code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE :Tuple = { '''configuration_ctrl''': ['''CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CTRLConfig'''], '''tokenization_ctrl''': ['''CTRLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = [ '''CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CTRLForSequenceClassification''', '''CTRLLMHeadModel''', '''CTRLModel''', '''CTRLPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Union[str, Any] = [ '''TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCTRLForSequenceClassification''', '''TFCTRLLMHeadModel''', '''TFCTRLModel''', '''TFCTRLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
283
from __future__ import annotations from math import gcd def _lowerCAmelCase ( lowerCAmelCase_ :int , lowerCAmelCase_ :int = 2 , lowerCAmelCase_ :int = 1 , lowerCAmelCase_ :int = 3 , )->int | None: '''simple docstring''' if num < 2: raise ValueError("The input value cannot be less than 2" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCAmelCase_ :int , lowerCAmelCase_ :int , lowerCAmelCase_ :int ) -> int: return (pow(lowerCAmelCase_ , 2 ) + step) % modulus for _ in range(lowerCAmelCase_ ): # These track the position within the cycle detection logic. snake_case_ = seed snake_case_ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. snake_case_ = rand_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ = rand_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ = rand_fn(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. snake_case_ = gcd(hare - tortoise , lowerCAmelCase_ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. snake_case_ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() SCREAMING_SNAKE_CASE :List[Any] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: SCREAMING_SNAKE_CASE :List[str] = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
283
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
77
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A: """simple docstring""" def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=True , _A=False , _A=True , _A=99 , _A=32 , _A=5 , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=16 , _A=2 , _A=0.0_2 , _A=3 , _A=4 , _A=None , ): __A : Union[str, Any] = parent __A : List[str] = batch_size __A : Optional[int] = seq_length __A : List[Any] = is_training __A : Optional[Any] = use_input_mask __A : List[Any] = use_token_type_ids __A : Optional[Any] = use_labels __A : List[str] = vocab_size __A : Optional[int] = hidden_size __A : List[Any] = num_hidden_layers __A : int = num_attention_heads __A : Dict = intermediate_size __A : Any = hidden_act __A : Union[str, Any] = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : Dict = type_vocab_size __A : Any = type_sequence_label_size __A : Dict = initializer_range __A : str = num_labels __A : Union[str, Any] = num_choices __A : str = scope def UpperCAmelCase_ ( self ): __A : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Optional[Any] = None if self.use_input_mask: __A : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __A : Dict = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Dict = None __A : List[Any] = None __A : List[Any] = None if self.use_labels: __A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __A : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self ): return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_A , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A ): __A : List[str] = LlamaModel(config=_A ) model.to(_A ) model.eval() __A : Any = model(_A , attention_mask=_A ) __A : Any = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : Dict = True __A : int = LlamaModel(_A ) model.to(_A ) model.eval() __A : str = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , ) __A : int = model( _A , attention_mask=_A , encoder_hidden_states=_A , ) __A : List[Any] = model(_A , attention_mask=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : Optional[Any] = LlamaForCausalLM(config=_A ) model.to(_A ) model.eval() __A : List[Any] = model(_A , attention_mask=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , _A , _A , _A , _A , _A , _A , _A , _A , _A , ): __A : int = True __A : List[Any] = True __A : List[Any] = LlamaForCausalLM(config=_A ) model.to(_A ) model.eval() # first forward pass __A : Optional[Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , use_cache=_A , ) __A : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __A : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __A : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __A : str = torch.cat([input_mask, next_mask] , dim=-1 ) __A : Tuple = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , output_hidden_states=_A , )['hidden_states'][0] __A : Union[str, Any] = model( _A , attention_mask=_A , encoder_hidden_states=_A , encoder_attention_mask=_A , past_key_values=_A , output_hidden_states=_A , )['hidden_states'][0] # select random slice __A : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __A : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __A : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-3 ) ) def UpperCAmelCase_ ( self ): __A : Tuple = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : Tuple = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _A( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[Any] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () UpperCamelCase : Optional[Any] = (LlamaForCausalLM,) if is_torch_available() else () UpperCamelCase : Optional[Any] = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase : int = False UpperCamelCase : Dict = False def UpperCAmelCase_ ( self ): __A : List[Any] = LlamaModelTester(self ) __A : Optional[int] = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCAmelCase_ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase_ ( self ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A : int = type self.model_tester.create_and_check_model(*_A ) def UpperCAmelCase_ ( self ): __A , __A : int = self.model_tester.prepare_config_and_inputs_for_common() __A : str = 3 __A : Optional[int] = input_dict['input_ids'] __A : int = input_ids.ne(1 ).to(_A ) __A : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : Optional[Any] = LlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __A : List[Any] = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self ): __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Union[str, Any] = 3 __A : Tuple = 'single_label_classification' __A : Union[str, Any] = input_dict['input_ids'] __A : List[str] = input_ids.ne(1 ).to(_A ) __A : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __A : Optional[int] = LlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __A : Tuple = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase_ ( self ): __A , __A : str = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = 3 __A : int = 'multi_label_classification' __A : int = input_dict['input_ids'] __A : List[str] = input_ids.ne(1 ).to(_A ) __A : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __A : List[Any] = LlamaForSequenceClassification(_A ) model.to(_A ) model.eval() __A : Tuple = model(_A , attention_mask=_A , labels=_A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('LLaMA buffers include complex numbers, which breaks this test' ) def UpperCAmelCase_ ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def UpperCAmelCase_ ( self , _A ): __A , __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : Dict = ids_tensor([1, 10] , config.vocab_size ) __A : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : List[Any] = LlamaModel(_A ) original_model.to(_A ) original_model.eval() __A : Dict = original_model(_A ).last_hidden_state __A : int = original_model(_A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __A : int = {'type': scaling_type, 'factor': 1_0.0} __A : str = LlamaModel(_A ) scaled_model.to(_A ) scaled_model.eval() __A : Dict = scaled_model(_A ).last_hidden_state __A : str = scaled_model(_A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_A , _A , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_A , _A , atol=1e-5 ) ) @require_torch class _A( unittest.TestCase ): """simple docstring""" @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase_ ( self ): __A : Tuple = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : Tuple = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' ) __A : Union[str, Any] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __A : Optional[int] = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : str = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase_ ( self ): __A : int = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : List[str] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' ) __A : int = model(torch.tensor(_A ) ) # Expected mean on dim = -1 __A : List[str] = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : List[str] = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' ) @slow def UpperCAmelCase_ ( self ): __A : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : Tuple = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' ) __A : Optional[int] = model(torch.tensor(_A ) ) # Expected mean on dim = -1 __A : List[str] = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off __A : Optional[Any] = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) @unittest.skip( 'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' ) @slow def UpperCAmelCase_ ( self ): __A : str = [1, 306, 4658, 278, 6593, 310, 2834, 338] __A : List[Any] = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' ) __A : List[Any] = model(torch.tensor(_A ) ) __A : Tuple = torch.tensor( [[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , _A , atol=1e-2 , rtol=1e-2 ) # fmt: off __A : Optional[int] = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , _A , atol=1e-5 , rtol=1e-5 ) @unittest.skip('Model is curently gated' ) @slow def UpperCAmelCase_ ( self ): __A : Tuple = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi' __A : List[str] = 'Simply put, the theory of relativity states that ' __A : Union[str, Any] = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' ) __A : List[str] = tokenizer.encode(_A , return_tensors='pt' ) __A : Tuple = LlamaForCausalLM.from_pretrained( 'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=_A ) # greedy generation outputs __A : Union[str, Any] = model.generate(_A , max_new_tokens=64 , top_p=_A , temperature=1 , do_sample=_A ) __A : List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=_A ) self.assertEqual(_A , _A )
77
1
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : str = 5_0002 @require_sentencepiece @require_tokenizers class A ( a , unittest.TestCase ): __UpperCAmelCase : Optional[int] = PLBartTokenizer __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Dict = False def __lowerCAmelCase ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing _a = PLBartTokenizer(snake_case_ , language_codes="base" , keep_accents=snake_case_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self ) -> int: _a = PLBartTokenizer(snake_case_ , language_codes="base" , keep_accents=snake_case_ ) _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _a = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _a = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) _a = tokenizer.vocab_size _a = [tokenizer.convert_ids_to_tokens(snake_case_ ) for x in range(end - 4 , snake_case_ )] self.assertListEqual(snake_case_ , ["__java__", "__python__", "__en_XX__", "<mask>"] ) _a = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" _a = tokenizer(snake_case_ ).input_ids self.assertEqual( tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) , snake_case_ , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = PLBartTokenizer(snake_case_ , language_codes="multi" , keep_accents=snake_case_ ) _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _a = tokenizer.convert_tokens_to_ids(snake_case_ ) self.assertListEqual( snake_case_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _a = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertListEqual( snake_case_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) _a = tokenizer.vocab_size _a = [tokenizer.convert_ids_to_tokens(snake_case_ ) for x in range(end - 7 , snake_case_ )] self.assertListEqual( snake_case_ , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) _a = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" _a = tokenizer(snake_case_ ).input_ids self.assertEqual( tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ ) , snake_case_ , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : int = """uclanlp/plbart-python-en_XX""" __UpperCAmelCase : Tuple = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] __UpperCAmelCase : int = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] __UpperCAmelCase : Optional[Any] = [ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) _a = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Any: _a = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , snake_case_ ) _a = 1_0 _a = self.tokenizer(snake_case_ , max_length=snake_case_ , truncation=snake_case_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , snake_case_ ) self.assertEqual(len(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def __lowerCAmelCase ( self ) -> Optional[int]: _a = tempfile.mkdtemp() _a = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case_ ) _a = PLBartTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , snake_case_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def __lowerCAmelCase ( self ) -> Dict: _a = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case_ , truncation=snake_case_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) _a = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) _a = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def __lowerCAmelCase ( self ) -> List[str]: _a = self.tokenizer(self.src_text , padding=snake_case_ , truncation=snake_case_ , max_length=3 , return_tensors="pt" ) _a = self.tokenizer( text_target=self.tgt_text , padding=snake_case_ , truncation=snake_case_ , max_length=1_0 , return_tensors="pt" ) _a = targets["input_ids"] _a = shift_tokens_right(snake_case_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(snake_case_ ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
131
'''simple docstring''' from torch import nn class A ( nn.Module ): def __init__( self , snake_case_ , snake_case_ ) -> List[Any]: super().__init__() _a = class_size _a = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _a = nn.Linear(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) _a = self.mlp(snake_case_ ) return logits
131
1
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> str: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) _SCREAMING_SNAKE_CASE : int = precision _SCREAMING_SNAKE_CASE : Dict = ceil(precision / 14 ) _SCREAMING_SNAKE_CASE : int = 426_880 * Decimal(10_005 ).sqrt() _SCREAMING_SNAKE_CASE : Union[str, Any] = 1 _SCREAMING_SNAKE_CASE : str = 13_591_409 _SCREAMING_SNAKE_CASE : Tuple = Decimal(__SCREAMING_SNAKE_CASE ) for k in range(1 , __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : Tuple = factorial(6 * k ) // (factorial(3 * k ) * factorial(__SCREAMING_SNAKE_CASE ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": lowerCAmelCase_ = 50 print(F"The first {n} digits of pi is: {pi(n)}")
720
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_50, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_00, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class _snake_case ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : Optional[int]): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=_A , ) assert hasattr(self , """env""") def _lowerCAmelCase ( self : Union[str, Any] , _A : str=1): """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=_A , instance_type=self.instance_type , debugger_hook_config=_A , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def _lowerCAmelCase ( self : Union[str, Any] , _A : Union[str, Any]): """simple docstring""" TrainingJobAnalytics(_A).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""") def _lowerCAmelCase ( self : Any): """simple docstring""" _SCREAMING_SNAKE_CASE : str = self.create_estimator() # run training estimator.fit() # result dataframe _SCREAMING_SNAKE_CASE : Any = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _SCREAMING_SNAKE_CASE : Any = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""]) _SCREAMING_SNAKE_CASE : Tuple = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""]) # get train time from SageMaker job, this includes starting, preprocessing, stopping _SCREAMING_SNAKE_CASE : int = ( Session().describe_training_job(estimator.latest_training_job.name).get("""TrainingTimeInSeconds""" , 9_9_9_9_9_9) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy) assert all(t <= self.results["""eval_loss"""] for t in eval_loss) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""") as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , _A)
635
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__( self: List[Any] ): lowercase__ : Optional[Any] = tempfile.mkdtemp() # fmt: off lowercase__ : int = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowercase__ : Union[str, Any] = dict(zip(lowerCamelCase_, range(len(lowerCamelCase_ ) ) ) ) lowercase__ : Dict = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowercase__ : str = {'unk_token': '<unk>'} lowercase__ : str = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowercase__ : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) lowercase__ : Optional[Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowercase__ : List[str] = os.path.join(self.tmpdirname, lowerCamelCase_ ) with open(self.image_processor_file, 'w', encoding='utf-8' ) as fp: json.dump(lowerCamelCase_, lowerCamelCase_ ) def snake_case__( self: Any, **lowerCamelCase_: Union[str, Any] ): return CLIPTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def snake_case__( self: List[Any], **lowerCamelCase_: str ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def snake_case__( self: int, **lowerCamelCase_: Tuple ): return ViTImageProcessor.from_pretrained(self.tmpdirname, **lowerCamelCase_ ) def snake_case__( self: Tuple ): shutil.rmtree(self.tmpdirname ) def snake_case__( self: List[str] ): lowercase__ : str = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] lowercase__ : Any = [Image.fromarray(np.moveaxis(lowerCamelCase_, 0, -1 ) ) for x in image_inputs] return image_inputs def snake_case__( self: str ): lowercase__ : List[Any] = self.get_tokenizer() lowercase__ : Optional[Any] = self.get_rust_tokenizer() lowercase__ : Dict = self.get_image_processor() lowercase__ : str = CLIPSegProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) lowercase__ : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname, use_fast=lowerCamelCase_ ) lowercase__ : Tuple = CLIPSegProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) lowercase__ : Dict = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer, lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor, lowerCamelCase_ ) def snake_case__( self: Dict ): lowercase__ : Tuple = CLIPSegProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase__ : Dict = self.get_tokenizer(bos_token='(BOS)', eos_token='(EOS)' ) lowercase__ : List[Any] = self.get_image_processor(do_normalize=lowerCamelCase_, padding_value=1.0 ) lowercase__ : Optional[int] = CLIPSegProcessor.from_pretrained( self.tmpdirname, bos_token='(BOS)', eos_token='(EOS)', do_normalize=lowerCamelCase_, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, lowerCamelCase_ ) def snake_case__( self: int ): lowercase__ : List[str] = self.get_image_processor() lowercase__ : str = self.get_tokenizer() lowercase__ : Optional[int] = CLIPSegProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowercase__ : List[Any] = self.prepare_image_inputs() lowercase__ : List[str] = image_processor(lowerCamelCase_, return_tensors='np' ) lowercase__ : int = processor(images=lowerCamelCase_, return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1E-2 ) def snake_case__( self: int ): lowercase__ : Any = self.get_image_processor() lowercase__ : Tuple = self.get_tokenizer() lowercase__ : Tuple = CLIPSegProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowercase__ : Tuple = 'lower newer' lowercase__ : Union[str, Any] = processor(text=lowerCamelCase_ ) lowercase__ : str = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def snake_case__( self: Optional[int] ): lowercase__ : Any = self.get_image_processor() lowercase__ : List[Any] = self.get_tokenizer() lowercase__ : int = CLIPSegProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowercase__ : List[Any] = 'lower newer' lowercase__ : Optional[Any] = self.prepare_image_inputs() lowercase__ : Optional[Any] = processor(text=lowerCamelCase_, images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ), ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def snake_case__( self: str ): lowercase__ : int = self.get_image_processor() lowercase__ : str = self.get_tokenizer() lowercase__ : List[str] = CLIPSegProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowercase__ : Union[str, Any] = self.prepare_image_inputs() lowercase__ : str = self.prepare_image_inputs() lowercase__ : Tuple = processor(images=lowerCamelCase_, visual_prompt=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ), ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def snake_case__( self: Dict ): lowercase__ : Union[str, Any] = self.get_image_processor() lowercase__ : Dict = self.get_tokenizer() lowercase__ : Union[str, Any] = CLIPSegProcessor(tokenizer=lowerCamelCase_, image_processor=lowerCamelCase_ ) lowercase__ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ : Tuple = processor.batch_decode(lowerCamelCase_ ) lowercase__ : Tuple = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_, lowerCamelCase_ )
266
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __lowerCAmelCase ( _UpperCamelCase ): '''simple docstring''' _A = 42 _A = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
266
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCamelCase_ ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : float = 0.0 _lowerCamelCase : int = 1 _lowerCamelCase : int = 1 _lowerCamelCase : bool = True _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : jnp.dtype = jnp.floataa def __magic_name__ ( self ): a_ = [] a_ = [] for i in range(self.num_layers ): a_ = self.in_channels if i == 0 else self.out_channels a_ = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) a_ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) a_ = resnets a_ = attentions if self.add_downsample: a_ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): a_ = () for resnet, attn in zip(self.resnets , self.attentions ): a_ = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) a_ = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: a_ = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase_ ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : float = 0.0 _lowerCamelCase : int = 1 _lowerCamelCase : bool = True _lowerCamelCase : jnp.dtype = jnp.floataa def __magic_name__ ( self ): a_ = [] for i in range(self.num_layers ): a_ = self.in_channels if i == 0 else self.out_channels a_ = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) a_ = resnets if self.add_downsample: a_ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): a_ = () for resnet in self.resnets: a_ = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: a_ = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase_ ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : float = 0.0 _lowerCamelCase : int = 1 _lowerCamelCase : int = 1 _lowerCamelCase : bool = True _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : jnp.dtype = jnp.floataa def __magic_name__ ( self ): a_ = [] a_ = [] for i in range(self.num_layers ): a_ = self.in_channels if (i == self.num_layers - 1) else self.out_channels a_ = self.prev_output_channel if i == 0 else self.out_channels a_ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) a_ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) a_ = resnets a_ = attentions if self.add_upsample: a_ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states a_ = res_hidden_states_tuple[-1] a_ = res_hidden_states_tuple[:-1] a_ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) a_ = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) a_ = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: a_ = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class lowerCamelCase_ ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : int _lowerCamelCase : float = 0.0 _lowerCamelCase : int = 1 _lowerCamelCase : bool = True _lowerCamelCase : jnp.dtype = jnp.floataa def __magic_name__ ( self ): a_ = [] for i in range(self.num_layers ): a_ = self.in_channels if (i == self.num_layers - 1) else self.out_channels a_ = self.prev_output_channel if i == 0 else self.out_channels a_ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) a_ = resnets if self.add_upsample: a_ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): for resnet in self.resnets: # pop res hidden states a_ = res_hidden_states_tuple[-1] a_ = res_hidden_states_tuple[:-1] a_ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) a_ = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: a_ = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class lowerCamelCase_ ( nn.Module ): _lowerCamelCase : int _lowerCamelCase : float = 0.0 _lowerCamelCase : int = 1 _lowerCamelCase : int = 1 _lowerCamelCase : bool = False _lowerCamelCase : bool = False _lowerCamelCase : jnp.dtype = jnp.floataa def __magic_name__ ( self ): # there is always at least one resnet a_ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] a_ = [] for _ in range(self.num_layers ): a_ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_SCREAMING_SNAKE_CASE ) a_ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_SCREAMING_SNAKE_CASE ) a_ = resnets a_ = attentions def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): a_ = self.resnets[0](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): a_ = attn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) a_ = resnet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , deterministic=_SCREAMING_SNAKE_CASE ) return hidden_states
403
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCamelCase_ ( unittest.TestCase ): def __magic_name__ ( self ): a_ = 10 def __magic_name__ ( self ): a_ = [1, 2, 3, 4] a_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" a_ , a_ = process_story(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) def __magic_name__ ( self ): a_ = """""" a_ , a_ = process_story(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) def __magic_name__ ( self ): a_ = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) a_ , a_ = process_story(_SCREAMING_SNAKE_CASE ) a_ = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a_ = ["""It was the best of times."""] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __magic_name__ ( self ): a_ = torch.tensor([1, 2, 3, 4] ) a_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 0 ).numpy() , expected.numpy() ) def __magic_name__ ( self ): a_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 23 ).numpy() , expected.numpy() ) def __magic_name__ ( self ): a_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 1 ).numpy() , expected.numpy() ) def __magic_name__ ( self ): a_ = 101 a_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a_ = compute_token_type_ids(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) np.testing.assert_array_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
403
1
import pytest UpperCAmelCase_ = """__dummy_dataset1__""" UpperCAmelCase_ = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def SCREAMING_SNAKE_CASE_ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def SCREAMING_SNAKE_CASE_ ( _snake_case :Any , _snake_case :Optional[int] , _snake_case :Optional[Any] ) -> Optional[int]: _A = dataset_loading_script_name _A = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=_snake_case ) _A = script_dir / F'''{script_name}.py''' with open(_snake_case , '''w''' ) as f: f.write(_snake_case ) return str(_snake_case )
2
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
512
0
def __snake_case ( _UpperCAmelCase = 10_00 ): """simple docstring""" lowercase = 2**power lowercase = 0 while n: lowercase = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
719
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __snake_case ( _UpperCAmelCase ): """simple docstring""" lowercase = int(number**0.5 ) return number == sq * sq def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" lowercase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowercase = x_den * y_den * z_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) top //= hcf bottom //= hcf return top, bottom def __snake_case ( _UpperCAmelCase = 35 ): """simple docstring""" lowercase = set() lowercase = 42 lowercase = Fraction(0 ) lowercase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 lowercase = x_num * y_den + x_den * y_num lowercase = x_den * y_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowercase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowercase = x_den * x_den * y_den * y_den if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=-1 lowercase = x_num * y_num lowercase = x_den * y_num + x_num * y_den lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) # n=2 lowercase = x_num * x_num * y_num * y_num lowercase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_UpperCAmelCase ) and is_sq(_UpperCAmelCase ): lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = int(sqrt(_UpperCAmelCase ) ) lowercase = gcd(_UpperCAmelCase , _UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) unique_s.add(_UpperCAmelCase ) for num, den in unique_s: total += Fraction(_UpperCAmelCase , _UpperCAmelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
314
0
def snake_case ( lowerCamelCase ): '''simple docstring''' return str(lowerCamelCase ) == str(lowerCamelCase )[::-1] def snake_case ( lowerCamelCase ): '''simple docstring''' return int(lowerCamelCase ) + int(str(lowerCamelCase )[::-1] ) def snake_case ( lowerCamelCase = 10_000 ): '''simple docstring''' __lowercase = [] for num in range(1 , lowerCamelCase ): __lowercase = 0 __lowercase = num while iterations < 50: __lowercase = sum_reverse(lowerCamelCase ) iterations += 1 if is_palindrome(lowerCamelCase ): break else: lychrel_nums.append(lowerCamelCase ) return len(lowerCamelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
80
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase_ : Dict = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
115
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self , lowercase_ ) -> Tuple: UpperCAmelCase = str(id_ ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = [] UpperCAmelCase = {} # {vertex:distance} def __lt__( self , lowercase_ ) -> int: return self.key < other.key def __repr__( self ) -> str: return self.id def a_ ( self , lowercase_ ) -> int: self.neighbors.append(lowercase_ ) def a_ ( self , lowercase_ , lowercase_ ) -> Optional[Any]: UpperCAmelCase = weight def lowercase__ ( lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] ) -> Tuple: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase ) def lowercase__ ( lowerCAmelCase : list , lowerCAmelCase : Vertex ) -> list: """simple docstring""" UpperCAmelCase = [] for u in graph: UpperCAmelCase = math.inf UpperCAmelCase = None UpperCAmelCase = 0 UpperCAmelCase = graph[:] while q: UpperCAmelCase = min(lowerCAmelCase ) q.remove(lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): UpperCAmelCase = u UpperCAmelCase = u.edges[v.id] for i in range(1 , len(lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def lowercase__ ( lowerCAmelCase : list , lowerCAmelCase : Vertex ) -> Iterator[tuple]: """simple docstring""" for u in graph: UpperCAmelCase = math.inf UpperCAmelCase = None UpperCAmelCase = 0 UpperCAmelCase = list(lowerCAmelCase ) hq.heapify(lowerCAmelCase ) while h: UpperCAmelCase = hq.heappop(lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): UpperCAmelCase = u UpperCAmelCase = u.edges[v.id] hq.heapify(lowerCAmelCase ) for i in range(1 , len(lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def lowercase__ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
183
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = random.Random() def lowercase__ ( lowerCAmelCase : Any , lowerCAmelCase : Tuple=1.0 , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=None ) -> Dict: """simple docstring""" if rng is None: UpperCAmelCase = global_rng UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _UpperCAmelCase ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=4_0_0 , lowercase_=2_0_0_0 , lowercase_=2_0_4_8 , lowercase_=1_2_8 , lowercase_=1 , lowercase_=5_1_2 , lowercase_=3_0 , lowercase_=4_4_1_0_0 , ) -> str: UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = min_seq_length UpperCAmelCase = max_seq_length UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase = spectrogram_length UpperCAmelCase = feature_size UpperCAmelCase = num_audio_channels UpperCAmelCase = hop_length UpperCAmelCase = chunk_length UpperCAmelCase = sampling_rate def a_ ( self ) -> str: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def a_ ( self , lowercase_=False , lowercase_=False ) -> Optional[Any]: def _flatten(lowercase_ ): return list(itertools.chain(*lowercase_ ) ) if equal_length: UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCAmelCase = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = TvltFeatureExtractor def a_ ( self ) -> Optional[int]: UpperCAmelCase = TvltFeatureExtractionTester(self ) def a_ ( self ) -> Optional[Any]: UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowercase_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(lowercase_ , 'feature_size' ) ) self.assertTrue(hasattr(lowercase_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(lowercase_ , 'hop_length' ) ) self.assertTrue(hasattr(lowercase_ , 'chunk_length' ) ) self.assertTrue(hasattr(lowercase_ , 'sampling_rate' ) ) def a_ ( self ) -> List[Any]: UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase = feat_extract_first.save_pretrained(lowercase_ )[0] check_json_file_has_correct_format(lowercase_ ) UpperCAmelCase = self.feature_extraction_class.from_pretrained(lowercase_ ) UpperCAmelCase = feat_extract_first.to_dict() UpperCAmelCase = feat_extract_second.to_dict() UpperCAmelCase = dict_first.pop('mel_filters' ) UpperCAmelCase = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertEqual(lowercase_ , lowercase_ ) def a_ ( self ) -> str: UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase = os.path.join(lowercase_ , 'feat_extract.json' ) feat_extract_first.to_json_file(lowercase_ ) UpperCAmelCase = self.feature_extraction_class.from_json_file(lowercase_ ) UpperCAmelCase = feat_extract_first.to_dict() UpperCAmelCase = feat_extract_second.to_dict() UpperCAmelCase = dict_first.pop('mel_filters' ) UpperCAmelCase = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertEqual(lowercase_ , lowercase_ ) def a_ ( self ) -> int: # Initialize feature_extractor UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCAmelCase = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched UpperCAmelCase = feature_extractor(lowercase_ , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking UpperCAmelCase = feature_extractor( lowercase_ , return_tensors='np' , sampling_rate=4_4_1_0_0 , mask_audio=lowercase_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. UpperCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCAmelCase = np.asarray(lowercase_ ) UpperCAmelCase = feature_extractor(lowercase_ , return_tensors='np' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def a_ ( self , lowercase_ ) -> Optional[Any]: UpperCAmelCase = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech UpperCAmelCase = ds.sort('id' ).select(range(lowercase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def a_ ( self ) -> Tuple: UpperCAmelCase = self._load_datasamples(1 ) UpperCAmelCase = TvltFeatureExtractor() UpperCAmelCase = feature_extractor(lowercase_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) UpperCAmelCase = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , lowercase_ , atol=1E-4 ) )
183
1
from __future__ import annotations import math import random from typing import Any class UpperCAmelCase__ : """simple docstring""" def __init__( self: str ) -> None: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 0 def _UpperCAmelCase ( self: Optional[Any] ) -> bool: '''simple docstring''' return self.head == self.tail def _UpperCAmelCase ( self: Any , __lowerCAmelCase: Any ) -> None: '''simple docstring''' self.data.append(__lowerCAmelCase ) __UpperCAmelCase = self.tail + 1 def _UpperCAmelCase ( self: Dict ) -> Any: '''simple docstring''' __UpperCAmelCase = self.data[self.head] __UpperCAmelCase = self.head + 1 return ret def _UpperCAmelCase ( self: Any ) -> int: '''simple docstring''' return self.tail - self.head def _UpperCAmelCase ( self: Tuple ) -> None: '''simple docstring''' print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class UpperCAmelCase__ : """simple docstring""" def __init__( self: Any , __lowerCAmelCase: Any ) -> None: '''simple docstring''' __UpperCAmelCase = data __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = 1 def _UpperCAmelCase ( self: List[str] ) -> Any: '''simple docstring''' return self.data def _UpperCAmelCase ( self: Optional[int] ) -> MyNode | None: '''simple docstring''' return self.left def _UpperCAmelCase ( self: str ) -> MyNode | None: '''simple docstring''' return self.right def _UpperCAmelCase ( self: Optional[Any] ) -> int: '''simple docstring''' return self.height def _UpperCAmelCase ( self: int , __lowerCAmelCase: Any ) -> None: '''simple docstring''' __UpperCAmelCase = data def _UpperCAmelCase ( self: List[str] , __lowerCAmelCase: MyNode | None ) -> None: '''simple docstring''' __UpperCAmelCase = node def _UpperCAmelCase ( self: Union[str, Any] , __lowerCAmelCase: MyNode | None ) -> None: '''simple docstring''' __UpperCAmelCase = node def _UpperCAmelCase ( self: Union[str, Any] , __lowerCAmelCase: int ) -> None: '''simple docstring''' __UpperCAmelCase = height def __lowerCAmelCase ( A_ : MyNode | None ) -> int: if node is None: return 0 return node.get_height() def __lowerCAmelCase ( A_ : int , A_ : int ) -> int: if a > b: return a return b def __lowerCAmelCase ( A_ : MyNode ) -> MyNode: print("left rotation node:" , node.get_data() ) __UpperCAmelCase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(A_ ) __UpperCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(A_ ) __UpperCAmelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(A_ ) return ret def __lowerCAmelCase ( A_ : MyNode ) -> MyNode: print("right rotation node:" , node.get_data() ) __UpperCAmelCase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(A_ ) __UpperCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(A_ ) __UpperCAmelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(A_ ) return ret def __lowerCAmelCase ( A_ : MyNode ) -> MyNode: __UpperCAmelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(A_ ) ) return right_rotation(A_ ) def __lowerCAmelCase ( A_ : MyNode ) -> MyNode: __UpperCAmelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(A_ ) ) return left_rotation(A_ ) def __lowerCAmelCase ( A_ : MyNode | None , A_ : Any ) -> MyNode | None: if node is None: return MyNode(A_ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , A_ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __UpperCAmelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __UpperCAmelCase = right_rotation(A_ ) else: __UpperCAmelCase = lr_rotation(A_ ) else: node.set_right(insert_node(node.get_right() , A_ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __UpperCAmelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): __UpperCAmelCase = rl_rotation(A_ ) else: __UpperCAmelCase = left_rotation(A_ ) __UpperCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(A_ ) return node def __lowerCAmelCase ( A_ : MyNode ) -> Any: while True: __UpperCAmelCase = root.get_right() if right_child is None: break __UpperCAmelCase = right_child return root.get_data() def __lowerCAmelCase ( A_ : MyNode ) -> Any: while True: __UpperCAmelCase = root.get_left() if left_child is None: break __UpperCAmelCase = left_child return root.get_data() def __lowerCAmelCase ( A_ : MyNode , A_ : Any ) -> MyNode | None: __UpperCAmelCase = root.get_left() __UpperCAmelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __UpperCAmelCase = get_left_most(A_ ) root.set_data(A_ ) root.set_right(del_node(A_ , A_ ) ) elif left_child is not None: __UpperCAmelCase = left_child elif right_child is not None: __UpperCAmelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(A_ , A_ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(A_ , A_ ) ) if get_height(A_ ) - get_height(A_ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __UpperCAmelCase = left_rotation(A_ ) else: __UpperCAmelCase = rl_rotation(A_ ) elif get_height(A_ ) - get_height(A_ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __UpperCAmelCase = right_rotation(A_ ) else: __UpperCAmelCase = lr_rotation(A_ ) __UpperCAmelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(A_ ) return root class UpperCAmelCase__ : """simple docstring""" def __init__( self: Optional[int] ) -> None: '''simple docstring''' __UpperCAmelCase = None def _UpperCAmelCase ( self: List[str] ) -> int: '''simple docstring''' return get_height(self.root ) def _UpperCAmelCase ( self: Any , __lowerCAmelCase: Any ) -> None: '''simple docstring''' print("insert:" + str(__lowerCAmelCase ) ) __UpperCAmelCase = insert_node(self.root , __lowerCAmelCase ) def _UpperCAmelCase ( self: Any , __lowerCAmelCase: Any ) -> None: '''simple docstring''' print("delete:" + str(__lowerCAmelCase ) ) if self.root is None: print("Tree is empty!" ) return __UpperCAmelCase = del_node(self.root , __lowerCAmelCase ) def __str__( self: Optional[Any] , ) -> str: # a level traversale, gives a more intuitive look on the tree '''simple docstring''' __UpperCAmelCase = "" __UpperCAmelCase = MyQueue() q.push(self.root ) __UpperCAmelCase = self.get_height() if layer == 0: return output __UpperCAmelCase = 0 while not q.is_empty(): __UpperCAmelCase = q.pop() __UpperCAmelCase = " " * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__lowerCAmelCase ) q.push(__lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __UpperCAmelCase = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , __lowerCAmelCase ) - 1: __UpperCAmelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __lowerCAmelCase ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() a_ = AVLtree() a_ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
221
def __lowerCAmelCase ( A_ : int ) -> int: __UpperCAmelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __lowerCAmelCase ( A_ : int = 1_00 ) -> int: __UpperCAmelCase = 1 __UpperCAmelCase = 2 for i in range(2 , max_n + 1 ): __UpperCAmelCase = pre_numerator __UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1 __UpperCAmelCase = cur_numerator __UpperCAmelCase = e_cont * pre_numerator + temp return sum_digits(A_ ) if __name__ == "__main__": print(F"{solution() = }")
221
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowerCAmelCase = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCAmelCase = CLIPTextModel(_UpperCAmelCase ) lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('RGB' ) if str(_UpperCAmelCase ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_UpperCAmelCase ) else: lowerCAmelCase = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) lowerCAmelCase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowerCAmelCase = self.get_dummy_inputs(_UpperCAmelCase ) lowerCAmelCase = sd_pipe(**_UpperCAmelCase ).images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) lowerCAmelCase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowerCAmelCase = self.get_dummy_inputs(_UpperCAmelCase ) lowerCAmelCase = '''french fries''' lowerCAmelCase = sd_pipe(**_UpperCAmelCase , negative_prompt=_UpperCAmelCase ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) lowerCAmelCase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowerCAmelCase = self.get_dummy_inputs(_UpperCAmelCase ) lowerCAmelCase = [inputs['''prompt''']] * 2 lowerCAmelCase = np.array(inputs['image'] ).astype(np.floataa ) / 2_55.0 lowerCAmelCase = torch.from_numpy(_UpperCAmelCase ).unsqueeze(0 ).to(_UpperCAmelCase ) lowerCAmelCase = image / 2 + 0.5 lowerCAmelCase = image.permute(0 , 3 , 1 , 2 ) lowerCAmelCase = image.repeat(2 , 1 , 1 , 1 ) lowerCAmelCase = sd_pipe(**_UpperCAmelCase ).images lowerCAmelCase = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) lowerCAmelCase = np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' ) lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) lowerCAmelCase = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowerCAmelCase = self.get_dummy_inputs(_UpperCAmelCase ) lowerCAmelCase = sd_pipe(**_UpperCAmelCase ).images lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = [round(_UpperCAmelCase , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(_UpperCAmelCase ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) lowerCAmelCase = np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = StableDiffusionInstructPixaPixPipeline(**_UpperCAmelCase ) lowerCAmelCase = VaeImageProcessor(do_resize=_UpperCAmelCase , do_normalize=_UpperCAmelCase ) lowerCAmelCase = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowerCAmelCase = pipe(**self.get_dummy_inputs_by_type(_UpperCAmelCase , input_image_type='pt' ) )[0] lowerCAmelCase = components['''vae'''] lowerCAmelCase = self.get_dummy_inputs_by_type(_UpperCAmelCase , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): lowerCAmelCase = vae.encode(inputs[image_param] ).latent_dist.mode() lowerCAmelCase = pipe(**_UpperCAmelCase )[0] lowerCAmelCase = np.abs(out - out_latents_inputs ).max() self.assertLess(_UpperCAmelCase , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' lowerCAmelCase = torch.manual_seed(_UpperCAmelCase ) lowerCAmelCase = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) lowerCAmelCase = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowerCAmelCase = self.get_inputs() lowerCAmelCase = pipe(**_UpperCAmelCase ).images lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_UpperCAmelCase ) lowerCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowerCAmelCase = self.get_inputs() lowerCAmelCase = pipe(**_UpperCAmelCase ).images lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_UpperCAmelCase ) lowerCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowerCAmelCase = self.get_inputs() lowerCAmelCase = pipe(**_UpperCAmelCase ).images lowerCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase = np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = 0 def callback_fn(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: lowerCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowerCAmelCase = latents[0, -3:, -3:, -1] lowerCAmelCase = np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) lowerCAmelCase = latents[0, -3:, -3:, -1] lowerCAmelCase = np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCAmelCase = False lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowerCAmelCase = self.get_inputs() pipe(**_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=_UpperCAmelCase , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase = self.get_inputs() lowerCAmelCase = pipe(**_UpperCAmelCase ) lowerCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 lowerCAmelCase = inputs['''image'''].resize((5_04, 5_04) ) lowerCAmelCase = '''timbrooks/instruct-pix2pix''' lowerCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() lowerCAmelCase = pipe(**_UpperCAmelCase ) lowerCAmelCase = output.images[0] lowerCAmelCase = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 5_04, 3) lowerCAmelCase = np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
713
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _UpperCamelCase : List[Any] = "\\n\n" _UpperCamelCase : List[Any] = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" _UpperCamelCase : Dict = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": lowerCAmelCase = 'cuda' else: lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' lowerCAmelCase = AutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = model.to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" lowerCAmelCase = model.config.max_length - 1 else: lowerCAmelCase = model.config.max_length lowerCAmelCase = tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors='pt' , return_attention_mask=_SCREAMING_SNAKE_CASE , ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = encodings['input_ids'] lowerCAmelCase = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." lowerCAmelCase = [] lowerCAmelCase = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ): lowerCAmelCase = min(start_index + batch_size , len(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = encoded_texts[start_index:end_index] lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_SCREAMING_SNAKE_CASE ), attn_mask] , dim=1 ) lowerCAmelCase = encoded_batch with torch.no_grad(): lowerCAmelCase = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ).logits lowerCAmelCase = out_logits[..., :-1, :].contiguous() lowerCAmelCase = labels[..., 1:].contiguous() lowerCAmelCase = attn_mask[..., 1:].contiguous() lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_SCREAMING_SNAKE_CASE )}
514
0
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _snake_case ( _SCREAMING_SNAKE_CASE : int ) -> Dict: """simple docstring""" # A local function to see if a dot lands in the circle. def is_in_circle(_SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: lowerCAmelCase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowerCAmelCase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. lowerCAmelCase = proportion * 4 print(f'The estimated value of pi is {pi_estimate}' ) print(f'The numpy value of pi is {pi}' ) print(f'The total error is {abs(pi - pi_estimate )}' ) def _snake_case ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Callable[[float], float] , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 , ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def _snake_case ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 ) -> None: """simple docstring""" def identity_function(_SCREAMING_SNAKE_CASE : float ) -> float: return x lowerCAmelCase = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {expected_value}' ) print(f'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def _snake_case ( _SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" def function_to_integrate(_SCREAMING_SNAKE_CASE : float ) -> float: return sqrt(4.0 - x * x ) lowerCAmelCase = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {pi}' ) print(f'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
433
'''simple docstring''' from math import factorial def _snake_case ( _SCREAMING_SNAKE_CASE : int = 100 ) -> int: """simple docstring""" return sum(map(_SCREAMING_SNAKE_CASE , str(factorial(_SCREAMING_SNAKE_CASE ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
433
1
'''simple docstring''' from ...processing_utils import ProcessorMixin class __A ( a ): """simple docstring""" A_ = ['image_processor', 'feature_extractor'] A_ = 'TvltImageProcessor' A_ = 'TvltFeatureExtractor' def __init__( self , _lowerCamelCase , _lowerCamelCase )-> Optional[Any]: super().__init__(image_processor=_lowerCamelCase , feature_extractor=_lowerCamelCase ) lowercase__ = image_processor lowercase__ = feature_extractor def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=False , _lowerCamelCase=False , *_lowerCamelCase , **_lowerCamelCase , )-> Union[str, Any]: if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) lowercase__ = None if images is not None: lowercase__ = self.image_processor(_lowerCamelCase , mask_pixel=_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if images_mixed is not None: lowercase__ = self.image_processor(_lowerCamelCase , is_mixed=_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if audio is not None: lowercase__ = self.feature_extractor( _lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , mask_audio=_lowerCamelCase , **_lowerCamelCase ) lowercase__ = {} if audio is not None: output_dict.update(_lowerCamelCase ) if images is not None: output_dict.update(_lowerCamelCase ) if images_mixed_dict is not None: output_dict.update(_lowerCamelCase ) return output_dict @property def snake_case_( self )-> Optional[Any]: lowercase__ = self.image_processor.model_input_names lowercase__ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
318
'''simple docstring''' def _lowerCAmelCase ( lowercase : int , lowercase : int ) ->str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) lowercase__ = str(bin(lowercase ) )[2:] # remove the leading "0b" lowercase__ = str(bin(lowercase ) )[2:] # remove the leading "0b" lowercase__ = max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
318
1
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _a ( _UpperCamelCase ): '''simple docstring''' lowerCamelCase_ : Dict = ["""image_processor""", """tokenizer"""] lowerCamelCase_ : str = """OwlViTImageProcessor""" lowerCamelCase_ : Tuple = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): __A : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase_ , ) __A : Optional[int] = kwargs.pop("feature_extractor" ) __A : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not isinstance(text[0] , lowerCAmelCase_ )): __A : List[str] = [self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ )] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(text[0] , lowerCAmelCase_ ): __A : Optional[Any] = [] # Maximum number of queries across batch __A : Tuple = max([len(lowerCAmelCase_ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCAmelCase_ ) != max_num_queries: __A : Any = t + [" "] * (max_num_queries - len(lowerCAmelCase_ )) __A : Tuple = self.tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) encodings.append(lowerCAmelCase_ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __A : Tuple = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __A : Optional[int] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __A : Tuple = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __A : Optional[int] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __A : Tuple = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __A : Optional[Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __A : Optional[int] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __A : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __A : Tuple = BatchEncoding() __A : Optional[int] = input_ids __A : str = attention_mask if query_images is not None: __A : int = BatchEncoding() __A : Optional[Any] = self.image_processor( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ).pixel_values __A : List[str] = query_pixel_values if images is not None: __A : str = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ ) if text is not None and images is not None: __A : Optional[int] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __A : List[Any] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.image_processor.post_process(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.image_processor.post_process_object_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.image_processor.post_process_image_guided_detection(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __UpperCAmelCase( self , *__UpperCAmelCase , **__UpperCAmelCase ): return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def __UpperCAmelCase( self ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase_ , ) return self.image_processor_class @property def __UpperCAmelCase( self ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase_ , ) return self.image_processor
520
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): __lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowerCAmelCase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowerCAmelCase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowerCAmelCase_ ) return parser.parse_args() def a_ ( ): __lowerCAmelCase = parse_args() # Import training_script as a module. __lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __lowerCAmelCase = script_fpath.stem __lowerCAmelCase = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv __lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
53
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a : Optional[Any] = logging.get_logger(__name__) class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = ["input_features", "is_longer"] def __init__( self , snake_case_=6_4 , snake_case_=4_8_0_0_0 , snake_case_=4_8_0 , snake_case_=1_0 , snake_case_=1_0_2_4 , snake_case_=0.0 , snake_case_=False , snake_case_ = 0 , snake_case_ = 1_4_0_0_0 , snake_case_ = None , snake_case_ = "fusion" , snake_case_ = "repeatpad" , **snake_case_ , ) -> Tuple: '''simple docstring''' super().__init__( feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) __lowercase = top_db __lowercase = truncation __lowercase = padding __lowercase = fft_window_size __lowercase = (fft_window_size >> 1) + 1 __lowercase = hop_length __lowercase = max_length_s __lowercase = max_length_s * sampling_rate __lowercase = sampling_rate __lowercase = frequency_min __lowercase = frequency_max __lowercase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm=snake_case_ , mel_scale='''htk''' , ) __lowercase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm='''slaney''' , mel_scale='''slaney''' , ) def A ( self ) -> Dict[str, Any]: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def A ( self , snake_case_ , snake_case_ = None ) -> np.ndarray: '''simple docstring''' __lowercase = spectrogram( snake_case_ , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case_ , log_mel='''dB''' , ) return log_mel_spectrogram.T def A ( self , snake_case_ , snake_case_ , snake_case_ ) -> str: '''simple docstring''' __lowercase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __lowercase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __lowercase = [0] # randomly choose index for each part __lowercase = np.random.choice(ranges[0] ) __lowercase = np.random.choice(ranges[1] ) __lowercase = np.random.choice(ranges[2] ) __lowercase = mel[idx_front : idx_front + chunk_frames, :] __lowercase = mel[idx_middle : idx_middle + chunk_frames, :] __lowercase = mel[idx_back : idx_back + chunk_frames, :] __lowercase = torch.tensor(mel[None, None, :] ) __lowercase = torch.nn.functional.interpolate( snake_case_ , size=[chunk_frames, 6_4] , mode='''bilinear''' , align_corners=snake_case_ ) __lowercase = mel_shrink[0][0].numpy() __lowercase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def A ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": __lowercase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __lowercase = len(snake_case_ ) - max_length __lowercase = np.random.randint(0 , overflow + 1 ) __lowercase = waveform[idx : idx + max_length] __lowercase = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __lowercase = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) __lowercase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __lowercase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __lowercase = np.stack([mel, mel, mel, mel] , axis=0 ) __lowercase = False else: __lowercase = self._random_mel_fusion(snake_case_ , snake_case_ , snake_case_ ) __lowercase = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented' ) else: __lowercase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __lowercase = int(max_length / len(snake_case_ ) ) __lowercase = np.stack(np.tile(snake_case_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __lowercase = int(max_length / len(snake_case_ ) ) __lowercase = np.stack(np.tile(snake_case_ , snake_case_ ) ) __lowercase = np.pad(snake_case_ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": __lowercase = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) __lowercase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __lowercase = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , **snake_case_ , ) -> BatchFeature: '''simple docstring''' __lowercase = truncation if truncation is not None else self.truncation __lowercase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __lowercase = isinstance(snake_case_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) __lowercase = is_batched_numpy or ( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase = [np.asarray(snake_case_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): __lowercase = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase = [np.asarray(snake_case_ )] # convert to mel spectrogram, truncate and pad if needed. __lowercase = [ self._get_input_mel(snake_case_ , max_length if max_length else self.nb_max_samples , snake_case_ , snake_case_ ) for waveform in raw_speech ] __lowercase = [] __lowercase = [] for mel, longer in padded_inputs: input_mel.append(snake_case_ ) is_longer.append(snake_case_ ) if truncation == "fusion" and sum(snake_case_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __lowercase = np.random.randint(0 , len(snake_case_ ) ) __lowercase = True if isinstance(input_mel[0] , snake_case_ ): __lowercase = [np.asarray(snake_case_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __lowercase = [[longer] for longer in is_longer] __lowercase = {'''input_features''': input_mel, '''is_longer''': is_longer} __lowercase = BatchFeature(snake_case_ ) if return_tensors is not None: __lowercase = input_features.convert_to_tensors(snake_case_ ) return input_features
527
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : '''simple docstring''' def __init__( self , snake_case_=2 , snake_case_=3 , snake_case_=6_4 , snake_case_=None ) -> List[str]: '''simple docstring''' __lowercase = np.random.default_rng(snake_case_ ) __lowercase = length __lowercase = rng.normal(size=(length,) ).astype(np.floataa ) __lowercase = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Dict: '''simple docstring''' return self.length def __getitem__( self , snake_case_ ) -> Union[str, Any]: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , snake_case_=0 , snake_case_=0 , snake_case_=False ) -> Optional[Any]: '''simple docstring''' super().__init__() __lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowercase = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __lowercase = True def A ( self , snake_case_=None ) -> List[Any]: '''simple docstring''' if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __lowercase = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): '''simple docstring''' def __init__( self , snake_case_=0 , snake_case_=0 , snake_case_=False ) -> List[str]: '''simple docstring''' super().__init__() __lowercase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) __lowercase = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) __lowercase = True def A ( self , snake_case_=None ) -> str: '''simple docstring''' if self.first_batch: print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) __lowercase = False return x * self.a + self.b def lowercase_ ( _UpperCamelCase , _UpperCamelCase = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer __lowercase = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __lowercase = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} __lowercase = load_dataset('''csv''' , data_files=_UpperCamelCase ) __lowercase = datasets['''train'''].unique('''label''' ) __lowercase = {v: i for i, v in enumerate(_UpperCamelCase )} def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowercase = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding='''max_length''' ) if "label" in examples: __lowercase = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowercase = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCamelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(_UpperCamelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __lowercase = DataLoader(tokenized_datasets['''train'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=2 ) __lowercase = DataLoader(tokenized_datasets['''validation'''] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=1 ) return train_dataloader, eval_dataloader
527
1
"""simple docstring""" import operator as op def lowercase__ ( snake_case_ :Union[str, Any] ): __UpperCAmelCase = [] __UpperCAmelCase = lambda snake_case_ , snake_case_ : int(x / y ) # noqa: E731 integer division operation __UpperCAmelCase = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(snake_case_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(snake_case_ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(snake_case_ ) , sep=''' | ''' ) else: __UpperCAmelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(snake_case_ ) , sep=''' | ''' ) __UpperCAmelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(snake_case_ ) , sep=''' | ''' ) stack.append( str(opr[x](int(snake_case_ ) , int(snake_case_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(snake_case_ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": _lowercase : Any = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
49
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase_ (enum.Enum ): __magic_name__ = 0 __magic_name__ = 1 __magic_name__ = 2 @add_end_docstrings(__A ) class UpperCamelCase_ (__A ): __magic_name__ = ''' In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> ''' def __init__( self : List[Any] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : List[Any] ) -> Optional[int]: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase_ : Any = None if self.model.config.prefix is not None: UpperCAmelCase_ : Any = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase_ : Optional[int] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self._sanitize_parameters(prefix=lowerCAmelCase_ , **self._forward_params ) UpperCAmelCase_ : List[Any] = {**self._preprocess_params, **preprocess_params} UpperCAmelCase_ : Optional[int] = {**self._forward_params, **forward_params} def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Optional[Any] , ) -> int: UpperCAmelCase_ : Union[str, Any] = {} if prefix is not None: UpperCAmelCase_ : Tuple = prefix if prefix: UpperCAmelCase_ : Optional[Any] = self.tokenizer( lowerCAmelCase_ , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) UpperCAmelCase_ : List[str] = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" " [None, 'hole']" ) UpperCAmelCase_ : Dict = handle_long_generation preprocess_params.update(lowerCAmelCase_ ) UpperCAmelCase_ : Dict = generate_kwargs UpperCAmelCase_ : Dict = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) UpperCAmelCase_ : Tuple = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) UpperCAmelCase_ : int = ReturnType.TENSORS if return_type is not None: UpperCAmelCase_ : int = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : Tuple = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : Union[str, Any] = self.tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) UpperCAmelCase_ : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Dict ) -> Union[str, Any]: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*lowerCAmelCase_ , **lowerCAmelCase_ ) def __call__( self : List[Any] , lowerCAmelCase_ : Any , **lowerCAmelCase_ : Union[str, Any] ) -> Dict: return super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str]="" , lowerCAmelCase_ : Any=None , **lowerCAmelCase_ : Optional[Any] ) -> Dict: UpperCAmelCase_ : Tuple = self.tokenizer( prefix + prompt_text , padding=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=self.framework ) UpperCAmelCase_ : Any = prompt_text if handle_long_generation == "hole": UpperCAmelCase_ : Optional[Any] = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase_ : Dict = generate_kwargs["max_new_tokens"] else: UpperCAmelCase_ : List[str] = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase_ : Tuple = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) UpperCAmelCase_ : Dict = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase_ : Union[str, Any] = inputs["attention_mask"][:, -keep_length:] return inputs def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : str ) -> Dict: UpperCAmelCase_ : Optional[Any] = model_inputs["input_ids"] UpperCAmelCase_ : str = model_inputs.get("attention_mask" , lowerCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = 1 else: UpperCAmelCase_ : Union[str, Any] = input_ids.shape[0] UpperCAmelCase_ : Any = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase_ : Any = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: UpperCAmelCase_ : str = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase_ : Tuple = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase_ : Optional[int] = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase_ : int = self.model.generate(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ ) UpperCAmelCase_ : Dict = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase_ : Optional[int] = generated_sequence.reshape(lowerCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : List[Any] = tf.reshape(lowerCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str]=ReturnType.FULL_TEXT , lowerCAmelCase_ : Dict=True ) -> List[str]: UpperCAmelCase_ : List[Any] = model_outputs["generated_sequence"][0] UpperCAmelCase_ : int = model_outputs["input_ids"] UpperCAmelCase_ : List[str] = model_outputs["prompt_text"] UpperCAmelCase_ : Union[str, Any] = generated_sequence.numpy().tolist() UpperCAmelCase_ : int = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : Optional[Any] = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase_ : str = self.tokenizer.decode( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase_ : List[Any] = 0 else: UpperCAmelCase_ : str = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase_ : Union[str, Any] = prompt_text + text[prompt_length:] else: UpperCAmelCase_ : Dict = text[prompt_length:] UpperCAmelCase_ : int = {"generated_text": all_text} records.append(lowerCAmelCase_ ) return records
95
0
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _lowercase = logging.get_logger(__name__) _lowercase = "T5Config" class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'mt5' _a = MTaConfig class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'mt5' _a = MTaConfig class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' _a = 'mt5' _a = MTaConfig
700
"""simple docstring""" import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def snake_case__ ( __lowerCamelCase : List[Any] ): """simple docstring""" if isinstance(__lowerCamelCase , collections.abc.Iterable ): return x return (x, x) @require_flax class __SCREAMING_SNAKE_CASE : '''simple docstring''' def snake_case ( self : Dict, lowerCamelCase : List[str], lowerCamelCase : Any )-> Union[str, Any]: pass def snake_case ( self : List[str] )-> List[str]: pass def snake_case ( self : Optional[Any] )-> str: pass def snake_case ( self : Union[str, Any], lowerCamelCase : np.ndarray, lowerCamelCase : np.ndarray, lowerCamelCase : float )-> Dict: lowerCamelCase__ : Union[str, Any] =np.abs((a - b) ).max() self.assertLessEqual(lowerCamelCase, lowerCamelCase, F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def snake_case ( self : Dict, lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : List[str], lowerCamelCase : Dict, lowerCamelCase : Any=None, **lowerCamelCase : str )-> int: lowerCamelCase__ : List[str] =VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Tuple =FlaxVisionTextDualEncoderModel(lowerCamelCase ) lowerCamelCase__ : Dict =model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape, (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape, (pixel_values.shape[0], config.projection_dim) ) def snake_case ( self : Any, lowerCamelCase : int, lowerCamelCase : Optional[Any], lowerCamelCase : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : str=None, **lowerCamelCase : List[Any] )-> int: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =self.get_vision_text_model(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Union[str, Any] ={'''vision_model''': vision_model, '''text_model''': text_model} lowerCamelCase__ : Tuple =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase ) lowerCamelCase__ : Optional[int] =model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase ) self.assertEqual(output['''text_embeds'''].shape, (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape, (pixel_values.shape[0], model.config.projection_dim) ) def snake_case ( self : Any, lowerCamelCase : Dict, lowerCamelCase : Dict, lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict=None, **lowerCamelCase : int )-> List[str]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =self.get_vision_text_model(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Optional[int] ={'''vision_model''': vision_model, '''text_model''': text_model} lowerCamelCase__ : int =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase ) lowerCamelCase__ : List[Any] =model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase ) lowerCamelCase__ : int =output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase ) lowerCamelCase__ : Dict =FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase ) lowerCamelCase__ : Optional[int] =model(input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase ) lowerCamelCase__ : List[str] =after_output[0] lowerCamelCase__ : Any =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase, 1E-3 ) def snake_case ( self : Optional[Any], lowerCamelCase : Dict, lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : str, lowerCamelCase : List[Any]=None, **lowerCamelCase : List[Any] )-> Tuple: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =self.get_vision_text_model(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Any ={'''vision_model''': vision_model, '''text_model''': text_model} lowerCamelCase__ : int =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCamelCase ) lowerCamelCase__ : List[str] =model( input_ids=lowerCamelCase, pixel_values=lowerCamelCase, attention_mask=lowerCamelCase, output_attentions=lowerCamelCase ) lowerCamelCase__ : int =output.vision_model_output.attentions self.assertEqual(len(lowerCamelCase ), vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : Tuple =to_atuple(vision_model.config.image_size ) lowerCamelCase__ : Optional[Any] =to_atuple(vision_model.config.patch_size ) lowerCamelCase__ : Union[str, Any] =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCamelCase__ : int =num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:], (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCamelCase__ : List[Any] =output.text_model_output.attentions self.assertEqual(len(lowerCamelCase ), text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:], (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]), ) def snake_case ( self : Tuple, lowerCamelCase : Optional[int], lowerCamelCase : Any, lowerCamelCase : Union[str, Any] )-> Any: pt_model.to(lowerCamelCase ) pt_model.eval() # prepare inputs lowerCamelCase__ : Any =inputs_dict lowerCamelCase__ : Any ={k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): lowerCamelCase__ : List[str] =pt_model(**lowerCamelCase ).to_tuple() lowerCamelCase__ : Optional[Any] =fx_model(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ), '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4], pt_outputs[:4] ): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase ) lowerCamelCase__ : Optional[int] =FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_pt=lowerCamelCase ) lowerCamelCase__ : List[Any] =fx_model_loaded(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ), '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4], pt_outputs[:4] ): self.assert_almost_equals(lowerCamelCase, pt_output.numpy(), 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase ) lowerCamelCase__ : str =VisionTextDualEncoderModel.from_pretrained(lowerCamelCase, from_flax=lowerCamelCase ) pt_model_loaded.to(lowerCamelCase ) pt_model_loaded.eval() with torch.no_grad(): lowerCamelCase__ : List[Any] =pt_model_loaded(**lowerCamelCase ).to_tuple() self.assertEqual(len(lowerCamelCase ), len(lowerCamelCase ), '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4], pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCamelCase, pt_output_loaded.numpy(), 4E-2 ) def snake_case ( self : str, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any], lowerCamelCase : str )-> List[Any]: lowerCamelCase__ : Any =VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : List[Any] =VisionTextDualEncoderModel(lowerCamelCase ) lowerCamelCase__ : List[str] =FlaxVisionTextDualEncoderModel(lowerCamelCase ) lowerCamelCase__ : str =convert_pytorch_state_dict_to_flax(pt_model.state_dict(), lowerCamelCase ) lowerCamelCase__ : Tuple =fx_state self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def snake_case ( self : List[Any], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any] )-> Optional[int]: lowerCamelCase__ : Dict =VisionTextDualEncoderConfig.from_vision_text_configs(lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Tuple =VisionTextDualEncoderModel(lowerCamelCase ) lowerCamelCase__ : List[str] =FlaxVisionTextDualEncoderModel(lowerCamelCase ) lowerCamelCase__ : Tuple =load_flax_weights_in_pytorch_model(lowerCamelCase, fx_model.params ) self.check_pt_flax_equivalence(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def snake_case ( self : Optional[int] )-> Union[str, Any]: lowerCamelCase__ : Any =self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCamelCase ) def snake_case ( self : Tuple )-> int: lowerCamelCase__ : int =self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCamelCase ) def snake_case ( self : Tuple )-> Any: lowerCamelCase__ : Tuple =self.prepare_config_and_inputs() self.check_save_load(**lowerCamelCase ) def snake_case ( self : str )-> Any: lowerCamelCase__ : str =self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCamelCase ) @is_pt_flax_cross_test def snake_case ( self : Tuple )-> List[Any]: lowerCamelCase__ : Union[str, Any] =self.prepare_config_and_inputs() lowerCamelCase__ : Union[str, Any] =config_inputs_dict.pop('''vision_config''' ) lowerCamelCase__ : Optional[Any] =config_inputs_dict.pop('''text_config''' ) lowerCamelCase__ : Tuple =config_inputs_dict self.check_equivalence_pt_to_flax(lowerCamelCase, lowerCamelCase, lowerCamelCase ) self.check_equivalence_flax_to_pt(lowerCamelCase, lowerCamelCase, lowerCamelCase ) @slow def snake_case ( self : Optional[Any] )-> Tuple: lowerCamelCase__ , lowerCamelCase__ : Dict =self.get_pretrained_model_and_inputs() lowerCamelCase__ : Optional[int] =model_a(**lowerCamelCase ) lowerCamelCase__ : List[str] =outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCamelCase ) lowerCamelCase__ : int =FlaxVisionTextDualEncoderModel.from_pretrained(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =model_a(**lowerCamelCase ) lowerCamelCase__ : List[Any] =after_outputs[0] lowerCamelCase__ : Any =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase, 1E-5 ) @require_flax class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' def snake_case ( self : Optional[int] )-> Optional[Any]: lowerCamelCase__ : str =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''', '''hf-internal-testing/tiny-bert''', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) lowerCamelCase__ : Union[str, Any] =13 lowerCamelCase__ : List[str] =floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCamelCase__ : List[str] =ids_tensor([batch_size, 4], model.config.text_config.vocab_size ) lowerCamelCase__ : Optional[int] =random_attention_mask([batch_size, 4] ) lowerCamelCase__ : Any ={'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case ( self : str, lowerCamelCase : str, lowerCamelCase : int )-> int: lowerCamelCase__ : str =FlaxViTModel(lowerCamelCase ) lowerCamelCase__ : Any =FlaxBertModel(lowerCamelCase ) return vision_model, text_model def snake_case ( self : int )-> Optional[int]: lowerCamelCase__ : Any =FlaxViTModelTester(self ) lowerCamelCase__ : Union[str, Any] =FlaxBertModelTester(self ) lowerCamelCase__ : Any =vit_model_tester.prepare_config_and_inputs() lowerCamelCase__ : Optional[Any] =bert_model_tester.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ : Any =vision_config_and_inputs lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple =text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' def snake_case ( self : Optional[int] )-> Optional[int]: lowerCamelCase__ : Union[str, Any] =FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''', '''hf-internal-testing/tiny-bert''', vision_from_pt=lowerCamelCase, text_from_pt=lowerCamelCase, ) lowerCamelCase__ : Union[str, Any] =13 lowerCamelCase__ : Optional[Any] =floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) lowerCamelCase__ : Union[str, Any] =ids_tensor([batch_size, 4], model.config.text_config.vocab_size ) lowerCamelCase__ : str =random_attention_mask([batch_size, 4] ) lowerCamelCase__ : Optional[int] ={'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case ( self : List[str], lowerCamelCase : Any, lowerCamelCase : Dict )-> Dict: lowerCamelCase__ : str =FlaxCLIPVisionModel(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =FlaxBertModel(lowerCamelCase ) return vision_model, text_model def snake_case ( self : Optional[int] )-> Optional[Any]: lowerCamelCase__ : List[Any] =FlaxCLIPVisionModelTester(self ) lowerCamelCase__ : List[Any] =FlaxBertModelTester(self ) lowerCamelCase__ : Any =clip_model_tester.prepare_config_and_inputs() lowerCamelCase__ : Optional[int] =bert_model_tester.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ : List[Any] =vision_config_and_inputs lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] =text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def snake_case ( self : Tuple )-> Optional[Any]: lowerCamelCase__ : Any =FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''', logit_scale_init_value=1.0 ) lowerCamelCase__ : List[Any] =VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) lowerCamelCase__ : Optional[int] =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase__ : Dict =processor( text=['''una foto di un gatto''', '''una foto di un cane'''], images=lowerCamelCase, padding=lowerCamelCase, return_tensors='''np''' ) lowerCamelCase__ : List[Any] =model(**lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape, (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape, (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]), ) lowerCamelCase__ : Any =np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image, lowerCamelCase, atol=1E-3 ) )
625
0
"""simple docstring""" import unittest from transformers import DonutProcessor __A : Dict = '''naver-clova-ix/donut-base''' class _UpperCAmelCase ( unittest.TestCase ): def A ( self : Optional[int] ) -> Tuple: lowercase_ : Dict = DonutProcessor.from_pretrained(A ) def A ( self : List[Any] ) -> str: lowercase_ : Any = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase_ : List[Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase_ : List[str] = self.processor.tokenajson(A ) self.assertDictEqual(A , A )
231
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[int] = { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json''', # See all REALM models at https://huggingface.co/models?filter=realm } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : List[str] = "realm" def __init__( self : List[Any] , A : List[str]=3_05_22 , A : Optional[int]=7_68 , A : Dict=1_28 , A : Tuple=12 , A : str=12 , A : int=8 , A : List[Any]=30_72 , A : int="gelu_new" , A : Any=0.1 , A : Any=0.1 , A : Any=5_12 , A : str=2 , A : str=0.02 , A : List[str]=1e-12 , A : Union[str, Any]=2_56 , A : List[Any]=10 , A : Optional[Any]=1e-3 , A : Any=5 , A : Tuple=3_20 , A : str=13_35_37_18 , A : List[str]=50_00 , A : Tuple=1 , A : str=0 , A : Any=2 , **A : Optional[Any] , ) -> Tuple: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) # Common config lowercase_ : List[Any] = vocab_size lowercase_ : int = max_position_embeddings lowercase_ : Union[str, Any] = hidden_size lowercase_ : Optional[Any] = retriever_proj_size lowercase_ : str = num_hidden_layers lowercase_ : Dict = num_attention_heads lowercase_ : List[str] = num_candidates lowercase_ : List[str] = intermediate_size lowercase_ : int = hidden_act lowercase_ : str = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : List[str] = initializer_range lowercase_ : str = type_vocab_size lowercase_ : Tuple = layer_norm_eps # Reader config lowercase_ : str = span_hidden_size lowercase_ : int = max_span_width lowercase_ : Optional[int] = reader_layer_norm_eps lowercase_ : List[str] = reader_beam_size lowercase_ : Tuple = reader_seq_len # Retrieval config lowercase_ : List[Any] = num_block_records lowercase_ : Tuple = searcher_beam_size
231
1
"""simple docstring""" import unittest from transformers import DonutProcessor A = 'naver-clova-ix/donut-base' class UpperCAmelCase__ ( unittest.TestCase ): def A_ ( self : int ) -> str: '''simple docstring''' A = DonutProcessor.from_pretrained(snake_case ) def A_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' A = { 'name': 'John Doe', 'age': '99', 'city': 'Atlanta', 'state': 'GA', 'zip': '30301', 'phone': '123-4567', 'nicknames': [{'nickname': 'Johnny'}, {'nickname': 'JD'}], } A = ( '<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>' '<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>' '<s_nicknames><s_nickname>Johnny</s_nickname>' '<sep/><s_nickname>JD</s_nickname></s_nicknames>' ) A = self.processor.tokenajson(snake_case ) self.assertDictEqual(snake_case , snake_case )
109
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A = logging.get_logger(__name__) A = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} A = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } A = { 'abeja/gpt-neox-japanese-2.7b': 2_0_4_8, } def lowerCAmelCase__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: with open(lowerCamelCase__ , 'r' , encoding='utf-8' ) as f: A = json.loads(f.read() ) A = collections.OrderedDict() A = collections.OrderedDict() A = collections.OrderedDict() with open(lowerCamelCase__ , 'r' , encoding='utf-8' ) as f: A = f.readlines() A = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(lowerCamelCase__ ): A = b A = idx for wd in b: A = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : str = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Optional[Any]="<|endoftext|>" , snake_case : List[str]="<|endoftext|>" , snake_case : Any="<|startoftext|>" , snake_case : Any="<|endoftext|>" , snake_case : Tuple=False , **snake_case : List[str] , ) -> Optional[Any]: '''simple docstring''' super().__init__( unk_token=snake_case , pad_token=snake_case , bos_token=snake_case , eos_token=snake_case , do_clean_text=snake_case , **snake_case , ) if not os.path.isfile(snake_case ): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(snake_case ): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) A = do_clean_text A , A , A , A = load_vocab_and_emoji(snake_case , snake_case ) A = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def A_ ( self : Any ) -> List[str]: '''simple docstring''' return len(self.raw_vocab ) def A_ ( self : str ) -> str: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def A_ ( self : List[str] , snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' return self.subword_tokenizer.tokenize(snake_case , clean=self.do_clean_text ) def A_ ( self : int , snake_case : Optional[int] ) -> Dict: '''simple docstring''' return self.vocab.get(snake_case , self.vocab.get(self.unk_token ) ) def A_ ( self : int , snake_case : List[Any] ) -> Tuple: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(snake_case ) def A_ ( self : str , snake_case : int ) -> Optional[Any]: '''simple docstring''' A = ''.join(snake_case ).strip() return out_string def A_ ( self : Optional[int] , snake_case : "Conversation" ) -> List[int]: '''simple docstring''' A = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case , add_special_tokens=snake_case ) + [self.eos_token_id] ) if len(snake_case ) > self.model_max_length: A = input_ids[-self.model_max_length :] return input_ids def A_ ( self : int , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' A = 0 if os.path.isdir(snake_case ): A = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: A = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) A = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(snake_case , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ' Please check that the vocabulary is not corrupted!' ) A = token_index writer.write(','.join(snake_case ) + '\n' ) index += 1 with open(snake_case , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , snake_case ) return vocab_file, emoji_file class UpperCAmelCase__ ( UpperCamelCase ): def __init__( self : str , snake_case : Dict , snake_case : Optional[Any] , snake_case : List[Any] ) -> int: '''simple docstring''' A = vocab # same as swe A = ids_to_tokens # same as bpe A = emoji A = np.max([len(snake_case ) for w in self.vocab.keys()] ) A = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) A = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) A = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) A = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) A = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) A = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) A = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' A = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' A = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self : List[str] ) -> List[str]: '''simple docstring''' return len(self.ids_to_tokens ) def A_ ( self : Tuple , snake_case : Any ) -> Optional[int]: '''simple docstring''' A = self.content_repattera.sub('<URL>' , snake_case ) A = self.content_repattera.sub('<EMAIL>' , snake_case ) A = self.content_repattera.sub('<TEL>' , snake_case ) A = self.content_repattera.sub('<DATE>' , snake_case ) A = self.content_repattera.sub('<DATE>' , snake_case ) A = self.content_repattera.sub('<PRICE>' , snake_case ) A = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: A = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def A_ ( self : Any , snake_case : int , snake_case : Any=False ) -> Any: '''simple docstring''' A = text.replace(' ' , '<SP>' ) A = text.replace(' ' , '<SP>' ) A = text.replace('\r\n' , '<BR>' ) A = text.replace('\n' , '<BR>' ) A = text.replace('\r' , '<BR>' ) A = text.replace('\t' , '<TAB>' ) A = text.replace('—' , 'ー' ) A = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: A = text.replace(snake_case , snake_case ) if clean: A = self.clean_text(snake_case ) def check_simbol(snake_case : Union[str, Any] ): A = x.encode() if len(snake_case ) == 1 and len(snake_case ) == 2: A = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc2a1 and c <= 0xc2bf) or (c >= 0xc780 and c <= 0xc783) or (c >= 0xcab9 and c <= 0xcbbf) or (c >= 0xcc80 and c <= 0xcda2) ): return True return False def checkuae(snake_case : List[Any] ): A = x.encode() if len(snake_case ) == 1 and len(snake_case ) == 3: A = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe2_8080 and c <= 0xe2_b07f: return True return False A = 0 A = [] while pos < len(snake_case ): A = min(len(snake_case ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 A = [] # (token_id, token, pos) for e in range(snake_case , snake_case , -1 ): A = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case ) > 2: A = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case ) > 0: # the smallest token_id is adopted A , A , A = sorted(snake_case , key=lambda snake_case : x[0] )[0] result.append(snake_case ) A = e else: A = pos + 1 A = text[pos:end] if check_simbol(snake_case ): result.append('<KIGOU>' ) elif checkuae(snake_case ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) A = end return result def A_ ( self : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any]="\n" ) -> List[Any]: '''simple docstring''' A = [] A = [] A = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case ) > 0: words.append(bytearray(snake_case ).decode('utf-8' , errors='replace' ) ) A = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(snake_case ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(snake_case ) if len(snake_case ) > 0: words.append(bytearray(snake_case ).decode('utf-8' , errors='replace' ) ) A = ''.join(snake_case ) return text
109
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __A = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } __A = {"""facebook/blenderbot-3B""": 128} class _lowerCAmelCase ( a ): """simple docstring""" __magic_name__ :List[Any] = VOCAB_FILES_NAMES __magic_name__ :int = PRETRAINED_VOCAB_FILES_MAP __magic_name__ :List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ :Optional[int] = ["""input_ids""", """attention_mask"""] __magic_name__ :str = BlenderbotTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ :List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: lowerCAmelCase__ :List[str] = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) lowerCAmelCase__ :int = add_prefix_space lowerCAmelCase__ :str = pre_tok_class(**__UpperCAmelCase ) lowerCAmelCase__ :Dict = add_prefix_space lowerCAmelCase__ :Optional[Any] = 'post_processor' lowerCAmelCase__ :List[Any] = getattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) if tokenizer_component_instance: lowerCAmelCase__ :List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase__ :Union[str, Any] = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase__ :Optional[int] = tuple(state['cls'] ) lowerCAmelCase__ :Optional[Any] = False if state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: lowerCAmelCase__ :Dict = add_prefix_space lowerCAmelCase__ :List[Any] = True if state.get('trim_offsets' , __UpperCAmelCase ) != trim_offsets: lowerCAmelCase__ :Tuple = trim_offsets lowerCAmelCase__ :Any = True if changes_to_apply: lowerCAmelCase__ :int = getattr(__UpperCAmelCase , state.pop('type' ) ) lowerCAmelCase__ :Any = component_class(**__UpperCAmelCase ) setattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def snake_case ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value lowerCAmelCase__ :List[str] = value def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :List[str] = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Any = [self.sep_token_id] lowerCAmelCase__ :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__UpperCAmelCase ) lowerCAmelCase__ :Dict = ' '.join(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.encode(__UpperCAmelCase ) if len(__UpperCAmelCase ) > self.model_max_length: lowerCAmelCase__ :Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
93
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _a: List[str] = logging.get_logger(__name__) @dataclass class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Optional[int] , **lowerCAmelCase : List[str] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase_ = deprecated_arg[3:] setattr(self , lowerCAmelCase , not kwargs.pop(lowerCAmelCase ) ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) UpperCAmelCase_ = kwargs.pop("torchscript" , self.torchscript ) UpperCAmelCase_ = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics ) UpperCAmelCase_ = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level ) super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = field(default=lowercase , metadata={'help': 'Trace the models using torchscript'} ) SCREAMING_SNAKE_CASE__ = field(default=lowercase , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) SCREAMING_SNAKE_CASE__ = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def __A ( self : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: UpperCAmelCase_ = torch.device("cpu" ) UpperCAmelCase_ = 0 elif is_torch_tpu_available(): UpperCAmelCase_ = xm.xla_device() UpperCAmelCase_ = 0 else: UpperCAmelCase_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) UpperCAmelCase_ = torch.cuda.device_count() return device, n_gpu @property def __A ( self : int ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def __A ( self : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __A ( self : Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[0] @property def __A ( self : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[1] @property def __A ( self : Union[str, Any] ): '''simple docstring''' return self.n_gpu > 0
162
0
import math def A_ ( snake_case : int ) -> int: '''simple docstring''' if not isinstance(snake_case , snake_case ): __UpperCamelCase = f"Input value of [number={number}] must be an integer" raise TypeError(snake_case ) if number < 1: __UpperCamelCase = f"Input value of [number={number}] must be > 0" raise ValueError(snake_case ) elif number == 1: return 3 elif number == 2: return 5 else: __UpperCamelCase = int(math.log(number // 3 , 2 ) ) + 2 __UpperCamelCase = [3, 5] __UpperCamelCase = 2 __UpperCamelCase = 3 for block in range(1 , snake_case ): for _ in range(snake_case ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): lowercase__ : Tuple = 0 try: lowercase__ : Optional[int] = proth(number) except ValueError: print(F"ValueError: there is no {number}th Proth number") continue print(F"The {number}th Proth number: {value}")
701
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : int = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = 'table-transformer' _snake_case = ['past_key_values'] _snake_case = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=100 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=2048 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=2048 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=256 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="sine" , SCREAMING_SNAKE_CASE_="resnet50" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.1 , **SCREAMING_SNAKE_CASE_ , )-> Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __UpperCamelCase = backbone_config.get('''model_type''' ) __UpperCamelCase = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase = config_class.from_dict(SCREAMING_SNAKE_CASE_ ) # set timm attributes to None __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None, None, None __UpperCamelCase = use_timm_backbone __UpperCamelCase = backbone_config __UpperCamelCase = num_channels __UpperCamelCase = num_queries __UpperCamelCase = d_model __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = init_xavier_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = encoder_layers __UpperCamelCase = auxiliary_loss __UpperCamelCase = position_embedding_type __UpperCamelCase = backbone __UpperCamelCase = use_pretrained_backbone __UpperCamelCase = dilation # Hungarian matcher __UpperCamelCase = class_cost __UpperCamelCase = bbox_cost __UpperCamelCase = giou_cost # Loss coefficients __UpperCamelCase = mask_loss_coefficient __UpperCamelCase = dice_loss_coefficient __UpperCamelCase = bbox_loss_coefficient __UpperCamelCase = giou_loss_coefficient __UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def A__ ( self )-> int: '''simple docstring''' return self.encoder_attention_heads @property def A__ ( self )-> int: '''simple docstring''' return self.d_model class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _snake_case = version.parse('1.11' ) @property def A__ ( self )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def A__ ( self )-> float: '''simple docstring''' return 1E-5 @property def A__ ( self )-> int: '''simple docstring''' return 12
451
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : Any = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ : str = { 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ : int = { 'camembert-base': 5_12, } lowerCAmelCase_ : Tuple = '▁' class __SCREAMING_SNAKE_CASE (_UpperCAmelCase ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =['input_ids', 'attention_mask'] def __init__( self : List[Any] , __a : Union[str, Any] , __a : Any="<s>" , __a : List[Any]="</s>" , __a : str="</s>" , __a : Any="<s>" , __a : Any="<unk>" , __a : Tuple="<pad>" , __a : List[Any]="<mask>" , __a : Optional[Any]=["<s>NOTUSED", "</s>NOTUSED"] , __a : Tuple = None , **__a : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , additional_special_tokens=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) _a = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> _a = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3} _a = len(self.fairseq_tokens_to_ids ) _a = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) _a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase__ ( self : Any , __a : List[Any] , __a : List[Any] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self : List[Any] , __a : str , __a : int = None , __a : Tuple = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def UpperCamelCase__ ( self : Dict , __a : Dict , __a : int = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase__ ( self : Optional[Any] ): return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def UpperCamelCase__ ( self : Dict ): _a = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] ): return self.sp_model.encode(__a , out_type=__a ) def UpperCamelCase__ ( self : List[str] , __a : Tuple ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(__a ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(__a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] ): _a = [] _a = "" _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token _a = True _a = [] else: current_sub_tokens.append(__a ) _a = False out_string += self.sp_model.decode(__a ) return out_string.strip() def __getstate__( self : Dict ): _a = self.__dict__.copy() _a = None return state def __setstate__( self : Union[str, Any] , __a : int ): _a = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__ ( self : str , __a : Tuple , __a : List[str] = None ): if not os.path.isdir(__a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
692
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
532
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ (unittest.TestCase ): @parameterized.expand([(None,), ("foo.json",)] ) def __a ( self , _a ) -> Tuple: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a , config_name=_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a , config_name=_a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoConfig.from_pretrained("gpt2" ) lowerCAmelCase_ = GenerationConfig.from_model_config(_a ) lowerCAmelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_a , _a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = GenerationConfig() lowerCAmelCase_ = { "max_new_tokens": 1024, "foo": "bar", } lowerCAmelCase_ = copy.deepcopy(_a ) lowerCAmelCase_ = generation_config.update(**_a ) # update_kwargs was not modified (no side effects) self.assertEqual(_a , _a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_a , {"foo": "bar"} ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = GenerationConfig() lowerCAmelCase_ = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) lowerCAmelCase_ = GenerationConfig.from_model_config(_a ) assert not hasattr(_a , "foo" ) # no new kwargs should be initialized if from config def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ (unittest.TestCase ): @classmethod def __a ( cls ) -> Optional[Any]: lowerCAmelCase_ = TOKEN HfFolder.save_token(_a ) @classmethod def __a ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def __a ( self ) -> List[Any]: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a , repo_id="test-generation-config" , push_to_hub=_a , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) def __a ( self ) -> List[str]: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a , repo_id="valid_org/test-generation-config-org" , push_to_hub=_a , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) )
226
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _a ( SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=1_00 , SCREAMING_SNAKE_CASE=10_26 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE="data/tokenized_stories_train_wikitext103.jbl" , SCREAMING_SNAKE_CASE="igf_context_pairs.jbl" , ): """simple docstring""" set_seed(3 ) # generate train_data and objective_set lowercase__ , lowercase__ = generate_datasets( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , number=SCREAMING_SNAKE_CASE , min_len=10_26 , trim=SCREAMING_SNAKE_CASE ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowercase__ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # load pretrained model lowercase__ = load_gpta('''gpt2''' ).to(SCREAMING_SNAKE_CASE ) print('''computing perplexity on objective set''' ) lowercase__ = compute_perplexity(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).item() print('''perplexity on objective set:''' , SCREAMING_SNAKE_CASE ) # collect igf pairs and save to file demo.jbl collect_objective_set(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=15 , SCREAMING_SNAKE_CASE=1_28 , SCREAMING_SNAKE_CASE=1_00 , SCREAMING_SNAKE_CASE="igf_model.pt" , ): """simple docstring""" set_seed(42 ) # Load pre-trained model lowercase__ = GPTaLMHeadModel.from_pretrained('''gpt2''' ) # Initialize secondary learner to use embedding weights of model lowercase__ = SecondaryLearner(SCREAMING_SNAKE_CASE ) # Train secondary learner lowercase__ = train_secondary_learner( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_epochs=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , eval_freq=1_00 , igf_model_path=SCREAMING_SNAKE_CASE , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=10_00 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=1.0 , SCREAMING_SNAKE_CASE=recopy_gpta , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE="gpt2_finetuned.pt" , ): """simple docstring""" lowercase__ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) lowercase__ = RandomSampler(SCREAMING_SNAKE_CASE ) lowercase__ = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE ) lowercase__ = max_steps // (len(SCREAMING_SNAKE_CASE )) + 1 lowercase__ = 0 lowercase__ = torch.zeros((1, context_len) , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ , lowercase__ = recopy_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.train() if secondary_learner is not None: secondary_learner.to(SCREAMING_SNAKE_CASE ) secondary_learner.eval() lowercase__ = [] lowercase__ = 0 lowercase__ = [] lowercase__ = [] # Compute the performance of the transformer model at the beginning lowercase__ = compute_perplexity(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) test_perps.append(SCREAMING_SNAKE_CASE ) print('''Test perplexity, step''' , SCREAMING_SNAKE_CASE , ''':''' , SCREAMING_SNAKE_CASE ) for epoch in range(int(SCREAMING_SNAKE_CASE ) ): for step, example in enumerate(SCREAMING_SNAKE_CASE ): torch.cuda.empty_cache() lowercase__ = random.randint(0 , example.size(2 ) - context_len - 1 ) lowercase__ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowercase__ = model(SCREAMING_SNAKE_CASE , labels=SCREAMING_SNAKE_CASE ) lowercase__ = True if secondary_learner is not None: lowercase__ = secondary_learner.forward( torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.long , device=SCREAMING_SNAKE_CASE ).unsqueeze(0 ) )[0].item() observed_qs.append(float(SCREAMING_SNAKE_CASE ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowercase__ = -1 if predicted_q < threshold: lowercase__ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowercase__ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowercase__ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowercase__ = compute_perplexity(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) test_perps.append(SCREAMING_SNAKE_CASE ) print('''Test perplexity, step''' , SCREAMING_SNAKE_CASE , ''':''' , SCREAMING_SNAKE_CASE ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _a ( ): """simple docstring""" lowercase__ = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' ) # Required parameters parser.add_argument( '''--data_dir''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''The input data dir. Should contain data files for WikiText.''' , ) parser.add_argument( '''--model_name_or_path''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--data_file''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help=( '''A jbl file containing tokenized data which can be split as objective dataset, ''' '''train_dataset and test_dataset.''' ) , ) parser.add_argument( '''--igf_data_file''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='''A jbl file containing the context and information gain pairs to train secondary learner.''' , ) parser.add_argument( '''--output_dir''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help='''The output directory where the final fine-tuned model is stored.''' , ) parser.add_argument( '''--tokenizer_name''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''Pretrained tokenizer name or path if not the same as model_name''' , ) parser.add_argument('''--seed''' , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help='''A seed for reproducible training.''' ) parser.add_argument( '''--context_len''' , default=32 , type=SCREAMING_SNAKE_CASE , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--size_objective_set''' , default=1_00 , type=SCREAMING_SNAKE_CASE , help='''number of articles that are long enough to be used as our objective set''' , ) parser.add_argument( '''--eval_freq''' , default=1_00 , type=SCREAMING_SNAKE_CASE , help='''secondary model evaluation is triggered at eval_freq''' ) parser.add_argument('''--max_steps''' , default=10_00 , type=SCREAMING_SNAKE_CASE , help='''To calculate training epochs''' ) parser.add_argument( '''--secondary_learner_batch_size''' , default=1_28 , type=SCREAMING_SNAKE_CASE , help='''batch size of training data for secondary learner''' , ) parser.add_argument( '''--batch_size''' , default=16 , type=SCREAMING_SNAKE_CASE , help='''batch size of training data of language model(gpt2) ''' ) parser.add_argument( '''--eval_interval''' , default=10 , type=SCREAMING_SNAKE_CASE , help=( '''decay the selectivity of our secondary learner filter from''' '''1 standard deviation above average to 1 below average after 10 batches''' ) , ) parser.add_argument( '''--number''' , default=1_00 , type=SCREAMING_SNAKE_CASE , help='''The number of examples split to be used as objective_set/test_data''' ) parser.add_argument( '''--min_len''' , default=10_26 , type=SCREAMING_SNAKE_CASE , help='''The minimum length of the article to be used as objective set''' ) parser.add_argument( '''--secondary_learner_max_epochs''' , default=15 , type=SCREAMING_SNAKE_CASE , help='''number of epochs to train secondary learner''' ) parser.add_argument('''--trim''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''truncate the example if it exceeds context length''' ) parser.add_argument( '''--threshold''' , default=1.0 , type=SCREAMING_SNAKE_CASE , help=( '''The threshold value used by secondary learner to filter the train_data and allow only''' ''' informative data as input to the model''' ) , ) parser.add_argument('''--finetuned_model_name''' , default='''gpt2_finetuned.pt''' , type=SCREAMING_SNAKE_CASE , help='''finetuned_model_name''' ) parser.add_argument( '''--recopy_model''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''Reset the model to the original pretrained GPT-2 weights after each iteration''' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=SCREAMING_SNAKE_CASE , data_file='''data/tokenized_stories_train_wikitext103.jbl''' , igf_data_file='''igf_context_pairs.jbl''' , ) # Load train data for secondary learner lowercase__ = joblib.load('''data/IGF_values.jbl''' ) # Train secondary learner lowercase__ = training_secondary_learner( SCREAMING_SNAKE_CASE , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='''igf_model.pt''' , ) # load pretrained gpt2 model lowercase__ = GPTaLMHeadModel.from_pretrained('''gpt2''' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowercase__ , lowercase__ = generate_datasets( context_len=32 , file='''data/tokenized_stories_train_wikitext103.jbl''' , number=1_00 , min_len=10_26 , trim=SCREAMING_SNAKE_CASE ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=SCREAMING_SNAKE_CASE , secondary_learner=SCREAMING_SNAKE_CASE , eval_interval=10 , finetuned_model_name='''gpt2_finetuned.pt''' , ) if __name__ == "__main__": main()
43
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
43
1
from __future__ import annotations __SCREAMING_SNAKE_CASE : Optional[Any] = list[list[int]] # assigning initial values to the grid __SCREAMING_SNAKE_CASE : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __SCREAMING_SNAKE_CASE : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def snake_case_ ( lowercase__ : Matrix , lowercase__ : int , lowercase__ : int , lowercase__ : int ): '''simple docstring''' for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def snake_case_ ( lowercase__ : Matrix ): '''simple docstring''' for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def snake_case_ ( lowercase__ : Matrix ): '''simple docstring''' if location := find_empty_location(lowercase__ ): _lowerCAmelCase , _lowerCAmelCase =location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCAmelCase =digit if sudoku(lowercase__ ) is not None: return grid _lowerCAmelCase =0 return None def snake_case_ ( lowercase__ : Matrix ): '''simple docstring''' for row in grid: for cell in row: print(lowercase__ , end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __SCREAMING_SNAKE_CASE : List[Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
149
def snake_case_ ( lowercase__ : list[int] ): '''simple docstring''' _lowerCAmelCase =[] if len(lowercase__ ) == 1: return [nums.copy()] for _ in range(len(lowercase__ ) ): _lowerCAmelCase =nums.pop(0 ) _lowerCAmelCase =permute(lowercase__ ) for perm in permutations: perm.append(lowercase__ ) result.extend(lowercase__ ) nums.append(lowercase__ ) return result def snake_case_ ( lowercase__ : Optional[Any] ): '''simple docstring''' def backtrack(lowercase__ : List[Any] ): if start == len(lowercase__ ) - 1: output.append(nums[:] ) else: for i in range(lowercase__ , len(lowercase__ ) ): _lowerCAmelCase , _lowerCAmelCase =nums[i], nums[start] backtrack(start + 1 ) _lowerCAmelCase , _lowerCAmelCase =nums[i], nums[start] # backtrack _lowerCAmelCase =[] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __SCREAMING_SNAKE_CASE : Any = permutea([1, 2, 3]) print(res) doctest.testmod()
149
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=7 , UpperCAmelCase__=3 , UpperCAmelCase__=18 , UpperCAmelCase__=30 , UpperCAmelCase__=400 , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=True , UpperCAmelCase__=False , UpperCAmelCase__=True , UpperCAmelCase__=True , UpperCAmelCase__=[0.5, 0.5, 0.5] , UpperCAmelCase__=[0.5, 0.5, 0.5] , ): A__ = parent A__ = batch_size A__ = num_channels A__ = image_size A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size if size is not None else {"height": 18, "width": 20} A__ = do_thumbnail A__ = do_align_axis A__ = do_pad A__ = do_normalize A__ = image_mean A__ = image_std def __A ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : Any = DonutImageProcessor if is_vision_available() else None def __A ( self ): A__ = DonutImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_thumbnail" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_align_long_axis" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_pad" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_std" ) ) def __A ( self ): A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def __A ( self ): pass @is_flaky() def __A ( self ): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def __A ( self ): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def __A ( self ): # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A__ = image_processing(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
491
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCamelCase ( unittest.TestCase ): def __A ( self ): A__ = 10 def __A ( self ): A__ = [1, 2, 3, 4] A__ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __A ( self ): A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __A ( self ): A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] A__ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCAmelCase__ , self.block_size , 0 ) , UpperCAmelCase__ ) def __A ( self ): A__ = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." A__ , A__ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) def __A ( self ): A__ = "" A__ , A__ = process_story(UpperCAmelCase__ ) self.assertEqual(UpperCAmelCase__ , [] ) self.assertEqual(UpperCAmelCase__ , [] ) def __A ( self ): A__ = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) A__ , A__ = process_story(UpperCAmelCase__ ) A__ = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = ["It was the best of times."] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self ): A__ = torch.tensor([1, 2, 3, 4] ) A__ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 0 ).numpy() , expected.numpy() ) def __A ( self ): A__ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) A__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 23 ).numpy() , expected.numpy() ) def __A ( self ): A__ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) A__ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCAmelCase__ , 1 ).numpy() , expected.numpy() ) def __A ( self ): A__ = 101 A__ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) A__ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) A__ = compute_token_type_ids(UpperCAmelCase__ , UpperCAmelCase__ ) np.testing.assert_array_equal(UpperCAmelCase__ , UpperCAmelCase__ )
491
1
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __snake_case :str = True except ImportError: __snake_case :str = False __snake_case :int = logging.get_logger(__name__) # pylint: disable=invalid-name def __snake_case ( _UpperCAmelCase ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _A ( __UpperCAmelCase ): @staticmethod def _lowerCamelCase ( __SCREAMING_SNAKE_CASE : ArgumentParser): '''simple docstring''' __a = parser.add_parser('''add-new-model''') add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''') add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''') add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''') add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE) def __init__( self : Any , __SCREAMING_SNAKE_CASE : bool , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int=None , *__SCREAMING_SNAKE_CASE : List[Any]): '''simple docstring''' __a = testing __a = testing_file __a = path def _lowerCamelCase ( self : List[str]): '''simple docstring''' warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''') if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''') # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __a = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''') __a = ( Path(__SCREAMING_SNAKE_CASE).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent ) __a = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE)) else: with open(self._testing_file , '''r''') as configuration_file: __a = json.load(__SCREAMING_SNAKE_CASE) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) __a = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''') as configuration_file: __a = json.load(__SCREAMING_SNAKE_CASE) __a = configuration['''lowercase_modelname'''] __a = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(F'{directory}/configuration.json') __a = '''PyTorch''' in generate_tensorflow_pytorch_and_flax __a = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax __a = '''Flax''' in generate_tensorflow_pytorch_and_flax __a = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=__SCREAMING_SNAKE_CASE) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , '''w'''): pass shutil.move( F'{directory}/__init__.py' , F'{model_dir}/__init__.py' , ) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' , F'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE : List[str]): with open(__SCREAMING_SNAKE_CASE , '''r''') as f: __a = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''') as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py') shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' , F'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py') os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py') if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py') shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' , F'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py') os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py') if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py') shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' , F'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' , F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py') os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py') shutil.move( F'{directory}/{lowercase_model_name}.md' , F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' , F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str]): # Create temp file __a , __a = mkstemp() __a = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''') as new_file: with open(__SCREAMING_SNAKE_CASE) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE) if line_to_copy_below in line: __a = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.') # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # Remove original file remove(__SCREAMING_SNAKE_CASE) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def skip_units(__SCREAMING_SNAKE_CASE : Union[str, Any]): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE : str): with open(__SCREAMING_SNAKE_CASE) as datafile: __a = [] __a = False __a = False for line in datafile: if "# To replace in: " in line and "##" not in line: __a = line.split('''"''')[1] __a = skip_units(__SCREAMING_SNAKE_CASE) elif "# Below: " in line and "##" not in line: __a = line.split('''"''')[1] __a = skip_units(__SCREAMING_SNAKE_CASE) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) __a = [] elif "# Replace with" in line and "##" not in line: __a = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE) remove(__SCREAMING_SNAKE_CASE) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py') os.rmdir(__SCREAMING_SNAKE_CASE)
60
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _A ( __UpperCAmelCase ): def _lowerCamelCase ( self : int): '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _lowerCamelCase ( self : Tuple): '''simple docstring''' __a = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Any): '''simple docstring''' __a = self._create_example_records() __a = Dataset.from_list(__SCREAMING_SNAKE_CASE) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2''']) for i, r in enumerate(__SCREAMING_SNAKE_CASE): self.assertDictEqual(__SCREAMING_SNAKE_CASE , example_records[i]) def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' __a = self._create_example_records() __a = Dataset.from_list(__SCREAMING_SNAKE_CASE) __a = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]}) self.assertEqual(dset.info , dset_from_dict.info) def _lowerCamelCase ( self : int): # checks what happens with missing columns '''simple docstring''' __a = [{'''col_1''': 1}, {'''col_2''': '''x'''}] __a = Dataset.from_list(__SCREAMING_SNAKE_CASE) self.assertDictEqual(dset[0] , {'''col_1''': 1}) self.assertDictEqual(dset[1] , {'''col_1''': None}) # NB: first record is used for columns def _lowerCamelCase ( self : Optional[Any]): # checks if the type can be inferred from the second record '''simple docstring''' __a = [{'''col_1''': []}, {'''col_1''': [1, 2]}] __a = Dataset.from_list(__SCREAMING_SNAKE_CASE) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64'''))) def _lowerCamelCase ( self : List[Any]): '''simple docstring''' __a = Dataset.from_list([]) self.assertEqual(len(__SCREAMING_SNAKE_CASE) , 0) self.assertListEqual(dset.column_names , [])
60
1
def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __SCREAMING_SNAKE_CASE: Any = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" __SCREAMING_SNAKE_CASE: Any = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" __SCREAMING_SNAKE_CASE: Union[str, Any] = max(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase__ ) , b_binary.zfill(UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
202
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a ( __lowercase ): SCREAMING_SNAKE_CASE__ : jnp.ndarray @flax_register_to_config class a ( nn.Module ,__lowercase ,__lowercase ): SCREAMING_SNAKE_CASE__ : int = 32 SCREAMING_SNAKE_CASE__ : int = 4 SCREAMING_SNAKE_CASE__ : int = 4 SCREAMING_SNAKE_CASE__ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") SCREAMING_SNAKE_CASE__ : Union[bool, Tuple[bool]] = False SCREAMING_SNAKE_CASE__ : Tuple[int] = (320, 640, 1280, 1280) SCREAMING_SNAKE_CASE__ : int = 2 SCREAMING_SNAKE_CASE__ : Union[int, Tuple[int]] = 8 SCREAMING_SNAKE_CASE__ : Optional[Union[int, Tuple[int]]] = None SCREAMING_SNAKE_CASE__ : int = 1280 SCREAMING_SNAKE_CASE__ : float = 0.0 SCREAMING_SNAKE_CASE__ : bool = False SCREAMING_SNAKE_CASE__ : jnp.dtype = jnp.floataa SCREAMING_SNAKE_CASE__ : bool = True SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : bool = False def snake_case_ ( self , _lowerCAmelCase ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = (1, self.in_channels, self.sample_size, self.sample_size) __SCREAMING_SNAKE_CASE: Tuple = jnp.zeros(_lowerCAmelCase , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE: Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) __SCREAMING_SNAKE_CASE: Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[int] = jax.random.split(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )["params"] def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = self.block_out_channels __SCREAMING_SNAKE_CASE: Union[str, Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __SCREAMING_SNAKE_CASE: Any = self.num_attention_heads or self.attention_head_dim # input __SCREAMING_SNAKE_CASE: str = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __SCREAMING_SNAKE_CASE: int = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __SCREAMING_SNAKE_CASE: Union[str, Any] = FlaxTimestepEmbedding(_lowerCAmelCase , dtype=self.dtype ) __SCREAMING_SNAKE_CASE: Optional[int] = self.only_cross_attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Any = (num_attention_heads,) * len(self.down_block_types ) # down __SCREAMING_SNAKE_CASE: Union[str, Any] = [] __SCREAMING_SNAKE_CASE: List[str] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __SCREAMING_SNAKE_CASE: List[str] = output_channel __SCREAMING_SNAKE_CASE: str = block_out_channels[i] __SCREAMING_SNAKE_CASE: Any = i == len(_lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": __SCREAMING_SNAKE_CASE: str = FlaxCrossAttnDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE: Tuple = FlaxDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: str = down_blocks # mid __SCREAMING_SNAKE_CASE: Union[str, Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __SCREAMING_SNAKE_CASE: Optional[int] = [] __SCREAMING_SNAKE_CASE: Tuple = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Optional[int] = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: str = list(reversed(_lowerCAmelCase ) ) __SCREAMING_SNAKE_CASE: Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __SCREAMING_SNAKE_CASE: int = output_channel __SCREAMING_SNAKE_CASE: List[str] = reversed_block_out_channels[i] __SCREAMING_SNAKE_CASE: List[str] = reversed_block_out_channels[min(i + 1 , len(_lowerCAmelCase ) - 1 )] __SCREAMING_SNAKE_CASE: Union[str, Any] = i == len(_lowerCAmelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": __SCREAMING_SNAKE_CASE: Optional[int] = FlaxCrossAttnUpBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __SCREAMING_SNAKE_CASE: int = FlaxUpBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , prev_output_channel=_lowerCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Any = output_channel __SCREAMING_SNAKE_CASE: Union[str, Any] = up_blocks # out __SCREAMING_SNAKE_CASE: Optional[int] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __SCREAMING_SNAKE_CASE: Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase = True , _lowerCAmelCase = False , ): """simple docstring""" if not isinstance(_lowerCAmelCase , jnp.ndarray ): __SCREAMING_SNAKE_CASE: Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: __SCREAMING_SNAKE_CASE: Optional[Any] = timesteps.astype(dtype=jnp.floataa ) __SCREAMING_SNAKE_CASE: Union[str, Any] = jnp.expand_dims(_lowerCAmelCase , 0 ) __SCREAMING_SNAKE_CASE: Any = self.time_proj(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Union[str, Any] = self.time_embedding(_lowerCAmelCase ) # 2. pre-process __SCREAMING_SNAKE_CASE: int = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) __SCREAMING_SNAKE_CASE: List[str] = self.conv_in(_lowerCAmelCase ) # 3. down __SCREAMING_SNAKE_CASE: Dict = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Optional[Any] = down_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) else: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE: Tuple = down_block(_lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __SCREAMING_SNAKE_CASE: Union[str, Any] = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCAmelCase , _lowerCAmelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __SCREAMING_SNAKE_CASE: Union[str, Any] = new_down_block_res_samples # 4. mid __SCREAMING_SNAKE_CASE: Dict = self.mid_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __SCREAMING_SNAKE_CASE: Union[str, Any] = down_block_res_samples[-(self.layers_per_block + 1) :] __SCREAMING_SNAKE_CASE: Union[str, Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __SCREAMING_SNAKE_CASE: Any = up_block( _lowerCAmelCase , temb=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , res_hidden_states_tuple=_lowerCAmelCase , deterministic=not train , ) else: __SCREAMING_SNAKE_CASE: List[str] = up_block(_lowerCAmelCase , temb=_lowerCAmelCase , res_hidden_states_tuple=_lowerCAmelCase , deterministic=not train ) # 6. post-process __SCREAMING_SNAKE_CASE: Optional[Any] = self.conv_norm_out(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Optional[Any] = nn.silu(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: Tuple = self.conv_out(_lowerCAmelCase ) __SCREAMING_SNAKE_CASE: int = jnp.transpose(_lowerCAmelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCAmelCase )
202
1
from __future__ import annotations from scipy.special import comb # type: ignore class lowercase__ : """simple docstring""" def __init__( self : Union[str, Any] , __a : list[tuple[float, float]] ): snake_case__ : int = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. snake_case__ : Dict = len(__a ) - 1 def lowercase ( self : Tuple , __a : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case__ : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __a ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__a ) , 5 ) == 1 return output_values def lowercase ( self : Optional[int] , __a : float ): assert 0 <= t <= 1, "Time t must be between 0 and 1." snake_case__ : Optional[int] = self.basis_function(__a ) snake_case__ : Optional[Any] = 0.0 snake_case__ : Union[str, Any] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def lowercase ( self : str , __a : float = 0.01 ): from matplotlib import pyplot as plt # type: ignore snake_case__ : list[float] = [] # x coordinates of points to plot snake_case__ : list[float] = [] # y coordinates of points to plot snake_case__ : Tuple = 0.0 while t <= 1: snake_case__ : List[str] = self.bezier_curve_function(__a ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size snake_case__ : Union[str, Any] = [i[0] for i in self.list_of_points] snake_case__ : Union[str, Any] = [i[1] for i in self.list_of_points] plt.plot( __a , __a , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(__a , __a , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
127
import re import string import numpy as np import datasets lowercase_: Optional[Any] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' lowercase_: Optional[int] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' lowercase_: str = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ (datasets.Metric ): """simple docstring""" def lowercase ( self : Tuple ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def lowercase ( self : Optional[Any] , __a : int , __a : Optional[int] , __a : Optional[int]=None , __a : int=False , __a : Any=False , __a : Dict=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: snake_case__ : Union[str, Any] = np.array([re.sub(__a , """""" , __a ) for x in predictions] ) snake_case__ : Union[str, Any] = np.array([re.sub(__a , """""" , __a ) for x in references] ) else: snake_case__ : List[str] = np.asarray(__a ) snake_case__ : int = np.asarray(__a ) if ignore_case: snake_case__ : str = np.char.lower(__a ) snake_case__ : Tuple = np.char.lower(__a ) if ignore_punctuation: snake_case__ : str = string.punctuation.maketrans("""""" , """""" , string.punctuation ) snake_case__ : List[Any] = np.char.translate(__a , table=__a ) snake_case__ : Tuple = np.char.translate(__a , table=__a ) if ignore_numbers: snake_case__ : Union[str, Any] = string.digits.maketrans("""""" , """""" , string.digits ) snake_case__ : Dict = np.char.translate(__a , table=__a ) snake_case__ : int = np.char.translate(__a , table=__a ) snake_case__ : Any = predictions == references return {"exact_match": np.mean(__a ) * 1_0_0}
127
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Optional[Any] = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
555
"""simple docstring""" def _UpperCamelCase ( _A ) -> int: """simple docstring""" if not isinstance(_A , _A ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) _UpperCAmelCase = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
555
1
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = MvpTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = MvpTokenizerFast __SCREAMING_SNAKE_CASE : Optional[int] = True __SCREAMING_SNAKE_CASE : Tuple = filter_roberta_detectors def a ( self ): super().setUp() snake_case_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] snake_case_ = dict(zip(snake_case , range(len(snake_case ) ) ) ) snake_case_ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case_ = {'unk_token': '<unk>'} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case ) ) def a ( self , **snake_case ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def a ( self , **snake_case ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def a ( self , snake_case ): return "lower newer", "lower newer" @cached_property def a ( self ): return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def a ( self ): return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def a ( self ): snake_case_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case_ = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ = tokenizer(snake_case , max_length=len(snake_case ) , padding=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) snake_case_ = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) # Test that special tokens are reset @require_torch def a ( self ): snake_case_ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ = tokenizer(snake_case , padding=snake_case , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , snake_case ) self.assertIn('attention_mask' , snake_case ) self.assertNotIn('labels' , snake_case ) self.assertNotIn('decoder_attention_mask' , snake_case ) @require_torch def a ( self ): snake_case_ = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ = tokenizer(text_target=snake_case , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def a ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=snake_case , truncation=snake_case , return_tensors='pt' ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def a ( self ): snake_case_ = ['A long paragraph for summarization.'] snake_case_ = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ = tokenizer(snake_case , text_target=snake_case , return_tensors='pt' ) snake_case_ = inputs['input_ids'] snake_case_ = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def a ( self ): pass def a ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) snake_case_ = self.tokenizer_class.from_pretrained(snake_case , **snake_case ) snake_case_ = 'A, <mask> AllenNLP sentence.' snake_case_ = tokenizer_r.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) snake_case_ = tokenizer_p.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) snake_case_ = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) snake_case_ = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( snake_case , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
108
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Union[List[PIL.Image.Image], np.ndarray] __SCREAMING_SNAKE_CASE : Optional[List[bool]] __SCREAMING_SNAKE_CASE : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
108
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : int = ["""sentencepiece"""] def __init__( self : str , *a_ : Any , **a_ : List[str] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : Optional[int] , *a_ : Optional[int] , **a_ : Any ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *a_ : List[Any] , **a_ : Optional[int] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""sentencepiece"""] def __init__( self : Optional[int] , *a_ : Any , **a_ : List[str] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *a_ : Union[str, Any] , **a_ : str ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : str = ["""sentencepiece"""] def __init__( self : str , *a_ : Union[str, Any] , **a_ : Union[str, Any] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *a_ : List[Any] , **a_ : Tuple ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""sentencepiece"""] def __init__( self : List[Any] , *a_ : Any , **a_ : Tuple ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[int] = ["""sentencepiece"""] def __init__( self : List[Any] , *a_ : Dict , **a_ : List[Any] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : str = ["""sentencepiece"""] def __init__( self : List[str] , *a_ : str , **a_ : Any ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[str] , *a_ : Optional[int] , **a_ : int ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : int = ["""sentencepiece"""] def __init__( self : Any , *a_ : Any , **a_ : Any ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""sentencepiece"""] def __init__( self : Tuple , *a_ : List[str] , **a_ : str ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *a_ : Union[str, Any] , **a_ : int ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : str = ["""sentencepiece"""] def __init__( self : List[str] , *a_ : Dict , **a_ : List[str] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : int = ["""sentencepiece"""] def __init__( self : int , *a_ : int , **a_ : List[str] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Any = ["""sentencepiece"""] def __init__( self : Tuple , *a_ : Any , **a_ : Optional[int] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""sentencepiece"""] def __init__( self : Dict , *a_ : List[Any] , **a_ : int ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""sentencepiece"""] def __init__( self : List[str] , *a_ : Union[str, Any] , **a_ : Dict ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : str = ["""sentencepiece"""] def __init__( self : Tuple , *a_ : Any , **a_ : Dict ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""sentencepiece"""] def __init__( self : Tuple , *a_ : Optional[int] , **a_ : Any ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *a_ : List[Any] , **a_ : Any ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : Any , *a_ : int , **a_ : Optional[Any] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Optional[Any] = ["""sentencepiece"""] def __init__( self : str , *a_ : str , **a_ : List[str] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[Any] = ["""sentencepiece"""] def __init__( self : str , *a_ : Optional[int] , **a_ : Optional[Any] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""sentencepiece"""] def __init__( self : Tuple , *a_ : Tuple , **a_ : Optional[int] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : List[str] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *a_ : Union[str, Any] , **a_ : List[Any] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : str = ["""sentencepiece"""] def __init__( self : str , *a_ : Tuple , **a_ : Tuple ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""sentencepiece"""] def __init__( self : Tuple , *a_ : int , **a_ : List[Any] ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Union[str, Any] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *a_ : int , **a_ : Any ): requires_backends(self , ["sentencepiece"] ) class __lowerCamelCase ( metaclass=A__ ): '''simple docstring''' a_ : Tuple = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *a_ : int , **a_ : int ): requires_backends(self , ["sentencepiece"] )
610
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( A__ , unittest.TestCase ): '''simple docstring''' a_ : str = GPTaTokenizer a_ : Dict = GPTaTokenizerFast a_ : List[Any] = True a_ : str = {"""add_prefix_space""": True} a_ : Dict = False def lowerCamelCase ( self : Tuple ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase_ : List[Any] = dict(zip(a_ , range(len(a_ ) ) ) ) lowerCAmelCase_ : List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase_ : Optional[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def lowerCamelCase ( self : Optional[Any] , **a_ : Optional[Any] ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : List[Any] , **a_ : int ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def lowerCamelCase ( self : Tuple , a_ : Optional[Any] ): lowerCAmelCase_ : str = "lower newer" lowerCAmelCase_ : Dict = "lower newer" return input_text, output_text def lowerCamelCase ( self : int ): lowerCAmelCase_ : Any = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ : str = "lower newer" lowerCAmelCase_ : List[str] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize(a_ , add_prefix_space=a_ ) self.assertListEqual(a_ , a_ ) lowerCAmelCase_ : List[Any] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def lowerCamelCase ( self : str ): if not self.test_rust_tokenizer: return lowerCAmelCase_ : int = self.get_tokenizer() lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=a_ ) lowerCAmelCase_ : int = "lower newer" # Testing tokenization lowerCAmelCase_ : Optional[int] = tokenizer.tokenize(a_ , add_prefix_space=a_ ) lowerCAmelCase_ : int = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids without special tokens lowerCAmelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ ) lowerCAmelCase_ : List[str] = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) # Testing conversion to ids with special tokens lowerCAmelCase_ : Any = self.get_rust_tokenizer(add_prefix_space=a_ ) lowerCAmelCase_ : List[Any] = tokenizer.encode(a_ , add_prefix_space=a_ ) lowerCAmelCase_ : str = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) # Testing the unknown token lowerCAmelCase_ : List[str] = tokens + [rust_tokenizer.unk_token] lowerCAmelCase_ : Dict = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a_ ) , a_ ) def lowerCamelCase ( self : Dict , *a_ : Optional[int] , **a_ : Union[str, Any] ): # It's very difficult to mix/test pretokenization with byte-level # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase ( self : Optional[int] , a_ : List[Any]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) # Simple input lowerCAmelCase_ : Optional[int] = "This is a simple input" lowerCAmelCase_ : List[Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : List[str] = ("This is a simple input", "This is a pair") lowerCAmelCase_ : List[Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding="max_length" ) # Simple input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding="max_length" ) # Simple input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding="max_length" , ) # Pair input self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding="max_length" ) # Pair input self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding="max_length" ) # Pair input self.assertRaises( a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding="max_length" , ) def lowerCamelCase ( self : Optional[int] ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input lowerCAmelCase_ : Tuple = "This is a simple input" lowerCAmelCase_ : Any = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase_ : Union[str, Any] = ("This is a simple input", "This is a pair") lowerCAmelCase_ : Optional[Any] = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase_ : Dict = tokenizer.pad_token_id lowerCAmelCase_ : Union[str, Any] = tokenizer(a_ , padding="max_length" , max_length=30 , return_tensors="np" ) lowerCAmelCase_ : Tuple = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors="np" ) lowerCAmelCase_ : Dict = tokenizer(*a_ , padding="max_length" , max_length=60 , return_tensors="np" ) lowerCAmelCase_ : Union[str, Any] = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase ( self : List[Any] ): lowerCAmelCase_ : Tuple = "$$$" lowerCAmelCase_ : Optional[Any] = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a_ , add_bos_token=a_ ) lowerCAmelCase_ : Tuple = "This is a simple input" lowerCAmelCase_ : Optional[int] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase_ : Optional[Any] = tokenizer.bos_token_id lowerCAmelCase_ : int = tokenizer(a_ ) lowerCAmelCase_ : Optional[Any] = tokenizer(a_ ) self.assertEqual(out_s.input_ids[0] , a_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase_ : int = tokenizer.decode(out_s.input_ids ) lowerCAmelCase_ : List[Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , a_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowerCamelCase ( self : List[str] ): pass def lowerCamelCase ( self : List[Any] ): # TODO: change to self.get_tokenizers() when the fast version is implemented lowerCAmelCase_ : int = [self.get_tokenizer(do_lower_case=a_ , add_bos_token=a_ )] for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): lowerCAmelCase_ : Optional[Any] = "Encode this." lowerCAmelCase_ : List[str] = "This one too please." lowerCAmelCase_ : Tuple = tokenizer.encode(a_ , add_special_tokens=a_ ) encoded_sequence += tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCAmelCase_ : Dict = tokenizer.encode_plus( a_ , a_ , add_special_tokens=a_ , return_special_tokens_mask=a_ , ) lowerCAmelCase_ : List[str] = encoded_sequence_dict["input_ids"] lowerCAmelCase_ : Optional[Any] = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(a_ ) , len(a_ ) ) lowerCAmelCase_ : str = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(a_ ) ] lowerCAmelCase_ : List[Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(a_ , a_ ) @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : str ): # More context: # https://huggingface.co/wjmcat/opt-350m-paddle/discussions/1 # https://huggingface.slack.com/archives/C01N44FJDHT/p1653511495183519 # https://github.com/huggingface/transformers/pull/17088#discussion_r871246439 lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=a_ ) lowerCAmelCase_ : List[Any] = "A photo of a cat" lowerCAmelCase_ : Union[str, Any] = tokenizer.encode( a_ , ) self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("test_opt" ) lowerCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained("./test_opt" ) lowerCAmelCase_ : Optional[int] = tokenizer.encode( a_ , ) self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] ) def lowerCamelCase ( self : int ): lowerCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=a_ ) lowerCAmelCase_ : Any = "A photo of a cat" lowerCAmelCase_ : List[str] = tokenizer.encode( a_ , ) # Same as above self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def lowerCamelCase ( self : List[str] ): lowerCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=a_ ) lowerCAmelCase_ : Tuple = "bos" lowerCAmelCase_ : Dict = tokenizer.get_vocab()["bos"] lowerCAmelCase_ : List[Any] = "A photo of a cat" lowerCAmelCase_ : Optional[Any] = tokenizer.encode( a_ , ) # We changed the bos token self.assertEqual(a_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("./tok" ) lowerCAmelCase_ : str = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) lowerCAmelCase_ : int = tokenizer.encode( a_ , ) self.assertEqual(a_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
610
1
UpperCamelCase__ = '''Alexander Joslin''' import operator as op from .stack import Stack def UpperCAmelCase__ ( _A ): """simple docstring""" a_ = {'''*''': op.mul, '''/''': op.truediv, '''+''': op.add, '''-''': op.sub} a_ = Stack() a_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_A ) ) elif i in operators: # RULE 2 operator_stack.push(_A ) elif i == ")": # RULE 4 a_ = operator_stack.peek() operator_stack.pop() a_ = operand_stack.peek() operand_stack.pop() a_ = operand_stack.peek() operand_stack.pop() a_ = operators[opr](_A , _A ) operand_stack.push(_A ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": UpperCamelCase__ = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
143
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = '''▁''' UpperCamelCase__ = {'''vocab_file''': '''spiece.model'''} UpperCamelCase__ = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''} } UpperCamelCase__ = { '''google/pegasus-xsum''': 512, } UpperCamelCase__ = logging.get_logger(__name__) class __lowercase ( a__ ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self : Tuple , lowercase__ : Tuple , lowercase__ : List[str]="<pad>" , lowercase__ : Any="</s>" , lowercase__ : Union[str, Any]="<unk>" , lowercase__ : Any="<mask_2>" , lowercase__ : int="<mask_1>" , lowercase__ : List[Any]=None , lowercase__ : List[str]=1_0_3 , lowercase__ : Optional[Dict[str, Any]] = None , **lowercase__ : List[Any] , ): a_ = offset if additional_special_tokens is not None: if not isinstance(lowercase__ , lowercase__ ): raise TypeError( f"additional_special_tokens should be of type {type(lowercase__ )}, but is" f" {type(lowercase__ )}" ) a_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(lowercase__ ) , self.offset - 1 ) ] if len(set(lowercase__ ) ) != len(lowercase__ ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) a_ = additional_special_tokens_extended else: a_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] a_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase__ , unk_token=lowercase__ , mask_token=lowercase__ , pad_token=lowercase__ , mask_token_sent=lowercase__ , offset=lowercase__ , additional_special_tokens=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) a_ = mask_token_sent a_ = vocab_file a_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) # add special tokens to encoder dict a_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) a_ = {v: k for k, v in self.encoder.items()} @property def __magic_name__ ( self : Optional[Any] ): return len(self.sp_model ) + self.offset def __magic_name__ ( self : Dict ): a_ = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): a_ = self.__dict__.copy() a_ = None return state def __setstate__( self : Tuple , lowercase__ : str ): a_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): a_ = {} a_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __magic_name__ ( self : Tuple , lowercase__ : str ): return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def __magic_name__ ( self : List[Any] , lowercase__ : str ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] a_ = self.sp_model.piece_to_id(lowercase__ ) return sp_id + self.offset def __magic_name__ ( self : str , lowercase__ : int ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: a_ = self.sp_model.IdToPiece(index - self.offset ) return token def __magic_name__ ( self : Optional[int] , lowercase__ : List[str] ): a_ = [] a_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase__ ) + token a_ = [] else: current_sub_tokens.append(lowercase__ ) out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def __magic_name__ ( self : Tuple , lowercase__ : Optional[int]=False ): return 1 def __magic_name__ ( self : Any , lowercase__ : Any ): a_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def __magic_name__ ( self : Union[str, Any] , lowercase__ : List , lowercase__ : Optional[List] = None , lowercase__ : bool = False ): if already_has_special_tokens: return self._special_token_mask(lowercase__ ) elif token_ids_a is None: return self._special_token_mask(lowercase__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def __magic_name__ ( self : Union[str, Any] , lowercase__ : Any , lowercase__ : Optional[Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def __magic_name__ ( self : Union[str, Any] , lowercase__ : str , lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return a_ = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , '''wb''' ) as fi: a_ = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,)
143
1
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def UpperCamelCase__ ( lowercase__ : Tuple ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def UpperCamelCase__ ( lowercase__ : str ): # word like '180' or '身高' or '神' for char in word: snake_case : Any = ord(lowercase__ ) if not _is_chinese_char(lowercase__ ): return 0 return 1 def UpperCamelCase__ ( lowercase__ : List[str] ): snake_case : Any = set() for token in tokens: snake_case : int = len(lowercase__ ) > 1 and is_chinese(lowercase__ ) if chinese_word: word_set.add(lowercase__ ) snake_case : Dict = list(lowercase__ ) return word_list def UpperCamelCase__ ( lowercase__ : List[str] , lowercase__ : set() ): if not chinese_word_set: return bert_tokens snake_case : Tuple = max([len(lowercase__ ) for w in chinese_word_set] ) snake_case : Optional[int] = bert_tokens snake_case , snake_case : Union[str, Any] = 0, len(lowercase__ ) while start < end: snake_case : Dict = True if is_chinese(bert_word[start] ): snake_case : List[str] = min(end - start , lowercase__ ) for i in range(lowercase__ , 1 , -1 ): snake_case : List[Any] = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case : Dict = "##" + bert_word[j] snake_case : Dict = start + i snake_case : Tuple = False break if single_word: start += 1 return bert_word def UpperCamelCase__ ( lowercase__ : List[str] , lowercase__ : LTP , lowercase__ : BertTokenizer ): snake_case : Optional[int] = [] for i in range(0 , len(lowercase__ ) , 100 ): snake_case : Union[str, Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] snake_case : Union[str, Any] = [get_chinese_word(lowercase__ ) for r in res] ltp_res.extend(lowercase__ ) assert len(lowercase__ ) == len(lowercase__ ) snake_case : int = [] for i in range(0 , len(lowercase__ ) , 100 ): snake_case : Optional[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowercase__ , truncation=lowercase__ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(lowercase__ ) == len(lowercase__ ) snake_case : Tuple = [] for input_ids, chinese_word in zip(lowercase__ , lowercase__ ): snake_case : Any = [] for id in input_ids: snake_case : Dict = bert_tokenizer._convert_id_to_token(lowercase__ ) input_tokens.append(lowercase__ ) snake_case : Any = add_sub_symbol(lowercase__ , lowercase__ ) snake_case : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowercase__ ): if token[:2] == "##": snake_case : Dict = token[2:] # save chinese tokens' pos if len(lowercase__ ) == 1 and _is_chinese_char(ord(lowercase__ ) ): ref_id.append(lowercase__ ) ref_ids.append(lowercase__ ) assert len(lowercase__ ) == len(lowercase__ ) return ref_ids def UpperCamelCase__ ( lowercase__ : List[str] ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case : List[Any] = f.readlines() snake_case : str = [line.strip() for line in data if len(lowercase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case : int = LTP(args.ltp ) # faster in GPU device snake_case : Any = BertTokenizer.from_pretrained(args.bert ) snake_case : Union[str, Any] = prepare_ref(lowercase__ , lowercase__ , lowercase__ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case : List[str] = [json.dumps(lowercase__ ) + "\n" for ref in ref_ids] f.writelines(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") __A = parser.parse_args() main(args)
134
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def UpperCamelCase__ ( lowercase__ : List[Any] ): # vision encoder if "img_encoder.pos_embed" in name: snake_case : Optional[int] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: snake_case : int = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: snake_case : Optional[Any] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: snake_case : int = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: snake_case : int = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: snake_case : int = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: snake_case : Union[str, Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: snake_case : Tuple = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: snake_case : Union[str, Any] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: snake_case : Union[str, Any] = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: snake_case : Optional[int] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: snake_case : List[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: snake_case : Any = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: snake_case : Union[str, Any] = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: snake_case : int = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: snake_case : Optional[int] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: snake_case : Dict = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: snake_case : List[Any] = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: snake_case : str = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: snake_case : List[str] = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: snake_case : Union[str, Any] = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: snake_case : Optional[int] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: snake_case : int = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def UpperCamelCase__ ( lowercase__ : Optional[int] , lowercase__ : List[str] ): for key in orig_state_dict.copy().keys(): snake_case : int = orig_state_dict.pop(lowercase__ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case : str = key.split("." ) snake_case , snake_case : int = int(key_split[2] ), int(key_split[4] ) snake_case : Optional[Any] = config.vision_config.hidden_size if "weight" in key: snake_case : List[Any] = val[:dim, :] snake_case : str = val[dim : dim * 2, :] snake_case : Dict = val[-dim:, :] else: snake_case : List[Any] = val[:dim] snake_case : Any = val[dim : dim * 2] snake_case : Optional[Any] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case : Tuple = key.split("." ) snake_case : List[Any] = int(key_split[3] ) snake_case : Optional[int] = config.text_config.hidden_size if "weight" in key: snake_case : Union[str, Any] = val[:dim, :] snake_case : Any = val[ dim : dim * 2, : ] snake_case : Dict = val[-dim:, :] else: snake_case : List[Any] = val[:dim] snake_case : List[str] = val[dim : dim * 2] snake_case : Optional[int] = val[-dim:] else: snake_case : Union[str, Any] = rename_key(lowercase__ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case : List[str] = val.squeeze_() else: snake_case : Union[str, Any] = val return orig_state_dict def UpperCamelCase__ ( ): snake_case : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case : Union[str, Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( lowercase__ : str , lowercase__ : Any , lowercase__ : Optional[Any]="groupvit-gcc-yfcc" , lowercase__ : Any=False ): snake_case : List[Any] = GroupViTConfig() snake_case : Union[str, Any] = GroupViTModel(lowercase__ ).eval() snake_case : str = torch.load(lowercase__ , map_location="cpu" )["model"] snake_case : Any = convert_state_dict(lowercase__ , lowercase__ ) snake_case , snake_case : Any = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase__ ) == 0) # verify result snake_case : Optional[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) snake_case : List[str] = prepare_img() snake_case : Union[str, Any] = processor(text=["a photo of a cat", "a photo of a dog"] , images=lowercase__ , padding=lowercase__ , return_tensors="pt" ) with torch.no_grad(): snake_case : Optional[int] = model(**lowercase__ ) if model_name == "groupvit-gcc-yfcc": snake_case : List[Any] = torch.tensor([[13.35_23, 6.36_29]] ) elif model_name == "groupvit-gcc-redcaps": snake_case : Tuple = torch.tensor([[16.18_73, 8.62_30]] ) else: raise ValueError(F'''Model name {model_name} not supported.''' ) assert torch.allclose(outputs.logits_per_image , lowercase__ , atol=1E-3 ) processor.save_pretrained(lowercase__ ) model.save_pretrained(lowercase__ ) print("Successfully saved processor and model to" , lowercase__ ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(lowercase__ , organization="nielsr" ) model.push_to_hub(lowercase__ , organization="nielsr" ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) __A = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
134
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Dict, lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : str )-> Dict: lowerCamelCase__ : Tuple =dataset lowerCamelCase__ : Optional[Any] =process lowerCamelCase__ : Any =params def __len__( self : Any )-> Optional[Any]: return len(self.dataset ) def __getitem__( self : str, lowerCamelCase : List[str] )-> List[Any]: lowerCamelCase__ : str =self.dataset[i] lowerCamelCase__ : List[str] =self.process(lowerCamelCase, **self.params ) return processed class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : List[Any], lowerCamelCase : Dict, lowerCamelCase : str, lowerCamelCase : Optional[Any], lowerCamelCase : Any=None )-> int: lowerCamelCase__ : str =loader lowerCamelCase__ : Union[str, Any] =infer lowerCamelCase__ : Optional[int] =params if loader_batch_size == 1: # Let's spare some time by deactivating altogether lowerCamelCase__ : int =None lowerCamelCase__ : Optional[Any] =loader_batch_size # Internal bookkeeping lowerCamelCase__ : Optional[Any] =None lowerCamelCase__ : str =None def __len__( self : Optional[int] )-> Tuple: return len(self.loader ) def __iter__( self : Any )-> Optional[Any]: lowerCamelCase__ : Optional[int] =iter(self.loader ) return self def snake_case ( self : List[str] )-> Optional[Any]: if isinstance(self._loader_batch_data, torch.Tensor ): # Batch data is simple tensor, just fetch the slice lowerCamelCase__ : Dict =self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) lowerCamelCase__ : Optional[int] ={} for k, element in self._loader_batch_data.items(): if isinstance(lowerCamelCase, lowerCamelCase ): # Convert ModelOutput to tuple first lowerCamelCase__ : Optional[int] =element.to_tuple() if isinstance(element[0], torch.Tensor ): lowerCamelCase__ : Any =tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): lowerCamelCase__ : Union[str, Any] =tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowerCamelCase, lowerCamelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0], torch.Tensor ): lowerCamelCase__ : List[str] =tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): lowerCamelCase__ : Tuple =tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around lowerCamelCase__ : List[Any] =None elif isinstance(element[self._loader_batch_index], torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCamelCase__ : str =element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index], np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers lowerCamelCase__ : Union[str, Any] =np.expand_dims(element[self._loader_batch_index], 0 ) else: # This is typically a list, so no need to `unsqueeze`. lowerCamelCase__ : Optional[int] =element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 lowerCamelCase__ : Optional[int] =self._loader_batch_data.__class__(lowerCamelCase ) self._loader_batch_index += 1 return result def snake_case ( self : str )-> int: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch lowerCamelCase__ : Union[str, Any] =next(self.iterator ) lowerCamelCase__ : List[str] =self.infer(lowerCamelCase, **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(lowerCamelCase, torch.Tensor ): lowerCamelCase__ : Union[str, Any] =processed else: lowerCamelCase__ : Union[str, Any] =list(processed.keys() )[0] lowerCamelCase__ : List[str] =processed[key] if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Dict =len(lowerCamelCase ) else: lowerCamelCase__ : Optional[Any] =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCamelCase__ : List[Any] =observed_batch_size # Setting internal index to unwrap the batch lowerCamelCase__ : Any =processed lowerCamelCase__ : Any =0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[int], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : str, lowerCamelCase : Optional[int]=None )-> List[str]: super().__init__(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def __iter__( self : int )-> int: lowerCamelCase__ : List[Any] =iter(self.loader ) lowerCamelCase__ : Optional[int] =None return self def snake_case ( self : List[Any] )-> List[str]: if self.subiterator is None: lowerCamelCase__ : List[str] =self.infer(next(self.iterator ), **self.params ) try: # Try to return next item lowerCamelCase__ : str =next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators lowerCamelCase__ : int =self.infer(next(self.iterator ), **self.params ) lowerCamelCase__ : Union[str, Any] =next(self.subiterator ) return processed class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __iter__( self : int )-> Union[str, Any]: lowerCamelCase__ : int =iter(self.loader ) return self def snake_case ( self : List[Any] )-> List[str]: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. lowerCamelCase__ : Dict =False lowerCamelCase__ : str =[] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: lowerCamelCase__ : Tuple =self.loader_batch_item() lowerCamelCase__ : List[Any] =item.pop('''is_last''' ) accumulator.append(lowerCamelCase ) if is_last: return accumulator while not is_last: lowerCamelCase__ : Optional[int] =self.infer(next(self.iterator ), **self.params ) if self.loader_batch_size is not None: if isinstance(lowerCamelCase, torch.Tensor ): lowerCamelCase__ : Optional[int] =processed else: lowerCamelCase__ : Any =list(processed.keys() )[0] lowerCamelCase__ : Union[str, Any] =processed[key] if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : List[Any] =len(lowerCamelCase ) else: lowerCamelCase__ : Any =first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. lowerCamelCase__ : Optional[int] =observed_batch_size lowerCamelCase__ : Optional[int] =processed lowerCamelCase__ : Dict =0 while self._loader_batch_index < self.loader_batch_size: lowerCamelCase__ : Tuple =self.loader_batch_item() lowerCamelCase__ : str =item.pop('''is_last''' ) accumulator.append(lowerCamelCase ) if is_last: return accumulator else: lowerCamelCase__ : str =processed lowerCamelCase__ : Dict =item.pop('''is_last''' ) accumulator.append(lowerCamelCase ) return accumulator class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : Optional[Any], lowerCamelCase : Dataset, lowerCamelCase : str )-> Union[str, Any]: lowerCamelCase__ : int =dataset lowerCamelCase__ : Optional[Any] =key def __len__( self : int )-> Optional[Any]: return len(self.dataset ) def __getitem__( self : Tuple, lowerCamelCase : List[str] )-> List[str]: return self.dataset[i][self.key] class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : List[str], lowerCamelCase : Dataset, lowerCamelCase : str, lowerCamelCase : str )-> str: lowerCamelCase__ : str =dataset lowerCamelCase__ : Tuple =keya lowerCamelCase__ : Any =keya def __len__( self : Optional[int] )-> List[Any]: return len(self.dataset ) def __getitem__( self : Union[str, Any], lowerCamelCase : Tuple )-> Union[str, Any]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
625
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def snake_case__ ( __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCamelCase__ : str =VideoMAEConfig() set_architecture_configs(__lowerCamelCase , __lowerCamelCase ) if "finetuned" not in model_name: lowerCamelCase__ : int =False if "finetuned" in model_name: lowerCamelCase__ : str ='''huggingface/label-files''' if "kinetics" in model_name: lowerCamelCase__ : List[Any] =400 lowerCamelCase__ : Optional[int] ='''kinetics400-id2label.json''' elif "ssv2" in model_name: lowerCamelCase__ : Tuple =174 lowerCamelCase__ : Optional[Any] ='''something-something-v2-id2label.json''' else: raise ValueError('''Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.''' ) lowerCamelCase__ : Optional[int] =json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase__ : List[Any] ={int(__lowerCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Dict =idalabel lowerCamelCase__ : Any ={v: k for k, v in idalabel.items()} return config def snake_case__ ( __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ): """simple docstring""" if "small" in model_name: lowerCamelCase__ : Optional[Any] =384 lowerCamelCase__ : List[Any] =1536 lowerCamelCase__ : int =12 lowerCamelCase__ : Dict =16 lowerCamelCase__ : List[Any] =12 lowerCamelCase__ : Optional[Any] =3 lowerCamelCase__ : Union[str, Any] =192 lowerCamelCase__ : str =768 elif "large" in model_name: lowerCamelCase__ : Union[str, Any] =1024 lowerCamelCase__ : str =4096 lowerCamelCase__ : int =24 lowerCamelCase__ : Dict =16 lowerCamelCase__ : Union[str, Any] =12 lowerCamelCase__ : List[Any] =8 lowerCamelCase__ : int =512 lowerCamelCase__ : Optional[Any] =2048 elif "huge" in model_name: lowerCamelCase__ : Optional[int] =1280 lowerCamelCase__ : Optional[int] =5120 lowerCamelCase__ : List[Any] =32 lowerCamelCase__ : List[Any] =16 lowerCamelCase__ : Optional[Any] =12 lowerCamelCase__ : Dict =8 lowerCamelCase__ : List[Any] =640 lowerCamelCase__ : Any =2560 elif "base" not in model_name: raise ValueError('''Model name should include either "small", "base", "large", or "huge"''' ) def snake_case__ ( __lowerCamelCase : Any ): """simple docstring""" if "encoder." in name: lowerCamelCase__ : Optional[int] =name.replace('''encoder.''' , '''''' ) if "cls_token" in name: lowerCamelCase__ : List[Any] =name.replace('''cls_token''' , '''videomae.embeddings.cls_token''' ) if "decoder_pos_embed" in name: lowerCamelCase__ : Tuple =name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: lowerCamelCase__ : Any =name.replace('''pos_embed''' , '''videomae.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowerCamelCase__ : Optional[Any] =name.replace('''patch_embed.proj''' , '''videomae.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowerCamelCase__ : List[Any] =name.replace('''patch_embed.norm''' , '''videomae.embeddings.norm''' ) if "decoder.blocks" in name: lowerCamelCase__ : Tuple =name.replace('''decoder.blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: lowerCamelCase__ : Dict =name.replace('''blocks''' , '''videomae.encoder.layer''' ) if "attn.proj" in name: lowerCamelCase__ : Union[str, Any] =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "bias" not in name: lowerCamelCase__ : List[str] =name.replace('''attn''' , '''attention.self''' ) if "attn" in name: lowerCamelCase__ : Union[str, Any] =name.replace('''attn''' , '''attention.attention''' ) if "norm1" in name: lowerCamelCase__ : Tuple =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCamelCase__ : Optional[int] =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCamelCase__ : List[Any] =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCamelCase__ : int =name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: lowerCamelCase__ : Any =name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: lowerCamelCase__ : Optional[Any] =name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: lowerCamelCase__ : Any =name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowerCamelCase__ : str =name.replace('''norm.weight''' , '''videomae.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowerCamelCase__ : Optional[int] =name.replace('''norm.bias''' , '''videomae.layernorm.bias''' ) if "head" in name and "decoder" not in name: lowerCamelCase__ : List[str] =name.replace('''head''' , '''classifier''' ) return name def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : Dict =orig_state_dict.pop(__lowerCamelCase ) if key.startswith('''encoder.''' ): lowerCamelCase__ : Optional[int] =key.replace('''encoder.''' , '''''' ) if "qkv" in key: lowerCamelCase__ : Any =key.split('''.''' ) if key.startswith('''decoder.blocks''' ): lowerCamelCase__ : Tuple =config.decoder_hidden_size lowerCamelCase__ : str =int(key_split[2] ) lowerCamelCase__ : Any ='''decoder.decoder_layers.''' if "weight" in key: lowerCamelCase__ : List[Any] =val[:dim, :] lowerCamelCase__ : Any =val[dim : dim * 2, :] lowerCamelCase__ : Dict =val[-dim:, :] else: lowerCamelCase__ : Optional[Any] =config.hidden_size lowerCamelCase__ : Optional[Any] =int(key_split[1] ) lowerCamelCase__ : str ='''videomae.encoder.layer.''' if "weight" in key: lowerCamelCase__ : int =val[:dim, :] lowerCamelCase__ : Tuple =val[dim : dim * 2, :] lowerCamelCase__ : List[Any] =val[-dim:, :] else: lowerCamelCase__ : int =val return orig_state_dict def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : List[Any] =hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowerCamelCase__ : Optional[Any] =np.load(__lowerCamelCase ) return list(__lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" lowerCamelCase__ : str =get_videomae_config(__lowerCamelCase ) if "finetuned" in model_name: lowerCamelCase__ : Tuple =VideoMAEForVideoClassification(__lowerCamelCase ) else: lowerCamelCase__ : int =VideoMAEForPreTraining(__lowerCamelCase ) # download original checkpoint, hosted on Google Drive lowerCamelCase__ : Union[str, Any] ='''pytorch_model.bin''' gdown.cached_download(__lowerCamelCase , __lowerCamelCase , quiet=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] =torch.load(__lowerCamelCase , map_location='''cpu''' ) if "model" in files: lowerCamelCase__ : Dict =files['''model'''] else: lowerCamelCase__ : str =files['''module'''] lowerCamelCase__ : Optional[Any] =convert_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # verify model on basic input lowerCamelCase__ : Dict =VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowerCamelCase__ : int =prepare_video() lowerCamelCase__ : Tuple =image_processor(__lowerCamelCase , return_tensors='''pt''' ) if "finetuned" not in model_name: lowerCamelCase__ : Tuple =hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) lowerCamelCase__ : Union[str, Any] =torch.load(__lowerCamelCase ) lowerCamelCase__ : int =model(**__lowerCamelCase ) lowerCamelCase__ : Dict =outputs.logits lowerCamelCase__ : List[str] =[ '''videomae-small-finetuned-kinetics''', '''videomae-small-finetuned-ssv2''', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) '''videomae-base-short''', '''videomae-base-short-finetuned-kinetics''', '''videomae-base''', '''videomae-base-finetuned-kinetics''', '''videomae-large''', '''videomae-large-finetuned-kinetics''', '''videomae-huge-finetuned-kinetics''', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) '''videomae-base-short-ssv2''', '''videomae-base-short-finetuned-ssv2''', '''videomae-base-ssv2''', '''videomae-base-finetuned-ssv2''', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowerCamelCase__ : Union[str, Any] =torch.Size([1, 400] ) lowerCamelCase__ : str =torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": lowerCamelCase__ : int =torch.Size([1, 174] ) lowerCamelCase__ : Dict =torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": lowerCamelCase__ : List[str] =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : Dict =torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": lowerCamelCase__ : List[Any] =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : List[str] =torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one lowerCamelCase__ : str =torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": lowerCamelCase__ : Union[str, Any] =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : List[Any] =torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": lowerCamelCase__ : Any =torch.Size([1, 400] ) lowerCamelCase__ : str =torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": lowerCamelCase__ : Any =torch.Size([1, 400] ) lowerCamelCase__ : Optional[int] =torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowerCamelCase__ : List[str] =torch.Size([1, 400] ) lowerCamelCase__ : Dict =torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": lowerCamelCase__ : str =torch.Size([1, 400] ) lowerCamelCase__ : Any =torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": lowerCamelCase__ : Tuple =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : Dict =torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowerCamelCase__ : Optional[int] =torch.Size([1, 174] ) lowerCamelCase__ : Any =torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": lowerCamelCase__ : Dict =torch.Size([1, 1408, 1536] ) lowerCamelCase__ : str =torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": lowerCamelCase__ : str =torch.Size([1, 174] ) lowerCamelCase__ : int =torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1e-4 ) else: print('''Logits:''' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __lowerCamelCase , atol=1e-4 ) print('''Logits ok!''' ) # verify loss, if applicable if model_name == "videomae-base-short": lowerCamelCase__ : str =outputs.loss assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) print('''Loss ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if push_to_hub: print('''Pushing to the hub...''' ) model.push_to_hub(__lowerCamelCase , organization='''nielsr''' ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase : Union[str, Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
625
1
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> str: _lowercase : Any = int(_SCREAMING_SNAKE_CASE ) _lowercase , _lowercase , _lowercase : str = t // 3_600, (t // 60) % 60, t % 60 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=300 ) -> Union[str, Any]: return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : str = '<table border="1" class="dataframe">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _lowercase : List[Any] = F"""{elt:.6f}""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else str(_SCREAMING_SNAKE_CASE ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowerCAmelCase_ : _UpperCamelCase : List[str] = 5 _UpperCamelCase : Optional[int] = 0.2 def __init__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = 3_0_0 , ): _lowercase : List[Any] = total _lowercase : List[Any] = '' if prefix is None else prefix _lowercase : Tuple = leave _lowercase : Dict = parent _lowercase : Union[str, Any] = width _lowercase : str = None _lowercase : Dict = None _lowercase : Optional[int] = None def __a ( self , _lowerCAmelCase , _lowerCAmelCase = False , _lowerCAmelCase = None ): _lowercase : str = value if comment is not None: _lowercase : List[Any] = comment if self.last_value is None: _lowercase : Optional[Any] = time.time() _lowercase : List[Any] = value _lowercase : List[Any] = None _lowercase : Union[str, Any] = self.warmup _lowercase : Union[str, Any] = 1 self.update_bar(lowerCAmelCase_ ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 _lowercase : Union[str, Any] = time.time() _lowercase : Union[str, Any] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _lowercase : str = self.elapsed_time / (value - self.start_value) else: _lowercase : Optional[int] = None if value >= self.total: _lowercase : Dict = self.total _lowercase : Optional[Any] = None if not self.leave: self.close() elif self.average_time_per_item is not None: _lowercase : List[Any] = self.average_time_per_item * (self.total - value) self.update_bar(lowerCAmelCase_ ) _lowercase : List[Any] = value _lowercase : List[str] = current_time if self.average_time_per_item is None: _lowercase : Union[str, Any] = 1 else: _lowercase : List[Any] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : List[str] = ' ' * (len(str(self.total ) ) - len(str(lowerCAmelCase_ ) )) + str(lowerCAmelCase_ ) if self.elapsed_time is None: _lowercase : Optional[Any] = F"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: _lowercase : List[str] = F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: _lowercase : Dict = ( F"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" F""" {format_time(self.predicted_remaining )}""" ) self.label += F""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else F""", {self.comment}]""" self.display() def __a ( self ): _lowercase : Tuple = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _lowercase : int = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __a ( self ): if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class lowerCAmelCase_ ( a_ ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=None ): super().__init__(lowerCAmelCase_ ) _lowercase : Tuple = None if column_names is None else [column_names] _lowercase : Tuple = None def __a ( self ): _lowercase : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _lowercase : int = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase_ ) else: self.output.update(disp.HTML(self.html_code ) ) def __a ( self , _lowerCAmelCase ): if self.inner_table is None: _lowercase : Tuple = [list(values.keys() ), list(values.values() )] else: _lowercase : List[str] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCAmelCase_ ) _lowercase : Tuple = columns self.inner_table.append([values[c] for c in columns] ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=3_0_0 ): _lowercase : Tuple = NotebookProgressBar(lowerCAmelCase_ , prefix=lowerCAmelCase_ , parent=self , width=lowerCAmelCase_ ) return self.child_bar def __a ( self ): _lowercase : Optional[Any] = None self.display() class lowerCAmelCase_ ( a_ ): def __init__( self ): _lowercase : Optional[Any] = None _lowercase : Dict = None _lowercase : Optional[int] = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): _lowercase : Tuple = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' _lowercase : int = 0 _lowercase : Optional[int] = 0 _lowercase : str = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) _lowercase : Tuple = NotebookTrainingTracker(state.max_steps , lowerCAmelCase_ ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): _lowercase : List[Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else F"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=F"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) _lowercase : Tuple = False def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): if not has_length(lowerCAmelCase_ ): return if self.prediction_bar is None: if self.training_tracker is not None: _lowercase : Optional[int] = self.training_tracker.add_child(len(lowerCAmelCase_ ) ) else: _lowercase : Any = NotebookProgressBar(len(lowerCAmelCase_ ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): if self.prediction_bar is not None: self.prediction_bar.close() _lowercase : Any = None def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _lowercase : List[Any] = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy _lowercase : int = state.global_step self.training_tracker.write_line(lowerCAmelCase_ ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ): if self.training_tracker is not None: _lowercase : str = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: _lowercase : Optional[int] = log['loss'] break if self.first_column == "Epoch": _lowercase : Optional[Any] = int(state.epoch ) else: _lowercase : List[Any] = state.global_step _lowercase : Tuple = 'eval' for k in metrics: if k.endswith('_loss' ): _lowercase : List[str] = re.sub(r'\_loss$' , '' , lowerCAmelCase_ ) _lowercase : str = metrics.pop('total_flos' , lowerCAmelCase_ ) _lowercase : Tuple = metrics.pop('epoch' , lowerCAmelCase_ ) _lowercase : int = metrics.pop(F"""{metric_key_prefix}_runtime""" , lowerCAmelCase_ ) _lowercase : List[Any] = metrics.pop(F"""{metric_key_prefix}_samples_per_second""" , lowerCAmelCase_ ) _lowercase : Union[str, Any] = metrics.pop(F"""{metric_key_prefix}_steps_per_second""" , lowerCAmelCase_ ) _lowercase : Optional[int] = metrics.pop(F"""{metric_key_prefix}_jit_compilation_time""" , lowerCAmelCase_ ) for k, v in metrics.items(): if k == F"""{metric_key_prefix}_loss""": _lowercase : Tuple = v else: _lowercase : Tuple = k.split('_' ) _lowercase : List[str] = ' '.join([part.capitalize() for part in splits[1:]] ) _lowercase : int = v self.training_tracker.write_line(lowerCAmelCase_ ) self.training_tracker.remove_child() _lowercase : Any = None # Evaluation takes a long time so we should force the next update. _lowercase : Any = True def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ): self.training_tracker.update( state.global_step , comment=F"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=lowerCAmelCase_ ) _lowercase : Any = None
66
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class a__ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModel.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModel.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForPreTraining.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : int ) -> Optional[int]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForCausalLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForCausalLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForMaskedLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForMaskedLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Tuple ) -> Dict: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) __A, __A= TFAutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) __A, __A= AutoModelForSeqaSeqLM.from_pretrained( lowerCAmelCase_ , output_loading_info=lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Optional[Any] ) -> str: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __A= AutoConfig.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) __A= AutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def lowerCAmelCase ( self : int ) -> List[str]: __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) def lowerCAmelCase ( self : Optional[Any] ) -> Tuple: __A= TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_pt=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 ) __A= AutoModelWithLMHead.from_pretrained(lowerCAmelCase_ , from_tf=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase_ ) , 14_410 )
186
0
import string def a ( A__ : str ) -> str: """simple docstring""" _lowercase ='' for i in sequence: _lowercase =ord(A__ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def a ( A__ : str ) -> str: """simple docstring""" _lowercase =string.ascii_letters _lowercase =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(A__ )] if c in letters else c for c in sequence ) def a ( ) -> None: """simple docstring""" from timeit import timeit print('Running performance benchmarks...' ) _lowercase ='from string import printable ; from __main__ import atbash, atbash_slow' print(F'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=A__ )} seconds''' ) print(F'''> atbash(): {timeit("atbash(printable)" , setup=A__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"{example} encrypted in atbash: {atbash(example)}") benchmark()
380
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=18 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=[0.5, 0.5, 0.5] , lowerCAmelCase=False , ) -> Tuple: '''simple docstring''' _lowercase =size if size is not None else {'height': 20, 'width': 20} _lowercase =crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowercase =parent _lowercase =batch_size _lowercase =num_channels _lowercase =image_size _lowercase =min_resolution _lowercase =max_resolution _lowercase =do_resize _lowercase =size _lowercase =do_center_crop _lowercase =crop_size _lowercase =do_normalize _lowercase =image_mean _lowercase =image_std _lowercase =do_reduce_labels def A__ ( self ) -> Any: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def a ( ) -> Tuple: """simple docstring""" _lowercase =load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _lowercase =Image.open(dataset[0]['file'] ) _lowercase =Image.open(dataset[1]['file'] ) return image, map def a ( ) -> Union[str, Any]: """simple docstring""" _lowercase =load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _lowercase =Image.open(ds[0]['file'] ) _lowercase =Image.open(ds[1]['file'] ) _lowercase =Image.open(ds[2]['file'] ) _lowercase =Image.open(ds[3]['file'] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): _a = BeitImageProcessor if is_vision_available() else None def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =BeitImageProcessingTester(self ) @property def A__ ( self ) -> int: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase , 'image_std' ) ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 20, 'width': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase ) _lowercase =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCAmelCase ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase ) def A__ ( self ) -> Dict: '''simple docstring''' pass def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input _lowercase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase =image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input _lowercase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase =image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A__ ( self ) -> Dict: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input _lowercase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowercase =image_processing(lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) _lowercase =[] for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _lowercase =image_processing(image_inputs[0] , maps[0] , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched _lowercase =image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test not batched input (PIL images) _lowercase , _lowercase =prepare_semantic_single_inputs() _lowercase =image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 1, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) # Test batched input (PIL images) _lowercase , _lowercase =prepare_semantic_batch_inputs() _lowercase =image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertEqual( encoding['pixel_values'].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual( encoding['labels'].shape , ( 2, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) self.assertEqual(encoding['labels'].dtype , torch.long ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _lowercase , _lowercase =prepare_semantic_single_inputs() _lowercase =image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 150 ) _lowercase =True _lowercase =image_processing(lowerCAmelCase , lowerCAmelCase , return_tensors='pt' ) self.assertTrue(encoding['labels'].min().item() >= 0 ) self.assertTrue(encoding['labels'].max().item() <= 255 )
380
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
159
"""simple docstring""" class lowerCamelCase : '''simple docstring''' def __init__( self : str , _snake_case : list[int] ) -> None: SCREAMING_SNAKE_CASE__ = len(_snake_case ) SCREAMING_SNAKE_CASE__ = [0] * len_array if len_array > 0: SCREAMING_SNAKE_CASE__ = array[0] for i in range(1 , _snake_case ): SCREAMING_SNAKE_CASE__ = self.prefix_sum[i - 1] + array[i] def lowerCAmelCase_ ( self : Union[str, Any] , _snake_case : int , _snake_case : int ) -> int: if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def lowerCAmelCase_ ( self : Union[str, Any] , _snake_case : int ) -> bool: SCREAMING_SNAKE_CASE__ = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(_snake_case ) return False if __name__ == "__main__": import doctest doctest.testmod()
159
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE : Union[str, Any] = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["__file__"], _import_structure)
703
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict ): # Initialise PyTorch model UpperCamelCase_ : List[Any] = TaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(f'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_ : Tuple = TaForConditionalGeneration(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_ta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
138
0
"""simple docstring""" def lowercase (_snake_case ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError("Input must be a positive integer" ) __UpperCamelCase = [True] * (num + 1) __UpperCamelCase = 2 while p * p <= num: if primes[p]: for i in range(p * p ,num + 1 ,_snake_case ): __UpperCamelCase = False p += 1 return [prime for prime in range(2 ,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _A = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
505
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
505
1
def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ =0 while len(lowercase__ ) > 1: UpperCAmelCase_ =0 # Consider two files with minimum cost to be merged for _ in range(2 ): UpperCAmelCase_ =files.index(min(lowercase__ ) ) temp += files[min_index] files.pop(lowercase__ ) files.append(lowercase__ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
709
import sys import turtle def a__ ( lowercase__ , lowercase__ ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(lowercase__ , get_mid(lowercase__ , lowercase__ ) , get_mid(lowercase__ , lowercase__ ) , depth - 1 ) triangle(lowercase__ , get_mid(lowercase__ , lowercase__ ) , get_mid(lowercase__ , lowercase__ ) , depth - 1 ) triangle(lowercase__ , get_mid(lowercase__ , lowercase__ ) , get_mid(lowercase__ , lowercase__ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __lowercase : Any =turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __lowercase : str =[(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
550
0
from __future__ import annotations def __UpperCamelCase ( lowercase__ : list[int] , lowercase__ : int ) -> list[int]: '''simple docstring''' lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Union[str, Any] = len(lowercase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCAmelCase_ : Dict = i + 1 else: lowerCAmelCase_ : Dict = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
600
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> float: '''simple docstring''' lowerCAmelCase_ : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __UpperCamelCase ( ) -> str: '''simple docstring''' print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
600
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __A ( A_ ): '''simple docstring''' lowerCAmelCase : torch.FloatTensor lowerCAmelCase : torch.FloatTensor lowerCAmelCase : Optional[torch.FloatTensor] = None class __A ( A_ ,A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = 2 @register_to_config def __init__( self : int ,_snake_case : float = 0.02 ,_snake_case : float = 100 ,_snake_case : float = 1.007 ,_snake_case : float = 80 ,_snake_case : float = 0.05 ,_snake_case : float = 50 ,) -> List[Any]: """simple docstring""" lowercase__ : Dict = sigma_max # setable values lowercase__ : int = None lowercase__ : np.IntTensor = None lowercase__ : torch.FloatTensor = None # sigma(t_i) def UpperCAmelCase ( self : Dict ,_snake_case : torch.FloatTensor ,_snake_case : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def UpperCAmelCase ( self : str ,_snake_case : int ,_snake_case : Union[str, torch.device] = None ) -> int: """simple docstring""" lowercase__ : Optional[int] = num_inference_steps lowercase__ : Optional[Any] = np.arange(0 ,self.num_inference_steps )[::-1].copy() lowercase__ : Optional[Any] = torch.from_numpy(_snake_case ).to(_snake_case ) lowercase__ : Tuple = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowercase__ : Union[str, Any] = torch.tensor(_snake_case ,dtype=torch.floataa ,device=_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : torch.FloatTensor ,_snake_case : float ,_snake_case : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: lowercase__ : Optional[Any] = min(self.config.s_churn / self.num_inference_steps ,2**0.5 - 1 ) else: lowercase__ : Any = 0 # sample eps ~ N(0, S_noise^2 * I) lowercase__ : List[Any] = self.config.s_noise * randn_tensor(sample.shape ,generator=_snake_case ).to(sample.device ) lowercase__ : Optional[int] = sigma + gamma * sigma lowercase__ : Optional[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCAmelCase ( self : Optional[Any] ,_snake_case : torch.FloatTensor ,_snake_case : float ,_snake_case : float ,_snake_case : torch.FloatTensor ,_snake_case : bool = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" lowercase__ : List[str] = sample_hat + sigma_hat * model_output lowercase__ : Optional[int] = (sample_hat - pred_original_sample) / sigma_hat lowercase__ : int = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_snake_case ,derivative=_snake_case ,pred_original_sample=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : torch.FloatTensor ,_snake_case : float ,_snake_case : float ,_snake_case : torch.FloatTensor ,_snake_case : torch.FloatTensor ,_snake_case : torch.FloatTensor ,_snake_case : bool = True ,) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" lowercase__ : str = sample_prev + sigma_prev * model_output lowercase__ : str = (sample_prev - pred_original_sample) / sigma_prev lowercase__ : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_snake_case ,derivative=_snake_case ,pred_original_sample=_snake_case ) def UpperCAmelCase ( self : List[str] ,_snake_case : List[str] ,_snake_case : Dict ,_snake_case : Optional[Any] ) -> List[str]: """simple docstring""" raise NotImplementedError()
122
"""simple docstring""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCAmelCase_ = data_utils.TransfoXLTokenizer lowerCAmelCase_ = data_utils.TransfoXLCorpus lowerCAmelCase_ = data_utils lowerCAmelCase_ = data_utils def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__lowerCamelCase , '''rb''' ) as fp: lowercase__ : Any = pickle.load(__lowerCamelCase , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowercase__ : str = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) lowercase__ : Dict = corpus.vocab.__dict__ torch.save(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __lowerCamelCase ) lowercase__ : int = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(__lowerCamelCase , __lowerCamelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowercase__ : int = os.path.abspath(__lowerCamelCase ) lowercase__ : List[Any] = os.path.abspath(__lowerCamelCase ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": lowercase__ : Union[str, Any] = TransfoXLConfig() else: lowercase__ : str = TransfoXLConfig.from_json_file(__lowerCamelCase ) print(f"""Building PyTorch model from configuration: {config}""" ) lowercase__ : List[str] = TransfoXLLMHeadModel(__lowerCamelCase ) lowercase__ : Tuple = load_tf_weights_in_transfo_xl(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save pytorch-model lowercase__ : int = os.path.join(__lowerCamelCase , __lowerCamelCase ) lowercase__ : Optional[int] = os.path.join(__lowerCamelCase , __lowerCamelCase ) print(f"""Save PyTorch model to {os.path.abspath(__lowerCamelCase )}""" ) torch.save(model.state_dict() , __lowerCamelCase ) print(f"""Save configuration file to {os.path.abspath(__lowerCamelCase )}""" ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) lowerCAmelCase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
122
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): """simple docstring""" def a ( self : Optional[int] ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string' )} ) , supervised_keys=__A , ) def a ( self : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] ): """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()} )] def a ( self : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) class SCREAMING_SNAKE_CASE ( datasets.BeamBasedBuilder ): """simple docstring""" def a ( self : Dict ): """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) , supervised_keys=__A , ) def a ( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : str ): """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()} ) ] def a ( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict ): """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(__A ) def A_ ( ): return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] def A_ ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'] )] class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): """simple docstring""" @require_beam def a ( self : Optional[int] ): """simple docstring""" _lowerCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCAmelCase = DummyBeamDataset(cache_dir=__A , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A , builder.name , 'default' , '0.0.0' , F"{builder.name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) _lowerCAmelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , __A ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __A ) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def a ( self : Tuple ): """simple docstring""" import apache_beam as beam _lowerCAmelCase = beam.io.parquetio.WriteToParquet _lowerCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCAmelCase = DummyBeamDataset(cache_dir=__A , beam_runner='DirectRunner' ) with patch('apache_beam.io.parquetio.WriteToParquet' ) as write_parquet_mock: _lowerCAmelCase = partial(__A , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( __A , builder.name , 'default' , '0.0.0' , F"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertTrue( os.path.exists( os.path.join( __A , builder.name , 'default' , '0.0.0' , F"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string' )} ) ) _lowerCAmelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , __A ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __A ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content'] ) , sorted(['foo', 'bar', 'foobar'] ) ) self.assertTrue( os.path.exists(os.path.join(__A , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset @require_beam def a ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCAmelCase = DummyBeamDataset(cache_dir=__A ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def a ( self : Dict ): """simple docstring""" _lowerCAmelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: _lowerCAmelCase = NestedBeamDataset(cache_dir=__A , beam_runner='DirectRunner' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(__A , builder.name , 'default' , '0.0.0' , F"{builder.name}-train.arrow" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string' )} )} ) ) _lowerCAmelCase = builder.as_dataset() self.assertEqual(dset['train'].num_rows , __A ) self.assertEqual(dset['train'].info.splits['train'].num_examples , __A ) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(__A , builder.name , 'default' , '0.0.0' , 'dataset_info.json' ) ) ) del dset
309
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , __A : List[Any] , __A : Union[str, Any]=1_3 , __A : Optional[int]=7 , __A : Any=True , __A : Tuple=True , __A : Optional[Any]=True , __A : Optional[Any]=True , __A : Optional[Any]=9_9 , __A : List[Any]=3_2 , __A : Union[str, Any]=5 , __A : Optional[int]=4 , __A : Any=3_7 , __A : int="gelu" , __A : List[Any]=0.1 , __A : Union[str, Any]=0.1 , __A : Union[str, Any]=5_1_2 , __A : List[Any]=1_6 , __A : Optional[Any]=2 , __A : Optional[Any]=0.0_2 , __A : List[str]=4 , ): """simple docstring""" _lowercase = parent _lowercase = batch_size _lowercase = seq_length _lowercase = is_training _lowercase = use_attention_mask _lowercase = use_token_type_ids _lowercase = use_labels _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = type_sequence_label_size _lowercase = initializer_range _lowercase = num_choices def snake_case ( self : str ): """simple docstring""" _lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase = None if self.use_attention_mask: _lowercase = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__A , ) return config, input_ids, attention_mask def snake_case ( self : Optional[int] ): """simple docstring""" _lowercase = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase = config_and_inputs _lowercase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCamelCase__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case ( self : int ): """simple docstring""" _lowercase = FlaxDistilBertModelTester(self ) @slow def snake_case ( self : Optional[int] ): """simple docstring""" for model_class_name in self.all_model_classes: _lowercase = model_class_name.from_pretrained("distilbert-base-uncased" ) _lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : List[str] ): """simple docstring""" _lowercase = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) _lowercase = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowercase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowercase = model(__A , attention_mask=__A )[0] _lowercase = (1, 1_1, 7_6_8) self.assertEqual(output.shape , __A ) _lowercase = np.array([[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) )
497
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowerCAmelCase : List[str] =logging.get_logger(__name__) if is_vision_available(): import PIL class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ['''pixel_values'''] def __init__( self :Optional[Any] , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Union[int, float] = 1 / 255 , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :bool = True , **lowerCAmelCase__ :str , ) -> None: super().__init__(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else {'''shortest_edge''': 224} __SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __SCREAMING_SNAKE_CASE : int = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name='''crop_size''' ) __SCREAMING_SNAKE_CASE : Dict = do_resize __SCREAMING_SNAKE_CASE : str = size __SCREAMING_SNAKE_CASE : Dict = resample __SCREAMING_SNAKE_CASE : Union[str, Any] = do_center_crop __SCREAMING_SNAKE_CASE : Tuple = crop_size __SCREAMING_SNAKE_CASE : Any = do_rescale __SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor __SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize __SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __SCREAMING_SNAKE_CASE : Any = image_std if image_std is not None else OPENAI_CLIP_STD __SCREAMING_SNAKE_CASE : Union[str, Any] = do_convert_rgb def __magic_name__( self :List[str] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Optional[Any] , ) -> np.ndarray: __SCREAMING_SNAKE_CASE : List[str] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __SCREAMING_SNAKE_CASE : List[Any] = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :Tuple , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Optional[int] , ) -> np.ndarray: __SCREAMING_SNAKE_CASE : Tuple = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :str , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[int, float] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :List[Any] , ) -> Union[str, Any]: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :List[str] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Tuple , ) -> np.ndarray: return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :List[str] , lowerCAmelCase__ :ImageInput , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :int = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :float = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ :List[Any] , ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE : List[Any] = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE : List[str] = size if size is not None else self.size __SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(lowerCAmelCase__ , param_name='''size''' , default_to_square=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE : str = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE : str = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' , default_to_square=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE : Any = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE : Union[str, Any] = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE : str = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __SCREAMING_SNAKE_CASE : Union[str, Any] = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __SCREAMING_SNAKE_CASE : List[Any] = [convert_to_rgb(lowerCAmelCase__ ) for image in images] # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE : str = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE : List[Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE : List[Any] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE : Any = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE : Any = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
260
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _UpperCamelCase ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE__ : str = 2 @register_to_config def __init__( self :Tuple , lowerCAmelCase__ :int = 1_000 , lowerCAmelCase__ :float = 0.0_0085 , lowerCAmelCase__ :float = 0.012 , lowerCAmelCase__ :str = "linear" , lowerCAmelCase__ :Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase__ :str = "epsilon" , lowerCAmelCase__ :str = "linspace" , lowerCAmelCase__ :int = 0 , ) -> List[Any]: if trained_betas is not None: __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE : Tuple = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : Dict = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE : Dict = 1.0 - self.betas __SCREAMING_SNAKE_CASE : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Any , lowerCAmelCase__ :int , lowerCAmelCase__ :Any=None ) -> Tuple: if schedule_timesteps is None: __SCREAMING_SNAKE_CASE : Any = self.timesteps __SCREAMING_SNAKE_CASE : Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 if len(lowerCAmelCase__ ) > 1 else 0 else: __SCREAMING_SNAKE_CASE : str = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase__ ) else timestep __SCREAMING_SNAKE_CASE : Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__( self :Optional[Any] ) -> List[str]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__( self :Any , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: __SCREAMING_SNAKE_CASE : str = self.index_for_timestep(lowerCAmelCase__ ) if self.state_in_first_order: __SCREAMING_SNAKE_CASE : Any = self.sigmas[step_index] else: __SCREAMING_SNAKE_CASE : Tuple = self.sigmas_interpol[step_index] __SCREAMING_SNAKE_CASE : List[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__( self :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, torch.device] = None , lowerCAmelCase__ :Optional[int] = None , ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = num_inference_steps __SCREAMING_SNAKE_CASE : Optional[int] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __SCREAMING_SNAKE_CASE : str = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase__ , dtype=lowerCAmelCase__ )[::-1].copy() elif self.config.timestep_spacing == "leading": __SCREAMING_SNAKE_CASE : Any = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Any = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase__ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __SCREAMING_SNAKE_CASE : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Optional[Any] = (np.arange(lowerCAmelCase__ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase__ ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(np.log(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = np.interp(lowerCAmelCase__ , np.arange(0 , len(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ ) # interpolate sigmas __SCREAMING_SNAKE_CASE : int = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __SCREAMING_SNAKE_CASE : Dict = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __SCREAMING_SNAKE_CASE : Any = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCAmelCase__ ).startswith('''mps''' ): # mps does not support float64 __SCREAMING_SNAKE_CASE : Dict = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ , dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE : str = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) # interpolate timesteps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.sigma_to_t(lowerCAmelCase__ ).to(lowerCAmelCase__ , dtype=timesteps.dtype ) __SCREAMING_SNAKE_CASE : Optional[int] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __SCREAMING_SNAKE_CASE : int = torch.cat([timesteps[:1], interleaved_timesteps] ) __SCREAMING_SNAKE_CASE : Dict = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __SCREAMING_SNAKE_CASE : List[str] = defaultdict(lowerCAmelCase__ ) def __magic_name__( self :int , lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: # get log sigma __SCREAMING_SNAKE_CASE : int = sigma.log() # get distribution __SCREAMING_SNAKE_CASE : str = log_sigma - self.log_sigmas[:, None] # get sigmas range __SCREAMING_SNAKE_CASE : Any = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __SCREAMING_SNAKE_CASE : Any = low_idx + 1 __SCREAMING_SNAKE_CASE : Tuple = self.log_sigmas[low_idx] __SCREAMING_SNAKE_CASE : Dict = self.log_sigmas[high_idx] # interpolate sigmas __SCREAMING_SNAKE_CASE : List[Any] = (low - log_sigma) / (low - high) __SCREAMING_SNAKE_CASE : Dict = w.clamp(0 , 1 ) # transform interpolation to time range __SCREAMING_SNAKE_CASE : Tuple = (1 - w) * low_idx + w * high_idx __SCREAMING_SNAKE_CASE : List[Any] = t.view(sigma.shape ) return t @property def __magic_name__( self :Union[str, Any] ) -> Optional[int]: return self.sample is None def __magic_name__( self :List[Any] , lowerCAmelCase__ :Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase__ :Union[float, torch.FloatTensor] , lowerCAmelCase__ :Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase__ :bool = True , ) -> Union[SchedulerOutput, Tuple]: __SCREAMING_SNAKE_CASE : Dict = self.index_for_timestep(lowerCAmelCase__ ) # advance index counter by 1 __SCREAMING_SNAKE_CASE : Tuple = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase__ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __SCREAMING_SNAKE_CASE : Dict = self.sigmas[step_index] __SCREAMING_SNAKE_CASE : Dict = self.sigmas_interpol[step_index + 1] __SCREAMING_SNAKE_CASE : List[str] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __SCREAMING_SNAKE_CASE : List[str] = self.sigmas[step_index - 1] __SCREAMING_SNAKE_CASE : Any = self.sigmas_interpol[step_index] __SCREAMING_SNAKE_CASE : Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : List[str] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : str = sigma_hat if self.state_in_first_order else sigma_interpol __SCREAMING_SNAKE_CASE : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE : Any = sigma_hat if self.state_in_first_order else sigma_interpol __SCREAMING_SNAKE_CASE : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __SCREAMING_SNAKE_CASE : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __SCREAMING_SNAKE_CASE : List[str] = sigma_interpol - sigma_hat # store for 2nd order step __SCREAMING_SNAKE_CASE : List[str] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __SCREAMING_SNAKE_CASE : List[str] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __SCREAMING_SNAKE_CASE : Any = sigma_next - sigma_hat __SCREAMING_SNAKE_CASE : Optional[int] = self.sample __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase__ ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __SCREAMING_SNAKE_CASE : Tuple = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase__ ): # mps does not support float64 __SCREAMING_SNAKE_CASE : Tuple = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE : List[str] = timesteps.to(original_samples.device ) __SCREAMING_SNAKE_CASE : Dict = [self.index_for_timestep(lowerCAmelCase__ , lowerCAmelCase__ ) for t in timesteps] __SCREAMING_SNAKE_CASE : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __SCREAMING_SNAKE_CASE : List[Any] = sigma.unsqueeze(-1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = original_samples + noise * sigma return noisy_samples def __len__( self :Tuple ) -> Optional[Any]: return self.config.num_train_timesteps
260
1
'''simple docstring''' from collections.abc import Callable import numpy as np def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> np.array: UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) UpperCamelCase = np.zeros((n + 1,) ) UpperCamelCase = ya UpperCamelCase = xa for k in range(__UpperCamelCase ): UpperCamelCase = y[k] + step_size * ode_func(__UpperCamelCase , y[k] ) UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__UpperCamelCase , y[k] ) + ode_func(x + step_size , __UpperCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
301
'''simple docstring''' import argparse import copy def lowercase__ ( __UpperCamelCase )-> Union[str, Any]: UpperCamelCase = {} with open(__UpperCamelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCamelCase = [] _list.append([line.split()[1], line.split()[2]] ) UpperCamelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: UpperCamelCase = [] _list.append([line.split()[0], line.split()[2]] ) UpperCamelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: with open(__UpperCamelCase ) as f: UpperCamelCase = f.read(1 ) UpperCamelCase = start_node UpperCamelCase = [] UpperCamelCase = start_node UpperCamelCase = 0 while visiting not in first_solution: UpperCamelCase = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__UpperCamelCase ) and k[0] not in first_solution: UpperCamelCase = k[1] UpperCamelCase = k[0] first_solution.append(__UpperCamelCase ) UpperCamelCase = distance_of_first_solution + int(__UpperCamelCase ) UpperCamelCase = best_node first_solution.append(__UpperCamelCase ) UpperCamelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCamelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[Any]: UpperCamelCase = [] for n in solution[1:-1]: UpperCamelCase = solution.index(__UpperCamelCase ) for kn in solution[1:-1]: UpperCamelCase = solution.index(__UpperCamelCase ) if n == kn: continue UpperCamelCase = copy.deepcopy(__UpperCamelCase ) UpperCamelCase = kn UpperCamelCase = n UpperCamelCase = 0 for k in _tmp[:-1]: UpperCamelCase = _tmp[_tmp.index(__UpperCamelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCamelCase = distance + int(i[1] ) _tmp.append(__UpperCamelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) UpperCamelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __UpperCamelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Union[str, Any]: UpperCamelCase = 1 UpperCamelCase = first_solution UpperCamelCase = [] UpperCamelCase = distance_of_first_solution UpperCamelCase = solution while count <= iters: UpperCamelCase = find_neighborhood(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase = 0 UpperCamelCase = neighborhood[index_of_best_solution] UpperCamelCase = len(__UpperCamelCase ) - 1 UpperCamelCase = False while not found: UpperCamelCase = 0 while i < len(__UpperCamelCase ): if best_solution[i] != solution[i]: UpperCamelCase = best_solution[i] UpperCamelCase = solution[i] break UpperCamelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) UpperCamelCase = True UpperCamelCase = best_solution[:-1] UpperCamelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCamelCase = cost UpperCamelCase = solution else: UpperCamelCase = index_of_best_solution + 1 UpperCamelCase = neighborhood[index_of_best_solution] if len(__UpperCamelCase ) >= size: tabu_list.pop(0 ) UpperCamelCase = count + 1 return best_solution_ever, best_cost def lowercase__ ( __UpperCamelCase=None )-> Tuple: UpperCamelCase = generate_neighbours(args.File ) UpperCamelCase ,UpperCamelCase = generate_first_solution( args.File , __UpperCamelCase ) UpperCamelCase ,UpperCamelCase = tabu_search( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , args.Iterations , args.Size , ) print(F"Best solution: {best_sol}, with total distance: {best_cost}." ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
301
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup a__ : Dict = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def _lowerCAmelCase ( A__ = "dhaka" , A__ = 5 ): lowercase__ = min(A__ , 50 ) # Prevent abuse! lowercase__ = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } lowercase__ = requests.get('https://www.google.com/search' , params=A__ , headers=A__ ) lowercase__ = BeautifulSoup(html.text , 'html.parser' ) lowercase__ = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) lowercase__ = json.dumps(A__ ) lowercase__ = json.loads(A__ ) lowercase__ = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , A__ , ) if not matched_google_image_data: return 0 lowercase__ = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(A__ ) , ) lowercase__ = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , A__ , ) for index, fixed_full_res_image in enumerate(A__ ): if index >= max_images: return index lowercase__ = bytes(A__ , 'ascii' ).decode( 'unicode-escape' ) lowercase__ = bytes(A__ , 'ascii' ).decode( 'unicode-escape' ) lowercase__ = urllib.request.build_opener() lowercase__ = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(A__ ) lowercase__ = F'''query_{query.replace(' ' , '_' )}''' if not os.path.exists(A__ ): os.makedirs(A__ ) urllib.request.urlretrieve( # noqa: S310 A__ , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: a__ : List[str] = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print("Please provide a search term.") raise
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCAmelCase ( _lowerCamelCase ): __lowercase = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) __lowercase = """CIDAS/clipseg-rd64-refined""" __lowercase = """image_segmenter""" __lowercase = CLIPSegForImageSegmentation __lowercase = ["""image""", """text"""] __lowercase = ["""image"""] def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=lowerCAmelCase_ , return_tensors='pt' ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" with torch.no_grad(): _snake_case = self.model(**lowerCAmelCase_ ).logits return logits def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = outputs.cpu().detach().numpy() _snake_case = 0 _snake_case = 1 return Image.fromarray((array * 2_55).astype(np.uinta ) )
495
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCAmelCase : def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=2 , lowerCAmelCase_=8 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=16 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=36 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope def lowerCamelCase ( self ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase ( self ): """simple docstring""" return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_config() _snake_case = 3_00 return config def lowerCamelCase ( self ): """simple docstring""" ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = self.prepare_config_and_inputs() _snake_case = True _snake_case = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = MraModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _snake_case = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ): """simple docstring""" _snake_case = True _snake_case = MraModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , ) _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = MraForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = MraForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = MraForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_labels _snake_case = MraForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case = self.num_choices _snake_case = MraForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) __lowercase = False __lowercase = False __lowercase = False __lowercase = False __lowercase = () def lowerCamelCase ( self ): """simple docstring""" _snake_case = MraModelTester(self ) _snake_case = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _snake_case = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) @slow def lowerCamelCase ( self ): """simple docstring""" for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = MraModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @unittest.skip(reason='MRA does not output attentions' ) def lowerCamelCase ( self ): """simple docstring""" return @require_torch class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = MraModel.from_pretrained('uw-madison/mra-base-512-4' ) _snake_case = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ )[0] _snake_case = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _snake_case = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' ) _snake_case = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ )[0] _snake_case = 5_02_65 _snake_case = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _snake_case = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' ) _snake_case = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): _snake_case = model(lowerCAmelCase_ )[0] _snake_case = 5_02_65 _snake_case = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase_ ) _snake_case = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) )
495
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : str = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
662
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def __magic_name__ ( A : Union[str, Any] ): '''simple docstring''' a = fname.split(os.path.sep )[-1] return re.search(R"^(.*)_\d+\.jpg$", A ).groups()[0] class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : str , __lowerCamelCase : Dict , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None ) -> Tuple: a = file_names a = image_transform a = label_to_id def __len__( self : Any ) -> Tuple: return len(self.file_names ) def __getitem__( self : List[Any] , __lowerCamelCase : List[Any] ) -> int: a = self.file_names[idx] a = PIL.Image.open(__lowerCamelCase ) a = raw_image.convert("RGB" ) if self.image_transform is not None: a = self.image_transform(__lowerCamelCase ) a = extract_label(__lowerCamelCase ) if self.label_to_id is not None: a = self.label_to_id[label] return {"image": image, "label": label} def __magic_name__ ( A : str, A : int ): '''simple docstring''' if args.with_tracking: a = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with="all", project_dir=args.project_dir ) else: a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config["lr"] a = int(config["num_epochs"] ) a = int(config["seed"] ) a = int(config["batch_size"] ) a = config["image_size"] if not isinstance(A, (list, tuple) ): a = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps, "isdigit" ): if args.checkpointing_steps == "epoch": a = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): a = int(args.checkpointing_steps ) else: raise ValueError( F"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: a = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: a = os.path.split(A )[-1].split("." )[0] accelerator.init_trackers(A, A ) # Grab all the image filenames a = [os.path.join(args.data_dir, A ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences a = [extract_label(A ) for fname in file_names] a = list(set(A ) ) id_to_label.sort() a = {lbl: i for i, lbl in enumerate(A )} # Set the seed before splitting the data. np.random.seed(A ) torch.manual_seed(A ) torch.cuda.manual_seed_all(A ) # Split our filenames between train and validation a = np.random.permutation(len(A ) ) a = int(0.8 * len(A ) ) a = random_perm[:cut] a = random_perm[cut:] # For training we use a simple RandomResizedCrop a = Compose([RandomResizedCrop(A, scale=(0.5, 1.0) ), ToTensor()] ) a = PetsDataset( [file_names[i] for i in train_split], image_transform=A, label_to_id=A ) # For evaluation, we use a deterministic Resize a = Compose([Resize(A ), ToTensor()] ) a = PetsDataset([file_names[i] for i in eval_split], image_transform=A, label_to_id=A ) # Instantiate dataloaders. a = DataLoader(A, shuffle=A, batch_size=A, num_workers=4 ) a = DataLoader(A, shuffle=A, batch_size=A, num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = create_model("resnet50d", pretrained=A, num_classes=len(A ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): a = False for param in model.get_classifier().parameters(): a = True # We normalize the batches of images to be a bit faster. a = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) a = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer a = torch.optim.Adam(params=model.parameters(), lr=lr / 25 ) # Instantiate learning rate scheduler a = OneCycleLR(optimizer=A, max_lr=A, epochs=A, steps_per_epoch=len(A ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( A, A, A, A, A ) # We need to keep track of how many total steps we have iterated over a = 0 # We also need to keep track of the starting epoch so files are named properly a = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) a = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint a = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) a = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` a = os.path.splitext(A )[0] if "epoch" in training_difference: a = int(training_difference.replace("epoch_", "" ) ) + 1 a = None else: a = int(training_difference.replace("step_", "" ) ) a = resume_step // len(A ) resume_step -= starting_epoch * len(A ) # Now we train the model for epoch in range(A, A ): model.train() if args.with_tracking: a = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step a = accelerator.skip_first_batches(A, A ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader a = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. a = {k: v.to(accelerator.device ) for k, v in batch.items()} a = (batch["image"] - mean) / std a = model(A ) a = torch.nn.functional.cross_entropy(A, batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(A ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(A, A ): a = F"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: a = os.path.join(args.output_dir, A ) accelerator.save_state(A ) model.eval() a = 0 a = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. a = {k: v.to(accelerator.device ) for k, v in batch.items()} a = (batch["image"] - mean) / std with torch.no_grad(): a = model(A ) a = outputs.argmax(dim=-1 ) a , a = accelerator.gather_for_metrics((predictions, batch["label"]) ) a = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() a = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}: {100 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(A ), "epoch": epoch, }, step=A, ) if checkpointing_steps == "epoch": a = F"""epoch_{epoch}""" if args.output_dir is not None: a = os.path.join(args.output_dir, A ) accelerator.save_state(A ) if args.with_tracking: accelerator.end_training() def __magic_name__ ( ): '''simple docstring''' a = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir", required=A, help="The data folder on disk." ) parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision", type=A, default=A, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps", type=A, default=A, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--output_dir", type=A, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--resume_from_checkpoint", type=A, default=A, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--project_dir", type=A, default="logs", help="Location on where to store experiment tracking logs` and relevent project information", ) a = parser.parse_args() a = {"lr": 3E-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(A, A ) if __name__ == "__main__": main()
662
1
def _snake_case ( __snake_case ): _UpperCamelCase = len(__snake_case ) _UpperCamelCase = sum(__snake_case ) _UpperCamelCase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _UpperCamelCase = True for i in range(1 , s + 1 ): _UpperCamelCase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _UpperCamelCase = dp[i][j - 1] if arr[i - 1] <= j: _UpperCamelCase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _UpperCamelCase = s - 2 * j break return diff
10
"""simple docstring""" import argparse import os import re import packaging.version __UpperCamelCase : Union[str, Any] = '''examples/''' __UpperCamelCase : str = { '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __UpperCamelCase : List[str] = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __UpperCamelCase : Optional[int] = '''README.md''' def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any ): with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.read() lowerCAmelCase ,lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace('VERSION' , _UpperCAmelCase ) lowerCAmelCase = re_pattern.sub(_UpperCAmelCase , _UpperCAmelCase ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] ): for folder, directories, fnames in os.walk(_UpperCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase , pattern='examples' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not patch: update_version_in_examples(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = '🤗 Transformers currently provides the following architectures' lowerCAmelCase = '1. Want to contribute a new model?' with open(_UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): lowerCAmelCase = lines[index].replace( 'https://huggingface.co/docs/transformers/main/model_doc' , 'https://huggingface.co/docs/transformers/model_doc' , ) index += 1 with open(_UpperCAmelCase , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (): with open(REPLACE_FILES['init'] , 'r' ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS['init'][0].search(_UpperCAmelCase ).groups()[0] return packaging.version.parse(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Tuple=False ): lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = F'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: lowerCAmelCase = F'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. lowerCAmelCase = input(F'Which version are you releasing? [{default_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = default_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase , patch=_UpperCAmelCase ) if not patch: print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = get_version() lowerCAmelCase = F'{current_version.major}.{current_version.minor + 1}.0.dev0' lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(F'Which version are we developing now? [{dev_version}]' ) if len(_UpperCAmelCase ) == 0: lowerCAmelCase = dev_version print(F'Updating version to {version}.' ) global_version_update(_UpperCAmelCase ) print('Cleaning main README, don\'t forget to run `make fix-copies`.' ) clean_main_ref_in_model_list() if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __UpperCamelCase : Optional[int] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
4
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowercase: Optional[int] = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: str = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Dict = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Any = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys _lowercase: List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
225
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowerCamelCase ( snake_case ): _lowerCAmelCase = torch.exp(snake_case ) _lowerCAmelCase = torch.sum(snake_case , dim=1 ) # sum of exp(x_i) _lowerCAmelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(snake_case ) - B / A class lowerCamelCase__ ( nn.Module ): def __init__( self : str , lowercase__ : List[str] ): super().__init__() _lowerCAmelCase = config.output_attentions _lowerCAmelCase = config.output_hidden_states _lowerCAmelCase = nn.ModuleList([BertLayer(lowercase__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase = nn.ModuleList([BertHighway(lowercase__ ) for _ in range(config.num_hidden_layers )] ) _lowerCAmelCase = [-1 for _ in range(config.num_hidden_layers )] def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : Any ): if (type(lowercase__ ) is float) or (type(lowercase__ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowerCAmelCase = x else: _lowerCAmelCase = x def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : str ): _lowerCAmelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Any , lowercase__ : Optional[Any]=None , lowercase__ : List[str]=None , lowercase__ : str=None , lowercase__ : Optional[Any]=None , ): _lowerCAmelCase = () _lowerCAmelCase = () _lowerCAmelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowerCAmelCase = all_hidden_states + (hidden_states,) _lowerCAmelCase = layer_module( lowercase__ , lowercase__ , head_mask[i] , lowercase__ , lowercase__ ) _lowerCAmelCase = layer_outputs[0] if self.output_attentions: _lowerCAmelCase = all_attentions + (layer_outputs[1],) _lowerCAmelCase = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase = current_outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase = current_outputs + (all_attentions,) _lowerCAmelCase = self.highway[i](lowercase__ ) # logits, pooled_output if not self.training: _lowerCAmelCase = highway_exit[0] _lowerCAmelCase = entropy(lowercase__ ) _lowerCAmelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowerCAmelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowerCAmelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(lowercase__ , i + 1 ) else: _lowerCAmelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowerCAmelCase = all_hidden_states + (hidden_states,) _lowerCAmelCase = (hidden_states,) if self.output_hidden_states: _lowerCAmelCase = outputs + (all_hidden_states,) if self.output_attentions: _lowerCAmelCase = outputs + (all_attentions,) _lowerCAmelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( "The Bert Model transformer with early exiting (DeeBERT). " ,UpperCAmelCase ,) class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : Optional[int] , lowercase__ : List[Any] ): super().__init__(lowercase__ ) _lowerCAmelCase = config _lowerCAmelCase = BertEmbeddings(lowercase__ ) _lowerCAmelCase = DeeBertEncoder(lowercase__ ) _lowerCAmelCase = BertPooler(lowercase__ ) self.init_weights() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): self.encoder.init_highway_pooler(self.pooler ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): return self.embeddings.word_embeddings def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : List[Any] ): _lowerCAmelCase = value def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , lowercase__ : List[str] ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(lowercase__ ) @add_start_docstrings_to_model_forward(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : int , lowercase__ : int=None , lowercase__ : Union[str, Any]=None , lowercase__ : str=None , lowercase__ : Any=None , lowercase__ : int=None , lowercase__ : Optional[int]=None , lowercase__ : Any=None , lowercase__ : int=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowerCAmelCase = input_ids.size() elif inputs_embeds is not None: _lowerCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowerCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowerCAmelCase = torch.ones(lowercase__ , device=lowercase__ ) if encoder_attention_mask is None: _lowerCAmelCase = torch.ones(lowercase__ , device=lowercase__ ) if token_type_ids is None: _lowerCAmelCase = torch.zeros(lowercase__ , dtype=torch.long , device=lowercase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowerCAmelCase = self.get_extended_attention_mask(lowercase__ , lowercase__ , lowercase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowerCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowerCAmelCase = encoder_attention_mask[:, None, None, :] _lowerCAmelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowerCAmelCase = (1.0 - encoder_extended_attention_mask) * -1_0_0_0_0.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowerCAmelCase = self.get_head_mask(lowercase__ , self.config.num_hidden_layers ) _lowerCAmelCase = self.embeddings( input_ids=lowercase__ , position_ids=lowercase__ , token_type_ids=lowercase__ , inputs_embeds=lowercase__ ) _lowerCAmelCase = self.encoder( lowercase__ , attention_mask=lowercase__ , head_mask=lowercase__ , encoder_hidden_states=lowercase__ , encoder_attention_mask=lowercase__ , ) _lowerCAmelCase = encoder_outputs[0] _lowerCAmelCase = self.pooler(lowercase__ ) _lowerCAmelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : List[Any] , lowercase__ : int , lowercase__ : Dict ): _lowerCAmelCase = message _lowerCAmelCase = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): def __init__( self : int , lowercase__ : Optional[Any] ): super().__init__() _lowerCAmelCase = BertPooler(lowercase__ ) _lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase = nn.Linear(config.hidden_size , config.num_labels ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , lowercase__ : Dict ): # Pooler _lowerCAmelCase = encoder_outputs[0] _lowerCAmelCase = self.pooler(lowercase__ ) # "return" pooler_output # BertModel _lowerCAmelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowerCAmelCase = bmodel_output[1] _lowerCAmelCase = self.dropout(lowercase__ ) _lowerCAmelCase = self.classifier(lowercase__ ) return logits, pooled_output @add_start_docstrings( "Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. " ,UpperCAmelCase ,) class lowerCamelCase__ ( UpperCAmelCase ): def __init__( self : Union[str, Any] , lowercase__ : Any ): super().__init__(lowercase__ ) _lowerCAmelCase = config.num_labels _lowerCAmelCase = config.num_hidden_layers _lowerCAmelCase = DeeBertModel(lowercase__ ) _lowerCAmelCase = nn.Dropout(config.hidden_dropout_prob ) _lowerCAmelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(lowercase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : Dict=None , lowercase__ : int=None , lowercase__ : Union[str, Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : List[Any]=None , lowercase__ : Optional[Any]=None , lowercase__ : Tuple=None , lowercase__ : Optional[int]=-1 , lowercase__ : Optional[int]=False , ): _lowerCAmelCase = self.num_layers try: _lowerCAmelCase = self.bert( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , position_ids=lowercase__ , head_mask=lowercase__ , inputs_embeds=lowercase__ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowerCAmelCase = outputs[1] _lowerCAmelCase = self.dropout(lowercase__ ) _lowerCAmelCase = self.classifier(lowercase__ ) _lowerCAmelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowerCAmelCase = e.message _lowerCAmelCase = e.exit_layer _lowerCAmelCase = outputs[0] if not self.training: _lowerCAmelCase = entropy(lowercase__ ) _lowerCAmelCase = [] _lowerCAmelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowerCAmelCase = MSELoss() _lowerCAmelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase = CrossEntropyLoss() _lowerCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowerCAmelCase = [] for highway_exit in outputs[-1]: _lowerCAmelCase = highway_exit[0] if not self.training: highway_logits_all.append(lowercase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowerCAmelCase = MSELoss() _lowerCAmelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowerCAmelCase = CrossEntropyLoss() _lowerCAmelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowercase__ ) if train_highway: _lowerCAmelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowerCAmelCase = (loss,) + outputs if not self.training: _lowerCAmelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowerCAmelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
225
1
def UpperCAmelCase__ ( lowerCamelCase_ : int = 1_0_0_0_0_0_0 ): __a : Optional[Any] = 1 __a : Tuple = 1 __a : Dict = {1: 1} for inputa in range(2 , lowerCamelCase_ ): __a : str = 0 __a : Optional[int] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: __a : Union[str, Any] = (3 * number) + 1 counter += 1 if inputa not in counters: __a : Union[str, Any] = counter if counter > pre_counter: __a : Dict = inputa __a : Optional[int] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
47
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__ ( A ): '''simple docstring''' def __init__( self , snake_case , snake_case ) -> Any: super().__init__() self.register_modules(unet=snake_case , scheduler=snake_case ) @torch.no_grad() def __call__( self , snake_case = 1 , snake_case = 100 , snake_case = None , snake_case = None , snake_case = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: _UpperCAmelCase = self.unet.config.sample_size / self.unet.config.sample_rate _UpperCAmelCase = audio_length_in_s * self.unet.config.sample_rate _UpperCAmelCase = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' f' {3 * down_scale_factor / self.unet.config.sample_rate}.' ) _UpperCAmelCase = int(snake_case ) if sample_size % down_scale_factor != 0: _UpperCAmelCase = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' f' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' ' process.' ) _UpperCAmelCase = int(snake_case ) _UpperCAmelCase = next(iter(self.unet.parameters() ) ).dtype _UpperCAmelCase = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(snake_case , snake_case ) and len(snake_case ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(snake_case )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _UpperCAmelCase = randn_tensor(snake_case , generator=snake_case , device=self.device , dtype=snake_case ) # set step values self.scheduler.set_timesteps(snake_case , device=audio.device ) _UpperCAmelCase = self.scheduler.timesteps.to(snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase = self.unet(snake_case , snake_case ).sample # 2. compute previous image: x_t -> t_t-1 _UpperCAmelCase = self.scheduler.step(snake_case , snake_case , snake_case ).prev_sample _UpperCAmelCase = audio.clamp(-1 , 1 ).float().cpu().numpy() _UpperCAmelCase = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=snake_case )
573
0
A_ : Any = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ : Tuple = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A_ : Optional[int] = { 0: '''Sunday''', 1: '''Monday''', 2: '''Tuesday''', 3: '''Wednesday''', 4: '''Thursday''', 5: '''Friday''', 6: '''Saturday''', } def UpperCAmelCase__ ( UpperCAmelCase__ :int , UpperCAmelCase__ :int , UpperCAmelCase__ :int ): '''simple docstring''' assert len(str(UpperCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: a = year // 1_00 a = (5 * (century % 4) + 2) % 7 a = year % 1_00 a = centurian % 12 a = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 a = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) a = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
32
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _lowercase ( UpperCAmelCase__ ): def A ( self : Optional[int] , __lowerCAmelCase : str ) -> Union[str, Any]: """simple docstring""" with open(__lowerCAmelCase , encoding="utf-8" ) as input_file: a = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) a = input_file.read() a = regexp.search(__lowerCAmelCase ) return match def A ( self : List[Any] , __lowerCAmelCase : str ) -> Dict: """simple docstring""" with open(__lowerCAmelCase , encoding="utf-8" ) as input_file: a = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) a = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` a = regexp.finditer(__lowerCAmelCase ) a = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A ( self : List[str] ) -> List[Any]: """simple docstring""" a = Path("./datasets" ) a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__lowerCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def A ( self : Tuple ) -> Union[str, Any]: """simple docstring""" a = Path("./datasets" ) a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__lowerCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
32
1
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) lowercase = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __A ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: __SCREAMING_SNAKE_CASE : Any = TOKENIZER_CLASSES else: __SCREAMING_SNAKE_CASE : List[str] = {tokenizer_name: getattr(_SCREAMING_SNAKE_CASE , tokenizer_name + "Fast" )} logger.info(f'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: __SCREAMING_SNAKE_CASE : Union[str, Any] = TOKENIZER_CLASSES[tokenizer_name] __SCREAMING_SNAKE_CASE : str = True if checkpoint_name is None: __SCREAMING_SNAKE_CASE : List[Any] = list(tokenizer_class.max_model_input_sizes.keys() ) else: __SCREAMING_SNAKE_CASE : Tuple = [checkpoint_name] logger.info(f'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(f'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer __SCREAMING_SNAKE_CASE : List[str] = tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(f'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint.split("/" ) __SCREAMING_SNAKE_CASE : Any = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif add_prefix: __SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint __SCREAMING_SNAKE_CASE : str = dump_path else: __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : Union[str, Any] = dump_path logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __SCREAMING_SNAKE_CASE : List[Any] = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __SCREAMING_SNAKE_CASE : List[str] = file_path.split(_SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": __SCREAMING_SNAKE_CASE : Dict = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Tuple = None logger.info(f'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) __SCREAMING_SNAKE_CASE : str = tokenizer.save_pretrained( _SCREAMING_SNAKE_CASE , legacy_format=_SCREAMING_SNAKE_CASE , filename_prefix=_SCREAMING_SNAKE_CASE ) logger.info(f'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(_SCREAMING_SNAKE_CASE ) logger.info(f'=> removing {file_name}' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) lowercase = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
211
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if number > 0: raise ValueError("input must be a negative integer" ) __SCREAMING_SNAKE_CASE : Tuple = len(bin(_SCREAMING_SNAKE_CASE )[3:] ) __SCREAMING_SNAKE_CASE : Optional[int] = bin(abs(_SCREAMING_SNAKE_CASE ) - (1 << binary_number_length) )[3:] __SCREAMING_SNAKE_CASE : Union[str, Any] = ( ( "1" + "0" * (binary_number_length - len(_SCREAMING_SNAKE_CASE )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
211
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( a_ : str , a_ : str ): __a = len(a_ ) __a = len(a_ ) __a = ( first_str_length if first_str_length > second_str_length else second_str_length ) __a = [] for char_count in range(a_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(a_ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
490
'''simple docstring''' def SCREAMING_SNAKE_CASE ( a_ : int , a_ : int ): return int((input_a, input_a).count(0 ) != 0 ) def SCREAMING_SNAKE_CASE ( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
490
1
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] ): '''simple docstring''' create_state_space_tree(lowerCamelCase__ , [] , 0 , [0 for i in range(len(lowerCamelCase__ ) )] ) def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[str, Any] , ): '''simple docstring''' if index == len(lowerCamelCase__ ): print(lowerCamelCase__ ) return for i in range(len(lowerCamelCase__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) A: int = True create_state_space_tree(lowerCamelCase__ , lowerCamelCase__ , index + 1 , lowerCamelCase__ ) current_sequence.pop() A: Dict = False __SCREAMING_SNAKE_CASE : list[int | str] =[3, 1, 2, 4] generate_all_permutations(sequence) __SCREAMING_SNAKE_CASE : list[int | str] =["A", "B", "C"] generate_all_permutations(sequence_a)
135
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class __UpperCamelCase : def __init__( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any]=13 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Dict=24 , lowerCAmelCase : Dict=16 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[Any]=5 , lowerCAmelCase : Any=4 , lowerCAmelCase : Tuple=37 , lowerCAmelCase : str="gelu" , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : int=10 , lowerCAmelCase : str=0.02 , lowerCAmelCase : Any=None , lowerCAmelCase : List[str]=2 , lowerCAmelCase : str=2 , ): '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = max_length UpperCAmelCase_ = num_mel_bins UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = frequency_stride UpperCAmelCase_ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCAmelCase_ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCAmelCase_ = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCAmelCase_ = frequency_out_dimension * time_out_dimension UpperCAmelCase_ = num_patches + 2 def __A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, input_values, labels def __A ( self : List[str] ): '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def __A ( self : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = ASTModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() UpperCAmelCase_ = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Any ): '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {"input_values": input_values} return config, inputs_dict @require_torch class __UpperCamelCase ( lowercase , lowercase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False def __A ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : int ): '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def __A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = ASTModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 ) def __A ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass def __A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def __A ( self : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(lowerCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["input_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def __A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) @slow def __A ( self : Union[str, Any] ): '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = ASTModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def __lowerCAmelCase ( ): UpperCAmelCase_ = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) UpperCAmelCase_ , UpperCAmelCase_ = torchaudio.load(A ) return audio, sampling_rate @require_torch @require_torchaudio class __UpperCamelCase ( unittest.TestCase ): @cached_property def __A ( self : Optional[Any] ): '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def __A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = self.default_feature_extractor UpperCAmelCase_ = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(lowerCAmelCase ) UpperCAmelCase_ = self.default_feature_extractor UpperCAmelCase_ , UpperCAmelCase_ = prepare_audio() UpperCAmelCase_ = audio.squeeze().numpy() UpperCAmelCase_ = feature_extractor(lowerCAmelCase , sampling_rate=lowerCAmelCase , return_tensors="pt" ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**lowerCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) UpperCAmelCase_ = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) )
162
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } __UpperCAmelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def lowercase__ ( lowerCAmelCase__ : List[Any] ) -> str: '''simple docstring''' a__ : List[str] = {} with open(lowerCAmelCase__ , "r" ) as file: for line_number, line in enumerate(lowerCAmelCase__ ): a__ : Tuple = line.strip() if line: a__ : List[Any] = line.split() a__ : Any = line_number a__ : Tuple = words[0] a__ : Optional[Any] = value return result def lowercase__ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' for attribute in key.split("." ): a__ : str = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase__ ): a__ : Optional[Any] = PARAM_MAPPING[full_name.split("." )[-1]] a__ : Optional[int] = "param" if weight_type is not None and weight_type != "param": a__ : Any = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape elif weight_type is not None and weight_type == "param": a__ : int = hf_pointer for attribute in hf_param_name.split("." ): a__ : Optional[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple = shape_pointer.shape # let's reduce dimension a__ : Dict = value[0] else: a__ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": a__ : Optional[int] = value elif weight_type == "weight_g": a__ : Optional[Any] = value elif weight_type == "weight_v": a__ : str = value elif weight_type == "bias": a__ : List[str] = value elif weight_type == "param": for attribute in hf_param_name.split("." ): a__ : Optional[int] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[Any] = value else: a__ : Any = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowercase__ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' a__ : str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase__ ): a__ : str = PARAM_MAPPING[full_name.split("." )[-1]] a__ : Optional[Any] = "param" if weight_type is not None and weight_type != "param": a__ : Optional[int] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ : Dict = ".".join([key, hf_param_name] ) else: a__ : Union[str, Any] = key a__ : Optional[Any] = value if "lm_head" in full_key else value[0] __UpperCAmelCase = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Dict=None ) -> List[Any]: '''simple docstring''' a__ : str = False for key, mapped_key in MAPPING.items(): a__ : List[str] = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: a__ : str = True if "*" in mapped_key: a__ : List[Any] = name.split(lowerCAmelCase__ )[0].split("." )[-2] a__ : int = mapped_key.replace("*" , lowerCAmelCase__ ) if "weight_g" in name: a__ : str = "weight_g" elif "weight_v" in name: a__ : str = "weight_v" elif "bias" in name: a__ : Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ : int = "weight" else: a__ : Tuple = None if hf_dict is not None: rename_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return is_used return is_used def lowercase__ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] = [] a__ : List[str] = fairseq_model.state_dict() a__ : List[str] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ : Dict = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == "group" , ) a__ : Tuple = True else: a__ : List[Any] = load_wavaveca_layer(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F"Unused weights: {unused_weights}" ) def lowercase__ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict ) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = full_name.split("conv_layers." )[-1] a__ : int = name.split("." ) a__ : Optional[Any] = int(items[0] ) a__ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) a__ : Tuple = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) a__ : Optional[int] = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) a__ : List[Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) a__ : Union[str, Any] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(lowerCAmelCase__ ) @torch.no_grad() def lowercase__ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Dict=False ) -> Union[str, Any]: '''simple docstring''' if config_path is not None: a__ : str = WavaVecaConfig.from_pretrained(lowerCAmelCase__ ) else: a__ : Any = WavaVecaConfig() if is_seq_class: a__ : Union[str, Any] = read_txt_into_dict(lowerCAmelCase__ ) a__ : Optional[int] = idalabel a__ : Any = WavaVecaForSequenceClassification(lowerCAmelCase__ ) a__ : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) feature_extractor.save_pretrained(lowerCAmelCase__ ) elif is_finetuned: if dict_path: a__ : List[str] = Dictionary.load(lowerCAmelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ : Union[str, Any] = target_dict.pad_index a__ : Optional[Any] = target_dict.bos_index a__ : Tuple = target_dict.eos_index a__ : Tuple = len(target_dict.symbols ) a__ : str = os.path.join(lowerCAmelCase__ , "vocab.json" ) if not os.path.isdir(lowerCAmelCase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase__ ) ) return os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) a__ : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched a__ : Dict = 0 a__ : Dict = 1 with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple = WavaVecaCTCTokenizer( lowerCAmelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCAmelCase__ , ) a__ : int = True if config.feat_extract_norm == "layer" else False a__ : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) a__ : List[Any] = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) a__ : List[str] = WavaVecaForCTC(lowerCAmelCase__ ) else: a__ : Union[str, Any] = WavaVecaForPreTraining(lowerCAmelCase__ ) if is_finetuned or is_seq_class: a__ , a__ , a__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: a__ : Optional[Any] = argparse.Namespace(task="audio_pretraining" ) a__ : Tuple = fairseq.tasks.setup_task(lowerCAmelCase__ ) a__ , a__ , a__ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase__ ) a__ : Union[str, Any] = model[0].eval() recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
251
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): __lowerCamelCase : Dict = CLIPTokenizer __lowerCamelCase : Optional[Any] = CLIPTokenizerFast __lowerCamelCase : List[Any] = True __lowerCamelCase : Optional[int] = {} __lowerCamelCase : List[Any] = False def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' super().setUp() # fmt: off a__ : Tuple = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : str = dict(zip(a_ , range(len(a_ ) ) ) ) a__ : Optional[int] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] a__ : Union[str, Any] = {"unk_token": "<unk>"} a__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(a_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(a_ ) ) def UpperCAmelCase ( self : Optional[Any] , **a_ : Tuple ) -> Any: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self : Tuple , **a_ : Any ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a_ ) def UpperCAmelCase ( self : Tuple , a_ : Dict ) -> Tuple: '''simple docstring''' a__ : Optional[int] = "lower newer" a__ : Dict = "lower newer" return input_text, output_text def UpperCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' a__ : List[str] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a__ : Optional[Any] = "lower newer" a__ : Tuple = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] a__ : Tuple = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) a__ : List[str] = tokens + [tokenizer.unk_token] a__ : str = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) @require_ftfy def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): a__ : Dict = self.tokenizer_class.from_pretrained(a_ , **a_ ) a__ : Any = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) a__ : Optional[int] = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." a__ : str = tokenizer_s.tokenize(a_ ) a__ : int = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a__ : Dict = "xa\u0303y" + " " + "x\xe3y" a__ : Any = tokenizer_s.tokenize(a_ ) a__ : Optional[int] = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on unicode of space type a__ : str = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a__ : str = tokenizer_s.tokenize(a_ ) a__ : List[Any] = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) # Test that the tokenization is identical on unicode of line break type a__ : int = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a__ : Any = tokenizer_s.tokenize(a_ ) a__ : Dict = tokenizer_r.tokenize(a_ ) self.assertListEqual(a_ , a_ ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): a__ : Union[str, Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a__ : Union[str, Any] = F"{text_of_1_token} {text_of_1_token}" a__ : List[str] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , ) a__ : List[Any] = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(a_ ) + 1, len(a_ ) + 1 + len(a_ )) , ) a__ : List[Any] = F" {text}" a__ : List[Any] = self.rust_tokenizer_class.from_pretrained( a_ , use_fast=a_ , ) a__ : Tuple = tokenizer_r(a_ , return_offsets_mapping=a_ , add_special_tokens=a_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a_ ) + 1, 1 + len(a_ ) + 1 + len(a_ )) , ) def UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' with self.assertRaises(a_ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' super().test_tokenization_python_rust_equals() def UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' pass
251
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = field(default='audio-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) _snake_case : ClassVar[Features] = Features({'audio': Audio()} ) _snake_case : ClassVar[Features] = Features({'labels': ClassLabel} ) _snake_case : str = "audio" _snake_case : str = "labels" def snake_case__ ( self : Dict , lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _UpperCamelCase = copy.deepcopy(self ) _UpperCamelCase = self.label_schema.copy() _UpperCamelCase = features[self.label_column] _UpperCamelCase = label_schema return task_template @property def snake_case__ ( self : int ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
98
'''simple docstring''' from __future__ import annotations def _A ( A__ , A__ ): """simple docstring""" if b == 0: return (1, 0) ((__lowercase) , (__lowercase)) = extended_euclid(A__ , a % b ) __lowercase = a // b return (y, x - k * y) def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m def _A ( A__ , A__ ): """simple docstring""" ((__lowercase) , (__lowercase)) = extended_euclid(A__ , A__ ) if b < 0: __lowercase = (b % n + n) % n return b def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" __lowercase , __lowercase = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) __lowercase = na * na __lowercase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
41
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __snake_case ( _lowercase): snake_case__ : Union[str, Any] = (UnCLIPScheduler,) def SCREAMING_SNAKE_CASE ( self : Tuple , **__lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Dict = { '''num_train_timesteps''': 1_0_0_0, '''variance_type''': '''fixed_small_log''', '''clip_sample''': True, '''clip_sample_range''': 1.0, '''prediction_type''': '''epsilon''', } config.update(**__lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=__lowerCAmelCase , prev_timestep=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Tuple = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config(variance_type='''fixed_small_log''' ) _lowerCamelCase : Dict = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_99_49_87 ) ) < 1E-5 def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : str = self.scheduler_classes[0] _lowerCamelCase : Optional[Any] = self.get_scheduler_config(variance_type='''learned_range''' ) _lowerCamelCase : Optional[int] = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : Optional[int] = 0.5 assert scheduler._get_variance(1 , predicted_variance=__lowerCAmelCase ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(4_8_7 , predicted_variance=__lowerCAmelCase ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(9_9_9 , predicted_variance=__lowerCAmelCase ) - -0.0_01_00_11 < 1E-5 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config() _lowerCamelCase : int = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase : Optional[int] = scheduler.timesteps _lowerCamelCase : Tuple = self.dummy_model() _lowerCamelCase : List[Any] = self.dummy_sample_deter _lowerCamelCase : Optional[int] = torch.manual_seed(0 ) for i, t in enumerate(__lowerCAmelCase ): # 1. predict noise residual _lowerCamelCase : Optional[int] = model(__lowerCAmelCase , __lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase : List[str] = scheduler.step(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample _lowerCamelCase : Optional[int] = pred_prev_sample _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 2_5_2.2_6_8_2_4_9_5 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Any = self.scheduler_classes[0] _lowerCamelCase : List[Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(2_5 ) _lowerCamelCase : Union[str, Any] = scheduler.timesteps _lowerCamelCase : str = self.dummy_model() _lowerCamelCase : str = self.dummy_sample_deter _lowerCamelCase : Any = torch.manual_seed(0 ) for i, t in enumerate(__lowerCAmelCase ): # 1. predict noise residual _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase , __lowerCAmelCase ) if i + 1 == timesteps.shape[0]: _lowerCamelCase : Optional[int] = None else: _lowerCamelCase : str = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 _lowerCamelCase : Optional[Any] = scheduler.step( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , prev_timestep=__lowerCAmelCase , generator=__lowerCAmelCase ).prev_sample _lowerCamelCase : Optional[Any] = pred_prev_sample _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Tuple = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 2_5_8.2_0_4_4_9_8_3 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" pass
709
"""simple docstring""" lowerCAmelCase__ = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} lowerCAmelCase__ = ['''a''', '''b''', '''c''', '''d''', '''e'''] def snake_case_ ( A_ : Any, A_ : Optional[Any], A_ : str ): '''simple docstring''' _lowerCamelCase : int = start # add current to visited visited.append(A_ ) _lowerCamelCase : str = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: _lowerCamelCase : int = topological_sort(A_, A_, A_ ) # if all neighbors visited add current to sort sort.append(A_ ) # if all vertices haven't been visited select a new one to visit if len(A_ ) != len(A_ ): for vertice in vertices: if vertice not in visited: _lowerCamelCase : List[str] = topological_sort(A_, A_, A_ ) # return sort return sort if __name__ == "__main__": lowerCAmelCase__ = topological_sort('''a''', [], []) print(sort)
598
0
from __future__ import annotations from math import pi, sqrt def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
413
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : str ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): UpperCAmelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue UpperCAmelCase = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) UpperCAmelCase = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) UpperCAmelCase = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) UpperCAmelCase = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) UpperCAmelCase = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) UpperCAmelCase = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) UpperCAmelCase = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) UpperCAmelCase = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) UpperCAmelCase = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) UpperCAmelCase = key.replace('image_encoder.module' , 'flava.image_model' ) UpperCAmelCase = key.replace('text_encoder.module' , 'flava.text_model' ) UpperCAmelCase = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) UpperCAmelCase = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) UpperCAmelCase = key.replace('text_projection' , 'flava.text_projection' ) UpperCAmelCase = key.replace('image_projection' , 'flava.image_projection' ) UpperCAmelCase = value.float() for key, value in codebook_state_dict.items(): UpperCAmelCase = value return upgrade @torch.no_grad() def lowerCamelCase__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any=None ): if config_path is not None: UpperCAmelCase = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: UpperCAmelCase = FlavaConfig() UpperCAmelCase = FlavaForPreTraining(SCREAMING_SNAKE_CASE ).eval() UpperCAmelCase = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , save_checkpoint=SCREAMING_SNAKE_CASE ) if os.path.exists(SCREAMING_SNAKE_CASE ): UpperCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location='cpu' ) else: UpperCAmelCase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' ) UpperCAmelCase = upgrade_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE ) UpperCAmelCase = hf_model.state_dict() UpperCAmelCase = count_parameters(SCREAMING_SNAKE_CASE ) UpperCAmelCase = count_parameters(SCREAMING_SNAKE_CASE ) + count_parameters(SCREAMING_SNAKE_CASE ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _a : str = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _a : str = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
447
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" snake_case_ = MODEL_FOR_CAUSAL_LM_MAPPING snake_case_ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowerCAmelCase ( self : List[Any] )-> Dict: snake_case = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output snake_case = text_generator("""This is a test""" , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) snake_case = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( __snake_case , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) snake_case = text_generator("""This is a test""" , do_sample=__snake_case , num_return_sequences=2 , return_tensors=__snake_case ) self.assertEqual( __snake_case , [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ] , ) snake_case = text_generator.model.config.eos_token_id snake_case = """<pad>""" snake_case = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=__snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=__snake_case , ) self.assertEqual( __snake_case , [ [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ], [ {"""generated_token_ids""": ANY(__snake_case )}, {"""generated_token_ids""": ANY(__snake_case )}, ], ] , ) @require_tf def lowerCAmelCase ( self : Dict )-> Tuple: snake_case = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output snake_case = text_generator("""This is a test""" , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) snake_case = text_generator(["""This is a test""", """This is a second test"""] , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def lowerCAmelCase ( self : str , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] )-> int: snake_case = TextGenerationPipeline(model=__snake_case , tokenizer=__snake_case ) return text_generator, ["This is a test", "Another test"] def lowerCAmelCase ( self : int )-> Dict: snake_case = """Hello I believe in""" snake_case = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) snake_case = text_generator(__snake_case ) self.assertEqual( __snake_case , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) snake_case = text_generator(__snake_case , stop_sequence=""" fe""" ) self.assertEqual(__snake_case , [{"""generated_text""": """Hello I believe in fe"""}] ) def lowerCAmelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : int )-> List[Any]: snake_case = text_generator.model snake_case = text_generator.tokenizer snake_case = text_generator("""This is a test""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) snake_case = text_generator("""This is a test""" , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) snake_case = pipeline(task="""text-generation""" , model=__snake_case , tokenizer=__snake_case , return_full_text=__snake_case ) snake_case = text_generator("""This is a test""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) snake_case = text_generator("""This is a test""" , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) snake_case = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], ] , ) if text_generator.tokenizer.pad_token is not None: snake_case = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], [{"""generated_text""": ANY(__snake_case )}, {"""generated_text""": ANY(__snake_case )}], ] , ) with self.assertRaises(__snake_case ): snake_case = text_generator("""test""" , return_full_text=__snake_case , return_text=__snake_case ) with self.assertRaises(__snake_case ): snake_case = text_generator("""test""" , return_full_text=__snake_case , return_tensors=__snake_case ) with self.assertRaises(__snake_case ): snake_case = text_generator("""test""" , return_text=__snake_case , return_tensors=__snake_case ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): snake_case = text_generator("""""" ) self.assertEqual(__snake_case , [{"""generated_text""": ANY(__snake_case )}] ) else: with self.assertRaises((ValueError, AssertionError) ): snake_case = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. snake_case = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 5_00 , max_new_tokens=20 ) snake_case = text_generator("""This is a test""" * 5_00 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__snake_case ): text_generator( """This is a test""" * 5_00 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def lowerCAmelCase ( self : Optional[int] )-> Optional[int]: import torch # Classic `model_kwargs` snake_case = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) snake_case = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 snake_case = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) snake_case = pipe("""This is a test""" ) self.assertEqual( __snake_case , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def lowerCAmelCase ( self : List[str] )-> str: import torch snake_case = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def lowerCAmelCase ( self : Optional[Any] )-> int: import torch snake_case = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=__snake_case , top_p=0.5 ) def lowerCAmelCase ( self : List[str] )-> Any: snake_case = """Hello world""" snake_case = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": snake_case = logging.get_logger("""transformers.generation.tf_utils""" ) else: snake_case = logging.get_logger("""transformers.generation.utils""" ) snake_case = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__snake_case ) as cl: snake_case = text_generator(__snake_case , max_length=10 , max_new_tokens=1 ) self.assertIn(__snake_case , cl.out ) # The user only sets one -> no warning with CaptureLogger(__snake_case ) as cl: snake_case = text_generator(__snake_case , max_new_tokens=1 ) self.assertNotIn(__snake_case , cl.out ) with CaptureLogger(__snake_case ) as cl: snake_case = text_generator(__snake_case , max_length=10 ) self.assertNotIn(__snake_case , cl.out )
517
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "LayoutLMv3ImageProcessor" snake_case_ = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : str , __snake_case : int=None , __snake_case : List[Any]=None , **__snake_case : Optional[Any] )-> List[Any]: snake_case = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __snake_case , ) snake_case = kwargs.pop("""feature_extractor""" ) snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__snake_case , __snake_case ) def __call__( self : Any , __snake_case : int , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : List[Any] , )-> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor snake_case = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): snake_case = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case = features["""words"""] snake_case = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values snake_case = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: snake_case = self.get_overflowing_images(__snake_case , encoded_inputs["""overflow_to_sample_mapping"""] ) snake_case = images return encoded_inputs def lowerCAmelCase ( self : Any , __snake_case : int , __snake_case : Tuple )-> List[Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def lowerCAmelCase ( self : Optional[int] , *__snake_case : Optional[int] , **__snake_case : Optional[Any] )-> Tuple: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : str , *__snake_case : Any , **__snake_case : Optional[Any] )-> List[str]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def lowerCAmelCase ( self : Union[str, Any] )-> Tuple: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCAmelCase ( self : Any )-> Any: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __snake_case , ) return self.image_processor_class @property def lowerCAmelCase ( self : int )-> Optional[Any]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __snake_case , ) return self.image_processor
517
1
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: if (resistance, reactance, impedance).count(0) != 1: raise ValueError('One and only one argument must be 0') if resistance == 0: return {"resistance": sqrt(pow(_lowerCAmelCase , 2) - pow(_lowerCAmelCase , 2))} elif reactance == 0: return {"reactance": sqrt(pow(_lowerCAmelCase , 2) - pow(_lowerCAmelCase , 2))} elif impedance == 0: return {"impedance": sqrt(pow(_lowerCAmelCase , 2) + pow(_lowerCAmelCase , 2))} else: raise ValueError('Exactly one argument must be 0') if __name__ == "__main__": import doctest doctest.testmod()
596
'''simple docstring''' def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def A_ ( _lowerCAmelCase : int = 5000 ): """simple docstring""" _lowerCamelCase : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCAmelCase )] for i, pentagonal_i in enumerate(_lowerCAmelCase ): for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ): _lowerCamelCase : List[Any] = pentagonal_nums[j] _lowerCamelCase : Any = pentagonal_i + pentagonal_j _lowerCamelCase : Union[str, Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCAmelCase ) and is_pentagonal(_lowerCAmelCase ): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
44
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : int = logging.get_logger(__name__) def snake_case__ ( lowerCamelCase_ ): if isinstance(lowerCamelCase_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowerCamelCase_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowerCamelCase_ ): return [[videos]] raise ValueError(F'Could not make batched video from {videos}' ) class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : str = ['''pixel_values'''] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 2_55 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) A : Dict = size if size is not None else {'''shortest_edge''': 2_24} A : Optional[Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) A : Dict = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} A : str = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' ) A : Tuple = do_resize A : Optional[Any] = size A : str = do_center_crop A : Union[str, Any] = crop_size A : int = resample A : Any = do_rescale A : Dict = rescale_factor A : Dict = do_normalize A : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: A : List[Any] = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" in size: A : Optional[Any] = get_resize_output_image_size(__UpperCAmelCase , size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) elif "height" in size and "width" in size: A : List[Any] = (size['''height'''], size['''width''']) else: raise ValueError(f'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: A : List[str] = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> str: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A : List[str] = to_numpy_array(__UpperCAmelCase ) if do_resize: A : Optional[int] = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) if do_center_crop: A : Dict = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase ) if do_rescale: A : List[Any] = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) if do_normalize: A : Union[str, Any] = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) A : List[Any] = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) return image def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: A : int = do_resize if do_resize is not None else self.do_resize A : int = resample if resample is not None else self.resample A : int = do_center_crop if do_center_crop is not None else self.do_center_crop A : str = do_rescale if do_rescale is not None else self.do_rescale A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize A : Dict = image_mean if image_mean is not None else self.image_mean A : Optional[int] = image_std if image_std is not None else self.image_std A : Dict = size if size is not None else self.size A : Tuple = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) A : List[str] = crop_size if crop_size is not None else self.crop_size A : str = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) A : Union[str, Any] = make_batched(__UpperCAmelCase ) A : Any = [ [ self._preprocess_image( image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , ) for img in video ] for video in videos ] A : Tuple = {'''pixel_values''': videos} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
718
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[int] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Dict = '''segformer''' def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=[2, 2, 2, 2] , __UpperCAmelCase=[8, 4, 2, 1] , __UpperCAmelCase=[32, 64, 1_60, 2_56] , __UpperCAmelCase=[7, 3, 3, 3] , __UpperCAmelCase=[4, 2, 2, 2] , __UpperCAmelCase=[1, 2, 5, 8] , __UpperCAmelCase=[4, 4, 4, 4] , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=2_56 , __UpperCAmelCase=2_55 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( '''Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be''' ''' removed, as the behaviour will default to that of reshape_last_stage = True.''' , __UpperCAmelCase , ) A : Optional[int] = num_channels A : int = num_encoder_blocks A : Optional[Any] = depths A : List[str] = sr_ratios A : List[Any] = hidden_sizes A : Optional[Any] = patch_sizes A : Any = strides A : Dict = mlp_ratios A : Optional[Any] = num_attention_heads A : int = hidden_act A : Optional[int] = hidden_dropout_prob A : Any = attention_probs_dropout_prob A : Optional[int] = classifier_dropout_prob A : List[Any] = initializer_range A : int = drop_path_rate A : Union[str, Any] = layer_norm_eps A : Union[str, Any] = decoder_hidden_size A : int = kwargs.get('''reshape_last_stage''' , __UpperCAmelCase ) A : str = semantic_loss_ignore_index class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : List[Any] = version.parse('''1.11''' ) @property def snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case ( self ) -> float: return 1E-4 @property def snake_case ( self ) -> int: return 12
423
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Optional[int] ): UpperCAmelCase = '''| <pad> <unk> <s> </s> a b c d e f g h i j k'''.split() UpperCAmelCase = dict(zip(a__ , range(len(a__ ) ) ) ) UpperCAmelCase = { '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', } UpperCAmelCase = { '''feature_size''': 1, '''padding_value''': 0.0, '''sampling_rate''': 16000, '''return_attention_mask''': False, '''do_normalize''': True, } UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , a__ ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) with open(self.feature_extraction_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(a__ ) + '''\n''' ) # load decoder from hub UpperCAmelCase = '''hf-internal-testing/ngram-beam-search-decoder''' def __snake_case ( self : int , **a__ : Optional[int] ): UpperCAmelCase = self.add_kwargs_tokens_map.copy() kwargs.update(a__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **a__ ) def __snake_case ( self : int , **a__ : str ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **a__ ) def __snake_case ( self : List[str] , **a__ : Optional[Any] ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **a__ ) def __snake_case ( self : int ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , a__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , a__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , a__ ) def __snake_case ( self : Any ): UpperCAmelCase = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['''xx'''] ) with self.assertRaisesRegex(a__ , '''include''' ): WavaVecaProcessorWithLM( tokenizer=a__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = floats_list((3, 1000) ) UpperCAmelCase = feature_extractor(a__ , return_tensors='''np''' ) UpperCAmelCase = processor(a__ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self : Any ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = '''This is a test string''' UpperCAmelCase = processor(text=a__ ) UpperCAmelCase = tokenizer(a__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self : int , a__ : int=(2, 10, 16) , a__ : List[Any]=77 ): np.random.seed(a__ ) return np.random.rand(*a__ ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCAmelCase = processor.decode(a__ ) UpperCAmelCase = decoder.decode_beams(a__ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('''</s> <s> </s>''' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['''fork'''], ['''spawn''']] ) def __snake_case ( self : Any , a__ : str ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCAmelCase = processor.batch_decode(a__ ) else: with get_context(a__ ).Pool() as pool: UpperCAmelCase = processor.batch_decode(a__ , a__ ) UpperCAmelCase = list(a__ ) with get_context('''fork''' ).Pool() as p: UpperCAmelCase = decoder.decode_beams_batch(a__ , a__ ) UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(a__ , decoded_processor.text ) self.assertListEqual(['''<s> <s> </s>''', '''<s> <s> <s>'''] , decoded_processor.text ) self.assertListEqual(a__ , decoded_processor.logit_score ) self.assertListEqual(a__ , decoded_processor.lm_score ) def __snake_case ( self : Dict ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = 15 UpperCAmelCase = -20.0 UpperCAmelCase = -4.0 UpperCAmelCase = processor.batch_decode( a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , ) UpperCAmelCase = decoded_processor_out.text UpperCAmelCase = list(a__ ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase = decoder.decode_beams_batch( a__ , a__ , beam_width=a__ , beam_prune_logp=a__ , token_min_logp=a__ , ) UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] UpperCAmelCase = [d[0][2] for d in decoded_decoder_out] UpperCAmelCase = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(a__ , a__ ) self.assertListEqual(['''</s> <s> <s>''', '''<s> <s> <s>'''] , a__ ) self.assertTrue(np.array_equal(a__ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447] , a__ , atol=1e-3 ) ) self.assertTrue(np.array_equal(a__ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9_474] , a__ , atol=1e-3 ) ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = 2.0 UpperCAmelCase = 5.0 UpperCAmelCase = -20.0 UpperCAmelCase = True UpperCAmelCase = processor.batch_decode( a__ , alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , ) UpperCAmelCase = decoded_processor_out.text UpperCAmelCase = list(a__ ) decoder.reset_params( alpha=a__ , beta=a__ , unk_score_offset=a__ , lm_score_boundary=a__ , ) with get_context('''fork''' ).Pool() as pool: UpperCAmelCase = decoder.decode_beams_batch( a__ , a__ , ) UpperCAmelCase = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(a__ , a__ ) self.assertListEqual(['''<s> </s> <s> </s> </s>''', '''</s> </s> <s> </s> </s>'''] , a__ ) UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = ['''alphabet.json''', '''language_model'''] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(a__ , a__ ) def __snake_case ( self : str ): UpperCAmelCase = snapshot_download('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained(a__ ) UpperCAmelCase = processor.decoder.model_container[processor.decoder._model_key] UpperCAmelCase = Path(language_model._kenlm_model.path.decode('''utf-8''' ) ).parent.parent.absolute() UpperCAmelCase = os.listdir(a__ ) UpperCAmelCase = os.listdir(a__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(a__ , a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = AutoProcessor.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = floats_list((3, 1000) ) UpperCAmelCase = processor_wavaveca(a__ , return_tensors='''np''' ) UpperCAmelCase = processor_auto(a__ , return_tensors='''np''' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = processor_wavaveca.batch_decode(a__ ) UpperCAmelCase = processor_auto.batch_decode(a__ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.get_feature_extractor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_decoder() UpperCAmelCase = WavaVecaProcessorWithLM(tokenizer=a__ , feature_extractor=a__ , decoder=a__ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='''`processor` and `feature_extractor` model input names do not match''' , ) @staticmethod def __snake_case ( a__ : Tuple , a__ : int ): UpperCAmelCase = [d[key] for d in offsets] return retrieved_list def __snake_case ( self : Dict ): UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = self._get_dummy_logits()[0] UpperCAmelCase = processor.decode(a__ , output_word_offsets=a__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(a__ , a__ ) ) self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''] , '''end_offset''' ) , [1, 3, 5] ) def __snake_case ( self : Any ): UpperCAmelCase = WavaVecaProcessorWithLM.from_pretrained('''hf-internal-testing/processor_with_lm''' ) UpperCAmelCase = self._get_dummy_logits() UpperCAmelCase = processor.batch_decode(a__ , output_word_offsets=a__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''word_offsets''' in outputs ) self.assertTrue(isinstance(a__ , a__ ) ) self.assertListEqual( [''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) for o in outputs['''word_offsets''']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''word''' ) , ['''<s>''', '''<s>''', '''</s>'''] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''start_offset''' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['''word_offsets'''][0] , '''end_offset''' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def __snake_case ( self : Dict ): import torch UpperCAmelCase = load_dataset('''common_voice''' , '''en''' , split='''train''' , streaming=a__ ) UpperCAmelCase = ds.cast_column('''audio''' , datasets.Audio(sampling_rate=16000 ) ) UpperCAmelCase = iter(a__ ) UpperCAmelCase = next(a__ ) UpperCAmelCase = AutoProcessor.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) UpperCAmelCase = WavaVecaForCTC.from_pretrained('''patrickvonplaten/wav2vec2-base-100h-with-lm''' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCAmelCase = processor(sample['''audio''']['''array'''] , return_tensors='''pt''' ).input_values with torch.no_grad(): UpperCAmelCase = model(a__ ).logits.cpu().numpy() UpperCAmelCase = processor.decode(logits[0] , output_word_offsets=a__ ) UpperCAmelCase = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCAmelCase = [ { '''start_time''': d['''start_offset'''] * time_offset, '''end_time''': d['''end_offset'''] * time_offset, '''word''': d['''word'''], } for d in output['''word_offsets'''] ] UpperCAmelCase = '''WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL''' # output words self.assertEqual(''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) , a__ ) self.assertEqual(''' '''.join(self.get_from_offsets(a__ , '''word''' ) ) , output.text ) # output times UpperCAmelCase = torch.tensor(self.get_from_offsets(a__ , '''start_time''' ) ) UpperCAmelCase = torch.tensor(self.get_from_offsets(a__ , '''end_time''' ) ) # fmt: off UpperCAmelCase = torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] ) UpperCAmelCase = torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(a__ , a__ , atol=0.01 ) ) self.assertTrue(torch.allclose(a__ , a__ , atol=0.01 ) )
51
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def snake_case ( self : Union[str, Any] ): lowerCamelCase :int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(__snake_case , '''num_heads''' ) ) class _lowerCAmelCase : def __init__( self : int , __snake_case : List[Any] , __snake_case : Union[str, Any]=13 , __snake_case : Any=64 , __snake_case : int=3 , __snake_case : Optional[Any]=[16, 48, 96] , __snake_case : Tuple=[1, 3, 6] , __snake_case : Optional[Any]=[1, 2, 10] , __snake_case : Tuple=[7, 3, 3] , __snake_case : Optional[int]=[4, 2, 2] , __snake_case : Union[str, Any]=[2, 1, 1] , __snake_case : Optional[int]=[2, 2, 2] , __snake_case : List[str]=[False, False, True] , __snake_case : List[Any]=[0.0, 0.0, 0.0] , __snake_case : Dict=0.0_2 , __snake_case : List[Any]=1e-1_2 , __snake_case : List[str]=True , __snake_case : List[str]=True , __snake_case : Any=2 , ): lowerCamelCase :List[str] = parent lowerCamelCase :str = batch_size lowerCamelCase :Union[str, Any] = image_size lowerCamelCase :List[str] = patch_sizes lowerCamelCase :int = patch_stride lowerCamelCase :List[Any] = patch_padding lowerCamelCase :int = is_training lowerCamelCase :Optional[Any] = use_labels lowerCamelCase :int = num_labels lowerCamelCase :Optional[Any] = num_channels lowerCamelCase :int = embed_dim lowerCamelCase :List[Any] = num_heads lowerCamelCase :List[str] = stride_kv lowerCamelCase :List[str] = depth lowerCamelCase :Tuple = cls_token lowerCamelCase :Optional[Any] = attention_drop_rate lowerCamelCase :List[str] = initializer_range lowerCamelCase :List[str] = layer_norm_eps def snake_case ( self : Optional[Any] ): lowerCamelCase :List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase :List[str] = None if self.use_labels: # create a random int32 tensor of given shape lowerCamelCase :Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase :Tuple = self.get_config() return config, pixel_values, labels def snake_case ( self : Optional[int] ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def snake_case ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Dict ): lowerCamelCase :Tuple = TFCvtModel(config=__snake_case ) lowerCamelCase :str = model(__snake_case , training=__snake_case ) lowerCamelCase :List[Any] = (self.image_size, self.image_size) lowerCamelCase , lowerCamelCase :List[str] = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCamelCase :Optional[int] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCamelCase :str = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def snake_case ( self : int , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[Any] ): lowerCamelCase :Optional[Any] = self.num_labels lowerCamelCase :Tuple = TFCvtForImageClassification(__snake_case ) lowerCamelCase :List[str] = model(__snake_case , labels=__snake_case , training=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : int ): lowerCamelCase :Union[str, Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase :List[str] = config_and_inputs lowerCamelCase :Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () _UpperCAmelCase = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def snake_case ( self : Optional[int] ): lowerCamelCase :Any = TFCvtModelTester(self ) lowerCamelCase :Optional[Any] = TFCvtConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case ( self : str ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason='''Cvt does not output attentions''' ) def snake_case ( self : Tuple ): pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def snake_case ( self : str ): pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def snake_case ( self : Dict ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) def snake_case ( self : List[Any] ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def snake_case ( self : Tuple ): super().test_keras_fit() @unittest.skip(reason='''Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8''' ) def snake_case ( self : Tuple ): lowerCamelCase :List[Any] = tf.keras.mixed_precision.Policy('''mixed_float16''' ) tf.keras.mixed_precision.set_global_policy(__snake_case ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy('''float32''' ) def snake_case ( self : Optional[Any] ): lowerCamelCase , lowerCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Any = model_class(__snake_case ) lowerCamelCase :Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase :int = [*signature.parameters.keys()] lowerCamelCase :Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case ( self : Tuple ): def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Any ): lowerCamelCase :Dict = model_class(__snake_case ) lowerCamelCase :Any = model(**self._prepare_for_class(__snake_case , __snake_case ) ) lowerCamelCase :str = outputs.hidden_states lowerCamelCase :Dict = len(self.model_tester.depth ) self.assertEqual(len(__snake_case ) , __snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCamelCase , lowerCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase :Dict = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase :Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def snake_case ( self : List[Any] ): lowerCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case ( self : List[str] ): lowerCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def snake_case ( self : List[Any] ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase :Union[str, Any] = TFCvtModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( ): lowerCamelCase :Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self : Optional[Any] ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case ( self : List[Any] ): lowerCamelCase :List[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase :str = self.default_image_processor lowerCamelCase :str = prepare_img() lowerCamelCase :Optional[Any] = image_processor(images=__snake_case , return_tensors='''tf''' ) # forward pass lowerCamelCase :List[str] = model(**__snake_case ) # verify the logits lowerCamelCase :Optional[Any] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __snake_case ) lowerCamelCase :List[str] = tf.constant([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __snake_case , atol=1e-4 ) )
166
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy a_ : List[str] = logging.getLogger(__name__) def _A (lowerCAmelCase__ :torch.nn.Module , lowerCAmelCase__ :BnbQuantizationConfig , lowerCAmelCase__ :Union[str, os.PathLike] = None , lowerCAmelCase__ :Optional[Dict[str, Union[int, str, torch.device]]] = None , lowerCAmelCase__ :Optional[List[str]] = None , lowerCAmelCase__ :Optional[Dict[Union[int, str], Union[int, str]]] = None , lowerCAmelCase__ :Optional[Union[str, os.PathLike]] = None , lowerCAmelCase__ :bool = False , ) -> List[str]: '''simple docstring''' _a = bnb_quantization_config.load_in_abit _a = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) _a = [] # custom device map if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(device_map.keys() ) > 1: _a = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _a = get_keys_to_not_convert(lowerCAmelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCAmelCase__ ) _a = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _a = [] _a = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCAmelCase__ ) # compatibility with peft _a = load_in_abit _a = load_in_abit _a = get_parameter_device(lowerCAmelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) _a = replace_with_bnb_layers(lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) # convert param to the right dtype _a = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _a = name.replace('.weight' , '' ).replace('.bias' , '' ) _a = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCAmelCase__ ): param.to(lowerCAmelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): _a = replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) _a = get_quantized_model_device_map( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_memory=lowerCAmelCase__ , no_split_module_classes=lowerCAmelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _a = True _a = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase__ , offload_state_dict=lowerCAmelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCAmelCase__ , device_map=lowerCAmelCase__ , offload_dir=lowerCAmelCase__ ) def _A (lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :List[Any]=None ) -> List[Any]: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): _a = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) _a = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _a = {} _a = special_dtypes _a = no_split_module_classes _a = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _a = get_balanced_memory( lowerCAmelCase__ , low_zero=(device_map == 'balanced_low_0') , max_memory=lowerCAmelCase__ , **lowerCAmelCase__ , ) _a = max_memory _a = infer_auto_device_map(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # check if don't have any quantized module on the cpu _a = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _a = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def _A (lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Any=None ) -> Tuple: '''simple docstring''' if modules_to_not_convert is None: _a = [] _a , _a = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _A (lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Optional[Any]=None , ) -> List[Any]: '''simple docstring''' _a = False for name, module in model.named_children(): if current_key_name is None: _a = [] current_key_name.append(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _a = '.'.join(lowerCAmelCase__ ) _a = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _a = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _a = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _a = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) _a = module.weight.data if module.bias is not None: _a = module.bias.data bnb_module.requires_grad_(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _a = True if len(list(module.children() ) ) > 0: _a , _a = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _a = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _A (lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' with init_empty_weights(): _a = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _a = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _a = sum(lowerCAmelCase__ , [] ) _a = len(lowerCAmelCase__ ) > 0 # Check if it is a base model _a = False if hasattr(lowerCAmelCase__ , 'base_model_prefix' ): _a = not hasattr(lowerCAmelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _a = list(model.named_children() ) _a = [list_modules[-1][0]] # add last module together with tied weights _a = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) _a = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys _a = ['.weight', '.bias'] _a = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _a = name.replace(lowerCAmelCase__ , '' ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names def _A (lowerCAmelCase__ :List[Any] ) -> List[str]: '''simple docstring''' for m in model.modules(): if isinstance(lowerCAmelCase__ , bnb.nn.Linearabit ): return True return False def _A (lowerCAmelCase__ :nn.Module ) -> Union[str, Any]: '''simple docstring''' return next(parameter.parameters() ).device def _A (lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict ) -> Tuple: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 0 , dtype=lowerCAmelCase__ , value=lowerCAmelCase__ ) _a = param_name _a = model if "." in tensor_name: _a = tensor_name.split('.' ) for split in splits[:-1]: _a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) _a = new_module _a = splits[-1] # offload weights _a = False offload_weight(module._parameters[tensor_name] , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , lowerCAmelCase__ , index=lowerCAmelCase__ , ) else: offload_weight(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) offload_weight(lowerCAmelCase__ , param_name.replace('weight' , 'SCB' ) , lowerCAmelCase__ , index=lowerCAmelCase__ ) set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 'meta' , dtype=lowerCAmelCase__ , value=torch.empty(*param.size() ) )
714
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available a_ : str = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] a_ : str = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] a_ : Tuple = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): a_ : Dict = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys a_ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
532
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __magic_name__ ( _lowerCamelCase: int ) -> List[Any]: '''simple docstring''' return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __magic_name__ ( _lowerCamelCase: List[str], _lowerCamelCase: str ) -> int: '''simple docstring''' lowerCAmelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCAmelCase = key.replace('''heads.cmd.mim_head.cls.predictions''', '''mmm_image_head''' ) lowerCAmelCase = key.replace('''heads.cmd.mlm_head.cls.predictions''', '''mmm_text_head''' ) lowerCAmelCase = key.replace('''heads.cmd.itm_head.cls''', '''itm_head''' ) lowerCAmelCase = key.replace('''heads.cmd.itm_head.pooler''', '''itm_head.pooler''' ) lowerCAmelCase = key.replace('''heads.cmd.clip_head.logit_scale''', '''flava.logit_scale''' ) lowerCAmelCase = key.replace('''heads.fairseq_mlm.cls.predictions''', '''mlm_head''' ) lowerCAmelCase = key.replace('''heads.imagenet.mim_head.cls.predictions''', '''mim_head''' ) lowerCAmelCase = key.replace('''mm_text_projection''', '''flava.text_to_mm_projection''' ) lowerCAmelCase = key.replace('''mm_image_projection''', '''flava.image_to_mm_projection''' ) lowerCAmelCase = key.replace('''image_encoder.module''', '''flava.image_model''' ) lowerCAmelCase = key.replace('''text_encoder.module''', '''flava.text_model''' ) lowerCAmelCase = key.replace('''mm_encoder.module.encoder.cls_token''', '''flava.multimodal_model.cls_token''' ) lowerCAmelCase = key.replace('''mm_encoder.module''', '''flava.multimodal_model''' ) lowerCAmelCase = key.replace('''text_projection''', '''flava.text_projection''' ) lowerCAmelCase = key.replace('''image_projection''', '''flava.image_projection''' ) lowerCAmelCase = value.float() for key, value in codebook_state_dict.items(): lowerCAmelCase = value return upgrade @torch.no_grad() def __magic_name__ ( _lowerCamelCase: List[Any], _lowerCamelCase: int, _lowerCamelCase: Union[str, Any], _lowerCamelCase: List[Any]=None ) -> Optional[int]: '''simple docstring''' if config_path is not None: lowerCAmelCase = FlavaConfig.from_pretrained(_lowerCamelCase ) else: lowerCAmelCase = FlavaConfig() lowerCAmelCase = FlavaForPreTraining(_lowerCamelCase ).eval() lowerCAmelCase = convert_dalle_checkpoint(_lowerCamelCase, _lowerCamelCase, save_checkpoint=_lowerCamelCase ) if os.path.exists(_lowerCamelCase ): lowerCAmelCase = torch.load(_lowerCamelCase, map_location='''cpu''' ) else: lowerCAmelCase = torch.hub.load_state_dict_from_url(_lowerCamelCase, map_location='''cpu''' ) lowerCAmelCase = upgrade_state_dict(_lowerCamelCase, _lowerCamelCase ) hf_model.load_state_dict(_lowerCamelCase ) lowerCAmelCase = hf_model.state_dict() lowerCAmelCase = count_parameters(_lowerCamelCase ) lowerCAmelCase = count_parameters(_lowerCamelCase ) + count_parameters(_lowerCamelCase ) assert torch.allclose(_lowerCamelCase, _lowerCamelCase, atol=1E-3 ) hf_model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") UpperCAmelCase = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
535
"""simple docstring""" class lowercase : def __init__(self : Dict ) -> List[Any]: """simple docstring""" lowerCAmelCase = {} def UpperCAmelCase (self : Union[str, Any] ) -> None: """simple docstring""" print(self.vertex ) for i in self.vertex: print(SCREAMING_SNAKE_CASE_ ,''' -> ''' ,''' -> '''.join([str(SCREAMING_SNAKE_CASE_ ) for j in self.vertex[i]] ) ) def UpperCAmelCase (self : Optional[Any] ,SCREAMING_SNAKE_CASE_ : int ,SCREAMING_SNAKE_CASE_ : int ) -> None: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(SCREAMING_SNAKE_CASE_ ) else: # else make a new vertex lowerCAmelCase = [to_vertex] def UpperCAmelCase (self : List[str] ) -> None: """simple docstring""" lowerCAmelCase = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase (self : Optional[Any] ,SCREAMING_SNAKE_CASE_ : int ,SCREAMING_SNAKE_CASE_ : list ) -> None: """simple docstring""" lowerCAmelCase = True print(SCREAMING_SNAKE_CASE_ ,end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCAmelCase = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
535
1
from __future__ import annotations def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : list[str] | None = None ): _a = word_bank or [] # create a table _a = len(_lowerCamelCase ) + 1 _a = [] for _ in range(_lowerCamelCase ): table.append([] ) # seed value _a = [[]] # because empty string has empty combination # iterate through the indices for i in range(_lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_lowerCamelCase )] == word: _a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_lowerCamelCase )]: combination.reverse() return table[len(_lowerCamelCase )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
700
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Optional[Any] = 12_8022 __snake_case : List[str] = 12_8028 @require_sentencepiece class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = MaMaaaTokenizer __UpperCAmelCase : int = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> Any: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) _a = Path(self.tmpdirname ) save_json(snake_case_ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case_ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case_ ) , snake_case_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case_ ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[Any]: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(snake_case_ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Any: pass def __lowerCAmelCase ( self ) -> Dict: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case_ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(snake_case_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(snake_case_ ) self.assertEqual(snake_case_ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> List[Any]: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case_ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Any = """facebook/m2m100_418M""" __UpperCAmelCase : Dict = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] __UpperCAmelCase : Optional[Any] = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off __UpperCAmelCase : Any = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> int: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Any: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.tokenizer.get_vocab() self.assertEqual(len(snake_case_ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , snake_case_ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case_ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.assertIn(snake_case_ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case_ ) self.assertEqual(snake_case_ , snake_case_ ) self.assertNotIn(self.tokenizer.eos_token , snake_case_ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(snake_case_ ) _a = MaMaaaTokenizer.from_pretrained(snake_case_ ) self.assertDictEqual(new_tok.lang_token_to_id , snake_case_ ) @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case_ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> List[Any]: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(snake_case_ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
691
0
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCamelCase : Tuple = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCamelCase : Optional[Any] = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} _lowerCamelCase : Optional[Any] = """zero2""" _lowerCamelCase : List[str] = """zero3""" _lowerCamelCase : Union[str, Any] = [ZEROa, ZEROa] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: """simple docstring""" A__ = parameterized.to_safe_name('''_'''.join(str(lowercase_ ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test _lowerCamelCase : List[str] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' @parameterized.expand(UpperCAmelCase__ , name_func=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str) ->Optional[Any]: '''simple docstring''' self.run_and_check( stage=UpperCAmelCase__ , model=UpperCAmelCase__ , distributed=UpperCAmelCase__ , fpaa=UpperCAmelCase__ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase__ , name_func=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any]) ->Optional[Any]: '''simple docstring''' self.run_and_check( stage=UpperCAmelCase__ , model=UpperCAmelCase__ , distributed=UpperCAmelCase__ , fpaa=UpperCAmelCase__ , ) @parameterized.expand(UpperCAmelCase__ , name_func=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple) ->Any: '''simple docstring''' self.run_and_check( stage=UpperCAmelCase__ , model=UpperCAmelCase__ , distributed=UpperCAmelCase__ , fpaa=UpperCAmelCase__ , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase__ , name_func=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any) ->Union[str, Any]: '''simple docstring''' self.run_and_check( stage=UpperCAmelCase__ , model=UpperCAmelCase__ , distributed=UpperCAmelCase__ , fpaa=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : int) ->Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , ) ->List[Any]: '''simple docstring''' A__ = models[model] A__ = self.run_trainer( stage=UpperCAmelCase__ , model_name=UpperCAmelCase__ , eval_steps=UpperCAmelCase__ , num_train_epochs=1 , distributed=UpperCAmelCase__ , fpaa=UpperCAmelCase__ , ) self.do_checks(UpperCAmelCase__) return output_dir def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , ) ->Any: '''simple docstring''' A__ = self.get_auto_remove_tmp_dir('''./xxx''' , after=UpperCAmelCase__) A__ = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(UpperCAmelCase__)} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['''--fp16''']) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A__ = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() A__ = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] A__ = self.get_launcher(UpperCAmelCase__) A__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCAmelCase__ , env=self.get_env()) return output_dir def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : List[str]=False) ->Optional[Any]: '''simple docstring''' A__ = min(2 , get_gpu_count()) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
87
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
384
0
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE : int = os.path.abspath(lowercase_ ) logger.info(F'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model __SCREAMING_SNAKE_CASE : Tuple = tf.train.list_variables(lowercase_ ) __SCREAMING_SNAKE_CASE : List[str] = [] __SCREAMING_SNAKE_CASE : Any = [] __SCREAMING_SNAKE_CASE : Optional[int] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __SCREAMING_SNAKE_CASE : int = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(F'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' __SCREAMING_SNAKE_CASE : str = name[1:] # figure out how many levels deep the name is __SCREAMING_SNAKE_CASE : Dict = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(lowercase_ ) # read data __SCREAMING_SNAKE_CASE : Tuple = tf.train.load_variable(lowercase_ , lowercase_ ) names.append('''/'''.join(lowercase_ ) ) arrays.append(lowercase_ ) logger.info(F'''Read a total of {len(lowercase_ ):,} layers''' ) # Sanity check if len(set(lowercase_ ) ) != 1: raise ValueError(F'''Found layer names with different depths (layer depth {list(set(lowercase_ ) )})''' ) __SCREAMING_SNAKE_CASE : Optional[int] = list(set(lowercase_ ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(lowercase_ , lowercase_ ): __SCREAMING_SNAKE_CASE : List[Any] = full_name.split('''/''' ) __SCREAMING_SNAKE_CASE : int = model __SCREAMING_SNAKE_CASE : Any = [] for i, m_name in enumerate(lowercase_ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) __SCREAMING_SNAKE_CASE : int = getattr(lowercase_ , '''embeddings''' ) __SCREAMING_SNAKE_CASE : int = getattr(lowercase_ , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) __SCREAMING_SNAKE_CASE : str = getattr(lowercase_ , '''encoder''' ) __SCREAMING_SNAKE_CASE : Any = getattr(lowercase_ , '''layer''' ) __SCREAMING_SNAKE_CASE : Optional[int] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) __SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowercase_ , '''pooler''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = getattr(lowercase_ , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) __SCREAMING_SNAKE_CASE : int = getattr(lowercase_ , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) __SCREAMING_SNAKE_CASE : int = getattr(lowercase_ , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) __SCREAMING_SNAKE_CASE : List[Any] = getattr(lowercase_ , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) __SCREAMING_SNAKE_CASE : List[Any] = getattr(lowercase_ , '''token_type_embeddings''' ) else: raise ValueError(F'''Unknown embedding layer with name {full_name}''' ) trace.append('''weight''' ) __SCREAMING_SNAKE_CASE : Tuple = getattr(lowercase_ , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) __SCREAMING_SNAKE_CASE : Dict = getattr(lowercase_ , '''attention''' ) __SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowercase_ , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) __SCREAMING_SNAKE_CASE : Any = getattr(lowercase_ , '''attention''' ) __SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowercase_ , '''output''' ) __SCREAMING_SNAKE_CASE : Any = getattr(lowercase_ , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) __SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowercase_ , '''attention''' ) __SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowercase_ , '''output''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = getattr(lowercase_ , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) __SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowercase_ , '''output''' ) __SCREAMING_SNAKE_CASE : List[Any] = getattr(lowercase_ , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) __SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowercase_ , '''output''' ) __SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowercase_ , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(lowercase_ , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) __SCREAMING_SNAKE_CASE : Optional[int] = getattr(lowercase_ , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) __SCREAMING_SNAKE_CASE : Any = getattr(lowercase_ , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) __SCREAMING_SNAKE_CASE : str = getattr(lowercase_ , '''intermediate''' ) __SCREAMING_SNAKE_CASE : Tuple = getattr(lowercase_ , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) __SCREAMING_SNAKE_CASE : Dict = getattr(lowercase_ , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(lowercase_ , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) __SCREAMING_SNAKE_CASE : List[Any] = getattr(lowercase_ , '''weight''' ) else: logger.warning(F'''Ignored {m_name}''' ) # for certain layers reshape is necessary __SCREAMING_SNAKE_CASE : Tuple = '''.'''.join(lowercase_ ) if re.match(r'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , lowercase_ ) or re.match( r'''(\S+)\.attention\.output\.dense\.weight''' , lowercase_ ): __SCREAMING_SNAKE_CASE : List[str] = array.reshape(pointer.data.shape ) if "kernel" in full_name: __SCREAMING_SNAKE_CASE : Optional[Any] = array.transpose() if pointer.shape == array.shape: __SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(lowercase_ ) else: raise ValueError( F'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' F''' {array.shape}''' ) logger.info(F'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def lowerCAmelCase_ ( lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] ): '''simple docstring''' logger.info(F'''Loading model based on config from {config_path}...''' ) __SCREAMING_SNAKE_CASE : Dict = BertConfig.from_json_file(lowercase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = BertModel(lowercase_ ) # Load weights from checkpoint logger.info(F'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(lowercase_ , lowercase_ , lowercase_ ) # Save pytorch-model logger.info(F'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) _lowerCamelCase = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
716
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : int ): '''simple docstring''' if b == 0: return (1, 0) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : Tuple = extended_euclid(lowercase_ , a % b ) __SCREAMING_SNAKE_CASE : int = a // b return (y, x - k * y) def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ): '''simple docstring''' ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : int = extended_euclid(lowercase_ , lowercase_ ) __SCREAMING_SNAKE_CASE : Any = na * na __SCREAMING_SNAKE_CASE : str = ra * x * na + ra * y * na return (n % m + m) % m def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : int ): '''simple docstring''' ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : str = extended_euclid(lowercase_ , lowercase_ ) if b < 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = (b % n + n) % n return b def lowerCAmelCase_ ( lowercase_ : int , lowercase_ : int , lowercase_ : int , lowercase_ : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = invert_modulo(lowercase_ , lowercase_ ), invert_modulo(lowercase_ , lowercase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = na * na __SCREAMING_SNAKE_CASE : List[Any] = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
401
0
def lowerCamelCase__ ( __lowerCamelCase : int ): __UpperCAmelCase : List[str] = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = 0, 0, 0 __UpperCAmelCase : Any = ugly_nums[ia] * 2 __UpperCAmelCase : Optional[Any] = ugly_nums[ia] * 3 __UpperCAmelCase : List[Any] = ugly_nums[ia] * 5 for _ in range(1 , __lowerCamelCase ): __UpperCAmelCase : str = min(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ugly_nums.append(__lowerCamelCase ) if next_num == next_a: ia += 1 __UpperCAmelCase : Dict = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCAmelCase : List[str] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCAmelCase : int = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(200) = }""")
63
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowerCAmelCase_ ( lowercase: str , lowercase: complex , lowercase: str = "x" , lowercase: float = 10**-10 , lowercase: int = 1 , ) -> complex: '''simple docstring''' _UpperCamelCase: Any = symbols(lowercase ) _UpperCamelCase: str = lambdify(lowercase , lowercase ) _UpperCamelCase: str = lambdify(lowercase , diff(lowercase , lowercase ) ) _UpperCamelCase: Optional[int] = starting_point while True: if diff_function(lowercase ) != 0: _UpperCamelCase: int = prev_guess - multiplicity * func(lowercase ) / diff_function( lowercase ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _UpperCamelCase: Any = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson('log(y) - 1', 2, variable='y')}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson('exp(x) - 1', 1_0, precision=0.0_0_5)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}""")
271
0
"""simple docstring""" A = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def UpperCamelCase_ ( lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ) -> str: """simple docstring""" assert len(str(lowerCamelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __magic_name__ : List[str] = year // 100 __magic_name__ : List[Any] = (5 * (century % 4) + 2) % 7 __magic_name__ : Optional[Any] = year % 100 __magic_name__ : Union[str, Any] = centurian % 12 __magic_name__ : Union[str, Any] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __magic_name__ : Optional[Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __magic_name__ : Any = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
147
"""simple docstring""" from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case_ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def _UpperCAmelCase ( self : Dict , snake_case : List[Any] , snake_case : Dict , snake_case : int=False ) -> Tuple: '''simple docstring''' __magic_name__ : Optional[int] = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): __magic_name__ : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" def __init__( self : Tuple , snake_case : Tuple , snake_case : int=13 , snake_case : Any=7 , snake_case : str=True , snake_case : List[Any]=True , snake_case : int=True , snake_case : Any=True , snake_case : List[Any]=99 , snake_case : Any=32 , snake_case : List[str]=32 , snake_case : Union[str, Any]=2 , snake_case : Union[str, Any]=4 , snake_case : List[Any]=37 , snake_case : Tuple="gelu" , snake_case : str=0.1 , snake_case : Dict=0.1 , snake_case : List[Any]=512 , snake_case : Dict=16 , snake_case : int=2 , snake_case : Union[str, Any]=0.02 , snake_case : Optional[Any]=3 , snake_case : int=4 , snake_case : Dict=None , ) -> int: '''simple docstring''' __magic_name__ : Dict = parent __magic_name__ : Dict = batch_size __magic_name__ : Dict = seq_length __magic_name__ : Optional[Any] = is_training __magic_name__ : Union[str, Any] = use_input_mask __magic_name__ : Optional[Any] = use_token_type_ids __magic_name__ : Optional[Any] = use_labels __magic_name__ : Union[str, Any] = vocab_size __magic_name__ : Dict = hidden_size __magic_name__ : List[str] = num_hidden_layers __magic_name__ : Union[str, Any] = num_attention_heads __magic_name__ : Optional[int] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Optional[int] = attention_probs_dropout_prob __magic_name__ : str = max_position_embeddings __magic_name__ : Union[str, Any] = type_vocab_size __magic_name__ : List[str] = type_sequence_label_size __magic_name__ : int = initializer_range __magic_name__ : int = num_labels __magic_name__ : Union[str, Any] = num_choices __magic_name__ : List[Any] = scope __magic_name__ : str = embedding_size def _UpperCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' __magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[Any] = None if self.use_input_mask: __magic_name__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Any = None if self.use_token_type_ids: __magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : str = None __magic_name__ : Tuple = None __magic_name__ : List[str] = None if self.use_labels: __magic_name__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Union[str, Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self : Dict , snake_case : Dict , snake_case : Dict , snake_case : int , snake_case : str , snake_case : Dict , snake_case : Union[str, Any] , snake_case : Optional[Any] ) -> str: '''simple docstring''' __magic_name__ : Optional[Any] = TFMobileBertModel(config=snake_case ) __magic_name__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __magic_name__ : Dict = model(snake_case ) __magic_name__ : str = [input_ids, input_mask] __magic_name__ : List[str] = model(snake_case ) __magic_name__ : Tuple = model(snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self : Optional[Any] , snake_case : int , snake_case : int , snake_case : Dict , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : List[str] ) -> str: '''simple docstring''' __magic_name__ : Dict = TFMobileBertForMaskedLM(config=snake_case ) __magic_name__ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __magic_name__ : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self : Optional[int] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : str , snake_case : Tuple , snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Optional[int] = TFMobileBertForNextSentencePrediction(config=snake_case ) __magic_name__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __magic_name__ : str = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _UpperCAmelCase ( self : Any , snake_case : str , snake_case : List[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] , snake_case : Tuple , snake_case : List[Any] ) -> str: '''simple docstring''' __magic_name__ : Dict = TFMobileBertForPreTraining(config=snake_case ) __magic_name__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __magic_name__ : Optional[int] = model(snake_case ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _UpperCAmelCase ( self : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Dict , snake_case : Dict , snake_case : int , snake_case : Optional[int] ) -> Optional[int]: '''simple docstring''' __magic_name__ : Union[str, Any] = self.num_labels __magic_name__ : List[Any] = TFMobileBertForSequenceClassification(config=snake_case ) __magic_name__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __magic_name__ : Dict = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : Union[str, Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Any , snake_case : Dict , snake_case : Any ) -> int: '''simple docstring''' __magic_name__ : Tuple = self.num_choices __magic_name__ : Dict = TFMobileBertForMultipleChoice(config=snake_case ) __magic_name__ : Optional[int] = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : int = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) __magic_name__ : str = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __magic_name__ : str = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Dict , snake_case : int , snake_case : Any , snake_case : Dict , snake_case : str ) -> List[Any]: '''simple docstring''' __magic_name__ : Tuple = self.num_labels __magic_name__ : int = TFMobileBertForTokenClassification(config=snake_case ) __magic_name__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __magic_name__ : List[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self : int , snake_case : Tuple , snake_case : List[Any] , snake_case : Tuple , snake_case : str , snake_case : Optional[int] , snake_case : Tuple , snake_case : List[str] ) -> List[Any]: '''simple docstring''' __magic_name__ : int = TFMobileBertForQuestionAnswering(config=snake_case ) __magic_name__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __magic_name__ : Any = model(snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : str = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : int = config_and_inputs __magic_name__ : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Optional[int] = TFMobileBertModelTest.TFMobileBertModelTester(self ) __magic_name__ : Tuple = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def _UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case ) def _UpperCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case ) def _UpperCAmelCase ( self : Any ) -> List[str]: '''simple docstring''' __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case ) def _UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case ) def _UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' __magic_name__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case ) def _UpperCAmelCase ( self : Any ) -> Any: '''simple docstring''' __magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case ) def _UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case ) def _UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case ) @slow def _UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: __magic_name__ : str = TFMobileBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def _UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Dict = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' ) __magic_name__ : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : List[str] = model(snake_case )[0] __magic_name__ : Tuple = [1, 6, 3_0522] self.assertEqual(output.shape , snake_case ) __magic_name__ : Union[str, Any] = tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case , atol=1e-4 )
147
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {'''vocab_file''': '''vocab.json'''} lowerCAmelCase = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } lowerCAmelCase = {'''mgp-str''': 2_7} class A ( A_ ): UpperCamelCase_ : int =VOCAB_FILES_NAMES UpperCamelCase_ : Optional[int] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , lowerCAmelCase , lowerCAmelCase="[GO]" , lowerCAmelCase="[GO]" , lowerCAmelCase="[s]" , lowerCAmelCase="[GO]" , **lowerCAmelCase ): super().__init__( unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase , ) with open(lowerCAmelCase , encoding='utf-8' ) as vocab_handle: __lowercase= json.load(lowerCAmelCase ) __lowercase= {v: k for k, v in self.vocab.items()} @property def _A (self ): return len(self.vocab ) def _A (self ): return dict(self.vocab , **self.added_tokens_encoder ) def _A (self , lowerCAmelCase ): __lowercase= [] for s in text: char_tokens.extend(lowerCAmelCase ) return char_tokens def _A (self , lowerCAmelCase ): return self.vocab.get(lowerCAmelCase , self.vocab.get(self.unk_token ) ) def _A (self , lowerCAmelCase ): return self.decoder.get(lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase = None ): if not os.path.isdir(lowerCAmelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase ) ) return __lowercase= os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase ) + '\n' ) return (vocab_file,)
230
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Tuple ='''align_text_model''' def __init__(self , lowerCAmelCase=3_0_5_2_2 , lowerCAmelCase=7_6_8 , lowerCAmelCase=1_2 , lowerCAmelCase=1_2 , lowerCAmelCase=3_0_7_2 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0 , lowerCAmelCase="absolute" , lowerCAmelCase=True , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) __lowercase= vocab_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= position_embedding_type __lowercase= use_cache __lowercase= pad_token_id @classmethod def _A (cls , lowerCAmelCase , **lowerCAmelCase ): cls._set_token_in_kwargs(lowerCAmelCase ) __lowercase, __lowercase= cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": __lowercase= config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowerCAmelCase , **lowerCAmelCase ) class A ( A_ ): UpperCamelCase_ : Optional[int] ='''align_vision_model''' def __init__(self , lowerCAmelCase = 3 , lowerCAmelCase = 6_0_0 , lowerCAmelCase = 2.0 , lowerCAmelCase = 3.1 , lowerCAmelCase = 8 , lowerCAmelCase = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , lowerCAmelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , lowerCAmelCase = [] , lowerCAmelCase = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase = 0.25 , lowerCAmelCase = "swish" , lowerCAmelCase = 2_5_6_0 , lowerCAmelCase = "mean" , lowerCAmelCase = 0.02 , lowerCAmelCase = 0.0_01 , lowerCAmelCase = 0.99 , lowerCAmelCase = 0.2 , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) __lowercase= num_channels __lowercase= image_size __lowercase= width_coefficient __lowercase= depth_coefficient __lowercase= depth_divisor __lowercase= kernel_sizes __lowercase= in_channels __lowercase= out_channels __lowercase= depthwise_padding __lowercase= strides __lowercase= num_block_repeats __lowercase= expand_ratios __lowercase= squeeze_expansion_ratio __lowercase= hidden_act __lowercase= hidden_dim __lowercase= pooling_type __lowercase= initializer_range __lowercase= batch_norm_eps __lowercase= batch_norm_momentum __lowercase= drop_connect_rate __lowercase= sum(lowerCAmelCase ) * 4 @classmethod def _A (cls , lowerCAmelCase , **lowerCAmelCase ): cls._set_token_in_kwargs(lowerCAmelCase ) __lowercase, __lowercase= cls.get_config_dict(lowerCAmelCase , **lowerCAmelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": __lowercase= config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(lowerCAmelCase , **lowerCAmelCase ) class A ( A_ ): UpperCamelCase_ : Union[str, Any] ='''align''' UpperCamelCase_ : List[Any] =True def __init__(self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=6_4_0 , lowerCAmelCase=1.0 , lowerCAmelCase=0.02 , **lowerCAmelCase , ): super().__init__(**lowerCAmelCase ) if text_config is None: __lowercase= {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: __lowercase= {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) __lowercase= AlignTextConfig(**lowerCAmelCase ) __lowercase= AlignVisionConfig(**lowerCAmelCase ) __lowercase= projection_dim __lowercase= temperature_init_value __lowercase= initializer_range @classmethod def _A (cls , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase ) def _A (self ): __lowercase= copy.deepcopy(self.__dict__ ) __lowercase= self.text_config.to_dict() __lowercase= self.vision_config.to_dict() __lowercase= self.__class__.model_type return output
230
1
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging lowercase : Dict = logging.get_logger(__name__) def A_ ( A__ , A__ , A__ ) -> None: a__ : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(A__ ) == len(A__ ), F'{len(A__ )} != {len(A__ )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) lowercase : Any = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } lowercase : Any = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def A_ ( A__ , A__ ) -> List[Any]: try: a__ : Optional[Any] = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(A__ ) ) def A_ ( A__ , A__ ) -> List[int]: if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(A__ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def A_ ( A__ , A__ = "student" , A__ = None , A__ = None , A__=False , A__=None , A__=None , **A__ , ) -> Tuple[PreTrainedModel, List[int], List[int]]: a__ : Union[str, Any] = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(A__ , A__ ): AutoTokenizer.from_pretrained(A__ ).save_pretrained(A__ ) # purely for convenience a__ : int = AutoModelForSeqaSeqLM.from_pretrained(A__ ).eval() else: assert isinstance(A__ , A__ ), F'teacher must be a model or string got type {type(A__ )}' a__ : Union[str, Any] = teacher.config.to_diff_dict() try: a__ , a__ : Any = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: a__ : int = teacher_e if d is None: a__ : str = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config , 'num_encoder_layers' ): a__ , a__ : Optional[Any] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: a__ , a__ : Optional[int] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: a__ : Optional[int] = teacher_e if d is None: a__ : Tuple = teacher_d if hasattr(teacher.config , 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(A__ ) # Copy weights a__ : str = teacher.config_class(**A__ ) a__ : Dict = AutoModelForSeqaSeqLM.from_config(A__ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. a__ : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=A__ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save a__ , a__ : Union[str, Any] = list(range(A__ ) ), list(range(A__ ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(A__ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: a__ : List[int] = pick_layers_to_copy(A__ , A__ ) if d_layers_to_copy is None: a__ : List[int] = pick_layers_to_copy(A__ , A__ ) try: if hasattr( A__ , 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , A__ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , A__ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , A__ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , A__ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , A__ ) copy_layers(teacher.decoder.block , student.decoder.block , A__ ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) a__ : str = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(A__ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
392
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : Any = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Optional[Any] = '''time_series_transformer''' __A : Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self , lowercase = None , lowercase = None , lowercase = "student_t" , lowercase = "nll" , lowercase = 1 , lowercase = [1, 2, 3, 4, 5, 6, 7] , lowercase = "mean" , lowercase = 0 , lowercase = 0 , lowercase = 0 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = 32 , lowercase = 32 , lowercase = 2 , lowercase = 2 , lowercase = 2 , lowercase = 2 , lowercase = True , lowercase = "gelu" , lowercase = 64 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 100 , lowercase = 0.02 , lowercase=True , **lowercase , ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] = prediction_length a__ : str = context_length or prediction_length a__ : List[str] = distribution_output a__ : Any = loss a__ : List[str] = input_size a__ : int = num_time_features a__ : Tuple = lags_sequence a__ : int = scaling a__ : Union[str, Any] = num_dynamic_real_features a__ : List[str] = num_static_real_features a__ : Tuple = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowercase) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`') a__ : Optional[int] = cardinality else: a__ : str = [0] if embedding_dimension and num_static_categorical_features > 0: if len(lowercase) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`') a__ : Tuple = embedding_dimension else: a__ : Optional[Any] = [min(50 , (cat + 1) // 2) for cat in self.cardinality] a__ : Optional[Any] = num_parallel_samples # Transformer architecture configuration a__ : Tuple = input_size * len(lowercase) + self._number_of_features a__ : Union[str, Any] = d_model a__ : List[str] = encoder_attention_heads a__ : List[str] = decoder_attention_heads a__ : List[Any] = encoder_ffn_dim a__ : Any = decoder_ffn_dim a__ : Dict = encoder_layers a__ : int = decoder_layers a__ : List[Any] = dropout a__ : str = attention_dropout a__ : Any = activation_dropout a__ : List[Any] = encoder_layerdrop a__ : Any = decoder_layerdrop a__ : int = activation_function a__ : List[Any] = init_std a__ : Union[str, Any] = use_cache super().__init__(is_encoder_decoder=lowercase , **lowercase) @property def __lowercase ( self) -> int: '''simple docstring''' return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
392
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging A_ : Tuple = logging.get_logger(__name__) def snake_case () -> Optional[Any]: # Get the sagemaker specific mp parameters from smp_options variable. UpperCamelCase_: Optional[Any] = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCamelCase_: List[str] = json.loads(UpperCAmelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCamelCase_: Any = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCamelCase_: Tuple = json.loads(UpperCAmelCase__ ) if not mpi_options.get('sagemaker_mpi_enabled' , UpperCAmelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : str =field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def _a ( self ): super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _lowerCamelCase , ) @cached_property def _a ( self ): logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: UpperCamelCase_: str = torch.device('cpu' ) UpperCamelCase_: Optional[Any] = 0 elif is_sagemaker_model_parallel_available(): UpperCamelCase_: Optional[int] = smp.local_rank() UpperCamelCase_: Any = torch.device('cuda' , _lowerCamelCase ) UpperCamelCase_: int = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) UpperCamelCase_: Optional[int] = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) UpperCamelCase_: Dict = torch.device('cuda' , self.local_rank ) UpperCamelCase_: Union[str, Any] = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCamelCase_: Union[str, Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCamelCase_: Any = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) UpperCamelCase_: Optional[Any] = torch.device('cuda' , self.local_rank ) UpperCamelCase_: Optional[int] = 1 if device.type == "cuda": torch.cuda.set_device(_lowerCamelCase ) return device @property def _a ( self ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def _a ( self ): return not is_sagemaker_model_parallel_available() @property def _a ( self ): return False
57
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowerCAmelCase_ ( _lowercase : Dict) -> List[str]: """simple docstring""" a__ : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase) def lowerCAmelCase_ ( _lowercase : Optional[Any]) -> Optional[int]: """simple docstring""" a__ : str = list(s_dict.keys()) for key in keys: if "transformer_layers" in key: a__ : Dict = s_dict.pop(_lowercase) elif "subsample" in key: a__ : Optional[Any] = s_dict.pop(_lowercase) def lowerCAmelCase_ ( _lowercase : Optional[int]) -> Optional[Any]: """simple docstring""" a__ , a__ : Dict = emb.weight.shape a__ : str = nn.Linear(_lowercase , _lowercase , bias=_lowercase) a__ : Union[str, Any] = emb.weight.data return lin_layer def lowerCAmelCase_ ( _lowercase : Union[str, Any] , _lowercase : str) -> List[str]: """simple docstring""" a__ : Optional[int] = torch.load(_lowercase , map_location="""cpu""") a__ : List[str] = mam_aaa["""args"""] a__ : List[Any] = mam_aaa["""model"""] a__ : Tuple = state_dict["""decoder.output_projection.weight"""] remove_ignore_keys_(_lowercase) rename_keys(_lowercase) a__ : Tuple = state_dict["""decoder.embed_tokens.weight"""].shape[0] a__ : Optional[int] = args.share_decoder_input_output_embed a__ : Any = [int(_lowercase) for i in args.conv_kernel_sizes.split(""",""")] a__ : int = SpeechaTextConfig( vocab_size=_lowercase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , num_conv_layers=len(_lowercase) , conv_channels=args.conv_channels , conv_kernel_sizes=_lowercase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_lowercase , num_beams=5 , max_length=200 , use_cache=_lowercase , decoder_start_token_id=2 , early_stopping=_lowercase , ) a__ : str = SpeechaTextForConditionalGeneration(_lowercase) a__ , a__ : Tuple = model.model.load_state_dict(_lowercase , strict=_lowercase) if len(_lowercase) > 0 and not set(_lowercase) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F''' but all the following weights are missing {missing}''') if tie_embeds: a__ : int = make_linear_from_emb(model.model.decoder.embed_tokens) else: a__ : int = lm_head_weights model.save_pretrained(_lowercase) if __name__ == "__main__": _lowercase : str =argparse.ArgumentParser() # Required parameters parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") _lowercase : List[str] =parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
136
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): lowercase__ = "lilt" def __init__( self , __UpperCamelCase=3_0522 , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1E-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=None , __UpperCamelCase=4 , __UpperCamelCase=1024 , **__UpperCamelCase , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) __a : Optional[Any] = vocab_size __a : Union[str, Any] = hidden_size __a : Optional[int] = num_hidden_layers __a : Tuple = num_attention_heads __a : int = hidden_act __a : int = intermediate_size __a : Optional[int] = hidden_dropout_prob __a : int = attention_probs_dropout_prob __a : str = max_position_embeddings __a : Optional[int] = type_vocab_size __a : Union[str, Any] = initializer_range __a : str = layer_norm_eps __a : List[Any] = position_embedding_type __a : str = classifier_dropout __a : Optional[Any] = channel_shrink_ratio __a : List[str] = max_ad_position_embeddings
697
'''simple docstring''' import numpy as np from PIL import Image def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : Any = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : Union[str, Any] = 0 __a : Dict = 0 __a : Optional[Any] = 0 __a : Tuple = 0 # compute the shape of the output matrix __a : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __a : int = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __a : Optional[Any] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : Optional[Any] = 0 __a : str = 0 return updated_arr def _snake_case ( lowercase , lowercase , lowercase ) -> np.ndarray: __a : int = np.array(lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __a : int = 0 __a : Optional[Any] = 0 __a : str = 0 __a : List[Any] = 0 # compute the shape of the output matrix __a : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __a : Optional[int] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __a : Any = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __a : str = 0 __a : List[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __SCREAMING_SNAKE_CASE : str = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
697
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : List[Any] = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : str = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
550
import os from distutils.util import strtobool def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" for e in env_keys: snake_case = int(os.environ.get(UpperCamelCase_ ,-1 ) ) if val >= 0: return val return default def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_=False ): """simple docstring""" snake_case = os.environ.get(UpperCamelCase_ ,str(UpperCamelCase_ ) ) return strtobool(UpperCamelCase_ ) == 1 # As its name indicates `strtobool` actually returns an int... def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_="no" ): """simple docstring""" snake_case = os.environ.get(UpperCamelCase_ ,str(UpperCamelCase_ ) ) return value
550
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->str: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase = torch.permute(lowerCAmelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase_ ): # linear layer UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) UpperCAmelCase = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: UpperCAmelCase = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ->Dict: if "metadata" in layer: UpperCAmelCase = layer.split("""metadata""" ) UpperCAmelCase = """""".join(split_layer[0] )[:-1] UpperCAmelCase = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: UpperCAmelCase = layer.split("""kvstore""" ) UpperCAmelCase = """""".join(split_layer[0] )[:-1] UpperCAmelCase = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: UpperCAmelCase = layer.split("""/""" ) UpperCAmelCase = """/""".join(split_layer[:-1] ) UpperCAmelCase = (split_layer[-1],) if "kvstore/path" in layer: UpperCAmelCase = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: UpperCAmelCase = """file""" else: UpperCAmelCase = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->List[str]: UpperCAmelCase = rename_keys(lowerCAmelCase_ ) UpperCAmelCase = {} for k, v in current_block.items(): UpperCAmelCase = v UpperCAmelCase = new_current_block torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = WEIGHTS_NAME ) ->int: UpperCAmelCase = convert_file_size_to_int(lowerCAmelCase_ ) UpperCAmelCase = [] UpperCAmelCase = {} UpperCAmelCase = 0 UpperCAmelCase = 0 os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: UpperCAmelCase = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] UpperCAmelCase = flatten_dict(lowerCAmelCase_ , sep="""/""" ) UpperCAmelCase = {} for layer in checkpoint_info.keys(): UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = get_key_and_tensorstore_dict( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if curr_real_layer_name in all_layers: UpperCAmelCase = content else: UpperCAmelCase = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file UpperCAmelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() UpperCAmelCase = torch.tensor(lowerCAmelCase_ ) UpperCAmelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts UpperCAmelCase , UpperCAmelCase = rename_base_flax_keys(tuple(key.split("""/""" ) ) , lowerCAmelCase_ ) UpperCAmelCase = """/""".join(lowerCAmelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: UpperCAmelCase = os.path.join( lowerCAmelCase_ , weights_name.replace(""".bin""" , F"""-{len(lowerCAmelCase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block UpperCAmelCase = {} UpperCAmelCase = 0 UpperCAmelCase = raw_weights.to(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block UpperCAmelCase = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F"""-{len(lowerCAmelCase_ )+1:05d}-of-???.bin""" ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCAmelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index UpperCAmelCase = {} UpperCAmelCase = {} for idx, shard in enumerate(lowerCAmelCase_ ): UpperCAmelCase = weights_name.replace( """.bin""" , F"""-{idx+1:05d}-of-{len(lowerCAmelCase_ ):05d}.bin""" ) # len(sharded_state_dicts):05d} UpperCAmelCase = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) UpperCAmelCase = shard for key in shard: UpperCAmelCase = shard_file # Add the metadata UpperCAmelCase = {"""total_size""": total_size} UpperCAmelCase = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , """w""" , encoding="""utf-8""" ) as f: UpperCAmelCase = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + """\n""" f.write(lowerCAmelCase_ ) return metadata, index if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) __a = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def _UpperCamelCase ( ) ->Union[str, Any]: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer UpperCAmelCase = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) UpperCAmelCase = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) UpperCAmelCase = TaTokenizer.from_pretrained("""t5-small""" ) UpperCAmelCase = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" UpperCAmelCase = tokenizer(lowerCAmelCase_ , return_tensors="""pt""" ).input_ids UpperCAmelCase = model.generate(lowerCAmelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
627
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __lowercase ( unittest.TestCase ): def _lowercase ( self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() # fmt: off UpperCAmelCase = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) UpperCAmelCase = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] UpperCAmelCase = {"""unk_token""": """<unk>"""} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCamelCase ) ) UpperCAmelCase = { """do_resize""": True, """size""": 2_0, """do_center_crop""": True, """crop_size""": 1_8, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } UpperCAmelCase = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def _lowercase ( self : List[Any] , **__lowerCamelCase : Union[str, Any] ) -> int: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **__lowerCamelCase ) def _lowercase ( self : Optional[Any] , **__lowerCamelCase : List[str] ) -> str: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **__lowerCamelCase ) def _lowercase ( self : Union[str, Any] , **__lowerCamelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _lowercase ( self : Any ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] UpperCAmelCase = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self : int ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = self.get_image_processor() UpperCAmelCase = OwlViTProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) UpperCAmelCase = OwlViTProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCamelCase ) def _lowercase ( self : str ) -> Dict: """simple docstring""" UpperCAmelCase = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase = self.get_image_processor(do_normalize=__lowerCamelCase ) UpperCAmelCase = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = OwlViTProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = image_processor(__lowerCamelCase , return_tensors="""np""" ) UpperCAmelCase = processor(images=__lowerCamelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = OwlViTProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCAmelCase = """lower newer""" UpperCAmelCase = processor(text=__lowerCamelCase , return_tensors="""np""" ) UpperCAmelCase = tokenizer(__lowerCamelCase , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _lowercase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = OwlViTProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCAmelCase = """lower newer""" UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _lowercase ( self : Optional[int] ) -> Any: """simple docstring""" UpperCAmelCase = """google/owlvit-base-patch32""" UpperCAmelCase = OwlViTProcessor.from_pretrained(__lowerCamelCase ) UpperCAmelCase = ["""cat""", """nasa badge"""] UpperCAmelCase = processor(text=__lowerCamelCase ) UpperCAmelCase = 1_6 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _lowercase ( self : Any ) -> int: """simple docstring""" UpperCAmelCase = """google/owlvit-base-patch32""" UpperCAmelCase = OwlViTProcessor.from_pretrained(__lowerCamelCase ) UpperCAmelCase = [["""cat""", """nasa badge"""], ["""person"""]] UpperCAmelCase = processor(text=__lowerCamelCase ) UpperCAmelCase = 1_6 UpperCAmelCase = len(__lowerCamelCase ) UpperCAmelCase = max([len(__lowerCamelCase ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _lowercase ( self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase = """google/owlvit-base-patch32""" UpperCAmelCase = OwlViTProcessor.from_pretrained(__lowerCamelCase ) UpperCAmelCase = ["""cat""", """nasa badge"""] UpperCAmelCase = processor(text=__lowerCamelCase ) UpperCAmelCase = 1_6 UpperCAmelCase = inputs["""input_ids"""] UpperCAmelCase = [ [4_9_4_0_6, 2_3_6_8, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9_4_0_6, 6_8_4_1, 1_1_3_0_1, 4_9_4_0_7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _lowercase ( self : List[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = OwlViTProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = self.prepare_image_inputs() UpperCAmelCase = processor(images=__lowerCamelCase , query_images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _lowercase ( self : Tuple ) -> Any: """simple docstring""" UpperCAmelCase = self.get_image_processor() UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = OwlViTProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase = processor.batch_decode(__lowerCamelCase ) UpperCAmelCase = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
627
1
import sys UpperCamelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def _A ( lowerCAmelCase_ : str = N ): """simple docstring""" lowerCAmelCase__ = -sys.maxsize - 1 for i in range(len(lowerCAmelCase_ ) - 12 ): lowerCAmelCase__ = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowerCAmelCase__ = product return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
61
"""simple docstring""" def A_ (__a ): '''simple docstring''' A_ = len(__a ) while cur > 1: # Find the maximum number in arr A_ = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi A_ = arr[mi::-1] + arr[mi + 1 : len(__a )] # Reverse whole list A_ = arr[cur - 1 :: -1] + arr[cur : len(__a )] cur -= 1 return arr if __name__ == "__main__": UpperCamelCase_ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase_ : Any = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
115
0
from collections.abc import Iterable from typing import Any class a : """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase : int | None = None ) -> Optional[int]: __snake_case : int = value __snake_case : Node | None = None # Added in order to delete a node easier __snake_case : Node | None = None __snake_case : Node | None = None def __repr__( self : List[Any] ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({F'{self.value}': (self.left, self.right)} , indent=1 ) class a : """simple docstring""" def __init__( self : List[str] , lowerCamelCase : Node | None = None ) -> str: __snake_case : str = root def __str__( self : Tuple ) -> str: return str(self.root ) def __snake_case ( self : Dict , lowerCamelCase : Node , lowerCamelCase : Node | None ) -> None: if new_children is not None: # reset its kids __snake_case : str = node.parent if node.parent is not None: # reset its parent if self.is_right(lowerCamelCase ): # If it is the right children __snake_case : Dict = new_children else: __snake_case : int = new_children else: __snake_case : Any = new_children def __snake_case ( self : Union[str, Any] , lowerCamelCase : Node ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def __snake_case ( self : Any ) -> bool: return self.root is None def __snake_case ( self : Dict , lowerCamelCase : List[str] ) -> None: __snake_case : Dict = Node(lowerCamelCase ) # create a new Node if self.empty(): # if Tree is empty __snake_case : Union[str, Any] = new_node # set its root else: # Tree is not empty __snake_case : List[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __snake_case : Tuple = new_node # We insert the new node in a leaf break else: __snake_case : Tuple = parent_node.left else: if parent_node.right is None: __snake_case : Optional[int] = new_node break else: __snake_case : List[Any] = parent_node.right __snake_case : int = parent_node def __snake_case ( self : int , *lowerCamelCase : Optional[int] ) -> None: for value in values: self.__insert(lowerCamelCase ) def __snake_case ( self : str , lowerCamelCase : Tuple ) -> Node | None: if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: __snake_case : Dict = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __snake_case : Optional[Any] = node.left if value < node.value else node.right return node def __snake_case ( self : str , lowerCamelCase : Node | None = None ) -> Node | None: if node is None: if self.root is None: return None __snake_case : List[str] = self.root if not self.empty(): while node.right is not None: __snake_case : int = node.right return node def __snake_case ( self : str , lowerCamelCase : Node | None = None ) -> Node | None: if node is None: __snake_case : List[str] = self.root if self.root is None: return None if not self.empty(): __snake_case : List[str] = self.root while node.left is not None: __snake_case : Optional[int] = node.left return node def __snake_case ( self : Dict , lowerCamelCase : int ) -> None: __snake_case : List[Any] = self.search(lowerCamelCase ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(lowerCamelCase , lowerCamelCase ) elif node.left is None: # Has only right children self.__reassign_nodes(lowerCamelCase , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(lowerCamelCase , node.left ) else: __snake_case : Optional[int] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore __snake_case : Tuple = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __snake_case ( self : Any , lowerCamelCase : Node | None ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __snake_case ( self : List[Any] , lowerCamelCase : Dict=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __snake_case ( self : Optional[Any] , lowerCamelCase : list , lowerCamelCase : Node | None ) -> None: if node: self.inorder(lowerCamelCase , node.left ) arr.append(node.value ) self.inorder(lowerCamelCase , node.right ) def __snake_case ( self : Any , lowerCamelCase : int , lowerCamelCase : Node ) -> int: __snake_case : list[int] = [] self.inorder(lowerCamelCase , lowerCamelCase ) # append all values to list using inorder traversal return arr[k - 1] def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : List[Any] = [] if curr_node is not None: __snake_case : str = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCAmelCase_ ( ): __snake_case : Dict = (8, 3, 6, 1, 1_0, 1_4, 1_3, 4, 7) __snake_case : Optional[int] = BinarySearchTree() for i in testlist: t.insert(__lowerCamelCase ) # Prints all the elements of the list in order traversal print(__lowerCamelCase ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(__lowerCamelCase ) print(__lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
203
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = LDMTextToImagePipeline __UpperCAmelCase : List[Any] = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } __UpperCAmelCase : int = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } __UpperCAmelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCAmelCase : int = False def __snake_case ( self : Union[str, Any] ) -> str: torch.manual_seed(0 ) __snake_case : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) __snake_case : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=lowerCamelCase , set_alpha_to_one=lowerCamelCase , ) torch.manual_seed(0 ) __snake_case : Dict = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __snake_case : Any = CLIPTextModel(lowerCamelCase ) __snake_case : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case : List[str] = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def __snake_case ( self : List[Any] , lowerCamelCase : str , lowerCamelCase : Any=0 ) -> str: if str(lowerCamelCase ).startswith("mps" ): __snake_case : Union[str, Any] = torch.manual_seed(lowerCamelCase ) else: __snake_case : str = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : Dict = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __snake_case ( self : Dict ) -> Optional[Any]: __snake_case : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case : Union[str, Any] = self.get_dummy_components() __snake_case : int = LDMTextToImagePipeline(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : Optional[Any] = self.get_dummy_inputs(lowerCamelCase ) __snake_case : Optional[Any] = pipe(**lowerCamelCase ).images __snake_case : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __snake_case : int = np.array([0.61_01, 0.61_56, 0.56_22, 0.48_95, 0.66_61, 0.38_04, 0.57_48, 0.61_36, 0.50_14] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : int ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Optional[int] , lowerCamelCase : Dict , lowerCamelCase : Any=torch.floataa , lowerCamelCase : List[Any]=0 ) -> Dict: __snake_case : List[Any] = torch.manual_seed(lowerCamelCase ) __snake_case : Tuple = np.random.RandomState(lowerCamelCase ).standard_normal((1, 4, 32, 32) ) __snake_case : int = torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase , dtype=lowerCamelCase ) __snake_case : List[str] = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __snake_case ( self : Tuple ) -> Optional[Any]: __snake_case : str = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : List[str] = self.get_inputs(lowerCamelCase ) __snake_case : str = pipe(**lowerCamelCase ).images __snake_case : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __snake_case : int = np.array([0.5_18_25, 0.5_28_50, 0.5_25_43, 0.5_42_58, 0.5_23_04, 0.5_25_69, 0.5_43_63, 0.5_52_76, 0.5_68_78] ) __snake_case : List[str] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1E-3 @nightly @require_torch_gpu class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : List[Any] ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : Any , lowerCamelCase : Dict , lowerCamelCase : Any=torch.floataa , lowerCamelCase : List[Any]=0 ) -> Optional[Any]: __snake_case : int = torch.manual_seed(lowerCamelCase ) __snake_case : Tuple = np.random.RandomState(lowerCamelCase ).standard_normal((1, 4, 32, 32) ) __snake_case : Optional[Any] = torch.from_numpy(lowerCamelCase ).to(device=lowerCamelCase , dtype=lowerCamelCase ) __snake_case : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __snake_case ( self : List[str] ) -> int: __snake_case : Union[str, Any] = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : Optional[Any] = self.get_inputs(lowerCamelCase ) __snake_case : str = pipe(**lowerCamelCase ).images[0] __snake_case : Tuple = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) __snake_case : str = np.abs(expected_image - image ).max() assert max_diff < 1E-3
203
1
import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Dict: _lowercase : Optional[Any] = { '7z': (seven_zip_file, SevenZipExtractor), 'bz2': (bza_file, BzipaExtractor), 'gzip': (gz_file, GzipExtractor), 'lz4': (lza_file, LzaExtractor), 'tar': (tar_file, TarExtractor), 'xz': (xz_file, XzExtractor), 'zip': (zip_file, ZipExtractor), 'zstd': (zstd_file, ZstdExtractor), } _lowercase , _lowercase : Any = input_paths_and_base_extractors[compression_format] if input_path is None: _lowercase : List[str] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(SCREAMING_SNAKE_CASE ) _lowercase : Any = tmp_path / ('extracted' if is_archive else 'extracted.txt') base_extractor.extract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowercase : Optional[int] = file_path.read_text(encoding='utf-8' ) else: _lowercase : Any = output_path.read_text(encoding='utf-8' ) _lowercase : str = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( 'compression_format, is_archive' , [ ('7z', True), ('bz2', False), ('gzip', False), ('lz4', False), ('tar', True), ('xz', False), ('zip', True), ('zstd', False), ] , ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Optional[Any]: _lowercase : Tuple = { '7z': seven_zip_file, 'bz2': bza_file, 'gzip': gz_file, 'lz4': lza_file, 'tar': tar_file, 'xz': xz_file, 'zip': zip_file, 'zstd': zstd_file, } _lowercase : Any = input_paths[compression_format] if input_path is None: _lowercase : List[str] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(SCREAMING_SNAKE_CASE ) _lowercase : Tuple = Extractor.infer_extractor_format(SCREAMING_SNAKE_CASE ) assert extractor_format is not None _lowercase : int = tmp_path / ('extracted' if is_archive else 'extracted.txt') Extractor.extract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _lowercase : List[Any] = file_path.read_text(encoding='utf-8' ) else: _lowercase : List[str] = output_path.read_text(encoding='utf-8' ) _lowercase : str = text_file.read_text(encoding='utf-8' ) assert extracted_file_content == expected_file_content @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: import tarfile _lowercase : List[Any] = tmp_path / 'data_dot_dot' directory.mkdir() _lowercase : Optional[Any] = directory / 'tar_file_with_dot_dot.tar' with tarfile.TarFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.add(SCREAMING_SNAKE_CASE , arcname=os.path.join('..' , text_file.name ) ) return path @pytest.fixture def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: import tarfile _lowercase : List[Any] = tmp_path / 'data_sym_link' directory.mkdir() _lowercase : str = directory / 'tar_file_with_sym_link.tar' os.symlink('..' , directory / 'subdir' , target_is_directory=SCREAMING_SNAKE_CASE ) with tarfile.TarFile(SCREAMING_SNAKE_CASE , 'w' ) as f: f.add(str(directory / 'subdir' ) , arcname='subdir' ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( 'insecure_tar_file, error_log' , [('tar_file_with_dot_dot', 'illegal path'), ('tar_file_with_sym_link', 'Symlink')] , ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: _lowercase : Optional[int] = { 'tar_file_with_dot_dot': tar_file_with_dot_dot, 'tar_file_with_sym_link': tar_file_with_sym_link, } _lowercase : str = insecure_tar_files[insecure_tar_file] _lowercase : List[Any] = tmp_path / 'extracted' TarExtractor.extract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _lowercase : List[str] = tmpdir / 'not_a_zip_file' # From: https://github.com/python/cpython/pull/5053 _lowercase : List[str] = ( b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00' b'\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I' b'DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07' b'\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82' ) with not_a_zip_file.open('wb' ) as f: f.write(SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(SCREAMING_SNAKE_CASE ) # but we're right
66
'''simple docstring''' import numpy # List of input, output pairs lowercase : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowercase : str = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) lowercase : Union[str, Any] = [2, 4, 1, 5] lowercase : Any = len(train_data) lowercase : Optional[int] = 0.0_09 def lowerCAmelCase_ ( snake_case__ , snake_case__="train" ): '''simple docstring''' return calculate_hypothesis_value(snake_case__ , snake_case__ ) - output( snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Dict = 0 for i in range(len(snake_case__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCAmelCase_ ( snake_case__ , snake_case__=m ): '''simple docstring''' A : List[Any] = 0 for i in range(snake_case__ ): if index == -1: summation_value += _error(snake_case__ ) else: summation_value += _error(snake_case__ ) * train_data[i][0][index] return summation_value def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[Any] = summation_of_cost_derivative(snake_case__ , snake_case__ ) / m return cost_derivative_value def lowerCAmelCase_ ( ): '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output A : Dict = 0.00_00_02 A : Optional[Any] = 0 A : int = 0 while True: j += 1 A : List[str] = [0, 0, 0, 0] for i in range(0 , len(snake_case__ ) ): A : Union[str, Any] = get_cost_derivative(i - 1 ) A : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( snake_case__ , snake_case__ , atol=snake_case__ , rtol=snake_case__ , ): break A : List[Any] = temp_parameter_vector print(('''Number of iterations:''', j) ) def lowerCAmelCase_ ( ): '''simple docstring''' for i in range(len(snake_case__ ) ): print(('''Actual output value:''', output(snake_case__ , '''test''' )) ) print(('''Hypothesis output:''', calculate_hypothesis_value(snake_case__ , '''test''' )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
634
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class a_: """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[Any]=1_0 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : int=3_2 * 8 , lowerCAmelCase__ : Optional[Any]=3_2 * 8 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : List[str]=6_4 , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_auxiliary_loss SCREAMING_SNAKE_CASE = num_queries SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_size SCREAMING_SNAKE_CASE = max_size SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = hidden_dim SCREAMING_SNAKE_CASE = hidden_dim def __UpperCamelCase ( self : Dict) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( snake_case_) SCREAMING_SNAKE_CASE = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case_) SCREAMING_SNAKE_CASE = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case_) > 0.5 ).float() SCREAMING_SNAKE_CASE = (torch.rand((self.batch_size, self.num_labels) , device=snake_case_) > 0.5).long() SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __UpperCamelCase ( self : int) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = MaskaFormerConfig( hidden_size=self.hidden_dim , ) SCREAMING_SNAKE_CASE = self.num_queries SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = [1, 1, 1, 1] SCREAMING_SNAKE_CASE = self.num_channels SCREAMING_SNAKE_CASE = 6_4 SCREAMING_SNAKE_CASE = 1_2_8 SCREAMING_SNAKE_CASE = self.hidden_dim SCREAMING_SNAKE_CASE = self.hidden_dim SCREAMING_SNAKE_CASE = self.hidden_dim return config def __UpperCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Union[str, Any]) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = output.encoder_hidden_states SCREAMING_SNAKE_CASE = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(snake_case_) , len(config.backbone_config.depths)) self.parent.assertTrue(len(snake_case_) , config.decoder_layers) def __UpperCamelCase ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int=False) -> List[str]: """simple docstring""" with torch.no_grad(): SCREAMING_SNAKE_CASE = MaskaFormerModel(config=snake_case_) model.to(snake_case_) model.eval() SCREAMING_SNAKE_CASE = model(pixel_values=snake_case_ , pixel_mask=snake_case_) SCREAMING_SNAKE_CASE = model(snake_case_ , output_hidden_states=snake_case_) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(snake_case_ , snake_case_) def __UpperCamelCase ( self : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = MaskaFormerForUniversalSegmentation(config=snake_case_) model.to(snake_case_) model.eval() def comm_check_on_output(lowerCAmelCase__ : List[str]): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(pixel_values=snake_case_ , pixel_mask=snake_case_) SCREAMING_SNAKE_CASE = model(snake_case_) comm_check_on_output(snake_case_) SCREAMING_SNAKE_CASE = model( pixel_values=snake_case_ , pixel_mask=snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_) comm_check_on_output(snake_case_) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class a_( _a , _a , unittest.TestCase ): """simple docstring""" __snake_case : Any =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __snake_case : List[Any] ={"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} __snake_case : List[Any] =False __snake_case : Optional[int] =False __snake_case : int =False __snake_case : Union[str, Any] =False def __UpperCamelCase ( self : Dict) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = MaskaFormerModelTester(self) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_) def __UpperCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Any) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_) def __UpperCamelCase ( self : Any) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case_) @unittest.skip(reason='Mask2Former does not use inputs_embeds') def __UpperCamelCase ( self : int) -> str: """simple docstring""" pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method') def __UpperCamelCase ( self : List[Any]) -> int: """simple docstring""" pass @unittest.skip(reason='Mask2Former is not a generative model') def __UpperCamelCase ( self : str) -> Tuple: """simple docstring""" pass @unittest.skip(reason='Mask2Former does not use token embeddings') def __UpperCamelCase ( self : int) -> Union[str, Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def __UpperCamelCase ( self : List[str]) -> List[str]: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : str) -> Tuple: """simple docstring""" pass def __UpperCamelCase ( self : List[str]) -> str: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case_) SCREAMING_SNAKE_CASE = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case_) @slow def __UpperCamelCase ( self : Optional[int]) -> Dict: """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: SCREAMING_SNAKE_CASE = MaskaFormerModel.from_pretrained(snake_case_) self.assertIsNotNone(snake_case_) def __UpperCamelCase ( self : str) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE = { 'pixel_values': torch.randn((2, 3, *size) , device=snake_case_), 'mask_labels': torch.randn((2, 1_0, *size) , device=snake_case_), 'class_labels': torch.zeros(2 , 1_0 , device=snake_case_).long(), } SCREAMING_SNAKE_CASE = self.model_tester.get_config() SCREAMING_SNAKE_CASE = MaskaFormerForUniversalSegmentation(snake_case_).to(snake_case_) SCREAMING_SNAKE_CASE = model(**snake_case_) self.assertTrue(outputs.loss is not None) def __UpperCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case_ , **snake_case_ , output_hidden_states=snake_case_) def __UpperCamelCase ( self : List[Any]) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(snake_case_).to(snake_case_) SCREAMING_SNAKE_CASE = model(**snake_case_ , output_attentions=snake_case_) self.assertTrue(outputs.attentions is not None) def __UpperCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = self.all_model_classes[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = model_class(snake_case_) model.to(snake_case_) model.train() SCREAMING_SNAKE_CASE = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_).loss loss.backward() def __UpperCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.all_model_classes[1] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(snake_case_).to(snake_case_) model.train() SCREAMING_SNAKE_CASE = model(snake_case_ , mask_labels=snake_case_ , class_labels=snake_case_) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case_) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) __UpperCAmelCase = 1e-4 def A_ ( ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class a_( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCamelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def __UpperCamelCase ( self : Dict) -> Dict: """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints) if is_vision_available() else None def __UpperCamelCase ( self : List[Any]) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = MaskaFormerModel.from_pretrained(self.model_checkpoints).to(snake_case_) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(snake_case_ , return_tensors='pt').to(snake_case_) SCREAMING_SNAKE_CASE = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(snake_case_ , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**snake_case_) SCREAMING_SNAKE_CASE = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]]).to(snake_case_) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_)) SCREAMING_SNAKE_CASE = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]]).to(snake_case_) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case_ , atol=snake_case_)) SCREAMING_SNAKE_CASE = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]]).to(snake_case_) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case_ , atol=snake_case_)) def __UpperCamelCase ( self : int) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(snake_case_).eval() SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(snake_case_ , return_tensors='pt').to(snake_case_) SCREAMING_SNAKE_CASE = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0) # check size self.assertEqual(snake_case_ , (1, 3, 3_8_4, 3_8_4)) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**snake_case_) # masks_queries_logits SCREAMING_SNAKE_CASE = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4)) SCREAMING_SNAKE_CASE = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] SCREAMING_SNAKE_CASE = torch.tensor(snake_case_).to(snake_case_) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case_ , atol=snake_case_)) # class_queries_logits SCREAMING_SNAKE_CASE = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1)) SCREAMING_SNAKE_CASE = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ]).to(snake_case_) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case_ , atol=snake_case_)) def __UpperCamelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints).to(snake_case_).eval() SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3)), np.zeros((3, 8_0_0, 1_3_3_3))] , segmentation_maps=[np.zeros((3_8_4, 3_8_4)).astype(np.floataa), np.zeros((3_8_4, 3_8_4)).astype(np.floataa)] , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = inputs['pixel_values'].to(snake_case_) SCREAMING_SNAKE_CASE = [el.to(snake_case_) for el in inputs['mask_labels']] SCREAMING_SNAKE_CASE = [el.to(snake_case_) for el in inputs['class_labels']] with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**snake_case_) self.assertTrue(outputs.loss is not None)
720
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __UpperCAmelCase = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class a_( unittest.TestCase ): """simple docstring""" __snake_case : Union[str, Any] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __snake_case : Dict =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __snake_case : Optional[Any] ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __snake_case : Any ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __UpperCamelCase ( self : List[Any]) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt') SCREAMING_SNAKE_CASE = text_classifier('This is great !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}]) SCREAMING_SNAKE_CASE = text_classifier('This is great !' , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}]) SCREAMING_SNAKE_CASE = text_classifier(['This is great !', 'This is bad'] , top_k=2) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ] , ) SCREAMING_SNAKE_CASE = text_classifier('This is great !' , top_k=1) self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}]) # Legacy behavior SCREAMING_SNAKE_CASE = text_classifier('This is great !' , return_all_scores=lowerCAmelCase__) self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}]) SCREAMING_SNAKE_CASE = text_classifier('This is great !' , return_all_scores=lowerCAmelCase__) self.assertEqual( nested_simplify(lowerCAmelCase__) , [[{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}]]) SCREAMING_SNAKE_CASE = text_classifier(['This is great !', 'Something else'] , return_all_scores=lowerCAmelCase__) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], [{'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_1', 'score': 0.4_96}], ] , ) SCREAMING_SNAKE_CASE = text_classifier(['This is great !', 'Something else'] , return_all_scores=lowerCAmelCase__) self.assertEqual( nested_simplify(lowerCAmelCase__) , [ {'label': 'LABEL_0', 'score': 0.5_04}, {'label': 'LABEL_0', 'score': 0.5_04}, ] , ) @require_torch def __UpperCamelCase ( self : str) -> Dict: """simple docstring""" import torch SCREAMING_SNAKE_CASE = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='pt' , device=torch.device('cpu') , ) SCREAMING_SNAKE_CASE = text_classifier('This is great !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}]) @require_tf def __UpperCamelCase ( self : int) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline( task='text-classification' , model='hf-internal-testing/tiny-random-distilbert' , framework='tf') SCREAMING_SNAKE_CASE = text_classifier('This is great !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'LABEL_0', 'score': 0.5_04}]) @slow @require_torch def __UpperCamelCase ( self : List[Any]) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline('text-classification') SCREAMING_SNAKE_CASE = text_classifier('This is great !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 1.0}]) SCREAMING_SNAKE_CASE = text_classifier('This is bad !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'NEGATIVE', 'score': 1.0}]) SCREAMING_SNAKE_CASE = text_classifier('Birds are a type of animal') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 0.9_88}]) @slow @require_tf def __UpperCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = pipeline('text-classification' , framework='tf') SCREAMING_SNAKE_CASE = text_classifier('This is great !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 1.0}]) SCREAMING_SNAKE_CASE = text_classifier('This is bad !') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'NEGATIVE', 'score': 1.0}]) SCREAMING_SNAKE_CASE = text_classifier('Birds are a type of animal') self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': 'POSITIVE', 'score': 0.9_88}]) def __UpperCamelCase ( self : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = TextClassificationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__) return text_classifier, ["HuggingFace is in", "This is another test"] def __UpperCamelCase ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any]) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 SCREAMING_SNAKE_CASE = 'HuggingFace is in' SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__) self.assertEqual(nested_simplify(lowerCAmelCase__) , [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}]) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values()) SCREAMING_SNAKE_CASE = ['HuggingFace is in ', 'Paris is in France'] SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__) self.assertEqual( nested_simplify(lowerCAmelCase__) , [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}, {'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values()) self.assertTrue(outputs[1]['label'] in model.config.idalabel.values()) # Forcing to get all results with `top_k=None` # This is NOT the legacy format SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__ , top_k=lowerCAmelCase__) SCREAMING_SNAKE_CASE = len(model.config.idalabel.values()) self.assertEqual( nested_simplify(lowerCAmelCase__) , [[{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] * N, [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] * N] , ) SCREAMING_SNAKE_CASE = {'text': 'HuggingFace is in ', 'text_pair': 'Paris is in France'} SCREAMING_SNAKE_CASE = text_classifier(lowerCAmelCase__) self.assertEqual( nested_simplify(lowerCAmelCase__) , {'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)} , ) self.assertTrue(outputs['label'] in model.config.idalabel.values()) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. SCREAMING_SNAKE_CASE = [['HuggingFace is in ', 'Paris is in France']] with self.assertRaises(lowerCAmelCase__): text_classifier(lowerCAmelCase__) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility SCREAMING_SNAKE_CASE = text_classifier([[['HuggingFace is in ', 'Paris is in France']]]) self.assertEqual( nested_simplify(lowerCAmelCase__) , [{'label': ANY(lowerCAmelCase__), 'score': ANY(lowerCAmelCase__)}] , ) self.assertTrue(outputs[0]['label'] in model.config.idalabel.values())
259
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = FlaxAutoModelForSeqaSeqLM.from_config(config=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = checkpoints.load_tax_checkpoint(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": __lowerCAmelCase = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": __lowerCAmelCase = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __lowerCAmelCase = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`" " attribute with a value from [\'local\', \'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): __lowerCAmelCase = f"layers_{str(__SCREAMING_SNAKE_CASE )}" # Self-Attention __lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] __lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] __lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] __lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization __lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: __lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] __lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: __lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] __lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization __lowerCAmelCase = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning __lowerCAmelCase = flax_model.params["encoder"]["block"][str(__SCREAMING_SNAKE_CASE )]["layer"] __lowerCAmelCase = tax_attention_key __lowerCAmelCase = tax_attention_out __lowerCAmelCase = tax_attention_query __lowerCAmelCase = tax_attention_value __lowerCAmelCase = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __lowerCAmelCase = tax_global_layer_norm if split_mlp_wi: __lowerCAmelCase = tax_mlp_wi_a __lowerCAmelCase = tax_mlp_wi_a else: __lowerCAmelCase = tax_mlp_wi __lowerCAmelCase = tax_mlp_wo __lowerCAmelCase = tax_mlp_layer_norm __lowerCAmelCase = flax_model_encoder_layer_block # Only for layer 0: __lowerCAmelCase = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T __lowerCAmelCase = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __lowerCAmelCase = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T __lowerCAmelCase = tax_encoder_global_rel_embedding # Assigning __lowerCAmelCase = tax_model["target"]["encoder"]["encoder_norm"]["scale"] __lowerCAmelCase = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): __lowerCAmelCase = f"layers_{str(__SCREAMING_SNAKE_CASE )}" # Self-Attention __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] __lowerCAmelCase = tax_enc_dec_attention_module["key"]["kernel"] __lowerCAmelCase = tax_enc_dec_attention_module["out"]["kernel"] __lowerCAmelCase = tax_enc_dec_attention_module["query"]["kernel"] __lowerCAmelCase = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization __lowerCAmelCase = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning __lowerCAmelCase = flax_model.params["decoder"]["block"][str(__SCREAMING_SNAKE_CASE )]["layer"] __lowerCAmelCase = tax_attention_key __lowerCAmelCase = tax_attention_out __lowerCAmelCase = tax_attention_query __lowerCAmelCase = tax_attention_value __lowerCAmelCase = tax_pre_attention_layer_norm __lowerCAmelCase = tax_enc_dec_attention_key __lowerCAmelCase = tax_enc_dec_attention_out __lowerCAmelCase = tax_enc_dec_attention_query __lowerCAmelCase = tax_enc_dec_attention_value __lowerCAmelCase = tax_cross_layer_norm if split_mlp_wi: __lowerCAmelCase = tax_mlp_wi_a __lowerCAmelCase = tax_mlp_wi_a else: __lowerCAmelCase = tax_mlp_wi __lowerCAmelCase = tax_mlp_wo __lowerCAmelCase = txa_mlp_layer_norm __lowerCAmelCase = flax_model_decoder_layer_block # Decoder Normalization __lowerCAmelCase = tax_model["target"]["decoder"]["decoder_norm"]["scale"] __lowerCAmelCase = txa_decoder_norm # Only for layer 0: __lowerCAmelCase = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T __lowerCAmelCase = tax_decoder_rel_embedding # Token Embeddings __lowerCAmelCase = tax_model["target"]["token_embedder"]["embedding"] __lowerCAmelCase = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: __lowerCAmelCase = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(__SCREAMING_SNAKE_CASE ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) A : Any = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
636
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( lowercase_ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = KandinskyVaaPriorPipeline lowerCAmelCase_ = ["""prompt"""] lowerCAmelCase_ = ["""prompt""", """negative_prompt"""] lowerCAmelCase_ = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] lowerCAmelCase_ = False @property def UpperCamelCase__ ( self : List[str] ) -> str: return 32 @property def UpperCamelCase__ ( self : Tuple ) -> int: return 32 @property def UpperCamelCase__ ( self : Union[str, Any] ) -> int: return self.time_input_dim @property def UpperCamelCase__ ( self : List[str] ) -> Tuple: return self.time_input_dim * 4 @property def UpperCamelCase__ ( self : Any ) -> Any: return 100 @property def UpperCamelCase__ ( self : Any ) -> Dict: _UpperCamelCase =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def UpperCamelCase__ ( self : Tuple ) -> List[str]: torch.manual_seed(0 ) _UpperCamelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase__ ) @property def UpperCamelCase__ ( self : int ) -> int: torch.manual_seed(0 ) _UpperCamelCase ={ '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } _UpperCamelCase =PriorTransformer(**UpperCamelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _UpperCamelCase =nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCamelCase__ ( self : Dict ) -> int: torch.manual_seed(0 ) _UpperCamelCase =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _UpperCamelCase =CLIPVisionModelWithProjection(UpperCamelCase__ ) return model @property def UpperCamelCase__ ( self : Dict ) -> Union[str, Any]: _UpperCamelCase =CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_resize=UpperCamelCase__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def UpperCamelCase__ ( self : int ) -> Any: _UpperCamelCase =self.dummy_prior _UpperCamelCase =self.dummy_image_encoder _UpperCamelCase =self.dummy_text_encoder _UpperCamelCase =self.dummy_tokenizer _UpperCamelCase =self.dummy_image_processor _UpperCamelCase =UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=UpperCamelCase__ , clip_sample_range=10.0 , ) _UpperCamelCase ={ '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def UpperCamelCase__ ( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any=0 ) -> Optional[int]: if str(UpperCamelCase__ ).startswith('''mps''' ): _UpperCamelCase =torch.manual_seed(UpperCamelCase__ ) else: _UpperCamelCase =torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) _UpperCamelCase ={ '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCamelCase__ ( self : List[Any] ) -> Optional[Any]: _UpperCamelCase ='''cpu''' _UpperCamelCase =self.get_dummy_components() _UpperCamelCase =self.pipeline_class(**UpperCamelCase__ ) _UpperCamelCase =pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _UpperCamelCase =pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) _UpperCamelCase =output.image_embeds _UpperCamelCase =pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] _UpperCamelCase =image[0, -10:] _UpperCamelCase =image_from_tuple[0, -10:] assert image.shape == (1, 32) _UpperCamelCase =np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self : str ) -> Optional[int]: _UpperCamelCase =torch_device == '''cpu''' _UpperCamelCase =True _UpperCamelCase =False self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase__ , relax_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , ) @skip_mps def UpperCamelCase__ ( self : List[str] ) -> Dict: _UpperCamelCase =torch_device == '''cpu''' _UpperCamelCase =False self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase__ , test_mean_pixel_difference=UpperCamelCase__ , )
404
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class _A : '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=13 ,SCREAMING_SNAKE_CASE_=30 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=32 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=37 ,SCREAMING_SNAKE_CASE_="gelu" ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_=10 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=2 ,): '''simple docstring''' snake_case : List[str] = parent snake_case : Any = batch_size snake_case : List[str] = image_size snake_case : str = patch_size snake_case : List[Any] = num_channels snake_case : List[str] = is_training snake_case : Optional[Any] = use_labels snake_case : List[str] = hidden_size snake_case : Optional[Any] = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : Optional[int] = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : List[Any] = attention_probs_dropout_prob snake_case : Optional[int] = type_sequence_label_size snake_case : Dict = initializer_range snake_case : int = scope snake_case : Dict = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) snake_case : Union[str, Any] = (image_size // patch_size) ** 2 snake_case : List[str] = num_patches + 2 def snake_case_ ( self ): '''simple docstring''' snake_case : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : str = None if self.use_labels: snake_case : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case : Dict = self.get_config() return config, pixel_values, labels def snake_case_ ( self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=SCREAMING_SNAKE_CASE_ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = TFDeiTModel(config=SCREAMING_SNAKE_CASE_ ) snake_case : int = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : List[str] = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape ,(self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images snake_case : Union[str, Any] = 1 snake_case : Union[str, Any] = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) snake_case : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape ,(self.batch_size, 1, self.image_size, self.image_size) ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Any = self.type_sequence_label_size snake_case : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) snake_case : Any = model(SCREAMING_SNAKE_CASE_ ,labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images snake_case : str = 1 snake_case : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) snake_case : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE_ ,labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def snake_case_ ( self ): '''simple docstring''' snake_case : Any = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Any = config_and_inputs snake_case : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _A ( snake_case , snake_case , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[Any] = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __lowerCamelCase : Optional[int] = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False def snake_case_ ( self ): '''simple docstring''' snake_case : Dict = TFDeiTModelTester(self ) snake_case : Optional[Any] = ConfigTester(self ,config_class=SCREAMING_SNAKE_CASE_ ,has_text_modality=SCREAMING_SNAKE_CASE_ ,hidden_size=37 ) def snake_case_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def snake_case_ ( self ): '''simple docstring''' pass def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) snake_case : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ ,tf.keras.layers.Dense ) ) def snake_case_ ( self ): '''simple docstring''' snake_case , snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(SCREAMING_SNAKE_CASE_ ) snake_case : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : List[str] = [*signature.parameters.keys()] snake_case : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ): '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' snake_case : Any = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def snake_case_ ( self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[int] = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def lowercase ( ) -> List[Any]: '''simple docstring''' snake_case : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _A ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case_ ( self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def snake_case_ ( self ): '''simple docstring''' snake_case : str = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) snake_case : Optional[Any] = self.default_image_processor snake_case : Dict = prepare_img() snake_case : int = image_processor(images=SCREAMING_SNAKE_CASE_ ,return_tensors="""tf""" ) # forward pass snake_case : Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits snake_case : str = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,SCREAMING_SNAKE_CASE_ ) snake_case : Dict = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,SCREAMING_SNAKE_CASE_ ,atol=1E-4 ) )
315
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging __lowercase : Union[str, Any] = logging.get_logger(__name__) __lowercase : Optional[Any] = r''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class _A ( snake_case ): '''simple docstring''' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' raise NotImplementedError("""StoppingCriteria needs to be subclassed""" ) class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : Optional[Any] = max_length snake_case : List[Any] = max_position_embeddings @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Dict = input_ids.shape[-1] snake_case : List[Any] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( """This is a friendly reminder - the current text generation call will exceed the model's predefined """ F"""maximum length ({self.max_position_embeddings}). Depending on the model, you may observe """ """exceptions, performance degradation, or nothing at all.""" ) return is_done class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' warnings.warn( """The class `MaxNewTokensCriteria` is deprecated. """ F"""Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` """ """with `max_length = start_length + max_new_tokens` instead.""" ,SCREAMING_SNAKE_CASE_ ,) snake_case : Tuple = start_length snake_case : List[str] = max_new_tokens snake_case : Optional[Any] = start_length + max_new_tokens @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return input_ids.shape[-1] >= self.max_length class _A ( snake_case ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ): '''simple docstring''' snake_case : List[str] = max_time snake_case : int = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class _A ( snake_case ): '''simple docstring''' @add_start_docstrings(SCREAMING_SNAKE_CASE_ ) def __call__( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return any(criteria(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for criteria in self ) @property def snake_case_ ( self ): '''simple docstring''' for stopping_criterium in self: if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): return stopping_criterium.max_length elif isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): return stopping_criterium.max_length return None def lowercase ( __A : StoppingCriteriaList , __A : int ) -> StoppingCriteriaList: '''simple docstring''' snake_case : List[Any] = stopping_criteria.max_length snake_case : List[str] = deepcopy(__A ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("""You set different `max_length` for stopping criteria and `max_length` parameter""" , __A ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__A ) ) return new_stopping_criteria
315
1
from ..utils import DummyObject, requires_backends class A__ ( metaclass=A__ ): """simple docstring""" _lowercase = ['transformers', 'torch', 'note_seq'] def __init__( self : Optional[int] , *lowerCamelCase__ : int , **lowerCamelCase__ : int ): requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def _UpperCamelCase( cls : str , *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : Optional[int] ): requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def _UpperCamelCase( cls : str , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Any ): requires_backends(cls , ["transformers", "torch", "note_seq"] )
37
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : Union[str, Any]=0.999 , snake_case_ : Tuple="cosine" , ) -> Optional[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case_ : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case_ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase_ = [] for i in range(snake_case_ ): UpperCAmelCase_ = i / num_diffusion_timesteps UpperCAmelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case_ ) / alpha_bar_fn(snake_case_ ) , snake_case_ ) ) return torch.tensor(snake_case_ , dtype=torch.floataa ) class __A ( UpperCamelCase__ , UpperCamelCase__ ): a__ : Tuple = [e.name for e in KarrasDiffusionSchedulers] a__ : Optional[Any] = 2 @register_to_config def __init__(self : Union[str, Any] , __a : int = 1000 , __a : float = 0.0_00_85 , __a : float = 0.0_12 , __a : str = "linear" , __a : Optional[Union[np.ndarray, List[float]]] = None , __a : str = "epsilon" , __a : Optional[bool] = False , __a : Optional[bool] = False , __a : float = 1.0 , __a : str = "linspace" , __a : int = 0 , ): if trained_betas is not None: UpperCAmelCase_ = torch.tensor(__a , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase_ = torch.linspace(__a , __a , __a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase_ = betas_for_alpha_bar(__a , alpha_transform_type="cosine" ) elif beta_schedule == "exp": UpperCAmelCase_ = betas_for_alpha_bar(__a , alpha_transform_type="exp" ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) UpperCAmelCase_ = 1.0 - self.betas UpperCAmelCase_ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__a , __a , __a ) UpperCAmelCase_ = use_karras_sigmas def _lowercase (self : Optional[Any] , __a : Union[str, Any] , __a : Tuple=None ): if schedule_timesteps is None: UpperCAmelCase_ = self.timesteps UpperCAmelCase_ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCAmelCase_ = 1 if len(__a ) > 1 else 0 else: UpperCAmelCase_ = timestep.cpu().item() if torch.is_tensor(__a ) else timestep UpperCAmelCase_ = self._index_counter[timestep_int] return indices[pos].item() @property def _lowercase (self : List[Any] ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowercase (self : Optional[Any] , __a : torch.FloatTensor , __a : Union[float, torch.FloatTensor] , ): UpperCAmelCase_ = self.index_for_timestep(__a ) UpperCAmelCase_ = self.sigmas[step_index] UpperCAmelCase_ = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowercase (self : Any , __a : int , __a : Union[str, torch.device] = None , __a : Optional[int] = None , ): UpperCAmelCase_ = num_inference_steps UpperCAmelCase_ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCAmelCase_ = np.linspace(0 , num_train_timesteps - 1 , __a , dtype=__a )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCAmelCase_ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ = (np.arange(0 , __a ) * step_ratio).round()[::-1].copy().astype(__a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCAmelCase_ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ = (np.arange(__a , 0 , -step_ratio )).round().copy().astype(__a ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) UpperCAmelCase_ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCAmelCase_ = np.log(__a ) UpperCAmelCase_ = np.interp(__a , np.arange(0 , len(__a ) ) , __a ) if self.config.use_karras_sigmas: UpperCAmelCase_ = self._convert_to_karras(in_sigmas=__a , num_inference_steps=self.num_inference_steps ) UpperCAmelCase_ = np.array([self._sigma_to_t(__a , __a ) for sigma in sigmas] ) UpperCAmelCase_ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCAmelCase_ = torch.from_numpy(__a ).to(device=__a ) UpperCAmelCase_ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) UpperCAmelCase_ = torch.from_numpy(__a ) UpperCAmelCase_ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(__a ).startswith("mps" ): # mps does not support float64 UpperCAmelCase_ = timesteps.to(__a , dtype=torch.floataa ) else: UpperCAmelCase_ = timesteps.to(device=__a ) # empty dt and derivative UpperCAmelCase_ = None UpperCAmelCase_ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCAmelCase_ = defaultdict(__a ) def _lowercase (self : int , __a : Optional[Any] , __a : List[str] ): # get log sigma UpperCAmelCase_ = np.log(__a ) # get distribution UpperCAmelCase_ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range UpperCAmelCase_ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) UpperCAmelCase_ = low_idx + 1 UpperCAmelCase_ = log_sigmas[low_idx] UpperCAmelCase_ = log_sigmas[high_idx] # interpolate sigmas UpperCAmelCase_ = (low - log_sigma) / (low - high) UpperCAmelCase_ = np.clip(__a , 0 , 1 ) # transform interpolation to time range UpperCAmelCase_ = (1 - w) * low_idx + w * high_idx UpperCAmelCase_ = t.reshape(sigma.shape ) return t def _lowercase (self : Dict , __a : torch.FloatTensor , __a : Optional[int] ): UpperCAmelCase_ = in_sigmas[-1].item() UpperCAmelCase_ = in_sigmas[0].item() UpperCAmelCase_ = 7.0 # 7.0 is the value used in the paper UpperCAmelCase_ = np.linspace(0 , 1 , __a ) UpperCAmelCase_ = sigma_min ** (1 / rho) UpperCAmelCase_ = sigma_max ** (1 / rho) UpperCAmelCase_ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowercase (self : List[str] ): return self.dt is None def _lowercase (self : List[Any] , __a : Union[torch.FloatTensor, np.ndarray] , __a : Union[float, torch.FloatTensor] , __a : Union[torch.FloatTensor, np.ndarray] , __a : bool = True , ): UpperCAmelCase_ = self.index_for_timestep(__a ) # advance index counter by 1 UpperCAmelCase_ = timestep.cpu().item() if torch.is_tensor(__a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCAmelCase_ = self.sigmas[step_index] UpperCAmelCase_ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method UpperCAmelCase_ = self.sigmas[step_index - 1] UpperCAmelCase_ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCAmelCase_ = 0 UpperCAmelCase_ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCAmelCase_ = sigma_hat if self.state_in_first_order else sigma_next UpperCAmelCase_ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase_ = sigma_hat if self.state_in_first_order else sigma_next UpperCAmelCase_ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": UpperCAmelCase_ = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: UpperCAmelCase_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCAmelCase_ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCAmelCase_ = sigma_next - sigma_hat # store for 2nd order step UpperCAmelCase_ = derivative UpperCAmelCase_ = dt UpperCAmelCase_ = sample else: # 2. 2nd order / Heun's method UpperCAmelCase_ = (sample - pred_original_sample) / sigma_next UpperCAmelCase_ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample UpperCAmelCase_ = self.dt UpperCAmelCase_ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a ) def _lowercase (self : Any , __a : torch.FloatTensor , __a : torch.FloatTensor , __a : torch.FloatTensor , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCAmelCase_ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__a ): # mps does not support float64 UpperCAmelCase_ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) UpperCAmelCase_ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: UpperCAmelCase_ = self.timesteps.to(original_samples.device ) UpperCAmelCase_ = timesteps.to(original_samples.device ) UpperCAmelCase_ = [self.index_for_timestep(__a , __a ) for t in timesteps] UpperCAmelCase_ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCAmelCase_ = sigma.unsqueeze(-1 ) UpperCAmelCase_ = original_samples + noise * sigma return noisy_samples def __len__(self : str ): return self.config.num_train_timesteps
78
0
"""simple docstring""" import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" __a = AudioLDMPipeline __a = TEXT_TO_AUDIO_PARAMS __a = TEXT_TO_AUDIO_BATCH_PARAMS __a = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def lowerCamelCase__ ( self : str ): '''simple docstring''' torch.manual_seed(0 ) __UpperCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_lowercase , ) __UpperCAmelCase : List[str] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : List[str] = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , projection_dim=32 , ) __UpperCAmelCase : Dict = ClapTextModelWithProjection(_lowercase ) __UpperCAmelCase : Optional[int] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) __UpperCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16_000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_lowercase , ) __UpperCAmelCase : str = SpeechTaHifiGan(_lowercase ) __UpperCAmelCase : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=0 ): '''simple docstring''' if str(_lowercase ).startswith("""mps""" ): __UpperCAmelCase : List[Any] = torch.manual_seed(_lowercase ) else: __UpperCAmelCase : List[Any] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase : Union[str, Any] = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : str = AudioLDMPipeline(**_lowercase ) __UpperCAmelCase : List[str] = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase : List[Any] = audioldm_pipe(**_lowercase ) __UpperCAmelCase : Union[str, Any] = output.audios[0] assert audio.ndim == 1 assert len(_lowercase ) == 256 __UpperCAmelCase : int = audio[:10] __UpperCAmelCase : Union[str, Any] = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.get_dummy_components() __UpperCAmelCase : Optional[Any] = AudioLDMPipeline(**_lowercase ) __UpperCAmelCase : int = audioldm_pipe.to(_lowercase ) __UpperCAmelCase : Any = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase : List[Any] = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase : Any = 3 * [inputs["""prompt"""]] # forward __UpperCAmelCase : int = audioldm_pipe(**_lowercase ) __UpperCAmelCase : List[str] = output.audios[0] __UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase : str = 3 * [inputs.pop("""prompt""" )] __UpperCAmelCase : Dict = audioldm_pipe.tokenizer( _lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_lowercase , return_tensors="""pt""" , ) __UpperCAmelCase : Tuple = text_inputs["""input_ids"""].to(_lowercase ) __UpperCAmelCase : int = audioldm_pipe.text_encoder( _lowercase , ) __UpperCAmelCase : Optional[int] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state __UpperCAmelCase : List[str] = F.normalize(_lowercase , dim=-1 ) __UpperCAmelCase : List[Any] = prompt_embeds # forward __UpperCAmelCase : Any = audioldm_pipe(**_lowercase ) __UpperCAmelCase : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Any = self.get_dummy_components() __UpperCAmelCase : List[str] = AudioLDMPipeline(**_lowercase ) __UpperCAmelCase : Union[str, Any] = audioldm_pipe.to(_lowercase ) __UpperCAmelCase : Dict = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase : Dict = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase : str = 3 * ["""this is a negative prompt"""] __UpperCAmelCase : Optional[int] = negative_prompt __UpperCAmelCase : Optional[Any] = 3 * [inputs["""prompt"""]] # forward __UpperCAmelCase : List[Any] = audioldm_pipe(**_lowercase ) __UpperCAmelCase : List[Any] = output.audios[0] __UpperCAmelCase : Tuple = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase : Tuple = 3 * [inputs.pop("""prompt""" )] __UpperCAmelCase : Union[str, Any] = [] for p in [prompt, negative_prompt]: __UpperCAmelCase : Optional[Any] = audioldm_pipe.tokenizer( _lowercase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_lowercase , return_tensors="""pt""" , ) __UpperCAmelCase : Tuple = text_inputs["""input_ids"""].to(_lowercase ) __UpperCAmelCase : Dict = audioldm_pipe.text_encoder( _lowercase , ) __UpperCAmelCase : Tuple = text_embeds.text_embeds # additional L_2 normalization over each hidden-state __UpperCAmelCase : Any = F.normalize(_lowercase , dim=-1 ) embeds.append(_lowercase ) __UpperCAmelCase ,__UpperCAmelCase : List[Any] = embeds # forward __UpperCAmelCase : Dict = audioldm_pipe(**_lowercase ) __UpperCAmelCase : Optional[int] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[str] = self.get_dummy_components() __UpperCAmelCase : Dict = PNDMScheduler(skip_prk_steps=_lowercase ) __UpperCAmelCase : int = AudioLDMPipeline(**_lowercase ) __UpperCAmelCase : Tuple = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase : List[Any] = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase : str = """egg cracking""" __UpperCAmelCase : Dict = audioldm_pipe(**_lowercase , negative_prompt=_lowercase ) __UpperCAmelCase : str = output.audios[0] assert audio.ndim == 1 assert len(_lowercase ) == 256 __UpperCAmelCase : List[str] = audio[:10] __UpperCAmelCase : Union[str, Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : int = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=_lowercase ) __UpperCAmelCase : List[Any] = AudioLDMPipeline(**_lowercase ) __UpperCAmelCase : Union[str, Any] = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase : List[Any] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) __UpperCAmelCase : Optional[Any] = audioldm_pipe(_lowercase , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts __UpperCAmelCase : Union[str, Any] = 2 __UpperCAmelCase : Optional[Any] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt __UpperCAmelCase : str = 2 __UpperCAmelCase : Optional[int] = audioldm_pipe(_lowercase , num_inference_steps=2 , num_waveforms_per_prompt=_lowercase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts __UpperCAmelCase : List[str] = 2 __UpperCAmelCase : Union[str, Any] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_lowercase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : List[Any] = self.get_dummy_components() __UpperCAmelCase : List[str] = AudioLDMPipeline(**_lowercase ) __UpperCAmelCase : List[Any] = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase : List[str] = audioldm_pipe.vocoder.config.sampling_rate __UpperCAmelCase : List[Any] = self.get_dummy_inputs(_lowercase ) __UpperCAmelCase : Optional[int] = audioldm_pipe(audio_length_in_s=0.016 , **_lowercase ) __UpperCAmelCase : Optional[int] = output.audios[0] assert audio.ndim == 1 assert len(_lowercase ) / vocoder_sampling_rate == 0.016 __UpperCAmelCase : Optional[Any] = audioldm_pipe(audio_length_in_s=0.032 , **_lowercase ) __UpperCAmelCase : Dict = output.audios[0] assert audio.ndim == 1 assert len(_lowercase ) / vocoder_sampling_rate == 0.032 def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : Tuple = self.get_dummy_components() __UpperCAmelCase : Optional[int] = AudioLDMPipeline(**_lowercase ) __UpperCAmelCase : Dict = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase : Tuple = ["""hey"""] __UpperCAmelCase : List[str] = audioldm_pipe(_lowercase , num_inference_steps=1 ) __UpperCAmelCase : Optional[Any] = output.audios.shape assert audio_shape == (1, 256) __UpperCAmelCase : Optional[int] = audioldm_pipe.vocoder.config config.model_in_dim *= 2 __UpperCAmelCase : Optional[Any] = SpeechTaHifiGan(_lowercase ).to(_lowercase ) __UpperCAmelCase : int = audioldm_pipe(_lowercase , num_inference_steps=1 ) __UpperCAmelCase : Optional[int] = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_lowercase ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' self._test_inference_batch_single_identical(test_mean_pixel_difference=_lowercase ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_lowercase ) @slow class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Dict="cpu" , UpperCamelCase : Any=torch.floataa , UpperCamelCase : Any=0 ): '''simple docstring''' __UpperCAmelCase : str = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __UpperCAmelCase : Tuple = np.random.RandomState(_lowercase ).standard_normal((1, 8, 128, 16) ) __UpperCAmelCase : Tuple = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) __UpperCAmelCase : Dict = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[str] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __UpperCAmelCase : int = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase : Optional[int] = self.get_inputs(_lowercase ) __UpperCAmelCase : List[str] = 25 __UpperCAmelCase : Optional[Any] = audioldm_pipe(**_lowercase ).audios[0] assert audio.ndim == 1 assert len(_lowercase ) == 81_920 __UpperCAmelCase : int = audio[77_230:77_240] __UpperCAmelCase : Tuple = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) __UpperCAmelCase : Tuple = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def lowerCamelCase__ ( self : str ): '''simple docstring''' __UpperCAmelCase : Tuple = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) __UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) __UpperCAmelCase : List[Any] = audioldm_pipe.to(_lowercase ) audioldm_pipe.set_progress_bar_config(disable=_lowercase ) __UpperCAmelCase : Union[str, Any] = self.get_inputs(_lowercase ) __UpperCAmelCase : int = audioldm_pipe(**_lowercase ).audios[0] assert audio.ndim == 1 assert len(_lowercase ) == 81_920 __UpperCAmelCase : List[Any] = audio[27_780:27_790] __UpperCAmelCase : Union[str, Any] = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) __UpperCAmelCase : Any = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
703
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : Dict=3 , UpperCamelCase : Dict=32 , UpperCamelCase : int=3 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : Any=[8, 16, 32, 64] , UpperCamelCase : Optional[int]=[1, 1, 2, 1] , UpperCamelCase : List[str]=True , UpperCamelCase : Tuple=True , UpperCamelCase : Optional[Any]="relu" , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[int]=["stage2", "stage3", "stage4"] , UpperCamelCase : Optional[int]=[2, 3, 4] , UpperCamelCase : Any=1 , ): '''simple docstring''' __UpperCAmelCase : Tuple = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : int = image_size __UpperCAmelCase : str = num_channels __UpperCAmelCase : int = embeddings_size __UpperCAmelCase : Dict = hidden_sizes __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : int = num_labels __UpperCAmelCase : Dict = scope __UpperCAmelCase : Dict = len(UpperCamelCase ) __UpperCAmelCase : Tuple = out_features __UpperCAmelCase : str = out_indices __UpperCAmelCase : Optional[int] = num_groups def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : int ): '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = BitModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : str = model(UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Tuple = BitForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : List[Any] = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = BitBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : List[Any] = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Optional[Any] = BitBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : int = config_and_inputs __UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __a = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Any = BitModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return @unittest.skip(reason="""Bit does not output attentions""" ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(UpperCamelCase ) __UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(config=UpperCamelCase ) for name, module in model.named_modules(): if isinstance(UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : str ): __UpperCAmelCase : List[str] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) __UpperCAmelCase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase ,__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCAmelCase : List[Any] = layer_type __UpperCAmelCase : List[str] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def lowerCamelCase__ ( self : str ): '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[Any] = BitModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowerCamelCase ( ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = self.default_image_processor __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Tuple = image_processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**UpperCamelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @require_torch class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = (BitBackbone,) if is_torch_available() else () __a = BitConfig __a = False def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = BitModelTester(self )
299
0
def __lowerCamelCase ( UpperCAmelCase_ : int = 1000 ): """simple docstring""" a :Union[str, Any] = 2**power a :Union[str, Any] = 0 while n: a , a :List[str] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
445
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None class _snake_case ( _snake_case ): def __init__( self , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=512 , _lowerCamelCase="cls" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) a :Tuple = project_dim a :Optional[int] = pooler_fn a :int = learn_encoder a :int = use_attention_mask class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = [r'pooler', r'logit_scale'] SCREAMING_SNAKE_CASE__ = [r'position_ids', r'predictions.decoder.bias'] SCREAMING_SNAKE_CASE__ = 'roberta' SCREAMING_SNAKE_CASE__ = RobertaSeriesConfig def __init__( self , _lowerCamelCase ): super().__init__(_lowerCamelCase ) a :Tuple = XLMRobertaModel(_lowerCamelCase ) a :Optional[Any] = nn.Linear(config.hidden_size , config.project_dim ) a :Optional[int] = getattr(_lowerCamelCase , '''has_pre_transformation''' , _lowerCamelCase ) if self.has_pre_transformation: a :Tuple = nn.Linear(config.hidden_size , config.project_dim ) a :Union[str, Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ): a :Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict a :int = self.base_model( input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , position_ids=_lowerCamelCase , head_mask=_lowerCamelCase , inputs_embeds=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , output_attentions=_lowerCamelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_lowerCamelCase , ) if self.has_pre_transformation: a :Optional[int] = outputs['''hidden_states'''][-2] a :List[Any] = self.pre_LN(_lowerCamelCase ) a :Optional[Any] = self.transformation_pre(_lowerCamelCase ) return TransformationModelOutput( projection_state=_lowerCamelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: a :List[str] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_lowerCamelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
445
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __snake_case : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
703
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version __snake_case : Optional[Any] = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') __snake_case : List[Any] = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization __snake_case : Dict = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } __snake_case : int = sorted(arg_to_scheduler.keys()) __snake_case : Optional[Any] = '{' + ', '.join(arg_to_scheduler_choices) + '}' class A__ ( pl.LightningModule ): '''simple docstring''' def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: argparse.Namespace , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Union[str, Any]="base" , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Any=None , **_SCREAMING_SNAKE_CASE: int , ) -> int: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = 0 __lowerCAmelCase : int = Path(self.hparams.output_dir) __lowerCAmelCase : List[str] = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase : PretrainedConfig = config __lowerCAmelCase : Dict = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): assert hasattr(self.config , _SCREAMING_SNAKE_CASE), F"""model config doesn't have a `{p}` attribute""" setattr(self.config , _SCREAMING_SNAKE_CASE , getattr(self.hparams , _SCREAMING_SNAKE_CASE)) if tokenizer is None: __lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase : PreTrainedTokenizer = tokenizer __lowerCAmelCase : int = MODEL_MODES[mode] if model is None: __lowerCAmelCase : Any = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path) , config=self.config , cache_dir=_SCREAMING_SNAKE_CASE , ) else: __lowerCAmelCase : Union[str, Any] = model def _SCREAMING_SNAKE_CASE ( self: str , *_SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Dict) -> str: """simple docstring""" __lowerCAmelCase : Optional[int] = self.model_type.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Any = arg_to_scheduler[self.hparams.lr_scheduler] __lowerCAmelCase : Tuple = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps()) __lowerCAmelCase : Any = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def _SCREAMING_SNAKE_CASE ( self: str) -> int: """simple docstring""" __lowerCAmelCase : Dict = self.model __lowerCAmelCase : Tuple = ["bias", "LayerNorm.weight"] __lowerCAmelCase : Optional[Any] = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] if self.hparams.adafactor: __lowerCAmelCase : Dict = Adafactor( _SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , scale_parameter=_SCREAMING_SNAKE_CASE , relative_step=_SCREAMING_SNAKE_CASE) else: __lowerCAmelCase : Dict = AdamW( _SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon) __lowerCAmelCase : int = optimizer __lowerCAmelCase : Optional[int] = self.get_lr_scheduler() return [optimizer], [scheduler] def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any) -> Union[str, Any]: """simple docstring""" return self.validation_step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Any) -> List[Any]: """simple docstring""" return self.validation_end(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: str) -> int: """simple docstring""" __lowerCAmelCase : Tuple = max(1 , self.hparams.gpus) # TODO: consider num_tpu_cores __lowerCAmelCase : Tuple = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Union[str, Any]) -> Union[str, Any]: """simple docstring""" if stage == "test": __lowerCAmelCase : List[str] = len(self.test_dataloader().dataset) else: __lowerCAmelCase : Tuple = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = len(self.train_dataloader().dataset) def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: bool = False) -> int: """simple docstring""" raise NotImplementedError("You must implement this for your task") def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> List[str]: """simple docstring""" return self.train_loader def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Tuple: """simple docstring""" return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Dict) -> Optional[int]: """simple docstring""" return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: int , _SCREAMING_SNAKE_CASE: Any) -> int: """simple docstring""" return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( _SCREAMING_SNAKE_CASE , list(filter(_SCREAMING_SNAKE_CASE , self.hparams.model_name_or_path.split("/"))).pop() , str(self.hparams.max_seq_length) , ) , ) @pl.utilities.rank_zero_only def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict[str, Any]) -> None: """simple docstring""" __lowerCAmelCase : Dict = self.output_dir.joinpath("best_tfmr") __lowerCAmelCase : str = self.step_count self.model.save_pretrained(_SCREAMING_SNAKE_CASE) self.tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE) @staticmethod def _SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict) -> Optional[Any]: """simple docstring""" parser.add_argument( "--model_name_or_path" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=_SCREAMING_SNAKE_CASE , help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(_SCREAMING_SNAKE_CASE).parent / "test_run" / "cache") , type=_SCREAMING_SNAKE_CASE , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=_SCREAMING_SNAKE_CASE , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=_SCREAMING_SNAKE_CASE , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=_SCREAMING_SNAKE_CASE , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=_SCREAMING_SNAKE_CASE , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=_SCREAMING_SNAKE_CASE , help="The initial learning rate for Adam.") parser.add_argument( "--lr_scheduler" , default="linear" , choices=_SCREAMING_SNAKE_CASE , metavar=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=_SCREAMING_SNAKE_CASE , help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon" , default=1e-8 , type=_SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer.") parser.add_argument("--warmup_steps" , default=0 , type=_SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps.") parser.add_argument("--num_workers" , default=4 , type=_SCREAMING_SNAKE_CASE , help="kwarg passed to DataLoader") parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=_SCREAMING_SNAKE_CASE) parser.add_argument("--train_batch_size" , default=32 , type=_SCREAMING_SNAKE_CASE) parser.add_argument("--eval_batch_size" , default=32 , type=_SCREAMING_SNAKE_CASE) parser.add_argument("--adafactor" , action="store_true") class A__ ( pl.Callback ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple) -> Any: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class A__ ( pl.Callback ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple) -> Optional[int]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_SCREAMING_SNAKE_CASE) class A__ ( pl.Callback ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = trainer.lr_schedulers[0]["scheduler"] __lowerCAmelCase : str = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: pl.LightningModule) -> str: """simple docstring""" rank_zero_info("***** Validation results *****") __lowerCAmelCase : Tuple = trainer.callback_metrics # Log results for key in sorted(_SCREAMING_SNAKE_CASE): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(_SCREAMING_SNAKE_CASE , str(metrics[key]))) def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: pl.LightningModule) -> List[Any]: """simple docstring""" rank_zero_info("***** Test results *****") __lowerCAmelCase : Optional[int] = trainer.callback_metrics # Log and save results to file __lowerCAmelCase : List[Any] = os.path.join(pl_module.hparams.output_dir , "test_results.txt") with open(_SCREAMING_SNAKE_CASE , "w") as writer: for key in sorted(_SCREAMING_SNAKE_CASE): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(_SCREAMING_SNAKE_CASE , str(metrics[key]))) writer.write("{} = {}\n".format(_SCREAMING_SNAKE_CASE , str(metrics[key]))) def _lowercase ( __snake_case ,__snake_case ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir" ,default=str(Path(__snake_case ).parent / "test_run" / "model_checkpoints" ) ,type=__snake_case ,help="The output directory where the model predictions and checkpoints will be written." ,) parser.add_argument( "--fp16" ,action="store_true" ,help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" ,) parser.add_argument( "--fp16_opt_level" ,type=__snake_case ,default="O2" ,help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) ,) parser.add_argument("--n_tpu_cores" ,dest="tpu_cores" ,type=__snake_case ) parser.add_argument("--max_grad_norm" ,dest="gradient_clip_val" ,default=1.0 ,type=__snake_case ,help="Max gradient norm" ) parser.add_argument("--do_train" ,action="store_true" ,help="Whether to run training." ) parser.add_argument("--do_predict" ,action="store_true" ,help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" ,dest="accumulate_grad_batches" ,type=__snake_case ,default=1 ,help="Number of updates steps to accumulate before performing a backward/update pass." ,) parser.add_argument("--seed" ,type=__snake_case ,default=42 ,help="random seed for initialization" ) parser.add_argument( "--data_dir" ,default=str(Path(__snake_case ).parent / "test_run" / "dummy-train-data" ) ,type=__snake_case ,help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." ,) def _lowercase ( __snake_case ,__snake_case ,__snake_case=None ,__snake_case=True ,__snake_case=[] ,__snake_case=None ,__snake_case=None ,**__snake_case ,) -> Tuple: pl.seed_everything(args.seed ) # init model __lowerCAmelCase : List[Any] = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=__snake_case ) # add custom checkpoints if checkpoint_callback is None: __lowerCAmelCase : Optional[Any] = pl.callbacks.ModelCheckpoint( filepath=args.output_dir ,prefix="checkpoint" ,monitor="val_loss" ,mode="min" ,save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(__snake_case ) if logging_callback is None: __lowerCAmelCase : Optional[Any] = LoggingCallback() __lowerCAmelCase : int = {} if args.fpaa: __lowerCAmelCase : Optional[int] = 16 if args.gpus > 1: __lowerCAmelCase : int = "auto" __lowerCAmelCase : List[Any] = "ddp" __lowerCAmelCase : Optional[int] = args.accumulate_grad_batches __lowerCAmelCase : int = None __lowerCAmelCase : Any = "auto" __lowerCAmelCase : Optional[Any] = pl.Trainer.from_argparse_args( __snake_case ,weights_summary=__snake_case ,callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] ,logger=__snake_case ,val_check_interval=1 ,num_sanity_val_steps=2 ,**__snake_case ,) if args.do_train: trainer.fit(__snake_case ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
615
0
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml UpperCAmelCase = logging.get_logger(__name__) def _snake_case ( _SCREAMING_SNAKE_CASE : bool , _SCREAMING_SNAKE_CASE : bool ) -> Any: """simple docstring""" def run_func(_SCREAMING_SNAKE_CASE : Tuple ): @wraps(__lowercase ) def run_in_eager_mode(*_SCREAMING_SNAKE_CASE : Any , **_SCREAMING_SNAKE_CASE : Any ): return func(*__lowercase , **__lowercase ) @wraps(__lowercase ) @tf.function(experimental_compile=__lowercase ) def run_in_graph_mode(*_SCREAMING_SNAKE_CASE : List[str] , **_SCREAMING_SNAKE_CASE : Optional[int] ): return func(*__lowercase , **__lowercase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def _snake_case ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> ["tf.Tensor"]: """simple docstring""" lowerCAmelCase = random.Random() lowerCAmelCase = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__lowercase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class __snake_case( __lowerCamelCase ): '''simple docstring''' UpperCAmelCase : TensorFlowBenchmarkArguments UpperCAmelCase : PretrainedConfig UpperCAmelCase : str = "TensorFlow" @property def __snake_case ( self ) -> Dict: return tf.__version__ def __snake_case ( self , A_ , A_ , A_ ) -> Any: # initialize GPU on separate process lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCAmelCase = self._prepare_inference_func(__A , __A , __A ) return self._measure_speed(_inference ) def __snake_case ( self , A_ , A_ , A_ ) -> List[Any]: lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCAmelCase = self._prepare_train_func(__A , __A , __A ) return self._measure_speed(_train ) def __snake_case ( self , A_ , A_ , A_ ) -> Dict: # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __A ) lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCAmelCase = self._prepare_inference_func(__A , __A , __A ) return self._measure_memory(_inference ) def __snake_case ( self , A_ , A_ , A_ ) -> List[str]: if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __A ) lowerCAmelCase = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) lowerCAmelCase = self._prepare_train_func(__A , __A , __A ) return self._measure_memory(_train ) def __snake_case ( self , A_ , A_ , A_ ) -> List[str]: lowerCAmelCase = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) lowerCAmelCase = ( hasattr(__A , """architectures""" ) and isinstance(config.architectures , __A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) lowerCAmelCase = getattr(__A , __A ) lowerCAmelCase = model_cls(__A ) except ImportError: raise ImportError( f'{model_class} does not exist. If you just want to test the pretrained model, you might want to' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: lowerCAmelCase = TF_MODEL_MAPPING[config.__class__](__A ) # encoder-decoder has vocab size saved differently lowerCAmelCase = config.vocab_size if hasattr(__A , """vocab_size""" ) else config.encoder.vocab_size lowerCAmelCase = random_input_ids(__A , __A , __A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__A , decoder_input_ids=__A , training=__A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__A , training=__A ) lowerCAmelCase = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def __snake_case ( self , A_ , A_ , A_ ) -> Any: lowerCAmelCase = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) lowerCAmelCase = ( hasattr(__A , """architectures""" ) and isinstance(config.architectures , __A ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: lowerCAmelCase = """TF""" + config.architectures[0] # prepend 'TF' for tensorflow model lowerCAmelCase = __import__("""transformers""" , fromlist=[model_class] ) lowerCAmelCase = getattr(__A , __A ) lowerCAmelCase = model_cls(__A ) except ImportError: raise ImportError( f'{model_class} does not exist. If you just want to test the pretrained model, you might want to' """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: lowerCAmelCase = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__A ) # encoder-decoder has vocab size saved differently lowerCAmelCase = config.vocab_size if hasattr(__A , """vocab_size""" ) else config.encoder.vocab_size lowerCAmelCase = random_input_ids(__A , __A , __A ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): lowerCAmelCase = model(__A , decoder_input_ids=__A , labels=__A , training=__A )[0] lowerCAmelCase = tf.gradients(__A , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): lowerCAmelCase = model(__A , labels=__A , training=__A )[0] lowerCAmelCase = tf.gradients(__A , model.trainable_variables ) return gradients lowerCAmelCase = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def __snake_case ( self , A_ ) -> Dict: with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(__A , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average lowerCAmelCase = timeit.repeat( __A , repeat=self.args.repeat , number=10 , ) return min(__A ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f'Doesn\'t fit on GPU. {e}' ) def __snake_case ( self , A_ ) -> Union[str, Any]: logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) lowerCAmelCase = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won\'t log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) lowerCAmelCase = """N/A""" else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() lowerCAmelCase = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) lowerCAmelCase = nvml.nvmlDeviceGetMemoryInfo(__A ) lowerCAmelCase = meminfo.used lowerCAmelCase = Memory(__A ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) lowerCAmelCase = None else: lowerCAmelCase = measure_peak_memory_cpu(__A ) lowerCAmelCase = Memory(__A ) if isinstance(__A , __A ) else memory_bytes if self.args.trace_memory_line_by_line: lowerCAmelCase = stop_memory_tracing(__A ) if memory is None: lowerCAmelCase = summary.total else: lowerCAmelCase = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'Doesn\'t fit on GPU. {e}' ) return "N/A", None
433
'''simple docstring''' import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def lowercase__ ( __lowercase : Any , __lowercase : List[Any] , __lowercase : Optional[Any] , __lowercase : Dict=None , __lowercase : Tuple=None , __lowercase : Optional[int]=None , __lowercase : Tuple=None , __lowercase : int=None , ) -> Dict: """simple docstring""" if attention_mask is None: __UpperCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __UpperCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __UpperCamelCase = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__lowercase ) if decoder_head_mask is None: __UpperCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowercase ) if cross_attn_head_mask is None: __UpperCamelCase = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__lowercase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class snake_case : """simple docstring""" def __init__( self : Optional[int] , __A : Any , __A : Optional[int]=1_3 , __A : Dict=7 , __A : Union[str, Any]=True , __A : Optional[Any]=False , __A : List[Any]=9_9 , __A : str=1_6 , __A : str=2 , __A : List[str]=4 , __A : Optional[Any]=4 , __A : List[Any]="relu" , __A : List[str]=0.1 , __A : Union[str, Any]=0.1 , __A : Dict=0.0 , __A : Tuple=0.0 , __A : str=2_0 , __A : Dict=2 , __A : Dict=1 , __A : Any=0 , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = encoder_layerdrop __UpperCamelCase = decoder_layerdrop __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id def _lowerCamelCase ( self : str ): __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = self.eos_token_id # Eos Token __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __UpperCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __UpperCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __UpperCamelCase = self.get_config() __UpperCamelCase = prepare_mam_aaa_inputs_dict(__A , __A , __A ) return config, inputs_dict def _lowerCamelCase ( self : Tuple ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def _lowerCamelCase ( self : int ): __UpperCamelCase , __UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self : Any , __A : str , __A : int ): __UpperCamelCase = MaMaaaModel(config=__A ).get_decoder().to(__A ).eval() __UpperCamelCase = inputs_dict['input_ids'] __UpperCamelCase = inputs_dict['attention_mask'] __UpperCamelCase = inputs_dict['head_mask'] # first forward pass __UpperCamelCase = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) __UpperCamelCase , __UpperCamelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __UpperCamelCase = model(__A , attention_mask=__A )['last_hidden_state'] __UpperCamelCase = model(__A , attention_mask=__A , past_key_values=__A )[ 'last_hidden_state' ] # select random slice __UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__A , __A , atol=1e-2 ) ) def _lowerCamelCase ( self : List[Any] , __A : Tuple , __A : str ): __UpperCamelCase = MaMaaaModel(config=__A ).to(__A ).eval() __UpperCamelCase = model(**__A ) __UpperCamelCase = outputs.encoder_last_hidden_state __UpperCamelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = model.get_encoder() encoder.save_pretrained(__A ) __UpperCamelCase = MaMaaaEncoder.from_pretrained(__A ).to(__A ) __UpperCamelCase = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = model.get_decoder() decoder.save_pretrained(__A ) __UpperCamelCase = MaMaaaDecoder.from_pretrained(__A ).to(__A ) __UpperCamelCase = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=__A , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str =( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =(MaMaaaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Optional[Any] =( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : str =True SCREAMING_SNAKE_CASE_ : Optional[int] =True SCREAMING_SNAKE_CASE_ : str =False SCREAMING_SNAKE_CASE_ : str =False def _lowerCamelCase ( self : Tuple , __A : Tuple , __A : List[str] , __A : Tuple , __A : Dict , __A : List[str] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = MaMaaaModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__A ) def _lowerCamelCase ( self : List[Any] ): self.config_tester.run_common_tests() def _lowerCamelCase ( self : Tuple ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) __UpperCamelCase , __UpperCamelCase = model_class.from_pretrained(__A , output_loading_info=__A ) self.assertEqual(info['missing_keys'] , [] ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__A ) def _lowerCamelCase ( self : Any ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __UpperCamelCase = model_class(__A ) model.to(__A ) model.eval() __UpperCamelCase = copy.deepcopy(self._prepare_for_class(__A , __A ) ) if not self.is_encoder_decoder: __UpperCamelCase = inputs['input_ids'] del inputs["input_ids"] else: __UpperCamelCase = inputs['input_ids'] __UpperCamelCase = inputs.get('decoder_input_ids' , __A ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , __A ) __UpperCamelCase = model.get_input_embeddings() if not self.is_encoder_decoder: __UpperCamelCase = wte(__A ) else: __UpperCamelCase = wte(__A ) __UpperCamelCase = wte(__A ) with torch.no_grad(): model(**__A )[0] def _lowerCamelCase ( self : List[str] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() __UpperCamelCase = input_dict['input_ids'] __UpperCamelCase = input_ids.ne(1 ).to(__A ) __UpperCamelCase = MaMaaaForConditionalGeneration(__A ).eval().to(__A ) if torch_device == "cuda": model.half() model.generate(__A , attention_mask=__A ) model.generate(num_beams=4 , do_sample=__A , early_stopping=__A , num_return_sequences=3 ) def lowercase__ ( __lowercase : List[str] ) -> List[str]: """simple docstring""" return torch.tensor(__lowercase , dtype=torch.long , device=__lowercase ) a__ : str =1E-4 @require_torch @require_sentencepiece @require_tokenizers @slow class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCamelCase ( self : Optional[Any] ): return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def _lowerCamelCase ( self : str ): __UpperCamelCase = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(__A ) __UpperCamelCase = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) __UpperCamelCase = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) __UpperCamelCase = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): __UpperCamelCase = model(**__A )[0] __UpperCamelCase = torch.Size((1, 1_1, 1_0_2_4) ) self.assertEqual(output.shape , __A ) # change to expected output here __UpperCamelCase = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__A ) # change to intended input __UpperCamelCase = _long_tensor([[1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8, 2]] ) __UpperCamelCase = _long_tensor([[2, 1_2_8_0_2_8, 9_8, 1_2, 3_0_5_2_7, 2_7_3_2, 1_5_9, 7_7_5_5, 6_1_9_0_4, 3_9_1_4_4, 3_8]] ) __UpperCamelCase = prepare_mam_aaa_inputs_dict(model.config , __A , __A ) with torch.no_grad(): __UpperCamelCase = model(**__A )[0] __UpperCamelCase = torch.Size((1, 1_1, model.config.vocab_size) ) self.assertEqual(output.shape , __A ) # change to expected output here __UpperCamelCase = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=__A ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=__A ) ) def _lowerCamelCase ( self : Tuple ): __UpperCamelCase = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(__A ) __UpperCamelCase = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) __UpperCamelCase = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams __UpperCamelCase = tokenizer(__A , padding=__A , return_tensors='pt' ) __UpperCamelCase = model.generate( input_ids=dct['input_ids'].to(__A ) , attention_mask=dct['attention_mask'].to(__A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) __UpperCamelCase = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] __UpperCamelCase = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=__A , skip_special_tokens=__A ) assert generated == expected_en
399
0
import numpy class __SCREAMING_SNAKE_CASE : def __init__( self, _a, _a ) -> None: __SCREAMING_SNAKE_CASE = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __SCREAMING_SNAKE_CASE = numpy.random.rand( self.input_array.shape[1], 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __SCREAMING_SNAKE_CASE = numpy.random.rand( 4, 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __SCREAMING_SNAKE_CASE = numpy.random.rand(3, 1 ) # Real output values provided. __SCREAMING_SNAKE_CASE = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __SCREAMING_SNAKE_CASE = numpy.zeros(output_array.shape ) def __lowerCAmelCase ( self ) -> numpy.ndarray: __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot(self.input_array, self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer, self.first_hidden_layer_and_second_hidden_layer_weights, ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer, self.second_hidden_layer_and_output_layer_weights, ) ) return self.layer_between_second_hidden_layer_and_output def __lowerCAmelCase ( self ) -> None: __SCREAMING_SNAKE_CASE = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T, 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ), ) __SCREAMING_SNAKE_CASE = numpy.dot( self.layer_between_input_and_first_hidden_layer.T, numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ), self.second_hidden_layer_and_output_layer_weights.T, ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ), ) __SCREAMING_SNAKE_CASE = numpy.dot( self.input_array.T, numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ), self.second_hidden_layer_and_output_layer_weights.T, ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ), self.first_hidden_layer_and_second_hidden_layer_weights.T, ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ), ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def __lowerCAmelCase ( self, _a, _a, _a ) -> None: for iteration in range(1, iterations + 1 ): __SCREAMING_SNAKE_CASE = self.feedforward() self.back_propagation() if give_loss: __SCREAMING_SNAKE_CASE = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def __lowerCAmelCase ( self, _a ) -> int: __SCREAMING_SNAKE_CASE = input_arr __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot(self.array, self.input_layer_and_first_hidden_layer_weights ) ) __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer, self.first_hidden_layer_and_second_hidden_layer_weights, ) ) __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer, self.second_hidden_layer_and_output_layer_weights, ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _A ( __snake_case :numpy.ndarray ) -> numpy.ndarray: """simple docstring""" return 1 / (1 + numpy.exp(-value )) def _A ( __snake_case :numpy.ndarray ) -> numpy.ndarray: """simple docstring""" return (value) * (1 - (value)) def _A ( ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __SCREAMING_SNAKE_CASE = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __SCREAMING_SNAKE_CASE = TwoHiddenLayerNeuralNetwork( input_array=__snake_case , output_array=__snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__snake_case , iterations=10 , give_loss=__snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
214
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def _A ( ) -> Optional[int]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __SCREAMING_SNAKE_CASE = "__test_patch_submodule_mock__" with patch_submodule(_test_patching , "os.path.join" , __snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def _A ( ) -> Any: """simple docstring""" assert _test_patching.open is open __SCREAMING_SNAKE_CASE = "__test_patch_submodule_builtin_mock__" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , "open" , __snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def _A ( ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_missing_mock__" with patch_submodule(_test_patching , "pandas.read_csv" , __snake_case ): pass def _A ( ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_missing_builtin_mock__" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , "len" , __snake_case ) is None with patch_submodule(_test_patching , "len" , __snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def _A ( ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_start_and_stop_mock__" __SCREAMING_SNAKE_CASE = patch_submodule(_test_patching , "open" , __snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def _A ( ) -> str: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __SCREAMING_SNAKE_CASE = "__test_patch_submodule_successive_join__" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_successive_dirname__" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_successive_rename__" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , "os.path.join" , __snake_case ): with patch_submodule(_test_patching , "os.rename" , __snake_case ): with patch_submodule(_test_patching , "os.path.dirname" , __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , "os.rename" , __snake_case ): with patch_submodule(_test_patching , "os.path.join" , __snake_case ): with patch_submodule(_test_patching , "os.path.dirname" , __snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def _A ( ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = "__test_patch_submodule_doesnt_exist_mock__" with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , __snake_case ): pass with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , __snake_case ): pass
214
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = tmp_path / 'cache' SCREAMING_SNAKE_CASE : Optional[int] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : Dict = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / 'cache' SCREAMING_SNAKE_CASE : List[str] = {'text': 'string'} SCREAMING_SNAKE_CASE : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : List[str] = ( Features({feature: Value(lowerCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : str = TextDatasetReader(lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = tmp_path / 'cache' SCREAMING_SNAKE_CASE : str = {'text': 'string'} SCREAMING_SNAKE_CASE : Union[str, Any] = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ , split=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if issubclass(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = text_path elif issubclass(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = [text_path] SCREAMING_SNAKE_CASE : List[Any] = tmp_path / 'cache' SCREAMING_SNAKE_CASE : Optional[int] = {'text': 'string'} SCREAMING_SNAKE_CASE : Optional[Any] = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_dataset(lowerCamelCase_ , lowerCamelCase_ ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=("train",) ): """simple docstring""" assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) for split in splits: SCREAMING_SNAKE_CASE : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / 'cache' SCREAMING_SNAKE_CASE : Tuple = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : int = TextDatasetReader({"""train""": text_path} , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ ).read() _check_text_datasetdict(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize( """features""" , [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ] , ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE : Optional[Any] = {'text': 'string'} SCREAMING_SNAKE_CASE : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Tuple = ( Features({feature: Value(lowerCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Dict = TextDatasetReader({"""train""": text_path} , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_datasetdict(lowerCamelCase_ , lowerCamelCase_ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if split: SCREAMING_SNAKE_CASE : Optional[Any] = {split: text_path} else: SCREAMING_SNAKE_CASE : str = 'train' SCREAMING_SNAKE_CASE : int = {'train': text_path, 'test': text_path} SCREAMING_SNAKE_CASE : List[str] = tmp_path / 'cache' SCREAMING_SNAKE_CASE : Tuple = {'text': 'string'} SCREAMING_SNAKE_CASE : Optional[Any] = TextDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ ).read() _check_text_datasetdict(lowerCamelCase_ , lowerCamelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
379
from timeit import timeit def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> int: if number < 0: raise ValueError('the value of input must not be negative' ) SCREAMING_SNAKE_CASE_ : Tuple = 0 while number: number &= number - 1 result += 1 return result def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> int: if number < 0: raise ValueError('the value of input must not be negative' ) SCREAMING_SNAKE_CASE_ : List[Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __SCREAMING_SNAKE_CASE ( ) -> None: def do_benchmark(SCREAMING_SNAKE_CASE ) -> None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'import __main__ as z' print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(SCREAMING_SNAKE_CASE ) = }' ) SCREAMING_SNAKE_CASE_ : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=SCREAMING_SNAKE_CASE ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(SCREAMING_SNAKE_CASE ) = }' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=SCREAMING_SNAKE_CASE , ) print(f'timeit() runs in {timing} seconds' ) for number in (25, 37, 58, 0): do_benchmark(SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
345
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase_ ( ) -> Tuple: lowerCAmelCase__ : Any = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__UpperCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__UpperCAmelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__UpperCAmelCase ) return parser.parse_args() def lowercase_ ( ) -> str: lowerCAmelCase__ : Optional[int] = parse_args() # Import training_script as a module. lowerCAmelCase__ : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase__ : Optional[int] = script_fpath.stem lowerCAmelCase__ : Dict = importlib.import_module(__UpperCAmelCase ) # Patch sys.argv lowerCAmelCase__ : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
711
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 6_3_7_8_1_3_7 def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: lowerCAmelCase__ : str = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowerCAmelCase__ : Optional[int] = atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) ) lowerCAmelCase__ : List[Any] = atan((1 - flattening) * tan(radians(__UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowerCAmelCase__ : Any = haversine_distance(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowerCAmelCase__ : int = (b_lata + b_lata) / 2 lowerCAmelCase__ : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowerCAmelCase__ : Optional[int] = (sin(__UpperCAmelCase ) ** 2) * (cos(__UpperCAmelCase ) ** 2) lowerCAmelCase__ : Dict = cos(sigma / 2 ) ** 2 lowerCAmelCase__ : Union[str, Any] = (sigma - sin(__UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowerCAmelCase__ : Tuple = (cos(__UpperCAmelCase ) ** 2) * (sin(__UpperCAmelCase ) ** 2) lowerCAmelCase__ : int = sin(sigma / 2 ) ** 2 lowerCAmelCase__ : int = (sigma + sin(__UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
507
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowercase__ ( metaclass=A_ ): __UpperCAmelCase = ['''torch''', '''scipy'''] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> str: requires_backends(self , ["""torch""", """scipy"""]) @classmethod def UpperCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> Optional[int]: requires_backends(cls , ["""torch""", """scipy"""]) @classmethod def UpperCamelCase_ ( cls , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> int: requires_backends(cls , ["""torch""", """scipy"""])
88
"""simple docstring""" from math import isqrt, loga def _snake_case ( __snake_case : int ): """simple docstring""" _lowerCamelCase : List[str] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowerCamelCase : Optional[int] = False return [i for i in range(2 , __snake_case ) if is_prime[i]] def _snake_case ( __snake_case : int = 800800 , __snake_case : int = 800800 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = degree * loga(__snake_case ) _lowerCamelCase : Union[str, Any] = int(__snake_case ) _lowerCamelCase : Dict = calculate_prime_numbers(__snake_case ) _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : Any = len(__snake_case ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
88
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( lowercase__ ): snake_case_ = ["""image_processor""", """tokenizer"""] snake_case_ = """LayoutLMv3ImageProcessor""" snake_case_ = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self : Tuple , _lowercase : str=None , _lowercase : Union[str, Any]=None , **_lowercase : List[Any] ) -> Union[str, Any]: _lowercase = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _lowercase , ) _lowercase = kwargs.pop("feature_extractor" ) _lowercase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_lowercase , _lowercase ) def __call__( self : Optional[int] , _lowercase : int , _lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _lowercase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , _lowercase : Union[List[List[int]], List[List[List[int]]]] = None , _lowercase : Optional[Union[List[int], List[List[int]]]] = None , _lowercase : bool = True , _lowercase : Union[bool, str, PaddingStrategy] = False , _lowercase : Union[bool, str, TruncationStrategy] = None , _lowercase : Optional[int] = None , _lowercase : int = 0 , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[bool] = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = False , _lowercase : bool = True , _lowercase : Optional[Union[str, TensorType]] = None , **_lowercase : List[Any] , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor _lowercase = self.image_processor(images=_lowercase , return_tensors=_lowercase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_lowercase , _lowercase ): _lowercase = [text] # add batch dimension (as the image processor always adds a batch dimension) _lowercase = features["words"] _lowercase = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) # add pixel values _lowercase = features.pop("pixel_values" ) if return_overflowing_tokens is True: _lowercase = self.get_overflowing_images(_lowercase , encoded_inputs["overflow_to_sample_mapping"] ) _lowercase = images return encoded_inputs def _lowerCamelCase ( self : str , _lowercase : List[str] , _lowercase : Optional[Any] ) -> Any: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _lowercase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_lowercase ) != len(_lowercase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f""" {len(_lowercase )} and {len(_lowercase )}""" ) return images_with_overflow def _lowerCamelCase ( self : Optional[int] , *_lowercase : str , **_lowercase : Tuple ) -> Union[str, Any]: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def _lowerCamelCase ( self : str , *_lowercase : List[Any] , **_lowercase : Optional[int] ) -> str: return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def _lowerCamelCase ( self : Dict ) -> Tuple: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def _lowerCamelCase ( self : Union[str, Any] ) -> Optional[int]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _lowercase , ) return self.image_processor_class @property def _lowerCamelCase ( self : str ) -> List[str]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _lowercase , ) return self.image_processor
717
"""simple docstring""" def __UpperCAmelCase ( _snake_case : list ): _lowercase = len(_snake_case ) for _ in range(_snake_case ): for i in range(_ % 2, arr_size - 1, 2 ): if arr[i + 1] < arr[i]: _lowercase , _lowercase = arr[i + 1], arr[i] return arr if __name__ == "__main__": __UpperCamelCase : str = list(range(1_0, 0, -1)) print(f'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
227
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __lowerCamelCase : Tuple = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __lowerCamelCase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def SCREAMING_SNAKE_CASE ( snake_case_ : str ): if "://" in dataset_path: snake_case__ : str = dataset_path.split("://" )[1] return dataset_path def SCREAMING_SNAKE_CASE ( snake_case_ : fsspec.AbstractFileSystem ): if fs is not None and fs.protocol != "file": return True else: return False def SCREAMING_SNAKE_CASE ( snake_case_ : fsspec.AbstractFileSystem , snake_case_ : str , snake_case_ : str ): snake_case__ : Optional[Any] = not is_remote_filesystem(snake_case_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(snake_case_ ) , fs._strip_protocol(snake_case_ ) ) else: fs.mv(snake_case_ , snake_case_ , recursive=snake_case_ ) def SCREAMING_SNAKE_CASE ( ): if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: snake_case__ : List[str] = None snake_case__ : Dict = None snake_case__ : Optional[Any] = threading.Lock()
297
import argparse import os import re __lowerCamelCase : int = """src/diffusers""" # Pattern that looks at the indentation in a line. __lowerCamelCase : List[str] = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. __lowerCamelCase : Union[str, Any] = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __lowerCamelCase : str = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. __lowerCamelCase : Optional[Any] = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __lowerCamelCase : int = re.compile(R"""\[([^\]]+)\]""") def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): snake_case__ : Any = _re_indent.search(snake_case_ ) return "" if search is None else search.groups()[0] def SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : str="" , snake_case_ : int=None , snake_case_ : Tuple=None ): snake_case__ : str = 0 snake_case__ : int = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(snake_case_ ): index += 1 snake_case__ : List[Any] = ["\n".join(lines[:index] )] else: snake_case__ : Union[str, Any] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case__ : List[str] = [lines[index]] index += 1 while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(snake_case_ ) ) if index < len(snake_case_ ) - 1: snake_case__ : List[str] = [lines[index + 1]] index += 1 else: snake_case__ : Tuple = [] else: blocks.append("\n".join(snake_case_ ) ) snake_case__ : Dict = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case_ ) > 0: blocks.append("\n".join(snake_case_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case_ ): blocks.append("\n".join(lines[index:] ) ) return blocks def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple ): def _inner(snake_case_ : Any ): return key(snake_case_ ).lower().replace("_" , "" ) return _inner def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : int=None ): # If no key is provided, we use a noop. def noop(snake_case_ : Tuple ): return x if key is None: snake_case__ : Dict = noop # Constants are all uppercase, they go first. snake_case__ : Union[str, Any] = [obj for obj in objects if key(snake_case_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case__ : str = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()] # Functions begin with a lowercase, they go last. snake_case__ : Any = [obj for obj in objects if not key(snake_case_ )[0].isupper()] snake_case__ : Tuple = ignore_underscore(snake_case_ ) return sorted(snake_case_ , key=snake_case_ ) + sorted(snake_case_ , key=snake_case_ ) + sorted(snake_case_ , key=snake_case_ ) def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[int] ): # This inner function sort imports between [ ]. def _replace(snake_case_ : Tuple ): snake_case__ : Dict = match.groups()[0] if "," not in imports: return F'''[{imports}]''' snake_case__ : int = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : Dict = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case_ )] ) + "]" snake_case__ : Any = import_statement.split("\n" ) if len(snake_case_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case__ : Optional[int] = 2 if lines[1].strip() == "[" else 1 snake_case__ : Union[str, Any] = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case__ : List[str] = sort_objects(snake_case_ , key=lambda snake_case_ : x[1] ) snake_case__ : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case__ : Optional[Any] = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case__ : int = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case__ : Optional[Any] = keys[:-1] snake_case__ : List[str] = get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(snake_case_ )] ) return "\n".join(snake_case_ ) else: # Finally we have to deal with imports fitting on one line snake_case__ : int = _re_bracket_content.sub(_replace , snake_case_ ) return import_statement def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : str=True ): with open(snake_case_ , "r" ) as f: snake_case__ : str = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case__ : str = split_code_in_indented_blocks( snake_case_ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case__ : Optional[int] = main_blocks[block_idx] snake_case__ : Any = block.split("\n" ) # Get to the start of the imports. snake_case__ : int = 0 while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case__ : Dict = len(snake_case_ ) else: line_idx += 1 if line_idx >= len(snake_case_ ): continue # Ignore beginning and last line: they don't contain anything. snake_case__ : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) snake_case__ : Optional[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case__ : Dict = split_code_in_indented_blocks(snake_case_ , indent_level=snake_case_ ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case__ : List[str] = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case__ : int = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case__ : List[Any] = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None] snake_case__ : str = [x[0] for x in sorted(snake_case_ , key=lambda snake_case_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case__ : List[str] = 0 snake_case__ : Any = [] for i in range(len(snake_case_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: snake_case__ : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(snake_case_ ) count += 1 # And we put our main block back together with its first and last line. snake_case__ : int = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case_ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(snake_case_ , "w" ) as f: f.write("\n".join(snake_case_ ) ) def SCREAMING_SNAKE_CASE ( snake_case_ : int=True ): snake_case__ : Dict = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: snake_case__ : List[Any] = sort_imports(os.path.join(snake_case_ , "__init__.py" ) , check_only=snake_case_ ) if result: snake_case__ : List[str] = [os.path.join(snake_case_ , "__init__.py" )] if len(snake_case_ ) > 0: raise ValueError(F'''Would overwrite {len(snake_case_ )} files, run `make style`.''' ) if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") __lowerCamelCase : Tuple = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
297
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __a ( unittest.TestCase ): def snake_case_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): _lowerCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) _lowerCamelCase = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) sd_pipe.set_scheduler('sample_euler' ) _lowerCamelCase = 'A painting of a squirrel eating a burger' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = sd_pipe([prompt] , generator=a__ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _lowerCamelCase = output.images _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ ( self ): _lowerCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _lowerCamelCase = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) sd_pipe.set_scheduler('sample_euler' ) _lowerCamelCase = 'A painting of a squirrel eating a burger' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = sd_pipe([prompt] , generator=a__ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) _lowerCamelCase = output.images _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def snake_case_ ( self ): _lowerCamelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) _lowerCamelCase = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) _lowerCamelCase = 'A painting of a squirrel eating a burger' _lowerCamelCase = torch.manual_seed(0 ) _lowerCamelCase = sd_pipe( [prompt] , generator=a__ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=a__ , ) _lowerCamelCase = output.images _lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowerCamelCase = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
222
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging A_ : List[str] =logging.get_logger(__name__) A_ : Optional[int] ={ """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = "perceiver" def __init__( self , a__=2_56 , a__=12_80 , a__=7_68 , a__=1 , a__=26 , a__=8 , a__=8 , a__=None , a__=None , a__="kv" , a__=1 , a__=1 , a__="gelu" , a__=0.1 , a__=0.02 , a__=1e-12 , a__=True , a__=2_62 , a__=20_48 , a__=56 , a__=[3_68, 4_96] , a__=16 , a__=19_20 , a__=16 , a__=[1, 16, 2_24, 2_24] , **a__ , ): super().__init__(**a__ ) _lowerCamelCase = num_latents _lowerCamelCase = d_latents _lowerCamelCase = d_model _lowerCamelCase = num_blocks _lowerCamelCase = num_self_attends_per_block _lowerCamelCase = num_self_attention_heads _lowerCamelCase = num_cross_attention_heads _lowerCamelCase = qk_channels _lowerCamelCase = v_channels _lowerCamelCase = cross_attention_shape_for_attention _lowerCamelCase = self_attention_widening_factor _lowerCamelCase = cross_attention_widening_factor _lowerCamelCase = hidden_act _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = use_query_residual # masked language modeling attributes _lowerCamelCase = vocab_size _lowerCamelCase = max_position_embeddings # image classification attributes _lowerCamelCase = image_size # flow attributes _lowerCamelCase = train_size # multimodal autoencoding attributes _lowerCamelCase = num_frames _lowerCamelCase = audio_samples_per_frame _lowerCamelCase = samples_per_patch _lowerCamelCase = output_shape class __a ( lowerCAmelCase__ ): @property def snake_case_ ( self ): if self.task == "multiple-choice": _lowerCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def snake_case_ ( self ): return 1e-4 def snake_case_ ( self , a__ , a__ = -1 , a__ = -1 , a__ = -1 , a__ = False , a__ = None , a__ = 3 , a__ = 40 , a__ = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(a__ , a__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase = preprocessor.num_special_tokens_to_add(a__ ) _lowerCamelCase = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a__ ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase = [' '.join(['a'] ) * seq_length] * batch_size _lowerCamelCase = dict(preprocessor(a__ , return_tensors=a__ ) ) _lowerCamelCase = inputs.pop('input_ids' ) return inputs elif isinstance(a__ , a__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase = compute_effective_axis_dimension(a__ , fixed_dimension=OnnxConfig.default_fixed_batch ) _lowerCamelCase = self._generate_dummy_images(a__ , a__ , a__ , a__ ) _lowerCamelCase = dict(preprocessor(images=a__ , return_tensors=a__ ) ) _lowerCamelCase = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
222
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : str =logging.get_logger(__name__) __snake_case : Tuple ={ 'microsoft/biogpt': 'https://huggingface.co/microsoft/biogpt/resolve/main/config.json', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""biogpt""" def __init__(self ,__lowerCamelCase=4_23_84 ,__lowerCamelCase=10_24 ,__lowerCamelCase=24 ,__lowerCamelCase=16 ,__lowerCamelCase=40_96 ,__lowerCamelCase="gelu" ,__lowerCamelCase=0.1 ,__lowerCamelCase=0.1 ,__lowerCamelCase=10_24 ,__lowerCamelCase=0.02 ,__lowerCamelCase=1e-12 ,__lowerCamelCase=True ,__lowerCamelCase=True ,__lowerCamelCase=0.0 ,__lowerCamelCase=0.0 ,__lowerCamelCase=1 ,__lowerCamelCase=0 ,__lowerCamelCase=2 ,**__lowerCamelCase ,) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : List[str] = max_position_embeddings lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : Dict = num_attention_heads lowerCAmelCase__ : Any = intermediate_size lowerCAmelCase__ : Dict = hidden_act lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : Tuple = attention_probs_dropout_prob lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Union[str, Any] = layer_norm_eps lowerCAmelCase__ : Union[str, Any] = scale_embedding lowerCAmelCase__ : Optional[int] = use_cache lowerCAmelCase__ : Tuple = layerdrop lowerCAmelCase__ : int = activation_dropout super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase )
647
def lowerCAmelCase__ ( lowerCamelCase_ : Dict): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = len(lowerCamelCase_) while cur > 1: # Find the maximum number in arr lowerCAmelCase__ : Tuple = arr.index(max(arr[0:cur])) # Reverse from 0 to mi lowerCAmelCase__ : Optional[int] = arr[mi::-1] + arr[mi + 1 : len(lowerCamelCase_)] # Reverse whole list lowerCAmelCase__ : Dict = arr[cur - 1 :: -1] + arr[cur : len(lowerCamelCase_)] cur -= 1 return arr if __name__ == "__main__": __snake_case : List[Any] =input('Enter numbers separated by a comma:\n').strip() __snake_case : Dict =[int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
647
1
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def snake_case_ ( snake_case , snake_case=1 ) -> Tuple: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def snake_case_ ( snake_case , snake_case=0 ) -> Optional[int]: lowercase__: int = [] for old_item in old_list: lowercase__: int = old_item.replace('in_layers.0' , 'norm1' ) lowercase__: Any = new_item.replace('in_layers.2' , 'conv1' ) lowercase__: Optional[int] = new_item.replace('out_layers.0' , 'norm2' ) lowercase__: List[Any] = new_item.replace('out_layers.3' , 'conv2' ) lowercase__: Union[str, Any] = new_item.replace('emb_layers.1' , 'time_emb_proj' ) lowercase__: Optional[Any] = new_item.replace('skip_connection' , 'conv_shortcut' ) lowercase__: int = shave_segments(snake_case , n_shave_prefix_segments=snake_case ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def snake_case_ ( snake_case , snake_case=0 ) -> str: lowercase__: int = [] for old_item in old_list: lowercase__: Optional[Any] = old_item lowercase__: List[str] = new_item.replace('norm.weight' , 'group_norm.weight' ) lowercase__: List[Any] = new_item.replace('norm.bias' , 'group_norm.bias' ) lowercase__: Optional[Any] = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) lowercase__: Dict = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) lowercase__: str = shave_segments(snake_case , n_shave_prefix_segments=snake_case ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def snake_case_ ( snake_case , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None ) -> str: assert isinstance(snake_case , snake_case ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowercase__: Optional[Any] = old_checkpoint[path] lowercase__: int = old_tensor.shape[0] // 3 lowercase__: str = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowercase__: Union[str, Any] = old_tensor.shape[0] // config['num_head_channels'] // 3 lowercase__: Tuple = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowercase__ , lowercase__ , lowercase__: List[Any] = old_tensor.split(channels // num_heads , dim=1 ) lowercase__: Dict = query.reshape(snake_case ) lowercase__: Union[str, Any] = key.reshape(snake_case ) lowercase__: Tuple = value.reshape(snake_case ) for path in paths: lowercase__: Dict = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowercase__: Optional[Any] = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) lowercase__: int = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) lowercase__: Optional[Any] = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: lowercase__: Union[str, Any] = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowercase__: int = old_checkpoint[path['old']][:, :, 0] else: lowercase__: Dict = old_checkpoint[path['old']] def snake_case_ ( snake_case , snake_case ) -> int: lowercase__: Optional[int] = {} lowercase__: Union[str, Any] = checkpoint['time_embed.0.weight'] lowercase__: List[str] = checkpoint['time_embed.0.bias'] lowercase__: int = checkpoint['time_embed.2.weight'] lowercase__: List[Any] = checkpoint['time_embed.2.bias'] lowercase__: Dict = checkpoint['input_blocks.0.0.weight'] lowercase__: List[str] = checkpoint['input_blocks.0.0.bias'] lowercase__: List[Any] = checkpoint['out.0.weight'] lowercase__: Optional[int] = checkpoint['out.0.bias'] lowercase__: str = checkpoint['out.2.weight'] lowercase__: Any = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only lowercase__: int = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) lowercase__: Union[str, Any] = { layer_id: [key for key in checkpoint if f'input_blocks.{layer_id}' in key] for layer_id in range(snake_case ) } # Retrieves the keys for the middle blocks only lowercase__: str = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) lowercase__: int = { layer_id: [key for key in checkpoint if f'middle_block.{layer_id}' in key] for layer_id in range(snake_case ) } # Retrieves the keys for the output blocks only lowercase__: int = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) lowercase__: Union[str, Any] = { layer_id: [key for key in checkpoint if f'output_blocks.{layer_id}' in key] for layer_id in range(snake_case ) } for i in range(1 , snake_case ): lowercase__: Optional[int] = (i - 1) // (config['num_res_blocks'] + 1) lowercase__: Any = (i - 1) % (config['num_res_blocks'] + 1) lowercase__: Any = [key for key in input_blocks[i] if f'input_blocks.{i}.0' in key] lowercase__: str = [key for key in input_blocks[i] if f'input_blocks.{i}.1' in key] if f'input_blocks.{i}.0.op.weight' in checkpoint: lowercase__: List[Any] = checkpoint[ f'input_blocks.{i}.0.op.weight' ] lowercase__: List[str] = checkpoint[ f'input_blocks.{i}.0.op.bias' ] continue lowercase__: Union[str, Any] = renew_resnet_paths(snake_case ) lowercase__: Union[str, Any] = {'old': f'input_blocks.{i}.0', 'new': f'down_blocks.{block_id}.resnets.{layer_in_block_id}'} lowercase__: Dict = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( snake_case , snake_case , snake_case , additional_replacements=[meta_path, resnet_op] , config=snake_case ) if len(snake_case ): lowercase__: List[Any] = renew_attention_paths(snake_case ) lowercase__: List[Any] = { 'old': f'input_blocks.{i}.1', 'new': f'down_blocks.{block_id}.attentions.{layer_in_block_id}', } lowercase__: int = { f'input_blocks.{i}.1.qkv.bias': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'input_blocks.{i}.1.qkv.weight': { 'key': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( snake_case , snake_case , snake_case , additional_replacements=[meta_path] , attention_paths_to_split=snake_case , config=snake_case , ) lowercase__: Optional[int] = middle_blocks[0] lowercase__: Tuple = middle_blocks[1] lowercase__: Union[str, Any] = middle_blocks[2] lowercase__: Tuple = renew_resnet_paths(snake_case ) assign_to_checkpoint(snake_case , snake_case , snake_case , config=snake_case ) lowercase__: Union[str, Any] = renew_resnet_paths(snake_case ) assign_to_checkpoint(snake_case , snake_case , snake_case , config=snake_case ) lowercase__: Optional[int] = renew_attention_paths(snake_case ) lowercase__: int = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( snake_case , snake_case , snake_case , attention_paths_to_split=snake_case , config=snake_case ) for i in range(snake_case ): lowercase__: List[Any] = i // (config['num_res_blocks'] + 1) lowercase__: Optional[Any] = i % (config['num_res_blocks'] + 1) lowercase__: Optional[Any] = [shave_segments(snake_case , 2 ) for name in output_blocks[i]] lowercase__: Tuple = {} for layer in output_block_layers: lowercase__ , lowercase__: Any = layer.split('.' )[0], shave_segments(snake_case , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(snake_case ) else: lowercase__: Any = [layer_name] if len(snake_case ) > 1: lowercase__: Dict = [key for key in output_blocks[i] if f'output_blocks.{i}.0' in key] lowercase__: int = [key for key in output_blocks[i] if f'output_blocks.{i}.1' in key] lowercase__: Tuple = renew_resnet_paths(snake_case ) lowercase__: List[str] = renew_resnet_paths(snake_case ) lowercase__: Any = {'old': f'output_blocks.{i}.0', 'new': f'up_blocks.{block_id}.resnets.{layer_in_block_id}'} assign_to_checkpoint(snake_case , snake_case , snake_case , additional_replacements=[meta_path] , config=snake_case ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowercase__: int = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) lowercase__: Any = checkpoint[ f'output_blocks.{i}.{index}.conv.weight' ] lowercase__: Dict = checkpoint[ f'output_blocks.{i}.{index}.conv.bias' ] # Clear attentions as they have been attributed above. if len(snake_case ) == 2: lowercase__: Any = [] if len(snake_case ): lowercase__: Any = renew_attention_paths(snake_case ) lowercase__: List[Any] = { 'old': f'output_blocks.{i}.1', 'new': f'up_blocks.{block_id}.attentions.{layer_in_block_id}', } lowercase__: List[Any] = { f'output_blocks.{i}.1.qkv.bias': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias', }, f'output_blocks.{i}.1.qkv.weight': { 'key': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight', 'query': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight', 'value': f'up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight', }, } assign_to_checkpoint( snake_case , snake_case , snake_case , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=snake_case , ) else: lowercase__: Optional[int] = renew_resnet_paths(snake_case , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowercase__: str = '.'.join(['output_blocks', str(snake_case ), path['old']] ) lowercase__: Optional[Any] = '.'.join(['up_blocks', str(snake_case ), 'resnets', str(snake_case ), path['new']] ) lowercase__: List[Any] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __lowerCAmelCase = json.loads(f.read()) __lowerCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __lowerCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __lowerCAmelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __lowerCAmelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __lowerCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
335
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : int = BarthezTokenizer __lowercase : Any = BarthezTokenizerFast __lowercase : Dict = True __lowercase : Optional[int] = True def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' super().setUp() __snake_case = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = '''<pad>''' __snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_1122 ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __snake_case = [0, 57, 3018, 7_0307, 91, 2] __snake_case = self.tokenizer( __SCREAMING_SNAKE_CASE , max_length=len(__SCREAMING_SNAKE_CASE ) , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __snake_case = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = {'''input_ids''': [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __snake_case = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__SCREAMING_SNAKE_CASE , )
24
from __future__ import annotations def UpperCAmelCase_ ( UpperCAmelCase__ ): if len(UpperCAmelCase__ ) == 0: return [] lowercase_ , lowercase_ = min(UpperCAmelCase__ ), max(UpperCAmelCase__ ) lowercase_ = int(max_value - min_value ) + 1 lowercase_ = [[] for _ in range(UpperCAmelCase__ )] for i in my_list: buckets[int(i - min_value )].append(UpperCAmelCase__ ) return [v for bucket in buckets for v in sorted(UpperCAmelCase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
412
0
import json import sys def __lowerCAmelCase ( A , A ): with open(__snake_case , encoding="utf-8" ) as f: UpperCAmelCase_ = json.load(__snake_case ) UpperCAmelCase_ = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(__snake_case ): UpperCAmelCase_ = results[benchmark_name] UpperCAmelCase_ = benchmark_name.split("/" )[-1] output_md.append(F"### Benchmark: {benchmark_file_name}" ) UpperCAmelCase_ = "| metric |" UpperCAmelCase_ = "|--------|" UpperCAmelCase_ = "| new / old (diff) |" for metric_name in sorted(__snake_case ): UpperCAmelCase_ = benchmark_res[metric_name] UpperCAmelCase_ = metric_vals["new"] UpperCAmelCase_ = metric_vals.get("old" , __snake_case ) UpperCAmelCase_ = metric_vals.get("diff" , __snake_case ) UpperCAmelCase_ = F" {new_val:f}" if isinstance(__snake_case , (int, float) ) else "None" if old_val is not None: val_str += F" / {old_val:f}" if isinstance(__snake_case , (int, float) ) else "None" if dif_val is not None: val_str += F" ({dif_val:f})" if isinstance(__snake_case , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>" ) with open(__snake_case , "w" , encoding="utf-8" ) as f: f.writelines("\n".join(__snake_case ) ) if __name__ == "__main__": _a: List[str] = sys.argv[1] _a: int = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
712
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a: str = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __UpperCamelCase ( lowercase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ReformerTokenizer SCREAMING_SNAKE_CASE__ = ReformerTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = True def __A ( self : Dict ): '''simple docstring''' super().setUp() UpperCAmelCase_ = ReformerTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = "<s>" UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase ) , lowerCAmelCase ) def __A ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCAmelCase ) , 1_000 ) def __A ( self : List[Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __A ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = "I was born in 92000, and this is falsé." UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __A ( self : List[Any] , lowerCAmelCase : Optional[int]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) # Simple input UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCAmelCase_ = ("This is a simple input", "This is a pair") UpperCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , ) def __A ( self : Union[str, Any] ): '''simple docstring''' pass def __A ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = ReformerTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(lowerCAmelCase ) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def __A ( self : int ): '''simple docstring''' return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def __A ( self : str ): '''simple docstring''' UpperCAmelCase_ = "Hello World!" UpperCAmelCase_ = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @slow def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) UpperCAmelCase_ = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase ) ) @require_torch @slow def __A ( self : Tuple ): '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ = " ".join(lowerCAmelCase ) UpperCAmelCase_ = self.big_tokenizer.encode_plus(lowerCAmelCase , return_tensors="pt" ) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) UpperCAmelCase_ = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) UpperCAmelCase_ = encoded_sequence["input_ids"].shape UpperCAmelCase_ = ReformerModel(lowerCAmelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase ) model(**lowerCAmelCase ) @slow def __A ( self : Any ): '''simple docstring''' UpperCAmelCase_ = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 UpperCAmelCase_ = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=lowerCAmelCase , sequences=lowerCAmelCase , )
268
0