ = vectors[i + 1] new_vectors.append(__lowerCamelCase ) lowercase_ = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __a ( __lowerCamelCase : numpy.ndarray , __lowerCamelCase : float ) -> numpy.ndarray: '''simple docstring''' lowercase_ = numpy.radians(__lowerCamelCase ) lowercase_ , lowercase_ = numpy.cos(__lowerCamelCase ), numpy.sin(__lowerCamelCase ) lowercase_ = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__lowerCamelCase , __lowerCamelCase ) def __a ( __lowerCamelCase : list[numpy.ndarray] ) -> None: '''simple docstring''' lowercase_ = plt.gca() axes.set_aspect("equal" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() lowercase_ , lowercase_ = zip(*__lowerCamelCase ) plt.plot(__lowerCamelCase , __lowerCamelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : List[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
716
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowercase ( unittest.TestCase ): def __UpperCAmelCase ( self : int) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def __UpperCAmelCase ( self : Dict) -> Any: lowercase_ , lowercase_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa) lowercase_ , lowercase_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=__lowerCAmelCase , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa) lowercase_ = controlnet_params lowercase_ = "bird" lowercase_ = jax.device_count() lowercase_ = pipe.prepare_text_inputs([prompts] * num_samples) lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png") lowercase_ = pipe.prepare_image_inputs([canny_image] * num_samples) lowercase_ = jax.random.PRNGKey(0) lowercase_ = jax.random.split(__lowerCAmelCase , jax.device_count()) lowercase_ = replicate(__lowerCAmelCase) lowercase_ = shard(__lowerCAmelCase) lowercase_ = shard(__lowerCAmelCase) lowercase_ = pipe( prompt_ids=__lowerCAmelCase , image=__lowerCAmelCase , params=__lowerCAmelCase , prng_seed=__lowerCAmelCase , num_inference_steps=50 , jit=__lowerCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) lowercase_ = images[0, 253:256, 253:256, -1] lowercase_ = jnp.asarray(jax.device_get(image_slice.flatten())) lowercase_ = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(F'output_slice: {output_slice}') assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def __UpperCAmelCase ( self : Tuple) -> List[str]: lowercase_ , lowercase_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa) lowercase_ , lowercase_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=__lowerCAmelCase , from_pt=__lowerCAmelCase , dtype=jnp.bfloataa) lowercase_ = controlnet_params lowercase_ = "Chef in the kitchen" lowercase_ = jax.device_count() lowercase_ = pipe.prepare_text_inputs([prompts] * num_samples) lowercase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png") lowercase_ = pipe.prepare_image_inputs([pose_image] * num_samples) lowercase_ = jax.random.PRNGKey(0) lowercase_ = jax.random.split(__lowerCAmelCase , jax.device_count()) lowercase_ = replicate(__lowerCAmelCase) lowercase_ = shard(__lowerCAmelCase) lowercase_ = shard(__lowerCAmelCase) lowercase_ = pipe( prompt_ids=__lowerCAmelCase , image=__lowerCAmelCase , params=__lowerCAmelCase , prng_seed=__lowerCAmelCase , num_inference_steps=50 , jit=__lowerCAmelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowercase_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) lowercase_ = images[0, 253:256, 253:256, -1] lowercase_ = jnp.asarray(jax.device_get(image_slice.flatten())) lowercase_ = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(F'output_slice: {output_slice}') assert jnp.abs(output_slice - expected_slice).max() < 1e-2
461
0
"""simple docstring""" from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'EncodecFeatureExtractor' SCREAMING_SNAKE_CASE = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[Any]) -> Any: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = self.feature_extractor __lowerCAmelCase : Dict = False def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Dict=True) -> Dict: """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=_SCREAMING_SNAKE_CASE , language=_SCREAMING_SNAKE_CASE , no_timestamps=_SCREAMING_SNAKE_CASE) def __call__( self: Optional[Any] , *_SCREAMING_SNAKE_CASE: Tuple , **_SCREAMING_SNAKE_CASE: int) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = kwargs.pop("audio" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = kwargs.pop("sampling_rate" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Union[str, Any] = kwargs.pop("text" , _SCREAMING_SNAKE_CASE) if len(_SCREAMING_SNAKE_CASE) > 0: __lowerCAmelCase : str = args[0] __lowerCAmelCase : str = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if text is not None: __lowerCAmelCase : Optional[int] = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if audio is not None: __lowerCAmelCase : Tuple = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) if audio is None: return inputs elif text is None: return audio_inputs else: __lowerCAmelCase : List[str] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: __lowerCAmelCase : Dict = audio_inputs["padding_mask"] return inputs def _SCREAMING_SNAKE_CASE ( self: str , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: str) -> str: """simple docstring""" __lowerCAmelCase : int = kwargs.pop("audio" , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = kwargs.pop("padding_mask" , _SCREAMING_SNAKE_CASE) if len(_SCREAMING_SNAKE_CASE) > 0: __lowerCAmelCase : Union[str, Any] = args[0] __lowerCAmelCase : Any = args[1:] if audio_values is not None: return self._decode_audio(_SCREAMING_SNAKE_CASE , padding_mask=_SCREAMING_SNAKE_CASE) else: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple , *_SCREAMING_SNAKE_CASE: Dict , **_SCREAMING_SNAKE_CASE: Any) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional = None) -> List[np.ndarray]: """simple docstring""" __lowerCAmelCase : Tuple = to_numpy(_SCREAMING_SNAKE_CASE) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = audio_values.shape if padding_mask is None: return list(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = to_numpy(_SCREAMING_SNAKE_CASE) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowerCAmelCase : Union[str, Any] = seq_len - padding_mask.shape[-1] __lowerCAmelCase : str = 1 - self.feature_extractor.padding_value __lowerCAmelCase : Optional[Any] = np.pad(_SCREAMING_SNAKE_CASE , ((0, 0), (0, difference)) , "constant" , constant_values=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = audio_values.tolist() for i in range(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : Optional[Any] = np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowerCAmelCase : int = sliced_audio.reshape(_SCREAMING_SNAKE_CASE , -1) return audio_values
293
"""simple docstring""" from ..utils import DummyObject, requires_backends class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Union[str, Any] , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: int) -> List[Any]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Union[str, Any] , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: int , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: str) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Tuple , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: List[str]) -> Optional[int]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Dict , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: int) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[Any] , *_SCREAMING_SNAKE_CASE: Dict , **_SCREAMING_SNAKE_CASE: Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: int , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: int) -> List[str]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Dict , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: Any) -> str: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: List[Any] , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: int) -> int: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Tuple , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: List[str] , *_SCREAMING_SNAKE_CASE: Tuple , **_SCREAMING_SNAKE_CASE: int) -> int: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[int] , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Any) -> int: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: Optional[Any] , *_SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Optional[int]) -> str: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Optional[int] , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: int , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) class A__ ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = ['torch', 'transformers', 'onnx'] def __init__( self: List[Any] , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: List[str]) -> int: """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: Union[str, Any] , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"]) @classmethod def _SCREAMING_SNAKE_CASE ( cls: str , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"])
293
1
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = AudioLDMPipeline UpperCAmelCase__ = TEXT_TO_AUDIO_PARAMS UpperCAmelCase__ = TEXT_TO_AUDIO_BATCH_PARAMS UpperCAmelCase__ = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def lowerCamelCase__ ( self : Any ) -> str: torch.manual_seed(0 ) __magic_name__: Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(3_2, 6_4) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=__snake_case , ) __magic_name__: Dict = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) __magic_name__: int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __magic_name__: Dict = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) __magic_name__: List[Any] = ClapTextModelWithProjection(__snake_case ) __magic_name__: Optional[int] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=7_7 ) __magic_name__: Tuple = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__snake_case , ) __magic_name__: str = SpeechTaHifiGan(__snake_case ) __magic_name__: List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def lowerCamelCase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : List[str]=0 ) -> Tuple: if str(__snake_case ).startswith("""mps""" ): __magic_name__: int = torch.manual_seed(__snake_case ) else: __magic_name__: int = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__: Tuple = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: __magic_name__: str = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__: Dict = self.get_dummy_components() __magic_name__: str = AudioLDMPipeline(**__snake_case ) __magic_name__: int = audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: Optional[Any] = self.get_dummy_inputs(__snake_case ) __magic_name__: List[str] = audioldm_pipe(**__snake_case ) __magic_name__: Any = output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 2_5_6 __magic_name__: int = audio[:1_0] __magic_name__: Union[str, Any] = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Tuple ) -> Optional[int]: __magic_name__: str = self.get_dummy_components() __magic_name__: Union[str, Any] = AudioLDMPipeline(**__snake_case ) __magic_name__: List[Any] = audioldm_pipe.to(__snake_case ) __magic_name__: Optional[int] = audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: int = self.get_dummy_inputs(__snake_case ) __magic_name__: str = 3 * [inputs["""prompt"""]] # forward __magic_name__: int = audioldm_pipe(**__snake_case ) __magic_name__: Tuple = output.audios[0] __magic_name__: Tuple = self.get_dummy_inputs(__snake_case ) __magic_name__: Any = 3 * [inputs.pop("""prompt""" )] __magic_name__: Union[str, Any] = audioldm_pipe.tokenizer( __snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__snake_case , return_tensors="""pt""" , ) __magic_name__: int = text_inputs["""input_ids"""].to(__snake_case ) __magic_name__: Optional[Any] = audioldm_pipe.text_encoder( __snake_case , ) __magic_name__: Any = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __magic_name__: Tuple = F.normalize(__snake_case , dim=-1 ) __magic_name__: Union[str, Any] = prompt_embeds # forward __magic_name__: Tuple = audioldm_pipe(**__snake_case ) __magic_name__: Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCamelCase__ ( self : List[Any] ) -> Union[str, Any]: __magic_name__: List[str] = self.get_dummy_components() __magic_name__: Tuple = AudioLDMPipeline(**__snake_case ) __magic_name__: Tuple = audioldm_pipe.to(__snake_case ) __magic_name__: int = audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: str = self.get_dummy_inputs(__snake_case ) __magic_name__: Union[str, Any] = 3 * ["""this is a negative prompt"""] __magic_name__: List[Any] = negative_prompt __magic_name__: Union[str, Any] = 3 * [inputs["""prompt"""]] # forward __magic_name__: Union[str, Any] = audioldm_pipe(**__snake_case ) __magic_name__: int = output.audios[0] __magic_name__: Dict = self.get_dummy_inputs(__snake_case ) __magic_name__: List[Any] = 3 * [inputs.pop("""prompt""" )] __magic_name__: int = [] for p in [prompt, negative_prompt]: __magic_name__: str = audioldm_pipe.tokenizer( __snake_case , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__snake_case , return_tensors="""pt""" , ) __magic_name__: int = text_inputs["""input_ids"""].to(__snake_case ) __magic_name__: Tuple = audioldm_pipe.text_encoder( __snake_case , ) __magic_name__: Union[str, Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __magic_name__: Optional[int] = F.normalize(__snake_case , dim=-1 ) embeds.append(__snake_case ) __magic_name__: Tuple = embeds # forward __magic_name__: List[Any] = audioldm_pipe(**__snake_case ) __magic_name__: Union[str, Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: __magic_name__: Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__: Tuple = self.get_dummy_components() __magic_name__: int = PNDMScheduler(skip_prk_steps=__snake_case ) __magic_name__: Optional[Any] = AudioLDMPipeline(**__snake_case ) __magic_name__: Dict = audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: List[str] = self.get_dummy_inputs(__snake_case ) __magic_name__: Any = """egg cracking""" __magic_name__: List[str] = audioldm_pipe(**__snake_case , negative_prompt=__snake_case ) __magic_name__: Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 2_5_6 __magic_name__: Optional[Any] = audio[:1_0] __magic_name__: Tuple = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: __magic_name__: List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__: Dict = self.get_dummy_components() __magic_name__: Union[str, Any] = PNDMScheduler(skip_prk_steps=__snake_case ) __magic_name__: Optional[Any] = AudioLDMPipeline(**__snake_case ) __magic_name__: List[str] = audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: List[str] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) __magic_name__: Any = audioldm_pipe(__snake_case , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts __magic_name__: List[Any] = 2 __magic_name__: Optional[int] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt __magic_name__: List[str] = 2 __magic_name__: str = audioldm_pipe(__snake_case , num_inference_steps=2 , num_waveforms_per_prompt=__snake_case ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts __magic_name__: List[Any] = 2 __magic_name__: Any = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__snake_case ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def lowerCamelCase__ ( self : Dict ) -> Tuple: __magic_name__: List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __magic_name__: List[str] = self.get_dummy_components() __magic_name__: Union[str, Any] = AudioLDMPipeline(**__snake_case ) __magic_name__: List[str] = audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: Any = audioldm_pipe.vocoder.config.sampling_rate __magic_name__: Union[str, Any] = self.get_dummy_inputs(__snake_case ) __magic_name__: int = audioldm_pipe(audio_length_in_s=0.016 , **__snake_case ) __magic_name__: str = output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) / vocoder_sampling_rate == 0.016 __magic_name__: Any = audioldm_pipe(audio_length_in_s=0.032 , **__snake_case ) __magic_name__: Optional[Any] = output.audios[0] assert audio.ndim == 1 assert len(__snake_case ) / vocoder_sampling_rate == 0.032 def lowerCamelCase__ ( self : Tuple ) -> Optional[Any]: __magic_name__: Optional[Any] = self.get_dummy_components() __magic_name__: List[str] = AudioLDMPipeline(**__snake_case ) __magic_name__: Optional[Any] = audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: Optional[int] = ["""hey"""] __magic_name__: Dict = audioldm_pipe(__snake_case , num_inference_steps=1 ) __magic_name__: int = output.audios.shape assert audio_shape == (1, 2_5_6) __magic_name__: List[str] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __magic_name__: Dict = SpeechTaHifiGan(__snake_case ).to(__snake_case ) __magic_name__: Union[str, Any] = audioldm_pipe(__snake_case , num_inference_steps=1 ) __magic_name__: List[str] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def lowerCamelCase__ ( self : Tuple ) -> List[str]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: self._test_inference_batch_single_identical(test_mean_pixel_difference=__snake_case ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ ( self : Optional[Any] ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__snake_case ) @slow class __A ( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : int , __snake_case : Tuple , __snake_case : int="cpu" , __snake_case : int=torch.floataa , __snake_case : Optional[int]=0 ) -> List[str]: __magic_name__: Any = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) __magic_name__: List[Any] = np.random.RandomState(__snake_case ).standard_normal((1, 8, 1_2_8, 1_6) ) __magic_name__: Dict = torch.from_numpy(__snake_case ).to(device=__snake_case , dtype=__snake_case ) __magic_name__: List[str] = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__: str = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __magic_name__: Tuple = audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: List[Any] = self.get_inputs(__snake_case ) __magic_name__: Optional[Any] = 2_5 __magic_name__: Any = audioldm_pipe(**__snake_case ).audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 8_1_9_2_0 __magic_name__: Union[str, Any] = audio[7_7_2_3_0:7_7_2_4_0] __magic_name__: Optional[Any] = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) __magic_name__: str = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def lowerCamelCase__ ( self : Optional[int] ) -> Any: __magic_name__: Union[str, Any] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __magic_name__: str = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __magic_name__: List[str] = audioldm_pipe.to(__snake_case ) audioldm_pipe.set_progress_bar_config(disable=__snake_case ) __magic_name__: Optional[int] = self.get_inputs(__snake_case ) __magic_name__: str = audioldm_pipe(**__snake_case ).audios[0] assert audio.ndim == 1 assert len(__snake_case ) == 8_1_9_2_0 __magic_name__: Optional[Any] = audio[2_7_7_8_0:2_7_7_9_0] __magic_name__: List[str] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) __magic_name__: int = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
709
"""simple docstring""" from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = ["image_processor"] UpperCAmelCase__ = "SamImageProcessor" def __init__( self : str , __snake_case : Union[str, Any] ) -> str: super().__init__(__snake_case ) __magic_name__: List[Any] = self.image_processor __magic_name__: Optional[int] = -1_0 __magic_name__: Dict = self.image_processor.size["""longest_edge"""] def __call__( self : List[Any] , __snake_case : Tuple=None , __snake_case : Any=None , __snake_case : Optional[Any]=None , __snake_case : str=None , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Dict , ) -> BatchEncoding: __magic_name__: Optional[int] = self.image_processor( __snake_case , return_tensors=__snake_case , **__snake_case , ) # pop arguments that are not used in the foward but used nevertheless __magic_name__: int = encoding_image_processor["""original_sizes"""] if hasattr(__snake_case , """numpy""" ): # Checks if Torch or TF tensor __magic_name__: Optional[Any] = original_sizes.numpy() __magic_name__, __magic_name__, __magic_name__: Any = self._check_and_preprocess_points( input_points=__snake_case , input_labels=__snake_case , input_boxes=__snake_case , ) __magic_name__: Optional[int] = self._normalize_and_convert( __snake_case , __snake_case , input_points=__snake_case , input_labels=__snake_case , input_boxes=__snake_case , return_tensors=__snake_case , ) return encoding_image_processor def lowerCamelCase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Any=None , __snake_case : Dict=None , __snake_case : Union[str, Any]=None , __snake_case : Union[str, Any]="pt" , ) -> Any: if input_points is not None: if len(__snake_case ) != len(__snake_case ): __magic_name__: str = [ self._normalize_coordinates(self.target_size , __snake_case , original_sizes[0] ) for point in input_points ] else: __magic_name__: List[str] = [ self._normalize_coordinates(self.target_size , __snake_case , __snake_case ) for point, original_size in zip(__snake_case , __snake_case ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __magic_name__, __magic_name__: Tuple = self._pad_points_and_labels(__snake_case , __snake_case ) __magic_name__: Tuple = np.array(__snake_case ) if input_labels is not None: __magic_name__: List[Any] = np.array(__snake_case ) if input_boxes is not None: if len(__snake_case ) != len(__snake_case ): __magic_name__: List[str] = [ self._normalize_coordinates(self.target_size , __snake_case , original_sizes[0] , is_bounding_box=__snake_case ) for box in input_boxes ] else: __magic_name__: List[Any] = [ self._normalize_coordinates(self.target_size , __snake_case , __snake_case , is_bounding_box=__snake_case ) for box, original_size in zip(__snake_case , __snake_case ) ] __magic_name__: int = np.array(__snake_case ) if input_boxes is not None: if return_tensors == "pt": __magic_name__: Union[str, Any] = torch.from_numpy(__snake_case ) # boxes batch size of 1 by default __magic_name__: Union[str, Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __magic_name__: List[Any] = tf.convert_to_tensor(__snake_case ) # boxes batch size of 1 by default __magic_name__: Optional[Any] = tf.expand_dims(__snake_case , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __magic_name__: Union[str, Any] = torch.from_numpy(__snake_case ) # point batch size of 1 by default __magic_name__: Optional[int] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __magic_name__: Dict = tf.convert_to_tensor(__snake_case ) # point batch size of 1 by default __magic_name__: Union[str, Any] = tf.expand_dims(__snake_case , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __magic_name__: Union[str, Any] = torch.from_numpy(__snake_case ) # point batch size of 1 by default __magic_name__: Optional[Any] = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __magic_name__: Union[str, Any] = tf.convert_to_tensor(__snake_case ) # point batch size of 1 by default __magic_name__: int = tf.expand_dims(__snake_case , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self : List[str] , __snake_case : Tuple , __snake_case : Dict ) -> Optional[int]: __magic_name__: Union[str, Any] = max([point.shape[0] for point in input_points] ) __magic_name__: Any = [] for i, point in enumerate(__snake_case ): if point.shape[0] != expected_nb_points: __magic_name__: Optional[Any] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) __magic_name__: str = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(__snake_case ) __magic_name__: str = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self : Tuple , __snake_case : int , __snake_case : np.ndarray , __snake_case : Tuple , __snake_case : List[str]=False ) -> np.ndarray: __magic_name__, __magic_name__: Any = original_size __magic_name__, __magic_name__: Tuple = self.image_processor._get_preprocess_shape(__snake_case , longest_edge=__snake_case ) __magic_name__: List[str] = deepcopy(__snake_case ).astype(__snake_case ) if is_bounding_box: __magic_name__: List[str] = coords.reshape(-1 , 2 , 2 ) __magic_name__: str = coords[..., 0] * (new_w / old_w) __magic_name__: int = coords[..., 1] * (new_h / old_h) if is_bounding_box: __magic_name__: str = coords.reshape(-1 , 4 ) return coords def lowerCamelCase__ ( self : int , __snake_case : Optional[Any]=None , __snake_case : Optional[int]=None , __snake_case : int=None , ) -> Dict: if input_points is not None: if hasattr(__snake_case , """numpy""" ): # Checks for TF or Torch tensor __magic_name__: Union[str, Any] = input_points.numpy().tolist() if not isinstance(__snake_case , __snake_case ) or not isinstance(input_points[0] , __snake_case ): raise ValueError("""Input points must be a list of list of floating points.""" ) __magic_name__: Dict = [np.array(__snake_case ) for input_point in input_points] else: __magic_name__: str = None if input_labels is not None: if hasattr(__snake_case , """numpy""" ): __magic_name__: Optional[int] = input_labels.numpy().tolist() if not isinstance(__snake_case , __snake_case ) or not isinstance(input_labels[0] , __snake_case ): raise ValueError("""Input labels must be a list of list integers.""" ) __magic_name__: Tuple = [np.array(__snake_case ) for label in input_labels] else: __magic_name__: str = None if input_boxes is not None: if hasattr(__snake_case , """numpy""" ): __magic_name__: Tuple = input_boxes.numpy().tolist() if ( not isinstance(__snake_case , __snake_case ) or not isinstance(input_boxes[0] , __snake_case ) or not isinstance(input_boxes[0][0] , __snake_case ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __magic_name__: List[Any] = [np.array(__snake_case ).astype(np.floataa ) for box in input_boxes] else: __magic_name__: List[str] = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self : Optional[int] ) -> Any: __magic_name__: int = self.image_processor.model_input_names return list(dict.fromkeys(__snake_case ) ) def lowerCamelCase__ ( self : Any , *__snake_case : str , **__snake_case : Union[str, Any] ) -> Optional[Any]: return self.image_processor.post_process_masks(*__snake_case , **__snake_case )
213
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A__ : Union[str, Any] = 16 A__ : int = 32 def UpperCamelCase( __UpperCamelCase : Tuple ): return int(x / 2**20 ) class __snake_case : def __enter__( self : str): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCAmelCase_ : List[str] = torch.cuda.memory_allocated() return self def __exit__( self : Any , *A_ : Dict): gc.collect() torch.cuda.empty_cache() lowerCAmelCase_ : str = torch.cuda.memory_allocated() lowerCAmelCase_ : Optional[int] = torch.cuda.max_memory_allocated() lowerCAmelCase_ : List[str] = bamb(self.end - self.begin) lowerCAmelCase_ : Optional[int] = bamb(self.peak - self.begin) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def UpperCamelCase( __UpperCamelCase : Accelerator ,__UpperCamelCase : int = 16 ,__UpperCamelCase : str = "bert-base-cased" ,__UpperCamelCase : int = 320 ,__UpperCamelCase : int = 160 ,): lowerCAmelCase_ : Dict = AutoTokenizer.from_pretrained(__UpperCamelCase ) lowerCAmelCase_ : Any = load_dataset( '''glue''' ,'''mrpc''' ,split={'''train''': f"""train[:{n_train}]""", '''validation''': f"""validation[:{n_val}]"""} ) def tokenize_function(__UpperCamelCase : Any ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ : Union[str, Any] = datasets.map( __UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,load_from_cache_file=__UpperCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ : List[str] = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(__UpperCamelCase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__UpperCamelCase ,padding='''max_length''' ,max_length=128 ,return_tensors='''pt''' ) return tokenizer.pad(__UpperCamelCase ,padding='''longest''' ,return_tensors='''pt''' ) # Instantiate dataloaders. lowerCAmelCase_ : Union[str, Any] = DataLoader( tokenized_datasets['''train'''] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) lowerCAmelCase_ : str = DataLoader( tokenized_datasets['''validation'''] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : Tuple ): # Initialize accelerator lowerCAmelCase_ : Union[str, Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ : Any = config['''lr'''] lowerCAmelCase_ : Any = int(config['''num_epochs'''] ) lowerCAmelCase_ : Any = int(config['''seed'''] ) lowerCAmelCase_ : Dict = int(config['''batch_size'''] ) lowerCAmelCase_ : Dict = args.model_name_or_path set_seed(__UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,args.n_train ,args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ : Any = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase ) # Instantiate optimizer lowerCAmelCase_ : Any = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ : List[str] = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ : str = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: lowerCAmelCase_ : Tuple = 1 lowerCAmelCase_ : str = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,) else: lowerCAmelCase_ : List[Any] = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = accelerator.prepare( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ : str = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ : List[Any] = 0 # Now we train the model lowerCAmelCase_ : Union[str, Any] = {} for epoch in range(__UpperCamelCase ,__UpperCamelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(__UpperCamelCase ): lowerCAmelCase_ : Union[str, Any] = model(**__UpperCamelCase ) lowerCAmelCase_ : Any = outputs.loss lowerCAmelCase_ : List[str] = loss / gradient_accumulation_steps accelerator.backward(__UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCAmelCase_ : Tuple = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,'''peak_memory_utilization.json''' ) ,'''w''' ) as f: json.dump(__UpperCamelCase ,__UpperCamelCase ) def UpperCamelCase( ): lowerCAmelCase_ : str = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' ,type=__UpperCamelCase ,default='''bert-base-cased''' ,help='''Path to pretrained model or model identifier from huggingface.co/models.''' ,required=__UpperCamelCase ,) parser.add_argument( '''--output_dir''' ,type=__UpperCamelCase ,default='''.''' ,help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' ,) parser.add_argument( '''--peak_memory_upper_bound''' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' ,) parser.add_argument( '''--n_train''' ,type=__UpperCamelCase ,default=320 ,help='''Number of training examples to use.''' ,) parser.add_argument( '''--n_val''' ,type=__UpperCamelCase ,default=160 ,help='''Number of validation examples to use.''' ,) parser.add_argument( '''--num_epochs''' ,type=__UpperCamelCase ,default=1 ,help='''Number of train epochs.''' ,) lowerCAmelCase_ : Dict = parser.parse_args() lowerCAmelCase_ : int = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase ,__UpperCamelCase ) if __name__ == "__main__": main()
171
from __future__ import annotations def UpperCamelCase( __UpperCamelCase : int ): lowerCAmelCase_ : str = 2 lowerCAmelCase_ : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__UpperCamelCase ) if n > 1: factors.append(__UpperCamelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
171
1
import numpy as np def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Any ) -> np.array: """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
712
import random from typing import Any def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list ) -> list[Any]: """simple docstring""" for _ in range(len(__magic_name__ ) ): UpperCamelCase :Dict = random.randint(0 , len(__magic_name__ ) - 1 ) UpperCamelCase :List[str] = random.randint(0 , len(__magic_name__ ) - 1 ) UpperCamelCase , UpperCamelCase :List[Any] = data[b], data[a] return data if __name__ == "__main__": UpperCAmelCase_ : str = [0, 1, 2, 3, 4, 5, 6, 7] UpperCAmelCase_ : Dict = ['''python''', '''says''', '''hello''', '''!'''] print('''Fisher-Yates Shuffle:''') print('''List''', integers, strings) print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
590
0
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 1_00 * 2**20, 9_00 * 2**20] ) def lowerCAmelCase_ ( __A : Tuple , __A : str , __A : int ): '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , __A ) snake_case: str = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: snake_case: Union[str, Any] = dataset_size < in_memory_max_size else: snake_case: int = False snake_case: List[str] = is_small_dataset(__A ) assert result == expected
329
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=[8, 16, 32, 64] , SCREAMING_SNAKE_CASE__=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE__=[2, 3, 4] , SCREAMING_SNAKE_CASE__=1 , ): '''simple docstring''' snake_case: Dict = parent snake_case: List[Any] = batch_size snake_case: Any = image_size snake_case: Optional[Any] = num_channels snake_case: List[Any] = embeddings_size snake_case: Tuple = hidden_sizes snake_case: str = depths snake_case: str = is_training snake_case: List[str] = use_labels snake_case: Tuple = hidden_act snake_case: List[str] = num_labels snake_case: Optional[int] = scope snake_case: Any = len(SCREAMING_SNAKE_CASE__ ) snake_case: Dict = out_features snake_case: Optional[Any] = out_indices snake_case: str = num_groups def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case: str = None if self.use_labels: snake_case: Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) snake_case: Tuple = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ): '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: str = BitModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: str = self.num_labels snake_case: int = BitForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: List[Any] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' snake_case: Optional[Any] = BitBackbone(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: int = model(SCREAMING_SNAKE_CASE__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case: str = None snake_case: int = BitBackbone(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case: str = model(SCREAMING_SNAKE_CASE__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.prepare_config_and_inputs() snake_case , snake_case , snake_case: str = config_and_inputs snake_case: int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __UpperCamelCase = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = BitModelTester(self ) snake_case: str = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ): '''simple docstring''' return @unittest.skip(reason='Bit does not output attentions' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def _UpperCamelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case: List[str] = [*signature.parameters.keys()] snake_case: Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case , snake_case: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case: Optional[int] = model_class(config=SCREAMING_SNAKE_CASE__ ) for name, module in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def _UpperCamelCase ( self ): '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case: Tuple = model_class(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() with torch.no_grad(): snake_case: Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) snake_case: Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case: Optional[int] = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case , snake_case: Tuple = self.model_tester.prepare_config_and_inputs_for_common() snake_case: Optional[int] = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case: Tuple = layer_type snake_case: str = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case: Tuple = True check_hidden_states_output(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase ( self ): '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case: Union[str, Any] = BitModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Tuple = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(SCREAMING_SNAKE_CASE__ ) snake_case: str = self.default_image_processor snake_case: List[Any] = prepare_img() snake_case: List[str] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): snake_case: Optional[int] = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits snake_case: List[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (BitBackbone,) if is_torch_available() else () __UpperCamelCase = BitConfig __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Optional[int] = BitModelTester(self )
329
1
import torch from diffusers import StableDiffusionPipeline A__ = """path-to-your-trained-model""" A__ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") A__ = """A photo of sks dog in a bucket""" A__ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
49
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _lowerCamelCase ( a_ : str , a_ : str=False): lowerCamelCase :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((F"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", F"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((F"blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((F"blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((F"blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase :List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def _lowerCamelCase ( a_ : Any , a_ : Any , a_ : int=False): for i in range(config.num_hidden_layers): if base_model: lowerCamelCase :Union[str, Any] = '''''' else: lowerCamelCase :Optional[int] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase :Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight") lowerCamelCase :Any = state_dict.pop(F"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict lowerCamelCase :Any = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase :Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase :Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase :Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase :List[Any] = in_proj_bias[-config.hidden_size :] def _lowerCamelCase ( a_ : int): lowerCamelCase :Any = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a_ , a_) def _lowerCamelCase ( a_ : int , a_ : Any , a_ : Tuple): lowerCamelCase :Optional[Any] = dct.pop(a_) lowerCamelCase :str = val def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase :Tuple = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[Any]=False): lowerCamelCase :Optional[int] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=a_ , ) lowerCamelCase :Optional[int] = ViTHybridConfig(backbone_config=a_ , image_size=3_84 , num_labels=10_00) lowerCamelCase :List[Any] = False # load original model from timm lowerCamelCase :List[str] = timm.create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase :List[str] = timm_model.state_dict() if base_model: remove_classification_head_(a_) lowerCamelCase :Tuple = create_rename_keys(a_ , a_) for src, dest in rename_keys: rename_key(a_ , a_ , a_) read_in_q_k_v(a_ , a_ , a_) lowerCamelCase :List[str] = '''huggingface/label-files''' lowerCamelCase :Any = '''imagenet-1k-id2label.json''' lowerCamelCase :List[Any] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowerCamelCase :Optional[Any] = {int(a_): v for k, v in idalabel.items()} lowerCamelCase :Optional[int] = idalabel lowerCamelCase :Union[str, Any] = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowerCamelCase :Optional[Any] = ViTHybridModel(a_).eval() else: lowerCamelCase :Dict = ViTHybridForImageClassification(a_).eval() model.load_state_dict(a_) # create image processor lowerCamelCase :Dict = create_transform(**resolve_data_config({} , model=a_)) lowerCamelCase :str = transform.transforms lowerCamelCase :int = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowerCamelCase :Any = ViTHybridImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCamelCase :Dict = prepare_img() lowerCamelCase :str = transform(a_).unsqueeze(0) lowerCamelCase :str = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): lowerCamelCase :Optional[int] = model(a_) lowerCamelCase :Union[str, Any] = outputs.logits print('''Predicted class:''' , logits.argmax(-1).item()) if base_model: lowerCamelCase :Union[str, Any] = timm_model.forward_features(a_) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(a_ , outputs.pooler_output , atol=1e-3) else: lowerCamelCase :List[str] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(a_) print(F"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(a_) if push_to_hub: print(F"Pushing model and processor to the hub {vit_name}") model.push_to_hub(F"ybelkada/{vit_name}") processor.push_to_hub(F"ybelkada/{vit_name}") if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--vit_name""", default="""vit_base_r50_s16_384""", type=str, help="""Name of the hybrid ViT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to upload the model to the HuggingFace hub.""" ) A__ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
49
1
"""simple docstring""" import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def A_ ( lowercase ) -> str: """simple docstring""" return 1.0 / (1.0 + np.exp(-_outputs )) def A_ ( lowercase ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Dict = np.max(_outputs , axis=-1 , keepdims=lowercase ) UpperCAmelCase_ : Any = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowercase ) class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : Tuple = """sigmoid""" UpperCamelCase_ : Dict = """softmax""" UpperCamelCase_ : Optional[int] = """none""" @add_end_docstrings( lowerCamelCase_ , r""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : Dict = False UpperCamelCase_ : Union[str, Any] = ClassificationFunction.NONE def __init__( self : Any , **a_ : Union[str, Any] )-> Dict: """simple docstring""" super().__init__(**a_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def a ( self : int , a_ : Dict=None , a_ : List[str]=None , a_ : Optional[Any]="" , **a_ : Optional[int] )-> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = tokenizer_kwargs UpperCAmelCase_ : Optional[Any] = {} if hasattr(self.model.config , """return_all_scores""" ) and return_all_scores is None: UpperCAmelCase_ : Dict = self.model.config.return_all_scores if isinstance(a_ , a_ ) or top_k is None: UpperCAmelCase_ : Any = top_k UpperCAmelCase_ : List[Any] = False elif return_all_scores is not None: warnings.warn( """`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of""" """ `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.""" , a_ , ) if return_all_scores: UpperCAmelCase_ : List[str] = None else: UpperCAmelCase_ : List[Any] = 1 if isinstance(a_ , a_ ): UpperCAmelCase_ : str = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: UpperCAmelCase_ : List[str] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Any , *a_ : str , **a_ : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase_ : List[str] = super().__call__(*a_ , **a_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. UpperCAmelCase_ : Optional[Any] = """top_k""" not in kwargs if isinstance(args[0] , a_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def a ( self : Dict , a_ : List[str] , **a_ : Dict )-> Dict[str, GenericTensor]: """simple docstring""" UpperCAmelCase_ : Optional[int] = self.framework if isinstance(a_ , a_ ): return self.tokenizer(**a_ , return_tensors=a_ , **a_ ) elif isinstance(a_ , a_ ) and len(a_ ) == 1 and isinstance(inputs[0] , a_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=a_ , **a_ ) elif isinstance(a_ , a_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( """The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a""" """ dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair.""" ) return self.tokenizer(a_ , return_tensors=a_ , **a_ ) def a ( self : Any , a_ : Optional[Any] )-> int: """simple docstring""" return self.model(**a_ ) def a ( self : Tuple , a_ : List[Any] , a_ : Any=None , a_ : Any=1 , a_ : List[str]=True )-> str: """simple docstring""" if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: UpperCAmelCase_ : str = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: UpperCAmelCase_ : List[Any] = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , """function_to_apply""" ) and function_to_apply is None: UpperCAmelCase_ : List[str] = self.model.config.function_to_apply else: UpperCAmelCase_ : Any = ClassificationFunction.NONE UpperCAmelCase_ : Optional[Any] = model_outputs["""logits"""][0] UpperCAmelCase_ : Optional[Any] = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: UpperCAmelCase_ : List[str] = sigmoid(a_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: UpperCAmelCase_ : Dict = softmax(a_ ) elif function_to_apply == ClassificationFunction.NONE: UpperCAmelCase_ : str = outputs else: raise ValueError(f'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} UpperCAmelCase_ : List[str] = [ {"""label""": self.model.config.idalabel[i], """score""": score.item()} for i, score in enumerate(a_ ) ] if not _legacy: dict_scores.sort(key=lambda a_ : x["score"] , reverse=a_ ) if top_k is not None: UpperCAmelCase_ : Optional[Any] = dict_scores[:top_k] return dict_scores
470
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : str = ["""image_processor""", """tokenizer"""] UpperCamelCase_ : List[str] = """OwlViTImageProcessor""" UpperCamelCase_ : str = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self : Any , a_ : Any=None , a_ : str=None , **a_ : List[str] )-> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , a_ , ) UpperCAmelCase_ : List[Any] = kwargs.pop("""feature_extractor""" ) UpperCAmelCase_ : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(a_ , a_ ) def __call__( self : Any , a_ : Optional[int]=None , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="max_length" , a_ : List[Any]="np" , **a_ : int )-> Tuple: """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(a_ , a_ ) or (isinstance(a_ , a_ ) and not isinstance(text[0] , a_ )): UpperCAmelCase_ : List[str] = [self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ )] elif isinstance(a_ , a_ ) and isinstance(text[0] , a_ ): UpperCAmelCase_ : Optional[int] = [] # Maximum number of queries across batch UpperCAmelCase_ : Union[str, Any] = max([len(a_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(a_ ) != max_num_queries: UpperCAmelCase_ : str = t + [""" """] * (max_num_queries - len(a_ )) UpperCAmelCase_ : Optional[int] = self.tokenizer(a_ , padding=a_ , return_tensors=a_ , **a_ ) encodings.append(a_ ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": UpperCAmelCase_ : List[Any] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Tuple = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase_ : Tuple = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Tuple = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase_ : str = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) UpperCAmelCase_ : str = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase_ : Union[str, Any] = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) UpperCAmelCase_ : Optional[int] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) UpperCAmelCase_ : Union[str, Any] = BatchEncoding() UpperCAmelCase_ : int = input_ids UpperCAmelCase_ : List[str] = attention_mask if query_images is not None: UpperCAmelCase_ : Optional[int] = BatchEncoding() UpperCAmelCase_ : Any = self.image_processor( a_ , return_tensors=a_ , **a_ ).pixel_values UpperCAmelCase_ : Optional[Any] = query_pixel_values if images is not None: UpperCAmelCase_ : str = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: UpperCAmelCase_ : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase_ : int = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def a ( self : Any , *a_ : Optional[Any] , **a_ : List[str] )-> Union[str, Any]: """simple docstring""" return self.image_processor.post_process(*a_ , **a_ ) def a ( self : Tuple , *a_ : List[str] , **a_ : Dict )-> Optional[int]: """simple docstring""" return self.image_processor.post_process_object_detection(*a_ , **a_ ) def a ( self : Optional[int] , *a_ : Tuple , **a_ : Optional[int] )-> Optional[Any]: """simple docstring""" return self.image_processor.post_process_image_guided_detection(*a_ , **a_ ) def a ( self : str , *a_ : Optional[int] , **a_ : str )-> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def a ( self : str , *a_ : List[Any] , **a_ : List[str] )-> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*a_ , **a_ ) @property def a ( self : Tuple )-> int: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , a_ , ) return self.image_processor_class @property def a ( self : Optional[Any] )-> int: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , a_ , ) return self.image_processor
470
1
'''simple docstring''' import os from distutils.util import strtobool def _UpperCamelCase ( __A , __A ) -> Optional[int]: '''simple docstring''' for e in env_keys: UpperCamelCase__ = int(os.environ.get(__A , -1 ) ) if val >= 0: return val return default def _UpperCamelCase ( __A , __A=False ) -> Tuple: '''simple docstring''' UpperCamelCase__ = os.environ.get(__A , str(__A ) ) return strtobool(__A ) == 1 # As its name indicates `strtobool` actually returns an int... def _UpperCamelCase ( __A , __A="no" ) -> List[str]: '''simple docstring''' UpperCamelCase__ = os.environ.get(__A , str(__A ) ) return value
223
'''simple docstring''' def _UpperCamelCase ( __A , __A ) -> int: '''simple docstring''' while b: UpperCamelCase__ , UpperCamelCase__ = b, a % b return a def _UpperCamelCase ( __A , __A ) -> int: '''simple docstring''' return a if b == 0 else euclidean_gcd_recursive(__A , a % b ) def _UpperCamelCase ( ) -> int: '''simple docstring''' print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
223
1
'''simple docstring''' def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Dict, SCREAMING_SNAKE_CASE__: Optional[Any] ) -> List[Any]: """simple docstring""" __a = [0 for i in range(r + 1 )] # nc0 = 1 __a = 1 for i in range(1, n + 1 ): # to compute current row from previous row. __a = min(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
448
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case = logging.get_logger(__name__) __snake_case = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class UpperCAmelCase_ ( lowercase, lowercase ): """simple docstring""" UpperCamelCase_ : int ='focalnet' def __init__( self , SCREAMING_SNAKE_CASE_=224 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=96 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=[192, 384, 768, 768] , SCREAMING_SNAKE_CASE_=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE_=[2, 2, 2, 2] , SCREAMING_SNAKE_CASE_=[3, 3, 3, 3] , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=4.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1e-4 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=1e-5 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Dict: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[Any] = image_size UpperCamelCase :Dict = patch_size UpperCamelCase :Tuple = num_channels UpperCamelCase :int = embed_dim UpperCamelCase :Optional[Any] = use_conv_embed UpperCamelCase :str = hidden_sizes UpperCamelCase :str = depths UpperCamelCase :Optional[int] = focal_levels UpperCamelCase :Tuple = focal_windows UpperCamelCase :Optional[int] = hidden_act UpperCamelCase :Optional[int] = mlp_ratio UpperCamelCase :Optional[Any] = hidden_dropout_prob UpperCamelCase :int = drop_path_rate UpperCamelCase :Dict = use_layerscale UpperCamelCase :List[str] = layerscale_value UpperCamelCase :Tuple = use_post_layernorm UpperCamelCase :int = use_post_layernorm_in_modulation UpperCamelCase :str = normalize_modulator UpperCamelCase :Any = initializer_range UpperCamelCase :Optional[Any] = layer_norm_eps UpperCamelCase :Dict = encoder_stride UpperCamelCase :int = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase , UpperCamelCase :int = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
658
0
from collections import namedtuple import requests from lxml import html # type: ignore a_ = namedtuple("""covid_data""", """cases deaths recovered""") def a__ ( _UpperCamelCase : str = "https://www.worldometers.info/coronavirus/" ): __lowerCamelCase = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(_UpperCamelCase ).content ).xpath(_UpperCamelCase ) ) a_ = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
706
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a_ = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. a_ = direct_transformers_import(PATH_TO_TRANSFORMERS) a_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a_ = re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") a_ = { """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def a__ ( _UpperCamelCase : Union[str, Any] ): __lowerCamelCase = None # source code of `config_class` __lowerCamelCase = inspect.getsource(_UpperCamelCase ) __lowerCamelCase = _re_checkpoint.findall(_UpperCamelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): __lowerCamelCase = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link __lowerCamelCase = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: __lowerCamelCase = ckpt_name break return checkpoint def a__ ( ): __lowerCamelCase = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue __lowerCamelCase = get_checkpoint_from_config_class(_UpperCamelCase ) __lowerCamelCase = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: __lowerCamelCase = '''\n'''.join(sorted(_UpperCamelCase ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
622
0
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _SCREAMING_SNAKE_CASE = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: A_ = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(UpperCamelCase_ ,UpperCamelCase_ ) _SCREAMING_SNAKE_CASE = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> List[Any]: A_ = list(s_dict.keys() ) for key in keys: A_ = key for k, v in WHISPER_MAPPING.items(): if k in key: A_ = new_key.replace(UpperCamelCase_ ,UpperCamelCase_ ) print(F'{key} -> {new_key}' ) A_ = s_dict.pop(UpperCamelCase_ ) return s_dict def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> Tuple: A_ , A_ = emb.weight.shape A_ = nn.Linear(UpperCamelCase_ ,UpperCamelCase_ ,bias=UpperCamelCase_ ) A_ = emb.weight.data return lin_layer def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> bytes: os.makedirs(UpperCamelCase_ ,exist_ok=UpperCamelCase_ ) A_ = os.path.basename(UpperCamelCase_ ) A_ = url.split('/' )[-2] A_ = os.path.join(UpperCamelCase_ ,UpperCamelCase_ ) if os.path.exists(UpperCamelCase_ ) and not os.path.isfile(UpperCamelCase_ ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(UpperCamelCase_ ): A_ = open(UpperCamelCase_ ,'rb' ).read() if hashlib.shaaaa(UpperCamelCase_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(UpperCamelCase_ ) as source, open(UpperCamelCase_ ,'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) ,ncols=80 ,unit='iB' ,unit_scale=UpperCamelCase_ ,unit_divisor=1024 ) as loop: while True: A_ = source.read(8192 ) if not buffer: break output.write(UpperCamelCase_ ) loop.update(len(UpperCamelCase_ ) ) A_ = open(UpperCamelCase_ ,'rb' ).read() if hashlib.shaaaa(UpperCamelCase_ ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Any: if ".pt" not in checkpoint_path: A_ = _download(_MODELS[checkpoint_path] ) else: A_ = torch.load(UpperCamelCase_ ,map_location='cpu' ) A_ = original_checkpoint['dims'] A_ = original_checkpoint['model_state_dict'] A_ = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(UpperCamelCase_ ) rename_keys(UpperCamelCase_ ) A_ = True A_ = state_dict['decoder.layers.0.fc1.weight'].shape[0] A_ = WhisperConfig( vocab_size=dimensions['n_vocab'] ,encoder_ffn_dim=UpperCamelCase_ ,decoder_ffn_dim=UpperCamelCase_ ,num_mel_bins=dimensions['n_mels'] ,d_model=dimensions['n_audio_state'] ,max_target_positions=dimensions['n_text_ctx'] ,encoder_layers=dimensions['n_audio_layer'] ,encoder_attention_heads=dimensions['n_audio_head'] ,decoder_layers=dimensions['n_text_layer'] ,decoder_attention_heads=dimensions['n_text_state'] ,max_source_positions=dimensions['n_audio_ctx'] ,) A_ = WhisperForConditionalGeneration(UpperCamelCase_ ) A_ , A_ = model.model.load_state_dict(UpperCamelCase_ ,strict=UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0 and not set(UpperCamelCase_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F' but all the following weights are missing {missing}' ) if tie_embeds: A_ = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A_ = proj_out_weights model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
366
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _lowerCAmelCase : Dict = float('nan') class lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[int] , __snake_case : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = sys.stdout lowerCamelCase = open(__snake_case , 'a' ) def __getattr__( self : int , __snake_case : str ) -> Tuple: '''simple docstring''' return getattr(self.stdout , __snake_case ) def lowerCamelCase__ ( self : Dict , __snake_case : List[Any] ) -> int: '''simple docstring''' self.stdout.write(__snake_case ) # strip tqdm codes self.file.write(re.sub(R'^.*\r' , '' , __snake_case , 0 , re.M ) ) def a_ ( UpperCamelCase_ : List[str]=8_0 , UpperCamelCase_ : Optional[Any]=False ) -> Any: """simple docstring""" lowerCamelCase = [] # deal with critical env vars lowerCamelCase = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: lowerCamelCase = os.environ.get(UpperCamelCase_ , UpperCamelCase_ ) if val is not None: cmd.append(f'''{key}={val}''' ) # python executable (not always needed if the script is executable) lowerCamelCase = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(UpperCamelCase_ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCamelCase = [] lowerCamelCase = '' while len(UpperCamelCase_ ) > 0: current_line += f'''{cmd.pop(0 )} ''' if len(UpperCamelCase_ ) == 0 or len(UpperCamelCase_ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase_ ) lowerCamelCase = '' return "\\\n".join(UpperCamelCase_ ) def a_ ( UpperCamelCase_ : List[str] , UpperCamelCase_ : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase = re.sub(R'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own lowerCamelCase = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir lowerCamelCase = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def a_ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : str ) -> Union[str, Any]: """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_0_0 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6_666, 222.22_222_222] )} , ) lowerCamelCase = subprocess.run(UpperCamelCase_ , capture_output=UpperCamelCase_ , text=UpperCamelCase_ ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams lowerCamelCase = variation.replace(' ' , '-' ) with open(Path(UpperCamelCase_ ) / f'''log.{prefix}.stdout.txt''' , 'w' ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase_ ) / f'''log.{prefix}.stderr.txt''' , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f'''{output_dir}/all_results.json''' , 'r' , encoding='utf-8' ) as f: lowerCamelCase = json.load(UpperCamelCase_ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def a_ ( UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , ) -> List[Any]: """simple docstring""" lowerCamelCase = [] lowerCamelCase = [] lowerCamelCase = f'''{id}: {variation:<{longest_variation_len}}''' lowerCamelCase = f'''{preamble}: ''' lowerCamelCase = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase_ ) , desc=UpperCamelCase_ , leave=UpperCamelCase_ ): lowerCamelCase = process_run_single( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase_ ): metrics.append(UpperCamelCase_ ) results.append(UpperCamelCase_ ) outcome += "✓" else: outcome += "✘" lowerCamelCase = f'''\33[2K\r{outcome}''' if len(UpperCamelCase_ ) > 0: lowerCamelCase = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowerCamelCase = round(mean_metrics[target_metric_key] , 2 ) lowerCamelCase = f'''{outcome} {mean_target}''' if len(UpperCamelCase_ ) > 1: results_str += f''' {tuple(round(UpperCamelCase_ , 2 ) for x in results )}''' print(UpperCamelCase_ ) lowerCamelCase = variation return mean_metrics else: print(UpperCamelCase_ ) return {variation_key: variation, target_metric_key: nan} def a_ ( ) -> Dict: """simple docstring""" lowerCamelCase = torch.cuda.get_device_properties(torch.device('cuda' ) ) return f''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**3_0:0.2f}GB ''' def a_ ( UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict ) -> Any: """simple docstring""" lowerCamelCase = pd.DataFrame(UpperCamelCase_ ) lowerCamelCase = 'variation' lowerCamelCase = 'diff_%' lowerCamelCase = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowerCamelCase = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase_ ): # as a fallback, use the minimal value as the sentinel lowerCamelCase = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase_ ): lowerCamelCase = df.apply( lambda UpperCamelCase_ : round(1_0_0 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns lowerCamelCase = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCamelCase = df.reindex(UpperCamelCase_ , axis='columns' ) # reorder cols # capitalize lowerCamelCase = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible lowerCamelCase = df.rename(lambda UpperCamelCase_ : c.replace('_' , '<br>' ) , axis='columns' ) lowerCamelCase = df.rename(lambda UpperCamelCase_ : c.replace('_' , '\n' ) , axis='columns' ) lowerCamelCase = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase_ , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase_ , floatfmt='.2f' )] print('\n\n'.join(UpperCamelCase_ ) ) def a_ ( ) -> Any: """simple docstring""" lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help='Base cmd' , ) parser.add_argument( '--variations' , default=UpperCamelCase_ , type=UpperCamelCase_ , nargs='+' , required=UpperCamelCase_ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=UpperCamelCase_ , type=UpperCamelCase_ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=UpperCamelCase_ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=UpperCamelCase_ , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=UpperCamelCase_ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=UpperCamelCase_ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) lowerCamelCase = parser.parse_args() lowerCamelCase = args.output_dir Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) lowerCamelCase = get_base_command(UpperCamelCase_ , UpperCamelCase_ ) # split each dimension into its --foo variations lowerCamelCase = [list(map(str.strip , re.split(R'\|' , UpperCamelCase_ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCamelCase = list(map(str.strip , map(' '.join , itertools.product(*UpperCamelCase_ ) ) ) ) lowerCamelCase = max(len(UpperCamelCase_ ) for x in variations ) # split wanted keys lowerCamelCase = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCamelCase = f'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(f'''and this script\'s output is also piped into {report_fn}''' ) lowerCamelCase = Tee(UpperCamelCase_ ) print(f'''\n*** Running {len(UpperCamelCase_ )} benchmarks:''' ) print(f'''Base command: {" ".join(UpperCamelCase_ )}''' ) lowerCamelCase = 'variation' lowerCamelCase = [] for id, variation in enumerate(tqdm(UpperCamelCase_ , desc='Total completion: ' , leave=UpperCamelCase_ ) ): lowerCamelCase = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , args.target_metric_key , UpperCamelCase_ , args.repeat_times , UpperCamelCase_ , args.verbose , ) ) process_results(UpperCamelCase_ , args.target_metric_key , UpperCamelCase_ , args.base_variation , UpperCamelCase_ ) if __name__ == "__main__": main()
246
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __UpperCAmelCase = 25_00_04 __UpperCAmelCase = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =MBartaaTokenizer UpperCAmelCase_ =MBartaaTokenizerFast UpperCAmelCase_ =True UpperCAmelCase_ =True def _UpperCamelCase ( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ = MBartaaTokenizer(_A , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = '''<s>''' SCREAMING_SNAKE_CASE_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1054 ) def _UpperCamelCase ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = MBartaaTokenizer(_A , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=_A ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def _UpperCamelCase ( self ) -> List[Any]: # fmt: off SCREAMING_SNAKE_CASE_ = {'''input_ids''': [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def _UpperCamelCase ( self ) -> str: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE_ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE_ = self.rust_tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = tokenizer_r.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE_ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE_ = tokenizer_r.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = tokenizer_r.save_pretrained(_A , legacy_format=_A ) SCREAMING_SNAKE_CASE_ = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE_ = tokenizer_r.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = tokenizer_r.save_pretrained(_A , legacy_format=_A ) SCREAMING_SNAKE_CASE_ = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE_ = tokenizer_r.from_pretrained(_A ) SCREAMING_SNAKE_CASE_ = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ ="facebook/mbart-large-50-one-to-many-mmt" UpperCAmelCase_ =[ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] UpperCAmelCase_ =[ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] UpperCAmelCase_ =[EN_CODE, 8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2] @classmethod def _UpperCamelCase ( cls ) -> Any: SCREAMING_SNAKE_CASE_ = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE_ = 1 return cls def _UpperCamelCase ( self ) -> Dict: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 250038 ) def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def _UpperCamelCase ( self ) -> Optional[int]: self.assertIn(_A , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(_A , skip_special_tokens=_A ) SCREAMING_SNAKE_CASE_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , _A ) SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = self.tokenizer(_A , max_length=_A , truncation=_A ).input_ids[0] self.assertEqual(ids[0] , _A ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_A ) , _A ) def _UpperCamelCase ( self ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250053, 250001] ) def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_A ) SCREAMING_SNAKE_CASE_ = MBartaaTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _A ) @require_torch def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_A , truncation=_A , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _A ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer(self.src_text , padding=_A , truncation=_A , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = self.tokenizer( text_target=self.tgt_text , padding=_A , truncation=_A , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ = targets['''input_ids'''] SCREAMING_SNAKE_CASE_ = shift_tokens_right(_A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _UpperCamelCase ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_A ) , { # en_XX, A, test, EOS '''input_ids''': [[250004, 62, 3034, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
597
0
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__UpperCAmelCase , __UpperCAmelCase ) ) ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" if dataset.ndim != value_array.ndim: lowerCamelCase_ : int = ( '''Wrong input data\'s dimensions... ''' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(__UpperCAmelCase ) try: if dataset.shape[1] != value_array.shape[1]: lowerCamelCase_ : List[Any] = ( '''Wrong input data\'s shape... ''' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(__UpperCAmelCase ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: lowerCamelCase_ : List[Any] = ( '''Input data have different datatype... ''' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(__UpperCAmelCase ) lowerCamelCase_ : Optional[int] = [] for value in value_array: lowerCamelCase_ : List[Any] = euclidean(__UpperCAmelCase , dataset[0] ) lowerCamelCase_ : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCamelCase_ : int = euclidean(__UpperCAmelCase , __UpperCAmelCase ) if dist > temp_dist: lowerCamelCase_ : List[str] = temp_dist lowerCamelCase_ : Optional[int] = dataset_value.tolist() answer.append([vector, dist] ) return answer def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" return np.dot(__UpperCAmelCase , __UpperCAmelCase ) / (norm(__UpperCAmelCase ) * norm(__UpperCAmelCase )) if __name__ == "__main__": import doctest doctest.testmod()
501
'''simple docstring''' import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) __lowerCamelCase : Tuple = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : bool , UpperCamelCase_ : str = None , UpperCamelCase_ : list = None ) -> List[Any]: """simple docstring""" lowerCamelCase_ : int = None lowerCamelCase_ : Union[str, Any] = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) ) lowerCamelCase_ : List[Any] = os.path.abspath('''examples''' ) for item in os.listdir(UpperCamelCase_ ): if item not in EXCLUDE_EXAMPLES: lowerCamelCase_ : List[str] = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ) and ".py" in item_path: with self.subTest( tested_script=UpperCamelCase_ , feature_script=UpperCamelCase_ , tested_section='''main()''' if parser_only else '''training_function()''' , ): lowerCamelCase_ : Optional[int] = compare_against_test( os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = '''\n'''.join(UpperCamelCase_ ) if special_strings is not None: for string in special_strings: lowerCamelCase_ : List[Any] = diff.replace(UpperCamelCase_ , '''''' ) self.assertEqual(UpperCamelCase_ , '''''' ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" self.one_complete_example('''complete_nlp_example.py''' , UpperCamelCase_ ) self.one_complete_example('''complete_nlp_example.py''' , UpperCamelCase_ ) def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ : Any = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) ) lowerCamelCase_ : int = [ ''' ''' * 16 + '''{\n\n''', ''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''', ''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''', ''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''', ''' ''' * 20 + '''"epoch": epoch,\n\n''', ''' ''' * 16 + '''},\n\n''', ''' ''' * 16 + '''step=epoch,\n''', ''' ''' * 12, ''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''', ] self.one_complete_example('''complete_cv_example.py''' , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.one_complete_example('''complete_cv_example.py''' , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @mock.patch.dict(os.environ ,{"TESTING_MOCKED_DATALOADERS": "1"} ) class lowerCAmelCase__ ( _lowerCAmelCase ): A = False @classmethod def __UpperCamelCase ( cls : int ) -> Tuple: """simple docstring""" super().setUpClass() lowerCamelCase_ : Any = tempfile.mkdtemp() lowerCamelCase_ : int = os.path.join(cls._tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) lowerCamelCase_ : List[str] = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def __UpperCamelCase ( cls : Optional[int] ) -> Optional[Any]: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ : Dict = F""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[str] = F""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() lowerCamelCase_ : str = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" lowerCamelCase_ : Dict = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() lowerCamelCase_ : Any = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ ) self.assertNotIn('''epoch 0:''' , UpperCamelCase_ ) self.assertIn('''epoch 1:''' , UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = F""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() lowerCamelCase_ : List[str] = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ ) if torch.cuda.is_available(): lowerCamelCase_ : str = torch.cuda.device_count() else: lowerCamelCase_ : List[Any] = 1 if num_processes > 1: self.assertNotIn('''epoch 0:''' , UpperCamelCase_ ) self.assertIn('''epoch 1:''' , UpperCamelCase_ ) else: self.assertIn('''epoch 0:''' , UpperCamelCase_ ) self.assertIn('''epoch 1:''' , UpperCamelCase_ ) @slow def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" lowerCamelCase_ : int = ''' examples/by_feature/cross_validation.py --num_folds 2 '''.split() with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ): lowerCamelCase_ : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ ) lowerCamelCase_ : Any = re.findall('''({.+})''' , UpperCamelCase_ ) lowerCamelCase_ : int = [r for r in results if '''accuracy''' in r][-1] lowerCamelCase_ : int = ast.literal_eval(UpperCamelCase_ ) self.assertGreaterEqual(results['''accuracy'''] , 0.75 ) def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_ : Optional[Any] = ['''examples/by_feature/multi_process_metrics.py'''] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: lowerCamelCase_ : Union[str, Any] = F""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , '''tracking''' ) ) ) def __UpperCamelCase ( self : int ) -> str: """simple docstring""" lowerCamelCase_ : Optional[Any] = ['''examples/by_feature/gradient_accumulation.py'''] run_command(self._launch_args + testargs ) def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" lowerCamelCase_ : List[Any] = ['''examples/by_feature/local_sgd.py'''] run_command(self._launch_args + testargs )
501
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __a : Union[str, Any] = logging.get_logger(__name__) __a : Any = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } __a : List[str] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } __a : Tuple = { """jukebox""": 5_1_2, } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_LYRIC_TOKENS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=["v3", "v2", "v2"] , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE="<|endoftext|>" , **SCREAMING_SNAKE_CASE , ) -> Optional[Any]: """simple docstring""" UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else unk_token super().__init__( unk_token=SCREAMING_SNAKE_CASE , n_genres=SCREAMING_SNAKE_CASE , version=SCREAMING_SNAKE_CASE , max_n_lyric_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase = version UpperCamelCase = max_n_lyric_tokens UpperCamelCase = n_genres with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as vocab_handle: UpperCamelCase = json.load(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as vocab_handle: UpperCamelCase = json.load(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as vocab_handle: UpperCamelCase = json.load(SCREAMING_SNAKE_CASE ) UpperCamelCase = R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: UpperCamelCase = oov.replace(R"\-'" , R"\-+'" ) UpperCamelCase = regex.compile(SCREAMING_SNAKE_CASE ) UpperCamelCase = {v: k for k, v in self.artists_encoder.items()} UpperCamelCase = {v: k for k, v in self.genres_encoder.items()} UpperCamelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = [self.artists_encoder.get(SCREAMING_SNAKE_CASE , 0 ) for artist in list_artists] for genres in range(len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase = [self.genres_encoder.get(SCREAMING_SNAKE_CASE , 0 ) for genre in list_genres[genres]] UpperCamelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) UpperCamelCase = [[self.lyrics_encoder.get(SCREAMING_SNAKE_CASE , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return list(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase = self.prepare_for_tokenization(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = self._tokenize(SCREAMING_SNAKE_CASE ) return artist, genre, lyrics def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": UpperCamelCase = artists[idx].lower() UpperCamelCase = [genres[idx].lower()] else: UpperCamelCase = self._normalize(artists[idx] ) + ".v2" UpperCamelCase = [ self._normalize(SCREAMING_SNAKE_CASE ) + ".v2" for genre in genres[idx].split("_" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": UpperCamelCase = regex.compile(R"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" ) UpperCamelCase = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" UpperCamelCase = {vocab[index]: index + 1 for index in range(len(SCREAMING_SNAKE_CASE ) )} UpperCamelCase = 0 UpperCamelCase = len(SCREAMING_SNAKE_CASE ) + 1 UpperCamelCase = self.vocab UpperCamelCase = {v: k for k, v in self.vocab.items()} UpperCamelCase = "" else: UpperCamelCase = regex.compile(R"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+" ) UpperCamelCase = self._run_strip_accents(SCREAMING_SNAKE_CASE ) UpperCamelCase = lyrics.replace("\\" , "\n" ) UpperCamelCase = self.out_of_vocab.sub("" , SCREAMING_SNAKE_CASE ), [], [] return artists, genres, lyrics def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = unicodedata.normalize("NFD" , SCREAMING_SNAKE_CASE ) UpperCamelCase = [] for char in text: UpperCamelCase = unicodedata.category(SCREAMING_SNAKE_CASE ) if cat == "Mn": continue output.append(SCREAMING_SNAKE_CASE ) return "".join(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = ( [chr(SCREAMING_SNAKE_CASE ) for i in range(ord("a" ) , ord("z" ) + 1 )] + [chr(SCREAMING_SNAKE_CASE ) for i in range(ord("A" ) , ord("Z" ) + 1 )] + [chr(SCREAMING_SNAKE_CASE ) for i in range(ord("0" ) , ord("9" ) + 1 )] + ["."] ) UpperCamelCase = frozenset(SCREAMING_SNAKE_CASE ) UpperCamelCase = re.compile(R"_+" ) UpperCamelCase = "".join([c if c in accepted else "_" for c in text.lower()] ) UpperCamelCase = pattern.sub("_" , SCREAMING_SNAKE_CASE ).strip("_" ) return text def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return " ".join(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False ) -> Any: """simple docstring""" # Convert to TensorType if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase = TensorType(SCREAMING_SNAKE_CASE ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf UpperCamelCase = tf.constant UpperCamelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed." ) import torch UpperCamelCase = torch.tensor UpperCamelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed." ) import jax.numpy as jnp # noqa: F811 UpperCamelCase = jnp.array UpperCamelCase = _is_jax else: UpperCamelCase = np.asarray UpperCamelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: UpperCamelCase = [inputs] if not is_tensor(SCREAMING_SNAKE_CASE ): UpperCamelCase = as_tensor(SCREAMING_SNAKE_CASE ) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="" , SCREAMING_SNAKE_CASE="pt" ) -> BatchEncoding: """simple docstring""" UpperCamelCase = [0, 0, 0] UpperCamelCase = [artist] * len(self.version ) UpperCamelCase = [genres] * len(self.version ) UpperCamelCase , UpperCamelCase , UpperCamelCase = self.tokenize(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase , UpperCamelCase = self._convert_token_to_id(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = [-INFINITY] * len(full_tokens[-1] ) UpperCamelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=SCREAMING_SNAKE_CASE ) for i in range(len(self.version ) ) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks} ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=SCREAMING_SNAKE_CASE ) ) UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=SCREAMING_SNAKE_CASE ) ) UpperCamelCase = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=SCREAMING_SNAKE_CASE ) ) return (artists_file, genres_file, lyrics_file) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase = self.artists_decoder.get(SCREAMING_SNAKE_CASE ) UpperCamelCase = [self.genres_decoder.get(SCREAMING_SNAKE_CASE ) for genre in genres_index] UpperCamelCase = [self.lyrics_decoder.get(SCREAMING_SNAKE_CASE ) for character in lyric_index] return artist, genres, lyrics
414
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __magic_name__ ( lowercase_ = "isbn/0140328726" ) -> dict: '''simple docstring''' UpperCamelCase = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: UpperCamelCase = f'''{olid} is not a valid Open Library olid''' raise ValueError(lowercase_ ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def __magic_name__ ( lowercase_ ) -> dict: '''simple docstring''' UpperCamelCase = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } UpperCamelCase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCamelCase = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] UpperCamelCase = data["First sentence"]["value"] for key, value in data.items(): if isinstance(lowercase_ , lowercase_ ): UpperCamelCase = ", ".join(lowercase_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __a : Optional[Any] = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(F'\nSearching Open Library for ISBN: {isbn}...\n') try: __a : Any = summarize_book(get_openlibrary_data(F'isbn/{isbn}')) print("""\n""".join(F'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'Sorry, there are no results for ISBN: {isbn}.')
414
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _lowercase : List[str] = k.replace(A__ , A__ ) if k.startswith('encoder' ): _lowercase : int = k.replace('.attn' , '.self_attn' ) _lowercase : int = k.replace('norm1' , 'self_attn_layer_norm' ) _lowercase : int = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _lowercase : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) _lowercase : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) _lowercase : str = k.replace('norm3' , 'final_layer_norm' ) return k def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : Optional[Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _lowercase : Tuple = sd.pop(A__ ) _lowercase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _lowercase : Dict = v SCREAMING_SNAKE_CASE : Tuple = ['START'] @torch.no_grad() def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: _lowercase : Optional[int] = torch.load(A__ , map_location='cpu' ) _lowercase : int = model['model'] _lowercase : List[str] = BlenderbotConfig.from_json_file(A__ ) _lowercase : Optional[Any] = BlenderbotForConditionalGeneration(A__ ) _lowercase : str = m.model.state_dict().keys() _lowercase : int = [] _lowercase : List[str] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _lowercase : str = rename_state_dict_key(A__ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _lowercase : Union[str, Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(A__ ) m.model.load_state_dict(A__ , strict=A__ ) m.half() m.save_pretrained(A__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
89
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Dict = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def UpperCAmelCase ( UpperCamelCase__ = 100 ): """simple docstring""" A__ = 1 A__ = 2 for i in range(2 , max_n + 1 ): A__ = pre_numerator A__ = 2 * i // 3 if i % 3 == 0 else 1 A__ = cur_numerator A__ = e_cont * pre_numerator + temp return sum_digits(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
713
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __lowerCamelCase = "." if __name__ == "__main__": __lowerCamelCase = os.path.join(REPO_PATH, "utils/documentation_tests.txt") __lowerCamelCase = [] __lowerCamelCase = [] with open(doctest_file_path) as fp: for line in fp: __lowerCamelCase = line.strip() __lowerCamelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __lowerCamelCase = "\n".join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
536
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class A ( __UpperCAmelCase ): lowerCamelCase : Optional[Any] = """deformable_detr""" lowerCamelCase : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=3 , lowerCamelCase__=300 , lowerCamelCase__=1_024 , lowerCamelCase__=6 , lowerCamelCase__=1_024 , lowerCamelCase__=8 , lowerCamelCase__=6 , lowerCamelCase__=1_024 , lowerCamelCase__=8 , lowerCamelCase__=0.0 , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=256 , lowerCamelCase__=0.1 , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1.0 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__="sine" , lowerCamelCase__="resnet50" , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__=False , lowerCamelCase__=300 , lowerCamelCase__=False , lowerCamelCase__=1 , lowerCamelCase__=5 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=1 , lowerCamelCase__=5 , lowerCamelCase__=2 , lowerCamelCase__=0.1 , lowerCamelCase__=0.25 , lowerCamelCase__=False , **lowerCamelCase__ , ) -> List[str]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) lowercase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = backbone_config.get("""model_type""" ) lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(lowerCamelCase__ ) lowercase__ = use_timm_backbone lowercase__ = backbone_config lowercase__ = num_channels lowercase__ = num_queries lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = init_xavier_std lowercase__ = encoder_layerdrop lowercase__ = auxiliary_loss lowercase__ = position_embedding_type lowercase__ = backbone lowercase__ = use_pretrained_backbone lowercase__ = dilation # deformable attributes lowercase__ = num_feature_levels lowercase__ = encoder_n_points lowercase__ = decoder_n_points lowercase__ = two_stage lowercase__ = two_stage_num_proposals lowercase__ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher lowercase__ = class_cost lowercase__ = bbox_cost lowercase__ = giou_cost # Loss coefficients lowercase__ = mask_loss_coefficient lowercase__ = dice_loss_coefficient lowercase__ = bbox_loss_coefficient lowercase__ = giou_loss_coefficient lowercase__ = eos_coefficient lowercase__ = focal_alpha lowercase__ = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCamelCase__ , **lowerCamelCase__ ) @property def A__ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def A__ ( self ) -> int: '''simple docstring''' return self.d_model def A__ ( self ) -> int: '''simple docstring''' lowercase__ = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowercase__ = self.backbone_config.to_dict() lowercase__ = self.__class__.model_type return output
325
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=32 , lowerCamelCase__=3 , lowerCamelCase__=10 , lowerCamelCase__=[10, 20, 30, 40] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , ) -> List[str]: '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(lowerCamelCase__ ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Any: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__ = RegNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase__ = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' lowercase__ = self.num_labels lowercase__ = RegNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase__ = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Optional[Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowerCamelCase : Any = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : str = False lowerCamelCase : Optional[int] = False lowerCamelCase : str = False lowerCamelCase : Union[str, Any] = False def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ = RegNetModelTester(self ) lowercase__ = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def A__ ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Any: '''simple docstring''' return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def A__ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def A__ ( self ) -> str: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase__ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def A__ ( self ) -> str: '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(config=lowerCamelCase__ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ = layer_type lowercase__ = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def A__ ( self ) -> Optional[Any]: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = RegNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _A ( ): lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def A__ ( self ) -> Dict: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase__ ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) lowercase__ = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
325
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __snake_case ( _UpperCAmelCase ): __a = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __snake_case ( _UpperCAmelCase ): __a = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', '''stage2.cls_token''') ) return token def __snake_case ( ): __a = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = '''huggingface/label-files''' __a = num_labels __a = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __a = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = __a = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __a = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __a = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __a = [2, 2, 20] __a = [3, 12, 16] __a = [192, 768, 1024] __a = CvtForImageClassification(_UpperCAmelCase ) __a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __a = image_size __a = torch.load(_UpperCAmelCase , map_location=torch.device('''cpu''' ) ) __a = OrderedDict() __a = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __a = list_of_state_dict + cls_token(_UpperCAmelCase ) __a = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): __a = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) __a = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): __a = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __snake_case :str = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=r'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __snake_case :Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
60
from collections.abc import Generator from math import sin def __snake_case ( _UpperCAmelCase ): if len(_UpperCAmelCase ) != 32: raise ValueError('''Input must be of length 32''' ) __a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __snake_case ( _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) __a = format(_UpperCAmelCase , '''08x''' )[-8:] __a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def __snake_case ( _UpperCAmelCase ): __a = b'''''' for char in message: bit_string += format(_UpperCAmelCase , '''08b''' ).encode('''utf-8''' ) __a = format(len(_UpperCAmelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCAmelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __snake_case ( _UpperCAmelCase ): if len(_UpperCAmelCase ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(_UpperCAmelCase ) , 512 ): __a = bit_string[pos : pos + 512] __a = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __snake_case ( _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) __a = format(_UpperCAmelCase , '''032b''' ) __a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCAmelCase , 2 ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): return (a + b) % 2**32 def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __snake_case ( _UpperCAmelCase ): __a = preprocess(_UpperCAmelCase ) __a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __a = 0X67_452_301 __a = 0Xef_cda_b89 __a = 0X98_bad_cfe __a = 0X10_325_476 __a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCAmelCase ): __a = aa __a = ba __a = ca __a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __a = d ^ (b & (c ^ d)) __a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __a = c ^ (d & (b ^ c)) __a = (5 * i + 1) % 16 elif i <= 47: __a = b ^ c ^ d __a = (3 * i + 5) % 16 else: __a = c ^ (b | not_aa(_UpperCAmelCase )) __a = (7 * i) % 16 __a = (f + a + added_consts[i] + block_words[g]) % 2**32 __a = d __a = c __a = b __a = sum_aa(_UpperCAmelCase , left_rotate_aa(_UpperCAmelCase , shift_amounts[i] ) ) # Add hashed chunk to running total __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = sum_aa(_UpperCAmelCase , _UpperCAmelCase ) __a = reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) + reformat_hex(_UpperCAmelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
60
1
from typing import Union import fire import torch from tqdm import tqdm def lowerCamelCase( a__ ,a__ = "cpu" ,a__ = None): _SCREAMING_SNAKE_CASE =torch.load(snake_case__ ,map_location=snake_case__) for k, v in tqdm(state_dict.items()): if not isinstance(snake_case__ ,torch.Tensor): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''') _SCREAMING_SNAKE_CASE =v.half() if save_path is None: # overwrite src_path _SCREAMING_SNAKE_CASE =src_path torch.save(snake_case__ ,snake_case__) if __name__ == "__main__": fire.Fire(convert)
691
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class A_ ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple ,__A : Dict ,__A : List[Any]=7 ,__A : Dict=3 ,__A : Tuple=30 ,__A : Dict=400 ,__A : Any=True ,__A : List[Any]=None ,__A : Any=True ,__A : List[str]=[0.5, 0.5, 0.5] ,__A : Union[str, Any]=[0.5, 0.5, 0.5] ,__A : int=True ,__A : List[str]=1 / 255 ,__A : Union[str, Any]=True ,) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowercase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _lowercase = parent _lowercase = batch_size _lowercase = num_channels _lowercase = min_resolution _lowercase = max_resolution _lowercase = do_resize _lowercase = size _lowercase = do_normalize _lowercase = image_mean _lowercase = image_std _lowercase = do_rescale _lowercase = rescale_factor _lowercase = do_pad def __UpperCAmelCase ( self : str ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCAmelCase ( self : Tuple ,__A : Union[str, Any] ,__A : List[str]=False ) -> Union[str, Any]: if not batched: _lowercase = image_inputs[0] if isinstance(__A ,Image.Image ): _lowercase , _lowercase = image.size else: _lowercase , _lowercase = image.shape[1], image.shape[2] if w < h: _lowercase = int(self.size['shortest_edge'] * h / w ) _lowercase = self.size['shortest_edge'] elif w > h: _lowercase = self.size['shortest_edge'] _lowercase = int(self.size['shortest_edge'] * w / h ) else: _lowercase = self.size['shortest_edge'] _lowercase = self.size['shortest_edge'] else: _lowercase = [] for image in image_inputs: _lowercase , _lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowercase = max(__A ,key=lambda __A : item[0] )[0] _lowercase = max(__A ,key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A_ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = DetaImageProcessor if is_vision_available() else None def __UpperCAmelCase ( self : List[Any] ) -> Tuple: _lowercase = DetaImageProcessingTester(self ) @property def __UpperCAmelCase ( self : List[Any] ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : Tuple ) -> List[Any]: _lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A ,'image_mean' ) ) self.assertTrue(hasattr(__A ,'image_std' ) ) self.assertTrue(hasattr(__A ,'do_normalize' ) ) self.assertTrue(hasattr(__A ,'do_resize' ) ) self.assertTrue(hasattr(__A ,'do_rescale' ) ) self.assertTrue(hasattr(__A ,'do_pad' ) ) self.assertTrue(hasattr(__A ,'size' ) ) def __UpperCAmelCase ( self : str ) -> List[str]: _lowercase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad ,__A ) def __UpperCAmelCase ( self : List[Any] ) -> Any: pass def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A ,Image.Image ) # Test not batched input _lowercase = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ,batched=__A ) _lowercase = image_processing(__A ,return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ,numpify=__A ) for image in image_inputs: self.assertIsInstance(__A ,np.ndarray ) # Test not batched input _lowercase = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _lowercase = image_processing(__A ,return_tensors='pt' ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ,batched=__A ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: # Initialize image_processing _lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__A ,torchify=__A ) for image in image_inputs: self.assertIsInstance(__A ,torch.Tensor ) # Test not batched input _lowercase = image_processing(image_inputs[0] ,return_tensors='pt' ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched _lowercase = image_processing(__A ,return_tensors='pt' ).pixel_values _lowercase , _lowercase = self.image_processor_tester.get_expected_values(__A ,batched=__A ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def __UpperCAmelCase ( self : List[str] ) -> List[str]: # prepare image and target _lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' ,'r' ) as f: _lowercase = json.loads(f.read() ) _lowercase = {'image_id': 3_9769, 'annotations': target} # encode them _lowercase = DetaImageProcessor() _lowercase = image_processing(images=__A ,annotations=__A ,return_tensors='pt' ) # verify pixel values _lowercase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,__A ) _lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,__A ,atol=1e-4 ) ) # verify area _lowercase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,__A ) ) # verify boxes _lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,__A ) _lowercase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,__A ,atol=1e-3 ) ) # verify image_id _lowercase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,__A ) ) # verify is_crowd _lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,__A ) ) # verify class_labels _lowercase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,__A ) ) # verify orig_size _lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,__A ) ) # verify size _lowercase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,__A ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> Dict: # prepare image, target and masks_path _lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' ,'r' ) as f: _lowercase = json.loads(f.read() ) _lowercase = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} _lowercase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _lowercase = DetaImageProcessor(format='coco_panoptic' ) _lowercase = image_processing(images=__A ,annotations=__A ,masks_path=__A ,return_tensors='pt' ) # verify pixel values _lowercase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape ,__A ) _lowercase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] ,__A ,atol=1e-4 ) ) # verify area _lowercase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] ,__A ) ) # verify boxes _lowercase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape ,__A ) _lowercase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] ,__A ,atol=1e-3 ) ) # verify image_id _lowercase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] ,__A ) ) # verify is_crowd _lowercase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] ,__A ) ) # verify class_labels _lowercase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] ,__A ) ) # verify masks _lowercase = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() ,__A ) # verify orig_size _lowercase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] ,__A ) ) # verify size _lowercase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] ,__A ) )
67
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"""vocab_file""": """vocab.txt"""} __magic_name__ = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } __magic_name__ = { """facebook/esm2_t6_8M_UR50D""": 10_24, """facebook/esm2_t12_35M_UR50D""": 10_24, } def _A ( __lowercase ): """simple docstring""" with open(__lowercase , """r""" ) as f: lowerCamelCase__ = f.read().splitlines() return [l.strip() for l in lines] class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict="<unk>" , SCREAMING_SNAKE_CASE_ : List[Any]="<cls>" , SCREAMING_SNAKE_CASE_ : Tuple="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : List[str]="<eos>" , **SCREAMING_SNAKE_CASE_ : List[str] , ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = load_vocab_file(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = dict(enumerate(self.all_tokens ) ) lowerCamelCase__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowerCamelCase__ = unk_token lowerCamelCase__ = cls_token lowerCamelCase__ = pad_token lowerCamelCase__ = mask_token lowerCamelCase__ = eos_token lowerCamelCase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ): return self._id_to_token.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): return self._token_to_id.get(SCREAMING_SNAKE_CASE_ , self._token_to_id.get(self.unk_token ) ) def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : Optional[int] ): return text.split() def __UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False ): return len(self._id_to_token ) def __UpperCAmelCase ( self : Optional[Any] ): return {token: i for i, token in enumerate(self.all_tokens )} def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): return self._token_to_id.get(SCREAMING_SNAKE_CASE_ , self._token_to_id.get(self.unk_token ) ) def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ): return self._id_to_token.get(SCREAMING_SNAKE_CASE_ , self.unk_token ) def __UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): lowerCamelCase__ = [self.cls_token_id] lowerCamelCase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : List , SCREAMING_SNAKE_CASE_ : Optional[List] = None , SCREAMING_SNAKE_CASE_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowerCamelCase__ = [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] if token_ids_a is not None: mask += [0] * len(SCREAMING_SNAKE_CASE_ ) + [1] return mask def __UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple ): lowerCamelCase__ = os.path.join(SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(SCREAMING_SNAKE_CASE_ , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def __UpperCAmelCase ( self : Dict ): return self.get_vocab_size(with_added_tokens=SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Union[List[str], List[AddedToken]] , SCREAMING_SNAKE_CASE_ : bool = False ): return super()._add_tokens(SCREAMING_SNAKE_CASE_ , special_tokens=SCREAMING_SNAKE_CASE_ )
258
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : Distribution , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : List[str]=0 ): lowerCamelCase__ = 1.0 if scale is None else scale lowerCamelCase__ = 0.0 if loc is None else loc super().__init__(SCREAMING_SNAKE_CASE_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=SCREAMING_SNAKE_CASE_ )] ) @property def __UpperCAmelCase ( self : Dict ): return self.base_dist.mean * self.scale + self.loc @property def __UpperCAmelCase ( self : List[str] ): return self.base_dist.variance * self.scale**2 @property def __UpperCAmelCase ( self : int ): return self.variance.sqrt() class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict[str, int] , SCREAMING_SNAKE_CASE_ : Callable[..., Tuple[torch.Tensor]] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): super().__init__(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ = args_dim lowerCamelCase__ = nn.ModuleList([nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for dim in args_dim.values()] ) lowerCamelCase__ = domain_map def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : torch.Tensor ): lowerCamelCase__ = [proj(SCREAMING_SNAKE_CASE_ ) for proj in self.proj] return self.domain_map(*SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ): super().__init__() lowerCamelCase__ = function def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , *SCREAMING_SNAKE_CASE_ : List[Any] ): return self.function(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ : snake_case = 42 snake_case = 42 snake_case = 42 def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int = 1 ): lowerCamelCase__ = dim lowerCamelCase__ = {k: dim * self.args_dim[k] for k in self.args_dim} def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): if self.dim == 1: return self.distribution_class(*SCREAMING_SNAKE_CASE_ ) else: return Independent(self.distribution_class(*SCREAMING_SNAKE_CASE_ ) , 1 ) def __UpperCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , ): lowerCamelCase__ = self._base_distribution(SCREAMING_SNAKE_CASE_ ) if loc is None and scale is None: return distr else: return AffineTransformed(SCREAMING_SNAKE_CASE_ , loc=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , event_dim=self.event_dim ) @property def __UpperCAmelCase ( self : Optional[int] ): return () if self.dim == 1 else (self.dim,) @property def __UpperCAmelCase ( self : List[Any] ): return len(self.event_shape ) @property def __UpperCAmelCase ( self : Union[str, Any] ): return 0.0 def __UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): return ParameterProjection( in_features=SCREAMING_SNAKE_CASE_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def __UpperCAmelCase ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : torch.Tensor ): raise NotImplementedError() @staticmethod def __UpperCAmelCase ( SCREAMING_SNAKE_CASE_ : torch.Tensor ): return (x + torch.sqrt(torch.square(SCREAMING_SNAKE_CASE_ ) + 4.0 )) / 2.0 class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = {"df": 1, "loc": 1, "scale": 1} snake_case = StudentT @classmethod def __UpperCAmelCase ( cls : Dict , SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : torch.Tensor ): lowerCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ ).clamp_min(torch.finfo(scale.dtype ).eps ) lowerCamelCase__ = 2.0 + cls.squareplus(SCREAMING_SNAKE_CASE_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = {"loc": 1, "scale": 1} snake_case = Normal @classmethod def __UpperCAmelCase ( cls : Tuple , SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : torch.Tensor ): lowerCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): snake_case = {"total_count": 1, "logits": 1} snake_case = NegativeBinomial @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : torch.Tensor ): lowerCamelCase__ = cls.squareplus(SCREAMING_SNAKE_CASE_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def __UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] ): lowerCamelCase__ , lowerCamelCase__ = distr_args if self.dim == 1: return self.distribution_class(total_count=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ ) else: return Independent(self.distribution_class(total_count=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ ) , 1 ) def __UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None ): lowerCamelCase__ , lowerCamelCase__ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
258
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCAmelCase_ ( __a ) -> Any: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _lowerCAmelCase ( nn.Module ): def __init__( self , snake_case_ , snake_case_ ) -> int: super().__init__() SCREAMING_SNAKE_CASE : List[Any] =module SCREAMING_SNAKE_CASE : List[str] =nn.Sequential( nn.Linear(module.in_features , snake_case_ , bias=snake_case_ ) , nn.Linear(snake_case_ , module.out_features , bias=snake_case_ ) , ) SCREAMING_SNAKE_CASE : Union[str, Any] =(2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=snake_case_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def __a ( self , snake_case_ , *snake_case_ , **snake_case_ ) -> Union[str, Any]: return self.module(snake_case_ , *snake_case_ , **snake_case_ ) + self.adapter(snake_case_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCamelCase__ = 'bigscience/bloom-1b7' # Constant values lowerCamelCase__ = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 lowerCamelCase__ = 'Hello my name is' lowerCamelCase__ = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) lowerCamelCase__ = 10 def __a ( self ) -> List[str]: # Models and tokenizer SCREAMING_SNAKE_CASE : Any =AutoTokenizer.from_pretrained(self.model_name ) class _lowerCAmelCase ( UpperCamelCase__ ): def __a ( self ) -> int: super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE : Union[str, Any] =AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='''auto''' ) SCREAMING_SNAKE_CASE : int =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map='''auto''' ) def __a ( self ) -> List[str]: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Dict: SCREAMING_SNAKE_CASE : int =self.model_abit.config self.assertTrue(hasattr(snake_case_ , '''quantization_config''' ) ) SCREAMING_SNAKE_CASE : Optional[int] =config.to_dict() SCREAMING_SNAKE_CASE : Any =config.to_diff_dict() SCREAMING_SNAKE_CASE : List[Any] =config.to_json_string() def __a ( self ) -> List[str]: from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE : Tuple =self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE : Tuple =self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) SCREAMING_SNAKE_CASE : Union[str, Any] =get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def __a ( self ) -> List[Any]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(snake_case_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def __a ( self ) -> Tuple: SCREAMING_SNAKE_CASE : str =self.tokenizer(self.input_text , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : int =self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def __a ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Dict =BitsAndBytesConfig() SCREAMING_SNAKE_CASE : Optional[int] =True SCREAMING_SNAKE_CASE : Tuple =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE : Optional[int] =self.tokenizer(self.input_text , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Optional[int] =model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def __a ( self ) -> Tuple: with self.assertRaises(snake_case_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(snake_case_ ) def __a ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] =BitsAndBytesConfig() with self.assertRaises(snake_case_ ): SCREAMING_SNAKE_CASE : Tuple =AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , load_in_abit=snake_case_ , device_map='''auto''' , bnb_abit_quant_type='''nf4''' , ) def __a ( self ) -> List[str]: with self.assertRaises(snake_case_ ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(snake_case_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE : Union[str, Any] =self.tokenizer(self.input_text , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple =self.model_fpaa.to(torch.floataa ) SCREAMING_SNAKE_CASE : Union[str, Any] =self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error SCREAMING_SNAKE_CASE : str =self.model_fpaa.to('''cpu''' ) # Check this does not throw an error SCREAMING_SNAKE_CASE : Dict =self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE : int =self.model_fpaa.float() def __a ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Tuple =AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' , load_in_abit=snake_case_ , device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _lowerCAmelCase ( unittest.TestCase ): @classmethod def __a ( cls ) -> Optional[int]: SCREAMING_SNAKE_CASE : Any ='''t5-small''' SCREAMING_SNAKE_CASE : Any ='''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE : List[Any] =AutoTokenizer.from_pretrained(cls.model_name ) SCREAMING_SNAKE_CASE : Dict ='''Translate in German: Hello, my dog is cute''' def __a ( self ) -> Any: gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Union[str, Any]: from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE : str =TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE : Optional[int] =None # test with `t5-small` SCREAMING_SNAKE_CASE : str =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE : int =self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE : List[Any] =model.generate(**snake_case_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE : Optional[Any] =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE : int =self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE : Optional[Any] =model.generate(**snake_case_ ) SCREAMING_SNAKE_CASE : List[Any] =modules def __a ( self ) -> int: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE : List[str] =TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) SCREAMING_SNAKE_CASE : Optional[int] =self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE : Optional[int] =model.generate(**snake_case_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE : Dict =TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map='''auto''' ) SCREAMING_SNAKE_CASE : str =self.tokenizer(self.input_text , return_tensors='''pt''' ).to(0 ) SCREAMING_SNAKE_CASE : List[Any] =model.generate(**snake_case_ ) class _lowerCAmelCase ( UpperCamelCase__ ): def __a ( self ) -> str: super().setUp() # model_name SCREAMING_SNAKE_CASE : Optional[int] ='''bigscience/bloom-560m''' SCREAMING_SNAKE_CASE : Optional[int] ='''t5-small''' # Different types of model SCREAMING_SNAKE_CASE : Any =AutoModel.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map='''auto''' ) # Sequence classification model SCREAMING_SNAKE_CASE : int =AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map='''auto''' ) # CausalLM model SCREAMING_SNAKE_CASE : int =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map='''auto''' ) # Seq2seq model SCREAMING_SNAKE_CASE : Union[str, Any] =AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=snake_case_ , device_map='''auto''' ) def __a ( self ) -> int: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Union[str, Any]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class _lowerCAmelCase ( UpperCamelCase__ ): def __a ( self ) -> Optional[Any]: super().setUp() def __a ( self ) -> List[str]: del self.pipe gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] =pipeline( '''text-generation''' , model=self.model_name , model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass SCREAMING_SNAKE_CASE : Tuple =self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class _lowerCAmelCase ( UpperCamelCase__ ): def __a ( self ) -> Union[str, Any]: super().setUp() def __a ( self ) -> Tuple: SCREAMING_SNAKE_CASE : Union[str, Any] =AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model SCREAMING_SNAKE_CASE : Optional[int] =self.tokenizer(self.input_text , return_tensors='''pt''' ) # Second real batch SCREAMING_SNAKE_CASE : Optional[Any] =model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) class _lowerCAmelCase ( UpperCamelCase__ ): def __a ( self ) -> Tuple: SCREAMING_SNAKE_CASE : Any ='''facebook/opt-350m''' super().setUp() def __a ( self ) -> Union[str, Any]: if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE : Union[str, Any] =AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): SCREAMING_SNAKE_CASE : Union[str, Any] =False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE : Union[str, Any] =param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(snake_case_ ) ): SCREAMING_SNAKE_CASE : Tuple =LoRALayer(module.q_proj , rank=16 ) SCREAMING_SNAKE_CASE : int =LoRALayer(module.k_proj , rank=16 ) SCREAMING_SNAKE_CASE : List[str] =LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch SCREAMING_SNAKE_CASE : int =self.tokenizer('''Test batch ''' , return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE : Union[str, Any] =model.forward(**snake_case_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(snake_case_ , snake_case_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(snake_case_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class _lowerCAmelCase ( UpperCamelCase__ ): lowerCamelCase__ = 'gpt2-xl' lowerCamelCase__ = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
258
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _A = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _A = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _A = { """unc-nlp/lxmert-base-uncased""": 512, } _A = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCamelCase__ ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = LxmertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) SCREAMING_SNAKE_CASE : List[str] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case_ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : str =getattr(snake_case_ , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[str] =do_lower_case SCREAMING_SNAKE_CASE : Dict =strip_accents SCREAMING_SNAKE_CASE : Dict =tokenize_chinese_chars SCREAMING_SNAKE_CASE : Union[str, Any] =normalizer_class(**snake_case_ ) SCREAMING_SNAKE_CASE : str =do_lower_case def __a ( self , snake_case_ , snake_case_=None ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , snake_case_ , snake_case_ = None ) -> List[int]: SCREAMING_SNAKE_CASE : Dict =[self.sep_token_id] SCREAMING_SNAKE_CASE : Any =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE : List[Any] =self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
258
1
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCAmelCase__ ( lowerCamelCase__="" ) -> str: A = tempfile.mkdtemp() return os.path.join(lowerCamelCase__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCAmelCase__ ( unittest.TestCase ): def A_ ( self : Any ) -> List[Any]: '''simple docstring''' A = torch.rand(12 , dtype=torch.floataa ) - 0.5 A = AgentAudio(snake_case ) A = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case ) ) # Ensure that the file contains the same value as the original tensor A , A = sf.read(snake_case ) self.assertTrue(torch.allclose(snake_case , torch.tensor(snake_case ) , atol=1E-4 ) ) def A_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' A = torch.rand(12 , dtype=torch.floataa ) - 0.5 A = get_new_path(suffix='.wav' ) sf.write(snake_case , snake_case , 16_000 ) A = AgentAudio(snake_case ) self.assertTrue(torch.allclose(snake_case , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , snake_case ) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): def A_ ( self : Any ) -> Any: '''simple docstring''' A = torch.randint(0 , 256 , (64, 64, 3) ) A = AgentImage(snake_case ) A = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) def A_ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' A = Image.open(snake_case ) A = AgentImage(snake_case ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) def A_ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' A = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' A = Image.open(snake_case ) A = AgentImage(snake_case ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) class UpperCAmelCase__ ( unittest.TestCase ): def A_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' A = 'Hey!' A = AgentText(snake_case ) self.assertEqual(snake_case , agent_type.to_string() ) self.assertEqual(snake_case , agent_type.to_raw() ) self.assertEqual(snake_case , snake_case )
109
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A = TypeVar('T') class UpperCAmelCase__ ( Generic[T] ): lowerCAmelCase_ : deque[T] # Cache store of keys lowerCAmelCase_ : set[T] # References of the keys in cache lowerCAmelCase_ : int = 10 # Maximum capacity of cache def __init__( self : int , snake_case : int ) -> None: '''simple docstring''' A = deque() A = set() if not n: A = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: A = n def A_ ( self : Optional[Any] , snake_case : T ) -> None: '''simple docstring''' if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: A = self.dq_store.pop() self.key_reference.remove(snake_case ) else: self.dq_store.remove(snake_case ) self.dq_store.appendleft(snake_case ) self.key_reference.add(snake_case ) def A_ ( self : Dict ) -> None: '''simple docstring''' for k in self.dq_store: print(snake_case ) def __repr__( self : int ) -> str: '''simple docstring''' return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() A = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
109
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase__ : Any = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
387
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" print('\nThe shortest path matrix using Floyd Warshall algorithm\n' ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if dist[i][j] != float('inf' ): print(int(dist[i][j] ) , end='\t' ) else: print('INF' , end='\t' ) print() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _A = [[float('inf' ) for _ in range(_SCREAMING_SNAKE_CASE )] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): _A = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(_SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(_SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float('inf' ) and dist[k][j] != float('inf' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _A = dist[i][k] + dist[k][j] _print_dist(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": __A : Dict = int(input("Enter number of vertices: ")) __A : Union[str, Any] = int(input("Enter number of edges: ")) __A : List[str] = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): __A : List[Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) __A : Union[str, Any] = int(input("Enter source:")) __A : List[str] = int(input("Enter destination:")) __A : Union[str, Any] = float(input("Enter weight:")) __A : Any = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
27
0
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": _lowercase = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") _lowercase = f'''https://www.google.com/search?q={query}&num=100''' _lowercase = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: _lowercase = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: _lowercase = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
713
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class a_ ( UpperCAmelCase__ ): lowercase_ : Dict = '''gpt_neo''' lowercase_ : Tuple = ['''past_key_values'''] lowercase_ : List[str] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : List[str] , __lowerCAmelCase : Optional[int]=5_0_2_5_7 , __lowerCAmelCase : Tuple=2_0_4_8 , __lowerCAmelCase : str=2_0_4_8 , __lowerCAmelCase : Optional[Any]=2_4 , __lowerCAmelCase : Optional[Any]=[[["global", "local"], 1_2]] , __lowerCAmelCase : Optional[Any]=1_6 , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : Any=2_5_6 , __lowerCAmelCase : str="gelu_new" , __lowerCAmelCase : Union[str, Any]=0.0 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : List[Any]=1E-5 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : int=True , __lowerCAmelCase : Tuple=5_0_2_5_6 , __lowerCAmelCase : Any=5_0_2_5_6 , **__lowerCAmelCase : Optional[int] , ): __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = hidden_size __snake_case = num_layers __snake_case = num_heads __snake_case = intermediate_size __snake_case = window_size __snake_case = activation_function __snake_case = resid_dropout __snake_case = embed_dropout __snake_case = attention_dropout __snake_case = classifier_dropout __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = use_cache __snake_case = bos_token_id __snake_case = eos_token_id __snake_case = attention_types __snake_case = self.expand_attention_types_params(__lowerCAmelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, ' F'`config.num_layers = {self.num_layers}`. ' '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @staticmethod def lowercase__ ( __lowerCAmelCase : Optional[Any] ): __snake_case = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase__ ( a , a , a , a ): import torch __snake_case = input.size() __snake_case = len(a ) __snake_case = shape[dimension] __snake_case = torch.arange(0 , a , a ) __snake_case = torch.div(sizedim - size , a , rounding_mode='floor' ) + 1 __snake_case = torch.arange(a ) + low_indices[:min_length][:, None] __snake_case = [slice(a )] * rank __snake_case = indices __snake_case = input[s] __snake_case = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(a ) def lowerCamelCase__ ( a , a ): import torch __snake_case = torch.arange(1 , a ) __snake_case = torch.remainder(a , a ) __snake_case = remainders == 0 __snake_case = candidates[divisor_indices] __snake_case = torch.max(a ) return largest_divisor, torch.div(a , a , rounding_mode='floor' ) class a_ ( UpperCAmelCase__ ): @property def lowercase__ ( self : Optional[Any] ): __snake_case = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCAmelCase , direction='inputs' ) __snake_case = {0: 'batch', 1: 'past_sequence + sequence'} else: __snake_case = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowercase__ ( self : Tuple ): return self._config.num_heads def lowercase__ ( self : int , __lowerCAmelCase : PreTrainedTokenizer , __lowerCAmelCase : int = -1 , __lowerCAmelCase : int = -1 , __lowerCAmelCase : bool = False , __lowerCAmelCase : Optional[TensorType] = None , ): __snake_case = super(__lowerCAmelCase , self ).generate_dummy_inputs( __lowerCAmelCase , batch_size=__lowerCAmelCase , seq_length=__lowerCAmelCase , is_pair=__lowerCAmelCase , framework=__lowerCAmelCase ) # We need to order the input in the way they appears in the forward() __snake_case = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __snake_case , __snake_case = common_inputs['input_ids'].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case = [ (torch.zeros(__lowerCAmelCase ), torch.zeros(__lowerCAmelCase )) for _ in range(self.num_layers ) ] __snake_case = common_inputs['attention_mask'] if self.use_past: __snake_case = ordered_inputs['attention_mask'].dtype __snake_case = torch.cat( [ordered_inputs['attention_mask'], torch.ones(__lowerCAmelCase , __lowerCAmelCase , dtype=__lowerCAmelCase )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self : str ): return 1_3
427
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : '''simple docstring''' def __init__(self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Optional[int]=[10, 20, 30, 40] , _UpperCAmelCase : str=[2, 2, 3, 2] , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Dict=10 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : int=["stage2", "stage3", "stage4"] , _UpperCAmelCase : List[Any]=[2, 3, 4] , _UpperCAmelCase : int=None , ) -> List[str]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = num_stages lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = initializer_range lowercase__ = out_features lowercase__ = out_indices lowercase__ = scope def lowerCamelCase__ (self : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" lowercase__ = ConvNextModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ (self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = ConvNextForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = ConvNextBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowercase__ = None lowercase__ = ConvNextBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowercase__ = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ (self : str ) -> List[str]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) A__ = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) A__ = True A__ = False A__ = False A__ = False A__ = False def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = ConvNextModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def lowerCamelCase__ (self : Optional[Any] ) -> Any: """simple docstring""" pass def lowerCamelCase__ (self : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_UpperCAmelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ): lowercase__ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase__ (self : int ) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : Tuple ) -> Optional[int]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ConvNextModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCamelCase ( ) -> List[Any]: """simple docstring""" lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ (self : Tuple ) -> Tuple: """simple docstring""" lowercase__ = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_UpperCAmelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__ = model(**_UpperCAmelCase ) # verify the logits lowercase__ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowercase__ = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @require_torch class A ( unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' A__ = (ConvNextBackbone,) if is_torch_available() else () A__ = ConvNextConfig A__ = False def lowerCamelCase__ (self : Any ) -> List[Any]: """simple docstring""" lowercase__ = ConvNextModelTester(self )
15
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> list[int]: """simple docstring""" A : Optional[int] = int(_lowerCAmelCase ) # Initialize Result A : int = [] # Traverse through all denomination for denomination in reversed(_lowerCAmelCase ): # Find denominations while int(_lowerCAmelCase ) >= int(_lowerCAmelCase ): total_value -= int(_lowerCAmelCase ) answer.append(_lowerCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": SCREAMING_SNAKE_CASE_:List[Any] = [] SCREAMING_SNAKE_CASE_:Dict = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): SCREAMING_SNAKE_CASE_:Optional[int] = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) SCREAMING_SNAKE_CASE_:Optional[Any] = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter SCREAMING_SNAKE_CASE_:Tuple = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] SCREAMING_SNAKE_CASE_:Optional[Any] = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F"""Following is minimal change for {value}: """) SCREAMING_SNAKE_CASE_:str = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
662
0
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE : Any = get_tests_dir('''fixtures/dummy-config.json''') class snake_case_ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): """simple docstring""" A__ = 0 def _UpperCAmelCase ( self ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(__a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = AutoConfig.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = AutoConfig.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = AutoConfig.for_model('roberta' ) self.assertIsInstance(__a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. A__ = os.path.join(__a , 'fake-roberta' ) os.makedirs(__a , exist_ok=__a ) with open(os.path.join(__a , 'config.json' ) , 'w' ) as f: f.write(json.dumps({} ) ) A__ = AutoConfig.from_pretrained(__a ) self.assertEqual(type(__a ) , __a ) def _UpperCAmelCase ( self ): """simple docstring""" try: AutoConfig.register('custom' , __a ) # Wrong model type will raise an error with self.assertRaises(__a ): AutoConfig.register('model' , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoConfig.register('bert' , __a ) # Now that the config is registered, it can be used as any other config with the auto-API A__ = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a ) A__ = AutoConfig.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _UpperCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( __a , 'bert-base is not a local folder and is not a valid model identifier' ): A__ = AutoConfig.from_pretrained('bert-base' ) def _UpperCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( __a , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): A__ = AutoConfig.from_pretrained(__a , revision='aaaaaa' ) def _UpperCAmelCase ( self ): """simple docstring""" with self.assertRaisesRegex( __a , 'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.' , ): A__ = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def _UpperCAmelCase ( self ): """simple docstring""" with self.assertRaises(__a ): A__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): A__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=__a ) A__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=__a ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a ) A__ = AutoConfig.from_pretrained(__a , trust_remote_code=__a ) self.assertEqual(reloaded_config.__class__.__name__ , 'NewModelConfig' ) def _UpperCAmelCase ( self ): """simple docstring""" class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Optional[Any] = """new-model""" try: AutoConfig.register('new-model' , __a ) # If remote code is not set, the default is to use local A__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. A__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=__a ) self.assertEqual(config.__class__.__name__ , 'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub A__ = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' , trust_remote_code=__a ) self.assertEqual(config.__class__.__name__ , 'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
554
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[Any] = '''ybelkada/fonts''' def __lowerCamelCase ( ): if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' 'Pix2StructImageProcessor. Please upgrade torch.' ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ): requires_backends(lowerCAmelCase__ ,['torch'] ) _check_torch_version() A__ = image_tensor.unsqueeze(0 ) A__ = torch.nn.functional.unfold(lowerCAmelCase__ ,(patch_height, patch_width) ,stride=(patch_height, patch_width) ) A__ = patches.reshape(image_tensor.size(0 ) ,image_tensor.size(1 ) ,lowerCAmelCase__ ,lowerCAmelCase__ ,-1 ) A__ = patches.permute(0 ,4 ,2 ,3 ,1 ).reshape( image_tensor.size(2 ) // patch_height ,image_tensor.size(3 ) // patch_width ,image_tensor.size(1 ) * patch_height * patch_width ,) return patches.unsqueeze(0 ) def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ = 36 ,lowerCAmelCase__ = "black" ,lowerCAmelCase__ = "white" ,lowerCAmelCase__ = 5 ,lowerCAmelCase__ = 5 ,lowerCAmelCase__ = 5 ,lowerCAmelCase__ = 5 ,lowerCAmelCase__ = None ,lowerCAmelCase__ = None ,): requires_backends(lowerCAmelCase__ ,'vision' ) # Add new lines so that each line is no more than 80 characters. A__ = textwrap.TextWrapper(width=80 ) A__ = wrapper.wrap(text=lowerCAmelCase__ ) A__ = '\n'.join(lowerCAmelCase__ ) if font_bytes is not None and font_path is None: A__ = io.BytesIO(lowerCAmelCase__ ) elif font_path is not None: A__ = font_path else: A__ = hf_hub_download(lowerCAmelCase__ ,'Arial.TTF' ) A__ = ImageFont.truetype(lowerCAmelCase__ ,encoding='UTF-8' ,size=lowerCAmelCase__ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. A__ = ImageDraw.Draw(Image.new('RGB' ,(1, 1) ,lowerCAmelCase__ ) ) A__ , A__ , A__ , A__ = temp_draw.textbbox((0, 0) ,lowerCAmelCase__ ,lowerCAmelCase__ ) # Create the actual image with a bit of padding around the text. A__ = text_width + left_padding + right_padding A__ = text_height + top_padding + bottom_padding A__ = Image.new('RGB' ,(image_width, image_height) ,lowerCAmelCase__ ) A__ = ImageDraw.Draw(lowerCAmelCase__ ) draw.text(xy=(left_padding, top_padding) ,text=lowerCAmelCase__ ,fill=lowerCAmelCase__ ,font=lowerCAmelCase__ ) return image def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ,**lowerCAmelCase__ ): requires_backends(lowerCAmelCase__ ,'vision' ) # Convert to PIL image if necessary A__ = to_pil_image(lowerCAmelCase__ ) A__ = render_text(lowerCAmelCase__ ,**lowerCAmelCase__ ) A__ = max(header_image.width ,image.width ) A__ = int(image.height * (new_width / image.width) ) A__ = int(header_image.height * (new_width / header_image.width) ) A__ = Image.new('RGB' ,(new_width, new_height + new_header_height) ,'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) ,(0, 0) ) new_image.paste(image.resize((new_width, new_height) ) ,(0, new_header_height) ) # Convert back to the original framework if necessary A__ = to_numpy_array(lowerCAmelCase__ ) if infer_channel_dimension_format(lowerCAmelCase__ ) == ChannelDimension.LAST: A__ = to_channel_dimension_format(lowerCAmelCase__ ,ChannelDimension.LAST ) return new_image class snake_case_ ( _lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Optional[int] = ["""flattened_patches"""] def __init__( self , __a = True , __a = True , __a = None , __a = 2048 , __a = False , **__a , ): """simple docstring""" super().__init__(**__a ) A__ = patch_size if patch_size is not None else {'height': 16, 'width': 16} A__ = do_normalize A__ = do_convert_rgb A__ = max_patches A__ = is_vqa def _UpperCAmelCase ( self , __a , __a , __a , **__a ): """simple docstring""" requires_backends(self.extract_flattened_patches , 'torch' ) _check_torch_version() # convert to torch A__ = to_channel_dimension_format(__a , ChannelDimension.FIRST ) A__ = torch.from_numpy(__a ) A__ , A__ = patch_size['height'], patch_size['width'] A__ , A__ = get_image_size(__a ) # maximize scale s.t. A__ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) A__ = max(min(math.floor(scale * image_height / patch_height ) , __a ) , 1 ) A__ = max(min(math.floor(scale * image_width / patch_width ) , __a ) , 1 ) A__ = max(num_feasible_rows * patch_height , 1 ) A__ = max(num_feasible_cols * patch_width , 1 ) A__ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=__a , antialias=__a , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] A__ = torch_extract_patches(__a , __a , __a ) A__ = patches.shape A__ = patches_shape[1] A__ = patches_shape[2] A__ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] A__ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] A__ = torch.arange(__a ).reshape([rows, 1] ).repeat(1 , __a ).reshape([rows * columns, 1] ) A__ = torch.arange(__a ).reshape([1, columns] ).repeat(__a , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] A__ = row_ids.to(torch.floataa ) A__ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] A__ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] A__ = torch.nn.functional.pad(__a , [0, 0, 0, max_patches - (rows * columns)] ).float() A__ = to_numpy_array(__a ) return result def _UpperCAmelCase ( self , __a , __a = None , **__a ): """simple docstring""" if image.dtype == np.uinta: A__ = image.astype(np.floataa ) # take mean across the whole `image` A__ = np.mean(__a ) A__ = np.std(__a ) A__ = max(__a , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(__a , mean=__a , std=__a , **__a ) def _UpperCAmelCase ( self , __a , __a = None , __a = None , __a = None , __a = None , __a = None , __a = None , __a = ChannelDimension.FIRST , **__a , ): """simple docstring""" A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = patch_size if patch_size is not None else self.patch_size A__ = max_patches if max_patches is not None else self.max_patches A__ = self.is_vqa if kwargs.get('data_format' , __a ) is not None: raise ValueError('data_format is not an accepted input as the outputs are ' ) A__ = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(__a ) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.' ) A__ = kwargs.pop('font_bytes' , __a ) A__ = kwargs.pop('font_path' , __a ) if isinstance(__a , __a ): A__ = [header_text] * len(__a ) A__ = [ render_header(__a , header_text[i] , font_bytes=__a , font_path=__a ) for i, image in enumerate(__a ) ] if do_normalize: A__ = [self.normalize(image=__a ) for image in images] # convert to torch tensor and permute A__ = [ self.extract_flattened_patches(image=__a , max_patches=__a , patch_size=__a ) for image in images ] # create attention mask in numpy A__ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] A__ = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=__a ) return encoded_outputs
554
1
import argparse import collections import json import os import re import string import sys import numpy as np __lowerCAmelCase = re.compile(r"\b(a|an|the)\b", re.UNICODE) __lowerCAmelCase = None def __lowerCamelCase ( ) -> int: _UpperCAmelCase = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=_lowerCAmelCase , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=_lowerCAmelCase , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def __lowerCamelCase ( _lowerCAmelCase ) -> int: _UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCAmelCase = bool(qa["answers"]["text"] ) return qid_to_has_ans def __lowerCamelCase ( _lowerCAmelCase ) -> int: def remove_articles(_lowerCAmelCase ): return ARTICLES_REGEX.sub(" " , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def __lowerCamelCase ( _lowerCAmelCase ) -> Dict: if not s: return [] return normalize_answer(_lowerCAmelCase ).split() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = get_tokens(_lowerCAmelCase ) _UpperCAmelCase = get_tokens(_lowerCAmelCase ) _UpperCAmelCase = collections.Counter(_lowerCAmelCase ) & collections.Counter(_lowerCAmelCase ) _UpperCAmelCase = sum(common.values() ) if len(_lowerCAmelCase ) == 0 or len(_lowerCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(_lowerCAmelCase ) _UpperCAmelCase = 1.0 * num_same / len(_lowerCAmelCase ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> str: _UpperCAmelCase = {} _UpperCAmelCase = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: _UpperCAmelCase = qa["id"] _UpperCAmelCase = [t for t in qa["answers"]["text"] if normalize_answer(_lowerCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string _UpperCAmelCase = [""] if qid not in preds: print(F'''Missing prediction for {qid}''' ) continue _UpperCAmelCase = preds[qid] # Take max over all gold answers _UpperCAmelCase = max(compute_exact(_lowerCAmelCase , _lowerCAmelCase ) for a in gold_answers ) _UpperCAmelCase = max(compute_fa(_lowerCAmelCase , _lowerCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = {} for qid, s in scores.items(): _UpperCAmelCase = na_probs[qid] > na_prob_thresh if pred_na: _UpperCAmelCase = float(not qid_to_has_ans[qid] ) else: _UpperCAmelCase = s return new_scores def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[str]: if not qid_list: _UpperCAmelCase = len(_lowerCAmelCase ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: _UpperCAmelCase = len(_lowerCAmelCase ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: for k in new_eval: _UpperCAmelCase = new_eval[k] def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: plt.step(_lowerCAmelCase , _lowerCAmelCase , color="b" , alpha=0.2 , where="post" ) plt.fill_between(_lowerCAmelCase , _lowerCAmelCase , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(_lowerCAmelCase ) plt.savefig(_lowerCAmelCase ) plt.clf() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Union[str, Any]: _UpperCAmelCase = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : na_probs[k] ) _UpperCAmelCase = 0.0 _UpperCAmelCase = 1.0 _UpperCAmelCase = 0.0 _UpperCAmelCase = [1.0] _UpperCAmelCase = [0.0] _UpperCAmelCase = 0.0 for i, qid in enumerate(_lowerCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] _UpperCAmelCase = true_pos / float(i + 1 ) _UpperCAmelCase = true_pos / float(_lowerCAmelCase ) if i == len(_lowerCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(_lowerCAmelCase ) recalls.append(_lowerCAmelCase ) if out_image: plot_pr_curve(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return {"ap": 100.0 * avg_prec} def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if out_image_dir and not os.path.exists(_lowerCAmelCase ): os.makedirs(_lowerCAmelCase ) _UpperCAmelCase = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return _UpperCAmelCase = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) _UpperCAmelCase = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) _UpperCAmelCase = {k: float(_lowerCAmelCase ) for k, v in qid_to_has_ans.items()} _UpperCAmelCase = make_precision_recall_eval( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , out_image=os.path.join(_lowerCAmelCase , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , "pr_exact" ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , "pr_f1" ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , "pr_oracle" ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: if not qid_list: return _UpperCAmelCase = [na_probs[k] for k in qid_list] _UpperCAmelCase = np.ones_like(_lowerCAmelCase ) / float(len(_lowerCAmelCase ) ) plt.hist(_lowerCAmelCase , weights=_lowerCAmelCase , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(F'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(_lowerCAmelCase , F'''na_prob_hist_{name}.png''' ) ) plt.clf() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: _UpperCAmelCase = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) _UpperCAmelCase = num_no_ans _UpperCAmelCase = cur_score _UpperCAmelCase = 0.0 _UpperCAmelCase = sorted(_lowerCAmelCase , key=lambda _lowerCAmelCase : na_probs[k] ) for i, qid in enumerate(_lowerCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: _UpperCAmelCase = scores[qid] else: if preds[qid]: _UpperCAmelCase = -1 else: _UpperCAmelCase = 0 cur_score += diff if cur_score > best_score: _UpperCAmelCase = cur_score _UpperCAmelCase = na_probs[qid] return 100.0 * best_score / len(_lowerCAmelCase ), best_thresh def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: _UpperCAmelCase , _UpperCAmelCase = find_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = find_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase = best_exact _UpperCAmelCase = exact_thresh _UpperCAmelCase = best_fa _UpperCAmelCase = fa_thresh def __lowerCamelCase ( ) -> int: with open(OPTS.data_file ) as f: _UpperCAmelCase = json.load(_lowerCAmelCase ) _UpperCAmelCase = dataset_json["data"] with open(OPTS.pred_file ) as f: _UpperCAmelCase = json.load(_lowerCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: _UpperCAmelCase = json.load(_lowerCAmelCase ) else: _UpperCAmelCase = {k: 0.0 for k in preds} _UpperCAmelCase = make_qid_to_has_ans(_lowerCAmelCase ) # maps qid to True/False _UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if v] _UpperCAmelCase = [k for k, v in qid_to_has_ans.items() if not v] _UpperCAmelCase , _UpperCAmelCase = get_raw_scores(_lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase = apply_no_ans_threshold(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.na_prob_thresh ) _UpperCAmelCase = apply_no_ans_threshold(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.na_prob_thresh ) _UpperCAmelCase = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase ) if has_ans_qids: _UpperCAmelCase = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase , qid_list=_lowerCAmelCase ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , "HasAns" ) if no_ans_qids: _UpperCAmelCase = make_eval_dict(_lowerCAmelCase , _lowerCAmelCase , qid_list=_lowerCAmelCase ) merge_eval(_lowerCAmelCase , _lowerCAmelCase , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir ) histogram_na_prob(_lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(_lowerCAmelCase , _lowerCAmelCase , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase ) else: print(json.dumps(_lowerCAmelCase , indent=2 ) ) if __name__ == "__main__": __lowerCAmelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
684
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __lowerCAmelCase = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __lowerCAmelCase = {"facebook/blenderbot-3B": 1_2_8} class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[Any] = ["""input_ids""", """attention_mask"""] __SCREAMING_SNAKE_CASE : List[str] = BlenderbotTokenizer def __init__( self : Tuple , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]="replace" , __UpperCamelCase : Tuple="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : Union[str, Any]="<s>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[int]="<mask>" , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : List[str]=True , **__UpperCamelCase : int , ): super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**__UpperCamelCase ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = "post_processor" _UpperCAmelCase = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) if tokenizer_component_instance: _UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase = tuple(state["sep"] ) if "cls" in state: _UpperCAmelCase = tuple(state["cls"] ) _UpperCAmelCase = False if state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = add_prefix_space _UpperCAmelCase = True if state.get("trim_offsets" , __UpperCamelCase ) != trim_offsets: _UpperCAmelCase = trim_offsets _UpperCAmelCase = True if changes_to_apply: _UpperCAmelCase = getattr(__UpperCamelCase , state.pop("type" ) ) _UpperCAmelCase = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else value _UpperCAmelCase = value def UpperCAmelCase__ ( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : "Conversation" ): _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) _UpperCAmelCase = " ".join(__UpperCamelCase ) _UpperCAmelCase = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
684
1
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __UpperCAmelCase ( lowercase ,lowercase ): """simple docstring""" _UpperCAmelCase = [] for part_id in partition_order: _UpperCAmelCase = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(lowercase ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(1_00 ).repartition(1 ) _UpperCAmelCase = Spark(lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(10 ).repartition(2 ) _UpperCAmelCase = [1, 0] _UpperCAmelCase = _generate_iterable_examples(lowercase ,lowercase ) # Reverse the partitions. _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(10 ).repartition(1 ) _UpperCAmelCase = SparkExamplesIterable(lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowercase ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: _UpperCAmelCase = lambda lowercase : x.reverse() _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,[2, 1, 0] ) _UpperCAmelCase = SparkExamplesIterable(lowercase ).shuffle_data_sources(lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 _UpperCAmelCase = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=0 ,num_workers=2 ) assert shard_it_a.n_shards == 2 _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,[0, 2] ) for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 _UpperCAmelCase = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=1 ,num_workers=2 ) assert shard_it_a.n_shards == 2 _UpperCAmelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase ,[1, 3] ) for i, (row_id, row_dict) in enumerate(lowercase ): _UpperCAmelCase , _UpperCAmelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() _UpperCAmelCase = spark.range(1_00 ).repartition(1 ) _UpperCAmelCase = Spark(lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
275
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class a ( lowerCAmelCase_ ): @staticmethod @abstractmethod def lowerCAmelCase_ ( __lowerCAmelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def lowerCAmelCase_ ( self : int ): raise NotImplementedError()
275
1
# Lint as: python3 import itertools import os import re UpperCAmelCase__ = re.compile(r'''([A-Z]+)([A-Z][a-z])''') UpperCAmelCase__ = re.compile(r'''([a-z\d])([A-Z])''') UpperCAmelCase__ = re.compile(r'''(?<!_)_(?!_)''') UpperCAmelCase__ = re.compile(r'''(_{2,})''') UpperCAmelCase__ = r'''^\w+(\.\w+)*$''' UpperCAmelCase__ = r'''<>:/\|?*''' def a_ (__A ) -> List[Any]: """simple docstring""" __a : int = _uppercase_uppercase_re.sub(r"\1_\2" , __A ) __a : List[Any] = _lowercase_uppercase_re.sub(r"\1_\2" , __A ) return name.lower() def a_ (__A ) -> Dict: """simple docstring""" __a : Optional[Any] = _single_underscore_re.split(__A ) __a : Tuple = [_multiple_underscores_re.split(__A ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__A ) if n != "" ) def a_ (__A ) -> Union[str, Any]: """simple docstring""" if os.path.basename(__A ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) return camelcase_to_snakecase(__A ) def a_ (__A , __A ) -> Union[str, Any]: """simple docstring""" if os.path.basename(__A ) != name: raise ValueError(f'Should be a dataset name, not a path: {name}' ) if not re.match(_split_re , __A ): raise ValueError(f'Split name should match \'{_split_re}\'\' but got \'{split}\'.' ) return f'{filename_prefix_for_name(__A )}-{split}' def a_ (__A , __A , __A , __A=None ) -> Union[str, Any]: """simple docstring""" __a : int = filename_prefix_for_split(__A , __A ) if filetype_suffix: prefix += f'.{filetype_suffix}' __a : List[Any] = os.path.join(__A , __A ) return f'{filepath}*' def a_ (__A , __A , __A , __A=None , __A=None ) -> int: """simple docstring""" __a : List[Any] = filename_prefix_for_split(__A , __A ) __a : Any = os.path.join(__A , __A ) if shard_lengths: __a : Tuple = len(__A ) __a : List[Any] = [f'{prefix}-{shard_id:05d}-of-{num_shards:05d}' for shard_id in range(__A )] if filetype_suffix: __a : Any = [filename + f'.{filetype_suffix}' for filename in filenames] return filenames else: __a : str = prefix if filetype_suffix: filename += f'.{filetype_suffix}' return [filename]
351
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class snake_case_ ( __UpperCamelCase ): """simple docstring""" snake_case__ = """glpn""" def __init__(self: Tuple , __UpperCAmelCase: Tuple=3 , __UpperCAmelCase: Dict=4 , __UpperCAmelCase: Any=[2, 2, 2, 2] , __UpperCAmelCase: Optional[int]=[8, 4, 2, 1] , __UpperCAmelCase: Dict=[32, 64, 160, 256] , __UpperCAmelCase: List[str]=[7, 3, 3, 3] , __UpperCAmelCase: Dict=[4, 2, 2, 2] , __UpperCAmelCase: Optional[int]=[1, 2, 5, 8] , __UpperCAmelCase: Dict=[4, 4, 4, 4] , __UpperCAmelCase: List[str]="gelu" , __UpperCAmelCase: str=0.0 , __UpperCAmelCase: List[Any]=0.0 , __UpperCAmelCase: Dict=0.02 , __UpperCAmelCase: List[str]=0.1 , __UpperCAmelCase: Union[str, Any]=1E-6 , __UpperCAmelCase: Dict=64 , __UpperCAmelCase: Dict=10 , __UpperCAmelCase: Union[str, Any]=-1 , **__UpperCAmelCase: Dict , ) -> str: '''simple docstring''' super().__init__(**__UpperCAmelCase ) __a : Optional[Any] = num_channels __a : Tuple = num_encoder_blocks __a : int = depths __a : Union[str, Any] = sr_ratios __a : str = hidden_sizes __a : List[Any] = patch_sizes __a : Optional[Any] = strides __a : Any = mlp_ratios __a : Any = num_attention_heads __a : Any = hidden_act __a : List[Any] = hidden_dropout_prob __a : int = attention_probs_dropout_prob __a : List[str] = initializer_range __a : Optional[int] = drop_path_rate __a : Any = layer_norm_eps __a : List[Any] = decoder_hidden_size __a : Any = max_depth __a : int = head_in_index
351
1
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __UpperCamelCase : str = trt.Logger(trt.Logger.WARNING) __UpperCamelCase : Dict = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __UpperCamelCase : Dict = logging.getLogger(__name__) __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=3_8_4, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=1_2_8, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=2_0, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=3_0, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=4_2, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __UpperCamelCase : List[Any] = parser.parse_args() if args.tokenizer_name: __UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __UpperCamelCase : Dict = args.per_device_eval_batch_size __UpperCamelCase : Dict = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Dict = "temp_engine/bert-fp32.engine" if args.fpaa: __UpperCamelCase : Optional[Any] = "temp_engine/bert-fp16.engine" if args.inta: __UpperCamelCase : Any = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __UpperCamelCase : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __UpperCamelCase : List[str] = [network.get_input(i) for i in range(network.num_inputs)] __UpperCamelCase : Optional[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __UpperCamelCase : Tuple = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __UpperCamelCase : Optional[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __UpperCamelCase : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def __UpperCAmelCase ( _snake_case : Union[str, Any], _snake_case : Tuple, _snake_case : Union[str, Any], _snake_case : List[str], _snake_case : List[Any], _snake_case : List[Any], _snake_case : Dict, _snake_case : List[str] ): _lowercase = np.asarray(inputs["input_ids"], dtype=np.intaa ) _lowercase = np.asarray(inputs["attention_mask"], dtype=np.intaa ) _lowercase = np.asarray(inputs["token_type_ids"], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _snake_case ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _snake_case ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _snake_case ) # start time _lowercase = time.time() # Run inference context.execute_async( bindings=[int(_snake_case ) for d_inp in d_inputs] + [int(_snake_case ), int(_snake_case )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_snake_case, _snake_case, _snake_case ) cuda.memcpy_dtoh_async(_snake_case, _snake_case, _snake_case ) # Synchronize the stream and take time stream.synchronize() # end time _lowercase = time.time() _lowercase = end_time - start_time _lowercase = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __UpperCamelCase : Optional[Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCamelCase : List[str] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __UpperCamelCase : Union[str, Any] = raw_datasets["validation"].column_names __UpperCamelCase : Dict = "question" if "question" in column_names else column_names[0] __UpperCamelCase : List[str] = "context" if "context" in column_names else column_names[1] __UpperCamelCase : Tuple = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __UpperCamelCase : Optional[Any] = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __UpperCamelCase : List[str] = min(args.max_seq_length, tokenizer.model_max_length) def __UpperCAmelCase ( _snake_case : Dict ): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace _lowercase = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. _lowercase = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation="only_second" if pad_on_right else "only_first", max_length=_snake_case, stride=args.doc_stride, return_overflowing_tokens=_snake_case, return_offsets_mapping=_snake_case, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. _lowercase = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. _lowercase = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). _lowercase = tokenized_examples.sequence_ids(_snake_case ) _lowercase = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. _lowercase = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. _lowercase = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples __UpperCamelCase : Optional[Any] = raw_datasets["validation"] # Validation Feature Creation __UpperCamelCase : Optional[Any] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __UpperCamelCase : List[Any] = default_data_collator __UpperCamelCase : Any = eval_dataset.remove_columns(["example_id", "offset_mapping"]) __UpperCamelCase : Any = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def __UpperCAmelCase ( _snake_case : Dict, _snake_case : Dict, _snake_case : List[Any], _snake_case : Any="eval" ): # Post-processing: we match the start logits and end logits to answers in the original context. _lowercase = postprocess_qa_predictions( examples=_snake_case, features=_snake_case, predictions=_snake_case, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_snake_case, ) # Format the result to the format the metric expects. if args.version_2_with_negative: _lowercase = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: _lowercase = [{"id": k, "prediction_text": v} for k, v in predictions.items()] _lowercase = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_snake_case, label_ids=_snake_case ) __UpperCamelCase : Tuple = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def __UpperCAmelCase ( _snake_case : List[Any] ): return trt.volume(engine.get_binding_shape(_snake_case ) ) * engine.get_binding_dtype(_snake_case ).itemsize # Allocate device memory for inputs and outputs. __UpperCamelCase : Optional[Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __UpperCamelCase : List[str] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __UpperCamelCase : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __UpperCamelCase : Any = cuda.mem_alloc(h_outputa.nbytes) __UpperCamelCase : str = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __UpperCamelCase : str = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f''' Num examples = {len(eval_dataset)}''') logger.info(f''' Batch size = {args.per_device_eval_batch_size}''') __UpperCamelCase : str = 0.0 __UpperCamelCase : List[Any] = 0 __UpperCamelCase : int = timeit.default_timer() __UpperCamelCase : Dict = None for step, batch in enumerate(eval_dataloader): __UpperCamelCase : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __UpperCamelCase : Optional[int] = outputs __UpperCamelCase : int = torch.tensor(start_logits) __UpperCamelCase : str = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __UpperCamelCase : Any = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) __UpperCamelCase : Union[str, Any] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) __UpperCamelCase : Optional[Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __UpperCamelCase : Dict = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: __UpperCamelCase : Optional[int] = nested_truncate(all_preds, len(eval_dataset)) __UpperCamelCase : Any = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1_0_0_0 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1_0_0_0)) logger.info("Total Number of Inference = %d", niter) __UpperCamelCase : str = post_processing_function(eval_examples, eval_dataset, all_preds) __UpperCamelCase : Optional[int] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f'''Evaluation metrics: {eval_metric}''')
701
"""simple docstring""" # flake8: noqa # Lint as: python3 __UpperCamelCase : Optional[Any] = [ "VerificationMode", "Version", "disable_progress_bar", "enable_progress_bar", "is_progress_bar_enabled", "experimental", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
227
0
import sys import turtle def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> tuple[float, float]: return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> None: my_pen.up() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) if depth == 0: return triangle(_SCREAMING_SNAKE_CASE ,get_mid(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ,get_mid(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ,depth - 1 ) triangle(_SCREAMING_SNAKE_CASE ,get_mid(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ,get_mid(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ,depth - 1 ) triangle(_SCREAMING_SNAKE_CASE ,get_mid(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ,get_mid(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ,depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) SCREAMING_SNAKE_CASE__ : Dict = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') SCREAMING_SNAKE_CASE__ : str = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
311
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict[Optional[str], Type[Formatter]] = {} SCREAMING_SNAKE_CASE__ : Dict[Optional[str], str] = {} SCREAMING_SNAKE_CASE__ : Dict[Optional[str], Exception] = {} def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,) -> str: lowerCamelCase : List[str] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'''Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})''' ) lowerCamelCase : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'''Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})''' ) lowerCamelCase : Dict = format_type def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple: lowerCamelCase : Union[str, Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowerCamelCase : str = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: SCREAMING_SNAKE_CASE__ : str = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: SCREAMING_SNAKE_CASE__ : str = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: SCREAMING_SNAKE_CASE__ : Tuple = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def A ( _SCREAMING_SNAKE_CASE ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def A ( _SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Formatter: lowerCamelCase : Tuple = get_format_type_from_alias(_SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_SCREAMING_SNAKE_CASE ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'''Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'''' )
311
1
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCAmelCase : List[str] = { '''gwf-440k''': { '''url''': '''https://model-server.zqevans2.workers.dev/gwf-440k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-small-190k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''jmann-large-580k''': { '''url''': '''https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt''', '''sample_rate''': 4_8_0_0_0, '''sample_size''': 1_3_1_0_7_2, }, '''maestro-uncond-150k''': { '''url''': '''https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''unlocked-uncond-250k''': { '''url''': '''https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, '''honk-140k''': { '''url''': '''https://model-server.zqevans2.workers.dev/honk-140k.ckpt''', '''sample_rate''': 1_6_0_0_0, '''sample_size''': 6_5_5_3_6, }, } def __lowerCAmelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Optional[Any] ): '''simple docstring''' return torch.atana(lowerCamelCase , lowerCamelCase ) / math.pi * 2 def __lowerCAmelCase ( lowerCamelCase : List[str] ): '''simple docstring''' __lowerCAmelCase = torch.sin(t * math.pi / 2 ) ** 2 __lowerCAmelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(lowerCamelCase , lowerCamelCase ) class UpperCAmelCase__ ( UpperCamelCase__ ): pass class UpperCAmelCase__ ( nn.Module ): def __init__( self , UpperCamelCase ) -> Tuple: super().__init__() __lowerCAmelCase = DiffusionAttnUnetaD(UpperCamelCase , n_attn_layers=4 ) __lowerCAmelCase = deepcopy(self.diffusion ) __lowerCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=UpperCamelCase ) def __lowerCAmelCase ( lowerCamelCase : Any ): '''simple docstring''' __lowerCAmelCase = MODELS_MAP[model_name]["url"] os.system(f'''wget {url} ./''' ) return f'''./{model_name}.ckpt''' lowerCAmelCase : List[Any] = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', } lowerCAmelCase : List[str] = { '''8''': '''resnets.0''', '''9''': '''attentions.0''', '''10''': '''resnets.1''', '''11''': '''attentions.1''', '''12''': '''resnets.2''', '''13''': '''attentions.2''', } lowerCAmelCase : List[Any] = { '''1''': '''resnets.0''', '''2''': '''attentions.0''', '''3''': '''resnets.1''', '''4''': '''attentions.1''', '''5''': '''resnets.2''', '''6''': '''attentions.2''', '''8''': '''resnets.3''', '''9''': '''attentions.3''', '''10''': '''resnets.4''', '''11''': '''attentions.4''', '''12''': '''resnets.5''', '''13''': '''attentions.5''', } lowerCAmelCase : Optional[int] = { '''0''': '''resnets.0''', '''1''': '''resnets.1''', '''2''': '''resnets.2''', '''4''': '''resnets.0''', '''5''': '''resnets.1''', '''6''': '''resnets.2''', } lowerCAmelCase : List[Any] = { '''skip''': '''conv_skip''', '''main.0''': '''conv_1''', '''main.1''': '''group_norm_1''', '''main.3''': '''conv_2''', '''main.4''': '''group_norm_2''', } lowerCAmelCase : Tuple = { '''norm''': '''group_norm''', '''qkv_proj''': ['''query''', '''key''', '''value'''], '''out_proj''': ['''proj_attn'''], } def __lowerCAmelCase ( lowerCamelCase : Optional[Any] ): '''simple docstring''' if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(f'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCAmelCase ( lowerCamelCase : str ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(lowerCamelCase ) and not isinstance(lowerCamelCase , lowerCamelCase ): return name.replace(lowerCamelCase , lowerCamelCase ) elif name.startswith(lowerCamelCase ): return [name.replace(lowerCamelCase , lowerCamelCase ) for v in value] raise ValueError(f'''Attn error with {name}''' ) def __lowerCAmelCase ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[int]=13 ): '''simple docstring''' __lowerCAmelCase = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) __lowerCAmelCase = 0 if string.startswith("net.3." ): depth += 1 __lowerCAmelCase = string[6:] elif string.startswith("net." ): __lowerCAmelCase = string[4:] while string.startswith("main.7." ): depth += 1 __lowerCAmelCase = string[7:] if string.startswith("main." ): __lowerCAmelCase = string[5:] # mid block if string[:2].isdigit(): __lowerCAmelCase = string[:2] __lowerCAmelCase = string[2:] else: __lowerCAmelCase = string[0] __lowerCAmelCase = string[1:] if depth == max_depth: __lowerCAmelCase = MID_NUM_TO_LAYER[layer_num] __lowerCAmelCase = "mid_block" elif depth > 0 and int(lowerCamelCase ) < 7: __lowerCAmelCase = DOWN_NUM_TO_LAYER[layer_num] __lowerCAmelCase = f'''down_blocks.{depth}''' elif depth > 0 and int(lowerCamelCase ) > 7: __lowerCAmelCase = UP_NUM_TO_LAYER[layer_num] __lowerCAmelCase = f'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: __lowerCAmelCase = DEPTH_0_TO_LAYER[layer_num] __lowerCAmelCase = f'''up_blocks.{max_depth - 1}''' if int(lowerCamelCase ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(f'''Naming error with {input_string} and string_left: {string_left}.''' ) __lowerCAmelCase = string_left[1:] if "resnets" in new_layer: __lowerCAmelCase = convert_resconv_naming(lowerCamelCase ) elif "attentions" in new_layer: __lowerCAmelCase = convert_attn_naming(lowerCamelCase ) __lowerCAmelCase = new_string_left if not isinstance(lowerCamelCase , lowerCamelCase ): __lowerCAmelCase = prefix + "." + new_layer + "." + string_left else: __lowerCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __lowerCAmelCase ( lowerCamelCase : List[Any] ): '''simple docstring''' __lowerCAmelCase = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue __lowerCAmelCase = rename(lowerCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(lowerCamelCase , lowerCamelCase ): __lowerCAmelCase = transform_conv_attns(lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __lowerCAmelCase = v return new_state_dict def __lowerCAmelCase ( lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : int ): '''simple docstring''' if len(lowerCamelCase ) == 1: if len(v.shape ) == 3: # weight __lowerCAmelCase = v[:, :, 0] else: # bias __lowerCAmelCase = v else: # qkv matrices __lowerCAmelCase = v.shape[0] __lowerCAmelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: __lowerCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: __lowerCAmelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCAmelCase ( lowerCamelCase : Dict ): '''simple docstring''' __lowerCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) __lowerCAmelCase = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' __lowerCAmelCase = download(lowerCamelCase ) __lowerCAmelCase = MODELS_MAP[model_name]["sample_rate"] __lowerCAmelCase = MODELS_MAP[model_name]["sample_size"] __lowerCAmelCase = Object() __lowerCAmelCase = sample_size __lowerCAmelCase = sample_rate __lowerCAmelCase = 0 __lowerCAmelCase = UNetaDModel(sample_size=lowerCamelCase , sample_rate=lowerCamelCase ) __lowerCAmelCase = diffusers_model.state_dict() __lowerCAmelCase = DiffusionUncond(lowerCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=lowerCamelCase )["state_dict"] ) __lowerCAmelCase = orig_model.diffusion_ema.eval() __lowerCAmelCase = orig_model.state_dict() __lowerCAmelCase = rename_orig_weights(lowerCamelCase ) __lowerCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) __lowerCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(lowerCamelCase ) == 0, f'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(lowerCamelCase ) ), f'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": __lowerCAmelCase = value.squeeze() __lowerCAmelCase = value diffusers_model.load_state_dict(lowerCamelCase ) __lowerCAmelCase = 1_00 __lowerCAmelCase = 33 __lowerCAmelCase = IPNDMScheduler(num_train_timesteps=lowerCamelCase ) __lowerCAmelCase = torch.manual_seed(lowerCamelCase ) __lowerCAmelCase = torch.randn([1, 2, config.sample_size] , generator=lowerCamelCase ).to(lowerCamelCase ) __lowerCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=lowerCamelCase )[:-1] __lowerCAmelCase = get_crash_schedule(lowerCamelCase ) __lowerCAmelCase = DanceDiffusionPipeline(unet=lowerCamelCase , scheduler=lowerCamelCase ) __lowerCAmelCase = torch.manual_seed(33 ) __lowerCAmelCase = pipe(num_inference_steps=lowerCamelCase , generator=lowerCamelCase ).audios __lowerCAmelCase = sampling.iplms_sample(lowerCamelCase , lowerCamelCase , lowerCamelCase , {} ) __lowerCAmelCase = generated.clamp(-1 , 1 ) __lowerCAmelCase = (generated - audio).abs().sum() __lowerCAmelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , lowerCamelCase ) print("Diff max" , lowerCamelCase ) assert diff_max < 1e-3, f'''Diff max: {diff_max} is too much :-/''' print(f'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase : Any = parser.parse_args() main(args)
39
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowerCAmelCase : Optional[Any] = { '''configuration_trocr''': ['''TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrOCRConfig'''], '''processing_trocr''': ['''TrOCRProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ '''TROCR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrOCRForCausalLM''', '''TrOCRPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
1
def __lowercase ( _UpperCAmelCase = 600_851_475_143 ) -> List[Any]: '''simple docstring''' try: __lowercase = int(__lowerCAmelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) __lowercase = 1 __lowercase = 2 while i * i <= n: while n % i == 0: __lowercase = i n //= i i += 1 if n > 1: __lowercase = n return int(__lowerCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
321
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase_ : Union[str, Any] = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } lowercase_ : List[str] = {'''allegro/herbert-base-cased''': 514} lowercase_ : Union[str, Any] = {} class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Union[str, Any] = HerbertTokenizer def __init__( self : int , lowerCamelCase_ : int=None , lowerCamelCase_ : Any=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Dict="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : Dict="<pad>" , lowerCamelCase_ : Dict="<mask>" , lowerCamelCase_ : Optional[Any]="</s>" , **lowerCamelCase_ : List[Any] , ): '''simple docstring''' super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , cls_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , **lowerCamelCase_ , ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[Any] = [self.cls_token_id] _snake_case : str = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : List[str] = [self.sep_token_id] _snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' _snake_case : Union[str, Any] = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
304
0
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging __lowerCAmelCase = "\\n\n" __lowerCAmelCase = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" __lowerCAmelCase = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): def UpperCAmelCase__ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def UpperCAmelCase__ ( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : int = 16 , __UpperCamelCase : bool = True , __UpperCamelCase : Tuple=None ): if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _UpperCAmelCase = "cuda" else: _UpperCAmelCase = "cuda" if torch.cuda.is_available() else "cpu" _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = model.to(__UpperCamelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(__UpperCamelCase ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _UpperCAmelCase = model.config.max_length - 1 else: _UpperCAmelCase = model.config.max_length _UpperCAmelCase = tokenizer( __UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors="pt" , return_attention_mask=__UpperCamelCase , ).to(__UpperCamelCase ) _UpperCAmelCase = encodings["input_ids"] _UpperCAmelCase = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _UpperCAmelCase = [] _UpperCAmelCase = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(__UpperCamelCase ) , __UpperCamelCase ) ): _UpperCAmelCase = min(start_index + batch_size , len(__UpperCamelCase ) ) _UpperCAmelCase = encoded_texts[start_index:end_index] _UpperCAmelCase = attn_masks[start_index:end_index] if add_start_token: _UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__UpperCamelCase ) _UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _UpperCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__UpperCamelCase ), attn_mask] , dim=1 ) _UpperCAmelCase = encoded_batch with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).logits _UpperCAmelCase = out_logits[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = attn_mask[..., 1:].contiguous() _UpperCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , __UpperCamelCase ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(__UpperCamelCase )}
129
from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=lowercase): __SCREAMING_SNAKE_CASE : List[str] = ["""torch""", """torchsde"""] def __init__( self : Optional[Any] , *__UpperCamelCase : int , **__UpperCamelCase : List[Any] ): requires_backends(self , ["torch", "torchsde"] ) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : List[str] ): requires_backends(cls , ["torch", "torchsde"] ) @classmethod def UpperCAmelCase__ ( cls : Tuple , *__UpperCamelCase : Dict , **__UpperCamelCase : Optional[Any] ): requires_backends(cls , ["torch", "torchsde"] )
129
1
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase ( lowercase_ ): '''simple docstring''' def __init__( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : str=99 , UpperCamelCase_ : int=32 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Optional[int]=16 , UpperCamelCase_ : str=2 , UpperCamelCase_ : str=0.02 , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=True , UpperCamelCase_ : int="None" , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : Tuple=4 , UpperCamelCase_ : Any=None , ): """simple docstring""" __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = relative_attention __A = position_biased_input __A = pos_att_type __A = scope def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A = None if self.use_input_mask: __A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A = ids_tensor([self.batch_size] , self.num_choices ) __A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = self.get_config() __A = 300 return config def lowerCAmelCase_ ( self : List[str] , UpperCamelCase_ : str ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] ): """simple docstring""" __A = DebertaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ )[0] __A = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ )[0] __A = model(UpperCamelCase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowerCAmelCase_ ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ): """simple docstring""" __A = DebertaForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Any ): """simple docstring""" __A = self.num_labels __A = DebertaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase_ ) def lowerCAmelCase_ ( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): """simple docstring""" __A = self.num_labels __A = DebertaForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : str ): """simple docstring""" __A = DebertaForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __A = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : int ): """simple docstring""" __A = self.prepare_config_and_inputs() ( __A ) = config_and_inputs __A = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" __A = DebertaModelTester(self ) __A = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : int ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Dict ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase_ ) def lowerCAmelCase_ ( self : int ): """simple docstring""" __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase_ ) @slow def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = DebertaModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def lowerCAmelCase_ ( self : Tuple ): """simple docstring""" pass @slow def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = DebertaModel.from_pretrained("""microsoft/deberta-base""" ) __A = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __A = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] # compare the actual values for a slice. __A = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase_ , atol=1e-4 ) , F"{output[:, 1:4, 1:4]}" )
637
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class SCREAMING_SNAKE_CASE_ ( snake_case ): __a : List[str] = '''poolformer''' def __init__( self , lowercase=3 , lowercase=1_6 , lowercase=1_6 , lowercase=3 , lowercase=4.0 , lowercase=[2, 2, 6, 2] , lowercase=[6_4, 1_2_8, 3_2_0, 5_1_2] , lowercase=[7, 3, 3, 3] , lowercase=[4, 2, 2, 2] , lowercase=[2, 1, 1, 1] , lowercase=4 , lowercase=0.0 , lowercase="gelu" , lowercase=True , lowercase=1e-5 , lowercase=0.0_2 , **lowercase , ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = num_channels __SCREAMING_SNAKE_CASE : Dict = patch_size __SCREAMING_SNAKE_CASE : int = stride __SCREAMING_SNAKE_CASE : Optional[Any] = padding __SCREAMING_SNAKE_CASE : str = pool_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_sizes __SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio __SCREAMING_SNAKE_CASE : List[str] = depths __SCREAMING_SNAKE_CASE : Union[str, Any] = patch_sizes __SCREAMING_SNAKE_CASE : Optional[Any] = strides __SCREAMING_SNAKE_CASE : Optional[Any] = num_encoder_blocks __SCREAMING_SNAKE_CASE : Any = drop_path_rate __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = use_layer_scale __SCREAMING_SNAKE_CASE : List[Any] = layer_scale_init_value __SCREAMING_SNAKE_CASE : Optional[int] = initializer_range super().__init__(**lowercase ) class SCREAMING_SNAKE_CASE_ ( snake_case ): __a : Union[str, Any] = version.parse('''1.11''' ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _snake_case ( self ) -> float: '''simple docstring''' return 2e-3
158
0
'''simple docstring''' from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : def __init__(self : List[str] , __a : Optional[int] , __a : Union[str, Any]=13 , __a : str=30 , __a : Union[str, Any]=2 , __a : Tuple=3 , __a : str=True , __a : List[Any]=True , __a : Optional[int]=32 , __a : List[Any]=2 , __a : Union[str, Any]=4 , __a : Optional[Any]=37 , __a : Tuple="gelu" , __a : List[str]=0.1 , __a : str=0.1 , __a : Any=10 , __a : Optional[int]=0.02 , __a : List[Any]=3 , __a : Optional[Any]=0.6 , __a : Optional[int]=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = mask_ratio UpperCAmelCase_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase (self : Optional[int] ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def _lowercase (self : Optional[Any] ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowercase (self : Optional[int] , __a : List[Any] , __a : Any , __a : Optional[Any] ): UpperCAmelCase_ = TFViTMAEModel(config=__a ) UpperCAmelCase_ = model(__a , training=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase (self : Any , __a : Any , __a : str , __a : Union[str, Any] ): UpperCAmelCase_ = TFViTMAEForPreTraining(__a ) UpperCAmelCase_ = model(__a , training=__a ) # expected sequence length = num_patches UpperCAmelCase_ = (self.image_size // self.patch_size) ** 2 UpperCAmelCase_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = TFViTMAEForPreTraining(__a ) UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__a , training=__a ) UpperCAmelCase_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowercase (self : str ): UpperCAmelCase_ = self.prepare_config_and_inputs() ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): a__ : Any = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () a__ : Tuple = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} a__ : int = False a__ : str = False a__ : Optional[int] = False a__ : List[Any] = False def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = TFViTMAEModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def _lowercase (self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowercase (self : int ): pass def _lowercase (self : Any ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , tf.keras.layers.Layer ) ) def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _lowercase (self : str ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def _lowercase (self : Any ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a ) def _lowercase (self : Any ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model(__a , noise=__a ) UpperCAmelCase_ = copy.deepcopy(self._prepare_for_class(__a , __a ) ) UpperCAmelCase_ = model(**__a , noise=__a ) UpperCAmelCase_ = outputs_dict[0].numpy() UpperCAmelCase_ = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def _lowercase (self : Tuple ): # make the mask reproducible np.random.seed(2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__a : int ): UpperCAmelCase_ = {} for k, v in inputs_dict.items(): if tf.is_tensor(__a ): UpperCAmelCase_ = v.numpy() else: UpperCAmelCase_ = np.array(__a ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = prepare_numpy_arrays(__a ) UpperCAmelCase_ = model(__a , noise=__a ) UpperCAmelCase_ = model(**__a , noise=__a ) self.assert_outputs_same(__a , __a ) def _lowercase (self : List[str] , __a : Any , __a : List[Any] , __a : Tuple ): # make masks reproducible np.random.seed(2 ) UpperCAmelCase_ = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase_ = tf.constant(__a ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase_ = tf_noise super().check_pt_tf_models(__a , __a , __a ) def _lowercase (self : Any ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__a ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(__a , __a ),) if isinstance(__a , __a ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__a , "_keras_serializable" , __a ) } UpperCAmelCase_ = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase_ = tf.convert_to_tensor(__a ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase_ = main_layer_class(__a ) UpperCAmelCase_ = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase_ = tf.keras.Model(__a , outputs=main_layer(__a ) ) UpperCAmelCase_ = model(__a ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = os.path.join(__a , "keras_model.h5" ) model.save(__a ) UpperCAmelCase_ = tf.keras.models.load_model( __a , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__a , tf.keras.Model ) UpperCAmelCase_ = model(__a ) self.assert_outputs_same(__a , __a ) @slow def _lowercase (self : str ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model(__a , noise=__a ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase_ = outputs.last_hidden_state.numpy() UpperCAmelCase_ = 0 else: UpperCAmelCase_ = outputs.logits.numpy() UpperCAmelCase_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__a , saved_model=__a ) UpperCAmelCase_ = model_class.from_pretrained(__a ) UpperCAmelCase_ = model(__a , noise=__a ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase_ = after_outputs["last_hidden_state"].numpy() UpperCAmelCase_ = 0 else: UpperCAmelCase_ = after_outputs["logits"].numpy() UpperCAmelCase_ = 0 UpperCAmelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__a , 1E-5 ) def _lowercase (self : List[str] ): # make mask reproducible np.random.seed(2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__a ) UpperCAmelCase_ = self._prepare_for_class(__a , __a ) UpperCAmelCase_ = model(__a , noise=__a ) UpperCAmelCase_ = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__a ) UpperCAmelCase_ = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase_ = model_class.from_config(model.config ) UpperCAmelCase_ = new_model(__a ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase_ = new_model(__a , noise=__a ) self.assert_outputs_same(__a , __a ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowercase (self : Optional[Any] ): pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowercase (self : Dict ): pass @slow def _lowercase (self : List[Any] ): UpperCAmelCase_ = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(__a ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class __A ( unittest.TestCase ): @cached_property def _lowercase (self : Dict ): return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowercase (self : Union[str, Any] ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase_ = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__a , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase_ = ViTMAEConfig() UpperCAmelCase_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase_ = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase_ = model(**__a , noise=__a ) # verify the logits UpperCAmelCase_ = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , __a ) UpperCAmelCase_ = tf.convert_to_tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , __a , atol=1E-4 )
714
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_: str ={ 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[int] =['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: int =[ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
415
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __magic_name__ (unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=[0.5, 0.5, 0.5] , _a=[0.5, 0.5, 0.5] , _a=True , _a=1 / 255 , _a=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowerCAmelCase_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_resolution lowerCAmelCase_ = max_resolution lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean lowerCAmelCase_ = image_std lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_pad def __a ( self ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self , _a , _a=False ) -> Union[str, Any]: if not batched: lowerCAmelCase_ = image_inputs[0] if isinstance(_a , Image.Image ): lowerCAmelCase_ , lowerCAmelCase_ = image.size else: lowerCAmelCase_ , lowerCAmelCase_ = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ = int(self.size["shortest_edge"] * h / w ) lowerCAmelCase_ = self.size["shortest_edge"] elif w > h: lowerCAmelCase_ = self.size["shortest_edge"] lowerCAmelCase_ = int(self.size["shortest_edge"] * w / h ) else: lowerCAmelCase_ = self.size["shortest_edge"] lowerCAmelCase_ = self.size["shortest_edge"] else: lowerCAmelCase_ = [] for image in image_inputs: lowerCAmelCase_ , lowerCAmelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ = max(_a , key=lambda _a : item[0] )[0] lowerCAmelCase_ = max(_a , key=lambda _a : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __magic_name__ (__lowercase , unittest.TestCase ): lowerCamelCase__ = YolosImageProcessor if is_vision_available() else None def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = YolosImageProcessingTester(self ) @property def __a ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> List[str]: lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , "image_mean" ) ) self.assertTrue(hasattr(_a , "image_std" ) ) self.assertTrue(hasattr(_a , "do_normalize" ) ) self.assertTrue(hasattr(_a , "do_resize" ) ) self.assertTrue(hasattr(_a , "size" ) ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , _a ) lowerCAmelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_a ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , _a ) def __a ( self ) -> List[str]: pass def __a ( self ) -> int: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_a , batched=_a ) lowerCAmelCase_ = image_processing(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self ) -> Any: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ = image_processing(_a , return_tensors="pt" ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self ) -> str: # Initialize image_processing lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input lowerCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_a ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ = image_processing(_a , return_tensors="pt" ).pixel_values lowerCAmelCase_ , lowerCAmelCase_ = self.image_processor_tester.get_expected_values(_a , batched=_a ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self ) -> Optional[int]: # Initialize image_processings lowerCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) lowerCAmelCase_ = self.image_processing_class(do_resize=_a , do_normalize=_a , do_rescale=_a ) # create random PyTorch tensors lowerCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors lowerCAmelCase_ = image_processing_a.pad(_a , return_tensors="pt" ) lowerCAmelCase_ = image_processing_a(_a , return_tensors="pt" ) self.assertTrue( torch.allclose(encoded_images_with_method["pixel_values"] , encoded_images["pixel_values"] , atol=1E-4 ) ) @slow def __a ( self ) -> str: # prepare image and target lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {"image_id": 39769, "annotations": target} # encode them lowerCAmelCase_ = YolosImageProcessor.from_pretrained("hustvl/yolos-small" ) lowerCAmelCase_ = image_processing(images=_a , annotations=_a , return_tensors="pt" ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , _a ) lowerCAmelCase_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _a , atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _a ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _a ) lowerCAmelCase_ = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _a , atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _a ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _a ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _a ) ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _a ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _a ) ) @slow def __a ( self ) -> str: # prepare image, target and masks_path lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCAmelCase_ = json.loads(f.read() ) lowerCAmelCase_ = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} lowerCAmelCase_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCAmelCase_ = YolosImageProcessor(format="coco_panoptic" ) lowerCAmelCase_ = image_processing(images=_a , annotations=_a , masks_path=_a , return_tensors="pt" ) # verify pixel values lowerCAmelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , _a ) lowerCAmelCase_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _a , atol=1E-4 ) ) # verify area lowerCAmelCase_ = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _a ) ) # verify boxes lowerCAmelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _a ) lowerCAmelCase_ = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _a , atol=1E-3 ) ) # verify image_id lowerCAmelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _a ) ) # verify is_crowd lowerCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _a ) ) # verify class_labels lowerCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _a ) ) # verify masks lowerCAmelCase_ = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _a ) # verify orig_size lowerCAmelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _a ) ) # verify size lowerCAmelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _a ) )
122
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = {'''configuration_vit_msn''': ['''VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMSNConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMSNModel''', '''ViTMSNForImageClassification''', '''ViTMSNPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
122
1
import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" UpperCAmelCase_ : List[str] = 1 @register_to_config def __init__( self , __UpperCAmelCase=20_00 , __UpperCAmelCase=0.1 , __UpperCAmelCase=20 , __UpperCAmelCase=1E-3 ) -> str: A : str = None A : Union[str, Any] = None A : Optional[int] = None def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Optional[Any]: A : List[Any] = torch.linspace(1 , self.config.sampling_eps , _lowercase , device=_lowercase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> int: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score A : Optional[Any] = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) A : Dict = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) A : str = std.flatten() while len(std.shape ) < len(score.shape ): A : List[str] = std.unsqueeze(-1 ) A : str = -score / std # compute A : Any = -1.0 / len(self.timesteps ) A : List[str] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) A : Tuple = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): A : Union[str, Any] = beta_t.unsqueeze(-1 ) A : List[str] = -0.5 * beta_t * x A : Dict = torch.sqrt(_lowercase ) A : Any = drift - diffusion**2 * score A : str = x + drift * dt # add noise A : Dict = randn_tensor(x.shape , layout=x.layout , generator=_lowercase , device=x.device , dtype=x.dtype ) A : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> int: return self.config.num_train_timesteps
721
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=30 , __UpperCAmelCase=4_00 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=True , __UpperCAmelCase=1 / 2_55 , __UpperCAmelCase=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A : List[Any] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} A : List[Any] = parent A : Dict = batch_size A : Optional[Any] = num_channels A : Union[str, Any] = min_resolution A : int = max_resolution A : Optional[int] = do_resize A : Dict = size A : List[Any] = do_normalize A : int = image_mean A : List[str] = image_std A : Optional[int] = do_rescale A : Any = rescale_factor A : int = do_pad def snake_case ( self ) -> List[str]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]: if not batched: A : List[Any] = image_inputs[0] if isinstance(__UpperCAmelCase , Image.Image ): A , A : Tuple = image.size else: A , A : Dict = image.shape[1], image.shape[2] if w < h: A : str = int(self.size['''shortest_edge'''] * h / w ) A : Dict = self.size['''shortest_edge'''] elif w > h: A : Union[str, Any] = self.size['''shortest_edge'''] A : Any = int(self.size['''shortest_edge'''] * w / h ) else: A : Any = self.size['''shortest_edge'''] A : Union[str, Any] = self.size['''shortest_edge'''] else: A : Optional[Any] = [] for image in image_inputs: A , A : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A : Optional[int] = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0] A : Union[str, Any] = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Dict = ConditionalDetrImageProcessor if is_vision_available() else None def snake_case ( self ) -> Optional[int]: A : str = ConditionalDetrImageProcessingTester(self ) @property def snake_case ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ) -> str: A : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) def snake_case ( self ) -> List[Any]: A : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) A : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCAmelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , __UpperCAmelCase ) def snake_case ( self ) -> Dict: pass def snake_case ( self ) -> Tuple: # Initialize image_processing A : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input A : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A , A : Tuple = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A , A : Optional[Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) A : Any = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self ) -> Optional[Any]: # Initialize image_processing A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input A : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A , A : Optional[int] = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : Any = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values A , A : Union[str, Any] = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case ( self ) -> List[str]: # Initialize image_processing A : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input A : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values A , A : Dict = self.image_processor_tester.get_expected_values(__UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A : int = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values A , A : Tuple = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case ( self ) -> Optional[Any]: # prepare image and target A : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: A : int = json.loads(f.read() ) A : Tuple = {'''image_id''': 3_97_69, '''annotations''': target} # encode them A : Tuple = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) A : Union[str, Any] = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values A : Optional[Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase ) A : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area A : Optional[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) ) # verify boxes A : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase ) A : Tuple = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id A : str = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) ) # verify is_crowd A : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) ) # verify class_labels A : Tuple = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) ) # verify orig_size A : List[str] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) ) # verify size A : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) ) @slow def snake_case ( self ) -> Tuple: # prepare image, target and masks_path A : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: A : Optional[Any] = json.loads(f.read() ) A : int = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} A : Dict = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them A : Dict = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) A : List[str] = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , masks_path=__UpperCAmelCase , return_tensors='''pt''' ) # verify pixel values A : Any = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase ) A : Dict = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1E-4 ) ) # verify area A : int = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) ) # verify boxes A : Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase ) A : List[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1E-3 ) ) # verify image_id A : int = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) ) # verify is_crowd A : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) ) # verify class_labels A : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) ) # verify masks A : Dict = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __UpperCAmelCase ) # verify orig_size A : Tuple = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) ) # verify size A : int = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) )
423
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _snake_case : def __init__( self : Any, __lowercase : Optional[Any], __lowercase : Dict=2, __lowercase : List[str]=True, __lowercase : Optional[int]=False, __lowercase : Optional[int]=10, __lowercase : Tuple=3, __lowercase : List[str]=32 * 8, __lowercase : List[Any]=32 * 8, __lowercase : Tuple=4, __lowercase : Tuple=64, ): lowercase__ = parent lowercase__ = batch_size lowercase__ = is_training lowercase__ = use_auxiliary_loss lowercase__ = num_queries lowercase__ = num_channels lowercase__ = min_size lowercase__ = max_size lowercase__ = num_labels lowercase__ = hidden_dim lowercase__ = hidden_dim def A__ ( self : str ): lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCamelCase ) lowercase__ = torch.ones([self.batch_size, self.min_size, self.max_size], device=_lowerCamelCase ) lowercase__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=_lowerCamelCase ) > 0.5 ).float() lowercase__ = (torch.rand((self.batch_size, self.num_labels), device=_lowerCamelCase ) > 0.5).long() lowercase__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def A__ ( self : Any ): lowercase__ = MaskaFormerConfig( hidden_size=self.hidden_dim, ) lowercase__ = self.num_queries lowercase__ = self.num_labels lowercase__ = [1, 1, 1, 1] lowercase__ = self.num_channels lowercase__ = 64 lowercase__ = 128 lowercase__ = self.hidden_dim lowercase__ = self.hidden_dim lowercase__ = self.hidden_dim return config def A__ ( self : Optional[Any] ): lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.prepare_config_and_inputs() lowercase__ = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def A__ ( self : Optional[Any], __lowercase : List[Any], __lowercase : Any ): lowercase__ = output.encoder_hidden_states lowercase__ = output.pixel_decoder_hidden_states lowercase__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCamelCase ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCamelCase ), config.decoder_layers ) def A__ ( self : Any, __lowercase : Optional[Any], __lowercase : Optional[int], __lowercase : int, __lowercase : List[Any]=False ): with torch.no_grad(): lowercase__ = MaskaFormerModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() lowercase__ = model(pixel_values=_lowerCamelCase, pixel_mask=_lowerCamelCase ) lowercase__ = model(_lowerCamelCase, output_hidden_states=_lowerCamelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCamelCase, _lowerCamelCase ) def A__ ( self : Tuple, __lowercase : Any, __lowercase : Union[str, Any], __lowercase : Any, __lowercase : Tuple, __lowercase : Optional[Any] ): lowercase__ = MaskaFormerForUniversalSegmentation(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() def comm_check_on_output(__lowercase : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase__ = model(pixel_values=_lowerCamelCase, pixel_mask=_lowerCamelCase ) lowercase__ = model(_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) lowercase__ = model( pixel_values=_lowerCamelCase, pixel_mask=_lowerCamelCase, mask_labels=_lowerCamelCase, class_labels=_lowerCamelCase ) comm_check_on_output(_lowerCamelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class _snake_case ( lowercase__ , lowercase__ , unittest.TestCase): UpperCamelCase__ : List[str] =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () UpperCamelCase__ : int ={"feature-extraction": MaskaFormerModel} if is_torch_available() else {} UpperCamelCase__ : Optional[Any] =False UpperCamelCase__ : Dict =False UpperCamelCase__ : int =False UpperCamelCase__ : Union[str, Any] =False def A__ ( self : Dict ): lowercase__ = MaskaFormerModelTester(self ) lowercase__ = ConfigTester(self, config_class=_lowerCamelCase, has_text_modality=_lowerCamelCase ) def A__ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def A__ ( self : List[Any] ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase, **_lowerCamelCase, output_hidden_states=_lowerCamelCase ) def A__ ( self : Union[str, Any] ): lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowerCamelCase ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def A__ ( self : Dict ): pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def A__ ( self : Tuple ): pass @unittest.skip(reason="Mask2Former is not a generative model" ) def A__ ( self : Tuple ): pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def A__ ( self : Tuple ): pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`" ) def A__ ( self : Optional[int] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A__ ( self : Union[str, Any] ): pass def A__ ( self : Dict ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_lowerCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["pixel_values"] self.assertListEqual(arg_names[:1], _lowerCamelCase ) @slow def A__ ( self : Any ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowercase__ = MaskaFormerModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def A__ ( self : Optional[int] ): lowercase__ = (self.model_tester.min_size,) * 2 lowercase__ = { "pixel_values": torch.randn((2, 3, *size), device=_lowerCamelCase ), "mask_labels": torch.randn((2, 10, *size), device=_lowerCamelCase ), "class_labels": torch.zeros(2, 10, device=_lowerCamelCase ).long(), } lowercase__ = self.model_tester.get_config() lowercase__ = MaskaFormerForUniversalSegmentation(_lowerCamelCase ).to(_lowerCamelCase ) lowercase__ = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None ) def A__ ( self : List[str] ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowerCamelCase, **_lowerCamelCase, output_hidden_states=_lowerCamelCase ) def A__ ( self : str ): lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(_lowerCamelCase ).to(_lowerCamelCase ) lowercase__ = model(**_lowerCamelCase, output_attentions=_lowerCamelCase ) self.assertTrue(outputs.attentions is not None ) def A__ ( self : Optional[Any] ): if not self.model_tester.is_training: return lowercase__ = self.all_model_classes[1] lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() lowercase__ = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() lowercase__ = model(_lowerCamelCase, mask_labels=_lowerCamelCase, class_labels=_lowerCamelCase ).loss loss.backward() def A__ ( self : Union[str, Any] ): lowercase__ = self.all_model_classes[1] lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() lowercase__ = True lowercase__ = True lowercase__ = model_class(_lowerCamelCase ).to(_lowerCamelCase ) model.train() lowercase__ = model(_lowerCamelCase, mask_labels=_lowerCamelCase, class_labels=_lowerCamelCase ) lowercase__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowercase__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase_ = 1e-4 def __lowerCAmelCase ( ): lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class _snake_case ( unittest.TestCase): @cached_property def A__ ( self : List[Any] ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def A__ ( self : Optional[int] ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def A__ ( self : Dict ): lowercase__ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(_lowerCamelCase, return_tensors="pt" ).to(_lowerCamelCase ) lowercase__ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase, (1, 3, 384, 384) ) with torch.no_grad(): lowercase__ = model(**_lowerCamelCase ) lowercase__ = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], _lowerCamelCase, atol=_lowerCamelCase ) ) lowercase__ = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], _lowerCamelCase, atol=_lowerCamelCase ) ) lowercase__ = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowerCamelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], _lowerCamelCase, atol=_lowerCamelCase ) ) def A__ ( self : Tuple ): lowercase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(_lowerCamelCase, return_tensors="pt" ).to(_lowerCamelCase ) lowercase__ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowerCamelCase, (1, 3, 384, 384) ) with torch.no_grad(): lowercase__ = model(**_lowerCamelCase ) # masks_queries_logits lowercase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowercase__ = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowercase__ = torch.tensor(_lowerCamelCase ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], _lowerCamelCase, atol=_lowerCamelCase ) ) # class_queries_logits lowercase__ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1) ) lowercase__ = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], _lowerCamelCase, atol=_lowerCamelCase ) ) def A__ ( self : List[Any] ): lowercase__ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowerCamelCase ).eval() lowercase__ = self.default_image_processor lowercase__ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )], segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )], return_tensors="pt", ) lowercase__ = inputs["pixel_values"].to(_lowerCamelCase ) lowercase__ = [el.to(_lowerCamelCase ) for el in inputs["mask_labels"]] lowercase__ = [el.to(_lowerCamelCase ) for el in inputs["class_labels"]] with torch.no_grad(): lowercase__ = model(**_lowerCamelCase ) self.assertTrue(outputs.loss is not None )
413
"""simple docstring""" import argparse import copy def a_ ( __a ): A__ = {} with open(__a ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: A__ = [] _list.append([line.split()[1], line.split()[2]] ) A__ = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: A__ = [] _list.append([line.split()[0], line.split()[2]] ) A__ = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def a_ ( __a , __a ): with open(__a ) as f: A__ = f.read(1 ) A__ = start_node A__ = [] A__ = start_node A__ = 0 while visiting not in first_solution: A__ = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__a ) and k[0] not in first_solution: A__ = k[1] A__ = k[0] first_solution.append(__a ) A__ = distance_of_first_solution + int(__a ) A__ = best_node first_solution.append(__a ) A__ = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 A__ = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def a_ ( __a , __a ): A__ = [] for n in solution[1:-1]: A__ = solution.index(__a ) for kn in solution[1:-1]: A__ = solution.index(__a ) if n == kn: continue A__ = copy.deepcopy(__a ) A__ = kn A__ = n A__ = 0 for k in _tmp[:-1]: A__ = _tmp[_tmp.index(__a ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: A__ = distance + int(i[1] ) _tmp.append(__a ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) A__ = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __a : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def a_ ( __a , __a , __a , __a , __a ): A__ = 1 A__ = first_solution A__ = [] A__ = distance_of_first_solution A__ = solution while count <= iters: A__ = find_neighborhood(__a , __a ) A__ = 0 A__ = neighborhood[index_of_best_solution] A__ = len(__a ) - 1 A__ = False while not found: A__ = 0 while i < len(__a ): if best_solution[i] != solution[i]: A__ = best_solution[i] A__ = solution[i] break A__ = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) A__ = True A__ = best_solution[:-1] A__ = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: A__ = cost A__ = solution else: A__ = index_of_best_solution + 1 A__ = neighborhood[index_of_best_solution] if len(__a ) >= size: tabu_list.pop(0 ) A__ = count + 1 return best_solution_ever, best_cost def a_ ( __a=None ): A__ = generate_neighbours(args.File ) A__ , A__ = generate_first_solution( args.File , __a ) A__ , A__ = tabu_search( __a , __a , __a , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": __snake_case : Dict = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
571
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class lowercase__ ( __A ): __UpperCamelCase = """mvp""" __UpperCamelCase = ["""past_key_values"""] __UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _lowercase=50_267 , _lowercase=1_024 , _lowercase=12 , _lowercase=4_096 , _lowercase=16 , _lowercase=12 , _lowercase=4_096 , _lowercase=16 , _lowercase=0.0 , _lowercase=0.0 , _lowercase="gelu" , _lowercase=1_024 , _lowercase=0.1 , _lowercase=0.0 , _lowercase=0.0 , _lowercase=0.02 , _lowercase=0.0 , _lowercase=False , _lowercase=True , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=True , _lowercase=2 , _lowercase=2 , _lowercase=False , _lowercase=100 , _lowercase=800 , **_lowercase , ): lowerCAmelCase_ : List[Any] = vocab_size lowerCAmelCase_ : str = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = d_model lowerCAmelCase_ : List[Any] = encoder_ffn_dim lowerCAmelCase_ : Tuple = encoder_layers lowerCAmelCase_ : Optional[int] = encoder_attention_heads lowerCAmelCase_ : str = decoder_ffn_dim lowerCAmelCase_ : Union[str, Any] = decoder_layers lowerCAmelCase_ : str = decoder_attention_heads lowerCAmelCase_ : Optional[Any] = dropout lowerCAmelCase_ : int = attention_dropout lowerCAmelCase_ : Tuple = activation_dropout lowerCAmelCase_ : List[Any] = activation_function lowerCAmelCase_ : List[str] = init_std lowerCAmelCase_ : int = encoder_layerdrop lowerCAmelCase_ : Optional[int] = decoder_layerdrop lowerCAmelCase_ : Any = classifier_dropout lowerCAmelCase_ : Tuple = use_cache lowerCAmelCase_ : int = encoder_layers lowerCAmelCase_ : Any = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ : Optional[Any] = use_prompt lowerCAmelCase_ : List[str] = prompt_length lowerCAmelCase_ : str = prompt_mid_dim super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , _lowercase ): lowerCAmelCase_ : str = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' """The config can simply be saved and uploaded again to be fixed.""" )
440
from collections.abc import Generator from math import sin def _lowerCAmelCase ( _a : bytes ) -> bytes: if len(_a ) != 32: raise ValueError("""Input must be of length 32""" ) lowerCAmelCase_ : Any = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _lowerCAmelCase ( _a : int ) -> bytes: if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCAmelCase_ : Tuple = format(_a , """08x""" )[-8:] lowerCAmelCase_ : Any = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def _lowerCAmelCase ( _a : bytes ) -> bytes: lowerCAmelCase_ : Tuple = B"""""" for char in message: bit_string += format(_a , """08b""" ).encode("""utf-8""" ) lowerCAmelCase_ : Dict = format(len(_a ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_a ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _lowerCAmelCase ( _a : bytes ) -> Generator[list[int], None, None]: if len(_a ) % 5_12 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(_a ) , 5_12 ): lowerCAmelCase_ : int = bit_string[pos : pos + 5_12] lowerCAmelCase_ : Any = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _lowerCAmelCase ( _a : int ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) lowerCAmelCase_ : List[str] = format(_a , """032b""" ) lowerCAmelCase_ : Optional[int] = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(_a , 2 ) def _lowerCAmelCase ( _a : int , _a : int ) -> int: return (a + b) % 2**32 def _lowerCAmelCase ( _a : int , _a : int ) -> int: if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _lowerCAmelCase ( _a : bytes ) -> bytes: lowerCAmelCase_ : Union[str, Any] = preprocess(_a ) lowerCAmelCase_ : Optional[int] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowerCAmelCase_ : Tuple = 0X67452301 lowerCAmelCase_ : Optional[int] = 0XEFCDAB89 lowerCAmelCase_ : Tuple = 0X98BADCFE lowerCAmelCase_ : Tuple = 0X10325476 lowerCAmelCase_ : Dict = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_a ): lowerCAmelCase_ : int = aa lowerCAmelCase_ : Any = ba lowerCAmelCase_ : List[str] = ca lowerCAmelCase_ : Optional[Any] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowerCAmelCase_ : int = d ^ (b & (c ^ d)) lowerCAmelCase_ : List[Any] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowerCAmelCase_ : List[Any] = c ^ (d & (b ^ c)) lowerCAmelCase_ : Optional[Any] = (5 * i + 1) % 16 elif i <= 47: lowerCAmelCase_ : Union[str, Any] = b ^ c ^ d lowerCAmelCase_ : Optional[Any] = (3 * i + 5) % 16 else: lowerCAmelCase_ : Any = c ^ (b | not_aa(_a )) lowerCAmelCase_ : List[str] = (7 * i) % 16 lowerCAmelCase_ : Tuple = (f + a + added_consts[i] + block_words[g]) % 2**32 lowerCAmelCase_ : Tuple = d lowerCAmelCase_ : Optional[Any] = c lowerCAmelCase_ : Dict = b lowerCAmelCase_ : List[Any] = sum_aa(_a , left_rotate_aa(_a , shift_amounts[i] ) ) # Add hashed chunk to running total lowerCAmelCase_ : Optional[int] = sum_aa(_a , _a ) lowerCAmelCase_ : Optional[int] = sum_aa(_a , _a ) lowerCAmelCase_ : Dict = sum_aa(_a , _a ) lowerCAmelCase_ : Tuple = sum_aa(_a , _a ) lowerCAmelCase_ : int = reformat_hex(_a ) + reformat_hex(_a ) + reformat_hex(_a ) + reformat_hex(_a ) return digest if __name__ == "__main__": import doctest doctest.testmod()
440
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __lowercase = False class a__( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""") pipe.to(__lowerCAmelCase) pipe.set_progress_bar_config(disable=__lowerCAmelCase) lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""") lowerCAmelCase = torch.manual_seed(0) lowerCAmelCase = pipe( image=__lowerCAmelCase , generator=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowerCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
370
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name __lowercase = ''' Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu") >>> repo = "openai/shap-e-img2img" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png" >>> image = load_image(image_url).convert("RGB") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], "corgi_3d.gif") ``` ''' @dataclass class a__( lowerCAmelCase__ ): '''simple docstring''' UpperCAmelCase_ : Union[PIL.Image.Image, np.ndarray] class a__( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" super().__init__() self.register_modules( prior=__lowerCAmelCase , image_encoder=__lowerCAmelCase , image_processor=__lowerCAmelCase , scheduler=__lowerCAmelCase , renderer=__lowerCAmelCase , ) def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase): """simple docstring""" if latents is None: lowerCAmelCase = randn_tensor(__lowerCAmelCase , generator=__lowerCAmelCase , device=__lowerCAmelCase , dtype=__lowerCAmelCase) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") lowerCAmelCase = latents.to(__lowerCAmelCase) lowerCAmelCase = latents * scheduler.init_noise_sigma return latents def a_ ( self , __lowerCAmelCase=0): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""") lowerCAmelCase = torch.device(f"cuda:{gpu_id}") lowerCAmelCase = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase , __lowerCAmelCase) @property def a_ ( self): """simple docstring""" if self.device != torch.device("""meta""") or not hasattr(self.image_encoder , """_hf_hook"""): return self.device for module in self.image_encoder.modules(): if ( hasattr(__lowerCAmelCase , """_hf_hook""") and hasattr(module._hf_hook , """execution_device""") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase) and isinstance(image[0] , torch.Tensor): lowerCAmelCase = torch.cat(__lowerCAmelCase , axis=0) if image[0].ndim == 4 else torch.stack(__lowerCAmelCase , axis=0) if not isinstance(__lowerCAmelCase , torch.Tensor): lowerCAmelCase = self.image_processor(__lowerCAmelCase , return_tensors="""pt""").pixel_values[0].unsqueeze(0) lowerCAmelCase = image.to(dtype=self.image_encoder.dtype , device=__lowerCAmelCase) lowerCAmelCase = self.image_encoder(__lowerCAmelCase)["""last_hidden_state"""] lowerCAmelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCAmelCase = image_embeds.repeat_interleave(__lowerCAmelCase , dim=0) if do_classifier_free_guidance: lowerCAmelCase = torch.zeros_like(__lowerCAmelCase) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase = torch.cat([negative_image_embeds, image_embeds]) return image_embeds @torch.no_grad() @replace_example_docstring(__lowerCAmelCase) def __call__( self , __lowerCAmelCase , __lowerCAmelCase = 1 , __lowerCAmelCase = 25 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 4.0 , __lowerCAmelCase = 64 , __lowerCAmelCase = "pil" , __lowerCAmelCase = True , ): """simple docstring""" if isinstance(__lowerCAmelCase , PIL.Image.Image): lowerCAmelCase = 1 elif isinstance(__lowerCAmelCase , torch.Tensor): lowerCAmelCase = image.shape[0] elif isinstance(__lowerCAmelCase , __lowerCAmelCase) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image)): lowerCAmelCase = len(__lowerCAmelCase) else: raise ValueError( f"`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(__lowerCAmelCase)}") lowerCAmelCase = self._execution_device lowerCAmelCase = batch_size * num_images_per_prompt lowerCAmelCase = guidance_scale > 1.0 lowerCAmelCase = self._encode_image(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) # prior self.scheduler.set_timesteps(__lowerCAmelCase , device=__lowerCAmelCase) lowerCAmelCase = self.scheduler.timesteps lowerCAmelCase = self.prior.config.num_embeddings lowerCAmelCase = self.prior.config.embedding_dim lowerCAmelCase = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCAmelCase = latents.reshape(latents.shape[0] , __lowerCAmelCase , __lowerCAmelCase) for i, t in enumerate(self.progress_bar(__lowerCAmelCase)): # expand the latents if we are doing classifier free guidance lowerCAmelCase = torch.cat([latents] * 2) if do_classifier_free_guidance else latents lowerCAmelCase = self.scheduler.scale_model_input(__lowerCAmelCase , __lowerCAmelCase) lowerCAmelCase = self.prior( __lowerCAmelCase , timestep=__lowerCAmelCase , proj_embedding=__lowerCAmelCase , ).predicted_image_embedding # remove the variance lowerCAmelCase , lowerCAmelCase = noise_pred.split( scaled_model_input.shape[2] , dim=2) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCAmelCase , lowerCAmelCase = noise_pred.chunk(2) lowerCAmelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCAmelCase = self.scheduler.step( __lowerCAmelCase , timestep=__lowerCAmelCase , sample=__lowerCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=__lowerCAmelCase) lowerCAmelCase = [] for i, latent in enumerate(__lowerCAmelCase): print() lowerCAmelCase = self.renderer.decode( latent[None, :] , __lowerCAmelCase , size=__lowerCAmelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(__lowerCAmelCase) lowerCAmelCase = torch.stack(__lowerCAmelCase) if output_type not in ["np", "pil"]: raise ValueError(f"Only the output types `pil` and `np` are supported not output_type={output_type}") lowerCAmelCase = images.cpu().numpy() if output_type == "pil": lowerCAmelCase = [self.numpy_to_pil(__lowerCAmelCase) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=__lowerCAmelCase)
370
1
from __future__ import annotations def A ( __UpperCamelCase ) -> list[int]: return [ord(lowerCamelCase__ ) - 96 for elem in plain] def A ( __UpperCamelCase ) -> str: return "".join(chr(elem + 96 ) for elem in encoded ) def A ( ) -> None: A__ = encode(input('-> ' ).strip().lower() ) print('Encoded: ' , lowerCamelCase__ ) print('Decoded:' , decode(lowerCamelCase__ ) ) if __name__ == "__main__": main()
710
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : List[str] = "roberta" def __init__( self : List[str] , _snake_case : Union[str, Any]=5_02_65 , _snake_case : List[Any]=7_68 , _snake_case : List[str]=12 , _snake_case : List[str]=12 , _snake_case : Any=30_72 , _snake_case : Union[str, Any]="gelu" , _snake_case : int=0.1 , _snake_case : Union[str, Any]=0.1 , _snake_case : Tuple=5_12 , _snake_case : Union[str, Any]=2 , _snake_case : Any=0.02 , _snake_case : Any=1E-12 , _snake_case : List[Any]=1 , _snake_case : int=0 , _snake_case : Any=2 , _snake_case : Optional[Any]="absolute" , _snake_case : int=True , _snake_case : Any=None , **_snake_case : Any , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" @property def _a ( self : Dict ): """simple docstring""" if self.task == "multiple-choice": A__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
52
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __SCREAMING_SNAKE_CASE :Optional[Any] = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :str = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :str = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Any = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __SCREAMING_SNAKE_CASE :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
236
'''simple docstring''' import math import sys def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' _UpperCAmelCase = "" try: with open(__lowercase , "rb" ) as binary_file: _UpperCAmelCase = binary_file.read() for dat in data: _UpperCAmelCase = f'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' _UpperCAmelCase = {"0": "0", "1": "1"} _UpperCAmelCase , _UpperCAmelCase = "", "" _UpperCAmelCase = len(__lowercase ) for i in range(len(__lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _UpperCAmelCase = lexicon[curr_string] result += last_match_id _UpperCAmelCase = last_match_id + "0" if math.loga(__lowercase ).is_integer(): _UpperCAmelCase = {} for curr_key in list(__lowercase ): _UpperCAmelCase = lexicon.pop(__lowercase ) _UpperCAmelCase = new_lex _UpperCAmelCase = last_match_id + "1" index += 1 _UpperCAmelCase = "" return result def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> None: '''simple docstring''' _UpperCAmelCase = 8 try: with open(__lowercase , "wb" ) as opened_file: _UpperCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(__lowercase ) , __lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(__lowercase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' _UpperCAmelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 _UpperCAmelCase = data_bits[counter:] _UpperCAmelCase = data_bits[counter + 1 :] return data_bits def UpperCAmelCase_ ( __lowercase : str , __lowercase : str ) -> None: '''simple docstring''' _UpperCAmelCase = read_file_binary(__lowercase ) _UpperCAmelCase = remove_prefix(__lowercase ) _UpperCAmelCase = decompress_data(__lowercase ) write_file_binary(__lowercase , __lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
236
1
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase): '''simple docstring''' def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__) -> str: '''simple docstring''' snake_case__ : Dict = jnp.ones((batch_size, length)) / length return scores def UpperCAmelCase ( self) -> str: '''simple docstring''' snake_case__ : int = None snake_case__ : Optional[Any] = 20 snake_case__ : Optional[int] = self._get_uniform_logits(batch_size=2 , length=lowerCamelCase__) # tweak scores to not be uniform anymore snake_case__ : Dict = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch snake_case__ : List[str] = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax snake_case__ : int = jax.nn.softmax(lowerCamelCase__ , axis=-1) snake_case__ : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5) snake_case__ : List[str] = FlaxTemperatureLogitsWarper(temperature=1.3) snake_case__ : Dict = jax.nn.softmax(temp_dist_warper_sharper(lowerCamelCase__ , scores.copy() , cur_len=lowerCamelCase__) , axis=-1) snake_case__ : Optional[int] = jax.nn.softmax(temp_dist_warper_smoother(lowerCamelCase__ , scores.copy() , cur_len=lowerCamelCase__) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = None snake_case__ : int = 10 snake_case__ : int = 2 # create ramp distribution snake_case__ : Optional[Any] = np.broadcast_to(np.arange(lowerCamelCase__)[None, :] , (batch_size, vocab_size)).copy() snake_case__ : Union[str, Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size snake_case__ : Optional[Any] = FlaxTopKLogitsWarper(3) snake_case__ : List[Any] = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case snake_case__ : Any = 5 snake_case__ : Tuple = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) snake_case__ : Any = np.broadcast_to(np.arange(lowerCamelCase__)[None, :] , (batch_size, length)).copy() snake_case__ : List[Any] = top_k_warp_safety_check(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' snake_case__ : Optional[int] = None snake_case__ : List[Any] = 10 snake_case__ : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) snake_case__ : Union[str, Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) snake_case__ : Any = FlaxTopPLogitsWarper(0.8) snake_case__ : Any = np.exp(top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 snake_case__ : Tuple = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3)) # check edge cases with negative and extreme logits snake_case__ : Union[str, Any] = np.broadcast_to(np.arange(lowerCamelCase__)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme snake_case__ : Optional[Any] = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept snake_case__ : List[Any] = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) snake_case__ : Optional[int] = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' snake_case__ : Union[str, Any] = 20 snake_case__ : int = 4 snake_case__ : Dict = 0 snake_case__ : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__) # check that min length is applied at length 5 snake_case__ : Optional[Any] = ids_tensor((batch_size, 20) , vocab_size=20) snake_case__ : Dict = 5 snake_case__ : Dict = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__) snake_case__ : int = min_dist_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf")]) # check that min length is not applied anymore at length 15 snake_case__ : List[Any] = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__) snake_case__ : List[str] = 15 snake_case__ : Dict = min_dist_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) self.assertFalse(jnp.isinf(lowerCamelCase__).any()) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' snake_case__ : str = 20 snake_case__ : Union[str, Any] = 4 snake_case__ : List[str] = 0 snake_case__ : str = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__) # check that all scores are -inf except the bos_token_id score snake_case__ : int = ids_tensor((batch_size, 1) , vocab_size=20) snake_case__ : Union[str, Any] = 1 snake_case__ : List[str] = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__) snake_case__ : List[Any] = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 snake_case__ : Optional[int] = 3 snake_case__ : Optional[Any] = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__) snake_case__ : List[Any] = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) self.assertFalse(jnp.isinf(lowerCamelCase__).any()) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' snake_case__ : List[Any] = 20 snake_case__ : List[str] = 4 snake_case__ : Tuple = 0 snake_case__ : Optional[int] = 5 snake_case__ : int = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__) # check that all scores are -inf except the eos_token_id when max_length is reached snake_case__ : List[Any] = ids_tensor((batch_size, 4) , vocab_size=20) snake_case__ : Union[str, Any] = 4 snake_case__ : str = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__) snake_case__ : str = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached snake_case__ : Union[str, Any] = 3 snake_case__ : Dict = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__) snake_case__ : Dict = logits_processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) self.assertFalse(jnp.isinf(lowerCamelCase__).any()) def UpperCAmelCase ( self) -> str: '''simple docstring''' snake_case__ : Any = 4 snake_case__ : int = 10 snake_case__ : List[str] = 15 snake_case__ : Dict = 2 snake_case__ : Optional[Any] = 1 snake_case__ : List[str] = 15 # dummy input_ids and scores snake_case__ : Union[str, Any] = ids_tensor((batch_size, sequence_length) , lowerCamelCase__) snake_case__ : Any = input_ids.copy() snake_case__ : Any = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__) snake_case__ : Union[str, Any] = scores.copy() # instantiate all dist processors snake_case__ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=0.5) snake_case__ : int = FlaxTopKLogitsWarper(3) snake_case__ : int = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors snake_case__ : Any = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__) snake_case__ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__) snake_case__ : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__) snake_case__ : Union[str, Any] = 10 # no processor list snake_case__ : Optional[int] = temp_dist_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) snake_case__ : List[Any] = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) snake_case__ : str = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) snake_case__ : Optional[int] = min_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) snake_case__ : Tuple = bos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) snake_case__ : List[str] = eos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) # with processor list snake_case__ : Optional[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) snake_case__ : Dict = processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' snake_case__ : Tuple = 4 snake_case__ : List[Any] = 10 snake_case__ : int = 15 snake_case__ : Any = 2 snake_case__ : Dict = 1 snake_case__ : List[Any] = 15 # dummy input_ids and scores snake_case__ : Optional[int] = ids_tensor((batch_size, sequence_length) , lowerCamelCase__) snake_case__ : Optional[int] = input_ids.copy() snake_case__ : List[Any] = self._get_uniform_logits(lowerCamelCase__ , lowerCamelCase__) snake_case__ : Dict = scores.copy() # instantiate all dist processors snake_case__ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) snake_case__ : List[Any] = FlaxTopKLogitsWarper(3) snake_case__ : Any = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors snake_case__ : Optional[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCamelCase__) snake_case__ : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCamelCase__) snake_case__ : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCamelCase__ , eos_token_id=lowerCamelCase__) snake_case__ : List[Any] = 10 # no processor list def run_no_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__): snake_case__ : Optional[int] = temp_dist_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) snake_case__ : Union[str, Any] = top_k_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) snake_case__ : Union[str, Any] = top_p_warp(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) snake_case__ : Optional[int] = min_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) snake_case__ : Tuple = bos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) snake_case__ : List[Any] = eos_dist_proc(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) return scores # with processor list def run_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__): snake_case__ : Optional[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) snake_case__ : Tuple = processor(lowerCamelCase__ , lowerCamelCase__ , cur_len=lowerCamelCase__) return scores snake_case__ : Optional[Any] = jax.jit(lowerCamelCase__) snake_case__ : Any = jax.jit(lowerCamelCase__) snake_case__ : Tuple = jitted_run_no_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) snake_case__ : int = jitted_run_processor_list(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) # scores should be equal self.assertTrue(jnp.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
150
"""simple docstring""" import csv import tweepy # Twitter API credentials lowercase = """""" lowercase = """""" lowercase = """""" lowercase = """""" def A__ ( _UpperCAmelCase : str ) -> None: '''simple docstring''' snake_case__ : Any = tweepy.OAuthHandler(_UpperCAmelCase , _UpperCAmelCase ) auth.set_access_token(_UpperCAmelCase , _UpperCAmelCase ) snake_case__ : Any = tweepy.API(_UpperCAmelCase ) # initialize a list to hold all the tweepy Tweets snake_case__ : int = [] # make initial request for most recent tweets (200 is the maximum allowed count) snake_case__ : Optional[int] = api.user_timeline(screen_name=_UpperCAmelCase , count=2_00 ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # save the id of the oldest tweet less one snake_case__ : int = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCAmelCase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates snake_case__ : int = api.user_timeline( screen_name=_UpperCAmelCase , count=2_00 , max_id=_UpperCAmelCase ) # save most recent tweets alltweets.extend(_UpperCAmelCase ) # update the id of the oldest tweet less one snake_case__ : List[Any] = alltweets[-1].id - 1 print(F"""...{len(_UpperCAmelCase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv snake_case__ : List[Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""" , "w" ) as f: snake_case__ : Optional[Any] = csv.writer(_UpperCAmelCase ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(_UpperCAmelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
150
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def a__ ( A__, A__, A__, A__, A__=True, A__="pt" ): SCREAMING_SNAKE_CASE_ : Tuple = {'add_prefix_space': True} if isinstance(A__, A__ ) and not line.startswith(' ' ) else {} SCREAMING_SNAKE_CASE_ : Dict = padding_side return tokenizer( [line], max_length=A__, padding='max_length' if pad_to_max_length else None, truncation=A__, return_tensors=A__, add_special_tokens=A__, **A__, ) def a__ ( A__, A__, A__=None, ): SCREAMING_SNAKE_CASE_ : int = input_ids.ne(A__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="train" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="" , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : Optional[Any] = Path(lowerCAmelCase__ ).joinpath(type_path + '.source' ) SCREAMING_SNAKE_CASE_ : Optional[int] = Path(lowerCAmelCase__ ).joinpath(type_path + '.target' ) SCREAMING_SNAKE_CASE_ : int = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE_ : int = max_source_length SCREAMING_SNAKE_CASE_ : Dict = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' SCREAMING_SNAKE_CASE_ : Any = tokenizer SCREAMING_SNAKE_CASE_ : List[str] = prefix if n_obs is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE_ : Optional[Any] = src_lang SCREAMING_SNAKE_CASE_ : List[Any] = tgt_lang def __len__( self ): """simple docstring""" return len(self.src_lens ) def __getitem__( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE_ : List[str] = self.prefix + linecache.getline(str(self.src_file ) , lowerCAmelCase__ ).rstrip('\n' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = linecache.getline(str(self.tgt_file ) , lowerCAmelCase__ ).rstrip('\n' ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCAmelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE_ : Any = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer ) SCREAMING_SNAKE_CASE_ : List[Any] = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer SCREAMING_SNAKE_CASE_ : Dict = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_source_length , 'right' ) SCREAMING_SNAKE_CASE_ : Tuple = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_target_length , 'right' ) SCREAMING_SNAKE_CASE_ : List[str] = source_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ : Dict = target_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ : str = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase__ ( lowerCAmelCase__ ): """simple docstring""" return [len(lowerCAmelCase__ ) for x in Path(lowerCAmelCase__ ).open().readlines()] def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = torch.stack([x['input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ : int = torch.stack([x['attention_mask'] for x in batch] ) SCREAMING_SNAKE_CASE_ : List[str] = torch.stack([x['decoder_input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ : Dict = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ : List[Any] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCAmelCase__ : Tuple =getLogger(__name__) def a__ ( A__ ): return list(itertools.chain.from_iterable(A__ ) ) def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = get_git_info() save_json(A__, os.path.join(A__, 'git_log.json' ) ) def a__ ( A__, A__, A__=4, **A__ ): with open(A__, 'w' ) as f: json.dump(A__, A__, indent=A__, **A__ ) def a__ ( A__ ): with open(A__ ) as f: return json.load(A__ ) def a__ ( ): SCREAMING_SNAKE_CASE_ : List[str] = git.Repo(search_parent_directories=A__ ) SCREAMING_SNAKE_CASE_ : Any = { 'repo_id': str(A__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def a__ ( A__, A__ ): return list(map(A__, A__ ) ) def a__ ( A__, A__ ): with open(A__, 'wb' ) as f: return pickle.dump(A__, A__ ) def a__ ( A__ ): def remove_articles(A__ ): return re.sub(r'\b(a|an|the)\b', ' ', A__ ) def white_space_fix(A__ ): return " ".join(text.split() ) def remove_punc(A__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(A__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(A__ ) ) ) ) def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = normalize_answer(A__ ).split() SCREAMING_SNAKE_CASE_ : List[str] = normalize_answer(A__ ).split() SCREAMING_SNAKE_CASE_ : Optional[int] = Counter(A__ ) & Counter(A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE_ : List[Any] = 1.0 * num_same / len(A__ ) SCREAMING_SNAKE_CASE_ : int = 1.0 * num_same / len(A__ ) SCREAMING_SNAKE_CASE_ : List[str] = (2 * precision * recall) / (precision + recall) return fa def a__ ( A__, A__ ): return normalize_answer(A__ ) == normalize_answer(A__ ) def a__ ( A__, A__ ): assert len(A__ ) == len(A__ ) SCREAMING_SNAKE_CASE_ : Any = 0 for hypo, pred in zip(A__, A__ ): em += exact_match_score(A__, A__ ) if len(A__ ) > 0: em /= len(A__ ) return {"em": em} def a__ ( A__ ): return model_prefix.startswith('rag' ) def a__ ( A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE_ : List[Any] = 'dropout_rate' for p in extra_params: if getattr(A__, A__, A__ ): if not hasattr(A__, A__ ) and not hasattr(A__, equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(A__ ) ) delattr(A__, A__ ) continue SCREAMING_SNAKE_CASE_ : Any = p if hasattr(A__, A__ ) else equivalent_param[p] setattr(A__, A__, getattr(A__, A__ ) ) delattr(A__, A__ ) return hparams, config
101
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCAmelCase__ : Any ='''Create a default config file for Accelerate with only a few flags set.''' def __lowercase ( a__="no" , a__ = default_json_config_file , a__ = False ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = Path(a__ ) path.parent.mkdir(parents=a__ , exist_ok=a__ ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False __SCREAMING_SNAKE_CASE = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) __SCREAMING_SNAKE_CASE = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): __SCREAMING_SNAKE_CASE = torch.cuda.device_count() __SCREAMING_SNAKE_CASE = num_gpus __SCREAMING_SNAKE_CASE = False if num_gpus > 1: __SCREAMING_SNAKE_CASE = 'MULTI_GPU' else: __SCREAMING_SNAKE_CASE = 'NO' elif is_xpu_available() and use_xpu: __SCREAMING_SNAKE_CASE = torch.xpu.device_count() __SCREAMING_SNAKE_CASE = num_xpus __SCREAMING_SNAKE_CASE = False if num_xpus > 1: __SCREAMING_SNAKE_CASE = 'MULTI_XPU' else: __SCREAMING_SNAKE_CASE = 'NO' elif is_npu_available(): __SCREAMING_SNAKE_CASE = torch.npu.device_count() __SCREAMING_SNAKE_CASE = num_npus __SCREAMING_SNAKE_CASE = False if num_npus > 1: __SCREAMING_SNAKE_CASE = 'MULTI_NPU' else: __SCREAMING_SNAKE_CASE = 'NO' else: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 'NO' __SCREAMING_SNAKE_CASE = ClusterConfig(**a__ ) config.to_json_file(a__ ) return path def __lowercase ( a__ , a__ ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = parser.add_parser('default' , parents=a__ , help=a__ , formatter_class=a__ ) parser.add_argument( '--config_file' , default=a__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=a__ , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=a__ ) return parser def __lowercase ( a__ ) -> int: __SCREAMING_SNAKE_CASE = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
148
0
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a__ : int = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
570
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : Tuple = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
570
1
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py UpperCAmelCase = '''src/transformers''' UpperCAmelCase = '''docs/source/en/tasks''' def lowerCamelCase (a_ :List[Any] , a_ :Optional[int] , a_ :List[str]) -> int: with open(a_ , '''r''' , encoding='''utf-8''' , newline='''\n''') as f: lowercase :int = f.readlines() # Find the start prompt. lowercase :List[str] = 0 while not lines[start_index].startswith(a_): start_index += 1 start_index += 1 lowercase :Optional[int] = start_index while not lines[end_index].startswith(a_): end_index += 1 end_index -= 1 while len(lines[start_index]) <= 1: start_index += 1 while len(lines[end_index]) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index]), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) UpperCAmelCase = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). UpperCAmelCase = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def lowerCamelCase (a_ :Any) -> Any: lowercase :int = TASK_GUIDE_TO_MODELS[task_guide] lowercase :Optional[Any] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(a_ , set()) lowercase :Tuple = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()]) + "\n" def lowerCamelCase (a_ :List[Any] , a_ :List[Any]=False) -> List[str]: lowercase , lowercase , lowercase , lowercase :Optional[int] = _find_text_in_file( filename=os.path.join(a_ , a_) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) lowercase :List[str] = get_model_list_for_task(a_) if current_list != new_list: if overwrite: with open(os.path.join(a_ , a_) , '''w''' , encoding='''utf-8''' , newline='''\n''') as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:]) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ''' to fix this.''') if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
677
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
677
1
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets _UpperCamelCase : Optional[int] = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _UpperCamelCase : Any = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' _UpperCamelCase : str = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def UpperCamelCase_ ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = CHRF.CHAR_ORDER , _lowerCamelCase = CHRF.WORD_ORDER , _lowerCamelCase = CHRF.BETA , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , ): lowercase = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowercase = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] lowercase = CHRF(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase = sb_chrf.corpus_score(_lowerCamelCase , _lowerCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
706
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : Dict = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) _UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE ( __snake_case : str ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowercase = model_type_to_module_name(__snake_case ) lowercase = importlib.import_module(f'.{module_name}' , 'transformers.models' ) try: return getattr(__snake_case , __snake_case ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(__snake_case , '__name__' , __snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowercase = importlib.import_module('transformers' ) if hasattr(__snake_case , __snake_case ): return getattr(__snake_case , __snake_case ) return None def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, os.PathLike] , __snake_case : Optional[Union[str, os.PathLike]] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[Dict[str, str]] = None , __snake_case : Optional[Union[bool, str]] = None , __snake_case : Optional[str] = None , __snake_case : bool = False , **__snake_case : int , ): '''simple docstring''' lowercase = get_file_from_repo( __snake_case , __snake_case , cache_dir=__snake_case , force_download=__snake_case , resume_download=__snake_case , proxies=__snake_case , use_auth_token=__snake_case , revision=__snake_case , local_files_only=__snake_case , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(__snake_case , encoding='utf-8' ) as reader: return json.load(__snake_case ) class a : def __init__( self ): raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_lowerCamelCase ) def UpperCamelCase_ ( cls , _lowerCamelCase , **_lowerCamelCase ): lowercase = kwargs.pop('config' , _lowerCamelCase ) lowercase = kwargs.pop('trust_remote_code' , _lowerCamelCase ) lowercase = True lowercase , lowercase = FeatureExtractionMixin.get_feature_extractor_dict(_lowerCamelCase , **_lowerCamelCase ) lowercase = config_dict.get('feature_extractor_type' , _lowerCamelCase ) lowercase = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): lowercase = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase = AutoConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # It could be in `config.feature_extractor_type`` lowercase = getattr(_lowerCamelCase , 'feature_extractor_type' , _lowerCamelCase ) if hasattr(_lowerCamelCase , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: lowercase = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: lowercase = feature_extractor_class_from_name(_lowerCamelCase ) lowercase = feature_extractor_auto_map is not None lowercase = feature_extractor_class is not None or type(_lowerCamelCase ) in FEATURE_EXTRACTOR_MAPPING lowercase = resolve_trust_remote_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if has_remote_code and trust_remote_code: lowercase = get_class_from_dynamic_module( _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) lowercase = kwargs.pop('code_revision' , _lowerCamelCase ) if os.path.isdir(_lowerCamelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_lowerCamelCase ) in FEATURE_EXTRACTOR_MAPPING: lowercase = FEATURE_EXTRACTOR_MAPPING[type(_lowerCamelCase )] return feature_extractor_class.from_dict(_lowerCamelCase , **_lowerCamelCase ) raise ValueError( F'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' F'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}' ) @staticmethod def UpperCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): FEATURE_EXTRACTOR_MAPPING.register(_lowerCamelCase , _lowerCamelCase )
134
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ :Tuple = logging.get_logger(__name__) class lowercase : def __init__( self : str , _lowercase : str = None , _lowercase : uuid.UUID = None , _lowercase : Any=None , _lowercase : Optional[int]=None ): if not conversation_id: SCREAMING_SNAKE_CASE__ : Dict = uuid.uuida() if past_user_inputs is None: SCREAMING_SNAKE_CASE__ : Dict = [] if generated_responses is None: SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : uuid.UUID = conversation_id SCREAMING_SNAKE_CASE__ : List[str] = past_user_inputs SCREAMING_SNAKE_CASE__ : List[str] = generated_responses SCREAMING_SNAKE_CASE__ : Optional[str] = text def __eq__( self : Optional[int] , _lowercase : Dict ): if not isinstance(_lowercase , _lowercase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase__ ( self : Dict , _lowercase : str , _lowercase : bool = False ): if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) SCREAMING_SNAKE_CASE__ : int = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = text def lowercase__ ( self : int ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) SCREAMING_SNAKE_CASE__ : int = None def lowercase__ ( self : List[Any] , _lowercase : str ): self.generated_responses.append(_lowercase ) def lowercase__ ( self : Union[str, Any] ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : str ): SCREAMING_SNAKE_CASE__ : Dict = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): SCREAMING_SNAKE_CASE__ : List[str] = '''user''' if is_user else '''bot''' output += f"""{name} >> {text} \n""" return output @add_end_docstrings( _UpperCAmelCase , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowercase ( _UpperCAmelCase ): def __init__( self : Dict , *_lowercase : List[str] , **_lowercase : List[Any] ): super().__init__(*_lowercase , **_lowercase ) if self.tokenizer.pad_token_id is None: SCREAMING_SNAKE_CASE__ : Tuple = self.tokenizer.eos_token def lowercase__ ( self : str , _lowercase : List[Any]=None , _lowercase : Tuple=None , _lowercase : Tuple=None , **_lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} SCREAMING_SNAKE_CASE__ : List[Any] = {} SCREAMING_SNAKE_CASE__ : int = {} if min_length_for_response is not None: SCREAMING_SNAKE_CASE__ : str = min_length_for_response if minimum_tokens is not None: SCREAMING_SNAKE_CASE__ : Dict = minimum_tokens if "max_length" in generate_kwargs: SCREAMING_SNAKE_CASE__ : Optional[Any] = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_lowercase ) return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , _lowercase : Union[Conversation, List[Conversation]] , _lowercase : Optional[Any]=0 , **_lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : Any = super().__call__(_lowercase , num_workers=_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs def lowercase__ ( self : int , _lowercase : Conversation , _lowercase : str=32 ): if not isinstance(_lowercase , _lowercase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer._build_conversation_input_ids(_lowercase ) else: # If the tokenizer cannot handle conversations, we default to only the old version SCREAMING_SNAKE_CASE__ : Any = self._legacy_parse_and_tokenize(_lowercase ) if self.framework == "pt": SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase__ ( self : str , _lowercase : Optional[Any] , _lowercase : Tuple=10 , **_lowercase : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = generate_kwargs.get('''max_length''' , self.model.config.max_length ) SCREAMING_SNAKE_CASE__ : Tuple = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) SCREAMING_SNAKE_CASE__ : List[Any] = max_length - minimum_tokens SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: SCREAMING_SNAKE_CASE__ : Optional[int] = model_inputs['''attention_mask'''][:, -trim:] SCREAMING_SNAKE_CASE__ : Optional[int] = model_inputs.pop('''conversation''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = max_length SCREAMING_SNAKE_CASE__ : Optional[int] = self.model.generate(**_lowercase , **_lowercase ) if self.model.config.is_encoder_decoder: SCREAMING_SNAKE_CASE__ : int = 1 else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase__ ( self : Optional[Any] , _lowercase : str , _lowercase : int=True ): SCREAMING_SNAKE_CASE__ : Tuple = model_outputs['''output_ids'''] SCREAMING_SNAKE_CASE__ : str = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) SCREAMING_SNAKE_CASE__ : str = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(_lowercase ) return conversation def lowercase__ ( self : Union[str, Any] , _lowercase : Conversation ): SCREAMING_SNAKE_CASE__ : str = self.tokenizer.eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ) if len(_lowercase ) > self.tokenizer.model_max_length: SCREAMING_SNAKE_CASE__ : Tuple = input_ids[-self.tokenizer.model_max_length :] return input_ids
35
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase ) class _A ( lowerCAmelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization snake_case__ : str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) snake_case__ : ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} ) snake_case__ : ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) snake_case__ : str = "question" snake_case__ : str = "context" snake_case__ : str = "answers" @property def A__ ( self ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
359
0
import numpy as np from transformers import Pipeline def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = np.max(UpperCamelCase_ , axis=-1 , keepdims=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=UpperCamelCase_ ) class lowercase__ ( _UpperCAmelCase ): def A_ ( self : Dict , **UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = {} if "second_text" in kwargs: SCREAMING_SNAKE_CASE__ = kwargs['second_text'] return preprocess_kwargs, {}, {} def A_ ( self : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=None ): return self.tokenizer(UpperCAmelCase_ , text_pair=UpperCAmelCase_ , return_tensors=self.framework ) def A_ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] ): return self.model(**UpperCAmelCase_ ) def A_ ( self : Optional[int] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE__ = model_outputs.logits[0].numpy() SCREAMING_SNAKE_CASE__ = softmax(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = np.argmax(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.model.config.idalabel[best_class] SCREAMING_SNAKE_CASE__ = probabilities[best_class].item() SCREAMING_SNAKE_CASE__ = logits.tolist() return {"label": label, "score": score, "logits": logits}
400
import math class lowercase__ : def A_ ( self : int , UpperCAmelCase_ : list[list[float]] , UpperCAmelCase_ : list[int] ): SCREAMING_SNAKE_CASE__ = 0.0 SCREAMING_SNAKE_CASE__ = 0.0 for i in range(len(UpperCAmelCase_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def A_ ( self : Tuple , UpperCAmelCase_ : list[list[int | float]] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : float ): for i in range(len(UpperCAmelCase_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowercase ( ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) SCREAMING_SNAKE_CASE__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training SCREAMING_SNAKE_CASE__ = SelfOrganizingMap() SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = 0.5 for _ in range(UpperCamelCase_ ): for j in range(len(UpperCamelCase_ ) ): # training sample SCREAMING_SNAKE_CASE__ = training_samples[j] # Compute the winning vector SCREAMING_SNAKE_CASE__ = self_organizing_map.get_winner(UpperCamelCase_ , UpperCamelCase_ ) # Update the winning vector SCREAMING_SNAKE_CASE__ = self_organizing_map.update(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # classify test sample SCREAMING_SNAKE_CASE__ = [0, 0, 0, 1] SCREAMING_SNAKE_CASE__ = self_organizing_map.get_winner(UpperCamelCase_ , UpperCamelCase_ ) # results print(F'Clusters that the test sample belongs to : {winner}' ) print(F'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
400
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
37
"""simple docstring""" import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : str=13 , lowerCAmelCase : List[Any]=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Tuple=99 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : Optional[int]=5 , lowerCAmelCase : List[Any]=4 , lowerCAmelCase : Union[str, Any]=37 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=50 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Union[str, Any]=None , ): lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = initializer_range lowerCAmelCase = use_labels lowerCAmelCase = scope def __lowercase ( self : int ): lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = self.get_config() return config, input_ids, input_mask, token_labels def __lowercase ( self : List[str] ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowercase ( self : Dict ): ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = self.prepare_config_and_inputs() lowerCAmelCase = True lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowercase ( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any] , ): lowerCAmelCase = BertGenerationEncoder(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) lowerCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple , ): lowerCAmelCase = True lowerCAmelCase = BertGenerationEncoder(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , ) lowerCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int] , ): lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = BertGenerationDecoder(config=lowerCAmelCase ).to(lowerCAmelCase ).eval() # first forward pass lowerCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )["""hidden_states"""][0] lowerCAmelCase = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )["""hidden_states"""][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) def __lowercase ( self : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , *lowerCAmelCase : Union[str, Any] , ): lowerCAmelCase = BertGenerationDecoder(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : List[Any] ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _a , _a , _a , unittest.TestCase ): _a = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () _a = (BertGenerationDecoder,) if is_torch_available() else () _a = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def __lowercase ( self : Optional[Any] ): lowerCAmelCase = BertGenerationEncoderTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def __lowercase ( self : Dict ): self.config_tester.run_common_tests() def __lowercase ( self : Tuple ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def __lowercase ( self : List[str] ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs() lowerCAmelCase = """bert""" self.model_tester.create_and_check_model(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : str ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase ) def __lowercase ( self : List[str] ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCAmelCase ) def __lowercase ( self : Any ): # This regression test was failing with PyTorch < 1.3 ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() lowerCAmelCase = None self.model_tester.create_and_check_model_as_decoder( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) def __lowercase ( self : List[str] ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase ) @slow def __lowercase ( self : int ): lowerCAmelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __lowercase ( self : Dict ): lowerCAmelCase = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) lowerCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowerCAmelCase = model(lowerCAmelCase )[0] lowerCAmelCase = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1e-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __lowercase ( self : Tuple ): lowerCAmelCase = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) lowerCAmelCase = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): lowerCAmelCase = model(lowerCAmelCase )[0] lowerCAmelCase = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1e-4 ) )
169
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __UpperCamelCase : """simple docstring""" _lowercase : Union[str, Any] = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None # sigma(t_i) @classmethod def _UpperCAmelCase ( cls ) -> str: return cls() @dataclass class __UpperCamelCase ( __A ): """simple docstring""" _lowercase : Any = 42 _lowercase : int = 42 _lowercase : Tuple = 42 class __UpperCamelCase ( __A , __A ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Optional[int]: return True @register_to_config def __init__( self , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = 1_0_0 , SCREAMING_SNAKE_CASE = 1.0_07 , SCREAMING_SNAKE_CASE = 8_0 , SCREAMING_SNAKE_CASE = 0.05 , SCREAMING_SNAKE_CASE = 5_0 , ) -> Any: pass def _UpperCAmelCase ( self ) -> Dict: return KarrasVeSchedulerState.create() def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = () ) -> List[Any]: a__ = jnp.arange(0 , SCREAMING_SNAKE_CASE )[::-1].copy() a__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=SCREAMING_SNAKE_CASE , schedule=jnp.array(SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) , timesteps=SCREAMING_SNAKE_CASE , ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: if self.config.s_min <= sigma <= self.config.s_max: a__ = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: a__ = 0 # sample eps ~ N(0, S_noise^2 * I) a__ = random.split(SCREAMING_SNAKE_CASE , num=1 ) a__ = self.config.s_noise * random.normal(key=SCREAMING_SNAKE_CASE , shape=sample.shape ) a__ = sigma + gamma * sigma a__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , ) -> Optional[int]: a__ = sample_hat + sigma_hat * model_output a__ = (sample_hat - pred_original_sample) / sigma_hat a__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=SCREAMING_SNAKE_CASE , derivative=SCREAMING_SNAKE_CASE , state=SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , ) -> List[Any]: a__ = sample_prev + sigma_prev * model_output a__ = (sample_prev - pred_original_sample) / sigma_prev a__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=SCREAMING_SNAKE_CASE , derivative=SCREAMING_SNAKE_CASE , state=SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: raise NotImplementedError()
704
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch a_ : Any = random.Random() def __a ( __UpperCAmelCase , __UpperCAmelCase=1.0 , __UpperCAmelCase=None , __UpperCAmelCase=None ): if rng is None: a__ = global_rng a__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=4_0_0 , SCREAMING_SNAKE_CASE=2_0_0_0 , SCREAMING_SNAKE_CASE=1_0 , SCREAMING_SNAKE_CASE=1_6_0 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=4_0_0_0 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , ) -> Union[str, Any]: a__ = parent a__ = batch_size a__ = min_seq_length a__ = max_seq_length a__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__ = padding_value a__ = sampling_rate a__ = return_attention_mask a__ = do_normalize a__ = feature_size a__ = chunk_length a__ = hop_length def _UpperCAmelCase ( self ) -> Union[str, Any]: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ) -> Any: def _flatten(SCREAMING_SNAKE_CASE ): return list(itertools.chain(*SCREAMING_SNAKE_CASE ) ) if equal_length: a__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__ = [np.asarray(SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __UpperCamelCase ( _lowercase , unittest.TestCase ): """simple docstring""" _lowercase : List[Any] = WhisperFeatureExtractor if is_speech_available() else None def _UpperCAmelCase ( self ) -> Optional[int]: a__ = WhisperFeatureExtractionTester(self ) def _UpperCAmelCase ( self ) -> List[Any]: a__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE ) a__ = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE ) a__ = feat_extract_first.to_dict() a__ = feat_extract_second.to_dict() a__ = feat_extract_first.mel_filters a__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Any: a__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(SCREAMING_SNAKE_CASE , '''feat_extract.json''' ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE ) a__ = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE ) a__ = feat_extract_first.to_dict() a__ = feat_extract_second.to_dict() a__ = feat_extract_first.mel_filters a__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] a__ = [np.asarray(SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test feature size a__ = feature_extractor(SCREAMING_SNAKE_CASE , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a__ = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features a__ = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # Test batched a__ = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_features a__ = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. a__ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] a__ = np.asarray(SCREAMING_SNAKE_CASE ) a__ = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_features a__ = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # Test truncation required a__ = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] a__ = [np.asarray(SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] a__ = [x[: feature_extractor.n_samples] for x in speech_inputs] a__ = [np.asarray(SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs_truncated] a__ = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_features a__ = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def _UpperCAmelCase ( self ) -> int: import torch a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) a__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a__ = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: a__ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech a__ = ds.sort('''id''' ).select(range(SCREAMING_SNAKE_CASE ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _UpperCAmelCase ( self ) -> Optional[int]: # fmt: off a__ = torch.tensor( [ 0.11_93, -0.09_46, -0.10_98, -0.01_96, 0.02_25, -0.06_90, -0.17_36, 0.09_51, 0.09_71, -0.08_17, -0.07_02, 0.01_62, 0.02_60, 0.00_17, -0.01_92, -0.16_78, 0.07_09, -0.18_67, -0.06_55, -0.02_74, -0.02_34, -0.18_84, -0.05_16, -0.05_54, -0.02_74, -0.14_25, -0.14_23, 0.08_37, 0.03_77, -0.08_54 ] ) # fmt: on a__ = self._load_datasamples(1 ) a__ = WhisperFeatureExtractor() a__ = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) def _UpperCAmelCase ( self ) -> List[str]: a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = self._load_datasamples(1 )[0] a__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue a__ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=SCREAMING_SNAKE_CASE )[0] self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE ) - 1 ) < 1e-3 ) )
148
0
'''simple docstring''' import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _lowerCamelCase : Union[str, Any] = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __lowerCamelCase ( A__ ) -> List[str]: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __lowerCamelCase ( A__ , A__ ) -> Dict: """simple docstring""" if args.student_type == "roberta": UpperCamelCase = False elif args.student_type == "gpt2": UpperCamelCase = False def __lowerCamelCase ( A__ , A__ ) -> Any: """simple docstring""" if args.student_type == "roberta": UpperCamelCase = False def __lowerCamelCase ( ) -> List[str]: """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=A__ , required=A__ , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=A__ , required=A__ , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=A__ , choices=['distilbert', 'roberta', 'gpt2'] , required=A__ , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=A__ , required=A__ , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=A__ , type=A__ , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=A__ , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=A__ , required=A__ , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=A__ , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=A__ , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=A__ , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=A__ , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=A__ , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=A__ , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=A__ , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=A__ , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=A__ , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=A__ , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=A__ , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=A__ , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=A__ , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=A__ , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=A__ , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=A__ , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=A__ , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5e-4 , type=A__ , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1e-6 , type=A__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=A__ , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=A__ , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=A__ , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=A__ , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=A__ , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=A__ , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=A__ , default=500 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=A__ , default=4_000 , help='Checkpoint interval.' ) UpperCamelCase = parser.parse_args() sanity_checks(A__ ) # ARGS # init_gpu_params(A__ ) set_seed(A__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(A__ ) , A__ , indent=4 ) git_log(args.dump_path ) UpperCamelCase , UpperCamelCase , UpperCamelCase = MODEL_CLASSES[args.student_type] UpperCamelCase , UpperCamelCase , UpperCamelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCamelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCamelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCamelCase = tokenizer.all_special_tokens.index(A__ ) UpperCamelCase = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) UpperCamelCase = special_tok_ids UpperCamelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , 'rb' ) as fp: UpperCamelCase = pickle.load(A__ ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , 'rb' ) as fp: UpperCamelCase = pickle.load(A__ ) UpperCamelCase = np.maximum(A__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCamelCase = 0.0 # do not predict special tokens UpperCamelCase = torch.from_numpy(A__ ) else: UpperCamelCase = None UpperCamelCase = LmSeqsDataset(params=A__ , data=A__ ) logger.info('Data loader created.' ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) UpperCamelCase = student_config_class.from_pretrained(args.student_config ) UpperCamelCase = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCamelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=A__ ) else: UpperCamelCase = student_model_class(A__ ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info('Student loaded.' ) # TEACHER # UpperCamelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=A__ ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A__ , A__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A__ , A__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCamelCase = Distiller( params=A__ , dataset=A__ , token_probs=A__ , student=A__ , teacher=A__ ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
430
'''simple docstring''' from math import factorial def __lowerCamelCase ( A__ , A__ , A__ ) -> float: """simple docstring""" if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(A__ , A__ ) or not isinstance(A__ , A__ ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) UpperCamelCase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! UpperCamelCase = float(factorial(A__ ) ) coefficient /= factorial(A__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
430
1
'''simple docstring''' from __future__ import annotations import bisect def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : int = 0 ,_UpperCAmelCase : int = -1 ) -> int: if hi < 0: __snake_case : Tuple = len(_UpperCAmelCase ) while lo < hi: __snake_case : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __snake_case : Union[str, Any] = mid + 1 else: __snake_case : Union[str, Any] = mid return lo def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : int = 0 ,_UpperCAmelCase : int = -1 ) -> int: if hi < 0: __snake_case : List[Any] = len(_UpperCAmelCase ) while lo < hi: __snake_case : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __snake_case : Optional[int] = mid + 1 else: __snake_case : Any = mid return lo def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : int = 0 ,_UpperCAmelCase : int = -1 ) -> None: sorted_collection.insert(bisect_left(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) ,_UpperCAmelCase ) def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : int = 0 ,_UpperCAmelCase : int = -1 ) -> None: sorted_collection.insert(bisect_right(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ) ,_UpperCAmelCase ) def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> int | None: __snake_case : str = 0 __snake_case : Optional[Any] = len(_UpperCAmelCase ) - 1 while left <= right: __snake_case : Any = left + (right - left) // 2 __snake_case : str = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __snake_case : Union[str, Any] = midpoint - 1 else: __snake_case : Union[str, Any] = midpoint + 1 return None def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ) -> int | None: __snake_case : Optional[Any] = bisect.bisect_left(_UpperCAmelCase ,_UpperCAmelCase ) if index != len(_UpperCAmelCase ) and sorted_collection[index] == item: return index return None def a_ ( _UpperCAmelCase : list[int] ,_UpperCAmelCase : int ,_UpperCAmelCase : int ,_UpperCAmelCase : int ) -> int | None: if right < left: return None __snake_case : List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,midpoint - 1 ) else: return binary_search_by_recursion(_UpperCAmelCase ,_UpperCAmelCase ,midpoint + 1 ,_UpperCAmelCase ) if __name__ == "__main__": A__ : Tuple = input('''Enter numbers separated by comma:\n''').strip() A__ : Dict = sorted(int(item) for item in user_input.split(''',''')) A__ : Any = int(input('''Enter a single number to be found in the list:\n''')) A__ : Tuple = binary_search(collection, target) if result is None: print(F"""{target} was not found in {collection}.""") else: print(F"""{target} was found at position {result} in {collection}.""")
709
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Optional[int] = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys A__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
124
0
"""simple docstring""" from __future__ import annotations from typing import Generic, TypeVar A_ = TypeVar("""T""") class __lowerCamelCase ( Generic[T] ): def __init__( self , UpperCAmelCase ): lowerCamelCase_ = data lowerCamelCase_ = self lowerCamelCase_ = 0 class __lowerCamelCase ( Generic[T] ): def __init__( self ): # map from node name to the node object lowerCamelCase_ = {} def UpperCAmelCase__ ( self , UpperCAmelCase ): # create a new set with x as its member lowerCamelCase_ = DisjointSetTreeNode(UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase ): # find the set x belongs to (with path-compression) lowerCamelCase_ = self.map[data] if elem_ref != elem_ref.parent: lowerCamelCase_ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): # helper function for union operation if nodea.rank > nodea.rank: lowerCamelCase_ = nodea else: lowerCamelCase_ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): # merge 2 disjoint sets self.link(self.find_set(UpperCAmelCase ) , self.find_set(UpperCAmelCase ) ) class __lowerCamelCase ( Generic[T] ): def __init__( self ): # connections: map from the node to the neighbouring nodes (with weights) lowerCamelCase_ = {} def UpperCAmelCase__ ( self , UpperCAmelCase ): # add a node ONLY if its not present in the graph if node not in self.connections: lowerCamelCase_ = {} def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): # add an edge with the given weight self.add_node(UpperCAmelCase ) self.add_node(UpperCAmelCase ) lowerCamelCase_ = weight lowerCamelCase_ = weight def UpperCAmelCase__ ( self ): lowerCamelCase_ = [] lowerCamelCase_ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda UpperCAmelCase : x[2] ) # creating the disjoint set lowerCamelCase_ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(UpperCAmelCase ) # MST generation lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = edges[index] index += 1 lowerCamelCase_ = disjoint_set.find_set(UpperCAmelCase ) lowerCamelCase_ = disjoint_set.find_set(UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) disjoint_set.union(UpperCAmelCase , UpperCAmelCase ) return graph
29
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __lowerCamelCase : Dict = pytest.mark.integration @pytest.mark.parametrize("path" , ["paws", "csv"] ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" inspect_dataset(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase = path + ".py" assert script_name in os.listdir(lowerCAmelCase_ ) assert "__pycache__" not in os.listdir(lowerCAmelCase_ ) @pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.parametrize("path" , ["accuracy"] ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" inspect_metric(lowerCAmelCase_ , lowerCAmelCase_ ) lowercase = path + ".py" assert script_name in os.listdir(lowerCAmelCase_ ) assert "__pycache__" not in os.listdir(lowerCAmelCase_ ) @pytest.mark.parametrize( "path, config_name, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = get_dataset_config_info(lowerCAmelCase_ , config_name=lowerCAmelCase_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" with pytest.raises(lowerCAmelCase_ ): get_dataset_config_info(lowerCAmelCase_ , config_name=lowerCAmelCase_ ) @pytest.mark.parametrize( "path, expected" , [ ("squad", "plain_text"), ("acronym_identification", "default"), ("lhoestq/squad", "plain_text"), ("lhoestq/test", "default"), ("lhoestq/demo1", "lhoestq--demo1"), ("dalle-mini/wit", "dalle-mini--wit"), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = get_dataset_config_names(lowerCAmelCase_ ) assert expected in config_names @pytest.mark.parametrize( "path, expected_configs, expected_splits_in_first_config" , [ ("squad", ["plain_text"], ["train", "validation"]), ("dalle-mini/wit", ["dalle-mini--wit"], ["train"]), ("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = get_dataset_infos(lowerCAmelCase_ ) assert list(infos.keys() ) == expected_configs lowercase = expected_configs[0] assert expected_config in infos lowercase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( "path, expected_config, expected_splits" , [ ("squad", "plain_text", ["train", "validation"]), ("dalle-mini/wit", "dalle-mini--wit", ["train"]), ("paws", "labeled_final", ["train", "test", "validation"]), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = get_dataset_infos(lowerCAmelCase_ ) assert expected_config in infos lowercase = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( "path, config_name, expected_exception" , [ ("paws", None, ValueError), ] , ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" with pytest.raises(lowerCAmelCase_ ): get_dataset_split_names(lowerCAmelCase_ , config_name=lowerCAmelCase_ )
310
0
"""simple docstring""" import unittest import numpy as np def _snake_case ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray | None = None , ): A__ = np.shape(UpperCAmelCase_ ) A__ = np.shape(UpperCAmelCase_ ) A__ = np.shape(UpperCAmelCase_ ) if shape_a[0] != shape_b[0]: A__ = ( """Expected the same number of rows for A and B. """ F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(UpperCAmelCase_ ) if shape_b[1] != shape_c[1]: A__ = ( """Expected the same number of columns for B and C. """ F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(UpperCAmelCase_ ) A__ = pseudo_inv if a_inv is None: try: A__ = np.linalg.inv(UpperCAmelCase_ ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class a ( unittest.TestCase ): """simple docstring""" def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1], [6, 3]] ) A__ = schur_complement(UpperCamelCase , UpperCamelCase , UpperCamelCase ) A__ = np.block([[a, b], [b.T, c]] ) A__ = np.linalg.det(UpperCamelCase ) A__ = np.linalg.det(UpperCamelCase ) A__ = np.linalg.det(UpperCamelCase ) self.assertAlmostEqual(UpperCamelCase , det_a * det_s ) def UpperCamelCase ( self: Tuple ): """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(UpperCamelCase ): schur_complement(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase ( self: str ): """simple docstring""" A__ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) A__ = np.array([[0, 3], [3, 0], [2, 3]] ) A__ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(UpperCamelCase ): schur_complement(UpperCamelCase , UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
500
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : Optional[Any] = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "segformer" def __init__( self: Optional[Any] , UpperCamelCase: Union[str, Any]=3 , UpperCamelCase: int=4 , UpperCamelCase: int=[2, 2, 2, 2] , UpperCamelCase: List[str]=[8, 4, 2, 1] , UpperCamelCase: List[Any]=[32, 64, 1_60, 2_56] , UpperCamelCase: Any=[7, 3, 3, 3] , UpperCamelCase: Union[str, Any]=[4, 2, 2, 2] , UpperCamelCase: Tuple=[1, 2, 5, 8] , UpperCamelCase: Optional[int]=[4, 4, 4, 4] , UpperCamelCase: Dict="gelu" , UpperCamelCase: Optional[Any]=0.0 , UpperCamelCase: List[str]=0.0 , UpperCamelCase: Union[str, Any]=0.1 , UpperCamelCase: List[Any]=0.02 , UpperCamelCase: int=0.1 , UpperCamelCase: Optional[int]=1e-6 , UpperCamelCase: int=2_56 , UpperCamelCase: Union[str, Any]=2_55 , **UpperCamelCase: Optional[Any] , ): """simple docstring""" super().__init__(**UpperCamelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , UpperCamelCase , ) A__ = num_channels A__ = num_encoder_blocks A__ = depths A__ = sr_ratios A__ = hidden_sizes A__ = patch_sizes A__ = strides A__ = mlp_ratios A__ = num_attention_heads A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = classifier_dropout_prob A__ = initializer_range A__ = drop_path_rate A__ = layer_norm_eps A__ = decoder_hidden_size A__ = kwargs.get("""reshape_last_stage""" , UpperCamelCase ) A__ = semantic_loss_ignore_index class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("1.11" ) @property def UpperCamelCase ( self: List[str] ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCamelCase ( self: int ): """simple docstring""" return 1e-4 @property def UpperCamelCase ( self: Optional[int] ): """simple docstring""" return 12
500
1
'''simple docstring''' from __future__ import annotations lowercase : Optional[int] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __a ( A__ , A__ , A__ , A__ , A__ , ) -> tuple[list[list[int]], list[list[int]]]: lowerCAmelCase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(A__ ) ) ] # the reference grid lowerCAmelCase = 1 lowerCAmelCase = [ [0 for col in range(len(grid[0] ) )] for row in range(len(A__ ) ) ] # the action grid lowerCAmelCase = init[0] lowerCAmelCase = init[1] lowerCAmelCase = 0 lowerCAmelCase = g + heuristic[x][y] # cost from starting cell to destination cell lowerCAmelCase = [[f, g, x, y]] lowerCAmelCase = False # flag that is set when search is complete lowerCAmelCase = False # flag set if we can't find expand while not found and not resign: if len(A__ ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() lowerCAmelCase = cell.pop() lowerCAmelCase = next_cell[2] lowerCAmelCase = next_cell[3] lowerCAmelCase = next_cell[1] if x == goal[0] and y == goal[1]: lowerCAmelCase = True else: for i in range(len(A__ ) ): # to try out different valid actions lowerCAmelCase = x + DIRECTIONS[i][0] lowerCAmelCase = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(A__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: lowerCAmelCase = g + cost lowerCAmelCase = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) lowerCAmelCase = 1 lowerCAmelCase = i lowerCAmelCase = [] lowerCAmelCase = goal[0] lowerCAmelCase = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: lowerCAmelCase = x - DIRECTIONS[action[x][y]][0] lowerCAmelCase = y - DIRECTIONS[action[x][y]][1] lowerCAmelCase = xa lowerCAmelCase = ya invpath.append([x, y] ) lowerCAmelCase = [] for i in range(len(A__ ) ): path.append(invpath[len(A__ ) - 1 - i] ) return path, action if __name__ == "__main__": lowercase : Optional[Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowercase : Tuple = [0, 0] # all coordinates are given in format [y,x] lowercase : List[Any] = [len(grid) - 1, len(grid[0]) - 1] lowercase : List[str] = 1 # the cost map which pushes the path closer to the goal lowercase : int = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowercase : Union[str, Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowercase : int = 9_9 lowercase , lowercase : List[str] = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
649
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" def __A ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "width_multiplier" ) ) class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]=1_3 , SCREAMING_SNAKE_CASE : int=6_4 , SCREAMING_SNAKE_CASE : Optional[int]=2 , SCREAMING_SNAKE_CASE : Any=3 , SCREAMING_SNAKE_CASE : Dict="swish" , SCREAMING_SNAKE_CASE : Optional[int]=3 , SCREAMING_SNAKE_CASE : Any=3_2 , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : List[Any]=0.0_2 , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : int=1_0 , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Optional[Any]=0.2_5 , SCREAMING_SNAKE_CASE : Union[str, Any]=0.0 , SCREAMING_SNAKE_CASE : int=0.0 , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = image_size lowerCAmelCase = patch_size lowerCAmelCase = num_channels lowerCAmelCase = make_divisible(5_1_2 * width_multiplier , divisor=8 ) lowerCAmelCase = hidden_act lowerCAmelCase = conv_kernel_size lowerCAmelCase = output_stride lowerCAmelCase = classifier_dropout_prob lowerCAmelCase = use_labels lowerCAmelCase = is_training lowerCAmelCase = num_labels lowerCAmelCase = initializer_range lowerCAmelCase = scope lowerCAmelCase = width_multiplier lowerCAmelCase = ffn_dropout lowerCAmelCase = attn_dropout def __A ( self : int ) -> List[Any]: """simple docstring""" lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self : int ) -> Dict: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __A ( self : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" lowerCAmelCase = MobileViTVaModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = MobileViTVaForImageClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ) -> str: """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = MobileViTVaForSemanticSegmentation(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self : Tuple ) -> Any: """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = config_and_inputs lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def __A ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCAmelCase = MobileViTVaModelTester(self ) lowerCAmelCase = MobileViTVaConfigTester(self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE ) def __A ( self : Tuple ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def __A ( self : str ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def __A ( self : Dict ) -> Dict: """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def __A ( self : Tuple ) -> Dict: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def __A ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __A ( self : Union[str, Any] ) -> Tuple: """simple docstring""" pass def __A ( self : Any ) -> str: """simple docstring""" lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase = [*signature.parameters.keys()] lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def __A ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def __A ( self : List[Any] ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] ): lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = outputs.hidden_states lowerCAmelCase = 5 self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase = 2 for i in range(len(SCREAMING_SNAKE_CASE ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __A ( self : Tuple ) -> int: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE ) def __A ( self : Dict ) -> List[str]: """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE ) @slow def __A ( self : Any ) -> Dict: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = MobileViTVaModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __a ( ) -> List[Any]: lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : str ) -> Any: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def __A ( self : List[str] ) -> int: """simple docstring""" lowerCAmelCase = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.default_image_processor lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def __A ( self : Any ) -> List[str]: """simple docstring""" lowerCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase = model.to(SCREAMING_SNAKE_CASE ) lowerCAmelCase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.logits # verify the logits lowerCAmelCase = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ] , device=SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def __A ( self : Any ) -> List[str]: """simple docstring""" lowerCAmelCase = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase = model.to(SCREAMING_SNAKE_CASE ) lowerCAmelCase = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.logits.detach().cpu() lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE , target_sizes=[(5_0, 6_0)] ) lowerCAmelCase = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE ) lowerCAmelCase = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE )
649
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowercase : Any = logging.get_logger(__name__) lowercase : Union[str, Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } lowercase : Tuple = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A ) -> List[str]: for attribute in key.split('.' ): _snake_case = getattr(__A , __A ) if weight_type is not None: _snake_case = getattr(__A , __A ).shape else: _snake_case = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": _snake_case = value elif weight_type == "weight_g": _snake_case = value elif weight_type == "weight_v": _snake_case = value elif weight_type == "bias": _snake_case = value else: _snake_case = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Dict: _snake_case = [] _snake_case = fairseq_model.state_dict() _snake_case = hf_model.feature_extractor _snake_case = hf_model.adapter for name, value in fairseq_dict.items(): _snake_case = False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == 'group' , ) _snake_case = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(__A , __A , __A , __A ) _snake_case = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _snake_case = True if "*" in mapped_key: _snake_case = name.split(__A )[0].split('.' )[-2] _snake_case = mapped_key.replace('*' , __A ) if "weight_g" in name: _snake_case = 'weight_g' elif "weight_v" in name: _snake_case = 'weight_v' elif "bias" in name: _snake_case = 'bias' elif "weight" in name: _snake_case = 'weight' else: _snake_case = None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A ) -> Dict: _snake_case = full_name.split('conv_layers.' )[-1] _snake_case = name.split('.' ) _snake_case = int(items[0] ) _snake_case = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _snake_case = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _snake_case = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _snake_case = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _snake_case = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__A ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> Optional[Any]: _snake_case = full_name.split('adaptor.' )[-1] _snake_case = name.split('.' ) if items[1].isdigit(): _snake_case = int(items[1] ) else: _snake_case = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' _snake_case = value logger.info(F'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' _snake_case = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' _snake_case = value logger.info(F'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' _snake_case = value logger.info(F'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(__A , __A ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' _snake_case = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' _snake_case = value logger.info(F'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(__A ) def SCREAMING_SNAKE_CASE__ ( __A ) -> int: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__A , __A , bias=__A ) _snake_case = emb.weight.data return lin_layer @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , __A , ) -> Any: _snake_case = WavaVecaConfig.from_pretrained( __A , add_adapter=__A , adapter_stride=__A , adapter_kernel_size=__A , use_auth_token=__A , output_hidden_size=__A , ) _snake_case = MBartConfig.from_pretrained(__A ) # load model _snake_case , _snake_case , _snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) _snake_case = model[0].eval() # load feature extractor _snake_case = WavaVecaFeatureExtractor.from_pretrained(__A , use_auth_token=__A ) # set weights for wav2vec2 encoder _snake_case = WavaVecaModel(__A ) recursively_load_weights_wavaveca(model.encoder , __A ) # load decoder weights _snake_case = MBartForCausalLM(__A ) _snake_case , _snake_case = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) logger.warning(F'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(F'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) _snake_case = SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) _snake_case = False _snake_case = MBartaaTokenizer(__A ) tokenizer.save_pretrained(__A ) _snake_case = hf_wavavec.config.to_dict() _snake_case = tokenizer.pad_token_id _snake_case = tokenizer.bos_token_id _snake_case = tokenizer.eos_token_id _snake_case = 'mbart50' _snake_case = 'wav2vec2' _snake_case = tokenizer.eos_token_id _snake_case = 250_004 _snake_case = tokenizer.eos_token_id _snake_case = SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=1024, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=25_0004, type=int, help="`decoder_start_token_id` of model config") lowercase : List[str] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
700
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> list: if len(__A ) != 2 or len(a[0] ) != 2 or len(__A ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) _snake_case = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Dict: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__A ) ) ] def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Dict: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__A ) ) ] def SCREAMING_SNAKE_CASE__ ( __A ) -> tuple[list, list, list, list]: if len(__A ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) _snake_case = len(__A ) _snake_case = matrix_length // 2 _snake_case = [[a[i][j] for j in range(__A , __A )] for i in range(__A )] _snake_case = [ [a[i][j] for j in range(__A , __A )] for i in range(__A , __A ) ] _snake_case = [[a[i][j] for j in range(__A )] for i in range(__A )] _snake_case = [[a[i][j] for j in range(__A )] for i in range(__A , __A )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE__ ( __A ) -> tuple[int, int]: return len(__A ), len(matrix[0] ) def SCREAMING_SNAKE_CASE__ ( __A ) -> None: print('\n'.join(str(__A ) for line in matrix ) ) def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> list: if matrix_dimensions(__A ) == (2, 2): return default_matrix_multiplication(__A , __A ) _snake_case , _snake_case , _snake_case , _snake_case = split_matrix(__A ) _snake_case , _snake_case , _snake_case , _snake_case = split_matrix(__A ) _snake_case = actual_strassen(__A , matrix_subtraction(__A , __A ) ) _snake_case = actual_strassen(matrix_addition(__A , __A ) , __A ) _snake_case = actual_strassen(matrix_addition(__A , __A ) , __A ) _snake_case = actual_strassen(__A , matrix_subtraction(__A , __A ) ) _snake_case = actual_strassen(matrix_addition(__A , __A ) , matrix_addition(__A , __A ) ) _snake_case = actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) ) _snake_case = actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) ) _snake_case = matrix_addition(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A ) _snake_case = matrix_addition(__A , __A ) _snake_case = matrix_addition(__A , __A ) _snake_case = matrix_subtraction(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A ) # construct the new matrix from our 4 quadrants _snake_case = [] for i in range(len(__A ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__A ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> list: if matrix_dimensions(__A )[1] != matrix_dimensions(__A )[0]: _snake_case = ( 'Unable to multiply these matrices, please check the dimensions.\n' F'Matrix A: {matrixa}\n' F'Matrix B: {matrixa}' ) raise Exception(__A ) _snake_case = matrix_dimensions(__A ) _snake_case = matrix_dimensions(__A ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] _snake_case = max(*__A , *__A ) _snake_case = int(math.pow(2 , math.ceil(math.loga(__A ) ) ) ) _snake_case = matrixa _snake_case = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __A ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) _snake_case = actual_strassen(__A , __A ) # Removing the additional zeros for i in range(0 , __A ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowercase : Any = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowercase : List[str] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
542
0
import cva import numpy as np class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : float , UpperCamelCase__ : int): '''simple docstring''' if k in (0.04, 0.06): snake_case__ = k snake_case__ = window_size else: raise ValueError("""invalid k value""") def __str__( self : List[Any]): '''simple docstring''' return str(self.k) def __magic_name__ ( self : Optional[Any] , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = cva.imread(UpperCamelCase__ , 0) snake_case__ , snake_case__ = img.shape snake_case__ = [] snake_case__ = img.copy() snake_case__ = cva.cvtColor(UpperCamelCase__ , cva.COLOR_GRAY2RGB) snake_case__ , snake_case__ = np.gradient(UpperCamelCase__) snake_case__ = dx**2 snake_case__ = dy**2 snake_case__ = dx * dy snake_case__ = 0.04 snake_case__ = self.window_size // 2 for y in range(UpperCamelCase__ , h - offset): for x in range(UpperCamelCase__ , w - offset): snake_case__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() snake_case__ = (wxx * wyy) - (wxy**2) snake_case__ = wxx + wyy snake_case__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_5_5) return color_img, corner_list if __name__ == "__main__": a__ = HarrisCorner(0.04, 3) a__ , a__ = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
654
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''''' _lowercase : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowercase : str = None # compression type in fsspec. ex: "gzip" _lowercase : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[Any] , UpperCamelCase__ : str = "" , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[dict] = None , **UpperCamelCase__ : List[Any]): '''simple docstring''' super().__init__(self , **UpperCamelCase__) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case__ = fsspec.open( UpperCamelCase__ , mode="""rb""" , protocol=UpperCamelCase__ , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case__ = os.path.basename(self.file.path.split("""::""")[0]) snake_case__ = ( self.compressed_name[: self.compressed_name.rindex(""".""")] if """.""" in self.compressed_name else self.compressed_name ) snake_case__ = None @classmethod def __magic_name__ ( cls : Union[str, Any] , UpperCamelCase__ : List[Any]): '''simple docstring''' return super()._strip_protocol(UpperCamelCase__).lstrip("""/""") def __magic_name__ ( self : Dict): '''simple docstring''' if self.dir_cache is None: snake_case__ = {**self.file.fs.info(self.file.path), """name""": self.uncompressed_name} snake_case__ = {f["""name"""]: f} def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : str): '''simple docstring''' return self.file.open().read() def __magic_name__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : str = "rb" , UpperCamelCase__ : Any=None , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : Optional[Any] , ): '''simple docstring''' snake_case__ = self._strip_protocol(UpperCamelCase__) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''') return self.file.open() class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = '''bz2''' _lowercase : Dict = '''bz2''' _lowercase : Optional[int] = '''.bz2''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = '''gzip''' _lowercase : List[str] = '''gzip''' _lowercase : Any = '''.gz''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : str = '''lz4''' _lowercase : List[Any] = '''lz4''' _lowercase : Dict = '''.lz4''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''xz''' _lowercase : Union[str, Any] = '''xz''' _lowercase : Optional[int] = '''.xz''' class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Optional[int] = '''zstd''' _lowercase : Tuple = '''zstd''' _lowercase : Union[str, Any] = '''.zst''' def __init__( self : str , UpperCamelCase__ : str , UpperCamelCase__ : str = "rb" , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : Optional[dict] = None , UpperCamelCase__ : int = DEFAULT_BLOCK_SIZE , **UpperCamelCase__ : int , ): '''simple docstring''' super().__init__( fo=UpperCamelCase__ , mode=UpperCamelCase__ , target_protocol=UpperCamelCase__ , target_options=UpperCamelCase__ , block_size=UpperCamelCase__ , **UpperCamelCase__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case__ = self.file.__enter__ class _lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = file_ def __enter__( self : List[str]): '''simple docstring''' self._file.__enter__() return self def __exit__( self : Dict , *UpperCamelCase__ : str , **UpperCamelCase__ : Optional[Any]): '''simple docstring''' self._file.__exit__(*UpperCamelCase__ , **UpperCamelCase__) def __iter__( self : Any): '''simple docstring''' return iter(self._file) def __magic_name__ ( self : List[str]): '''simple docstring''' return next(self._file) def __getattr__( self : Any , UpperCamelCase__ : int): '''simple docstring''' return getattr(self._file , UpperCamelCase__) def fixed_enter(*UpperCamelCase__ : int , **UpperCamelCase__ : int): return WrappedFile(_enter(*UpperCamelCase__ , **UpperCamelCase__)) snake_case__ = fixed_enter
654
1
import pytest import datasets # Import fixture modules as plugins _SCREAMING_SNAKE_CASE : Dict = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def UpperCAmelCase_ ( _A ): '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=_A ) def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = tmp_path_factory.getbasetemp() / '''cache''' SCREAMING_SNAKE_CASE__ = test_hf_cache_home / '''datasets''' SCREAMING_SNAKE_CASE__ = test_hf_cache_home / '''metrics''' SCREAMING_SNAKE_CASE__ = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(_A ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(_A ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(_A ) ) SCREAMING_SNAKE_CASE__ = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(_A ) ) SCREAMING_SNAKE_CASE__ = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_A ) ) @pytest.fixture(autouse=_A , scope='''session''' ) def UpperCAmelCase_ ( ): '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=_A ) def UpperCAmelCase_ ( _A ): '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , _A ) @pytest.fixture def UpperCAmelCase_ ( _A ): '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , _A )
472
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : List[Any] = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[int] = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
472
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __A : Optional[Any] = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
275
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __A : str = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
275
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''], '''tokenization_canine''': ['''CanineTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CanineForMultipleChoice''', '''CanineForQuestionAnswering''', '''CanineForSequenceClassification''', '''CanineForTokenClassification''', '''CanineLayer''', '''CanineModel''', '''CaninePreTrainedModel''', '''load_tf_weights_in_canine''', ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
280
'''simple docstring''' import numpy as np def a ( __a , __a , __a , __a , __a ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :Tuple = int(np.ceil((x_end - xa) / h ) ) UpperCamelCase__ :Optional[int] = np.zeros((n + 1,) ) UpperCamelCase__ :List[str] = ya UpperCamelCase__ :Tuple = xa for k in range(__a ): UpperCamelCase__ :Dict = f(__a , y[k] ) UpperCamelCase__ :List[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCamelCase__ :Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCamelCase__ :List[Any] = f(x + h , y[k] + h * ka ) UpperCamelCase__ :List[str] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
280
1
class __lowerCamelCase : """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE__ : list ) -> None: lowerCAmelCase__ = set_counts lowerCAmelCase__ = max(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = [1] * num_sets lowerCAmelCase__ = list(range(SCREAMING_SNAKE_CASE__ ) ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> bool: lowerCAmelCase__ = self.get_parent(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.get_parent(SCREAMING_SNAKE_CASE__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase__ = 0 lowerCAmelCase__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase__ = 0 lowerCAmelCase__ = src_parent lowerCAmelCase__ = self.set_counts[src_parent] lowerCAmelCase__ = max(self.max_set , SCREAMING_SNAKE_CASE__ ) return True def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> int: if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
61
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow def __A ( self : Tuple ) -> Optional[int]: __lowerCamelCase = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) __lowerCamelCase = { '''input_ids''': tf.convert_to_tensor([[0, 26_46, 1_02_69, 83, 9_99_42, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = tf.TensorShape((1, 6, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) # compare the actual values for a slice. __lowerCamelCase = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
298
0
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' def __init__( self , a_ , a_=1_3 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=False , a_=False , a_=False , a_=2 , a_=9_9 , a_=0 , a_=3_2 , a_=5 , a_=4 , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1_2 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_="last" , a_=None , a_=None , ) -> Optional[int]: lowercase : Optional[int] = parent lowercase : str = batch_size lowercase : List[str] = seq_length lowercase : Dict = is_training lowercase : Union[str, Any] = use_input_lengths lowercase : Any = use_token_type_ids lowercase : Optional[Any] = use_labels lowercase : List[Any] = gelu_activation lowercase : Tuple = sinusoidal_embeddings lowercase : Dict = causal lowercase : Tuple = asm lowercase : Any = n_langs lowercase : List[str] = vocab_size lowercase : List[Any] = n_special lowercase : Union[str, Any] = hidden_size lowercase : Optional[int] = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : int = hidden_dropout_prob lowercase : List[str] = attention_probs_dropout_prob lowercase : Dict = max_position_embeddings lowercase : str = type_vocab_size lowercase : List[Any] = type_sequence_label_size lowercase : Optional[Any] = initializer_range lowercase : Optional[Any] = num_labels lowercase : Optional[int] = num_choices lowercase : int = summary_type lowercase : List[str] = use_proj lowercase : Union[str, Any] = scope def a__ ( self ) -> Dict: lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : List[str] = None if self.use_input_lengths: lowercase : str = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Any = None if self.use_token_type_ids: lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase : str = None lowercase : List[Any] = None lowercase : int = None if self.use_labels: lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Optional[Any] = ids_tensor([self.batch_size] , 2 ).float() lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowercase : Optional[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self ) -> List[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> Any: lowercase : Dict = FlaubertModel(config=a_ ) model.to(a_ ) model.eval() lowercase : Tuple = model(a_ , lengths=a_ , langs=a_ ) lowercase : Union[str, Any] = model(a_ , langs=a_ ) lowercase : int = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> Optional[int]: lowercase : Union[str, Any] = FlaubertWithLMHeadModel(a_ ) model.to(a_ ) model.eval() lowercase : Optional[Any] = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> Optional[int]: lowercase : Union[str, Any] = FlaubertForQuestionAnsweringSimple(a_ ) model.to(a_ ) model.eval() lowercase : List[str] = model(a_ ) lowercase : Union[str, Any] = model(a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> Any: lowercase : Tuple = FlaubertForQuestionAnswering(a_ ) model.to(a_ ) model.eval() lowercase : Optional[Any] = model(a_ ) lowercase : str = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , p_mask=a_ , ) lowercase : Dict = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , ) (lowercase ) : Any = result_with_labels.to_tuple() lowercase : Optional[Any] = model(a_ , start_positions=a_ , end_positions=a_ ) (lowercase ) : Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> Optional[Any]: lowercase : List[Any] = FlaubertForSequenceClassification(a_ ) model.to(a_ ) model.eval() lowercase : List[Any] = model(a_ ) lowercase : str = model(a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> str: lowercase : Dict = self.num_labels lowercase : int = FlaubertForTokenClassification(a_ ) model.to(a_ ) model.eval() lowercase : int = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ) -> Any: lowercase : Optional[int] = self.num_choices lowercase : Dict = FlaubertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() lowercase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Optional[Any] = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self ) -> Optional[Any]: lowercase : Dict = self.prepare_config_and_inputs() ( lowercase ) : List[Any] = config_and_inputs lowercase : Any = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase): '''simple docstring''' _snake_case = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _snake_case = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def a__ ( self , a_ , a_ , a_ , a_ , a_ ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self , a_ , a_ , a_=False ) -> int: lowercase : Tuple = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) lowercase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def a__ ( self ) -> str: lowercase : Optional[Any] = FlaubertModelTester(self ) lowercase : str = ConfigTester(self , config_class=a_ , emb_dim=3_7 ) def a__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def a__ ( self ) -> Optional[Any]: lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a_ ) def a__ ( self ) -> int: lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a_ ) def a__ ( self ) -> Optional[int]: lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a_ ) def a__ ( self ) -> Optional[Any]: lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a_ ) def a__ ( self ) -> List[Any]: lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a_ ) def a__ ( self ) -> Tuple: lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a_ ) def a__ ( self ) -> List[str]: lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a_ ) @slow def a__ ( self ) -> Optional[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Optional[Any] = FlaubertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def a__ ( self ) -> Dict: lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase : int = True lowercase : Union[str, Any] = model_class(config=a_ ) lowercase : int = self._prepare_for_class(a_ , a_ ) lowercase : List[Any] = torch.jit.trace( a_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , "traced_model.pt" ) ) lowercase : List[str] = torch.jit.load(os.path.join(a_ , "traced_model.pt" ) , map_location=a_ ) loaded(inputs_dict["input_ids"].to(a_ ) , inputs_dict["attention_mask"].to(a_ ) ) @require_torch class _UpperCamelCase ( unittest.TestCase): '''simple docstring''' @slow def a__ ( self ) -> Any: lowercase : Optional[int] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) lowercase : Dict = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): lowercase : Optional[Any] = model(a_ )[0] lowercase : List[str] = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , a_ ) lowercase : Optional[int] = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) )
707
'''simple docstring''' import functools def _A ( A ,A ) -> int: lowercase : Union[str, Any] = len(A ) lowercase : Dict = len(A ) @functools.cache def min_distance(A ,A ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowercase : List[str] = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 ,A ) ,1 + min_distance(A ,indexa + 1 ) ,diff + min_distance(indexa + 1 ,indexa + 1 ) ,) return min_distance(0 ,0 ) if __name__ == "__main__": import doctest doctest.testmod()
425
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Any = logging.get_logger(__name__) __A : Optional[Any] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A : Tuple = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } __A : Optional[int] = { '''gpt2''': 1024, '''gpt2-medium''': 1024, '''gpt2-large''': 1024, '''gpt2-xl''': 1024, '''distilgpt2''': 1024, } class lowerCamelCase ( _UpperCAmelCase ): lowercase : str = VOCAB_FILES_NAMES lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] = ['input_ids', 'attention_mask'] lowercase : Dict = GPTaTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_="<|endoftext|>" , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ): super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Dict = kwargs.pop("""add_bos_token""" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: UpperCamelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop("""type""" ) ) UpperCamelCase : Any = add_prefix_space UpperCamelCase : Optional[int] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = add_prefix_space def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = kwargs.get("""is_split_into_words""" , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = kwargs.get("""is_split_into_words""" , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : int = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def a_ ( self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: UpperCamelCase : str = input_ids[-self.model_max_length :] return input_ids
499
"""simple docstring""" import math import random def A_ ( snake_case_ : float ,snake_case_ : bool = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __A : int = 0.02 def A_ ( snake_case_ : int ,snake_case_ : int ): '''simple docstring''' UpperCamelCase : List[str] = float(2 * (random.randint(1 ,1_0_0 )) - 1 ) for _ in range(snake_case_ ): # Forward propagation UpperCamelCase : Any = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? UpperCamelCase : Tuple = (expected / 1_0_0) - layer_a # Error delta UpperCamelCase : List[str] = layer_1_error * sigmoid_function(snake_case_ ,snake_case_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_0_0 if __name__ == "__main__": import doctest doctest.testmod() __A : Dict = int(input('''Expected value: ''')) __A : List[Any] = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
499
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""ConditionalDetrFeatureExtractor"""] snake_case = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
488
def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = [0] * len(lowercase ) SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Any = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase ) ): if indegree[i] == 0: queue.append(lowercase ) while queue: SCREAMING_SNAKE_CASE : Optional[Any] = queue.pop(0 ) cnt += 1 topo.append(lowercase ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(lowercase ) if cnt != len(lowercase ): print("Cycle exists" ) else: print(lowercase ) # Adjacency List of Graph snake_case = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
488
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ : def __init__(self : Any, __UpperCAmelCase : Optional[Any], __UpperCAmelCase : Any=13, __UpperCAmelCase : Optional[Any]=32, __UpperCAmelCase : List[Any]=3, __UpperCAmelCase : Any=4, __UpperCAmelCase : Union[str, Any]=[10, 20, 30, 40], __UpperCAmelCase : Any=[2, 2, 3, 2], __UpperCAmelCase : Any=True, __UpperCAmelCase : int=True, __UpperCAmelCase : Any=37, __UpperCAmelCase : Tuple="gelu", __UpperCAmelCase : Union[str, Any]=10, __UpperCAmelCase : str=0.02, __UpperCAmelCase : Tuple=["stage2", "stage3", "stage4"], __UpperCAmelCase : Tuple=[2, 3, 4], __UpperCAmelCase : Union[str, Any]=None, ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : Any = num_stages SCREAMING_SNAKE_CASE : List[str] = hidden_sizes SCREAMING_SNAKE_CASE : List[Any] = depths SCREAMING_SNAKE_CASE : Tuple = is_training SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : List[str] = num_labels SCREAMING_SNAKE_CASE : Optional[int] = initializer_range SCREAMING_SNAKE_CASE : int = out_features SCREAMING_SNAKE_CASE : Dict = out_indices SCREAMING_SNAKE_CASE : Tuple = scope def lowercase__ (self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size], self.num_labels ) SCREAMING_SNAKE_CASE : str = self.get_config() return config, pixel_values, labels def lowercase__ (self : Optional[Any] ) -> Optional[int]: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels, hidden_sizes=self.hidden_sizes, depths=self.depths, num_stages=self.num_stages, hidden_act=self.hidden_act, is_decoder=__UpperCAmelCase, initializer_range=self.initializer_range, out_features=self.out_features, out_indices=self.out_indices, num_labels=self.num_labels, ) def lowercase__ (self : int, __UpperCAmelCase : str, __UpperCAmelCase : Dict, __UpperCAmelCase : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = ConvNextVaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE : Any = model(__UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def lowercase__ (self : List[Any], __UpperCAmelCase : Dict, __UpperCAmelCase : Optional[Any], __UpperCAmelCase : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = ConvNextVaForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE : str = model(__UpperCAmelCase, labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ (self : str, __UpperCAmelCase : Dict, __UpperCAmelCase : Optional[int], __UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ConvNextVaBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(__UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, config.hidden_sizes[1:] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Any = ConvNextVaBackbone(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE : Any = model(__UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ), 1 ) self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]] ) def lowercase__ (self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict def lowercase__ (self : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = config_and_inputs SCREAMING_SNAKE_CASE : str = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class a__ ( _lowercase, _lowercase, unittest.TestCase ): __magic_name__ : Optional[int] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __magic_name__ : Tuple = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) __magic_name__ : List[Any] = False __magic_name__ : int = False __magic_name__ : Optional[int] = False __magic_name__ : int = False __magic_name__ : List[str] = False def lowercase__ (self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = ConvNextVaModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self, config_class=__UpperCAmelCase, has_text_modality=__UpperCAmelCase, hidden_size=37 ) def lowercase__ (self : int ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def lowercase__ (self : Any ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def lowercase__ (self : List[str] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def lowercase__ (self : List[Any] ) -> int: """simple docstring""" pass def lowercase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_with_labels() SCREAMING_SNAKE_CASE : Union[str, Any] = True if model_class.__name__ in [ *get_values(__UpperCAmelCase ), *get_values(__UpperCAmelCase ), ]: continue SCREAMING_SNAKE_CASE : str = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(__UpperCAmelCase, __UpperCAmelCase, return_labels=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = model(**__UpperCAmelCase ).loss loss.backward() def lowercase__ (self : Dict ) -> Optional[int]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : str = True if ( model_class.__name__ in [*get_values(__UpperCAmelCase ), *get_values(__UpperCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue SCREAMING_SNAKE_CASE : List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() SCREAMING_SNAKE_CASE : Tuple = self._prepare_for_class(__UpperCAmelCase, __UpperCAmelCase, return_labels=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = model(**__UpperCAmelCase ).loss loss.backward() def lowercase__ (self : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[Any] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1], __UpperCAmelCase ) def lowercase__ (self : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase__ (self : int ) -> List[str]: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase : str, __UpperCAmelCase : Tuple, __UpperCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE : Optional[int] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(__UpperCAmelCase, __UpperCAmelCase ) ) SCREAMING_SNAKE_CASE : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : str = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ), expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = True check_hidden_states_output(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) def lowercase__ (self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def lowercase__ (self : List[Any] ) -> Dict: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Tuple = ConvNextVaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __lowercase (): SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def lowercase__ (self : Tuple ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def lowercase__ (self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : str = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : int = preprocessor(images=__UpperCAmelCase, return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(**__UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = torch.tensor([0.9996, 0.1966, -0.4386] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3], __UpperCAmelCase, atol=1e-4 ) )
507
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
507
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=sys.maxsize ) -> Optional[int]: lowerCamelCase_ = "bilinear" lowerCamelCase_ = max_size lowerCamelCase_ = short_edge_length def __call__( self , lowercase ) -> Any: lowerCamelCase_ = [] for img in imgs: lowerCamelCase_ , lowerCamelCase_ = img.shape[:2] # later: provide list and randomly choose index for resize lowerCamelCase_ = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowerCamelCase_ = size * 1.0 / min(lowercase , lowercase ) if h < w: lowerCamelCase_ , lowerCamelCase_ = size, scale * w else: lowerCamelCase_ , lowerCamelCase_ = scale * h, size if max(lowercase , lowercase ) > self.max_size: lowerCamelCase_ = self.max_size * 1.0 / max(lowercase , lowercase ) lowerCamelCase_ = newh * scale lowerCamelCase_ = neww * scale lowerCamelCase_ = int(neww + 0.5 ) lowerCamelCase_ = int(newh + 0.5 ) if img.dtype == np.uinta: lowerCamelCase_ = Image.fromarray(lowercase ) lowerCamelCase_ = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowerCamelCase_ = np.asarray(lowercase ) else: lowerCamelCase_ = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowerCamelCase_ = nn.functional.interpolate( lowercase , (newh, neww) , mode=self.interp_method , align_corners=lowercase ).squeeze(0 ) img_augs.append(lowercase ) return img_augs class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase ) -> Tuple: lowerCamelCase_ = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowerCamelCase_ = cfg.INPUT.FORMAT lowerCamelCase_ = cfg.SIZE_DIVISIBILITY lowerCamelCase_ = cfg.PAD_VALUE lowerCamelCase_ = cfg.INPUT.MAX_SIZE_TEST lowerCamelCase_ = cfg.MODEL.DEVICE lowerCamelCase_ = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCamelCase_ = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowerCamelCase_ = lambda lowercase : (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE_( self , lowercase ) -> int: lowerCamelCase_ = tuple(max(lowercase ) for s in zip(*[img.shape for img in images] ) ) lowerCamelCase_ = [im.shape[-2:] for im in images] lowerCamelCase_ = [ nn.functional.pad( lowercase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(lowercase , lowercase ) ] return torch.stack(lowercase ), torch.tensor(lowercase ) def __call__( self , lowercase , lowercase=False ) -> Union[str, Any]: with torch.no_grad(): if not isinstance(lowercase , lowercase ): lowerCamelCase_ = [images] if single_image: assert len(lowercase ) == 1 for i in range(len(lowercase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(lowercase , images.pop(lowercase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( lowercase , torch.as_tensor(img_tensorize(images.pop(lowercase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowerCamelCase_ = torch.tensor([im.shape[:2] for im in images] ) lowerCamelCase_ = self.aug(lowercase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowerCamelCase_ = [self.normalizer(lowercase ) for x in images] # now pad them to do the following operations lowerCamelCase_ , lowerCamelCase_ = self.pad(lowercase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowerCamelCase_ = torch.true_divide(lowercase , lowercase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): assert torch.isfinite(lowerCamelCase__ ).all(), "Box tensor contains infinite or NaN!" lowerCamelCase_ , lowerCamelCase_ = box_size tensor[:, 0].clamp_(min=0 , max=lowerCamelCase__ ) tensor[:, 1].clamp_(min=0 , max=lowerCamelCase__ ) tensor[:, 2].clamp_(min=0 , max=lowerCamelCase__ ) tensor[:, 3].clamp_(min=0 , max=lowerCamelCase__ )
313
from math import factorial __A ={str(digit): factorial(digit) for digit in range(1_0)} def lowerCamelCase_ ( lowerCamelCase__ ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("Parameter number must be int" ) if number < 0: raise ValueError("Parameter number must be greater than or equal to 0" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowerCamelCase__ ) ) def lowerCamelCase_ ( lowerCamelCase__ = 6_0 , lowerCamelCase__ = 1_0_0_0_0_0_0 ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or not isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise TypeError("Parameters chain_length and number_limit must be int" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( "Parameters chain_length and number_limit must be greater than 0" ) # the counter for the chains with the exact desired length lowerCamelCase_ = 0 # the cached sizes of the previous chains lowerCamelCase_ = {} for start_chain_element in range(1 , lowerCamelCase__ ): # The temporary set will contain the elements of the chain lowerCamelCase_ = set() lowerCamelCase_ = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. lowerCamelCase_ = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowerCamelCase__ ) chain_set_length += 1 lowerCamelCase_ = digit_factorial_sum(lowerCamelCase__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] lowerCamelCase_ = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
313
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { "facebook/nllb-moe-54B": "https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json", } class snake_case__ ( __A ): UpperCAmelCase : Any = """nllb-moe""" UpperCAmelCase : Any = ["""past_key_values"""] UpperCAmelCase : Any = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , UpperCamelCase_=128112 , UpperCamelCase_=1024 , UpperCamelCase_=12 , UpperCamelCase_=4096 , UpperCamelCase_=16 , UpperCamelCase_=12 , UpperCamelCase_=4096 , UpperCamelCase_=16 , UpperCamelCase_=0.05 , UpperCamelCase_=0.05 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_="relu" , UpperCamelCase_=1024 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , UpperCamelCase_=0.02 , UpperCamelCase_=2 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_="float32" , UpperCamelCase_=False , UpperCamelCase_=128 , UpperCamelCase_=64 , UpperCamelCase_=4 , UpperCamelCase_=4 , UpperCamelCase_=0.001 , UpperCamelCase_=0.001 , UpperCamelCase_="all" , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=1.0 , UpperCamelCase_=0.2 , UpperCamelCase_=1 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=False , **UpperCamelCase_ , ) -> List[Any]: """simple docstring""" a_ : Union[str, Any] = vocab_size a_ : Union[str, Any] = max_position_embeddings a_ : List[Any] = d_model a_ : Dict = encoder_ffn_dim a_ : List[str] = encoder_layers a_ : Dict = encoder_attention_heads a_ : Union[str, Any] = decoder_ffn_dim a_ : List[str] = decoder_layers a_ : Optional[int] = decoder_attention_heads a_ : Any = dropout a_ : str = attention_dropout a_ : Any = activation_dropout a_ : Tuple = activation_function a_ : Optional[Any] = init_std a_ : int = encoder_layerdrop a_ : Union[str, Any] = decoder_layerdrop a_ : int = use_cache a_ : Optional[int] = encoder_layers a_ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True a_ : Optional[Any] = router_z_loss_coef a_ : int = router_aux_loss_coef a_ : List[Any] = decoder_sparse_step a_ : Optional[Any] = encoder_sparse_step a_ : List[str] = num_experts a_ : int = expert_capacity a_ : Optional[Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) a_ : Union[str, Any] = router_dtype a_ : Optional[int] = router_ignore_padding_tokens a_ : Any = batch_prioritized_routing a_ : Dict = second_expert_policy a_ : str = normalize_router_prob_before_dropping a_ : str = moe_eval_capacity_token_fraction a_ : Optional[Any] = moe_token_dropout a_ : Union[str, Any] = output_router_logits super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
419
from __future__ import annotations from cmath import sqrt def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) a_ : Any = b * b - 4 * a * c a_ : List[str] = (-b + sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) a_ : Union[str, Any] = (-b - sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _lowerCamelCase ( ): """simple docstring""" a_ , a_ : str = quadratic_roots(a=5 , b=6 , c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
419
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
472
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" a = StableDiffusionPanoramaPipeline a = TEXT_TO_IMAGE_PARAMS a = TEXT_TO_IMAGE_BATCH_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Union[str, Any] ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ = DDIMScheduler() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str]=0 ) -> Any: SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, # Setting height and width to None to prevent OOMs on CPU. '''height''': None, '''width''': None, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Any ) -> Optional[Any]: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self : List[Any] ) -> List[Any]: super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def lowercase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''french fries''' SCREAMING_SNAKE_CASE__ = sd_pipe(**__lowerCamelCase , negative_prompt=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe(**__lowerCamelCase , view_batch_size=2 ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Optional[Any] ) -> Any: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , skip_prk_steps=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = sd_pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Tuple ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : Any , __lowerCamelCase : Dict=0 ) -> Dict: SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''a photo of the dolomites''', '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_pretrained(__lowerCamelCase , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline.from_pretrained(__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = self.get_inputs() SCREAMING_SNAKE_CASE__ = pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE__ = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase_ ( self : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-base''' , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = self.get_inputs() SCREAMING_SNAKE_CASE__ = pipe(**__lowerCamelCase ).images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) SCREAMING_SNAKE_CASE__ = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase_ ( self : List[str] ) -> List[str]: SCREAMING_SNAKE_CASE__ = 0 def callback_fn(__lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : torch.FloatTensor ) -> None: SCREAMING_SNAKE_CASE__ = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE__ = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: SCREAMING_SNAKE_CASE__ = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) SCREAMING_SNAKE_CASE__ = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_pretrained(__lowerCamelCase , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline.from_pretrained(__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ = self.get_inputs() pipe(**__lowerCamelCase , callback=__lowerCamelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase_ ( self : Tuple ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ = '''stabilityai/stable-diffusion-2-base''' SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_pretrained(__lowerCamelCase , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ = StableDiffusionPanoramaPipeline.from_pretrained(__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ = self.get_inputs() SCREAMING_SNAKE_CASE__ = pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
472
1
class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase : Tuple = n UpperCamelCase : List[Any] = [None] * self.n UpperCamelCase : str = 0 # index of the first element UpperCamelCase : Optional[int] = 0 UpperCamelCase : Dict = 0 def __len__( self ) -> int: return self.size def snake_case_ ( self ) -> bool: return self.size == 0 def snake_case_ ( self ) -> str: return False if self.is_empty() else self.array[self.front] def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) UpperCamelCase : Union[str, Any] = data UpperCamelCase : int = (self.rear + 1) % self.n self.size += 1 return self def snake_case_ ( self ) -> Dict: if self.size == 0: raise Exception('UNDERFLOW' ) UpperCamelCase : Tuple = self.array[self.front] UpperCamelCase : str = None UpperCamelCase : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
40
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class _lowerCamelCase( _a ): lowercase_ : Any = """deta""" lowercase_ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=None, lowerCamelCase=9_00, lowerCamelCase=20_48, lowerCamelCase=6, lowerCamelCase=20_48, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=True, lowerCamelCase=3_00, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, **lowerCamelCase, ) -> Any: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4']) else: if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Dict = backbone_config.pop('model_type') _lowercase : int = CONFIG_MAPPING[backbone_model_type] _lowercase : Union[str, Any] = config_class.from_dict(lowerCamelCase) _lowercase : Union[str, Any] = backbone_config _lowercase : Any = num_queries _lowercase : Union[str, Any] = max_position_embeddings _lowercase : Union[str, Any] = d_model _lowercase : Optional[int] = encoder_ffn_dim _lowercase : Optional[int] = encoder_layers _lowercase : Optional[Any] = encoder_attention_heads _lowercase : Optional[Any] = decoder_ffn_dim _lowercase : Dict = decoder_layers _lowercase : Tuple = decoder_attention_heads _lowercase : Union[str, Any] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Tuple = activation_function _lowercase : List[Any] = init_std _lowercase : Union[str, Any] = init_xavier_std _lowercase : int = encoder_layerdrop _lowercase : Optional[int] = auxiliary_loss _lowercase : Dict = position_embedding_type # deformable attributes _lowercase : Any = num_feature_levels _lowercase : str = encoder_n_points _lowercase : Any = decoder_n_points _lowercase : List[str] = two_stage _lowercase : Dict = two_stage_num_proposals _lowercase : Any = with_box_refine _lowercase : List[Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : List[Any] = class_cost _lowercase : Optional[int] = bbox_cost _lowercase : str = giou_cost # Loss coefficients _lowercase : Optional[int] = mask_loss_coefficient _lowercase : int = dice_loss_coefficient _lowercase : List[Any] = bbox_loss_coefficient _lowercase : Optional[Any] = giou_loss_coefficient _lowercase : str = eos_coefficient _lowercase : int = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = copy.deepcopy(self.__dict__) _lowercase : Optional[int] = self.backbone_config.to_dict() _lowercase : Optional[Any] = self.__class__.model_type return output
89
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": a = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") a = parser.parse_args() if args.model_type == "roberta": a = RobertaForMaskedLM.from_pretrained(args.model_name) a = """roberta""" elif args.model_type == "gpt2": a = GPTaLMHeadModel.from_pretrained(args.model_name) a = """transformer""" a = model.state_dict() a = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: a = state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: a = F'''{prefix}.embeddings.{w}.weight''' a = state_dict[param_name] for w in ["weight", "bias"]: a = F'''{prefix}.embeddings.LayerNorm.{w}''' a = state_dict[param_name] # Transformer Blocks # a = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: a = state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] a = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: a = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: a = state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: a = state_dict[F'''lm_head.dense.{w}'''] a = state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: a = state_dict[F'''{prefix}.ln_f.{w}'''] a = state_dict["""lm_head.weight"""] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
382
def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[Any] = [0 for i in range(len(__magic_name__ ) )] # initialize interval's left pointer and right pointer _lowerCAmelCase , _lowerCAmelCase :List[Any] = 0, 0 for i in range(1 , len(__magic_name__ ) ): # case when current index is inside the interval if i <= right_pointer: _lowerCAmelCase :Any = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _lowerCAmelCase :Any = min_edge while go_next(__magic_name__ , __magic_name__ , __magic_name__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _lowerCAmelCase , _lowerCAmelCase :List[Any] = i, i + z_result[i] - 1 return z_result def UpperCamelCase_( __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : str ): """simple docstring""" return i + z_result[i] < len(__magic_name__ ) and s[z_result[i]] == s[i + z_result[i]] def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _lowerCAmelCase :Optional[Any] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__magic_name__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
382
1
class a : """simple docstring""" def __init__( self : List[str] ) -> None: __UpperCAmelCase : dict[str, TrieNode] = {} # Mapping from char to TrieNode __UpperCAmelCase : List[str] = False def UpperCAmelCase ( self : str , __lowercase : list[str] ) -> None: for word in words: self.insert(__lowercase ) def UpperCAmelCase ( self : int , __lowercase : str ) -> None: __UpperCAmelCase : List[Any] = self for char in word: if char not in curr.nodes: __UpperCAmelCase : List[str] = TrieNode() __UpperCAmelCase : Any = curr.nodes[char] __UpperCAmelCase : Dict = True def UpperCAmelCase ( self : List[Any] , __lowercase : str ) -> bool: __UpperCAmelCase : Union[str, Any] = self for char in word: if char not in curr.nodes: return False __UpperCAmelCase : Any = curr.nodes[char] return curr.is_leaf def UpperCAmelCase ( self : Union[str, Any] , __lowercase : str ) -> None: def _delete(__lowercase : TrieNode , __lowercase : str , __lowercase : int ) -> bool: if index == len(__lowercase ): # If word does not exist if not curr.is_leaf: return False __UpperCAmelCase : Union[str, Any] = False return len(curr.nodes ) == 0 __UpperCAmelCase : List[Any] = word[index] __UpperCAmelCase : int = curr.nodes.get(__lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __UpperCAmelCase : Any = _delete(__lowercase , __lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __lowercase , 0 ) def lowerCamelCase__ ( __lowerCamelCase : TrieNode , __lowerCamelCase : str ): if node.is_leaf: print(__lowerCamelCase , end=""" """ ) for key, value in node.nodes.items(): print_words(__lowerCamelCase , word + key ) def lowerCamelCase__ ( ): __UpperCAmelCase : Optional[int] = """banana bananas bandana band apple all beast""".split() __UpperCAmelCase : int = TrieNode() root.insert_many(__lowerCamelCase ) # print_words(root, "") assert all(root.find(__lowerCamelCase ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : bool ): print(str(__lowerCamelCase ) , """works!""" if passes else """doesn't work :(""" ) def lowerCamelCase__ ( ): assert test_trie() def lowerCamelCase__ ( ): print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
63
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __UpperCAmelCase = logging.get_logger(__name__) class __lowercase ( __lowerCamelCase ): snake_case_ = ["""input_features""", """attention_mask"""] def __init__( self : Any ,A : str=80 ,A : Optional[int]=16_000 ,A : int=0.0 ,A : str=10 ,A : Any=25 ,A : str="hamming_window" ,A : int=3_2_7_6_8.0 ,A : List[str]=0.9_7 ,A : Optional[int]=1.0 ,A : Optional[Any]=True ,A : Tuple=True ,A : Any=False ,**A : int ,): '''simple docstring''' super().__init__(feature_size=A ,sampling_rate=A ,padding_value=A ,**A ) UpperCAmelCase__ : str = feature_size UpperCAmelCase__ : int = sampling_rate UpperCAmelCase__ : int = padding_value UpperCAmelCase__ : Dict = hop_length UpperCAmelCase__ : int = win_length UpperCAmelCase__ : Dict = frame_signal_scale UpperCAmelCase__ : Dict = preemphasis_coeff UpperCAmelCase__ : str = mel_floor UpperCAmelCase__ : Any = normalize_means UpperCAmelCase__ : str = normalize_vars UpperCAmelCase__ : int = win_function UpperCAmelCase__ : List[Any] = return_attention_mask UpperCAmelCase__ : str = win_length * sampling_rate // 1_000 UpperCAmelCase__ : List[Any] = hop_length * sampling_rate // 1_000 UpperCAmelCase__ : int = optimal_fft_length(self.sample_size ) UpperCAmelCase__ : List[Any] = (self.n_fft // 2) + 1 def __lowercase ( self : Union[str, Any] ,A : np.array ): '''simple docstring''' if self.win_function == "hamming_window": UpperCAmelCase__ : Any = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=A ) else: UpperCAmelCase__ : Any = window_function(window_length=self.sample_size ,name=self.win_function ) UpperCAmelCase__ : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,) UpperCAmelCase__ : Optional[Any] = spectrogram( one_waveform * self.frame_signal_scale ,window=A ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=A ,preemphasis=self.preemphasis_coeff ,mel_filters=A ,mel_floor=self.mel_floor ,log_mel="""log""" ,) return msfc_features.T def __lowercase ( self : str ,A : Any ,A : Optional[int] ,A : str ): '''simple docstring''' # make sure we normalize float32 arrays if self.normalize_means: UpperCAmelCase__ : Optional[Any] = x[:input_length].mean(axis=0 ) UpperCAmelCase__ : Any = np.subtract(A ,A ) if self.normalize_vars: UpperCAmelCase__ : str = x[:input_length].std(axis=0 ) UpperCAmelCase__ : Optional[int] = np.divide(A ,A ) if input_length < x.shape[0]: UpperCAmelCase__ : int = padding_value # make sure array is in float32 UpperCAmelCase__ : str = x.astype(np.floataa ) return x def __lowercase ( self : Union[str, Any] ,A : List[np.ndarray] ,A : Optional[np.ndarray] = None ): '''simple docstring''' UpperCAmelCase__ : Any = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(A ,A ,self.padding_value ) for x, n in zip(A ,A )] def __call__( self : Union[str, Any] ,A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,A : Union[bool, str, PaddingStrategy] = False ,A : Optional[int] = None ,A : bool = False ,A : Optional[int] = None ,A : Optional[bool] = None ,A : Optional[Union[str, TensorType]] = None ,A : Optional[int] = None ,**A : Tuple ,): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) UpperCAmelCase__ : Optional[Any] = isinstance(A ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) UpperCAmelCase__ : Any = is_batched_numpy or ( isinstance(A ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase__ : List[str] = [np.asarray(A ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A ,np.ndarray ): UpperCAmelCase__ : Union[str, Any] = np.asarray(A ,dtype=np.floataa ) elif isinstance(A ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase__ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase__ : Optional[Any] = [raw_speech] # extract fbank features UpperCAmelCase__ : Tuple = [self._extract_mfsc_features(A ) for one_waveform in raw_speech] # convert into correct format for padding UpperCAmelCase__ : str = BatchFeature({"""input_features""": features} ) UpperCAmelCase__ : Optional[Any] = self.pad( A ,padding=A ,max_length=A ,truncation=A ,pad_to_multiple_of=A ,return_attention_mask=A ,**A ,) # make sure list is in array format UpperCAmelCase__ : Tuple = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] ,A ): UpperCAmelCase__ : Union[str, Any] = [np.asarray(A ,dtype=np.floataa ) for feature in input_features] UpperCAmelCase__ : Dict = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: UpperCAmelCase__ : str = [np.asarray(A ,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCAmelCase__ : Union[str, Any] = ( np.array(A ,dtype=np.intaa ) if self._get_padding_strategies(A ,max_length=A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCAmelCase__ : Any = self.normalize( padded_inputs["""input_features"""] ,attention_mask=A ) if return_tensors is not None: UpperCAmelCase__ : Union[str, Any] = padded_inputs.convert_to_tensors(A ) return padded_inputs
65
0
"""simple docstring""" def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def UpperCAmelCase ( a_, a_, a_ ): '''simple docstring''' return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
133
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCAmelCase ( a_, a_ ): '''simple docstring''' lowerCamelCase : int = Mock() lowerCamelCase : int = conn, Mock() lowerCamelCase : Any = iter([1, None] ) lowerCamelCase : Dict = lambda a_ : next(a_ ) # ===== invoke ===== send_file(filename='mytext.txt', testing=a_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
133
1
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "num_attention_heads" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : int=13 , _UpperCAmelCase : Union[str, Any]=64 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Dict=[128, 256, 384] , _UpperCAmelCase : int=[4, 6, 8] , _UpperCAmelCase : Dict=[2, 3, 4] , _UpperCAmelCase : Union[str, Any]=[16, 16, 16] , _UpperCAmelCase : int=0 , _UpperCAmelCase : Tuple=[2, 2, 2] , _UpperCAmelCase : Tuple=[2, 2, 2] , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=2 , ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range def lowercase__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase__ ( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = LevitModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) UpperCAmelCase_ = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ = image_size[0], image_size[1] for _ in range(4 ): UpperCAmelCase_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCAmelCase_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = LevitForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' UpperCAmelCase_ = LevitModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' return @unittest.skip(reason="Levit does not use inputs_embeds" ) def lowercase__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="Levit does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass def lowercase__ ( self : Optional[int] ) -> Any: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = len(self.model_tester.depths ) + 1 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) UpperCAmelCase_ = (self.model_tester.image_size, self.model_tester.image_size) UpperCAmelCase_ , UpperCAmelCase_ = image_size[0], image_size[1] for _ in range(4 ): UpperCAmelCase_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCAmelCase_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass def lowercase__ ( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple=False ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase_ = False UpperCAmelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) UpperCAmelCase_ = model(**_UpperCAmelCase ).loss loss.backward() def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): UpperCAmelCase_ = problem_type["title"] UpperCAmelCase_ = problem_type["num_labels"] UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCAmelCase_ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if problem_type["num_labels"] > 1: UpperCAmelCase_ = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCAmelCase_ = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_UpperCAmelCase ) as warning_list: UpperCAmelCase_ = model(**_UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = LevitModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
82
import math from numpy import inf from scipy.integrate import quad def SCREAMING_SNAKE_CASE_ ( __A : float ) -> float: """simple docstring""" if num <= 0: raise ValueError('math domain error' ) return quad(__A , 0 , __A , args=(__A) )[0] def SCREAMING_SNAKE_CASE_ ( __A : float , __A : float ) -> float: """simple docstring""" return math.pow(__A , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
570
0
'''simple docstring''' def A__ ( __lowerCamelCase, __lowerCamelCase ): return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(1_00, 0.25) = }""") print(F"""{price_plus_tax(125.50, 0.05) = }""")
714
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["image_processor", "tokenizer"] UpperCAmelCase_ ="Pix2StructImageProcessor" UpperCAmelCase_ =("T5Tokenizer", "T5TokenizerFast") def __init__( self , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = False super().__init__(_A , _A ) def __call__( self , _A=None , _A = None , _A = True , _A = False , _A = None , _A = None , _A = 2048 , _A = 0 , _A = None , _A = None , _A = False , _A = False , _A = False , _A = False , _A = False , _A = True , _A = None , **_A , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ = self.tokenizer SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values SCREAMING_SNAKE_CASE_ = self.image_processor( _A , return_tensors=_A , max_patches=_A , **_A ) else: # add pixel_values and bbox SCREAMING_SNAKE_CASE_ = self.image_processor( _A , return_tensors=_A , max_patches=_A , header_text=_A , **_A ) if text is not None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) if "attention_mask" in text_encoding: SCREAMING_SNAKE_CASE_ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: SCREAMING_SNAKE_CASE_ = text_encoding.pop('''input_ids''' ) else: SCREAMING_SNAKE_CASE_ = None if text_encoding is not None: encoding_image_processor.update(_A ) return encoding_image_processor def _UpperCamelCase ( self , *_A , **_A ) -> int: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> List[str]: return self.tokenizer.decode(*_A , **_A ) @property def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
597
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = "" for word_or_phrase in separated: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": from doctest import testmod testmod()
636
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch __a : List[str] = random.Random() def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=1.0 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ) -> Optional[int]: if rng is None: lowercase__ : Optional[Any] = global_rng lowercase__ : Union[str, Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=80 , lowerCamelCase=16 , lowerCamelCase=64 , lowerCamelCase="hann_window" , lowerCamelCase=80 , lowerCamelCase=7600 , lowerCamelCase=1E-10 , lowerCamelCase=True , ) -> int: """simple docstring""" lowercase__ : Optional[int] = parent lowercase__ : Optional[Any] = batch_size lowercase__ : Dict = min_seq_length lowercase__ : Optional[int] = max_seq_length lowercase__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase__ : List[Any] = feature_size lowercase__ : Union[str, Any] = padding_value lowercase__ : Dict = sampling_rate lowercase__ : int = do_normalize lowercase__ : Union[str, Any] = num_mel_bins lowercase__ : Optional[Any] = hop_length lowercase__ : Tuple = win_length lowercase__ : Any = win_function lowercase__ : Optional[Any] = fmin lowercase__ : str = fmax lowercase__ : Union[str, Any] = mel_floor lowercase__ : str = return_attention_mask def __a ( self ) -> Any: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> List[str]: """simple docstring""" def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: lowercase__ : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowercase__ : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : Dict = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs def __a ( self , lowerCamelCase=False , lowerCamelCase=False ) -> Optional[int]: """simple docstring""" if equal_length: lowercase__ : Union[str, Any] = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase__ : Tuple = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch class UpperCAmelCase( snake_case_ , unittest.TestCase ): """simple docstring""" a : List[Any] = SpeechTaFeatureExtractor def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Union[str, Any] = SpeechTaFeatureExtractionTester(self ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" self.assertTrue(np.all(np.mean(lowerCamelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : str = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input lowercase__ : int = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Optional[int] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : Union[str, Any] = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Any = ["longest", "max_length", "do_not_pad"] lowercase__ : List[Any] = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : Optional[int] = feat_extract(lowerCamelCase , padding=lowerCamelCase , max_length=lowerCamelCase , return_tensors="np" ) lowercase__ : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Dict = range(800 , 1400 , 200 ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in lengths] lowercase__ : Tuple = ["longest", "max_length", "do_not_pad"] lowercase__ : str = [None, 1600, None] for max_length, padding in zip(lowerCamelCase , lowerCamelCase ): lowercase__ : List[str] = feat_extract(lowerCamelCase , max_length=lowerCamelCase , padding=lowerCamelCase ) lowercase__ : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __a ( self ) -> Optional[Any]: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="max_length" , return_tensors="np" ) lowercase__ : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Tuple = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=1000 , padding="longest" , return_tensors="np" ) lowercase__ : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) lowercase__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : Union[str, Any] = feat_extract( lowerCamelCase , truncation=lowerCamelCase , max_length=2000 , padding="longest" , return_tensors="np" ) lowercase__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __a ( self ) -> Any: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowercase__ : Tuple = np.random.rand(100 ).astype(np.floataa ) lowercase__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowercase__ : Tuple = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowercase__ : Dict = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowercase__ : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] lowercase__ : List[str] = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test feature size lowercase__ : str = feature_extractor(audio_target=lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowercase__ : Union[str, Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values lowercase__ : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched lowercase__ : Dict = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowercase__ : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowercase__ : Optional[Any] = np.asarray(lowerCamelCase ) lowercase__ : List[Any] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values lowercase__ : List[str] = feature_extractor(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) def __a ( self ) -> str: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Dict = feat_extract.model_input_names[0] lowercase__ : int = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase ) == len(lowerCamelCase ) for x, y in zip(lowerCamelCase , processed_features[input_name] ) ) ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowercase__ : Optional[int] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : Tuple = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feat_extract_tester.prepare_inputs_for_target(equal_length=lowerCamelCase ) lowercase__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowercase__ : List[str] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowercase__ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowercase__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Optional[Any] = feat_extract.model_input_names[0] lowercase__ : Optional[Any] = BatchFeature({input_name: speech_inputs} ) lowercase__ : Optional[int] = feat_extract.num_mel_bins # hack! lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" )[input_name] lowercase__ : Optional[int] = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : Tuple = self.feat_extract_dict lowercase__ : int = True lowercase__ : Optional[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : Union[str, Any] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Optional[int] = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = feat_extract.num_mel_bins # hack! lowercase__ : int = feat_extract.pad(lowerCamelCase , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ : List[Any] = self.feat_extract_dict lowercase__ : Optional[int] = True lowercase__ : List[Any] = self.feature_extraction_class(**lowerCamelCase ) lowercase__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowercase__ : List[str] = [len(lowerCamelCase ) for x in speech_inputs] lowercase__ : Any = feat_extract.model_input_names[0] lowercase__ : Dict = BatchFeature({input_name: speech_inputs} ) lowercase__ : int = min(lowerCamelCase ) lowercase__ : List[str] = feat_extract.num_mel_bins # hack! lowercase__ : Dict = feat_extract.pad( lowerCamelCase , padding="max_length" , max_length=lowerCamelCase , truncation=lowerCamelCase , return_tensors="np" ) self.assertIn("attention_mask" , lowerCamelCase ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __a ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" from datasets import load_dataset lowercase__ : Any = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowercase__ : int = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : List[str] = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on lowercase__ : List[Any] = self._load_datasamples(1 ) lowercase__ : int = SpeechTaFeatureExtractor() lowercase__ : Tuple = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93680) ) self.assertTrue(torch.allclose(input_values[0, :30] , lowerCamelCase , atol=1E-6 ) ) def __a ( self ) -> int: """simple docstring""" lowercase__ : Optional[int] = torch.tensor( [-2.68_70, -3.01_04, -3.13_56, -3.53_52, -3.00_44, -3.03_53, -3.47_19, -3.67_77, -3.15_20, -2.94_35, -2.65_53, -2.87_95, -2.99_44, -2.59_21, -3.02_79, -3.03_86, -3.08_64, -3.12_91, -3.23_53, -2.74_44, -2.68_31, -2.72_87, -3.17_61, -3.15_71, -3.27_26, -3.05_82, -3.10_07, -3.45_33, -3.46_95, -3.09_98] ) # fmt: on lowercase__ : Any = self._load_datasamples(1 ) lowercase__ : List[Any] = SpeechTaFeatureExtractor() lowercase__ : int = feature_extractor(audio_target=lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
397
0
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCAmelCase_ : def __init__( self ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : int = value SCREAMING_SNAKE_CASE_ : int = None # Added in order to delete a node easier SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None def __repr__( self ): from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} ,indent=1 ) class lowerCAmelCase_ : def __init__( self ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Tuple = root def __str__( self ): return str(self.root ) def snake_case ( self ,snake_case__ ,snake_case__ ): if new_children is not None: # reset its kids SCREAMING_SNAKE_CASE_ : Union[str, Any] = node.parent if node.parent is not None: # reset its parent if self.is_right(snake_case__ ): # If it is the right children SCREAMING_SNAKE_CASE_ : str = new_children else: SCREAMING_SNAKE_CASE_ : str = new_children else: SCREAMING_SNAKE_CASE_ : Tuple = new_children def snake_case ( self ,snake_case__ ): if node.parent and node.parent.right: return node == node.parent.right return False def snake_case ( self ): return self.root is None def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Tuple = Node(snake_case__ ) # create a new Node if self.empty(): # if Tree is empty SCREAMING_SNAKE_CASE_ : int = new_node # set its root else: # Tree is not empty SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = new_node # We insert the new node in a leaf break else: SCREAMING_SNAKE_CASE_ : Optional[Any] = parent_node.left else: if parent_node.right is None: SCREAMING_SNAKE_CASE_ : Tuple = new_node break else: SCREAMING_SNAKE_CASE_ : int = parent_node.right SCREAMING_SNAKE_CASE_ : Any = parent_node def snake_case ( self ,*snake_case__ ): for value in values: self.__insert(snake_case__ ) def snake_case ( self ,snake_case__ ): if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: SCREAMING_SNAKE_CASE_ : int = node.left if value < node.value else node.right return node def snake_case ( self ,snake_case__ = None ): if node is None: if self.root is None: return None SCREAMING_SNAKE_CASE_ : int = self.root if not self.empty(): while node.right is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = node.right return node def snake_case ( self ,snake_case__ = None ): if node is None: SCREAMING_SNAKE_CASE_ : Dict = self.root if self.root is None: return None if not self.empty(): SCREAMING_SNAKE_CASE_ : List[Any] = self.root while node.left is not None: SCREAMING_SNAKE_CASE_ : Any = node.left return node def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : str = self.search(snake_case__ ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(snake_case__ ,snake_case__ ) elif node.left is None: # Has only right children self.__reassign_nodes(snake_case__ ,node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(snake_case__ ,node.left ) else: SCREAMING_SNAKE_CASE_ : List[str] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore SCREAMING_SNAKE_CASE_ : Optional[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def snake_case ( self ,snake_case__ ): if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def snake_case ( self ,snake_case__=None ): if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def snake_case ( self ,snake_case__ ,snake_case__ ): if node: self.inorder(snake_case__ ,node.left ) arr.append(node.value ) self.inorder(snake_case__ ,node.right ) def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Dict = [] self.inorder(snake_case__ ,snake_case__ ) # append all values to list using inorder traversal return arr[k - 1] def __UpperCAmelCase ( lowerCamelCase_ : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [] if curr_node is not None: SCREAMING_SNAKE_CASE_ : List[Any] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def __UpperCAmelCase ( ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = (8, 3, 6, 1, 10, 14, 13, 4, 7) SCREAMING_SNAKE_CASE_ : List[Any] = BinarySearchTree() for i in testlist: t.insert(UpperCamelCase__ ) # Prints all the elements of the list in order traversal print(UpperCamelCase__ ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(UpperCamelCase__ ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
720
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : Union[str, Any] = CLIPTokenizer __a : List[str] = CLIPTokenizerFast __a : List[str] = True __a : Tuple = {} __a : Tuple = False def snake_case ( self ): super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : List[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(zip(snake_case__ ,range(len(snake_case__ ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>'] SCREAMING_SNAKE_CASE_ : Any = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,**snake_case__ ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**snake_case__ ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : List[str] = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' return input_text, output_text def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = CLIPTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) SCREAMING_SNAKE_CASE_ : List[Any] = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[Any] = ['lo', 'w', 'er</w>', 'n', 'e', 'w', 'er</w>'] SCREAMING_SNAKE_CASE_ : Any = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : Optional[Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,snake_case__ ) @require_ftfy def snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) SCREAMING_SNAKE_CASE_ : Dict = 'A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.' SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways SCREAMING_SNAKE_CASE_ : Dict = 'xa\u0303y' + ' ' + 'x\xe3y' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : str = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of space type SCREAMING_SNAKE_CASE_ : Optional[Any] = [ '\u0009', # (horizontal tab, '\t') '\u000B', # (vertical tab) '\u000C', # (form feed) '\u0020', # (space, ' ') '\u200E', # (left-to-right mark):w '\u200F', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # Test that the tokenization is identical on unicode of line break type SCREAMING_SNAKE_CASE_ : Tuple = [ '\u000A', # (line feed, '\n') '\r\n', # (carriage return and line feed, '\r\n') '\u000D', # (carriage return, '\r') '\r', # (carriage return, '\r') '\u000D', # (carriage return, '\r') '\u2028', # (line separator) '\u2029', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) SCREAMING_SNAKE_CASE_ : Tuple = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE_ : Tuple = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : str = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = F' {text}' SCREAMING_SNAKE_CASE_ : Optional[int] = self.rust_tokenizer_class.from_pretrained( snake_case__ ,use_fast=snake_case__ ,) SCREAMING_SNAKE_CASE_ : int = tokenizer_r(snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) ,) def snake_case ( self ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained('robot-test/old-clip-tokenizer' ) self.assertTrue( context.exception.args[0].startswith( 'The `backend_tokenizer` provided does not match the expected format.' ) ) @require_ftfy def snake_case ( self ): super().test_tokenization_python_rust_equals() def snake_case ( self ): # CLIP always lower cases letters pass
685
0