code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from heapq import heappop, heappush import numpy as np def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case , ) -> tuple[float | int, list[tuple[int, int]]]: __lowercase = grid.shape __lowercase = [-1, 1, 0, 0] __lowercase = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] __lowercase = [(0, source)], set() __lowercase = np.full((rows, cols) , np.inf ) __lowercase = 0 __lowercase = np.empty((rows, cols) , dtype=_lowerCAmelCase ) __lowercase = None while queue: (__lowercase) = heappop(_lowerCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: __lowercase = [] while (x, y) != source: path.append((x, y) ) __lowercase = predecessors[x, y] path.append(_lowerCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_lowerCAmelCase ) ): __lowercase = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: __lowercase = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_lowerCAmelCase , (dist + 1, (nx, ny)) ) __lowercase = dist + 1 __lowercase = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
375
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=13, lowerCamelCase__=7, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=99, lowerCamelCase__=32, lowerCamelCase__=5, lowerCamelCase__=4, lowerCamelCase__=37, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=50, lowerCamelCase__=0.02, lowerCamelCase__=True, lowerCamelCase__=None, ): A : List[str] = parent A : List[str] = batch_size A : Optional[int] = seq_length A : Optional[int] = is_training A : Tuple = use_input_mask A : Optional[Any] = vocab_size A : str = hidden_size A : Any = num_hidden_layers A : List[Any] = num_attention_heads A : Optional[int] = intermediate_size A : int = hidden_act A : Dict = hidden_dropout_prob A : Optional[Any] = attention_probs_dropout_prob A : List[Any] = max_position_embeddings A : int = initializer_range A : Tuple = use_labels A : List[str] = scope def _lowerCAmelCase ( self ): A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) A : int = None if self.use_input_mask: A : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: A : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) A : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def _lowerCAmelCase ( self ): return BertGenerationConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, is_decoder=lowerCamelCase__, initializer_range=self.initializer_range, ) def _lowerCAmelCase ( self ): ( ( A ) , ( A ) , ( A ) , ( A ) , ) : List[Any] = self.prepare_config_and_inputs() A : Any = True A : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__, ): A : str = BertGenerationEncoder(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A : Optional[int] = model(lowerCamelCase__, attention_mask=lowerCamelCase__ ) A : List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__, ): A : List[str] = True A : Union[str, Any] = BertGenerationEncoder(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A : Any = model( lowerCamelCase__, attention_mask=lowerCamelCase__, encoder_hidden_states=lowerCamelCase__, encoder_attention_mask=lowerCamelCase__, ) A : Optional[Any] = model( lowerCamelCase__, attention_mask=lowerCamelCase__, encoder_hidden_states=lowerCamelCase__, ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, **lowerCamelCase__, ): A : Union[str, Any] = True A : Optional[int] = True A : Optional[int] = BertGenerationDecoder(config=lowerCamelCase__ ).to(lowerCamelCase__ ).eval() # first forward pass A : int = model( lowerCamelCase__, attention_mask=lowerCamelCase__, encoder_hidden_states=lowerCamelCase__, encoder_attention_mask=lowerCamelCase__, use_cache=lowerCamelCase__, ) A : List[str] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A : Optional[Any] = ids_tensor((self.batch_size, 3), config.vocab_size ) A : int = ids_tensor((self.batch_size, 3), vocab_size=2 ) # append to next input_ids and A : List[str] = torch.cat([input_ids, next_tokens], dim=-1 ) A : Union[str, Any] = torch.cat([input_mask, next_mask], dim=-1 ) A : List[str] = model( lowerCamelCase__, attention_mask=lowerCamelCase__, encoder_hidden_states=lowerCamelCase__, encoder_attention_mask=lowerCamelCase__, output_hidden_states=lowerCamelCase__, )["""hidden_states"""][0] A : Any = model( lowerCamelCase__, attention_mask=lowerCamelCase__, encoder_hidden_states=lowerCamelCase__, encoder_attention_mask=lowerCamelCase__, past_key_values=lowerCamelCase__, output_hidden_states=lowerCamelCase__, )["""hidden_states"""][0] # select random slice A : Any = ids_tensor((1,), output_from_past.shape[-1] ).item() A : Tuple = output_from_no_past[:, -3:, random_slice_idx].detach() A : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=1e-3 ) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, *lowerCamelCase__, ): A : Optional[int] = BertGenerationDecoder(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() A : List[str] = model(lowerCamelCase__, attention_mask=lowerCamelCase__, labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self ): A , A , A , A : str = self.prepare_config_and_inputs() A : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Any = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () __lowerCamelCase : int = (BertGenerationDecoder,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def _lowerCAmelCase ( self ): A : Any = BertGenerationEncoderTester(self ) A : Optional[int] = ConfigTester(self, config_class=lowerCamelCase__, hidden_size=37 ) def _lowerCAmelCase ( self ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _lowerCAmelCase ( self ): A , A , A , A : Optional[Any] = self.model_tester.prepare_config_and_inputs() A : Any = """bert""" self.model_tester.create_and_check_model(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*lowerCamelCase__ ) def _lowerCAmelCase ( self ): # This regression test was failing with PyTorch < 1.3 ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() A : int = None self.model_tester.create_and_check_model_as_decoder( lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, ) def _lowerCAmelCase ( self ): A : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*lowerCamelCase__ ) @slow def _lowerCAmelCase ( self ): A : Tuple = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): A : Optional[int] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) A : Optional[int] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): A : Union[str, Any] = model(lowerCamelCase__ )[0] A : List[Any] = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape, lowerCamelCase__ ) A : Tuple = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCamelCase__, atol=1e-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def _lowerCAmelCase ( self ): A : Optional[Any] = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) A : List[Any] = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 1_0140, 102]] ) with torch.no_grad(): A : Dict = model(lowerCamelCase__ )[0] A : List[str] = torch.Size([1, 8, 5_0358] ) self.assertEqual(output.shape, lowerCamelCase__ ) A : Optional[Any] = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], lowerCamelCase__, atol=1e-4 ) )
662
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''', type=_lowercase, default=1, help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''', type=_lowercase, help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ), ) # rest from the training program parser.add_argument('''training_script_args''', nargs=_lowercase ) return parser.parse_args() def lowerCamelCase_ ( ): '''simple docstring''' UpperCamelCase__ = parse_args() # Import training_script as a module. UpperCamelCase__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase__ = script_fpath.stem UpperCamelCase__ = importlib.import_module(_lowercase ) # Patch sys.argv UpperCamelCase__ = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
718
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowercase = get_logger() lowercase = None class __lowercase ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): '''simple docstring''' def __init__( self : List[str] , _a : Optional[Any]=None , _a : Any=None , **_a : List[Any] ): super().__init__(features=_a ) import jax from jaxlib.xla_client import Device if isinstance(_a , _a ): raise ValueError( F"""Expected {device} to be a `str` not {type(_a )}, as `jaxlib.xla_extension.Device` """ '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) UpperCamelCase__ = device if isinstance(_a , _a ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) UpperCamelCase__ = str(jax.devices()[0] ) UpperCamelCase__ = jnp_array_kwargs @staticmethod def A_ ( ): import jax return {str(_a ): device for device in jax.devices()} def A_ ( self : Optional[int] , _a : Tuple ): import jax import jax.numpy as jnp if isinstance(_a , _a ) and column: if all( isinstance(_a , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_a , axis=0 ) return column def A_ ( self : Optional[int] , _a : List[Any] ): import jax import jax.numpy as jnp if isinstance(_a , (str, bytes, type(_a )) ): return value elif isinstance(_a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase__ = {} if isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase__ = {'''dtype''': jnp.intaa} else: UpperCamelCase__ = {'''dtype''': jnp.intaa} elif isinstance(_a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase__ = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_a , PIL.Image.Image ): UpperCamelCase__ = np.asarray(_a ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase__ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_a , **{**default_dtype, **self.jnp_array_kwargs} ) def A_ ( self : Optional[Any] , _a : Any ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_a , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_a , '''__array__''' ) and not isinstance(_a , jax.Array ): UpperCamelCase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_a , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) elif isinstance(_a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_a ) for substruct in data_struct] ) return self._tensorize(_a ) def A_ ( self : int , _a : dict ): return map_nested(self._recursive_tensorize , _a , map_list=_a ) def A_ ( self : List[Any] , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_row(_a ) UpperCamelCase__ = self.python_features_decoder.decode_row(_a ) return self.recursive_tensorize(_a ) def A_ ( self : Optional[int] , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_column(_a ) UpperCamelCase__ = self.python_features_decoder.decode_column(_a , pa_table.column_names[0] ) UpperCamelCase__ = self.recursive_tensorize(_a ) UpperCamelCase__ = self._consolidate(_a ) return column def A_ ( self : int , _a : pa.Table ): UpperCamelCase__ = self.numpy_arrow_extractor().extract_batch(_a ) UpperCamelCase__ = self.python_features_decoder.decode_batch(_a ) UpperCamelCase__ = self.recursive_tensorize(_a ) for column_name in batch: UpperCamelCase__ = self._consolidate(batch[column_name] ) return batch
591
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _a : List[Any] = logging.get_logger(__name__) # General docstring _a : Union[str, Any] = "MobileNetV1Config" # Base docstring _a : int = "google/mobilenet_v1_1.0_224" _a : Any = [1, 1_024, 7, 7] # Image classification docstring _a : Any = "google/mobilenet_v1_1.0_224" _a : Tuple = "tabby, tabby cat" _a : Tuple = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _a (lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Tuple=None ) -> Optional[int]: """simple docstring""" __snake_case = {} if isinstance(lowercase__ , lowercase__ ): __snake_case = model.mobilenet_va else: __snake_case = model __snake_case = 'MobilenetV1/Conv2d_0/' __snake_case = backbone.conv_stem.convolution.weight __snake_case = backbone.conv_stem.normalization.bias __snake_case = backbone.conv_stem.normalization.weight __snake_case = backbone.conv_stem.normalization.running_mean __snake_case = backbone.conv_stem.normalization.running_var for i in range(1_3 ): __snake_case = i + 1 __snake_case = i * 2 __snake_case = backbone.layer[pt_index] __snake_case = f'MobilenetV1/Conv2d_{tf_index}_depthwise/' __snake_case = pointer.convolution.weight __snake_case = pointer.normalization.bias __snake_case = pointer.normalization.weight __snake_case = pointer.normalization.running_mean __snake_case = pointer.normalization.running_var __snake_case = backbone.layer[pt_index + 1] __snake_case = f'MobilenetV1/Conv2d_{tf_index}_pointwise/' __snake_case = pointer.convolution.weight __snake_case = pointer.normalization.bias __snake_case = pointer.normalization.weight __snake_case = pointer.normalization.running_mean __snake_case = pointer.normalization.running_var if isinstance(lowercase__ , lowercase__ ): __snake_case = 'MobilenetV1/Logits/Conv2d_1c_1x1/' __snake_case = model.classifier.weight __snake_case = model.classifier.bias return tf_to_pt_map def _a (lowercase__ : List[str] , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> str: """simple docstring""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model __snake_case = tf.train.list_variables(lowercase__ ) __snake_case = {} for name, shape in init_vars: logger.info(f'Loading TF weight {name} with shape {shape}' ) __snake_case = tf.train.load_variable(lowercase__ , lowercase__ ) __snake_case = array # Build TF to PyTorch weights loading map __snake_case = _build_tf_to_pytorch_map(lowercase__ , lowercase__ , lowercase__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'Importing {name}' ) if name not in tf_weights: logger.info(f'{name} not in tf pre-trained weights, skipping' ) continue __snake_case = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) __snake_case = np.transpose(lowercase__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer __snake_case = array.squeeze().transpose() else: __snake_case = np.transpose(lowercase__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(f'Initialize PyTorch weight {name} {array.shape}' ) __snake_case = torch.from_numpy(lowercase__ ) tf_weights.pop(lowercase__ , lowercase__ ) tf_weights.pop(name + '/RMSProp' , lowercase__ ) tf_weights.pop(name + '/RMSProp_1' , lowercase__ ) tf_weights.pop(name + '/ExponentialMovingAverage' , lowercase__ ) logger.info(f'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def _a (lowercase__ : torch.Tensor , lowercase__ : nn.Convad ) -> torch.Tensor: """simple docstring""" __snake_case , __snake_case = features.shape[-2:] __snake_case , __snake_case = conv_layer.stride __snake_case , __snake_case = conv_layer.kernel_size if in_height % stride_height == 0: __snake_case = max(kernel_height - stride_height , 0 ) else: __snake_case = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: __snake_case = max(kernel_width - stride_width , 0 ) else: __snake_case = max(kernel_width - (in_width % stride_width) , 0 ) __snake_case = pad_along_width // 2 __snake_case = pad_along_width - pad_left __snake_case = pad_along_height // 2 __snake_case = pad_along_height - pad_top __snake_case = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowercase__ , lowercase__ , 'constant' , 0.0 ) class _lowercase ( nn.Module ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Optional[bool] = True , SCREAMING_SNAKE_CASE_ : Optional[bool or str] = True , ) -> None: super().__init__() __snake_case = config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) __snake_case = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __snake_case = nn.Convad( in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ , padding_mode='zeros' , ) if use_normalization: __snake_case = nn.BatchNormad( num_features=SCREAMING_SNAKE_CASE_ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=SCREAMING_SNAKE_CASE_ , track_running_stats=SCREAMING_SNAKE_CASE_ , ) else: __snake_case = None if use_activation: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = ACTaFN[use_activation] elif isinstance(config.hidden_act , SCREAMING_SNAKE_CASE_ ): __snake_case = ACTaFN[config.hidden_act] else: __snake_case = config.hidden_act else: __snake_case = None def a ( self : List[str] , SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor: if self.config.tf_padding: __snake_case = apply_tf_padding(SCREAMING_SNAKE_CASE_ , self.convolution ) __snake_case = self.convolution(SCREAMING_SNAKE_CASE_ ) if self.normalization is not None: __snake_case = self.normalization(SCREAMING_SNAKE_CASE_ ) if self.activation is not None: __snake_case = self.activation(SCREAMING_SNAKE_CASE_ ) return features class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Tuple = MobileNetVaConfig _SCREAMING_SNAKE_CASE : Optional[Any] = load_tf_weights_in_mobilenet_va _SCREAMING_SNAKE_CASE : Any = "mobilenet_v1" _SCREAMING_SNAKE_CASE : Optional[Any] = "pixel_values" _SCREAMING_SNAKE_CASE : List[Any] = False def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[nn.Linear, nn.Convad] ) -> None: if isinstance(SCREAMING_SNAKE_CASE_ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _a : Optional[Any] = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _a : str = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , __lowercase , ) class _lowercase ( __lowercase ): def __init__( self : str , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig , SCREAMING_SNAKE_CASE_ : bool = True ) -> Any: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config __snake_case = 32 __snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) __snake_case = MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=config.num_channels , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=2 , ) __snake_case = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __snake_case = nn.ModuleList() for i in range(13 ): __snake_case = out_channels if strides[i] == 2 or i == 0: depth *= 2 __snake_case = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=3 , stride=strides[i] , groups=SCREAMING_SNAKE_CASE_ , ) ) self.layer.append( MobileNetVaConvLayer( SCREAMING_SNAKE_CASE_ , in_channels=SCREAMING_SNAKE_CASE_ , out_channels=SCREAMING_SNAKE_CASE_ , kernel_size=1 , ) ) __snake_case = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int ) -> Dict: raise NotImplementedError @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: __snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) __snake_case = self.conv_stem(SCREAMING_SNAKE_CASE_ ) __snake_case = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __snake_case = layer_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: __snake_case = all_hidden_states + (hidden_states,) __snake_case = hidden_states if self.pooler is not None: __snake_case = torch.flatten(self.pooler(SCREAMING_SNAKE_CASE_ ) , start_dim=1 ) else: __snake_case = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , __lowercase , ) class _lowercase ( __lowercase ): def __init__( self : int , SCREAMING_SNAKE_CASE_ : MobileNetVaConfig ) -> None: super().__init__(SCREAMING_SNAKE_CASE_ ) __snake_case = config.num_labels __snake_case = MobileNetVaModel(SCREAMING_SNAKE_CASE_ ) __snake_case = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __snake_case = nn.Dropout(config.classifier_dropout_prob , inplace=SCREAMING_SNAKE_CASE_ ) __snake_case = nn.Linear(SCREAMING_SNAKE_CASE_ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[torch.Tensor] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: __snake_case = return_dict if return_dict is not None else self.config.use_return_dict __snake_case = self.mobilenet_va(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ ) __snake_case = outputs.pooler_output if return_dict else outputs[1] __snake_case = self.classifier(self.dropout(SCREAMING_SNAKE_CASE_ ) ) __snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __snake_case = 'single_label_classification' else: __snake_case = 'multi_label_classification' if self.config.problem_type == "regression": __snake_case = MSELoss() if self.num_labels == 1: __snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif self.config.problem_type == "single_label_classification": __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __snake_case = BCEWithLogitsLoss() __snake_case = loss_fct(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not return_dict: __snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states , )
56
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
339
0
from __future__ import annotations import os from typing import Any import requests UpperCamelCase_ = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCamelCase_ = BASE_URL + '''/user''' # https://github.com/settings/tokens UpperCamelCase_ = os.environ.get('''USER_TOKEN''', '''''') def lowerCamelCase_ ( _a : str ): '''simple docstring''' UpperCAmelCase_ : int = { """Authorization""": F'''token {auth_token}''', """Accept""": """application/vnd.github.v3+json""", } return requests.get(_a , headers=_a ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F"{key}: {value}") else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
716
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel UpperCamelCase_ = HfApi() UpperCamelCase_ = {} # fmt: off UpperCamelCase_ = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) UpperCamelCase_ = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) UpperCamelCase_ = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) UpperCamelCase_ = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) UpperCamelCase_ = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) UpperCamelCase_ = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) UpperCamelCase_ = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) UpperCamelCase_ = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) UpperCamelCase_ = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) UpperCamelCase_ = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) UpperCamelCase_ = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) UpperCamelCase_ = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) UpperCamelCase_ = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) UpperCamelCase_ = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) UpperCamelCase_ = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on UpperCamelCase_ = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": UpperCamelCase_ = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(F"Started running {mod.modelId}!!!") if mod.modelId.startswith('''CompVis'''): UpperCamelCase_ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: UpperCamelCase_ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) UpperCamelCase_ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) UpperCamelCase_ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): UpperCamelCase_ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(F"{mod.modelId} has passed successfully!!!")
322
0
'''simple docstring''' import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class _A ( nn.Module ): def __init__( self : List[str] ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : List[Any] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : Optional[Any] = nn.Linear(4 , 5 ) def lowercase__ ( self : str , __magic_name__ : Dict ) -> List[str]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__magic_name__ ) ) ) class _A ( __lowercase ): def lowercase__ ( self : List[str] , __magic_name__ : Tuple , *__magic_name__ : Dict , **__magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class _A ( __lowercase ): def lowercase__ ( self : str , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple ) -> Union[str, Any]: """simple docstring""" return output + 1 class _A ( unittest.TestCase ): def lowercase__ ( self : Dict ) -> Any: """simple docstring""" __snake_case : int = ModelForTest() __snake_case : Tuple = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) self.assertEqual(test_model._hf_hook , __magic_name__ ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : Tuple ) -> List[str]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Optional[int] = ModelHook() add_hook_to_module(__magic_name__ , __magic_name__ ) add_hook_to_module(__magic_name__ , __magic_name__ , append=__magic_name__ ) self.assertEqual(isinstance(test_model._hf_hook , __magic_name__ ) , __magic_name__ ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__magic_name__ , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__magic_name__ ) self.assertFalse(hasattr(__magic_name__ , """_hf_hook""" ) ) self.assertFalse(hasattr(__magic_name__ , """_old_forward""" ) ) def lowercase__ ( self : str ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = ModelForTest() __snake_case : Any = torch.randn(2 , 3 ) __snake_case : str = test_model(x + 1 ) __snake_case : int = test_model(x + 2 ) __snake_case : Union[str, Any] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Optional[int] = PreForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : Optional[int] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[str] = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , __magic_name__ , atol=1E-5 ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : str = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Any = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __snake_case : Any = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : Dict = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 , atol=1E-5 ) ) # You need to use the sequential hook to chain two or more hooks __snake_case : str = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : int = test_model(__magic_name__ ) assert torch.allclose(__magic_name__ , output + 2 , atol=1E-5 ) def lowercase__ ( self : str ) -> int: """simple docstring""" __snake_case : Union[str, Any] = ModelForTest() __snake_case : int = torch.randn(2 , 3 ) __snake_case : Any = test_model(__magic_name__ ) __snake_case : Dict = PostForwardHook() add_hook_to_module(__magic_name__ , __magic_name__ ) __snake_case : List[Any] = test_model(__magic_name__ ) self.assertTrue(torch.allclose(__magic_name__ , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __snake_case : Dict = True __snake_case : int = test_model(__magic_name__ ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowercase__ ( self : Tuple ) -> List[Any]: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Union[str, Any] = model(__magic_name__ ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__magic_name__ , AlignDevicesHook(io_same_device=__magic_name__ ) ) __snake_case : Tuple = torch.randn(2 , 3 ).to(0 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , torch.device(0 ) ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" __snake_case : int = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : List[str] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Any = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Any = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __snake_case : int = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__magic_name__ ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__magic_name__ ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : str = torch.randn(2 , 3 ) __snake_case : str = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Dict ) -> str: """simple docstring""" __snake_case : Tuple = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : Union[str, Any] = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : Union[str, Any] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Optional[int] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , offload_buffers=__magic_name__ ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : Dict = torch.randn(2 , 3 ) __snake_case : Optional[int] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __snake_case : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __snake_case : List[str] = torch.device(__magic_name__ ) self.assertEqual(model.batchnorm.running_mean.device , __magic_name__ ) __snake_case : Tuple = torch.randn(2 , 3 ) __snake_case : Optional[Any] = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __magic_name__ , execution_device=__magic_name__ , offload=__magic_name__ , weights_map=model.state_dict() , offload_buffers=__magic_name__ , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __snake_case : List[str] = torch.randn(2 , 3 ) __snake_case : Dict = model(__magic_name__ ) self.assertEqual(output.device , __magic_name__ ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__magic_name__ ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
26
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _a (_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = StableDiffusionControlNetImgaImgPipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'}) SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self ) -> str: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=A__ , set_alpha_to_one=A__ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(A__ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase ( self , A__ , A__=0 ) -> str: if str(A__ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(A__ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=A__ ).manual_seed(A__ ) _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A__ , device=torch.device(A__ ) , ) _SCREAMING_SNAKE_CASE = floats_tensor(control_image.shape , rng=random.Random(A__ ) ).to(A__ ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(A__ ) ).convert("""RGB""" ).resize((64, 64) ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def UpperCamelCase ( self ) -> str: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase ( self ) -> Any: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = StableDiffusionControlNetImgaImgPipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(A__ ): if isinstance(A__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _SCREAMING_SNAKE_CASE = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(A__ ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(A__ ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=A__ , set_alpha_to_one=A__ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(A__ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = MultiControlNetModel([controlneta, controlneta] ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase ( self , A__ , A__=0 ) -> Optional[int]: if str(A__ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(A__ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=A__ ).manual_seed(A__ ) _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A__ , device=torch.device(A__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=A__ , device=torch.device(A__ ) , ), ] _SCREAMING_SNAKE_CASE = floats_tensor(control_image[0].shape , rng=random.Random(A__ ) ).to(A__ ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(A__ ) ).convert("""RGB""" ).resize((64, 64) ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**A__ ) pipe.to(A__ ) _SCREAMING_SNAKE_CASE = 10.0 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(A__ ) _SCREAMING_SNAKE_CASE = steps _SCREAMING_SNAKE_CASE = scale _SCREAMING_SNAKE_CASE = pipe(**A__ )[0] _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(A__ ) _SCREAMING_SNAKE_CASE = steps _SCREAMING_SNAKE_CASE = scale _SCREAMING_SNAKE_CASE = pipe(**A__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(A__ ) _SCREAMING_SNAKE_CASE = steps _SCREAMING_SNAKE_CASE = scale _SCREAMING_SNAKE_CASE = pipe(**A__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(A__ ) _SCREAMING_SNAKE_CASE = steps _SCREAMING_SNAKE_CASE = scale _SCREAMING_SNAKE_CASE = pipe(**A__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def UpperCamelCase ( self ) -> List[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase ( self ) -> Tuple: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(A__ ) except NotImplementedError: pass @slow @require_torch_gpu class _a (unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) _SCREAMING_SNAKE_CASE = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=A__ , controlnet=A__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=A__ ) _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = """evil space-punk bird""" _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((5_12, 5_12) ) _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((5_12, 5_12) ) _SCREAMING_SNAKE_CASE = pipe( A__ , A__ , control_image=A__ , generator=A__ , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (5_12, 5_12, 3) _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
591
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = {} snake_case_ = tokenizer(example['content'] , truncation=UpperCamelCase__ )['input_ids'] snake_case_ = len(example['content'] ) / len(output['input_ids'] ) return output _UpperCAmelCase : str = HfArgumentParser(PretokenizationArguments) _UpperCAmelCase : Optional[int] = parser.parse_args() if args.num_workers is None: _UpperCAmelCase : str = multiprocessing.cpu_count() _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(args.tokenizer_dir) _UpperCAmelCase : List[Any] = time.time() _UpperCAmelCase : int = load_dataset(args.dataset_name, split="""train""") print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') _UpperCAmelCase : List[Any] = time.time() _UpperCAmelCase : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') _UpperCAmelCase : List[Any] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
702
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=1 / 255 , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , snake_case=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p snake_case_ = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_rescale snake_case_ = rescale_factor snake_case_ = do_normalize snake_case_ = image_mean snake_case_ = image_std snake_case_ = do_pad def a ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def a ( self , snake_case , snake_case=False ): if not batched: snake_case_ = image_inputs[0] if isinstance(snake_case , Image.Image ): snake_case_ , snake_case_ = image.size else: snake_case_ , snake_case_ = image.shape[1], image.shape[2] if w < h: snake_case_ = int(self.size['shortest_edge'] * h / w ) snake_case_ = self.size['shortest_edge'] elif w > h: snake_case_ = self.size['shortest_edge'] snake_case_ = int(self.size['shortest_edge'] * w / h ) else: snake_case_ = self.size['shortest_edge'] snake_case_ = self.size['shortest_edge'] else: snake_case_ = [] for image in image_inputs: snake_case_ , snake_case_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ = max(snake_case , key=lambda snake_case : item[0] )[0] snake_case_ = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = DetrImageProcessor if is_vision_available() else None def a ( self ): snake_case_ = DetrImageProcessingTester(self ) @property def a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def a ( self ): snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_rescale' ) ) self.assertTrue(hasattr(snake_case , 'rescale_factor' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) self.assertTrue(hasattr(snake_case , 'do_pad' ) ) def a ( self ): snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , snake_case ) snake_case_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , snake_case ) def a ( self ): pass def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def a ( self ): # Initialize image_processing snake_case_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input snake_case_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ = image_processing(snake_case , return_tensors='pt' ).pixel_values snake_case_ , snake_case_ = self.image_processor_tester.get_expected_values(snake_case , batched=snake_case ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def a ( self ): # prepare image and target snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'image_id': 3_9769, 'annotations': target} # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) ) @slow def a ( self ): # prepare image, target and masks_path snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: snake_case_ = json.loads(f.read() ) snake_case_ = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} snake_case_ = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them snake_case_ = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) snake_case_ = image_processing(images=snake_case , annotations=snake_case , masks_path=snake_case , return_tensors='pt' ) # verify pixel values snake_case_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , snake_case ) snake_case_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , snake_case , atol=1e-4 ) ) # verify area snake_case_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , snake_case ) ) # verify boxes snake_case_ = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , snake_case ) snake_case_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , snake_case , atol=1e-3 ) ) # verify image_id snake_case_ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , snake_case ) ) # verify is_crowd snake_case_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , snake_case ) ) # verify class_labels snake_case_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , snake_case ) ) # verify masks snake_case_ = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , snake_case ) # verify orig_size snake_case_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , snake_case ) ) # verify size snake_case_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , snake_case ) )
108
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _lowercase : lowercase = 4_2 lowercase = None lowercase = None def __lowercase ( ): UpperCamelCase_ : Any = Node(1 ) UpperCamelCase_ : Optional[Any] = Node(2 ) UpperCamelCase_ : Optional[int] = Node(3 ) UpperCamelCase_ : Any = Node(4 ) UpperCamelCase_ : List[Any] = Node(5 ) return tree def __lowercase ( lowerCamelCase : Node | None ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def __lowercase ( lowerCamelCase : Node | None ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def __lowercase ( lowerCamelCase : Node | None ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def __lowercase ( lowerCamelCase : Node | None ): return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def __lowercase ( lowerCamelCase : Node | None ): UpperCamelCase_ : list[Any] = [] if root is None: return output UpperCamelCase_ : List[str] = deque([root] ) while process_queue: UpperCamelCase_ : Tuple = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def __lowercase ( lowerCamelCase : Node | None , lowerCamelCase : int ): UpperCamelCase_ : list[Any] = [] def populate_output(lowerCamelCase : Node | None , lowerCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCamelCase , lowerCamelCase ) return output def __lowercase ( lowerCamelCase : Node | None , lowerCamelCase : int ): UpperCamelCase_ : list[Any] = [] def populate_output(lowerCamelCase : Node | None , lowerCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCamelCase , lowerCamelCase ) return output def __lowercase ( lowerCamelCase : Node | None ): if root is None: return [] UpperCamelCase_ : list[Sequence[Node | None]] = [] UpperCamelCase_ : List[Any] = 0 UpperCamelCase_ : str = height(lowerCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_ : Any = 1 else: output.append(get_nodes_from_right_to_left(lowerCamelCase , lowerCamelCase ) ) UpperCamelCase_ : Tuple = 0 return output def __lowercase ( ): # Main function for testing. UpperCamelCase_ : Optional[int] = make_tree() print(F"In-order Traversal: {inorder(lowerCamelCase )}" ) print(F"Pre-order Traversal: {preorder(lowerCamelCase )}" ) print(F"Post-order Traversal: {postorder(lowerCamelCase )}" , '\n' ) print(F"Height of Tree: {height(lowerCamelCase )}" , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(lowerCamelCase ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(lowerCamelCase ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(lowerCamelCase , level=lowerCamelCase ) ) print('\nZigZag order Traversal: ' ) print(zigzag(lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
417
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
348
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): lowercase = IFImgaImgSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} lowercase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) lowercase = PipelineTesterMixin.required_optional_params - {'''latents'''} def snake_case__( self ) -> Union[str, Any]: return self._get_superresolution_dummy_components() def snake_case__( self , lowercase , lowercase=0 ) -> Any: if str(lowercase ).startswith('''mps''' ): _a : Union[str, Any] = torch.manual_seed(lowercase ) else: _a : List[str] = torch.Generator(device=lowercase ).manual_seed(lowercase ) _a : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) _a : Optional[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(lowercase ) ).to(lowercase ) _a : Union[str, Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case__( self ) -> int: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case__( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def snake_case__( self ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case__( self ) -> int: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case__( self ) -> List[Any]: self._test_save_load_local() def snake_case__( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
307
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging __lowerCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def UpperCamelCase__ ( UpperCAmelCase , UpperCAmelCase ) -> Dict: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _a : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCAmelCase ) _a , _a : List[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCAmelCase , output_loading_info=UpperCAmelCase ) else: _a : Optional[Any] = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCAmelCase ) _a , _a : str = ProphetNetForConditionalGeneration.from_pretrained( UpperCAmelCase , output_loading_info=UpperCAmelCase ) _a : Optional[Any] = ['''key_proj''', '''value_proj''', '''query_proj'''] _a : int = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: _a : Dict = key.split('''.''' ) if attributes[0] == "lm_head": _a : List[Any] = prophet _a : Dict = prophet_old else: _a : List[Any] = prophet.prophetnet _a : List[str] = prophet_old.model _a : int = False for attribute in attributes: if attribute in mapping: _a : Optional[int] = mapping[attribute] if not hasattr(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) > 0: _a : Optional[Any] = attribute elif hasattr(UpperCAmelCase , UpperCAmelCase ): _a : Dict = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _a : str = old_model.weight logger.info(F'{attribute} is initialized.' ) _a : int = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _a : Optional[Any] = old_model.bias logger.info(F'{attribute} is initialized' ) _a : List[str] = True break elif attribute in special_keys and hasattr(UpperCAmelCase , '''in_proj_weight''' ): _a : List[Any] = old_model.in_proj_weight.shape[0] // 3 _a : int = getattr(UpperCAmelCase , UpperCAmelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _a : str = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _a : Dict = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _a : Any = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _a : List[str] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _a : int = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _a : Tuple = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _a : Any = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _a : Union[str, Any] = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _a : str = True break if attribute.isdigit(): _a : str = model[int(UpperCAmelCase )] _a : Any = old_model[int(UpperCAmelCase )] else: _a : int = getattr(UpperCAmelCase , UpperCAmelCase ) if old_attribute == "": _a : Optional[Any] = old_model else: if not hasattr(UpperCAmelCase , UpperCAmelCase ): raise ValueError(F'{old_model} does not have {old_attribute}' ) _a : Tuple = getattr(UpperCAmelCase , UpperCAmelCase ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
307
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase : """simple docstring""" def __init__( self , _snake_case , ) -> Optional[Any]: _UpperCamelCase : List[Any] = parent _UpperCamelCase : str = 13 _UpperCamelCase : Optional[int] = 7 _UpperCamelCase : Dict = True _UpperCamelCase : Dict = True _UpperCamelCase : List[str] = False _UpperCamelCase : List[str] = True _UpperCamelCase : List[Any] = 99 _UpperCamelCase : Optional[int] = 32 _UpperCamelCase : Optional[int] = 2 _UpperCamelCase : Optional[Any] = 4 _UpperCamelCase : Optional[Any] = 37 _UpperCamelCase : str = '''gelu''' _UpperCamelCase : str = 0.1 _UpperCamelCase : Union[str, Any] = 0.1 _UpperCamelCase : List[Any] = 512 _UpperCamelCase : Any = 16 _UpperCamelCase : Any = 2 _UpperCamelCase : Optional[Any] = 0.02 _UpperCamelCase : str = 3 _UpperCamelCase : Optional[int] = 4 _UpperCamelCase : Any = None def _lowercase ( self ) -> Any: _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase : List[Any] = None if self.use_input_mask: _UpperCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase : List[Any] = None _UpperCamelCase : str = None _UpperCamelCase : List[str] = None if self.use_labels: _UpperCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase : str = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: _UpperCamelCase : Any = TFDistilBertModel(config=_snake_case ) _UpperCamelCase : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase : Optional[int] = model(_snake_case ) _UpperCamelCase : List[Any] = [input_ids, input_mask] _UpperCamelCase : Union[str, Any] = model(_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[Any]: _UpperCamelCase : int = TFDistilBertForMaskedLM(config=_snake_case ) _UpperCamelCase : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase : Any = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> List[str]: _UpperCamelCase : str = TFDistilBertForQuestionAnswering(config=_snake_case ) _UpperCamelCase : List[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } _UpperCamelCase : Any = model(_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Dict: _UpperCamelCase : List[Any] = self.num_labels _UpperCamelCase : str = TFDistilBertForSequenceClassification(_snake_case ) _UpperCamelCase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase : List[str] = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[int]: _UpperCamelCase : int = self.num_choices _UpperCamelCase : Dict = TFDistilBertForMultipleChoice(_snake_case ) _UpperCamelCase : Tuple = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase : str = tf.tile(tf.expand_dims(_snake_case , 1 ) , (1, self.num_choices, 1) ) _UpperCamelCase : str = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } _UpperCamelCase : Optional[int] = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) -> Optional[int]: _UpperCamelCase : List[Any] = self.num_labels _UpperCamelCase : Optional[int] = TFDistilBertForTokenClassification(_snake_case ) _UpperCamelCase : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase : Union[str, Any] = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self ) -> Tuple: _UpperCamelCase : Any = self.prepare_config_and_inputs() ((_UpperCamelCase), (_UpperCamelCase), (_UpperCamelCase), (_UpperCamelCase), (_UpperCamelCase), (_UpperCamelCase)) : Optional[Any] = config_and_inputs _UpperCamelCase : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase ( a_ , a_ , unittest.TestCase ): """simple docstring""" A__ : List[str] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) A__ : Optional[int] = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) A__ : Optional[Any] = False A__ : List[Any] = False def _lowercase ( self ) -> Tuple: _UpperCamelCase : Tuple = TFDistilBertModelTester(self ) _UpperCamelCase : Optional[int] = ConfigTester(self , config_class=_snake_case , dim=37 ) def _lowercase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase ( self ) -> List[str]: _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_snake_case ) def _lowercase ( self ) -> Optional[int]: _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_snake_case ) def _lowercase ( self ) -> str: _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_snake_case ) def _lowercase ( self ) -> Tuple: _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_snake_case ) def _lowercase ( self ) -> Any: _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_snake_case ) def _lowercase ( self ) -> Any: _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_snake_case ) @slow def _lowercase ( self ) -> Tuple: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _UpperCamelCase : Tuple = TFDistilBertModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @require_tf class UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self ) -> Any: _UpperCamelCase : str = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _UpperCamelCase : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCamelCase : Optional[int] = model(_snake_case )[0] _UpperCamelCase : int = [1, 6, 768] self.assertEqual(output.shape , _snake_case ) _UpperCamelCase : Any = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _snake_case , atol=1E-4 )
683
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) _UpperCAmelCase : Optional[int] = pytest.mark.integration @pytest.mark.parametrize('''path''' ,['''paws''', '''csv'''] ) def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> Dict: inspect_dataset(UpperCamelCase ,UpperCamelCase ) _UpperCamelCase : Optional[Any] = path + '''.py''' assert script_name in os.listdir(UpperCamelCase ) assert "__pycache__" not in os.listdir(UpperCamelCase ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' ,['''accuracy'''] ) def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> int: inspect_metric(UpperCamelCase ,UpperCamelCase ) _UpperCamelCase : List[str] = path + '''.py''' assert script_name in os.listdir(UpperCamelCase ) assert "__pycache__" not in os.listdir(UpperCamelCase ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' ,[ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: _UpperCamelCase : List[str] = get_dataset_config_info(UpperCamelCase ,config_name=UpperCamelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' ,[ ('''paws''', None, ValueError), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]: with pytest.raises(UpperCamelCase ): get_dataset_config_info(UpperCamelCase ,config_name=UpperCamelCase ) @pytest.mark.parametrize( '''path, expected''' ,[ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: _UpperCamelCase : int = get_dataset_config_names(UpperCamelCase ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' ,[ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: _UpperCamelCase : Dict = get_dataset_infos(UpperCamelCase ) assert list(infos.keys() ) == expected_configs _UpperCamelCase : Dict = expected_configs[0] assert expected_config in infos _UpperCamelCase : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' ,[ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]: _UpperCamelCase : List[Any] = get_dataset_infos(UpperCamelCase ) assert expected_config in infos _UpperCamelCase : Union[str, Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' ,[ ('''paws''', None, ValueError), ] ,) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]: with pytest.raises(UpperCamelCase ): get_dataset_split_names(UpperCamelCase ,config_name=UpperCamelCase )
683
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """microsoft/cvt-13""": """https://huggingface.co/microsoft/cvt-13/resolve/main/config.json""", # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCAmelCase_ ( lowerCamelCase__ ): '''simple docstring''' __snake_case = "cvt" def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=[7, 3, 3] , _UpperCAmelCase=[4, 2, 2] , _UpperCAmelCase=[2, 1, 1] , _UpperCAmelCase=[64, 1_92, 3_84] , _UpperCAmelCase=[1, 3, 6] , _UpperCAmelCase=[1, 2, 10] , _UpperCAmelCase=[4.0, 4.0, 4.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.0] , _UpperCAmelCase=[0.0, 0.0, 0.1] , _UpperCAmelCase=[True, True, True] , _UpperCAmelCase=[False, False, True] , _UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , _UpperCAmelCase=[3, 3, 3] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[2, 2, 2] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=[1, 1, 1] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) snake_case_ = num_channels snake_case_ = patch_sizes snake_case_ = patch_stride snake_case_ = patch_padding snake_case_ = embed_dim snake_case_ = num_heads snake_case_ = depth snake_case_ = mlp_ratio snake_case_ = attention_drop_rate snake_case_ = drop_rate snake_case_ = drop_path_rate snake_case_ = qkv_bias snake_case_ = cls_token snake_case_ = qkv_projection_method snake_case_ = kernel_qkv snake_case_ = padding_kv snake_case_ = stride_kv snake_case_ = padding_q snake_case_ = stride_q snake_case_ = initializer_range snake_case_ = layer_norm_eps
721
import requests def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> None: """simple docstring""" snake_case_ = {'''Content-Type''': '''application/json'''} snake_case_ = requests.post(SCREAMING_SNAKE_CASE , json={'''text''': message_body} , headers=SCREAMING_SNAKE_CASE ) if response.status_code != 200: snake_case_ = ( '''Request to slack returned an error ''' f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
531
0
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCAmelCase ( _lowerCamelCase : int ) -> int: _lowerCAmelCase : Any = prime_factors(_lowerCamelCase ) if is_square_free(_lowerCamelCase ): return -1 if len(_lowerCamelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
384
'''simple docstring''' import qiskit def _UpperCAmelCase ( _lowerCamelCase : int = 2 ) -> qiskit.result.counts.Counts: _lowerCAmelCase : List[Any] = qubits # Using Aer's simulator _lowerCAmelCase : Optional[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Creating a Quantum Circuit acting on the q register _lowerCAmelCase : List[Any] = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , _lowerCamelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , _lowerCamelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_lowerCamelCase ) ) , list(range(_lowerCamelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator _lowerCAmelCase : int = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=10_00 ) return job.result().get_counts(_lowerCamelCase ) if __name__ == "__main__": print(F'Total count for various states are: {quantum_entanglement(3)}')
384
1
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : torch.FloatTensor class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" @register_to_config def __init__( self ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = 64 ,UpperCAmelCase_ = 20 ,UpperCAmelCase_ = 7_68 ,UpperCAmelCase_=77 ,UpperCAmelCase_=4 ,UpperCAmelCase_ = 0.0 ,UpperCAmelCase_ = "silu" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = "prd" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): super().__init__() _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = attention_head_dim _lowercase : Dict = num_attention_heads * attention_head_dim _lowercase : Dict = additional_embeddings _lowercase : List[Any] = time_embed_dim or inner_dim _lowercase : List[Any] = embedding_proj_dim or embedding_dim _lowercase : str = clip_embed_dim or embedding_dim _lowercase : Any = Timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,0 ) _lowercase : List[Any] = TimestepEmbedding(UpperCAmelCase_ ,UpperCAmelCase_ ,out_dim=UpperCAmelCase_ ,act_fn=UpperCAmelCase_ ) _lowercase : List[str] = nn.Linear(UpperCAmelCase_ ,UpperCAmelCase_ ) if embedding_proj_norm_type is None: _lowercase : str = None elif embedding_proj_norm_type == "layer": _lowercase : Tuple = nn.LayerNorm(UpperCAmelCase_ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _lowercase : Dict = nn.Linear(UpperCAmelCase_ ,UpperCAmelCase_ ) if encoder_hid_proj_type is None: _lowercase : Union[str, Any] = None elif encoder_hid_proj_type == "linear": _lowercase : List[str] = nn.Linear(UpperCAmelCase_ ,UpperCAmelCase_ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _lowercase : str = nn.Parameter(torch.zeros(1 ,num_embeddings + additional_embeddings ,UpperCAmelCase_ ) ) if added_emb_type == "prd": _lowercase : str = nn.Parameter(torch.zeros(1 ,1 ,UpperCAmelCase_ ) ) elif added_emb_type is None: _lowercase : List[str] = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _lowercase : List[Any] = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dropout=UpperCAmelCase_ ,activation_fn="""gelu""" ,attention_bias=UpperCAmelCase_ ,) for d in range(UpperCAmelCase_ ) ] ) if norm_in_type == "layer": _lowercase : Optional[int] = nn.LayerNorm(UpperCAmelCase_ ) elif norm_in_type is None: _lowercase : Dict = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _lowercase : int = nn.LayerNorm(UpperCAmelCase_ ) _lowercase : int = nn.Linear(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : int = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] ,-10000.0 ) causal_attention_mask.triu_(1 ) _lowercase : Tuple = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" ,UpperCAmelCase_ ,persistent=UpperCAmelCase_ ) _lowercase : str = nn.Parameter(torch.zeros(1 ,UpperCAmelCase_ ) ) _lowercase : Union[str, Any] = nn.Parameter(torch.zeros(1 ,UpperCAmelCase_ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase__ ( self ): _lowercase : str = {} def fn_recursive_add_processors(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): if hasattr(UpperCAmelCase_ ,"""set_processor""" ): _lowercase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" ,UpperCAmelCase_ ,UpperCAmelCase_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) return processors def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = len(self.attn_processors.keys() ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) and len(UpperCAmelCase_ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCAmelCase_ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): if hasattr(UpperCAmelCase_ ,"""set_processor""" ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): module.set_processor(UpperCAmelCase_ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" ,UpperCAmelCase_ ,UpperCAmelCase_ ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): self.set_attn_processor(AttnProcessor() ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,): _lowercase : str = hidden_states.shape[0] _lowercase : Any = timestep if not torch.is_tensor(UpperCAmelCase_ ): _lowercase : List[Any] = torch.tensor([timesteps] ,dtype=torch.long ,device=hidden_states.device ) elif torch.is_tensor(UpperCAmelCase_ ) and len(timesteps.shape ) == 0: _lowercase : Optional[Any] = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowercase : str = timesteps * torch.ones(UpperCAmelCase_ ,dtype=timesteps.dtype ,device=timesteps.device ) _lowercase : Optional[Any] = self.time_proj(UpperCAmelCase_ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _lowercase : Dict = timesteps_projected.to(dtype=self.dtype ) _lowercase : Dict = self.time_embedding(UpperCAmelCase_ ) if self.embedding_proj_norm is not None: _lowercase : Union[str, Any] = self.embedding_proj_norm(UpperCAmelCase_ ) _lowercase : Union[str, Any] = self.embedding_proj(UpperCAmelCase_ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _lowercase : str = self.encoder_hidden_states_proj(UpperCAmelCase_ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _lowercase : Tuple = self.proj_in(UpperCAmelCase_ ) _lowercase : Tuple = self.positional_embedding.to(hidden_states.dtype ) _lowercase : Optional[Any] = [] _lowercase : Union[str, Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCAmelCase_ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _lowercase : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _lowercase : Optional[Any] = hidden_states[:, None, :] _lowercase : int = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _lowercase : Dict = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCAmelCase_ ,-1 ,-1 ) additional_embeds.append(UpperCAmelCase_ ) _lowercase : str = torch.cat( UpperCAmelCase_ ,dim=1 ,) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _lowercase : Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _lowercase : List[Any] = F.pad( UpperCAmelCase_ ,( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) ,value=0.0 ,) _lowercase : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _lowercase : str = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 _lowercase : Optional[Any] = F.pad(UpperCAmelCase_ ,(0, self.additional_embeddings) ,value=0.0 ) _lowercase : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _lowercase : Union[str, Any] = attention_mask.repeat_interleave(self.config.num_attention_heads ,dim=0 ) if self.norm_in is not None: _lowercase : Tuple = self.norm_in(UpperCAmelCase_ ) for block in self.transformer_blocks: _lowercase : Optional[int] = block(UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ ) _lowercase : str = self.norm_out(UpperCAmelCase_ ) if self.prd_embedding is not None: _lowercase : Optional[int] = hidden_states[:, -1] else: _lowercase : List[Any] = hidden_states[:, additional_embeddings_len:] _lowercase : Union[str, Any] = self.proj_to_clip_embeddings(UpperCAmelCase_ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
705
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCAmelCase: int = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , ): output_path.parent.mkdir(parents=__UpperCAmelCase , exist_ok=__UpperCAmelCase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __UpperCAmelCase , __UpperCAmelCase , f=output_path.as_posix() , input_names=__UpperCAmelCase , output_names=__UpperCAmelCase , dynamic_axes=__UpperCAmelCase , do_constant_folding=__UpperCAmelCase , use_external_data_format=__UpperCAmelCase , enable_onnx_checker=__UpperCAmelCase , opset_version=__UpperCAmelCase , ) else: export( __UpperCAmelCase , __UpperCAmelCase , f=output_path.as_posix() , input_names=__UpperCAmelCase , output_names=__UpperCAmelCase , dynamic_axes=__UpperCAmelCase , do_constant_folding=__UpperCAmelCase , opset_version=__UpperCAmelCase , ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): _lowercase : Optional[int] = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowercase : Union[str, Any] = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: _lowercase : Optional[Any] = """cpu""" _lowercase : List[Any] = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase , torch_dtype=__UpperCAmelCase ).to(__UpperCAmelCase ) _lowercase : List[str] = Path(__UpperCAmelCase ) # TEXT ENCODER _lowercase : Optional[int] = pipeline.text_encoder.config.max_position_embeddings _lowercase : str = pipeline.text_encoder.config.hidden_size _lowercase : Union[str, Any] = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=__UpperCAmelCase , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__UpperCAmelCase , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=__UpperCAmelCase , ) del pipeline.text_encoder # UNET _lowercase : int = pipeline.unet.config.in_channels _lowercase : Optional[int] = pipeline.unet.config.sample_size _lowercase : Any = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ), torch.randn(2 ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ), torch.randn(2 , __UpperCAmelCase , __UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ), False, ) , output_path=__UpperCAmelCase , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=__UpperCAmelCase , use_external_data_format=__UpperCAmelCase , ) _lowercase : Optional[int] = str(unet_path.absolute().as_posix() ) _lowercase : str = os.path.dirname(__UpperCAmelCase ) _lowercase : Dict = onnx.load(__UpperCAmelCase ) # clean up existing tensor files shutil.rmtree(__UpperCAmelCase ) os.mkdir(__UpperCAmelCase ) # collate external tensor files into one onnx.save_model( __UpperCAmelCase , __UpperCAmelCase , save_as_external_data=__UpperCAmelCase , all_tensors_to_one_file=__UpperCAmelCase , location="""weights.pb""" , convert_attribute=__UpperCAmelCase , ) del pipeline.unet # VAE ENCODER _lowercase : str = pipeline.vae _lowercase : Dict = vae_encoder.config.in_channels _lowercase : str = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder _lowercase : Dict = lambda __UpperCAmelCase , __UpperCAmelCase : vae_encoder.encode(__UpperCAmelCase , __UpperCAmelCase )[0].sample() onnx_export( __UpperCAmelCase , model_args=( torch.randn(1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__UpperCAmelCase , ) # VAE DECODER _lowercase : List[str] = pipeline.vae _lowercase : Dict = vae_decoder.config.latent_channels _lowercase : Tuple = vae_decoder.config.out_channels # forward only through the decoder part _lowercase : List[Any] = vae_encoder.decode onnx_export( __UpperCAmelCase , model_args=( torch.randn(1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=__UpperCAmelCase , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: _lowercase : str = pipeline.safety_checker _lowercase : str = safety_checker.config.vision_config.num_channels _lowercase : int = safety_checker.config.vision_config.image_size _lowercase : Optional[Any] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ), torch.randn(1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=__UpperCAmelCase , ) del pipeline.safety_checker _lowercase : int = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) _lowercase : Any = pipeline.feature_extractor else: _lowercase : Optional[int] = None _lowercase : int = None _lowercase : Union[str, Any] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(__UpperCAmelCase ) print("""ONNX pipeline saved to""" , __UpperCAmelCase ) del pipeline del onnx_pipeline _lowercase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(__UpperCAmelCase , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": UpperCAmelCase: int = argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=14, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") UpperCAmelCase: Optional[Any] = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
600
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowercase_ , unittest.TestCase ): '''simple docstring''' _snake_case = RobertaTokenizer _snake_case = RobertaTokenizerFast _snake_case = True _snake_case = {'''cls_token''': '''<s>'''} def A__ ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __lowerCAmelCase = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) __lowerCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __lowerCAmelCase = {'unk_token': '<unk>'} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__UpperCamelCase ) ) def A__ ( self , **snake_case_ ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def A__ ( self , **snake_case_ ) -> int: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = 'lower newer' __lowerCAmelCase = 'lower newer' return input_text, output_text def A__ ( self ) -> Optional[int]: __lowerCAmelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = 'lower newer' __lowerCAmelCase = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] __lowerCAmelCase = tokenizer.tokenize(__UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = tokens + [tokenizer.unk_token] __lowerCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , __UpperCamelCase ) def A__ ( self ) -> List[str]: __lowerCAmelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__UpperCamelCase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__UpperCamelCase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.tokenizer_class.from_pretrained("""roberta-base""" ) __lowerCAmelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=__UpperCamelCase ) __lowerCAmelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__UpperCamelCase ) __lowerCAmelCase = tokenizer.encode( """sequence builders""" , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) __lowerCAmelCase = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def A__ ( self ) -> Optional[int]: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = 'Encode this sequence.' __lowerCAmelCase = tokenizer.byte_encoder[' '.encode("""utf-8""" )[0]] # Testing encoder arguments __lowerCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __lowerCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) # Testing spaces after special tokens __lowerCAmelCase = '<mask>' tokenizer.add_special_tokens( {"""mask_token""": AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase )} ) # mask token has a left space __lowerCAmelCase = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) __lowerCAmelCase = 'Encode <mask> sequence' __lowerCAmelCase = 'Encode <mask>sequence' __lowerCAmelCase = tokenizer.encode(__UpperCamelCase ) __lowerCAmelCase = encoded.index(__UpperCamelCase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = tokenizer.encode(__UpperCamelCase ) __lowerCAmelCase = encoded.index(__UpperCamelCase ) __lowerCAmelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) def A__ ( self ) -> List[str]: pass def A__ ( self ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) __lowerCAmelCase = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) __lowerCAmelCase = 'A, <mask> AllenNLP sentence.' __lowerCAmelCase = tokenizer_r.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) __lowerCAmelCase = tokenizer_p.encode_plus(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_token_type_ids=__UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __lowerCAmelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __lowerCAmelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( __UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( __UpperCamelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def A__ ( self ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __lowerCAmelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __UpperCamelCase ) self.assertEqual(post_processor_state["""add_prefix_space"""] , __UpperCamelCase ) self.assertEqual(post_processor_state["""trim_offsets"""] , __UpperCamelCase ) def A__ ( self ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` __lowerCAmelCase = f"""{text_of_1_token} {text_of_1_token}""" __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __lowerCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ) + 1, len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __lowerCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ) + 1, len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __lowerCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ), len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __lowerCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__UpperCamelCase ), len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __lowerCAmelCase = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __lowerCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ) + 1, 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __lowerCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ), 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , ) __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained( __UpperCamelCase , use_fast=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase ) __lowerCAmelCase = tokenizer_r(__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__UpperCamelCase ), 1 + len(__UpperCamelCase ) + 1 + len(__UpperCamelCase )) , )
465
"""simple docstring""" import qiskit def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): lowercase_ : Tuple = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register lowercase_ : List[str] = qiskit.QuantumCircuit(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator lowercase_ : List[Any] = qiskit.execute(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE =single_qubit_measure(2, 2) print(F"Total count for various states are: {counts}")
425
0
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : def __init__(self , _a = None ) -> None: if components is None: lowercase_ : Dict = [] lowercase_ : Optional[int] = list(_a ) def __len__(self ) -> int: return len(self.__components ) def __str__(self ) -> str: return "(" + ",".join(map(_a , self.__components ) ) + ")" def __add__(self , _a ) -> Vector: lowercase_ : List[Any] = len(self ) if size == len(_a ): lowercase_ : List[str] = [self.__components[i] + other.component(_a ) for i in range(_a )] return Vector(_a ) else: raise Exception('must have the same size' ) def __sub__(self , _a ) -> Vector: lowercase_ : Optional[int] = len(self ) if size == len(_a ): lowercase_ : Any = [self.__components[i] - other.component(_a ) for i in range(_a )] return Vector(_a ) else: # error case raise Exception('must have the same size' ) @overload def __mul__(self , _a ) -> Vector: ... @overload def __mul__(self , _a ) -> float: ... def __mul__(self , _a ) -> float | Vector: if isinstance(_a , (float, int) ): lowercase_ : Optional[int] = [c * other for c in self.__components] return Vector(_a ) elif isinstance(_a , _a ) and len(self ) == len(_a ): lowercase_ : Union[str, Any] = len(self ) lowercase_ : str = [self.__components[i] * other.component(_a ) for i in range(_a )] return sum(_a ) else: # error case raise Exception('invalid operand!' ) def _lowerCamelCase (self ) -> Vector: return Vector(self.__components ) def _lowerCamelCase (self , _a ) -> float: if isinstance(_a , _a ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _lowerCamelCase (self , _a , _a ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) lowercase_ : Dict = value def _lowerCamelCase (self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) lowercase_ : str = [c**2 for c in self.__components] return math.sqrt(sum(_a ) ) def _lowerCamelCase (self , _a , _a = False ) -> float: lowercase_ : Any = self * other lowercase_ : Union[str, Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return Vector([0] * dimension ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and (isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )) lowercase_ : Dict = [0] * dimension lowercase_ : Optional[Any] = 1 return Vector(SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and (isinstance(SCREAMING_SNAKE_CASE_ , (int, float) )) ) return x * scalar + y def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): random.seed(SCREAMING_SNAKE_CASE_ ) lowercase_ : Optional[int] = [random.randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ )] return Vector(SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase__ : def __init__(self , _a , _a , _a ) -> None: lowercase_ : List[Any] = matrix lowercase_ : Optional[Any] = w lowercase_ : List[Any] = h def __str__(self ) -> str: lowercase_ : Optional[Any] = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__(self , _a ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): lowercase_ : List[str] = [] for i in range(self.__height ): lowercase_ : Tuple = [ self.__matrix[i][j] + other.component(_a , _a ) for j in range(self.__width ) ] matrix.append(_a ) return Matrix(_a , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__(self , _a ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): lowercase_ : Dict = [] for i in range(self.__height ): lowercase_ : Tuple = [ self.__matrix[i][j] - other.component(_a , _a ) for j in range(self.__width ) ] matrix.append(_a ) return Matrix(_a , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__(self , _a ) -> Matrix: ... @overload def __mul__(self , _a ) -> Vector: ... def __mul__(self , _a ) -> Vector | Matrix: if isinstance(_a , _a ): # matrix-vector if len(_a ) == self.__width: lowercase_ : Optional[Any] = zero_vector(self.__height ) for i in range(self.__height ): lowercase_ : str = [ self.__matrix[i][j] * other.component(_a ) for j in range(self.__width ) ] ans.change_component(_a , sum(_a ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(_a , (int, float) ): # matrix-scalar lowercase_ : Union[str, Any] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(_a , self.__width , self.__height ) return None def _lowerCamelCase (self ) -> int: return self.__height def _lowerCamelCase (self ) -> int: return self.__width def _lowerCamelCase (self , _a , _a ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _lowerCamelCase (self , _a , _a , _a ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: lowercase_ : Optional[Any] = value else: raise Exception('change_component: indices out of bounds' ) def _lowerCamelCase (self , _a , _a ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) lowercase_ : Dict = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(_a ) ): lowercase_ : Tuple = minor[i][:y] + minor[i][y + 1 :] return Matrix(_a , self.__width - 1 , self.__height - 1 ).determinant() def _lowerCamelCase (self , _a , _a ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(_a , _a ) else: raise Exception('Indices out of bounds' ) def _lowerCamelCase (self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase_ : int = [ self.__matrix[0][y] * self.cofactor(0 , _a ) for y in range(self.__width ) ] return sum(_a ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : list[list[float]] = [[0] * n for _ in range(SCREAMING_SNAKE_CASE_ )] return Matrix(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): random.seed(SCREAMING_SNAKE_CASE_ ) lowercase_ : list[list[float]] = [ [random.randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ ) ] return Matrix(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
713
'''simple docstring''' import math import os import sys def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = '' try: with open(SCREAMING_SNAKE_CASE_ , 'rb' ) as binary_file: lowercase_ : Dict = binary_file.read() for dat in data: lowercase_ : Union[str, Any] = f'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lexicon.pop(SCREAMING_SNAKE_CASE_ ) lowercase_ : Any = last_match_id if math.loga(SCREAMING_SNAKE_CASE_ ).is_integer(): for curr_key in lexicon: lowercase_ : Tuple = '0' + lexicon[curr_key] lowercase_ : Any = bin(SCREAMING_SNAKE_CASE_ )[2:] def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): lowercase_ : Dict = {'0': '0', '1': '1'} lowercase_ ,lowercase_ : Any = '', '' lowercase_ : List[Any] = len(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase_ : str = lexicon[curr_string] result += last_match_id add_key_to_lexicon(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) index += 1 lowercase_ : List[Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": lowercase_ : Optional[Any] = lexicon[curr_string] result += last_match_id return result def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = os.path.getsize(SCREAMING_SNAKE_CASE_ ) lowercase_ : Any = bin(SCREAMING_SNAKE_CASE_ )[2:] lowercase_ : Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) return "0" * (length_length - 1) + file_length_binary + compressed def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = 8 try: with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as opened_file: lowercase_ : List[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(SCREAMING_SNAKE_CASE_ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = read_file_binary(SCREAMING_SNAKE_CASE_ ) lowercase_ : List[str] = compress_data(SCREAMING_SNAKE_CASE_ ) lowercase_ : Union[str, Any] = add_file_length(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) write_file_binary(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
438
0
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCAmelCase_ : Dict = { '169M': 12, '430M': 24, '1B5': 24, '3B': 32, '7B': 32, '14B': 40, } UpperCAmelCase_ : Tuple = { '169M': 768, '430M': 1024, '1B5': 2048, '3B': 2560, '7B': 4096, '14B': 5120, } def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = list(state_dict.keys() ) for name in state_dict_keys: _SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(SCREAMING_SNAKE_CASE__ ) # emb -> embedding if name.startswith("""emb.""" ): _SCREAMING_SNAKE_CASE : Any = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): _SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention _SCREAMING_SNAKE_CASE : Any = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , SCREAMING_SNAKE_CASE__ ) # ffn -> feed_forward _SCREAMING_SNAKE_CASE : int = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , SCREAMING_SNAKE_CASE__ ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): _SCREAMING_SNAKE_CASE : Dict = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): _SCREAMING_SNAKE_CASE : List[str] = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): _SCREAMING_SNAKE_CASE : Optional[Any] = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": _SCREAMING_SNAKE_CASE : Any = """rwkv.""" + name _SCREAMING_SNAKE_CASE : Dict = weight return state_dict def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=None ): """simple docstring""" if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) _SCREAMING_SNAKE_CASE : Optional[int] = 5_0277 _SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: _SCREAMING_SNAKE_CASE : Optional[int] = PreTrainedTokenizerFast(tokenizer_file=SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : List[str] = len(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) # 2. Build the config _SCREAMING_SNAKE_CASE : List[str] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _SCREAMING_SNAKE_CASE : Union[str, Any] = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) _SCREAMING_SNAKE_CASE : Tuple = RwkvConfig( vocab_size=SCREAMING_SNAKE_CASE__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(SCREAMING_SNAKE_CASE__ ) # 3. Download model file then convert state_dict _SCREAMING_SNAKE_CASE : List[Any] = hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE : int = convert_state_dict(SCREAMING_SNAKE_CASE__ ) # 4. Split in shards and save _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = shard_checkpoint(SCREAMING_SNAKE_CASE__ ) for shard_file, shard in shards.items(): torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if index is not None: _SCREAMING_SNAKE_CASE : Any = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save the index as well with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: _SCREAMING_SNAKE_CASE : List[str] = json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ ) + """\n""" f.write(SCREAMING_SNAKE_CASE__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) _SCREAMING_SNAKE_CASE : Dict = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _SCREAMING_SNAKE_CASE : Any = torch.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) _SCREAMING_SNAKE_CASE : int = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , max_shard_size="""2GB""" ) tokenizer.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
533
'''simple docstring''' from __future__ import annotations def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if len(SCREAMING_SNAKE_CASE__ ) <= 1 or n <= 1: return insert_next(SCREAMING_SNAKE_CASE__ , n - 1 ) rec_insertion_sort(SCREAMING_SNAKE_CASE__ , n - 1 ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if index >= len(SCREAMING_SNAKE_CASE__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = ( collection[index], collection[index - 1], ) insert_next(SCREAMING_SNAKE_CASE__ , index + 1 ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = input('Enter integers separated by spaces: ') UpperCAmelCase_ : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
533
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __a : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=16 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__=None , ): SCREAMING_SNAKE_CASE_ : Optional[int] = parent SCREAMING_SNAKE_CASE_ : int = 13 SCREAMING_SNAKE_CASE_ : Optional[int] = 7 SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : str = 99 SCREAMING_SNAKE_CASE_ : Any = 32 SCREAMING_SNAKE_CASE_ : Optional[Any] = 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 SCREAMING_SNAKE_CASE_ : Dict = 37 SCREAMING_SNAKE_CASE_ : Optional[int] = 'gelu' SCREAMING_SNAKE_CASE_ : Dict = 0.1 SCREAMING_SNAKE_CASE_ : Tuple = 0.1 SCREAMING_SNAKE_CASE_ : Any = 512 SCREAMING_SNAKE_CASE_ : Optional[Any] = 16 SCREAMING_SNAKE_CASE_ : Dict = 2 SCREAMING_SNAKE_CASE_ : str = 0.02 SCREAMING_SNAKE_CASE_ : List[Any] = 3 SCREAMING_SNAKE_CASE_ : int = 4 SCREAMING_SNAKE_CASE_ : List[Any] = None def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Dict = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : List[str] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCamelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : str = TFRoFormerModel(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE_ : List[Any] = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ : Optional[Any] = model(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = True SCREAMING_SNAKE_CASE_ : Optional[Any] = TFRoFormerForCausalLM(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE_ : Optional[Any] = model(UpperCamelCase__ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : List[str] = TFRoFormerForMaskedLM(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE_ : Dict = TFRoFormerForSequenceClassification(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = self.num_choices SCREAMING_SNAKE_CASE_ : List[Any] = TFRoFormerForMultipleChoice(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : Dict = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ : Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : int = self.num_labels SCREAMING_SNAKE_CASE_ : Dict = TFRoFormerForTokenClassification(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE_ : List[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = TFRoFormerForQuestionAnswering(config=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : int = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE_ : str = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Any = config_and_inputs SCREAMING_SNAKE_CASE_ : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __a ( __A , __A , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Dict = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : int = False UpperCAmelCase__ : Union[str, Any] = False def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = TFRoFormerModelTester(self ) SCREAMING_SNAKE_CASE_ : str = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class __a ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) SCREAMING_SNAKE_CASE_ : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ : Any = model(UpperCamelCase__ )[0] # TODO Replace vocab size SCREAMING_SNAKE_CASE_ : Tuple = 50000 SCREAMING_SNAKE_CASE_ : str = [1, 6, vocab_size] self.assertEqual(output.shape , UpperCamelCase__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. SCREAMING_SNAKE_CASE_ : str = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1E-4 ) @require_tf class __a ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 1e-4 def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant([[4, 10]] ) SCREAMING_SNAKE_CASE_ : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) SCREAMING_SNAKE_CASE_ : Any = emba(input_ids.shape ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , atol=self.tolerance ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[Any] = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) SCREAMING_SNAKE_CASE_ : str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) SCREAMING_SNAKE_CASE_ : Tuple = emba.weight[:3, :5] tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , atol=self.tolerance ) @require_tf class __a ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : List[Any] = 1e-4 def __snake_case ( self ): # 2,12,16,64 SCREAMING_SNAKE_CASE_ : Dict = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 SCREAMING_SNAKE_CASE_ : Optional[int] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 SCREAMING_SNAKE_CASE_ : int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) SCREAMING_SNAKE_CASE_ : int = embed_positions([2, 16, 768] )[None, None, :, :] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCamelCase__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCamelCase__ , atol=self.tolerance )
97
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __a ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : Tuple = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } SCREAMING_SNAKE_CASE_ : str = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self , **UpperCamelCase__ ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __snake_case ( self ): shutil.rmtree(self.tmpdirname ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] SCREAMING_SNAKE_CASE_ : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[int] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE_ : int = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ : List[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : int = self.get_image_processor() SCREAMING_SNAKE_CASE_ : str = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : int = image_processor(UpperCamelCase__ , return_tensors='np' ) SCREAMING_SNAKE_CASE_ : Dict = processor(images=UpperCamelCase__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : List[str] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = 'lower newer' SCREAMING_SNAKE_CASE_ : Tuple = processor(text=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : int = tokenizer(UpperCamelCase__ , padding='max_length' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : str = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = 'lower newer' SCREAMING_SNAKE_CASE_ : Optional[int] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self.get_image_processor() SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ : List[str] = processor.batch_decode(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = self.get_image_processor() SCREAMING_SNAKE_CASE_ : int = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : str = 'lower newer' SCREAMING_SNAKE_CASE_ : List[str] = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ : List[Any] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
97
1
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowercase__ = pd.read_csv("""sample_data.csv""", header=None) lowercase__ = df.shape[:1][0] # If you're using some other dataset input the target column lowercase__ = df.iloc[:, 1:2] lowercase__ = actual_data.values.reshape(len_data, 1) lowercase__ = MinMaxScaler().fit_transform(actual_data) lowercase__ = 10 lowercase__ = 5 lowercase__ = 20 lowercase__ = len_data - periods * look_back lowercase__ = actual_data[:division] lowercase__ = actual_data[division - look_back :] lowercase__ , lowercase__ = [], [] lowercase__ , lowercase__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowercase__ = np.array(train_x) lowercase__ = np.array(test_x) lowercase__ = np.array([list(i.ravel()) for i in train_y]) lowercase__ = np.array([list(i.ravel()) for i in test_y]) lowercase__ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") lowercase__ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) lowercase__ = model.predict(x_test)
610
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase = { 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
179
0
import doctest from collections import deque import numpy as np class lowerCAmelCase_ : """simple docstring""" def __init__(self ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = [2, 1, 2, -1] SCREAMING_SNAKE_CASE__ : Optional[int] = [1, 2, 3, 4] def __magic_name__ (self ) -> list[float]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = len(self.first_signal ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(self.second_signal ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = max(A__ , A__ ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[0] * max_length for i in range(A__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(A__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = deque(self.second_signal ) rotated_signal.rotate(A__ ) for j, item in enumerate(A__ ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE__ : str = np.matmul(np.transpose(A__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(A__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
700
"""simple docstring""" from manim import * class lowerCAmelCase_ (a__ ): """simple docstring""" def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE__ : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE__ : Any = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : int = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Any = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) SCREAMING_SNAKE_CASE__ : Any = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = VGroup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) SCREAMING_SNAKE_CASE__ : List[str] = Text("""CPU""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE__ : List[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) SCREAMING_SNAKE_CASE__ : Any = Text("""GPU""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : int = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) gpu.move_to([-1, -1, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Optional[Any] = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) SCREAMING_SNAKE_CASE__ : Tuple = Text("""Model""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : Dict = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) model.move_to([3, -1.0, 0] ) self.add(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : Any = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE__ ): SCREAMING_SNAKE_CASE__ : List[str] = fill.copy().set_fill(SCREAMING_SNAKE_CASE__ , opacity=0.8 ) target.move_to(SCREAMING_SNAKE_CASE__ ) model_arr.append(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE__ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(SCREAMING_SNAKE_CASE__ ) self.add(*SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : List[str] = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE__ : Any = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) SCREAMING_SNAKE_CASE__ : int = VGroup(*SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = VGroup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Text("""Disk""" , font_size=24 ) SCREAMING_SNAKE_CASE__ : Any = Group(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).arrange(SCREAMING_SNAKE_CASE__ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE__ ) disk.move_to([-4, -1.25, 0] ) self.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE__ : List[str] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(SCREAMING_SNAKE_CASE__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Dict = Square(0.3 ) input.set_fill(SCREAMING_SNAKE_CASE__ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , SCREAMING_SNAKE_CASE__ , buff=0.5 ) self.play(Write(SCREAMING_SNAKE_CASE__ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=SCREAMING_SNAKE_CASE__ , buff=0.02 ) self.play(MoveToTarget(SCREAMING_SNAKE_CASE__ ) ) self.play(FadeOut(SCREAMING_SNAKE_CASE__ ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = Arrow(start=SCREAMING_SNAKE_CASE__ , end=SCREAMING_SNAKE_CASE__ , color=SCREAMING_SNAKE_CASE__ , buff=0.5 ) a.next_to(model_arr[0].get_left() , SCREAMING_SNAKE_CASE__ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE__ : Tuple = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ , run_time=3 ) ) SCREAMING_SNAKE_CASE__ : Tuple = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(SCREAMING_SNAKE_CASE__ ) , Circumscribe(model_arr[0] , color=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) , Circumscribe(model_cpu_arr[0] , color=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , SCREAMING_SNAKE_CASE__ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AnimationGroup( FadeOut(SCREAMING_SNAKE_CASE__ , run_time=0.5 ) , MoveToTarget(SCREAMING_SNAKE_CASE__ , run_time=0.5 ) , FadeIn(SCREAMING_SNAKE_CASE__ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(SCREAMING_SNAKE_CASE__ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0.7 self.play( Circumscribe(model_arr[i] , **SCREAMING_SNAKE_CASE__ ) , Circumscribe(cpu_left_col_base[i] , **SCREAMING_SNAKE_CASE__ ) , Circumscribe(cpu_left_col_base[i + 1] , color=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) , Circumscribe(model_arr[i + 1] , color=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) , Circumscribe(cpu_left_col_base[-1] , color=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = a_c SCREAMING_SNAKE_CASE__ : Optional[Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(SCREAMING_SNAKE_CASE__ ) , FadeOut(SCREAMING_SNAKE_CASE__ , run_time=0.5 ) , ) SCREAMING_SNAKE_CASE__ : Dict = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE__ , run_time=3 ) , MoveToTarget(SCREAMING_SNAKE_CASE__ ) ) self.wait()
545
0
'''simple docstring''' import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class lowercase_ (unittest.TestCase ): """simple docstring""" def __init__( self : Any ,lowercase__ : Tuple ,lowercase__ : bool = True ,lowercase__ : Dict[str, int] = None ,lowercase__ : int = 3_2 ,lowercase__ : bool = True ,lowercase__ : Union[int, float] = 1 / 2_5_5 ,lowercase__ : bool = True ,lowercase__ : bool = True ,lowercase__ : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] ,lowercase__ : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] ,lowercase__ : bool = True ,lowercase__ : Any=7 ,lowercase__ : Optional[int]=3_0 ,lowercase__ : Tuple=4_0_0 ,lowercase__ : List[Any]=3 ,): __lowercase = parent __lowercase = do_resize __lowercase = size if size is not None else {'''shortest_edge''': 2_8_8} __lowercase = size_divisor __lowercase = do_rescale __lowercase = rescale_factor __lowercase = do_normalize __lowercase = do_center_crop __lowercase = image_mean __lowercase = image_std __lowercase = do_pad __lowercase = batch_size __lowercase = num_channels __lowercase = min_resolution __lowercase = max_resolution def SCREAMING_SNAKE_CASE ( self : List[str] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[int]=False ): if not batched: __lowercase = self.size['''shortest_edge'''] __lowercase = image_inputs[0] if isinstance(lowercase__ ,Image.Image ): __lowercase , __lowercase = image.size else: __lowercase , __lowercase = image.shape[1], image.shape[2] __lowercase = size / min(lowercase__ ,lowercase__ ) if h < w: __lowercase , __lowercase = size, scale * w else: __lowercase , __lowercase = scale * h, size __lowercase = int((1_3_3_3 / 8_0_0) * size ) if max(lowercase__ ,lowercase__ ) > max_size: __lowercase = max_size / max(lowercase__ ,lowercase__ ) __lowercase = newh * scale __lowercase = neww * scale __lowercase , __lowercase = int(newh + 0.5 ), int(neww + 0.5 ) __lowercase , __lowercase = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __lowercase = [] for image in image_inputs: __lowercase , __lowercase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __lowercase = max(lowercase__ ,key=lambda lowercase__ : item[0] )[0] __lowercase = max(lowercase__ ,key=lambda lowercase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = BridgeTowerImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = BridgeTowerImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE ( self : str ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase__ ,'''image_std''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase__ ,'''do_resize''' ) ) self.assertTrue(hasattr(lowercase__ ,'''size''' ) ) self.assertTrue(hasattr(lowercase__ ,'''size_divisor''' ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE ( self : List[str] ): # Initialize image processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,Image.Image ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ,batched=lowercase__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def SCREAMING_SNAKE_CASE ( self : Dict ): # Initialize image processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,np.ndarray ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ,batched=lowercase__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ): # Initialize image processor __lowercase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase__ ,torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ ,torch.Tensor ) # Test not batched input __lowercase = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched __lowercase = image_processing(lowercase__ ,return_tensors='''pt''' ).pixel_values __lowercase , __lowercase = self.image_processor_tester.get_expected_values(lowercase__ ,batched=lowercase__ ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,)
41
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : List[str] = {'vocab_file': 'spiece.model'} lowerCAmelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase : Optional[int] = { 't5-small': 5_12, 't5-base': 5_12, 't5-large': 5_12, 't5-3b': 5_12, 't5-11b': 5_12, } lowerCAmelCase : Optional[int] = '▁' class _A ( __magic_name__): SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE=100 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE_ : List[str] = [f"<extra_id_{i}>" for i in range(_SCREAMING_SNAKE_CASE )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens SCREAMING_SNAKE_CASE_ : Dict = len(set(filter(lambda _SCREAMING_SNAKE_CASE : bool('extra_id' in str(_SCREAMING_SNAKE_CASE ) ) , _SCREAMING_SNAKE_CASE ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( f"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to" ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) SCREAMING_SNAKE_CASE_ : int = legacy SCREAMING_SNAKE_CASE_ : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , extra_ids=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Any = vocab_file SCREAMING_SNAKE_CASE_ : Optional[Any] = extra_ids SCREAMING_SNAKE_CASE_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @staticmethod def UpperCAmelCase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: SCREAMING_SNAKE_CASE_ : int = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' f" {pretrained_model_name_or_path} automatically truncating your input to" f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , _SCREAMING_SNAKE_CASE , ) return max_model_length @property def UpperCAmelCase ( self ): """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def UpperCAmelCase ( self ): """simple docstring""" return list( set(filter(lambda _SCREAMING_SNAKE_CASE : bool(re.search(r'<extra_id_\d+>' , _SCREAMING_SNAKE_CASE ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase ( self ): """simple docstring""" return [self._convert_token_to_id(_SCREAMING_SNAKE_CASE ) for token in self.get_sentinel_tokens()] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if len(_SCREAMING_SNAKE_CASE ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self._add_eos_if_not_present(_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return token_ids_a else: SCREAMING_SNAKE_CASE_ : int = self._add_eos_if_not_present(_SCREAMING_SNAKE_CASE ) return token_ids_a + token_ids_a def __getstate__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[Any] = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : str = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" if not self.legacy: SCREAMING_SNAKE_CASE_ : Dict = SPIECE_UNDERLINE + text.replace(_SCREAMING_SNAKE_CASE , ' ' ) return super().tokenize(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): """simple docstring""" if not self.legacy: SCREAMING_SNAKE_CASE_ : List[str] = text.startswith(_SCREAMING_SNAKE_CASE ) if is_first: SCREAMING_SNAKE_CASE_ : Optional[int] = text[1:] SCREAMING_SNAKE_CASE_ : Tuple = self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Any = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if token.startswith('<extra_id_' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = re.match(r'<extra_id_(\d+)>' , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if index < self.sp_model.get_piece_size(): SCREAMING_SNAKE_CASE_ : str = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : List[Any] = f"<extra_id_{self.vocab_size - 1 - index}>" return token def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = [] SCREAMING_SNAKE_CASE_ : str = '' SCREAMING_SNAKE_CASE_ : Dict = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Dict = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = False out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ : Dict = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
511
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __magic_name__ : def __init__( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Union[str, Any]="resnet50" , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Any=3_2 , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Dict=True , ) -> List[str]: UpperCAmelCase = parent UpperCAmelCase = out_indices if out_indices is not None else [4] UpperCAmelCase = stage_names UpperCAmelCase = out_features UpperCAmelCase = backbone UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = use_pretrained_backbone UpperCAmelCase = is_training def _UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = self.get_config() return config, pixel_values def _UpperCamelCase ( self : Tuple ) -> str: return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any ) -> Any: UpperCAmelCase = TimmBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(lowerCAmelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def _UpperCamelCase ( self : List[str] ) -> int: UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase = config_and_inputs UpperCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class __magic_name__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): UpperCAmelCase = (TimmBackbone,) if is_torch_available() else () UpperCAmelCase = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def _UpperCamelCase ( self : List[str] ) -> Any: UpperCAmelCase = TimmBackboneModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def _UpperCamelCase ( self : Any ) -> Optional[int]: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self : List[Any] ) -> List[Any]: UpperCAmelCase = "resnet18" UpperCAmelCase = "microsoft/resnet-18" UpperCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase__ , use_timm_backbone=lowerCAmelCase__ ) UpperCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) UpperCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase__ , use_timm_backbone=lowerCAmelCase__ , out_indices=[1, 2, 3] ) UpperCAmelCase = AutoBackbone.from_pretrained(lowerCAmelCase__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def _UpperCamelCase ( self : Dict ) -> Optional[int]: pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def _UpperCamelCase ( self : Optional[Any] ) -> List[Any]: pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def _UpperCamelCase ( self : Tuple ) -> Optional[Any]: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def _UpperCamelCase ( self : Dict ) -> Optional[int]: pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def _UpperCamelCase ( self : Dict ) -> str: pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def _UpperCamelCase ( self : List[str] ) -> Any: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _UpperCamelCase ( self : Optional[int] ) -> int: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def _UpperCamelCase ( self : List[str] ) -> List[str]: pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def _UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _UpperCamelCase ( self : int ) -> List[Any]: pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def _UpperCamelCase ( self : List[Any] ) -> Optional[int]: pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def _UpperCamelCase ( self : Optional[Any] ) -> Tuple: pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def _UpperCamelCase ( self : int ) -> Tuple: pass @unittest.skip("Safetensors is not supported by timm." ) def _UpperCamelCase ( self : int ) -> List[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _UpperCamelCase ( self : int ) -> Tuple: pass def _UpperCamelCase ( self : Dict ) -> Any: UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = True UpperCAmelCase = self.has_attentions # no need to test all models as different heads yield the same functionality UpperCAmelCase = self.all_model_classes[0] UpperCAmelCase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) UpperCAmelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase = model(**lowerCAmelCase__ ) UpperCAmelCase = outputs[0][-1] # Encoder-/Decoder-only models UpperCAmelCase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCAmelCase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _UpperCamelCase ( self : Optional[int] ) -> List[str]: UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase = model(**lowerCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None UpperCAmelCase = copy.deepcopy(lowerCAmelCase__ ) UpperCAmelCase = None UpperCAmelCase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase = model(**lowerCAmelCase__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights UpperCAmelCase = copy.deepcopy(lowerCAmelCase__ ) UpperCAmelCase = False UpperCAmelCase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() UpperCAmelCase = model(**lowerCAmelCase__ )
703
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json", } class __magic_name__ ( _snake_case ): UpperCAmelCase = """lxmert""" UpperCAmelCase = {} def __init__( self : int , lowerCAmelCase__ : Any=3_0_5_2_2 , lowerCAmelCase__ : List[str]=7_6_8 , lowerCAmelCase__ : Union[str, Any]=1_2 , lowerCAmelCase__ : List[Any]=9_5_0_0 , lowerCAmelCase__ : Any=1_6_0_0 , lowerCAmelCase__ : Union[str, Any]=4_0_0 , lowerCAmelCase__ : Tuple=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : int=5_1_2 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : List[str]=0.02 , lowerCAmelCase__ : str=1e-1_2 , lowerCAmelCase__ : str=9 , lowerCAmelCase__ : int=5 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : List[Any]=2_0_4_8 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : Dict=6.67 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Tuple=True , **lowerCAmelCase__ : List[Any] , ) -> Dict: UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = num_qa_labels UpperCAmelCase = num_object_labels UpperCAmelCase = num_attr_labels UpperCAmelCase = l_layers UpperCAmelCase = x_layers UpperCAmelCase = r_layers UpperCAmelCase = visual_feat_dim UpperCAmelCase = visual_pos_dim UpperCAmelCase = visual_loss_normalizer UpperCAmelCase = task_matched UpperCAmelCase = task_mask_lm UpperCAmelCase = task_obj_predict UpperCAmelCase = task_qa UpperCAmelCase = visual_obj_loss UpperCAmelCase = visual_attr_loss UpperCAmelCase = visual_feat_loss UpperCAmelCase = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**lowerCAmelCase__ )
1
0
"""simple docstring""" import numpy as np def UpperCAmelCase ( _lowercase : np.ndarray ) -> np.ndarray: """simple docstring""" return 1 / (1 + np.exp(-vector )) def UpperCAmelCase ( _lowercase : np.ndarray ) -> np.ndarray: """simple docstring""" return vector * sigmoid(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
552
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __a ( __snake_case , __snake_case , __snake_case ): lowerCamelCase : Optional[int] =[R'h\.\d+\.attn\.bias', R'h\.\d+\.attn\.masked_bias'] @register_to_config def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = 5_0257 , UpperCAmelCase = 1024 , UpperCAmelCase = 768 , UpperCAmelCase = 12 , UpperCAmelCase = 12 , UpperCAmelCase = None , UpperCAmelCase = "gelu_new" , UpperCAmelCase = 0.1 , UpperCAmelCase = 0.1 , UpperCAmelCase = 0.1 , UpperCAmelCase = 1E-5 , UpperCAmelCase = 0.0_2 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , ): '''simple docstring''' super().__init__() lowerCAmelCase_ = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F"""`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and""" F""" `n_embd`: {n_embd} are not equal.""" ) lowerCAmelCase_ = prefix_inner_dim lowerCAmelCase_ = prefix_hidden_dim lowerCAmelCase_ = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase_ = ( nn.Linear(self.prefix_hidden_dim , UpperCAmelCase ) if self.prefix_hidden_dim is not None else nn.Identity() ) lowerCAmelCase_ = GPTaConfig( vocab_size=UpperCAmelCase , n_positions=UpperCAmelCase , n_embd=UpperCAmelCase , n_layer=UpperCAmelCase , n_head=UpperCAmelCase , n_inner=UpperCAmelCase , activation_function=UpperCAmelCase , resid_pdrop=UpperCAmelCase , embd_pdrop=UpperCAmelCase , attn_pdrop=UpperCAmelCase , layer_norm_epsilon=UpperCAmelCase , initializer_range=UpperCAmelCase , scale_attn_weights=UpperCAmelCase , use_cache=UpperCAmelCase , scale_attn_by_inverse_layer_idx=UpperCAmelCase , reorder_and_upcast_attn=UpperCAmelCase , ) lowerCAmelCase_ = GPTaLMHeadModel(UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ): '''simple docstring''' lowerCAmelCase_ = self.transformer.transformer.wte(UpperCAmelCase ) lowerCAmelCase_ = self.encode_prefix(UpperCAmelCase ) lowerCAmelCase_ = self.decode_prefix(UpperCAmelCase ) lowerCAmelCase_ = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: lowerCAmelCase_ = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) lowerCAmelCase_ = torch.cat((dummy_token, input_ids) , dim=1 ) lowerCAmelCase_ = self.transformer(inputs_embeds=UpperCAmelCase , labels=UpperCAmelCase , attention_mask=UpperCAmelCase ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' return torch.zeros(UpperCAmelCase , self.prefix_length , dtype=torch.intaa , device=UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase ): '''simple docstring''' return self.encode_prefix(UpperCAmelCase ) @torch.no_grad() def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): '''simple docstring''' lowerCAmelCase_ = torch.split(UpperCAmelCase , 1 , dim=0 ) lowerCAmelCase_ = [] lowerCAmelCase_ = [] for feature in features: lowerCAmelCase_ = self.decode_prefix(feature.to(UpperCAmelCase ) ) # back to the clip feature # Only support beam search for now lowerCAmelCase_ , lowerCAmelCase_ = self.generate_beam( input_embeds=UpperCAmelCase , device=UpperCAmelCase , eos_token_id=UpperCAmelCase ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) lowerCAmelCase_ = torch.stack(UpperCAmelCase ) lowerCAmelCase_ = torch.stack(UpperCAmelCase ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase_ ( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = 5 , UpperCAmelCase = 67 , UpperCAmelCase = 1.0 , UpperCAmelCase = None , ): '''simple docstring''' lowerCAmelCase_ = eos_token_id lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = torch.ones(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.int ) lowerCAmelCase_ = torch.zeros(UpperCAmelCase , device=UpperCAmelCase , dtype=torch.bool ) if input_embeds is not None: lowerCAmelCase_ = input_embeds else: lowerCAmelCase_ = self.transformer.transformer.wte(UpperCAmelCase ) for i in range(UpperCAmelCase ): lowerCAmelCase_ = self.transformer(inputs_embeds=UpperCAmelCase ) lowerCAmelCase_ = outputs.logits lowerCAmelCase_ = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) lowerCAmelCase_ = logits.softmax(-1 ).log() if scores is None: lowerCAmelCase_ , lowerCAmelCase_ = logits.topk(UpperCAmelCase , -1 ) lowerCAmelCase_ = generated.expand(UpperCAmelCase , *generated.shape[1:] ) lowerCAmelCase_ , lowerCAmelCase_ = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: lowerCAmelCase_ = next_tokens else: lowerCAmelCase_ = tokens.expand(UpperCAmelCase , *tokens.shape[1:] ) lowerCAmelCase_ = torch.cat((tokens, next_tokens) , dim=1 ) else: lowerCAmelCase_ = -float(np.inf ) lowerCAmelCase_ = 0 lowerCAmelCase_ = scores[:, None] + logits seq_lengths[~is_stopped] += 1 lowerCAmelCase_ = scores_sum / seq_lengths[:, None] lowerCAmelCase_ , lowerCAmelCase_ = scores_sum_average.view(-1 ).topk(UpperCAmelCase , -1 ) lowerCAmelCase_ = next_tokens // scores_sum.shape[1] lowerCAmelCase_ = seq_lengths[next_tokens_source] lowerCAmelCase_ = next_tokens % scores_sum.shape[1] lowerCAmelCase_ = next_tokens.unsqueeze(1 ) lowerCAmelCase_ = tokens[next_tokens_source] lowerCAmelCase_ = torch.cat((tokens, next_tokens) , dim=1 ) lowerCAmelCase_ = generated[next_tokens_source] lowerCAmelCase_ = scores_sum_average * seq_lengths lowerCAmelCase_ = is_stopped[next_tokens_source] lowerCAmelCase_ = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) lowerCAmelCase_ = torch.cat((generated, next_token_embed) , dim=1 ) lowerCAmelCase_ = is_stopped + next_tokens.eq(UpperCAmelCase ).squeeze() if is_stopped.all(): break lowerCAmelCase_ = scores / seq_lengths lowerCAmelCase_ = scores.argsort(descending=UpperCAmelCase ) # tokens tensors are already padded to max_seq_length lowerCAmelCase_ = [tokens[i] for i in order] lowerCAmelCase_ = torch.stack(UpperCAmelCase , dim=0 ) lowerCAmelCase_ = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
552
1
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline lowerCamelCase : str =logging.get_logger(__name__) class __snake_case( A_ ): '''simple docstring''' def _a ( self , __lowerCamelCase ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): __A : List[Any] = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' if len(__lowerCamelCase ) == 0 or len(__lowerCamelCase ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(__lowerCamelCase ) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): __A : List[str] = [sequences] __A : List[str] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__lowerCamelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(A_ ) class __snake_case( A_ ): '''simple docstring''' def __init__( self , __lowerCamelCase=ZeroShotClassificationArgumentHandler() , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' __A : Dict = args_parser super().__init__(*__lowerCamelCase , **__lowerCamelCase ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def _a ( self ): '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def _a ( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=TruncationStrategy.ONLY_FIRST , **__lowerCamelCase ): '''simple docstring''' __A : str = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) __A : Any = self.tokenizer.eos_token try: __A : int = self.tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , ) except Exception as e: if "too short" in str(__lowerCamelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. __A : Optional[int] = self.tokenizer( __lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , padding=__lowerCamelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _a ( self , **__lowerCamelCase ): '''simple docstring''' if kwargs.get('multi_class' , __lowerCamelCase ) is not None: __A : int = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) __A : List[Any] = {} if "candidate_labels" in kwargs: __A : Any = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: __A : Any = kwargs['hypothesis_template'] __A : str = {} if "multi_label" in kwargs: __A : Dict = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase , ): '''simple docstring''' if len(__lowerCamelCase ) == 0: pass elif len(__lowerCamelCase ) == 1 and "candidate_labels" not in kwargs: __A : str = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}' ) return super().__call__(__lowerCamelCase , **__lowerCamelCase ) def _a ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase="This example is {}." ): '''simple docstring''' __A , __A : Optional[int] = self._args_parser(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(__lowerCamelCase , __lowerCamelCase ) ): __A : Tuple = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__lowerCamelCase ) - 1, **model_input, } def _a ( self , __lowerCamelCase ): '''simple docstring''' __A : List[Any] = inputs['candidate_label'] __A : Optional[Any] = inputs['sequence'] __A : int = {k: inputs[k] for k in self.tokenizer.model_input_names} __A : Tuple = self.model(**__lowerCamelCase ) __A : Tuple = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def _a ( self , __lowerCamelCase , __lowerCamelCase=False ): '''simple docstring''' __A : List[str] = [outputs['candidate_label'] for outputs in model_outputs] __A : Any = [outputs['sequence'] for outputs in model_outputs] __A : Optional[Any] = np.concatenate([output['logits'].numpy() for output in model_outputs] ) __A : str = logits.shape[0] __A : Optional[int] = len(__lowerCamelCase ) __A : Dict = N // n __A : Dict = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__lowerCamelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently __A : List[Any] = self.entailment_id __A : int = -1 if entailment_id == 0 else 0 __A : Any = reshaped_outputs[..., [contradiction_id, entailment_id]] __A : str = np.exp(__lowerCamelCase ) / np.exp(__lowerCamelCase ).sum(-1 , keepdims=__lowerCamelCase ) __A : Any = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels __A : Optional[Any] = reshaped_outputs[..., self.entailment_id] __A : Tuple = np.exp(__lowerCamelCase ) / np.exp(__lowerCamelCase ).sum(-1 , keepdims=__lowerCamelCase ) __A : Any = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
237
"""simple docstring""" from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCamelCase : Tuple =TypeVar('''KT''') lowerCamelCase : Dict =TypeVar('''VT''') class __snake_case( Generic[KT, VT] ): '''simple docstring''' def __init__( self , __lowerCamelCase = "root" , __lowerCamelCase = None ): '''simple docstring''' __A : str = key __A : int = value __A : list[Node[KT, VT]] = [] def __repr__( self ): '''simple docstring''' return F'Node({self.key}: {self.value})' @property def _a ( self ): '''simple docstring''' return len(self.forward ) class __snake_case( Generic[KT, VT] ): '''simple docstring''' def __init__( self , __lowerCamelCase = 0.5 , __lowerCamelCase = 16 ): '''simple docstring''' __A : Node[KT, VT] = Node[KT, VT]() __A : str = 0 __A : Tuple = p __A : Union[str, Any] = max_level def __str__( self ): '''simple docstring''' __A : List[Any] = list(self ) if len(__lowerCamelCase ) == 0: return F'SkipList(level={self.level})' __A : Any = max((len(str(__lowerCamelCase ) ) for item in items) , default=4 ) __A : int = max(__lowerCamelCase , 4 ) + 4 __A : Optional[int] = self.head __A : Union[str, Any] = [] __A : int = node.forward.copy() lines.append(F'[{node.key}]'.ljust(__lowerCamelCase , '-' ) + '* ' * len(__lowerCamelCase ) ) lines.append(' ' * label_size + '| ' * len(__lowerCamelCase ) ) while len(node.forward ) != 0: __A : List[Any] = node.forward[0] lines.append( F'[{node.key}]'.ljust(__lowerCamelCase , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(__lowerCamelCase ) ) __A : Tuple = node.forward lines.append('None'.ljust(__lowerCamelCase ) + '* ' * len(__lowerCamelCase ) ) return F'SkipList(level={self.level})\n' + "\n".join(__lowerCamelCase ) def __iter__( self ): '''simple docstring''' __A : Dict = self.head while len(node.forward ) != 0: yield node.forward[0].key __A : Any = node.forward[0] def _a ( self ): '''simple docstring''' __A : Tuple = 1 while random() < self.p and level < self.max_level: level += 1 return level def _a ( self , __lowerCamelCase ): '''simple docstring''' __A : Dict = [] __A : List[str] = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: __A : Any = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__lowerCamelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def _a ( self , __lowerCamelCase ): '''simple docstring''' __A , __A : Optional[int] = self._locate_node(__lowerCamelCase ) if node is not None: for i, update_node in enumerate(__lowerCamelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: __A : Any = node.forward[i] else: __A : int = update_node.forward[:i] def _a ( self , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A , __A : Any = self._locate_node(__lowerCamelCase ) if node is not None: __A : Optional[Any] = value else: __A : str = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __lowerCamelCase ): update_vector.append(self.head ) __A : Union[str, Any] = level __A : str = Node(__lowerCamelCase , __lowerCamelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__lowerCamelCase ) else: __A : str = new_node def _a ( self , __lowerCamelCase ): '''simple docstring''' __A , __A : str = self._locate_node(__lowerCamelCase ) if node is not None: return node.value return None def _lowercase ( ) -> Any: '''simple docstring''' __A : int = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) __A : List[Any] = skip_list.head __A : str = {} while node.level != 0: __A : Optional[Any] = node.forward[0] __A : Optional[Any] = node.value assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def _lowercase ( ) -> Any: '''simple docstring''' __A : Tuple = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) __A : Union[str, Any] = skip_list.head __A : Optional[Any] = {} while node.level != 0: __A : str = node.forward[0] __A : Tuple = node.value if len(_SCREAMING_SNAKE_CASE ) != 4: print() assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def _lowercase ( ) -> int: '''simple docstring''' __A : Optional[Any] = SkipList() assert skip_list.find('Some key' ) is None def _lowercase ( ) -> Any: '''simple docstring''' __A : List[str] = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def _lowercase ( ) -> str: '''simple docstring''' __A : int = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def _lowercase ( ) -> Dict: '''simple docstring''' __A : Union[str, Any] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def _lowercase ( ) -> Dict: '''simple docstring''' __A : Dict = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def _lowercase ( ) -> Union[str, Any]: '''simple docstring''' __A : int = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 142 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(_SCREAMING_SNAKE_CASE : Union[str, Any] ): yield node.key for forward_node in node.forward: yield from traverse_keys(_SCREAMING_SNAKE_CASE ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def _lowercase ( ) -> Tuple: '''simple docstring''' def is_sorted(_SCREAMING_SNAKE_CASE : Optional[int] ): return all(next_item >= item for item, next_item in zip(_SCREAMING_SNAKE_CASE , lst[1:] ) ) __A : Tuple = SkipList() for i in range(10 ): skip_list.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) def _lowercase ( ) -> Optional[int]: '''simple docstring''' for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def _lowercase ( ) -> Any: '''simple docstring''' __A : Optional[int] = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
237
1
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict=1_3 , _lowerCamelCase : Dict=7 , _lowerCamelCase : int=True , _lowerCamelCase : List[Any]=True , _lowerCamelCase : Tuple=True , _lowerCamelCase : int=True , _lowerCamelCase : List[str]=9_9 , _lowerCamelCase : Optional[Any]=3_2 , _lowerCamelCase : List[Any]=5 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Any=3_7 , _lowerCamelCase : Optional[int]="gelu" , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : str=1_2_8 , _lowerCamelCase : List[Any]=3_2 , _lowerCamelCase : str=1_6 , _lowerCamelCase : Union[str, Any]=2 , _lowerCamelCase : List[Any]=0.02 , _lowerCamelCase : List[Any]=3 , _lowerCamelCase : Optional[int]=4 , _lowerCamelCase : Optional[int]=None , ): A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def A__ ( self : Any ): A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : Dict ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def A__ ( self : Optional[Any] ): ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.prepare_config_and_inputs() A__ = True A__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A__ ( self : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] ): A__ = NezhaModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) A__ = model(_lowerCamelCase , token_type_ids=_lowerCamelCase ) A__ = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , ): A__ = True A__ = NezhaModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , encoder_attention_mask=_lowerCamelCase , ) A__ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , ) A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self : int , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict ): A__ = NezhaForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple ): A__ = NezhaForNextSentencePrediction(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A__ ( self : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : List[Any] , _lowerCamelCase : Any ): A__ = NezhaForPreTraining(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , next_sentence_label=_lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A__ ( self : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] ): A__ = NezhaForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] ): A__ = self.num_labels A__ = NezhaForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] ): A__ = self.num_labels A__ = NezhaForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : List[str] , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] ): A__ = self.num_choices A__ = NezhaForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() A__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A__ = model( _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] ): A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase ( a , a , a , unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[str] =( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Optional[int] =( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : Optional[int] =True def A__ ( self : Tuple , _lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Any=False ): A__ = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class in get_values(_lowerCamelCase ): A__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowerCamelCase ) A__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowerCamelCase ) return inputs_dict def A__ ( self : List[Any] ): A__ = NezhaModelTester(self ) A__ = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=3_7 ) def A__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def A__ ( self : Optional[int] ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def A__ ( self : Dict ): A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowerCamelCase ) def A__ ( self : Dict ): # This regression test was failing with PyTorch < 1.3 ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() A__ = None self.model_tester.create_and_check_model_as_decoder( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) def A__ ( self : str ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def A__ ( self : Dict ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def A__ ( self : str ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_lowerCamelCase ) def A__ ( self : Tuple ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_lowerCamelCase ) def A__ ( self : Union[str, Any] ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def A__ ( self : List[str] ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def A__ ( self : List[str] ): A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def A__ ( self : Tuple ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = NezhaModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @slow @require_torch_gpu def A__ ( self : str ): A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return A__ = True A__ = model_class(config=_lowerCamelCase ) A__ = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A__ = torch.jit.trace( _lowerCamelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowerCamelCase , os.path.join(_lowerCamelCase , '''bert.pt''' ) ) A__ = torch.jit.load(os.path.join(_lowerCamelCase , '''bert.pt''' ) , map_location=_lowerCamelCase ) loaded(inputs_dict['''input_ids'''].to(_lowerCamelCase ) , inputs_dict['''attention_mask'''].to(_lowerCamelCase ) ) @require_torch class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : List[str] ): A__ = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) A__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A__ = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] A__ = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , _lowerCamelCase ) A__ = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1E-4 ) ) @slow def A__ ( self : Optional[int] ): A__ = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) A__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A__ = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] A__ = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , _lowerCamelCase ) A__ = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1E-4 ) )
571
"""simple docstring""" def UpperCAmelCase ( A : int , A : int ): '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase ( ): '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
573
0
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a_ = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
"""simple docstring""" import numpy as np def a__ ( __lowercase , __lowercase ) -> np.ndarray: return np.where(vector > 0 , __lowercase , (alpha * (np.exp(__lowercase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
621
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase = 16 lowercase = 32 def __A ( _SCREAMING_SNAKE_CASE : Accelerator , _SCREAMING_SNAKE_CASE : int = 1_6 ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained("bert-base-cased" ) __SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(_SCREAMING_SNAKE_CASE : Tuple ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE : int = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE : List[str] = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __SCREAMING_SNAKE_CASE : Optional[Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_SCREAMING_SNAKE_CASE : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __SCREAMING_SNAKE_CASE : str = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __SCREAMING_SNAKE_CASE : List[Any] = 1_6 elif accelerator.mixed_precision != "no": __SCREAMING_SNAKE_CASE : Optional[int] = 8 else: __SCREAMING_SNAKE_CASE : List[Any] = None return tokenizer.pad( _SCREAMING_SNAKE_CASE , padding="longest" , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors="pt" , ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE : List[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase = mocked_dataloaders # noqa: F811 def __A ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _SCREAMING_SNAKE_CASE ) == "1": __SCREAMING_SNAKE_CASE : int = 2 # New Code # __SCREAMING_SNAKE_CASE : List[Any] = int(args.gradient_accumulation_steps ) __SCREAMING_SNAKE_CASE : List[Any] = int(args.local_sgd_steps ) # Initialize accelerator __SCREAMING_SNAKE_CASE : List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_SCREAMING_SNAKE_CASE ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __SCREAMING_SNAKE_CASE : str = config["lr"] __SCREAMING_SNAKE_CASE : List[Any] = int(config["num_epochs"] ) __SCREAMING_SNAKE_CASE : Optional[int] = int(config["seed"] ) __SCREAMING_SNAKE_CASE : int = int(config["batch_size"] ) __SCREAMING_SNAKE_CASE : Dict = evaluate.load("glue" , "mrpc" ) set_seed(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __SCREAMING_SNAKE_CASE : Tuple = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __SCREAMING_SNAKE_CASE : Tuple = model.to(accelerator.device ) # Instantiate optimizer __SCREAMING_SNAKE_CASE : str = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) # Instantiate scheduler __SCREAMING_SNAKE_CASE : List[str] = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=1_0_0 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(_SCREAMING_SNAKE_CASE ): model.train() with LocalSGD( accelerator=_SCREAMING_SNAKE_CASE , model=_SCREAMING_SNAKE_CASE , local_sgd_steps=_SCREAMING_SNAKE_CASE , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : int = output.loss accelerator.backward(_SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[str] = model(**_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : List[str] = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _SCREAMING_SNAKE_CASE ) def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=_SCREAMING_SNAKE_CASE , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=_SCREAMING_SNAKE_CASE , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __SCREAMING_SNAKE_CASE : int = parser.parse_args() __SCREAMING_SNAKE_CASE : List[str] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
211
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __A ( _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if "img_encoder.pos_embed" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: __SCREAMING_SNAKE_CASE : str = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: __SCREAMING_SNAKE_CASE : int = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: __SCREAMING_SNAKE_CASE : int = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: __SCREAMING_SNAKE_CASE : Any = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: __SCREAMING_SNAKE_CASE : Any = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: __SCREAMING_SNAKE_CASE : Any = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: __SCREAMING_SNAKE_CASE : str = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: __SCREAMING_SNAKE_CASE : Any = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: __SCREAMING_SNAKE_CASE : int = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def __A ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Tuple = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __SCREAMING_SNAKE_CASE : int = key.split("." ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = int(key_split[2] ), int(key_split[4] ) __SCREAMING_SNAKE_CASE : List[str] = config.vision_config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim, :] __SCREAMING_SNAKE_CASE : int = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : str = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Optional[int] = val[:dim] __SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] __SCREAMING_SNAKE_CASE : Tuple = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors __SCREAMING_SNAKE_CASE : Tuple = key.split("." ) __SCREAMING_SNAKE_CASE : Any = int(key_split[3] ) __SCREAMING_SNAKE_CASE : List[str] = config.text_config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : Dict = val[:dim, :] __SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : str = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim] __SCREAMING_SNAKE_CASE : List[Any] = val[dim : dim * 2] __SCREAMING_SNAKE_CASE : Dict = val[-dim:] else: __SCREAMING_SNAKE_CASE : Dict = rename_key(_SCREAMING_SNAKE_CASE ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): __SCREAMING_SNAKE_CASE : Union[str, Any] = val.squeeze_() else: __SCREAMING_SNAKE_CASE : str = val return orig_state_dict def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" __SCREAMING_SNAKE_CASE : int = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def __A ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict="groupvit-gcc-yfcc" , _SCREAMING_SNAKE_CASE : str=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = GroupViTConfig() __SCREAMING_SNAKE_CASE : str = GroupViTModel(_SCREAMING_SNAKE_CASE ).eval() __SCREAMING_SNAKE_CASE : List[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] __SCREAMING_SNAKE_CASE : str = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_SCREAMING_SNAKE_CASE ) == 0) # verify result __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) __SCREAMING_SNAKE_CASE : List[Any] = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=["a photo of a cat", "a photo of a dog"] , images=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : str = model(**_SCREAMING_SNAKE_CASE ) if model_name == "groupvit-gcc-yfcc": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(f'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image , _SCREAMING_SNAKE_CASE , atol=1E-3 ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print("Successfully saved processor and model to" , _SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_SCREAMING_SNAKE_CASE , organization="nielsr" ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization="nielsr" ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) lowercase = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
211
1
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case ): _lowerCAmelCase = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] _lowerCAmelCase = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } _lowerCAmelCase = F'{src_lang}-{tgt_lang}' _lowerCAmelCase = F'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=snake_case , exist_ok=snake_case ) _lowerCAmelCase = os.path.join(snake_case , 'README.md' ) print(F'Generating {path}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(snake_case ) # make sure we are under the root of the project _lowercase: str = Path(__file__).resolve().parent.parent.parent _lowercase: Union[str, Any] = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _lowercase: List[Any] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
225
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowercase: Any = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Tuple = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Optional[Any] = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Optional[Any] = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase: Optional[Any] = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _lowercase: Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
225
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( A__ ): '''simple docstring''' def __init__( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = True , _snake_case = None , _snake_case = False , _snake_case = None , _snake_case = True , _snake_case = "arrow" , **_snake_case , ) -> Union[str, Any]: """simple docstring""" super().__init__( split=_snake_case , features=_snake_case , cache_dir=_snake_case , keep_in_memory=_snake_case , streaming=_snake_case , **_snake_case , ) UpperCAmelCase = load_from_cache_file UpperCAmelCase = file_format UpperCAmelCase = Spark( df=_snake_case , features=_snake_case , cache_dir=_snake_case , working_dir=_snake_case , **_snake_case , ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) UpperCAmelCase = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_snake_case , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
254
from ..utils import DummyObject, requires_backends class lowercase ( metaclass=A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = ["""torch""", """scipy"""] def __init__( self , *_snake_case , **_snake_case ) -> Dict: """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def snake_case_ ( cls , *_snake_case , **_snake_case ) -> str: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def snake_case_ ( cls , *_snake_case , **_snake_case ) -> List[Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
254
1
from __future__ import annotations lowerCamelCase_ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class __lowerCamelCase : def __init__( self , lowerCamelCase , lowerCamelCase ) -> None: snake_case_ = graph # mapping node to its parent in resulting breadth first tree snake_case_ = {} snake_case_ = source_vertex def lowerCAmelCase_ ( self ) -> None: snake_case_ = {self.source_vertex} snake_case_ = None snake_case_ = [self.source_vertex] # first in first out queue while queue: snake_case_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase ) snake_case_ = vertex queue.append(lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase ) -> str: if target_vertex == self.source_vertex: return self.source_vertex snake_case_ = self.parent.get(lowerCamelCase ) if target_vertex_parent is None: snake_case_ = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(lowerCamelCase ) return self.shortest_path(lowerCamelCase ) + f'''->{target_vertex}''' if __name__ == "__main__": lowerCamelCase_ = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
701
def UpperCamelCase( lowercase_ = 200 ) -> int: '''simple docstring''' snake_case_ = [1, 2, 5, 10, 20, 50, 100, 200] snake_case_ = [0] * (pence + 1) snake_case_ = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
161
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Any = { '''configuration_clap''': [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapAudioConfig''', '''ClapConfig''', '''ClapTextConfig''', ], '''processing_clap''': ['''ClapProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ '''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ClapModel''', '''ClapPreTrainedModel''', '''ClapTextModel''', '''ClapTextModelWithProjection''', '''ClapAudioModel''', '''ClapAudioModelWithProjection''', ] _UpperCAmelCase : Optional[Any] = ['''ClapFeatureExtractor'''] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _UpperCAmelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
72
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'donut-swin' __UpperCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self, A_=224, A_=4, A_=3, A_=96, A_=[2, 2, 6, 2], A_=[3, 6, 12, 24], A_=7, A_=4.0, A_=True, A_=0.0, A_=0.0, A_=0.1, A_="gelu", A_=False, A_=0.02, A_=1E-5, **A_, ) -> List[str]: super().__init__(**A_ ) UpperCAmelCase__ =image_size UpperCAmelCase__ =patch_size UpperCAmelCase__ =num_channels UpperCAmelCase__ =embed_dim UpperCAmelCase__ =depths UpperCAmelCase__ =len(A_ ) UpperCAmelCase__ =num_heads UpperCAmelCase__ =window_size UpperCAmelCase__ =mlp_ratio UpperCAmelCase__ =qkv_bias UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =drop_path_rate UpperCAmelCase__ =hidden_act UpperCAmelCase__ =use_absolute_embeddings UpperCAmelCase__ =layer_norm_eps UpperCAmelCase__ =initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase__ =int(embed_dim * 2 ** (len(A_ ) - 1) )
625
0
import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __lowercase ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self : str , _a : float , _a : Callable , _a : int , _a : float = 1.0 , _a : str = None , ): super().__init__() UpperCamelCase__ = initial_learning_rate UpperCamelCase__ = warmup_steps UpperCamelCase__ = power UpperCamelCase__ = decay_schedule_fn UpperCamelCase__ = name def __call__( self : str , _a : Tuple ): with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCamelCase__ = tf.cast(_a , tf.floataa ) UpperCamelCase__ = tf.cast(self.warmup_steps , tf.floataa ) UpperCamelCase__ = global_step_float / warmup_steps_float UpperCamelCase__ = self.initial_learning_rate * tf.math.pow(_a , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_a , ) def A_ ( self : str ): return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def lowerCamelCase_ ( UpperCamelCase__ : float, UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : float = 0.0, UpperCamelCase__ : float = 0.9, UpperCamelCase__ : float = 0.999, UpperCamelCase__ : float = 1e-8, UpperCamelCase__ : Optional[float] = None, UpperCamelCase__ : Optional[float] = None, UpperCamelCase__ : float = 0.0, UpperCamelCase__ : float = 1.0, UpperCamelCase__ : Optional[List[str]] = None, ): '''simple docstring''' UpperCamelCase__ = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCamelCase__, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=init_lr * min_lr_ratio, power=UpperCamelCase__, ) if num_warmup_steps: UpperCamelCase__ = WarmUp( initial_learning_rate=UpperCamelCase__, decay_schedule_fn=UpperCamelCase__, warmup_steps=UpperCamelCase__, ) if weight_decay_rate > 0.0: UpperCamelCase__ = AdamWeightDecay( learning_rate=UpperCamelCase__, weight_decay_rate=UpperCamelCase__, beta_a=UpperCamelCase__, beta_a=UpperCamelCase__, epsilon=UpperCamelCase__, clipnorm=UpperCamelCase__, global_clipnorm=UpperCamelCase__, exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''], include_in_weight_decay=UpperCamelCase__, ) else: UpperCamelCase__ = tf.keras.optimizers.Adam( learning_rate=UpperCamelCase__, beta_a=UpperCamelCase__, beta_a=UpperCamelCase__, epsilon=UpperCamelCase__, clipnorm=UpperCamelCase__, global_clipnorm=UpperCamelCase__, ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __lowercase ( A ): '''simple docstring''' def __init__( self : List[str] , _a : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , _a : float = 0.9 , _a : float = 0.999 , _a : float = 1E-7 , _a : bool = False , _a : float = 0.0 , _a : Optional[List[str]] = None , _a : Optional[List[str]] = None , _a : str = "AdamWeightDecay" , **_a : Tuple , ): super().__init__(_a , _a , _a , _a , _a , _a , **_a ) UpperCamelCase__ = weight_decay_rate UpperCamelCase__ = include_in_weight_decay UpperCamelCase__ = exclude_from_weight_decay @classmethod def A_ ( cls : int , _a : str ): UpperCamelCase__ = {'''WarmUp''': WarmUp} return super(_a , cls ).from_config(_a , custom_objects=_a ) def A_ ( self : Union[str, Any] , _a : Any , _a : Any , _a : List[Any] ): super(_a , self )._prepare_local(_a , _a , _a ) UpperCamelCase__ = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def A_ ( self : Optional[int] , _a : Optional[int] , _a : str , _a : str ): UpperCamelCase__ = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def A_ ( self : int , _a : List[str] , _a : Any=None , **_a : List[Any] ): UpperCamelCase__ , UpperCamelCase__ = list(zip(*_a ) ) return super(_a , self ).apply_gradients(zip(_a , _a ) , name=_a , **_a ) def A_ ( self : Dict , _a : str , _a : List[Any] , _a : Optional[Any] ): if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCamelCase__ = apply_state or {} UpperCamelCase__ = apply_state.get((var_device, var_dtype) ) if coefficients is None: UpperCamelCase__ = self._fallback_apply_state(_a , _a ) UpperCamelCase__ = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def A_ ( self : Optional[Any] , _a : int , _a : List[Any] , _a : Any=None ): UpperCamelCase__ , UpperCamelCase__ = self._get_lr(var.device , var.dtype.base_dtype , _a ) UpperCamelCase__ = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_dense(_a , _a , **_a ) def A_ ( self : Optional[int] , _a : Dict , _a : Any , _a : int , _a : Optional[Any]=None ): UpperCamelCase__ , UpperCamelCase__ = self._get_lr(var.device , var.dtype.base_dtype , _a ) UpperCamelCase__ = self._decay_weights_op(_a , _a , _a ) with tf.control_dependencies([decay] ): return super(_a , self )._resource_apply_sparse(_a , _a , _a , **_a ) def A_ ( self : int ): UpperCamelCase__ = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def A_ ( self : List[str] , _a : Tuple ): if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(_a , _a ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(_a , _a ) is not None: return False return True class __lowercase ( A ): '''simple docstring''' def __init__( self : str ): UpperCamelCase__ = [] UpperCamelCase__ = None @property def A_ ( self : Dict ): if self._accum_steps is None: UpperCamelCase__ = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def A_ ( self : List[Any] ): if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : int , _a : Any ): if not self._gradients: UpperCamelCase__ = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(_a ) , trainable=_a , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(_a ) != len(self._gradients ): raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(_a )}""" ) for accum_gradient, gradient in zip(self._gradients , _a ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(_a ) self._accum_steps.assign_add(1 ) def A_ ( self : List[Any] ): if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(_a ) )
591
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __lowercase ( A, A, A, unittest.TestCase ): '''simple docstring''' _A : List[Any] = StableDiffusionControlNetImgaImgPipeline _A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _A : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _A : List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) _A : str = IMAGE_TO_IMAGE_IMAGE_PARAMS def A_ ( self : Optional[Any] ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCamelCase__ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase__ = CLIPTextModel(_a ) UpperCamelCase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A_ ( self : Optional[Any] , _a : Optional[int] , _a : Optional[Any]=0 ): if str(_a ).startswith('''mps''' ): UpperCamelCase__ = torch.manual_seed(_a ) else: UpperCamelCase__ = torch.Generator(device=_a ).manual_seed(_a ) UpperCamelCase__ = 2 UpperCamelCase__ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ) UpperCamelCase__ = floats_tensor(control_image.shape , rng=random.Random(_a ) ).to(_a ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) UpperCamelCase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def A_ ( self : Union[str, Any] ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A_ ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def A_ ( self : Any ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class __lowercase ( A, A, unittest.TestCase ): '''simple docstring''' _A : int = StableDiffusionControlNetImgaImgPipeline _A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _A : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _A : Optional[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def A_ ( self : Tuple ): torch.manual_seed(0 ) UpperCamelCase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_a : List[str] ): if isinstance(_a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) UpperCamelCase__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_a ) torch.manual_seed(0 ) UpperCamelCase__ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) UpperCamelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCamelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase__ = CLIPTextModel(_a ) UpperCamelCase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCamelCase__ = MultiControlNetModel([controlneta, controlneta] ) UpperCamelCase__ = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def A_ ( self : Tuple , _a : Dict , _a : Optional[int]=0 ): if str(_a ).startswith('''mps''' ): UpperCamelCase__ = torch.manual_seed(_a ) else: UpperCamelCase__ = torch.Generator(device=_a ).manual_seed(_a ) UpperCamelCase__ = 2 UpperCamelCase__ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_a , device=torch.device(_a ) , ), ] UpperCamelCase__ = floats_tensor(control_image[0].shape , rng=random.Random(_a ) ).to(_a ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase__ = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) UpperCamelCase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def A_ ( self : str ): UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**_a ) pipe.to(_a ) UpperCamelCase__ = 10.0 UpperCamelCase__ = 4 UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a )[0] UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCamelCase__ = self.get_dummy_inputs(_a ) UpperCamelCase__ = steps UpperCamelCase__ = scale UpperCamelCase__ = pipe(**_a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def A_ ( self : int ): return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A_ ( self : int ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def A_ ( self : int ): self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def A_ ( self : Dict ): UpperCamelCase__ = self.get_dummy_components() UpperCamelCase__ = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_a ) except NotImplementedError: pass @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' def A_ ( self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Dict ): UpperCamelCase__ = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) UpperCamelCase__ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=_a , controlnet=_a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_a ) UpperCamelCase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCamelCase__ = '''evil space-punk bird''' UpperCamelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) UpperCamelCase__ = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) UpperCamelCase__ = pipe( _a , _a , control_image=_a , generator=_a , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) UpperCamelCase__ = output.images[0] assert image.shape == (512, 512, 3) UpperCamelCase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
591
1
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase = 16 UpperCAmelCase = 32 def __UpperCamelCase ( lowercase__ : Optional[Any], lowercase__ : int, lowercase__ : Optional[int], lowercase__ : Optional[Any], lowercase__ : Union[str, Any] = 16 ): '''simple docstring''' __lowercase =AutoTokenizer.from_pretrained('bert-base-cased' ) __lowercase =DatasetDict( { 'train': dataset['train'].select(lowercase__ ), 'validation': dataset['train'].select(lowercase__ ), 'test': dataset['validation'], } ) def tokenize_function(lowercase__ : List[str] ): # max_length=None => use the model max length (it's actually the default) __lowercase =tokenizer(examples['sentence1'], examples['sentence2'], truncation=lowercase__, max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowercase =datasets.map( lowercase__, batched=lowercase__, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowercase =tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(lowercase__ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowercase =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowercase =16 elif accelerator.mixed_precision != "no": __lowercase =8 else: __lowercase =None return tokenizer.pad( lowercase__, padding='longest', max_length=lowercase__, pad_to_multiple_of=lowercase__, return_tensors='pt', ) # Instantiate dataloaders. __lowercase =DataLoader( tokenized_datasets['train'], shuffle=lowercase__, collate_fn=lowercase__, batch_size=lowercase__ ) __lowercase =DataLoader( tokenized_datasets['validation'], shuffle=lowercase__, collate_fn=lowercase__, batch_size=lowercase__ ) __lowercase =DataLoader( tokenized_datasets['test'], shuffle=lowercase__, collate_fn=lowercase__, batch_size=lowercase__ ) return train_dataloader, eval_dataloader, test_dataloader def __UpperCamelCase ( lowercase__ : List[str], lowercase__ : Any ): '''simple docstring''' __lowercase =[] # Download the dataset __lowercase =load_dataset('glue', 'mrpc' ) # Create our splits __lowercase =StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator __lowercase =Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowercase =config['lr'] __lowercase =int(config['num_epochs'] ) __lowercase =int(config['seed'] ) __lowercase =int(config['batch_size'] ) __lowercase =evaluate.load('glue', 'mrpc' ) # If the batch size is too big we use gradient accumulation __lowercase =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowercase =batch_size // MAX_GPU_BATCH_SIZE __lowercase =MAX_GPU_BATCH_SIZE set_seed(lowercase__ ) # New Code # # Create our folds: __lowercase =kfold.split(np.zeros(datasets['train'].num_rows ), datasets['train']['label'] ) __lowercase =[] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowercase__ ): __lowercase , __lowercase , __lowercase =get_fold_dataloaders( lowercase__, lowercase__, lowercase__, lowercase__, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowercase =AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=lowercase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowercase =model.to(accelerator.device ) # Instantiate optimizer __lowercase =AdamW(params=model.parameters(), lr=lowercase__ ) # Instantiate scheduler __lowercase =get_linear_schedule_with_warmup( optimizer=lowercase__, num_warmup_steps=1_00, num_training_steps=(len(lowercase__ ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowercase , __lowercase , __lowercase , __lowercase , __lowercase =accelerator.prepare( lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ ) # Now we train the model for epoch in range(lowercase__ ): model.train() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowercase =model(**lowercase__ ) __lowercase =outputs.loss __lowercase =loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase =model(**lowercase__ ) __lowercase =outputs.logits.argmax(dim=-1 ) __lowercase , __lowercase =accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=lowercase__, references=lowercase__, ) __lowercase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''', lowercase__ ) # New Code # # We also run predictions on the test set at the very end __lowercase =[] for step, batch in enumerate(lowercase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowercase =model(**lowercase__ ) __lowercase =outputs.logits __lowercase , __lowercase =accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowercase__, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: __lowercase =torch.cat(lowercase__, dim=0 ) __lowercase =torch.stack(lowercase__, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) __lowercase =metric.compute(predictions=lowercase__, references=lowercase__ ) accelerator.print('Average test metrics from all folds:', lowercase__ ) def __UpperCamelCase ( ): '''simple docstring''' __lowercase =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=lowercase__, default=lowercase__, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds', type=lowercase__, default=3, help='The number of splits to perform across the dataset' ) __lowercase =parser.parse_args() __lowercase ={'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(lowercase__, lowercase__ ) if __name__ == "__main__": main()
119
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
90
0
import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
719
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCamelCase = imread(r'digital_image_processing/image_data/lena_small.jpg') UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY) def __lowerCamelCase ( ) -> int: __UpperCamelCase : int = cn.convert_to_negative(__lowerCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def __lowerCamelCase ( ) -> Optional[Any]: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(__lowerCAmelCase , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def __lowerCamelCase ( ) -> Dict: __UpperCamelCase : str = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __lowerCamelCase ( ) -> str: __UpperCamelCase : List[Any] = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __UpperCamelCase : Optional[int] = canny.canny(__lowerCAmelCase ) # assert canny array for at least one True assert canny_array.any() def __lowerCamelCase ( ) -> Optional[int]: assert gg.gaussian_filter(__lowerCAmelCase , 5 , sigma=0.9 ).all() def __lowerCamelCase ( ) -> Tuple: # laplace diagonals __UpperCamelCase : List[str] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __UpperCamelCase : Any = conv.img_convolve(__lowerCAmelCase , __lowerCAmelCase ).astype(__lowerCAmelCase ) assert res.any() def __lowerCamelCase ( ) -> List[str]: assert med.median_filter(__lowerCAmelCase , 3 ).any() def __lowerCamelCase ( ) -> int: __UpperCamelCase , __UpperCamelCase : List[Any] = sob.sobel_filter(__lowerCAmelCase ) assert grad.any() and theta.any() def __lowerCamelCase ( ) -> Optional[int]: __UpperCamelCase : int = sp.make_sepia(__lowerCAmelCase , 20 ) assert sepia.all() def __lowerCamelCase ( __lowerCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg" ) -> Union[str, Any]: __UpperCamelCase : str = bs.Burkes(imread(__lowerCAmelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __lowerCamelCase ( __lowerCAmelCase : str = "digital_image_processing/image_data/lena_small.jpg" , ) -> str: __UpperCamelCase : Dict = rs.NearestNeighbour(imread(__lowerCAmelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __lowerCamelCase ( ) -> Union[str, Any]: __UpperCamelCase : Any = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. __UpperCamelCase : int = imread(__lowerCAmelCase , 0 ) # Test for get_neighbors_pixel function() return not None __UpperCamelCase : Dict = 0 __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : str = image[x_coordinate][y_coordinate] __UpperCamelCase : Tuple = lbp.get_neighbors_pixel( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __UpperCamelCase : List[Any] = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __UpperCamelCase : str = lbp.local_binary_value(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) assert lbp_image.any()
515
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : str ) -> Optional[int]: __lowerCAmelCase = ['a', 'b', 'c'] # Defaults to last layer if both are None __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ['c'] ) self.assertEqual(lowerCAmelCase_ , [2] ) # Out indices set to match out features __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices(['a', 'c'] , lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ['a', 'c'] ) self.assertEqual(lowerCAmelCase_ , [0, 2] ) # Out features set to match out indices __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices(lowerCAmelCase_ , [0, 2] , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ['a', 'c'] ) self.assertEqual(lowerCAmelCase_ , [0, 2] ) # Out features selected from negative indices __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices(lowerCAmelCase_ , [-3, -1] , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ['a', 'c'] ) self.assertEqual(lowerCAmelCase_ , [-3, -1] ) def lowercase ( self : List[Any] ) -> Dict: # Stage names must be set with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , lowerCAmelCase_ ) # Out features must be a list with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(lowerCAmelCase_ , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(lowerCAmelCase_ , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = BackboneMixin() __lowerCAmelCase = ['a', 'b', 'c'] __lowerCAmelCase = ['a', 'c'] __lowerCAmelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly __lowerCAmelCase = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) __lowerCAmelCase = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
53
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process _snake_case : Optional[int] = logging.getLogger(__name__) _snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) _snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowercase ( self : List[Any] ) -> List[Any]: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) a_ = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) a_ = field( default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) a_ = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) a_ = field( default=_UpperCamelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def lowercase ( self : int ) -> int: if self.train_file is not None: __lowerCAmelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: __lowerCAmelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ): with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f: __lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())] assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) __lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} __lowerCAmelCase = refs return Dataset.from_dict(lowerCAmelCase_ ) def a_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s', lowerCAmelCase_ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name ) if "validation" not in datasets.keys(): __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", ) else: __lowerCAmelCase = {} if data_args.train_file is not None: __lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: __lowerCAmelCase = data_args.validation_file __lowerCAmelCase = data_args.train_file.split('.' )[-1] if extension == "txt": __lowerCAmelCase = 'text' __lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: __lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) __lowerCAmelCase = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ ) elif model_args.model_name_or_path: __lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: __lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ ) model.resize_token_embeddings(len(lowerCAmelCase_ ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: __lowerCAmelCase = datasets['train'].column_names else: __lowerCAmelCase = datasets['validation'].column_names __lowerCAmelCase = 'text' if 'text' in column_names else column_names[0] __lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(lowerCAmelCase_ : str ): # Remove empty lines __lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()] return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length ) __lowerCAmelCase = datasets.map( lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, ) # Add the chinese references if provided if data_args.train_ref_file is not None: __lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file ) if data_args.validation_ref_file is not None: __lowerCAmelCase = add_chinese_references( tokenized_datasets['validation'], data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer __lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: __lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. __lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowerCAmelCase = Trainer( model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, ) # Training if training_args.do_train: if last_checkpoint is not None: __lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): __lowerCAmelCase = model_args.model_name_or_path else: __lowerCAmelCase = None __lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() # Saves the tokenizer too for easy upload __lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) ) # Evaluation __lowerCAmelCase = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCAmelCase = trainer.evaluate() __lowerCAmelCase = math.exp(eval_output['eval_loss'] ) __lowerCAmelCase = perplexity __lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def a_ ( lowerCAmelCase_ : Tuple ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
53
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCAmelCase = logging.get_logger(__name__) class __UpperCamelCase ( a__ ): _UpperCAmelCase = ["pixel_values"] def __init__( self ,_A = True ,_A = None ,_A = PIL.Image.BICUBIC ,_A = True ,_A = None ,_A = 1 / 255 ,_A = True ,_A = True ,_A = None ,_A = None ,**_A ,): '''simple docstring''' super().__init__(**_A ) _lowerCAmelCase : int = size if size is not None else {'height': 256, 'width': 256} _lowerCAmelCase : List[Any] = get_size_dict(_A ) _lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCAmelCase : int = get_size_dict(_A ,param_name='crop_size' ) _lowerCAmelCase : int = do_resize _lowerCAmelCase : int = size _lowerCAmelCase : str = resample _lowerCAmelCase : Dict = do_center_crop _lowerCAmelCase : Dict = crop_size _lowerCAmelCase : Any = do_rescale _lowerCAmelCase : int = rescale_factor _lowerCAmelCase : int = do_normalize _lowerCAmelCase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCamelCase ( self ,_A ,_A ,_A = PIL.Image.BICUBIC ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Optional[Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( _A ,size=(size['height'], size['width']) ,resample=_A ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = None ,**_A ,): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(_A ,size=(size['height'], size['width']) ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A ,_A = None ,**_A ,): '''simple docstring''' return rescale(_A ,scale=_A ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A ,_A ,_A = None ,**_A ,): '''simple docstring''' return normalize(_A ,mean=_A ,std=_A ,data_format=_A ,**_A ) def __lowerCamelCase ( self ,_A ,_A = None ,_A = None ,_A=None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = None ,_A = ChannelDimension.FIRST ,**_A ,): '''simple docstring''' _lowerCAmelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : str = resample if resample is not None else self.resample _lowerCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Any = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : List[str] = image_std if image_std is not None else self.image_std _lowerCAmelCase : List[str] = size if size is not None else self.size _lowerCAmelCase : List[str] = get_size_dict(_A ) _lowerCAmelCase : int = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : str = get_size_dict(_A ,param_name='crop_size' ) _lowerCAmelCase : Dict = make_list_of_images(_A ) if not valid_images(_A ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase : Optional[int] = [to_numpy_array(_A ) for image in images] if do_resize: _lowerCAmelCase : int = [self.resize(image=_A ,size=_A ,resample=_A ) for image in images] if do_center_crop: _lowerCAmelCase : List[Any] = [self.center_crop(image=_A ,size=_A ) for image in images] if do_rescale: _lowerCAmelCase : Optional[Any] = [self.rescale(image=_A ,scale=_A ) for image in images] if do_normalize: _lowerCAmelCase : Union[str, Any] = [self.normalize(image=_A ,mean=_A ,std=_A ) for image in images] _lowerCAmelCase : Optional[Any] = [to_channel_dimension_format(_A ,_A ) for image in images] _lowerCAmelCase : Optional[int] = {'pixel_values': images} return BatchFeature(data=_A ,tensor_type=_A )
721
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _lowerCAmelCase = get_logger() _lowerCAmelCase = None class __UpperCamelCase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): def __init__( self ,_A=None ,_A=None ,**_A ): '''simple docstring''' super().__init__(features=_A ) import jax from jaxlib.xla_client import Device if isinstance(_A ,_A ): raise ValueError( F"""Expected {device} to be a `str` not {type(_A )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) _lowerCAmelCase : int = device if isinstance(_A ,_A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Any = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"""Device with string identifier {self.device} not listed among the available """ F"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ F"""device: {str(jax.devices()[0] )}.""" ) _lowerCAmelCase : List[str] = str(jax.devices()[0] ) _lowerCAmelCase : int = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): '''simple docstring''' import jax return {str(_A ): device for device in jax.devices()} def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,_A ) and column: if all( isinstance(_A ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_A ,axis=0 ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax import jax.numpy as jnp if isinstance(_A ,(str, bytes, type(_A )) ): return value elif isinstance(_A ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() _lowerCAmelCase : Optional[Any] = {} if isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _lowerCAmelCase : List[str] = {'dtype': jnp.intaa} else: _lowerCAmelCase : Tuple = {'dtype': jnp.intaa} elif isinstance(_A ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): _lowerCAmelCase : Any = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A ,PIL.Image.Image ): _lowerCAmelCase : int = np.asarray(_A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _lowerCAmelCase : Optional[Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_A ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_A ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_A ,'__array__' ) and not isinstance(_A ,jax.Array ): _lowerCAmelCase : Optional[Any] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' return map_nested(self._recursive_tensorize ,_A ,map_list=_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(_A ) _lowerCAmelCase : int = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Dict = self.numpy_arrow_extractor().extract_column(_A ) _lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(_A ,pa_table.column_names[0] ) _lowerCAmelCase : Optional[Any] = self.recursive_tensorize(_A ) _lowerCAmelCase : Optional[Any] = self._consolidate(_A ) return column def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(_A ) _lowerCAmelCase : Any = self.python_features_decoder.decode_batch(_A ) _lowerCAmelCase : str = self.recursive_tensorize(_A ) for column_name in batch: _lowerCAmelCase : Optional[Any] = self._consolidate(batch[column_name] ) return batch
16
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = (DDIMParallelScheduler,) UpperCAmelCase = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCamelCase_ ( self : Dict , **_A : Any ): _UpperCamelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''clip_sample''': True, } config.update(**_A ) return config def UpperCamelCase_ ( self : str , **_A : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(**_A ) _UpperCamelCase = scheduler_class(**_A ) _UpperCamelCase , _UpperCamelCase = 10, 0.0 _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter scheduler.set_timesteps(_A ) for t in scheduler.timesteps: _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A , _A ).prev_sample return sample def UpperCamelCase_ ( self : List[str] ): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_A ) _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(steps_offset=1 ) _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def UpperCamelCase_ ( self : Optional[int] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_A ) def UpperCamelCase_ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_A ) def UpperCamelCase_ ( self : Tuple ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_A ) def UpperCamelCase_ ( self : List[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): self.check_over_configs(thresholding=_A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , ) def UpperCamelCase_ ( self : str ): for t in [1, 10, 49]: self.check_over_forward(time_step=_A ) def UpperCamelCase_ ( self : int ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_A , num_inference_steps=_A ) def UpperCamelCase_ ( self : Dict ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_A , eta=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) _UpperCamelCase , _UpperCamelCase = 10, 0.0 scheduler.set_timesteps(_A ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter _UpperCamelCase = self.dummy_sample_deter + 0.1 _UpperCamelCase = self.dummy_sample_deter - 0.1 _UpperCamelCase = samplea.shape[0] _UpperCamelCase = torch.stack([samplea, samplea, samplea] , dim=0 ) _UpperCamelCase = torch.arange(_A )[0:3, None].repeat(1 , _A ) _UpperCamelCase = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _UpperCamelCase = scheduler.batch_step_no_noise(_A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _A ) _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.full_loop() _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.22_3967 ) < 1e-3 def UpperCamelCase_ ( self : str ): _UpperCamelCase = self.full_loop(prediction_type='''v_prediction''' ) _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase_ ( self : Any ): # We specify different beta, so that the first alpha is 0.99 _UpperCamelCase = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase_ ( self : List[Any] ): # We specify different beta, so that the first alpha is 0.99 _UpperCamelCase = self.full_loop(set_alpha_to_one=_A , beta_start=0.01 ) _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
10
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase = HfApi() _lowerCAmelCase = {} # fmt: off _lowerCAmelCase = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) _lowerCAmelCase = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) _lowerCAmelCase = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) _lowerCAmelCase = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) _lowerCAmelCase = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) _lowerCAmelCase = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) _lowerCAmelCase = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) _lowerCAmelCase = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) _lowerCAmelCase = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) _lowerCAmelCase = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) _lowerCAmelCase = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) _lowerCAmelCase = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) _lowerCAmelCase = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) _lowerCAmelCase = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) _lowerCAmelCase = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on _lowerCAmelCase = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(f'Started running {mod.modelId}!!!') if mod.modelId.startswith("CompVis"): _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(f'{mod.modelId} has passed successfully!!!')
10
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : Optional[int] = logging.get_logger(__name__) UpperCamelCase_ : List[Any] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class _lowercase ( lowerCAmelCase ): _a : Optional[int] = '''luke''' def __init__( self : List[Any] , a : int=5_0_2_6_7 , a : Optional[int]=5_0_0_0_0_0 , a : Union[str, Any]=7_6_8 , a : List[str]=2_5_6 , a : Optional[Any]=1_2 , a : Dict=1_2 , a : List[str]=3_0_7_2 , a : List[str]="gelu" , a : Union[str, Any]=0.1 , a : str=0.1 , a : Union[str, Any]=5_1_2 , a : int=2 , a : List[str]=0.0_2 , a : Optional[int]=1e-12 , a : int=True , a : Dict=None , a : Any=1 , a : Any=0 , a : Optional[int]=2 , **a : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a ) __snake_case : Tuple =vocab_size __snake_case : Dict =entity_vocab_size __snake_case : str =hidden_size __snake_case : int =entity_emb_size __snake_case : List[str] =num_hidden_layers __snake_case : Any =num_attention_heads __snake_case : Union[str, Any] =hidden_act __snake_case : str =intermediate_size __snake_case : Union[str, Any] =hidden_dropout_prob __snake_case : List[Any] =attention_probs_dropout_prob __snake_case : Any =max_position_embeddings __snake_case : Tuple =type_vocab_size __snake_case : Tuple =initializer_range __snake_case : List[str] =layer_norm_eps __snake_case : Tuple =use_entity_aware_attention __snake_case : Any =classifier_dropout
717
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class _lowercase ( lowerCAmelCase ): _a : Optional[Any] = ['''vqvae'''] def __init__( self : Optional[Any] , a : AutoencoderKL , a : UNetaDConditionModel , a : Mel , a : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=a , scheduler=a , mel=a , vqvae=a ) def _UpperCamelCase ( self : Any ): """simple docstring""" return 5_0 if isinstance(self.scheduler , a ) else 1_0_0_0 @torch.no_grad() def __call__( self : Optional[int] , a : int = 1 , a : str = None , a : np.ndarray = None , a : int = 0 , a : int = 0 , a : int = None , a : torch.Generator = None , a : float = 0 , a : float = 0 , a : torch.Generator = None , a : float = 0 , a : torch.Tensor = None , a : torch.Tensor = None , a : Optional[int]=True , ): """simple docstring""" __snake_case : List[Any] =steps or self.get_default_steps() self.scheduler.set_timesteps(a ) __snake_case : int =step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __snake_case : Any =(self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __snake_case : List[str] =randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=a , device=self.device , ) __snake_case : int =noise __snake_case : List[str] =None if audio_file is not None or raw_audio is not None: self.mel.load_audio(a , a ) __snake_case : List[Any] =self.mel.audio_slice_to_image(a ) __snake_case : Tuple =np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) __snake_case : str =(input_image / 2_5_5) * 2 - 1 __snake_case : Optional[int] =torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __snake_case : Tuple =self.vqvae.encode(torch.unsqueeze(a , 0 ) ).latent_dist.sample( generator=a )[0] __snake_case : Optional[int] =self.vqvae.config.scaling_factor * input_images if start_step > 0: __snake_case : str =self.scheduler.add_noise(a , a , self.scheduler.timesteps[start_step - 1] ) __snake_case : Optional[Any] =( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __snake_case : int =int(mask_start_secs * pixels_per_second ) __snake_case : Any =int(mask_end_secs * pixels_per_second ) __snake_case : Union[str, Any] =self.scheduler.add_noise(a , a , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , a ): __snake_case : List[str] =self.unet(a , a , a )['''sample'''] else: __snake_case : Union[str, Any] =self.unet(a , a )['''sample'''] if isinstance(self.scheduler , a ): __snake_case : List[str] =self.scheduler.step( model_output=a , timestep=a , sample=a , eta=a , generator=a , )['''prev_sample'''] else: __snake_case : List[Any] =self.scheduler.step( model_output=a , timestep=a , sample=a , generator=a , )['''prev_sample'''] if mask is not None: if mask_start > 0: __snake_case : Any =mask[:, step, :, :mask_start] if mask_end > 0: __snake_case : Optional[Any] =mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __snake_case : str =1 / self.vqvae.config.scaling_factor * images __snake_case : Optional[int] =self.vqvae.decode(a )['''sample'''] __snake_case : int =(images / 2 + 0.5).clamp(0 , 1 ) __snake_case : Optional[Any] =images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __snake_case : Optional[int] =(images * 2_5_5).round().astype('''uint8''' ) __snake_case : Tuple =list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(a , mode='''RGB''' ).convert('''L''' ) for _ in images) ) __snake_case : Union[str, Any] =[self.mel.image_to_audio(a ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(a )[:, np.newaxis, :] ) , **ImagePipelineOutput(a ) ) @torch.no_grad() def _UpperCamelCase ( self : int , a : List[Image.Image] , a : int = 5_0 ): """simple docstring""" assert isinstance(self.scheduler , a ) self.scheduler.set_timesteps(a ) __snake_case : Dict =np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) __snake_case : Any =(sample / 2_5_5) * 2 - 1 __snake_case : Any =torch.Tensor(a ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __snake_case : Union[str, Any] =t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __snake_case : Dict =self.scheduler.alphas_cumprod[t] __snake_case : str =( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __snake_case : int =1 - alpha_prod_t __snake_case : Tuple =self.unet(a , a )['''sample'''] __snake_case : str =(1 - alpha_prod_t_prev) ** 0.5 * model_output __snake_case : Dict =(sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __snake_case : Optional[int] =sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _UpperCamelCase ( a : torch.Tensor , a : torch.Tensor , a : float ): """simple docstring""" __snake_case : List[Any] =acos(torch.dot(torch.flatten(a ) , torch.flatten(a ) ) / torch.norm(a ) / torch.norm(a ) ) return sin((1 - alpha) * theta ) * xa / sin(a ) + sin(alpha * theta ) * xa / sin(a )
497
0
import math def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> bool: '''simple docstring''' __UpperCAmelCase : str = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowercase_ ) def __SCREAMING_SNAKE_CASE ( lowercase_ = 1 / 12345 ) -> int: '''simple docstring''' __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : List[Any] = 3 while True: __UpperCAmelCase : List[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowercase_ ): __UpperCAmelCase : List[Any] = int(lowercase_ ) total_partitions += 1 if check_partition_perfect(lowercase_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowercase_ ) integer += 1 if __name__ == "__main__": print(F'{solution() = }')
462
import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase ( unittest.TestCase ): def A( self): __UpperCAmelCase : Optional[Any] = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] __UpperCAmelCase : str = [2, 4, 6, 8, 1_0, 1_2] __UpperCAmelCase : List[Any] = 1_0_0 self.assertEqual(kp.calc_profit(lowercase__ , lowercase__ , lowercase__) , 2_1_0) def A( self): self.assertRaisesRegex(lowercase__ , '''max_weight must greater than zero.''') def A( self): self.assertRaisesRegex(lowercase__ , '''Weight can not be negative.''') def A( self): self.assertRaisesRegex(lowercase__ , '''Profit can not be negative.''') def A( self): self.assertRaisesRegex(lowercase__ , '''max_weight must greater than zero.''') def A( self): self.assertRaisesRegex( lowercase__ , '''The length of profit and weight must be same.''') if __name__ == "__main__": unittest.main()
462
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowercase : def __init__( self : Dict , __lowerCamelCase : int , __lowerCamelCase : str=9_9 , __lowerCamelCase : Any=1_3 , __lowerCamelCase : Any=7 , __lowerCamelCase : Union[str, Any]=9 , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : str=False , __lowerCamelCase : Tuple=3_2 , __lowerCamelCase : Dict=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Union[str, Any]=3_7 , __lowerCamelCase : int=8 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Tuple=0.002 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : int=None , __lowerCamelCase : List[str]=None , ) -> Any: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = encoder_seq_length UpperCAmelCase = decoder_seq_length # For common tests UpperCAmelCase = self.decoder_seq_length UpperCAmelCase = is_training UpperCAmelCase = use_attention_mask UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = d_ff UpperCAmelCase = relative_attention_num_buckets UpperCAmelCase = dropout_rate UpperCAmelCase = initializer_factor UpperCAmelCase = eos_token_id UpperCAmelCase = pad_token_id UpperCAmelCase = decoder_start_token_id UpperCAmelCase = None UpperCAmelCase = decoder_layers def _lowercase ( self : Optional[Any] ) -> Tuple: """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""" ) def _lowercase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Any=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : str=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[int]=None , ) -> Any: """simple docstring""" if attention_mask is None: UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_a ) if decoder_head_mask is None: UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_a ) if cross_attn_head_mask is None: UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _lowercase ( self : List[Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase = self.get_config() UpperCAmelCase = config.num_attention_heads UpperCAmelCase = self.prepare_inputs_dict(_a , _a , _a ) return config, input_dict def _lowercase ( self : Dict ) -> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _lowercase ( self : str ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowercase ( self : Optional[int] ) -> List[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _lowercase ( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = UMTaModel(config=_a ) model.to(_a ) model.eval() UpperCAmelCase = model( input_ids=_a , decoder_input_ids=_a , attention_mask=_a , decoder_attention_mask=_a , ) UpperCAmelCase = model(input_ids=_a , decoder_input_ids=_a ) UpperCAmelCase = result.last_hidden_state UpperCAmelCase = result.past_key_values UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_a ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _lowercase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = UMTaModel(config=_a ).get_decoder().to(_a ).eval() # first forward pass UpperCAmelCase = model(_a , use_cache=_a ) UpperCAmelCase = model(_a ) UpperCAmelCase = model(_a , use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase = model(_a )["""last_hidden_state"""] UpperCAmelCase = model(_a , past_key_values=_a )["""last_hidden_state"""] # select random slice UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def _lowercase ( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , ) -> List[Any]: """simple docstring""" UpperCAmelCase = UMTaModel(config=_a ).to(_a ).half().eval() UpperCAmelCase = model(**_a )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(_a ).any().item() ) @require_torch class __lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): UpperCamelCase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCamelCase = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCamelCase = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCamelCase = True UpperCamelCase = False UpperCamelCase = False UpperCamelCase = True UpperCamelCase = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCamelCase = [0.8, 0.9] def _lowercase ( self : Dict ) -> Optional[int]: """simple docstring""" UpperCAmelCase = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _lowercase ( self : int ) -> Any: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(_a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=_a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _lowercase ( self : str ) -> str: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_a ) def _lowercase ( self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] UpperCAmelCase = self.model_tester.prepare_config_and_inputs() UpperCAmelCase = config_and_inputs[0] UpperCAmelCase = UMTaForConditionalGeneration(_a ).eval() model.to(_a ) UpperCAmelCase = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_a ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), } for attn_name, (name, mask) in zip(_a , head_masking.items() ): UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=_a ) UpperCAmelCase = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_a , return_dict_in_generate=_a , **_a , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _lowercase ( self : List[Any] ) -> Dict: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __lowercase ( unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _lowercase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_a ).to(_a ) UpperCAmelCase = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_a , legacy=_a ) UpperCAmelCase = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] UpperCAmelCase = tokenizer(_a , return_tensors="""pt""" , padding=_a ).input_ids # fmt: off UpperCAmelCase = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(_a , _a ) UpperCAmelCase = model.generate(input_ids.to(_a ) ) UpperCAmelCase = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] UpperCAmelCase = tokenizer.batch_decode(_a ) self.assertEqual(_a , _a )
712
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available __a = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys __a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
627
0
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f'''{price_plus_tax(100, 0.25) = }''') print(f'''{price_plus_tax(125.50, 0.05) = }''')
46
"""simple docstring""" from __future__ import annotations from typing import Any class snake_case : def __init__( self :Optional[Any] , _lowerCamelCase :int ): __SCREAMING_SNAKE_CASE : int = num_of_nodes __SCREAMING_SNAKE_CASE : list[list[int]] = [] __SCREAMING_SNAKE_CASE : dict[int, int] = {} def SCREAMING_SNAKE_CASE_ ( self :int , _lowerCamelCase :int , _lowerCamelCase :int , _lowerCamelCase :int ): self.m_edges.append([u_node, v_node, weight] ) def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def SCREAMING_SNAKE_CASE_ ( self :List[str] , _lowerCamelCase :int ): if self.m_component[u_node] != u_node: for k in self.m_component: __SCREAMING_SNAKE_CASE : Optional[Any] = self.find_component(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :list[int] , _lowerCamelCase :int , _lowerCamelCase :int ): if component_size[u_node] <= component_size[v_node]: __SCREAMING_SNAKE_CASE : List[Any] = v_node component_size[v_node] += component_size[u_node] self.set_component(_lowerCamelCase ) elif component_size[u_node] >= component_size[v_node]: __SCREAMING_SNAKE_CASE : Dict = self.find_component(_lowerCamelCase ) component_size[u_node] += component_size[v_node] self.set_component(_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __SCREAMING_SNAKE_CASE : str = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = edge __SCREAMING_SNAKE_CASE : Optional[Any] = self.m_component[u] __SCREAMING_SNAKE_CASE : int = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __SCREAMING_SNAKE_CASE : Optional[Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(_lowerCamelCase , _lowerCamelCase ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = edge __SCREAMING_SNAKE_CASE : Tuple = self.m_component[u] __SCREAMING_SNAKE_CASE : int = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 __SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * self.m_num_of_nodes print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def lowerCAmelCase_ ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
674
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ ( __A ): def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=False , _lowercase=False , _lowercase=2 , _lowercase=99 , _lowercase=0 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=12 , _lowercase=2 , _lowercase=0.02 , _lowercase=3 , _lowercase=4 , _lowercase="last" , _lowercase=None , _lowercase=None , ): lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : List[Any] = batch_size lowerCAmelCase_ : str = seq_length lowerCAmelCase_ : Optional[int] = is_training lowerCAmelCase_ : List[str] = use_input_lengths lowerCAmelCase_ : Any = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : List[Any] = gelu_activation lowerCAmelCase_ : int = sinusoidal_embeddings lowerCAmelCase_ : Any = causal lowerCAmelCase_ : Optional[int] = asm lowerCAmelCase_ : str = n_langs lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Optional[Any] = n_special lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : Optional[int] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Optional[Any] = type_vocab_size lowerCAmelCase_ : Optional[int] = type_sequence_label_size lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Dict = num_labels lowerCAmelCase_ : Any = num_choices lowerCAmelCase_ : str = summary_type lowerCAmelCase_ : List[Any] = use_proj lowerCAmelCase_ : Optional[Any] = scope def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : List[str] = None if self.use_input_lengths: lowerCAmelCase_ : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase_ : Dict = None if self.use_token_type_ids: lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = None lowerCAmelCase_ : Dict = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size] , 2 ).float() lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase__ ( self ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): lowerCAmelCase_ : List[Any] = FlaubertModel(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase_ : Dict = model(_lowercase , lengths=_lowercase , langs=_lowercase ) lowerCAmelCase_ : Optional[int] = model(_lowercase , langs=_lowercase ) lowerCAmelCase_ : Any = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): lowerCAmelCase_ : List[Any] = FlaubertWithLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase_ : Optional[Any] = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): lowerCAmelCase_ : int = FlaubertForQuestionAnsweringSimple(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase_ : Optional[int] = model(_lowercase ) lowerCAmelCase_ : int = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): lowerCAmelCase_ : int = FlaubertForQuestionAnswering(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase_ : Optional[Any] = model(_lowercase ) lowerCAmelCase_ : str = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , p_mask=_lowercase , ) lowerCAmelCase_ : Optional[Any] = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , ) ((lowerCAmelCase_) , ) : int = result_with_labels.to_tuple() lowerCAmelCase_ : Tuple = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) ((lowerCAmelCase_) , ) : List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): lowerCAmelCase_ : List[str] = FlaubertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase_ : int = model(_lowercase ) lowerCAmelCase_ : Dict = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): lowerCAmelCase_ : Dict = self.num_labels lowerCAmelCase_ : Tuple = FlaubertForTokenClassification(_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase_ : List[Any] = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ): lowerCAmelCase_ : str = self.num_choices lowerCAmelCase_ : Optional[int] = FlaubertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() lowerCAmelCase_ : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase_ : Optional[int] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) : List[str] = config_and_inputs lowerCAmelCase_ : Union[str, Any] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowercase__ ( __A , __A , unittest.TestCase ): __UpperCamelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __UpperCamelCase = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase=False ): lowerCAmelCase_ : List[str] = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowerCAmelCase_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) lowerCAmelCase_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Union[str, Any] = FlaubertModelTester(self ) lowerCAmelCase_ : int = ConfigTester(self , config_class=_lowercase , emb_dim=37 ) def UpperCAmelCase__ ( self ): self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_lowercase ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_lowercase ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*_lowercase ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_lowercase ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_lowercase ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*_lowercase ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*_lowercase ) @slow def UpperCAmelCase__ ( self ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = FlaubertModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @slow @require_torch_gpu def UpperCAmelCase__ ( self ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : Optional[int] = model_class(config=_lowercase ) lowerCAmelCase_ : Any = self._prepare_for_class(_lowercase , _lowercase ) lowerCAmelCase_ : Optional[Any] = torch.jit.trace( _lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowercase , os.path.join(_lowercase , """traced_model.pt""" ) ) lowerCAmelCase_ : Any = torch.jit.load(os.path.join(_lowercase , """traced_model.pt""" ) , map_location=_lowercase ) loaded(inputs_dict["""input_ids"""].to(_lowercase ) , inputs_dict["""attention_mask"""].to(_lowercase ) ) @require_torch class lowercase__ ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ): lowerCAmelCase_ : Tuple = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" ) lowerCAmelCase_ : List[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): lowerCAmelCase_ : Dict = model(_lowercase )[0] lowerCAmelCase_ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , _lowercase ) lowerCAmelCase_ : Dict = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=1e-4 ) )
440
def _lowerCAmelCase ( _a : int , _a : bool = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis lowerCAmelCase_ : Optional[int] = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] lowerCAmelCase_ : Dict = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_a , 1 ): if n < _p: # then we have our last prime to check lowerCAmelCase_ : str = primes[:idx] break lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCAmelCase_ : Tuple = False for r in range(_a ): lowerCAmelCase_ : Tuple = pow(_a , d * 2**r , _a ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCAmelCase_ : List[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _lowerCAmelCase ( ) -> None: assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
440
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __magic_name__ : Tuple = logging.get_logger(__name__) __magic_name__ : Union[str, Any] = {"""tokenizer_file""": """tokenizer.json"""} __magic_name__ : str = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class SCREAMING_SNAKE_CASE__ (_a ): lowercase_ : Optional[int] = VOCAB_FILES_NAMES lowercase_ : Dict = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Union[str, Any] = ["input_ids", "attention_mask"] lowercase_ : Optional[int] = None def __init__( self : Union[str, Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : int=None , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Any=False , **__lowerCamelCase : Union[str, Any] , ): """simple docstring""" super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase , **__lowerCamelCase , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCamelCase ) != add_prefix_space: lowerCAmelCase__ = getattr(__lowerCamelCase , pre_tok_state.pop('''type''' ) ) lowerCAmelCase__ = add_prefix_space lowerCAmelCase__ = pre_tok_class(**__lowerCamelCase ) lowerCAmelCase__ = add_prefix_space def A__ ( self : Union[str, Any] , *__lowerCamelCase : List[str] , **__lowerCamelCase : List[Any] ): """simple docstring""" lowerCAmelCase__ = kwargs.get('''is_split_into_words''' , __lowerCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def A__ ( self : List[Any] , *__lowerCamelCase : Dict , **__lowerCamelCase : int ): """simple docstring""" lowerCAmelCase__ = kwargs.get('''is_split_into_words''' , __lowerCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" ''' pretokenized inputs.''' ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def A__ ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" lowerCAmelCase__ = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def A__ ( self : List[str] , __lowerCamelCase : "Conversation" ): """simple docstring""" lowerCAmelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) + [self.eos_token_id] ) if len(__lowerCamelCase ) > self.model_max_length: lowerCAmelCase__ = input_ids[-self.model_max_length :] return input_ids
615
import logging from transformers.configuration_utils import PretrainedConfig __magic_name__ : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ (_a ): lowercase_ : Tuple = "masked_bert" def __init__( self : List[Any] , __lowerCamelCase : Optional[Any]=3_05_22 , __lowerCamelCase : Dict=7_68 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : int=12 , __lowerCamelCase : Tuple=30_72 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=5_12 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : Optional[int]=1e-12 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : List[str]="topK" , __lowerCamelCase : Union[str, Any]="constant" , __lowerCamelCase : Union[str, Any]=0.0 , **__lowerCamelCase : Tuple , ): """simple docstring""" super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = pruning_method lowerCAmelCase__ = mask_init lowerCAmelCase__ = mask_scale
615
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCAmelCase__ : int ={"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ : Tuple =["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCAmelCase__ : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
from __future__ import annotations UpperCAmelCase__ : str =tuple[int, int, int] UpperCAmelCase__ : str =tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase UpperCAmelCase__ : int ='''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' # -------------------------- default selection -------------------------- # rotors -------------------------- UpperCAmelCase__ : Union[str, Any] ='''EGZWVONAHDCLFQMSIPJBYUKXTR''' UpperCAmelCase__ : Union[str, Any] ='''FOBHMDKEXQNRAULPGSJVTYICZW''' UpperCAmelCase__ : Union[str, Any] ='''ZJXESIUQLHAVRMDOYGTNFWPBKC''' # reflector -------------------------- UpperCAmelCase__ : Optional[Any] ={ '''A''': '''N''', '''N''': '''A''', '''B''': '''O''', '''O''': '''B''', '''C''': '''P''', '''P''': '''C''', '''D''': '''Q''', '''Q''': '''D''', '''E''': '''R''', '''R''': '''E''', '''F''': '''S''', '''S''': '''F''', '''G''': '''T''', '''T''': '''G''', '''H''': '''U''', '''U''': '''H''', '''I''': '''V''', '''V''': '''I''', '''J''': '''W''', '''W''': '''J''', '''K''': '''X''', '''X''': '''K''', '''L''': '''Y''', '''Y''': '''L''', '''M''': '''Z''', '''Z''': '''M''', } # -------------------------- extra rotors -------------------------- UpperCAmelCase__ : Dict ='''RMDJXFUWGISLHVTCQNKYPBEZOA''' UpperCAmelCase__ : Any ='''SGLCPQWZHKXAREONTFBVIYJUDM''' UpperCAmelCase__ : List[Any] ='''HVSICLTYKQUBXDWAJZOMFGPREN''' UpperCAmelCase__ : Tuple ='''RZWQHFMVDBKICJLNTUXAGYPSOE''' UpperCAmelCase__ : Optional[Any] ='''LFKIJODBEGAMQPXVUHYSTCZRWN''' UpperCAmelCase__ : Dict ='''KOAEGVDHXPQZMLFTYWJNBRCIUS''' def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: # Checks if there are 3 unique rotors if (unique_rotsel := len(set(_UpperCAmelCase ) )) < 3: lowerCamelCase =F"""Please use 3 unique rotors (not {unique_rotsel})""" raise Exception(_UpperCAmelCase ) # Checks if rotor positions are valid lowerCamelCase , lowerCamelCase , lowerCamelCase =rotpos if not 0 < rotorposa <= len(_UpperCAmelCase ): lowerCamelCase =F"""First rotor position is not within range of 1..26 ({rotorposa}""" raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): lowerCamelCase =F"""Second rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): lowerCamelCase =F"""Third rotor position is not within range of 1..26 ({rotorposa})""" raise ValueError(_UpperCAmelCase ) # Validates string and returns dict lowerCamelCase =_plugboard(_UpperCAmelCase ) return rotpos, rotsel, pbdict def _lowercase ( _UpperCAmelCase ) -> dict[str, str]: # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase =F"""Plugboard setting isn't type string ({type(_UpperCAmelCase )})""" raise TypeError(_UpperCAmelCase ) elif len(_UpperCAmelCase ) % 2 != 0: lowerCamelCase =F"""Odd number of symbols ({len(_UpperCAmelCase )})""" raise Exception(_UpperCAmelCase ) elif pbstring == "": return {} pbstring.replace(""" """ , """""" ) # Checks if all characters are unique lowerCamelCase =set() for i in pbstring: if i not in abc: lowerCamelCase =F"""'{i}' not in list of symbols""" raise Exception(_UpperCAmelCase ) elif i in tmppbl: lowerCamelCase =F"""Duplicate symbol ({i})""" raise Exception(_UpperCAmelCase ) else: tmppbl.add(_UpperCAmelCase ) del tmppbl # Created the dictionary lowerCamelCase ={} for j in range(0 , len(_UpperCAmelCase ) - 1 , 2 ): lowerCamelCase =pbstring[j + 1] lowerCamelCase =pbstring[j] return pb def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = (rotora, rotora, rotora) , _UpperCAmelCase = "" , ) -> str: lowerCamelCase =text.upper() lowerCamelCase , lowerCamelCase , lowerCamelCase =_validator( _UpperCAmelCase , _UpperCAmelCase , plugb.upper() ) lowerCamelCase , lowerCamelCase , lowerCamelCase =rotor_position lowerCamelCase , lowerCamelCase , lowerCamelCase =rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 lowerCamelCase =[] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: lowerCamelCase =plugboard[symbol] # rotor ra -------------------------- lowerCamelCase =abc.index(_UpperCAmelCase ) + rotorposa lowerCamelCase =rotora[index % len(_UpperCAmelCase )] # rotor rb -------------------------- lowerCamelCase =abc.index(_UpperCAmelCase ) + rotorposa lowerCamelCase =rotora[index % len(_UpperCAmelCase )] # rotor rc -------------------------- lowerCamelCase =abc.index(_UpperCAmelCase ) + rotorposa lowerCamelCase =rotora[index % len(_UpperCAmelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher lowerCamelCase =reflector[symbol] # 2nd rotors lowerCamelCase =abc[rotora.index(_UpperCAmelCase ) - rotorposa] lowerCamelCase =abc[rotora.index(_UpperCAmelCase ) - rotorposa] lowerCamelCase =abc[rotora.index(_UpperCAmelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: lowerCamelCase =plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): lowerCamelCase =0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): lowerCamelCase =0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): lowerCamelCase =0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] ='''This is my Python script that emulates the Enigma machine from WWII.''' UpperCAmelCase__ : List[Any] =(1, 1, 1) UpperCAmelCase__ : Optional[Any] ='''pictures''' UpperCAmelCase__ : Any =(rotora, rotora, rotora) UpperCAmelCase__ : str =enigma(message, rotor_pos, rotor_sel, pb) print('''Encrypted message:''', en) print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
269
0
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = '''▁''' snake_case = {'''vocab_file''': '''prophetnet.tokenizer'''} snake_case = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } snake_case = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } snake_case = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_1_2, } def snake_case ( lowerCAmelCase_ ) -> List[str]: _snake_case = collections.OrderedDict() with open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' ) as reader: _snake_case = reader.readlines() for index, token in enumerate(lowerCAmelCase_ ): _snake_case = token.rstrip('''\n''' ) _snake_case = index return vocab class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Optional[int] = VOCAB_FILES_NAMES A__ : Tuple = PRETRAINED_VOCAB_FILES_MAP A__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any="[SEP]" , __lowerCamelCase : List[Any]="[SEP]" , __lowerCamelCase : Optional[Any]="[SEP]" , __lowerCamelCase : Any="[UNK]" , __lowerCamelCase : str="[PAD]" , __lowerCamelCase : Union[str, Any]="[CLS]" , __lowerCamelCase : Tuple="[MASK]" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : List[Any] , ): """simple docstring""" _snake_case = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) _snake_case = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab _snake_case = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(1_0 ): _snake_case = f"""[unused{i}]""" _snake_case = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab _snake_case = 1_2 _snake_case = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(__lowerCamelCase ) def __getstate__( self : List[str] ): """simple docstring""" _snake_case = self.__dict__.copy() _snake_case = None return state def __setstate__( self : Optional[int] , __lowerCamelCase : Any ): """simple docstring""" _snake_case = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _snake_case = {} _snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return ([0] * len(__lowerCamelCase )) + [1] return ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _snake_case = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str ): """simple docstring""" return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Optional[Any] ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _snake_case = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCAmelCase ( self : str , __lowerCamelCase : Tuple ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" _snake_case = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase , ''' ''' ).strip() return out_string def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: _snake_case = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] _snake_case = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
103
class UpperCamelCase_ : '''simple docstring''' def __init__( self , a ) -> Tuple: snake_case_ = n snake_case_ = [None] * self.n snake_case_ = 0 # index of the first element snake_case_ = 0 snake_case_ = 0 def __len__( self ) -> int: return self.size def _UpperCamelCase ( self ) -> bool: return self.size == 0 def _UpperCamelCase ( self ) -> List[Any]: return False if self.is_empty() else self.array[self.front] def _UpperCamelCase ( self , a ) -> Dict: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) snake_case_ = data snake_case_ = (self.rear + 1) % self.n self.size += 1 return self def _UpperCamelCase ( self ) -> List[Any]: if self.size == 0: raise Exception('UNDERFLOW' ) snake_case_ = self.array[self.front] snake_case_ = None snake_case_ = (self.front + 1) % self.n self.size -= 1 return temp
198
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( __UpperCAmelCase , unittest.TestCase ): lowercase_ = ShapEImgaImgPipeline lowercase_ = ['image'] lowercase_ = ['image'] lowercase_ = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] lowercase_ = False @property def _UpperCamelCase ( self ) -> str: return 32 @property def _UpperCamelCase ( self ) -> List[str]: return 32 @property def _UpperCamelCase ( self ) -> List[Any]: return self.time_input_dim * 4 @property def _UpperCamelCase ( self ) -> Any: return 8 @property def _UpperCamelCase ( self ) -> Dict: torch.manual_seed(0 ) lowerCamelCase : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowerCamelCase : Union[str, Any] = CLIPVisionModel(UpperCAmelCase_ ) return model @property def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : int = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ , do_resize=UpperCAmelCase_ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def _UpperCamelCase ( self ) -> Dict: torch.manual_seed(0 ) lowerCamelCase : Dict = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } lowerCamelCase : Any = PriorTransformer(**UpperCAmelCase_ ) return model @property def _UpperCamelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCamelCase : Dict = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } lowerCamelCase : Any = ShapERenderer(**UpperCAmelCase_ ) return model def _UpperCamelCase ( self ) -> Optional[int]: lowerCamelCase : Optional[int] = self.dummy_prior lowerCamelCase : List[Any] = self.dummy_image_encoder lowerCamelCase : int = self.dummy_image_processor lowerCamelCase : List[Any] = self.dummy_renderer lowerCamelCase : Dict = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=UpperCAmelCase_ , clip_sample=UpperCAmelCase_ , clip_sample_range=1.0 , ) lowerCamelCase : Union[str, Any] = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ) -> Optional[Any]: lowerCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) if str(UpperCAmelCase_ ).startswith('mps' ): lowerCamelCase : Dict = torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase : Optional[int] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCamelCase : Tuple = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def _UpperCamelCase ( self ) -> Any: lowerCamelCase : Optional[Any] = 'cpu' lowerCamelCase : List[Any] = self.get_dummy_components() lowerCamelCase : Optional[Any] = self.pipeline_class(**UpperCAmelCase_ ) lowerCamelCase : List[Any] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : str = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) lowerCamelCase : Optional[Any] = output.images[0] lowerCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase : List[Any] = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _UpperCamelCase ( self ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _UpperCamelCase ( self ) -> int: lowerCamelCase : int = torch_device == 'cpu' lowerCamelCase : Any = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCAmelCase_ , relax_max_difference=UpperCAmelCase_ , ) def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Union[str, Any] = self.get_dummy_components() lowerCamelCase : Tuple = self.pipeline_class(**UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : Dict = 1 lowerCamelCase : Optional[Any] = 2 lowerCamelCase : int = self.get_dummy_inputs(UpperCAmelCase_ ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase : Optional[int] = batch_size * [inputs[key]] lowerCamelCase : Union[str, Any] = pipe(**UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ) -> int: lowerCamelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) lowerCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) lowerCamelCase : List[Any] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) lowerCamelCase : Any = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : List[str] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) lowerCamelCase : int = pipe( UpperCAmelCase_ , generator=UpperCAmelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
700
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _lowercase ( __UpperCAmelCase ): lowercase_ = 'swin2sr' lowercase_ = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , UpperCAmelCase_=64 , UpperCAmelCase_=1 , UpperCAmelCase_=3 , UpperCAmelCase_=180 , UpperCAmelCase_=[6, 6, 6, 6, 6, 6] , UpperCAmelCase_=[6, 6, 6, 6, 6, 6] , UpperCAmelCase_=8 , UpperCAmelCase_=2.0 , UpperCAmelCase_=True , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_="gelu" , UpperCAmelCase_=False , UpperCAmelCase_=0.02 , UpperCAmelCase_=1E-5 , UpperCAmelCase_=2 , UpperCAmelCase_=1.0 , UpperCAmelCase_="1conv" , UpperCAmelCase_="pixelshuffle" , **UpperCAmelCase_ , ) -> Union[str, Any]: super().__init__(**UpperCAmelCase_ ) lowerCamelCase : int = image_size lowerCamelCase : Tuple = patch_size lowerCamelCase : Union[str, Any] = num_channels lowerCamelCase : List[Any] = embed_dim lowerCamelCase : int = depths lowerCamelCase : Any = len(UpperCAmelCase_ ) lowerCamelCase : Tuple = num_heads lowerCamelCase : Optional[int] = window_size lowerCamelCase : str = mlp_ratio lowerCamelCase : Tuple = qkv_bias lowerCamelCase : Optional[Any] = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Optional[Any] = drop_path_rate lowerCamelCase : Optional[int] = hidden_act lowerCamelCase : str = use_absolute_embeddings lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : Dict = initializer_range lowerCamelCase : Optional[int] = upscale lowerCamelCase : List[Any] = img_range lowerCamelCase : Optional[Any] = resi_connection lowerCamelCase : Union[str, Any] = upsampler
133
0
import math def a_ ( __lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __lowercase : float = 0.1 ) -> int: _snake_case = 3 _snake_case = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
686
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Dict = "swin2sr" _UpperCAmelCase : Optional[int] = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , lowercase : List[Any]=64 , lowercase : int=1 , lowercase : Union[str, Any]=3 , lowercase : Dict=180 , lowercase : List[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Dict=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : List[str]=2.0 , lowercase : Tuple=True , lowercase : Union[str, Any]=0.0 , lowercase : Dict=0.0 , lowercase : Optional[int]=0.1 , lowercase : int="gelu" , lowercase : List[str]=False , lowercase : List[Any]=0.02 , lowercase : List[Any]=1E-5 , lowercase : Optional[int]=2 , lowercase : Tuple=1.0 , lowercase : List[Any]="1conv" , lowercase : List[Any]="pixelshuffle" , **lowercase : List[str] , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = embed_dim _snake_case = depths _snake_case = len(lowercase ) _snake_case = num_heads _snake_case = window_size _snake_case = mlp_ratio _snake_case = qkv_bias _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = drop_path_rate _snake_case = hidden_act _snake_case = use_absolute_embeddings _snake_case = layer_norm_eps _snake_case = initializer_range _snake_case = upscale _snake_case = img_range _snake_case = resi_connection _snake_case = upsampler
686
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase : Any =logging.get_logger(__name__) _lowercase : Union[str, Any] ={ "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } _lowercase : Union[str, Any] =[ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __UpperCAmelCase ( UpperCamelCase__ :Dict ) -> Optional[int]: snake_case__ : Any = {} with open(UpperCamelCase__ , '''r''' ) as file: for line_number, line in enumerate(UpperCamelCase__ ): snake_case__ : Optional[int] = line.strip() if line: snake_case__ : Tuple = line.split() snake_case__ : List[str] = line_number snake_case__ : Any = words[0] snake_case__ : Tuple = value return result def __UpperCAmelCase ( UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :str , UpperCamelCase__ :Any , UpperCamelCase__ :Tuple , UpperCamelCase__ :Tuple ) -> Optional[Any]: for attribute in key.split('''.''' ): snake_case__ : Optional[int] = getattr(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): snake_case__ : Optional[Any] = PARAM_MAPPING[full_name.split('''.''' )[-1]] snake_case__ : Optional[int] = '''param''' if weight_type is not None and weight_type != "param": snake_case__ : Any = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape elif weight_type is not None and weight_type == "param": snake_case__ : Union[str, Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): snake_case__ : Dict = getattr(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : Any = shape_pointer.shape # let's reduce dimension snake_case__ : Optional[Any] = value[0] else: snake_case__ : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ : Dict = value elif weight_type == "weight_g": snake_case__ : Optional[Any] = value elif weight_type == "weight_v": snake_case__ : Any = value elif weight_type == "bias": snake_case__ : Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): snake_case__ : List[str] = getattr(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : int = value else: snake_case__ : Any = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCAmelCase ( UpperCamelCase__ :str , UpperCamelCase__ :List[str] , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :Tuple ) -> int: snake_case__ : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase__ ): snake_case__ : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] snake_case__ : str = '''param''' if weight_type is not None and weight_type != "param": snake_case__ : Dict = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": snake_case__ : Tuple = '''.'''.join([key, hf_param_name] ) else: snake_case__ : List[str] = key snake_case__ : str = value if '''lm_head''' in full_key else value[0] _lowercase : Tuple ={ "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __UpperCAmelCase ( UpperCamelCase__ :List[Any] , UpperCamelCase__ :str , UpperCamelCase__ :List[str]=None , UpperCamelCase__ :Tuple=None ) -> List[Any]: snake_case__ : str = False for key, mapped_key in MAPPING.items(): snake_case__ : Optional[int] = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: snake_case__ : List[Any] = True if "*" in mapped_key: snake_case__ : List[Any] = name.split(UpperCamelCase__ )[0].split('''.''' )[-2] snake_case__ : Optional[int] = mapped_key.replace('''*''' , UpperCamelCase__ ) if "weight_g" in name: snake_case__ : Dict = '''weight_g''' elif "weight_v" in name: snake_case__ : Dict = '''weight_v''' elif "bias" in name: snake_case__ : Dict = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj snake_case__ : Tuple = '''weight''' else: snake_case__ : Optional[int] = None if hf_dict is not None: rename_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return is_used return is_used def __UpperCAmelCase ( UpperCamelCase__ :Any , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :Tuple ) -> Optional[int]: snake_case__ : List[str] = [] snake_case__ : int = fairseq_model.state_dict() snake_case__ : Dict = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): snake_case__ : Any = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == '''group''' , ) snake_case__ : Tuple = True else: snake_case__ : List[str] = load_wavaveca_layer(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __UpperCAmelCase ( UpperCamelCase__ :List[str] , UpperCamelCase__ :int , UpperCamelCase__ :Tuple , UpperCamelCase__ :Dict , UpperCamelCase__ :str ) -> str: snake_case__ : List[Any] = full_name.split('''conv_layers.''' )[-1] snake_case__ : Dict = name.split('''.''' ) snake_case__ : Dict = int(items[0] ) snake_case__ : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) snake_case__ : Any = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ : List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def __UpperCAmelCase ( UpperCamelCase__ :List[Any] , UpperCamelCase__ :int , UpperCamelCase__ :int=None , UpperCamelCase__ :List[Any]=None , UpperCamelCase__ :List[Any]=True , UpperCamelCase__ :Optional[int]=False ) -> Dict: if config_path is not None: snake_case__ : Tuple = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) else: snake_case__ : Optional[int] = WavaVecaConfig() if is_seq_class: snake_case__ : Optional[int] = read_txt_into_dict(UpperCamelCase__ ) snake_case__ : int = idalabel snake_case__ : Dict = WavaVecaForSequenceClassification(UpperCamelCase__ ) snake_case__ : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) feature_extractor.save_pretrained(UpperCamelCase__ ) elif is_finetuned: if dict_path: snake_case__ : Optional[int] = Dictionary.load(UpperCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq snake_case__ : List[str] = target_dict.pad_index snake_case__ : List[str] = target_dict.bos_index snake_case__ : Tuple = target_dict.eos_index snake_case__ : str = len(target_dict.symbols ) snake_case__ : int = os.path.join(UpperCamelCase__ , '''vocab.json''' ) if not os.path.isdir(UpperCamelCase__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(UpperCamelCase__ ) ) return os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) snake_case__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched snake_case__ : List[str] = 0 snake_case__ : Optional[Any] = 1 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(UpperCamelCase__ , UpperCamelCase__ ) snake_case__ : Optional[int] = WavaVecaCTCTokenizer( UpperCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=UpperCamelCase__ , ) snake_case__ : Any = True if config.feat_extract_norm == '''layer''' else False snake_case__ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) snake_case__ : List[str] = WavaVecaProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) snake_case__ : str = WavaVecaForCTC(UpperCamelCase__ ) else: snake_case__ : Union[str, Any] = WavaVecaForPreTraining(UpperCamelCase__ ) if is_finetuned or is_seq_class: snake_case__ , snake_case__ , snake_case__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: snake_case__ : Optional[int] = argparse.Namespace(task='''audio_pretraining''' ) snake_case__ : int = fairseq.tasks.setup_task(UpperCamelCase__ ) snake_case__ , snake_case__ , snake_case__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase__ ) snake_case__ : str = model[0].eval() recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowercase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) _lowercase : Dict =parser.parse_args() _lowercase : int =not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
574
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _SCREAMING_SNAKE_CASE (lowercase__, unittest.TestCase ): A__ = UnCLIPImageVariationPipeline A__ = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} A__ = IMAGE_VARIATION_BATCH_PARAMS A__ = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] A__ = False @property def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return 32 @property def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim @property def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" return 100 @property def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__UpperCamelCase ) @property def lowerCAmelCase ( self : str ) -> str: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Any = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(__UpperCamelCase ) @property def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Optional[Any] = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } snake_case__ : Tuple = UnCLIPTextProjModel(**__UpperCamelCase ) return model @property def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Optional[Any] = { '''sample_size''': 32, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } snake_case__ : Tuple = UNetaDConditionModel(**__UpperCamelCase ) return model @property def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def lowerCAmelCase ( self : Optional[Any] ) -> int: """simple docstring""" torch.manual_seed(0 ) snake_case__ : Union[str, Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(1 ) snake_case__ : int = UNetaDModel(**self.dummy_super_res_kwargs ) return model def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" snake_case__ : List[Any] = self.dummy_decoder snake_case__ : int = self.dummy_text_proj snake_case__ : Union[str, Any] = self.dummy_text_encoder snake_case__ : str = self.dummy_tokenizer snake_case__ : List[str] = self.dummy_super_res_first snake_case__ : str = self.dummy_super_res_last snake_case__ : Optional[int] = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1000 , ) snake_case__ : int = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1000 , ) snake_case__ : int = CLIPImageProcessor(crop_size=32 , size=32 ) snake_case__ : str = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def lowerCAmelCase ( self : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Dict=True ) -> str: """simple docstring""" snake_case__ : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase ) if str(__UpperCamelCase ).startswith('''mps''' ): snake_case__ : List[str] = torch.manual_seed(__UpperCamelCase ) else: snake_case__ : Optional[int] = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase ) if pil_image: snake_case__ : Any = input_image * 0.5 + 0.5 snake_case__ : Optional[Any] = input_image.clamp(0 , 1 ) snake_case__ : Tuple = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case__ : List[str] = DiffusionPipeline.numpy_to_pil(__UpperCamelCase )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def lowerCAmelCase ( self : str ) -> List[Any]: """simple docstring""" snake_case__ : Tuple = '''cpu''' snake_case__ : Dict = self.get_dummy_components() snake_case__ : List[str] = self.pipeline_class(**__UpperCamelCase ) snake_case__ : str = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Dict = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : List[str] = pipe(**__UpperCamelCase ) snake_case__ : str = output.images snake_case__ : Dict = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : Any = pipe( **__UpperCamelCase , return_dict=__UpperCamelCase , )[0] snake_case__ : Dict = image[0, -3:, -3:, -1] snake_case__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ : str = np.array( [ 0.9997, 0.0002, 0.9997, 0.9997, 0.9969, 0.0023, 0.9997, 0.9969, 0.9970, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" snake_case__ : int = '''cpu''' snake_case__ : List[str] = self.get_dummy_components() snake_case__ : Dict = self.pipeline_class(**__UpperCamelCase ) snake_case__ : Any = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : Optional[int] = pipe(**__UpperCamelCase ) snake_case__ : str = output.images snake_case__ : str = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : List[str] = pipe( **__UpperCamelCase , return_dict=__UpperCamelCase , )[0] snake_case__ : Tuple = image[0, -3:, -3:, -1] snake_case__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case__ : Optional[Any] = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase ( self : str ) -> Tuple: """simple docstring""" snake_case__ : Union[str, Any] = '''cpu''' snake_case__ : Union[str, Any] = self.get_dummy_components() snake_case__ : Dict = self.pipeline_class(**__UpperCamelCase ) snake_case__ : List[str] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : List[Any] = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : int = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] snake_case__ : List[Any] = pipe(**__UpperCamelCase ) snake_case__ : Tuple = output.images snake_case__ : Union[str, Any] = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : List[Any] = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] snake_case__ : int = pipe( **__UpperCamelCase , return_dict=__UpperCamelCase , )[0] snake_case__ : str = image[0, -3:, -3:, -1] snake_case__ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) snake_case__ : int = np.array( [ 0.9997, 0.9989, 0.0008, 0.0021, 0.9960, 0.0018, 0.0014, 0.0002, 0.9933, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case__ : Any = torch.device('''cpu''' ) class _SCREAMING_SNAKE_CASE : A__ = 1 snake_case__ : Optional[Any] = self.get_dummy_components() snake_case__ : List[str] = self.pipeline_class(**__UpperCamelCase ) snake_case__ : List[str] = pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : List[Any] = torch.Generator(device=__UpperCamelCase ).manual_seed(0 ) snake_case__ : str = pipe.decoder.dtype snake_case__ : Tuple = 1 snake_case__ : List[Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) snake_case__ : Union[str, Any] = pipe.prepare_latents( __UpperCamelCase , dtype=__UpperCamelCase , device=__UpperCamelCase , generator=__UpperCamelCase , latents=__UpperCamelCase , scheduler=DummyScheduler() ) snake_case__ : Optional[Any] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) snake_case__ : Optional[int] = pipe.prepare_latents( __UpperCamelCase , dtype=__UpperCamelCase , device=__UpperCamelCase , generator=__UpperCamelCase , latents=__UpperCamelCase , scheduler=DummyScheduler() ) snake_case__ : Optional[Any] = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) snake_case__ : Any = pipe( **__UpperCamelCase , decoder_latents=__UpperCamelCase , super_res_latents=__UpperCamelCase ).images snake_case__ : Optional[int] = self.get_dummy_inputs(__UpperCamelCase , pil_image=__UpperCamelCase ) # Don't pass image, instead pass embedding snake_case__ : List[str] = pipeline_inputs.pop('''image''' ) snake_case__ : Dict = pipe.image_encoder(__UpperCamelCase ).image_embeds snake_case__ : Optional[Any] = pipe( **__UpperCamelCase , decoder_latents=__UpperCamelCase , super_res_latents=__UpperCamelCase , image_embeddings=__UpperCamelCase , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" snake_case__ : Optional[Any] = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor snake_case__ : str = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=__UpperCamelCase , expected_max_diff=__UpperCamelCase ) @skip_mps def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case__ : Optional[Any] = torch_device == '''cpu''' snake_case__ : List[Any] = True snake_case__ : int = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=__UpperCamelCase , relax_max_difference=__UpperCamelCase , additional_params_copy_to_batched_inputs=__UpperCamelCase , ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" snake_case__ : Optional[int] = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes snake_case__ : Dict = [2, 3] self._test_inference_batch_consistent( batch_sizes=__UpperCamelCase , additional_params_copy_to_batched_inputs=__UpperCamelCase , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=__UpperCamelCase ) @skip_mps def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" return super().test_save_load_local() @skip_mps def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" return super().test_save_load_optional_components() @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE (unittest.TestCase ): def lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case__ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) snake_case__ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) snake_case__ : Dict = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) snake_case__ : Dict = pipeline.to(__UpperCamelCase ) pipeline.set_progress_bar_config(disable=__UpperCamelCase ) snake_case__ : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case__ : Optional[int] = pipeline( __UpperCamelCase , generator=__UpperCamelCase , output_type='''np''' , ) snake_case__ : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(__UpperCamelCase , __UpperCamelCase , 15 )
574
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = TFCamembertModel.from_pretrained('jplu/tf-camembert-base' ) SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25_543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase )['last_hidden_state'] SCREAMING_SNAKE_CASE_ = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE_ = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
31
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class a : def __init__( self : Dict , lowercase_ : str , lowercase_ : Union[str, Any]=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Tuple=True , lowercase_ : int=True , lowercase_ : Dict=True , lowercase_ : Any=True , lowercase_ : Union[str, Any]=99 , lowercase_ : Tuple=[1, 1, 2] , lowercase_ : List[Any]=1 , lowercase_ : int=32 , lowercase_ : List[Any]=4 , lowercase_ : Tuple=8 , lowercase_ : Union[str, Any]=37 , lowercase_ : Union[str, Any]="gelu_new" , lowercase_ : str=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Optional[int]=0.0 , lowercase_ : Optional[int]=512 , lowercase_ : int=3 , lowercase_ : Dict=0.02 , lowercase_ : Union[str, Any]=3 , lowercase_ : Dict=4 , lowercase_ : List[str]=None , lowercase_ : Tuple=False , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = block_sizes snake_case_ = num_decoder_layers snake_case_ = d_model snake_case_ = n_head snake_case_ = d_head snake_case_ = d_inner snake_case_ = hidden_act snake_case_ = hidden_dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = 2 snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = initializer_std # Used in the tests to check the size of the first attention layer snake_case_ = n_head # Used in the tests to check the size of the first hidden state snake_case_ = self.d_model # Used in the tests to check the number of output hidden states/attentions snake_case_ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: snake_case_ = self.num_hidden_layers + 2 def A_ ( self : Union[str, Any] ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def A_ ( self : Optional[Any] , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[int] , ): snake_case_ = TFFunnelModel(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) snake_case_ = [input_ids, input_mask] snake_case_ = model(lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case_ = False snake_case_ = TFFunnelModel(config=lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) snake_case_ = False snake_case_ = TFFunnelModel(config=lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def A_ ( self : List[Any] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : int , lowercase_ : int , lowercase_ : List[Any] , ): snake_case_ = TFFunnelBaseModel(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) snake_case_ = [input_ids, input_mask] snake_case_ = model(lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) snake_case_ = False snake_case_ = TFFunnelBaseModel(config=lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) snake_case_ = False snake_case_ = TFFunnelBaseModel(config=lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def A_ ( self : Any , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Dict , lowercase_ : Union[str, Any] , ): snake_case_ = TFFunnelForPreTraining(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , ): snake_case_ = TFFunnelForMaskedLM(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self : Dict , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : Tuple , ): snake_case_ = self.num_labels snake_case_ = TFFunnelForSequenceClassification(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : int , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : str , lowercase_ : int , ): snake_case_ = self.num_choices snake_case_ = TFFunnelForMultipleChoice(config=lowercase_ ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Any , lowercase_ : str , lowercase_ : Dict , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Optional[Any] , ): snake_case_ = self.num_labels snake_case_ = TFFunnelForTokenClassification(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Optional[Any] , lowercase_ : Any , lowercase_ : Dict , lowercase_ : Any , lowercase_ : int , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] , ): snake_case_ = TFFunnelForQuestionAnswering(config=lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Any ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) ,( snake_case_ ) , ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) snake_case_ = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) snake_case_ = False snake_case_ = False def A_ ( self : int ): snake_case_ = TFFunnelModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ ) def A_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def A_ ( self : List[str] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase_ ) def A_ ( self : str ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase_ ) def A_ ( self : List[str] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_ ) def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_ ) @require_tf class a ( _lowerCamelCase , unittest.TestCase ): snake_case_ = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) snake_case_ = False snake_case_ = False def A_ ( self : Union[str, Any] ): snake_case_ = TFFunnelModelTester(self , base=lowercase_ ) snake_case_ = ConfigTester(self , config_class=lowercase_ ) def A_ ( self : Dict ): self.config_tester.run_common_tests() def A_ ( self : List[str] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase_ ) def A_ ( self : str ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase_ )
640
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def A ( lowercase , lowercase , lowercase , lowercase ) -> str: '''simple docstring''' for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def A ( lowercase , lowercase , lowercase , lowercase , lowercase=True ) -> List[Any]: '''simple docstring''' model.train() UpperCamelCase = model(lowercase ) UpperCamelCase = F.mse_loss(lowercase , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowercase ) def A ( lowercase , lowercase=False ) -> Union[str, Any]: '''simple docstring''' set_seed(42 ) UpperCamelCase = RegressionModel() UpperCamelCase = deepcopy(lowercase ) UpperCamelCase = RegressionDataset(length=80 ) UpperCamelCase = DataLoader(lowercase , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCamelCase = AdamW(params=model.parameters() , lr=1e-3 ) UpperCamelCase = AdamW(params=ddp_model.parameters() , lr=1e-3 ) UpperCamelCase = LambdaLR(lowercase , lr_lambda=lambda lowercase : epoch**0.6_5 ) UpperCamelCase = LambdaLR(lowercase , lr_lambda=lambda lowercase : epoch**0.6_5 ) # Make a copy of `model` if sched: UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare(lowercase , lowercase , lowercase , lowercase ) else: UpperCamelCase , UpperCamelCase = accelerator.prepare(lowercase , lowercase ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(lowercase ) # Use a single batch UpperCamelCase , UpperCamelCase = next(iter(lowercase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase , UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase , lowercase , lowercase , lowercase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowercase ): step_model(lowercase , lowercase , lowercase , lowercase ) else: # Sync grads step_model(lowercase , lowercase , lowercase , lowercase ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowercase , lowercase , lowercase , lowercase ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) UpperCamelCase = ddp_input[torch.randperm(len(lowercase ) )] def A ( lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(lowercase ) # Use a single batch UpperCamelCase , UpperCamelCase = next(iter(lowercase ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase , UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase , lowercase , lowercase , lowercase ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowercase ): step_model(lowercase , lowercase , lowercase , lowercase ) else: # Sync grads step_model(lowercase , lowercase , lowercase , lowercase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) UpperCamelCase = ddp_input[torch.randperm(len(lowercase ) )] def A ( lowercase=False , lowercase=False ) -> str: '''simple docstring''' UpperCamelCase = Accelerator( split_batches=lowercase , dispatch_batches=lowercase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(lowercase ) for iteration, batch in enumerate(lowercase ): UpperCamelCase , UpperCamelCase = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase , UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowercase , lowercase , lowercase , lowercase , lowercase ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowercase ): step_model(lowercase , lowercase , lowercase , lowercase ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowercase ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) UpperCamelCase = ddp_input[torch.randperm(len(lowercase ) )] GradientState._reset_state() def A ( lowercase=False , lowercase=False ) -> List[str]: '''simple docstring''' UpperCamelCase = Accelerator( split_batches=lowercase , dispatch_batches=lowercase , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = get_training_setup(lowercase , lowercase ) for iteration, batch in enumerate(lowercase ): UpperCamelCase , UpperCamelCase = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase , UpperCamelCase = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase , UpperCamelCase = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowercase , lowercase , lowercase , lowercase , lowercase ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowercase )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowercase ): step_model(lowercase , lowercase , lowercase , lowercase ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' UpperCamelCase = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowercase )) if accelerator.num_processes > 1: check_model_parameters(lowercase , lowercase , lowercase , lowercase ) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration ) GradientState._reset_state() def A ( ) -> int: '''simple docstring''' UpperCamelCase = Accelerator() UpperCamelCase = RegressionDataset(length=80 ) UpperCamelCase = DataLoader(lowercase , batch_size=16 ) UpperCamelCase = RegressionDataset(length=96 ) UpperCamelCase = DataLoader(lowercase , batch_size=16 ) UpperCamelCase , UpperCamelCase = accelerator.prepare(lowercase , lowercase ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowercase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase ) if iteration < len(lowercase ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowercase ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowercase ) if batch_num < len(lowercase ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def A ( ) -> Optional[int]: '''simple docstring''' UpperCamelCase = Accelerator() UpperCamelCase = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(lowercase ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(lowercase ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(lowercase , lowercase ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(lowercase , lowercase ) def A ( lowercase ) -> Any: '''simple docstring''' main() if __name__ == "__main__": main()
3
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowercase ) UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCamelCase = dataset_size < in_memory_max_size else: UpperCamelCase = False UpperCamelCase = is_small_dataset(lowercase ) assert result == expected
3
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCamelCase : List[str] = ['gpt2'] lowerCamelCase : int = 'gpt2' if is_tf_available(): class A__ ( tf.Module ): def __init__( self : List[str] , _a : Any ) -> Tuple: '''simple docstring''' super().__init__() _SCREAMING_SNAKE_CASE =tokenizer _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =TFGPTaLMHeadModel.from_config(lowerCAmelCase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='text' ),) ) def A ( self : int , _a : List[str] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.tokenizer(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =tokenized['''input_ids'''].to_tensor() _SCREAMING_SNAKE_CASE =tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) _SCREAMING_SNAKE_CASE =self.model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )['''logits'''] return outputs @require_tf @require_keras_nlp class A__ ( unittest.TestCase ): def A ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' super().setUp() _SCREAMING_SNAKE_CASE =[GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] _SCREAMING_SNAKE_CASE =[TFGPTaTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) _SCREAMING_SNAKE_CASE =[ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] _SCREAMING_SNAKE_CASE =list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def A ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: _SCREAMING_SNAKE_CASE =tokenizer([test_inputs] , return_tensors='tf' ) _SCREAMING_SNAKE_CASE =tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors _SCREAMING_SNAKE_CASE =python_outputs[key].numpy() _SCREAMING_SNAKE_CASE =tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCAmelCase__ , tf.intaa ) == tf_outputs_values ) ) @slow def A ( self : Dict ) -> Optional[int]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _SCREAMING_SNAKE_CASE =tf.function(lowerCAmelCase__ ) for test_inputs in self.test_sentences: _SCREAMING_SNAKE_CASE =tf.constant(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =compiled_tokenizer(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =tf_tokenizer(lowerCAmelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def A ( self : List[str] ) -> List[str]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _SCREAMING_SNAKE_CASE =ModelToSave(tokenizer=lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([self.test_sentences[0]] ) _SCREAMING_SNAKE_CASE =model.serving(lowerCAmelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: _SCREAMING_SNAKE_CASE =Path(lowerCAmelCase__ ) / '''saved.model''' tf.saved_model.save(lowerCAmelCase__ , lowerCAmelCase__ , signatures={'serving_default': model.serving} ) _SCREAMING_SNAKE_CASE =tf.saved_model.load(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =loaded_model.signatures['''serving_default'''](lowerCAmelCase__ )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def A ( self : List[str] ) -> Optional[Any]: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([self.test_sentences[0]] ) _SCREAMING_SNAKE_CASE =tf_tokenizer(lowerCAmelCase__ ) # Build model with some sample inputs _SCREAMING_SNAKE_CASE =tf_tokenizer.get_config() _SCREAMING_SNAKE_CASE =TFGPTaTokenizer.from_config(lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =model_from_config(lowerCAmelCase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def A ( self : int ) -> str: '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: # for the test to run _SCREAMING_SNAKE_CASE =12_3123 for max_length in [3, 5, 1024]: _SCREAMING_SNAKE_CASE =tf.convert_to_tensor([self.test_sentences[0]] ) _SCREAMING_SNAKE_CASE =tf_tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) _SCREAMING_SNAKE_CASE =out['''input_ids'''].numpy().shape[1] assert out_length == max_length
405
from datetime import datetime import requests def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __SCREAMING_SNAKE_CASE : Tuple = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(lowercase__ ).content if __name__ == "__main__": __lowerCAmelCase : int =input('Enter Video/IGTV url: ').strip() __lowerCAmelCase : Union[str, Any] =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
696
0
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase__ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( a__ ): '''simple docstring''' _A : str = "linear" _A : List[str] = "cosine" _A : List[str] = "cosine_with_restarts" _A : List[str] = "polynomial" _A : int = "constant" _A : Optional[int] = "constant_with_warmup" _A : List[Any] = "piecewise_constant" def lowerCAmelCase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: List[Any] = -1 ): return LambdaLR(_lowerCamelCase , lambda _lowerCamelCase : 1 , last_epoch=_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: str , _lowerCamelCase: List[str] , _lowerCamelCase: List[str] = -1 ): def lr_lambda(_lowerCamelCase: Optional[int] ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1.0 , _lowerCamelCase ) ) return 1.0 return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: Dict , _lowerCamelCase: int = -1 ): __SCREAMING_SNAKE_CASE : Optional[Any] = {} __SCREAMING_SNAKE_CASE : int = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = int(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = float(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = value __SCREAMING_SNAKE_CASE : Dict = float(rule_list[-1] ) def create_rules_function(_lowerCamelCase: str , _lowerCamelCase: Optional[int] ): def rule_func(_lowerCamelCase: List[Any] ) -> float: __SCREAMING_SNAKE_CASE : Optional[int] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE : List[str] = create_rules_function(_lowerCamelCase , _lowerCamelCase ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , last_epoch=_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any] , _lowerCamelCase: Tuple , _lowerCamelCase: Optional[Any]=-1 ): def lr_lambda(_lowerCamelCase: Optional[int] ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Any , _lowerCamelCase: str , _lowerCamelCase: int , _lowerCamelCase: Dict = 0.5 , _lowerCamelCase: int = -1 ): def lr_lambda(_lowerCamelCase: str ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __SCREAMING_SNAKE_CASE : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Tuple , _lowerCamelCase: List[Any] , _lowerCamelCase: Dict = 1 , _lowerCamelCase: Union[str, Any] = -1 ): def lr_lambda(_lowerCamelCase: Tuple ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) __SCREAMING_SNAKE_CASE : Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: Any , _lowerCamelCase: Optional[Any] , _lowerCamelCase: List[Any]=1E-7 , _lowerCamelCase: str=1.0 , _lowerCamelCase: Union[str, Any]=-1 ): __SCREAMING_SNAKE_CASE : Tuple = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(F"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})" ) def lr_lambda(_lowerCamelCase: Tuple ): if current_step < num_warmup_steps: return float(_lowerCamelCase ) / float(max(1 , _lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE : List[str] = lr_init - lr_end __SCREAMING_SNAKE_CASE : Optional[Any] = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE : int = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE : Tuple = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCamelCase__ : Union[str, Any] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] , _lowerCamelCase: int , _lowerCamelCase: Union[str, Any] = None , _lowerCamelCase: Union[str, Any] = None , _lowerCamelCase: List[Any] = None , _lowerCamelCase: Tuple = 1 , _lowerCamelCase: Optional[int] = 1.0 , _lowerCamelCase: int = -1 , ): __SCREAMING_SNAKE_CASE : Dict = SchedulerType(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_lowerCamelCase , last_epoch=_lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_lowerCamelCase , step_rules=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"{name} requires `num_warmup_steps`, please provide that argument." ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_lowerCamelCase , num_warmup_steps=_lowerCamelCase , last_epoch=_lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"{name} requires `num_training_steps`, please provide that argument." ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , num_cycles=_lowerCamelCase , last_epoch=_lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , power=_lowerCamelCase , last_epoch=_lowerCamelCase , ) return schedule_func( _lowerCamelCase , num_warmup_steps=_lowerCamelCase , num_training_steps=_lowerCamelCase , last_epoch=_lowerCamelCase )
710
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[Any] = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
178
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowerCAmelCase ( UpperCamelCase_ ): A_ : int = """openai/whisper-base""" A_ : str = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) A_ : Union[str, Any] = """transcriber""" A_ : Tuple = WhisperProcessor A_ : Dict = WhisperForConditionalGeneration A_ : Tuple = ["""audio"""] A_ : Optional[int] = ["""text"""] def _A ( self : Optional[int] , a__ : Optional[int] ): '''simple docstring''' return self.pre_processor(a__ , return_tensors="pt" ).input_features def _A ( self : List[str] , a__ : Union[str, Any] ): '''simple docstring''' return self.model.generate(inputs=a__ ) def _A ( self : Optional[Any] , a__ : Dict ): '''simple docstring''' return self.pre_processor.batch_decode(a__ , skip_special_tokens=a__ )[0]
378
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") snake_case = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) snake_case = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) snake_case = BeautifulSoup(res.text, """html.parser""") snake_case = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(f'https://google.com{link.get("href")}')
378
1
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a ( unittest.TestCase ): UpperCamelCase : List[str] = JukeboxTokenizer UpperCamelCase : Union[str, Any] = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def lowerCamelCase__ ( self : List[Any] ) -> str: '''simple docstring''' import torch SCREAMING_SNAKE_CASE_: Any =JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) SCREAMING_SNAKE_CASE_: List[str] =tokenizer(**self.metas )["""input_ids"""] # fmt: off SCREAMING_SNAKE_CASE_: Any =[ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' import torch SCREAMING_SNAKE_CASE_: Optional[int] =JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) SCREAMING_SNAKE_CASE_: Dict =tokenizer(**self.metas )["""input_ids"""] # fmt: off SCREAMING_SNAKE_CASE_: int =[ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
36
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def __magic_name__ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
36
1
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.14.0""", """To fix: pip install -r examples/pytorch/audio-classification/requirements.txt""") def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1_60_00 ) -> Optional[Any]: """simple docstring""" __snake_case = int(round(sample_rate * max_length ) ) if len(SCREAMING_SNAKE_CASE ) <= sample_length: return wav __snake_case = randint(0 , len(SCREAMING_SNAKE_CASE ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __magic_name__ : _SCREAMING_SNAKE_CASE : Optional[str] = field(default=lowercase__ , metadata={'help': 'Name of a dataset from the datasets package'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowercase__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowercase__ , metadata={'help': 'A file containing the training audio paths and labels.'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowercase__ , metadata={'help': 'A file containing the validation audio paths and labels.'} ) _SCREAMING_SNAKE_CASE : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _SCREAMING_SNAKE_CASE : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) _SCREAMING_SNAKE_CASE : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) _SCREAMING_SNAKE_CASE : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=lowercase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _SCREAMING_SNAKE_CASE : Optional[int] = field( default=lowercase__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) _SCREAMING_SNAKE_CASE : float = field( default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class __magic_name__ : _SCREAMING_SNAKE_CASE : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowercase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowercase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) _SCREAMING_SNAKE_CASE : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _SCREAMING_SNAKE_CASE : Optional[str] = field( default=lowercase__ , metadata={'help': 'Name or path of preprocessor config.'} ) _SCREAMING_SNAKE_CASE : bool = field( default=lowercase__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) _SCREAMING_SNAKE_CASE : bool = field( default=lowercase__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) _SCREAMING_SNAKE_CASE : bool = field( default=lowercase__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _SCREAMING_SNAKE_CASE : Optional[bool] = field( default=lowercase__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _SCREAMING_SNAKE_CASE : bool = field( default=lowercase__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def lowerCAmelCase ( self : int ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , snake_case_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. __snake_case = DatasetDict() __snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'''{", ".join(raw_datasets["train"].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' "Make sure to set `--label_column_name` to the correct text column - one of " F'''{", ".join(raw_datasets["train"].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __snake_case = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __snake_case = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) __snake_case = feature_extractor.model_input_names[0] def train_transforms(SCREAMING_SNAKE_CASE ): __snake_case = [] for audio in batch[data_args.audio_column_name]: __snake_case = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(SCREAMING_SNAKE_CASE ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate ) __snake_case = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE )} __snake_case = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(SCREAMING_SNAKE_CASE ): __snake_case = [audio["array"] for audio in batch[data_args.audio_column_name]] __snake_case = feature_extractor(SCREAMING_SNAKE_CASE , sampling_rate=feature_extractor.sampling_rate ) __snake_case = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE )} __snake_case = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __snake_case = raw_datasets["train"].features[data_args.label_column_name].names __snake_case , __snake_case = {}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE ): __snake_case = str(SCREAMING_SNAKE_CASE ) __snake_case = label # Load the accuracy metric from the datasets package __snake_case = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE ): __snake_case = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE , references=eval_pred.label_ids ) __snake_case = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE ) , labelaid=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __snake_case = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE , output_all_columns=SCREAMING_SNAKE_CASE ) if training_args.do_eval: if data_args.max_eval_samples is not None: __snake_case = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE , output_all_columns=SCREAMING_SNAKE_CASE ) # Initialize our trainer __snake_case = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: __snake_case = None if training_args.resume_from_checkpoint is not None: __snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case = last_checkpoint __snake_case = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __snake_case = trainer.evaluate() trainer.log_metrics("eval" , SCREAMING_SNAKE_CASE ) trainer.save_metrics("eval" , SCREAMING_SNAKE_CASE ) # Write model card and (optionally) push to hub __snake_case = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
163
"""simple docstring""" def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if not all(char in "01" for char in bin_string ): raise ValueError("Non-binary value was passed to the function" ) if not bin_string: raise ValueError("Empty string was passed to the function" ) __snake_case = "" while len(SCREAMING_SNAKE_CASE ) % 3 != 0: __snake_case = "0" + bin_string __snake_case = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE ) ) oct_string += str(SCREAMING_SNAKE_CASE ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
163
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _SCREAMING_SNAKE_CASE (_UpperCamelCase ): lowerCAmelCase = "yolos" def __init__( self : Dict , UpperCamelCase : Optional[Any]=7_6_8 , UpperCamelCase : List[Any]=1_2 , UpperCamelCase : Any=1_2 , UpperCamelCase : List[Any]=3_0_7_2 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : Dict=0.0 , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : Any=0.0_2 , UpperCamelCase : Optional[int]=1E-12 , UpperCamelCase : List[Any]=[5_1_2, 8_6_4] , UpperCamelCase : List[str]=1_6 , UpperCamelCase : str=3 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]=1_0_0 , UpperCamelCase : List[str]=True , UpperCamelCase : Any=False , UpperCamelCase : List[str]=1 , UpperCamelCase : str=5 , UpperCamelCase : Optional[Any]=2 , UpperCamelCase : Tuple=5 , UpperCamelCase : Any=2 , UpperCamelCase : Union[str, Any]=0.1 , **UpperCamelCase : List[str] , )->List[str]: super().__init__(**__a ) __SCREAMING_SNAKE_CASE : Dict = hidden_size __SCREAMING_SNAKE_CASE : Any = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = initializer_range __SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : Tuple = patch_size __SCREAMING_SNAKE_CASE : Dict = num_channels __SCREAMING_SNAKE_CASE : Any = qkv_bias __SCREAMING_SNAKE_CASE : str = num_detection_tokens __SCREAMING_SNAKE_CASE : str = use_mid_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = auxiliary_loss # Hungarian matcher __SCREAMING_SNAKE_CASE : List[Any] = class_cost __SCREAMING_SNAKE_CASE : int = bbox_cost __SCREAMING_SNAKE_CASE : Optional[int] = giou_cost # Loss coefficients __SCREAMING_SNAKE_CASE : List[Any] = bbox_loss_coefficient __SCREAMING_SNAKE_CASE : str = giou_loss_coefficient __SCREAMING_SNAKE_CASE : Dict = eos_coefficient class _SCREAMING_SNAKE_CASE (_UpperCamelCase ): lowerCAmelCase = version.parse("""1.11""" ) @property def __snake_case ( self : str )->Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __snake_case ( self : Optional[Any] )->float: return 1E-4 @property def __snake_case ( self : Dict )->int: return 1_2
707
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor _lowerCamelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE (UpperCamelCase ): def __init__( self : int , *UpperCamelCase : Optional[int] , **UpperCamelCase : Optional[int] )->None: warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
447
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
68
'''simple docstring''' import numpy class _UpperCamelCase : '''simple docstring''' def __init__( self , _a , _a ): """simple docstring""" a__ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. a__ = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. a__ = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. a__ = numpy.random.rand(3 , 1 ) # Real output values provided. a__ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. a__ = numpy.zeros(output_array.shape ) def lowercase__ ( self ): """simple docstring""" a__ = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. a__ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. a__ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowercase__ ( self ): """simple docstring""" a__ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) a__ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) a__ = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowercase__ ( self , _a , _a , _a ): """simple docstring""" for iteration in range(1 , iterations + 1 ): a__ = self.feedforward() self.back_propagation() if give_loss: a__ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowercase__ ( self , _a ): """simple docstring""" a__ = input_arr a__ = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) a__ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) a__ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def lowerCAmelCase_ ( a : numpy.ndarray ): return 1 / (1 + numpy.exp(-value )) def lowerCAmelCase_ ( a : numpy.ndarray ): return (value) * (1 - (value)) def lowerCAmelCase_ ( ): a__ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. a__ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. a__ = TwoHiddenLayerNeuralNetwork( input_array=a , output_array=a ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a , iterations=10 , give_loss=a ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
394
0
"""simple docstring""" from collections import deque class A__ : '''simple docstring''' def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int) -> None: """simple docstring""" __lowerCAmelCase : Dict = process_name # process name __lowerCAmelCase : List[str] = arrival_time # arrival time of the process # completion time of finished process or last interrupted time __lowerCAmelCase : Any = arrival_time __lowerCAmelCase : List[str] = burst_time # remaining burst time __lowerCAmelCase : Union[str, Any] = 0 # total time of the process wait in ready queue __lowerCAmelCase : Optional[int] = 0 # time from arrival time to completion time class A__ : '''simple docstring''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: list[int] , _SCREAMING_SNAKE_CASE: deque[Process] , _SCREAMING_SNAKE_CASE: int , ) -> None: """simple docstring""" __lowerCAmelCase : int = number_of_queues # time slice of queues that round robin algorithm applied __lowerCAmelCase : Dict = time_slices # unfinished process is in this ready_queue __lowerCAmelCase : Dict = queue # current time __lowerCAmelCase : Union[str, Any] = current_time # finished process is in this sequence queue __lowerCAmelCase : deque[Process] = deque() def _SCREAMING_SNAKE_CASE ( self: Tuple) -> list[str]: """simple docstring""" __lowerCAmelCase : Optional[int] = [] for i in range(len(self.finish_queue)): sequence.append(self.finish_queue[i].process_name) return sequence def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: list[Process]) -> list[int]: """simple docstring""" __lowerCAmelCase : Optional[int] = [] for i in range(len(_SCREAMING_SNAKE_CASE)): waiting_times.append(queue[i].waiting_time) return waiting_times def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: list[Process]) -> list[int]: """simple docstring""" __lowerCAmelCase : Optional[int] = [] for i in range(len(_SCREAMING_SNAKE_CASE)): turnaround_times.append(queue[i].turnaround_time) return turnaround_times def _SCREAMING_SNAKE_CASE ( self: Tuple , _SCREAMING_SNAKE_CASE: list[Process]) -> list[int]: """simple docstring""" __lowerCAmelCase : Optional[int] = [] for i in range(len(_SCREAMING_SNAKE_CASE)): completion_times.append(queue[i].stop_time) return completion_times def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: deque[Process]) -> list[int]: """simple docstring""" return [q.burst_time for q in queue] def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Process) -> int: """simple docstring""" process.waiting_time += self.current_time - process.stop_time return process.waiting_time def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: deque[Process]) -> deque[Process]: """simple docstring""" __lowerCAmelCase : deque[Process] = deque() # sequence deque of finished process while len(_SCREAMING_SNAKE_CASE) != 0: __lowerCAmelCase : Union[str, Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_SCREAMING_SNAKE_CASE) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 __lowerCAmelCase : Optional[int] = 0 # set the process's turnaround time because it is finished __lowerCAmelCase : List[str] = self.current_time - cp.arrival_time # set the completion time __lowerCAmelCase : Any = self.current_time # add the process to queue that has finished queue finished.append(_SCREAMING_SNAKE_CASE) self.finish_queue.extend(_SCREAMING_SNAKE_CASE) # add finished process to finish queue # FCFS will finish all remaining processes return finished def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: deque[Process] , _SCREAMING_SNAKE_CASE: int) -> tuple[deque[Process], deque[Process]]: """simple docstring""" __lowerCAmelCase : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_SCREAMING_SNAKE_CASE)): __lowerCAmelCase : Tuple = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_SCREAMING_SNAKE_CASE) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time __lowerCAmelCase : Dict = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_SCREAMING_SNAKE_CASE) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished __lowerCAmelCase : Optional[Any] = 0 # set the finish time __lowerCAmelCase : Optional[int] = self.current_time # update the process' turnaround time because it is finished __lowerCAmelCase : str = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_SCREAMING_SNAKE_CASE) self.finish_queue.extend(_SCREAMING_SNAKE_CASE) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def _SCREAMING_SNAKE_CASE ( self: Any) -> deque[Process]: """simple docstring""" for i in range(self.number_of_queues - 1): __lowerCAmelCase , __lowerCAmelCase : Optional[int] = self.round_robin( self.ready_queue , self.time_slices[i]) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue) return self.finish_queue if __name__ == "__main__": import doctest __snake_case : List[Any] = Process('P1', 0, 53) __snake_case : str = Process('P2', 0, 17) __snake_case : Optional[Any] = Process('P3', 0, 68) __snake_case : Tuple = Process('P4', 0, 24) __snake_case : Tuple = 3 __snake_case : List[Any] = [17, 25] __snake_case : List[str] = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) __snake_case : str = Process('P1', 0, 53) __snake_case : Any = Process('P2', 0, 17) __snake_case : str = Process('P3', 0, 68) __snake_case : Dict = Process('P4', 0, 24) __snake_case : Optional[int] = 3 __snake_case : Union[str, Any] = [17, 25] __snake_case : str = deque([Pa, Pa, Pa, Pa]) __snake_case : int = MLFQ(number_of_queues, time_slices, queue, 0) __snake_case : Optional[int] = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"""waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print completion times of processes(P1, P2, P3, P4) print( F"""completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"""turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}""" ) # print sequence of finished processes print( F"""sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}""" )
615
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _lowercase ( __snake_case ,__snake_case ) -> Dict: assert isinstance(__snake_case ,__snake_case ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any: __lowerCAmelCase : Dict = tmp_path / "cache" __lowerCAmelCase : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase : Optional[Any] = ParquetDatasetReader(__snake_case ,cache_dir=__snake_case ,keep_in_memory=__snake_case ).read() _check_parquet_dataset(__snake_case ,__snake_case ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> str: __lowerCAmelCase : Tuple = tmp_path / "cache" __lowerCAmelCase : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase : List[Any] = features.copy() if features else default_expected_features __lowerCAmelCase : Dict = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase : Optional[int] = ParquetDatasetReader(__snake_case ,features=__snake_case ,cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case ,__snake_case ) @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Any: __lowerCAmelCase : List[str] = tmp_path / "cache" __lowerCAmelCase : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase : List[Any] = ParquetDatasetReader(__snake_case ,cache_dir=__snake_case ,split=__snake_case ).read() _check_parquet_dataset(__snake_case ,__snake_case ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" ,[str, list] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Dict: if issubclass(__snake_case ,__snake_case ): __lowerCAmelCase : List[Any] = parquet_path elif issubclass(__snake_case ,__snake_case ): __lowerCAmelCase : List[Any] = [parquet_path] __lowerCAmelCase : str = tmp_path / "cache" __lowerCAmelCase : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase : Tuple = ParquetDatasetReader(__snake_case ,cache_dir=__snake_case ).read() _check_parquet_dataset(__snake_case ,__snake_case ) def _lowercase ( __snake_case ,__snake_case ,__snake_case=("train",) ) -> int: assert isinstance(__snake_case ,__snake_case ) for split in splits: __lowerCAmelCase : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> str: __lowerCAmelCase : Any = tmp_path / "cache" __lowerCAmelCase : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase : str = ParquetDatasetReader( {"train": parquet_path} ,cache_dir=__snake_case ,keep_in_memory=__snake_case ).read() _check_parquet_datasetdict(__snake_case ,__snake_case ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> Dict: __lowerCAmelCase : List[Any] = tmp_path / "cache" __lowerCAmelCase : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase : str = features.copy() if features else default_expected_features __lowerCAmelCase : str = ( Features({feature: Value(__snake_case ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase : str = ParquetDatasetReader({"train": parquet_path} ,features=__snake_case ,cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case ,__snake_case ) @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def _lowercase ( __snake_case ,__snake_case ,__snake_case ) -> str: if split: __lowerCAmelCase : Optional[int] = {split: parquet_path} else: __lowerCAmelCase : str = "train" __lowerCAmelCase : Optional[Any] = {"train": parquet_path, "test": parquet_path} __lowerCAmelCase : Tuple = tmp_path / "cache" __lowerCAmelCase : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase : Union[str, Any] = ParquetDatasetReader(__snake_case ,cache_dir=__snake_case ).read() _check_parquet_datasetdict(__snake_case ,__snake_case ,splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _lowercase ( __snake_case ,__snake_case ) -> Union[str, Any]: __lowerCAmelCase : int = ParquetDatasetWriter(__snake_case ,tmp_path / "foo.parquet" ) assert writer.write() > 0 __lowerCAmelCase : str = pq.ParquetFile(tmp_path / "foo.parquet" ) __lowerCAmelCase : int = pf.read() assert dataset.data.table == output_table def _lowercase ( __snake_case ,__snake_case ) -> int: __lowerCAmelCase : int = str(shared_datadir / "test_image_rgb.jpg" ) __lowerCAmelCase : Any = {"image": [image_path]} __lowerCAmelCase : List[Any] = Features({"image": Image()} ) __lowerCAmelCase : Tuple = Dataset.from_dict(__snake_case ,features=__snake_case ) __lowerCAmelCase : Dict = ParquetDatasetWriter(__snake_case ,tmp_path / "foo.parquet" ) assert writer.write() > 0 __lowerCAmelCase : List[Any] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features __lowerCAmelCase : List[Any] = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) ,streaming=__snake_case ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" ,[ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] ,) def _lowercase ( __snake_case ,__snake_case ) -> List[Any]: assert get_writer_batch_size(__snake_case ) == expected
615
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase : List[str] = {"""configuration_yolos""": ["""YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """YolosConfig""", """YolosOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = ["""YolosFeatureExtractor"""] _UpperCAmelCase : List[Any] = ["""YolosImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ """YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST""", """YolosForObjectDetection""", """YolosModel""", """YolosPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys _UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
362
"""simple docstring""" def lowercase__(A ) ->bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
218
0
'''simple docstring''' import requests from bsa import BeautifulSoup def SCREAMING_SNAKE_CASE( UpperCamelCase = "https://www.worldometers.info/coronavirus" ) -> dict: UpperCAmelCase_ : List[str] = BeautifulSoup(requests.get(lowerCamelCase_ ).text ,'html.parser' ) UpperCAmelCase_ : Dict = soup.findAll('h1' ) UpperCAmelCase_ : Dict = soup.findAll('div' ,{'class': 'maincounter-number'} ) keys += soup.findAll('span' ,{'class': 'panel-title'} ) values += soup.findAll('div' ,{'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(lowerCamelCase_ ,lowerCamelCase_ )} if __name__ == "__main__": print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n") for key, value in world_covidaa_stats().items(): print(F'{key}\n{value}\n')
706
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class lowercase ( a_ ): _lowerCamelCase : Any= "gptsan-japanese" _lowerCamelCase : List[Any]= [ "past_key_values", ] _lowerCamelCase : Tuple= { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _snake_case=3_6000 , _snake_case=1280 , _snake_case=1024 , _snake_case=8192 , _snake_case=4096 , _snake_case=128 , _snake_case=10 , _snake_case=0 , _snake_case=16 , _snake_case=16 , _snake_case=128 , _snake_case=0.0 , _snake_case=1e-5 , _snake_case=False , _snake_case=0.0 , _snake_case="float32" , _snake_case=False , _snake_case=False , _snake_case=False , _snake_case=0.002 , _snake_case=False , _snake_case=True , _snake_case=3_5998 , _snake_case=3_5995 , _snake_case=3_5999 , **_snake_case , ) -> Optional[int]: UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Any = d_model UpperCAmelCase_ : int = d_ff UpperCAmelCase_ : Tuple = d_ext UpperCAmelCase_ : Tuple = d_spout UpperCAmelCase_ : List[Any] = num_switch_layers UpperCAmelCase_ : Tuple = num_ext_layers UpperCAmelCase_ : Optional[int] = num_switch_layers + num_ext_layers UpperCAmelCase_ : Tuple = num_heads UpperCAmelCase_ : List[str] = num_experts UpperCAmelCase_ : List[str] = expert_capacity UpperCAmelCase_ : Optional[int] = dropout_rate UpperCAmelCase_ : List[Any] = layer_norm_epsilon UpperCAmelCase_ : Any = router_bias UpperCAmelCase_ : Optional[Any] = router_jitter_noise UpperCAmelCase_ : str = router_dtype UpperCAmelCase_ : List[str] = router_ignore_padding_tokens UpperCAmelCase_ : Optional[int] = output_hidden_states UpperCAmelCase_ : Union[str, Any] = output_attentions UpperCAmelCase_ : Optional[int] = initializer_factor UpperCAmelCase_ : Optional[int] = output_router_logits UpperCAmelCase_ : List[str] = use_cache super().__init__( separator_token_id=_snake_case , pad_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case , )
471
0
def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return int(input_a == input_a == 0 ) def lowerCamelCase__ ( ): """simple docstring""" print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
62
'''simple docstring''' def A__ ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCamelCase : Dict = generate_large_matrix() UpperCamelCase : Any = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def A__ ( __lowerCAmelCase : list[list[int]] ): assert all(row == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for row in grid ) assert all(list(__lowerCAmelCase ) == sorted(__lowerCAmelCase , reverse=__lowerCAmelCase ) for col in zip(*__lowerCAmelCase ) ) def A__ ( __lowerCAmelCase : list[int] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(__lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase__ = (left + right) // 2 lowerCamelCase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase__ = mid + 1 else: lowerCamelCase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 lowerCamelCase__ = len(grid[0] ) for i in range(len(__lowerCAmelCase ) ): lowerCamelCase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowerCAmelCase ) * len(grid[0] )) - total def A__ ( __lowerCAmelCase : list[list[int]] ): return len([number for row in grid for number in row if number < 0] ) def A__ ( __lowerCAmelCase : list[list[int]] ): lowerCamelCase__ = 0 for row in grid: for i, number in enumerate(__lowerCAmelCase ): if number < 0: total += len(__lowerCAmelCase ) - i break return total def A__ ( ): from timeit import timeit print("""Running benchmarks""" ) lowerCamelCase__ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase__ = timeit(F'''{func}(grid=grid)''' , setup=__lowerCAmelCase , number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
50
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : List[str] = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowerCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
710
from scipy.stats import spearmanr import datasets lowerCamelCase__ : Union[str, Any] = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ lowerCamelCase__ : int = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ lowerCamelCase__ : str = R"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowercase__ ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float"""), """references""": datasets.Value("""float"""), }) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False): '''simple docstring''' lowercase__ : List[str] = spearmanr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
495
0
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" _UpperCamelCase = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) _UpperCamelCase = Vector() def __UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" _UpperCamelCase = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowercase__) , "(0,0,0,0,0,1)") def __UpperCAmelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = Vector([1, 2, 3, 4]) self.assertEqual(len(lowercase__) , 4) def __UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCamelCase = Vector([1, 2]) _UpperCamelCase = Vector([1, 2, 3, 4, 5]) _UpperCamelCase = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) _UpperCamelCase = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3) def __UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" _UpperCamelCase = Vector([1, 2, 3]) _UpperCamelCase = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def __UpperCAmelCase ( self : List[str]) -> Dict: """simple docstring""" _UpperCamelCase = Vector([1, 2, 3]) _UpperCamelCase = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def __UpperCAmelCase ( self : Dict) -> str: """simple docstring""" _UpperCamelCase = Vector([1, 2, 3]) _UpperCamelCase = Vector([2, -1, 4]) # for test of dot product _UpperCamelCase = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , "(3.0,6.0,9.0)") self.assertEqual((a * b) , 0) def __UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" self.assertEqual(str(zero_vector(10)).count("0") , 10) def __UpperCAmelCase ( self : Tuple) -> List[str]: """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , "(0,1,0)") def __UpperCAmelCase ( self : Tuple) -> Tuple: """simple docstring""" _UpperCamelCase = Vector([1, 2, 3]) _UpperCamelCase = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowercase__ , lowercase__)) , "(3,4,7)") def __UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" _UpperCamelCase = Vector([1, 0, 0, 0, 0, 0]) _UpperCamelCase = x.copy() self.assertEqual(str(lowercase__) , str(lowercase__)) def __UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCamelCase = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowercase__) , "(0,1,0)") def __UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" _UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual("|1,2,3|\n|2,4,5|\n|6,7,8|\n" , str(lowercase__)) def __UpperCAmelCase ( self : str) -> Dict: """simple docstring""" _UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCamelCase = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowercase__ , lowercase__)) def __UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCamelCase = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowercase__ , lowercase__)) def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" _UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def __UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" _UpperCamelCase = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) _UpperCamelCase = Vector([1, 2, 3]) self.assertEqual("(14,32,50)" , str(a * x)) self.assertEqual("|2,4,6|\n|8,10,12|\n|14,16,18|\n" , str(a * 2)) def __UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" _UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual("|1,2,5|\n|2,4,5|\n|6,7,8|\n" , str(lowercase__)) def __UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" _UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def __UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCamelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual("|2,4,10|\n|4,8,10|\n|12,14,18|\n" , str(a + b)) def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCamelCase = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) _UpperCamelCase = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual("|0,0,-4|\n|0,0,0|\n|0,0,-2|\n" , str(a - b)) def __UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" self.assertEqual( "|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n" , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
547
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = args.pruning_method SCREAMING_SNAKE_CASE_ : List[Any] = args.threshold SCREAMING_SNAKE_CASE_ : Tuple = args.model_name_or_path.rstrip("/" ) SCREAMING_SNAKE_CASE_ : Any = args.target_model_path print(F"Load fine-pruned model from {model_name_or_path}" ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.load(os.path.join(SCREAMING_SNAKE_CASE_ , "pytorch_model.bin" ) ) SCREAMING_SNAKE_CASE_ : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = tensor print(F"Copied layer {name}" ) elif "classifier" in name or "qa_output" in name: SCREAMING_SNAKE_CASE_ : Dict = tensor print(F"Copied layer {name}" ) elif "bias" in name: SCREAMING_SNAKE_CASE_ : Dict = tensor print(F"Copied layer {name}" ) else: if pruning_method == "magnitude": SCREAMING_SNAKE_CASE_ : Tuple = MagnitudeBinarizer.apply(inputs=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Any = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "topK": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE_ : Union[str, Any] = name[:-6] SCREAMING_SNAKE_CASE_ : Any = model[F"{prefix_}mask_scores"] SCREAMING_SNAKE_CASE_ : Dict = TopKBinarizer.apply(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE_ : List[Any] = name[:-6] SCREAMING_SNAKE_CASE_ : Any = model[F"{prefix_}mask_scores"] SCREAMING_SNAKE_CASE_ : List[Any] = ThresholdBinarizer.apply(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : int = tensor * mask print(F"Pruned layer {name}" ) elif pruning_method == "l0": if "mask_scores" in name: continue SCREAMING_SNAKE_CASE_ : Tuple = name[:-6] SCREAMING_SNAKE_CASE_ : str = model[F"{prefix_}mask_scores"] SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : List[Any] = -0.1, 1.1 SCREAMING_SNAKE_CASE_ : Any = torch.sigmoid(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ : Tuple = s * (r - l) + l SCREAMING_SNAKE_CASE_ : Any = s_bar.clamp(min=0.0 , max=1.0 ) SCREAMING_SNAKE_CASE_ : str = tensor * mask print(F"Pruned layer {name}" ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( os.path.dirname(SCREAMING_SNAKE_CASE_ ) , F"bertarized_{os.path.basename(SCREAMING_SNAKE_CASE_ )}" ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): shutil.copytree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F"\nCreated folder {target_model_path}" ) torch.save(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) snake_case_ = parser.parse_args() main(args)
421
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
59
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , UpperCamelCase__ , ) if isinstance(UpperCamelCase__ , torch.Tensor ): return image elif isinstance(UpperCamelCase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = [image] if isinstance(image[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image[0].size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 SCREAMING_SNAKE_CASE__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE__ = np.concatenate(UpperCamelCase__ , axis=0 ) SCREAMING_SNAKE_CASE__ = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE__ = image.transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ = 2.0 * image - 1.0 SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCamelCase__ , dim=0 ) return image def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(UpperCamelCase__ , torch.Tensor ): return mask elif isinstance(UpperCamelCase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = [mask] if isinstance(mask[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = mask[0].size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE__ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] SCREAMING_SNAKE_CASE__ = np.concatenate(UpperCamelCase__ , axis=0 ) SCREAMING_SNAKE_CASE__ = mask.astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(mask[0] , torch.Tensor ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCamelCase__ , dim=0 ) return mask class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = 42 def __init__( self :Any , __A :List[Any] , __A :Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules(unet=__A , scheduler=__A ) @torch.no_grad() def __call__( self :str , __A :Union[torch.Tensor, PIL.Image.Image] , __A :Union[torch.Tensor, PIL.Image.Image] , __A :int = 250 , __A :float = 0.0 , __A :int = 10 , __A :int = 10 , __A :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __A :Optional[str] = "pil" , __A :bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE__ = image SCREAMING_SNAKE_CASE__ = _preprocess_image(__A ) SCREAMING_SNAKE_CASE__ = original_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE__ = _preprocess_mask(__A ) SCREAMING_SNAKE_CASE__ = mask_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__A , __A ) and len(__A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = original_image.shape SCREAMING_SNAKE_CASE__ = randn_tensor(__A , generator=__A , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__A , __A , __A , self.device ) SCREAMING_SNAKE_CASE__ = eta SCREAMING_SNAKE_CASE__ = self.scheduler.timesteps[0] + 1 SCREAMING_SNAKE_CASE__ = generator[0] if isinstance(__A , __A ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual SCREAMING_SNAKE_CASE__ = self.unet(__A , __A ).sample # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step(__A , __A , __A , __A , __A , __A ).prev_sample else: # compute the reverse: x_t-1 -> x_t SCREAMING_SNAKE_CASE__ = self.scheduler.undo_step(__A , __A , __A ) SCREAMING_SNAKE_CASE__ = t SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A )
59
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( _lowercase : float , _lowercase : float , _lowercase : float ) -> Optional[Any]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
266
def lowerCamelCase__ ( __A :int ,__A :float ,__A :float ): """simple docstring""" return round(float(moles / volume ) * nfactor ) def lowerCamelCase__ ( __A :float ,__A :float ,__A :float ): """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def lowerCamelCase__ ( __A :float ,__A :float ,__A :float ): """simple docstring""" return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def lowerCamelCase__ ( __A :float ,__A :float ,__A :float ): """simple docstring""" return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
268
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: SCREAMING_SNAKE_CASE__ : Dict =None SCREAMING_SNAKE_CASE__ : int =logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : List[Any] ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE__ : Dict ={ 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 SCREAMING_SNAKE_CASE__ : str ={ 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class _UpperCAmelCase ( a_ ): """simple docstring""" __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ["""input_ids""", """attention_mask"""] __snake_case = TaTokenizer __snake_case = [] def __init__( self , _lowercase=None , _lowercase=None , _lowercase="</s>" , _lowercase="<unk>" , _lowercase="<pad>" , _lowercase=100 , _lowercase=None , **_lowercase , ) -> List[str]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _lowerCamelCase : Dict = [F'''<extra_id_{i}>''' for i in range(_lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _lowerCamelCase : Any = len(set(filter(lambda _lowercase : bool('''extra_id_''' in str(_lowercase ) ) , _lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( _lowercase , tokenizer_file=_lowercase , eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , extra_ids=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) _lowerCamelCase : Dict = vocab_file _lowerCamelCase : Union[str, Any] = False if not self.vocab_file else True _lowerCamelCase : List[str] = extra_ids @staticmethod def a__ ( _lowercase , _lowercase , _lowercase ) -> int: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _lowerCamelCase : Dict = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _lowercase , ) return max_model_length def a__ ( self , _lowercase , _lowercase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCamelCase : int = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def a__ ( self , _lowercase , _lowercase = None ) -> List[int]: _lowerCamelCase : List[str] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _lowerCamelCase : Tuple = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def a__ ( self , _lowercase , _lowercase = None ) -> List[int]: _lowerCamelCase : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def a__ ( self ) -> Any: return list( set(filter(lambda _lowercase : bool(re.search(R'''<extra_id_\d+>''' , _lowercase ) ) is not None , self.additional_special_tokens ) ) ) def a__ ( self ) -> Optional[int]: return [self.convert_tokens_to_ids(_lowercase ) for token in self.get_sentinel_tokens()]
558
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## SCREAMING_SNAKE_CASE__ : List[Any] =16 SCREAMING_SNAKE_CASE__ : Union[str, Any] =32 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 16 ) ->List[str]: _lowerCamelCase : Dict = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _lowerCamelCase : Any = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(SCREAMING_SNAKE_CASE_ ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCamelCase : Optional[int] = datasets.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCamelCase : List[str] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCamelCase : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCamelCase : Any = 16 elif accelerator.mixed_precision != "no": _lowerCamelCase : List[str] = 8 else: _lowerCamelCase : int = None return tokenizer.pad( SCREAMING_SNAKE_CASE_ , padding='''longest''' , max_length=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' , ) # Instantiate dataloaders. _lowerCamelCase : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : List[Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=SCREAMING_SNAKE_CASE_ , collate_fn=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders SCREAMING_SNAKE_CASE__ : Tuple =mocked_dataloaders # noqa: F811 def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Union[str, Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , SCREAMING_SNAKE_CASE_ ) == "1": _lowerCamelCase : str = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: _lowerCamelCase : List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: _lowerCamelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCamelCase : List[str] = config['''lr'''] _lowerCamelCase : Tuple = int(config['''num_epochs'''] ) _lowerCamelCase : Tuple = int(config['''seed'''] ) _lowerCamelCase : str = int(config['''batch_size'''] ) set_seed(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase, _lowerCamelCase : List[str] = get_dataloaders(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Union[str, Any] = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation _lowerCamelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowerCamelCase : Optional[Any] = batch_size // MAX_GPU_BATCH_SIZE _lowerCamelCase : Union[str, Any] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCamelCase : int = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=SCREAMING_SNAKE_CASE_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCamelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer _lowerCamelCase : List[Any] = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE_ ) # Instantiate scheduler _lowerCamelCase : List[str] = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE_ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: _lowerCamelCase : Tuple = os.path.split(SCREAMING_SNAKE_CASE_ )[-1].split('''.''' )[0] accelerator.init_trackers(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: _lowerCamelCase : Any = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Tuple = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() _lowerCamelCase : List[Any] = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): _lowerCamelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : int = outputs.logits.argmax(dim=-1 ) _lowerCamelCase, _lowerCamelCase : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE_ , references=SCREAMING_SNAKE_CASE_ , ) _lowerCamelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , SCREAMING_SNAKE_CASE_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { '''accuracy''': eval_metric['''accuracy'''], '''f1''': eval_metric['''f1'''], '''train_loss''': total_loss.item() / len(SCREAMING_SNAKE_CASE_ ), '''epoch''': epoch, } , step=SCREAMING_SNAKE_CASE_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCamelCase ( ) ->Optional[Any]: _lowerCamelCase : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=SCREAMING_SNAKE_CASE_ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) _lowerCamelCase : str = parser.parse_args() _lowerCamelCase : Optional[int] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
558
1
'''simple docstring''' from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
199
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
199
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class UpperCAmelCase_ ( __a ): '''simple docstring''' __A : List[str] = '''roberta''' def __init__( self , __A=5_0265 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=2 , __A=0.02 , __A=1e-12 , __A=1 , __A=0 , __A=2 , __A="absolute" , __A=True , __A=None , **__A , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCamelCase : Tuple = vocab_size lowerCamelCase : int = hidden_size lowerCamelCase : Dict = num_hidden_layers lowerCamelCase : Optional[Any] = num_attention_heads lowerCamelCase : Union[str, Any] = hidden_act lowerCamelCase : Optional[int] = intermediate_size lowerCamelCase : Union[str, Any] = hidden_dropout_prob lowerCamelCase : int = attention_probs_dropout_prob lowerCamelCase : str = max_position_embeddings lowerCamelCase : int = type_vocab_size lowerCamelCase : Dict = initializer_range lowerCamelCase : Dict = layer_norm_eps lowerCamelCase : Dict = position_embedding_type lowerCamelCase : Tuple = use_cache lowerCamelCase : int = classifier_dropout class UpperCAmelCase_ ( __a ): '''simple docstring''' @property def _snake_case ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase : str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
706
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) _snake_case = parser.parse_args() _snake_case = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _snake_case = CLIPImageProcessor() _snake_case = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') _snake_case = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
231
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class lowerCAmelCase__ ( _lowerCAmelCase ): A = 42 A = 42 class lowerCAmelCase__ ( nn.Module ): A = 42 A = (16, 32, 96, 256) A = jnp.floataa def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" lowerCamelCase_ : Tuple = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCamelCase_ : List[str] = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCamelCase_ : List[Any] = self.block_out_channels[i] lowerCamelCase_ : str = self.block_out_channels[i + 1] lowerCamelCase_ : Optional[Any] = nn.Conv( UpperCamelCase_ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = nn.Conv( UpperCamelCase_ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(UpperCamelCase_ ) lowerCamelCase_ : Any = blocks lowerCamelCase_ : Dict = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Any , UpperCamelCase_ : str ) -> str: """simple docstring""" lowerCamelCase_ : List[Any] = self.conv_in(UpperCamelCase_ ) lowerCamelCase_ : Dict = nn.silu(UpperCamelCase_ ) for block in self.blocks: lowerCamelCase_ : List[str] = block(UpperCamelCase_ ) lowerCamelCase_ : List[Any] = nn.silu(UpperCamelCase_ ) lowerCamelCase_ : int = self.conv_out(UpperCamelCase_ ) return embedding @flax_register_to_config class lowerCAmelCase__ ( nn.Module ,_lowerCAmelCase ,_lowerCAmelCase ): A = 32 A = 4 A = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) A = False A = (320, 640, 1_280, 1_280) A = 2 A = 8 A = None A = 1_280 A = 0.0 A = False A = jnp.floataa A = True A = 0 A = "rgb" A = (16, 32, 96, 256) def __UpperCamelCase ( self : int , UpperCamelCase_ : jax.random.KeyArray ) -> FrozenDict: """simple docstring""" lowerCamelCase_ : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size) lowerCamelCase_ : Optional[int] = jnp.zeros(UpperCamelCase_ , dtype=jnp.floataa ) lowerCamelCase_ : List[Any] = jnp.ones((1,) , dtype=jnp.intaa ) lowerCamelCase_ : Tuple = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCamelCase_ : Union[str, Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCamelCase_ : Union[str, Any] = jnp.zeros(UpperCamelCase_ , dtype=jnp.floataa ) lowerCamelCase_ , lowerCamelCase_ : Any = jax.random.split(UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )["params"] def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self.block_out_channels lowerCamelCase_ : List[str] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCamelCase_ : int = self.num_attention_heads or self.attention_head_dim # input lowerCamelCase_ : Dict = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCamelCase_ : Dict = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCamelCase_ : Optional[int] = FlaxTimestepEmbedding(UpperCamelCase_ , dtype=self.dtype ) lowerCamelCase_ : Optional[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCamelCase_ : Optional[int] = self.only_cross_attention if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCamelCase_ : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCamelCase_ : Optional[Any] = (num_attention_heads,) * len(self.down_block_types ) # down lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : Tuple = [] lowerCamelCase_ : Dict = block_out_channels[0] lowerCamelCase_ : List[str] = nn.Conv( UpperCamelCase_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase_ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCamelCase_ : Union[str, Any] = output_channel lowerCamelCase_ : Optional[Any] = block_out_channels[i] lowerCamelCase_ : Tuple = i == len(UpperCamelCase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCamelCase_ : List[Any] = FlaxCrossAttnDownBlockaD( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCamelCase_ : Optional[Any] = FlaxDownBlockaD( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(UpperCamelCase_ ) for _ in range(self.layers_per_block ): lowerCamelCase_ : Optional[Any] = nn.Conv( UpperCamelCase_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase_ ) if not is_final_block: lowerCamelCase_ : List[Any] = nn.Conv( UpperCamelCase_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(UpperCamelCase_ ) lowerCamelCase_ : List[str] = down_blocks lowerCamelCase_ : Optional[int] = controlnet_down_blocks # mid lowerCamelCase_ : str = block_out_channels[-1] lowerCamelCase_ : List[str] = FlaxUNetMidBlockaDCrossAttn( in_channels=UpperCamelCase_ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCamelCase_ : Optional[Any] = nn.Conv( UpperCamelCase_ , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" lowerCamelCase_ : str = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCamelCase_ : Tuple = jnp.flip(UpperCamelCase_ , axis=1 ) # 1. time if not isinstance(UpperCamelCase_ , jnp.ndarray ): lowerCamelCase_ : Optional[Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(UpperCamelCase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCamelCase_ : Optional[Any] = timesteps.astype(dtype=jnp.floataa ) lowerCamelCase_ : List[Any] = jnp.expand_dims(UpperCamelCase_ , 0 ) lowerCamelCase_ : Union[str, Any] = self.time_proj(UpperCamelCase_ ) lowerCamelCase_ : List[str] = self.time_embedding(UpperCamelCase_ ) # 2. pre-process lowerCamelCase_ : Union[str, Any] = jnp.transpose(UpperCamelCase_ , (0, 2, 3, 1) ) lowerCamelCase_ : Optional[int] = self.conv_in(UpperCamelCase_ ) lowerCamelCase_ : Dict = jnp.transpose(UpperCamelCase_ , (0, 2, 3, 1) ) lowerCamelCase_ : Optional[int] = self.controlnet_cond_embedding(UpperCamelCase_ ) sample += controlnet_cond # 3. down lowerCamelCase_ : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCamelCase_ , lowerCamelCase_ : int = down_block(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , deterministic=not train ) else: lowerCamelCase_ , lowerCamelCase_ : Any = down_block(UpperCamelCase_ , UpperCamelCase_ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCamelCase_ : str = self.mid_block(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , deterministic=not train ) # 5. contronet blocks lowerCamelCase_ : List[str] = () for down_block_res_sample, controlnet_block in zip(UpperCamelCase_ , self.controlnet_down_blocks ): lowerCamelCase_ : List[str] = controlnet_block(UpperCamelCase_ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCamelCase_ : Any = controlnet_down_block_res_samples lowerCamelCase_ : Optional[Any] = self.controlnet_mid_block(UpperCamelCase_ ) # 6. scaling lowerCamelCase_ : Union[str, Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=UpperCamelCase_ , mid_block_res_sample=UpperCamelCase_ )
501
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCamelCase : str = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = test_results.split(''' ''' ) lowerCamelCase_ : Tuple = 0 lowerCamelCase_ : Optional[int] = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase_ : Optional[Any] = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__UpperCAmelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Tuple = {} lowerCamelCase_ : List[Any] = None lowerCamelCase_ : Any = False for line in failures_short_lines.split('''\n''' ): if re.search(R'''_ \[doctest\]''' , __UpperCAmelCase ): lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : Optional[Any] = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): lowerCamelCase_ : str = line lowerCamelCase_ : List[Any] = False return failures class lowerCAmelCase__ : def __init__( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = title lowerCamelCase_ : Dict = doc_test_results['''time_spent'''].split(''',''' )[0] lowerCamelCase_ : str = doc_test_results['''success'''] lowerCamelCase_ : int = doc_test_results['''failures'''] lowerCamelCase_ : List[Any] = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase_ : Union[str, Any] = doc_test_results @property def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ : Dict = [self._time_spent] lowerCamelCase_ : Optional[int] = 0 for time in time_spent: lowerCamelCase_ : Tuple = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(UpperCamelCase_ ) == 1: lowerCamelCase_ : int = [0, 0, time_parts[0]] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return F"""{int(UpperCamelCase_ )}h{int(UpperCamelCase_ )}m{int(UpperCamelCase_ )}s""" @property def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ : Any = 40 lowerCamelCase_ : Tuple = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(UpperCamelCase_ , UpperCamelCase_ )} lowerCamelCase_ : int = '''''' for category, failures in category_failures.items(): if len(UpperCamelCase_ ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(UpperCamelCase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ : str = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(UpperCamelCase_ ) @staticmethod def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Any = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(UpperCamelCase_ )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=UpperCamelCase_ , ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) lowerCamelCase_ : Optional[int] = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else '''All tests passed.''' lowerCamelCase_ : Union[str, Any] = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=UpperCamelCase_ , ) def __UpperCamelCase ( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : str = '''''' for key, value in failures.items(): lowerCamelCase_ : List[Any] = value[:200] + ''' [Truncated]''' if len(UpperCamelCase_ ) > 250 else value failures_text += F"""*{key}*\n_{value}_\n\n""" lowerCamelCase_ : List[str] = job_name lowerCamelCase_ : List[str] = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: lowerCamelCase_ : List[str] = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def __UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) lowerCamelCase_ : Dict = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) lowerCamelCase_ : List[Any] = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): lowerCamelCase_ : str = F"""*Num failures* :{len(job_result['failed'] )} \n""" lowerCamelCase_ : Any = job_result['''failures'''] lowerCamelCase_ : Any = self.get_reply_blocks(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , text=UpperCamelCase_ ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F"""Results for {job}""" , blocks=UpperCamelCase_ , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def __snake_case (): """simple docstring""" lowerCamelCase_ : Any = os.environ['''GITHUB_RUN_ID'''] lowerCamelCase_ : Dict = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" lowerCamelCase_ : Tuple = requests.get(__UpperCAmelCase ).json() lowerCamelCase_ : Union[str, Any] = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) lowerCamelCase_ : Union[str, Any] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__UpperCAmelCase ): lowerCamelCase_ : Optional[Any] = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , __UpperCAmelCase ) return {} def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : List[Any] = {} if os.path.exists(__UpperCAmelCase ): lowerCamelCase_ : Optional[Any] = os.listdir(__UpperCAmelCase ) for file in files: try: with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , encoding='''utf-8''' ) as f: lowerCamelCase_ : str = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(__UpperCAmelCase , __UpperCAmelCase )}.""" ) from e return _artifact def __snake_case (): """simple docstring""" class lowerCAmelCase__ : def __init__( self : Any , UpperCamelCase_ : str ) -> int: """simple docstring""" lowerCamelCase_ : Optional[int] = name lowerCamelCase_ : str = [] def __str__( self : int ) -> Tuple: """simple docstring""" return self.name def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : str ) -> List[str]: """simple docstring""" self.paths.append({'''name''': self.name, '''path''': path} ) lowerCamelCase_ : Dict[str, Artifact] = {} lowerCamelCase_ : List[str] = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase_ : List[Any] = directory if artifact_name not in _available_artifacts: lowerCamelCase_ : List[Any] = Artifact(__UpperCAmelCase ) _available_artifacts[artifact_name].add_path(__UpperCAmelCase ) return _available_artifacts if __name__ == "__main__": __lowerCamelCase : List[Any] = get_job_links() __lowerCamelCase : str = retrieve_available_artifacts() __lowerCamelCase : Tuple = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCamelCase : Optional[Any] = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCamelCase : str = github_actions_job_links.get("""run_doctests""") __lowerCamelCase : Optional[int] = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowerCamelCase : Tuple = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = handle_test_results(artifact["""stats"""]) __lowerCamelCase : Union[str, Any] = failed __lowerCamelCase : str = success __lowerCamelCase : int = time_spent[1:-1] + """, """ __lowerCamelCase : List[Any] = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowerCamelCase : List[Any] = line.replace("""FAILED """, """""") __lowerCamelCase : List[str] = line.split()[0].replace("""\n""", """""") if "::" in line: __lowerCamelCase , __lowerCamelCase : Optional[Any] = line.split("""::""") else: __lowerCamelCase , __lowerCamelCase : str = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCamelCase : Tuple = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCamelCase : List[Any] = all_failures[test] if test in all_failures else """N/A""" __lowerCamelCase : Optional[int] = failure break __lowerCamelCase : Dict = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
501
1
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ : list[int], lowerCamelCase__ : int ): _a = 0 _a = len(lowerCamelCase__ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _a = i + 1 else: _a = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
691
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all MVP models at https://huggingface.co/models?filter=mvp __snake_case : str = { "vocab_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json", }, "added_tokens.json": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json", }, "merges_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt", }, "tokenizer_file": { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json", }, } __snake_case : Dict = { "RUCAIBox/mvp": 1024, } class A ( a ): __UpperCAmelCase : int = VOCAB_FILES_NAMES __UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : List[str] = ["""input_ids""", """attention_mask"""] __UpperCAmelCase : List[Any] = MvpTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , snake_case_=True , **snake_case_ , ) -> List[str]: super().__init__( snake_case_ , snake_case_ , tokenizer_file=snake_case_ , errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , unk_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , trim_offsets=snake_case_ , **snake_case_ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = getattr(snake_case_ , pre_tok_state.pop("type" ) ) _a = add_prefix_space _a = pre_tok_class(**snake_case_ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = "post_processor" _a = getattr(self.backend_tokenizer , snake_case_ , snake_case_ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state["sep"] ) if "cls" in state: _a = tuple(state["cls"] ) _a = False if state.get("add_prefix_space" , snake_case_ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get("trim_offsets" , snake_case_ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(snake_case_ , state.pop("type" ) ) _a = component_class(**snake_case_ ) setattr(self.backend_tokenizer , snake_case_ , snake_case_ ) @property def __lowerCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else value _a = value def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , *snake_case_ , **snake_case_ ) -> BatchEncoding: _a = kwargs.get("is_split_into_words" , snake_case_ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case_ , **snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_=None ) -> Optional[Any]: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
691
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) def __a(*SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' requires_backends(SCREAMING_SNAKE_CASE_ , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Optional[int] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Any = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> int: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Dict = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : int = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> List[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : List[str] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Tuple = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Any: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : str = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Optional[int]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Tuple: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) class lowerCAmelCase_ ( metaclass=__magic_name__ ): __lowerCamelCase : Union[str, Any] = ["torch"] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> Union[str, Any]: requires_backends(self , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> str: requires_backends(cls , ["torch"] ) @classmethod def _snake_case ( cls , *_lowerCAmelCase , **_lowerCAmelCase ) -> Dict: requires_backends(cls , ["torch"] )
18
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = '''marian''' snake_case = ['''past_key_values'''] snake_case = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[Any] , __UpperCAmelCase : Union[str, Any]=58101 , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Optional[int]=1024 , __UpperCAmelCase : Union[str, Any]=12 , __UpperCAmelCase : Tuple=4096 , __UpperCAmelCase : Any=16 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : Optional[Any]=4096 , __UpperCAmelCase : str=16 , __UpperCAmelCase : Tuple=0.0 , __UpperCAmelCase : Optional[Any]=0.0 , __UpperCAmelCase : int=True , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Union[str, Any]=1024 , __UpperCAmelCase : int=0.1 , __UpperCAmelCase : Dict=0.0 , __UpperCAmelCase : List[Any]=0.0 , __UpperCAmelCase : Union[str, Any]=0.02 , __UpperCAmelCase : Union[str, Any]=58100 , __UpperCAmelCase : int=False , __UpperCAmelCase : List[str]=58100 , __UpperCAmelCase : List[Any]=0 , __UpperCAmelCase : Union[str, Any]=0 , __UpperCAmelCase : Optional[int]=True , **__UpperCAmelCase : Union[str, Any] , ): '''simple docstring''' _A = vocab_size _A = decoder_vocab_size or vocab_size _A = max_position_embeddings _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = encoder_layerdrop _A = decoder_layerdrop _A = use_cache _A = encoder_layers _A = scale_embedding # scale factor will be sqrt(d_model) if True _A = share_encoder_decoder_embeddings super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) class _UpperCAmelCase ( snake_case_ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _A = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _A = {0: "batch"} _A = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _A = {0: "batch", 1: "decoder_sequence"} _A = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. _A = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: _A , _A = self.num_layers for i in range(__UpperCAmelCase ): _A = {0: "batch", 2: "past_sequence + sequence"} _A = {0: "batch", 2: "past_sequence + sequence"} else: _A = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _A = super().outputs else: _A = super(__UpperCAmelCase , self ).outputs if self.use_past: _A , _A = self.num_layers for i in range(__UpperCAmelCase ): _A = {0: "batch", 2: "past_sequence + sequence"} _A = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : PreTrainedTokenizer , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' _A = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs _A = seq_length if not self.use_past else 1 _A = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _A = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _A , _A = common_inputs["input_ids"].shape _A = common_inputs["decoder_input_ids"].shape[1] _A , _A = self.num_attention_heads _A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _A = decoder_seq_length + 3 _A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _A = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) _A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _A , _A = self.num_layers _A = min(__UpperCAmelCase , __UpperCAmelCase ) _A = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers _A = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. _A = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def lowerCAmelCase ( self : Dict , __UpperCAmelCase : PreTrainedTokenizer , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' _A = self._generate_dummy_inputs_for_encoder_and_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch _A , _A = common_inputs["input_ids"].shape # Not using the same length for past_key_values _A = seqlen + 2 _A , _A = self.num_layers _A , _A = self.num_attention_heads _A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _A = common_inputs["attention_mask"].dtype _A = torch.cat( [common_inputs["attention_mask"], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) _A = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def lowerCAmelCase ( self : str , __UpperCAmelCase : PreTrainedTokenizer , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' _A = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _A = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) _A = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _A = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size _A = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def lowerCAmelCase ( self : Dict , __UpperCAmelCase : PreTrainedTokenizer , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: _A = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def lowerCAmelCase ( self : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _A = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _A = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @property def lowerCAmelCase ( self : int ): '''simple docstring''' return 1E-4
330
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowercase :Optional[int] = logging.get_logger(__name__) class _a ( lowercase__ ): """simple docstring""" def __init__( self : int , *a : Any , **a : Optional[int] ) ->None: warnings.warn( "The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use BeitImageProcessor instead." , a , ) super().__init__(*a , **a )
708
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __lowercase :Tuple = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" __lowercase :str = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" __lowercase :List[Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def A_ ( self : List[Any] ) ->MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def A_ ( self : str , a : List[List[List[str]]] , a : List[List[str]] , a : int = 1 , a : int = 4 , ) ->Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a , hypotheses=a , min_len=a , max_len=a ) }
26
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool UpperCAmelCase__ : int = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'facebook/nllb-200-distilled-600M' snake_case__ :Optional[Any] = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) snake_case__ :List[Any] = 'translator' snake_case__ :List[Any] = AutoTokenizer snake_case__ :Optional[Any] = AutoModelForSeqaSeqLM snake_case__ :List[str] = LANGUAGE_CODES snake_case__ :List[Any] = ['text', 'text', 'text'] snake_case__ :List[Any] = ['text'] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ): """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) lowerCAmelCase__ = self.lang_to_code[src_lang] lowerCAmelCase__ = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( __magic_name__ , return_tensors="pt" , src_lang=__magic_name__ , tgt_lang=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Optional[Any] ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__magic_name__ )
48
from math import factorial, radians def lowercase_ ( __snake_case : float , __snake_case : int = 18 , __snake_case : int = 10 ) -> float: '''simple docstring''' snake_case__ :Optional[int] = angle_in_degrees - ((angle_in_degrees // 3_6_0.0) * 3_6_0.0) # Converting from degrees to radians snake_case__ :Optional[int] = radians(__snake_case ) snake_case__ :Optional[Any] = angle_in_radians snake_case__ :Optional[int] = 3 snake_case__ :Union[str, Any] = -1 for _ in range(__snake_case ): result += (b * (angle_in_radians**a)) / factorial(__snake_case ) snake_case__ :Optional[int] = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(__snake_case , __snake_case ) if __name__ == "__main__": __import__("doctest").testmod()
241
0
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A ) -> str: return "".join([hex(a_ )[2:].zfill(2 ).upper() for byte in list(a_ )] ) def SCREAMING_SNAKE_CASE__ ( __A ) -> bytes: if (len(a_ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(a_ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(a_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase : int = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[int] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowercase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
542
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase__ : Optional[Any] = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: from transformers.testing_utils import pytest_terminal_summary_main snake_case__ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowerCAmelCase , id=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: snake_case__ = 0 # Doctest custom flag to ignore output. lowerCamelCase__ : Tuple = doctest.register_optionflag("""IGNORE_RESULT""") lowerCamelCase__ : Optional[Any] = doctest.OutputChecker class __magic_name__ (snake_case_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Optional[Any] , _a:Optional[int] , _a:Union[str, Any] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _a , _a , _a ) lowerCamelCase__ : Optional[int] = CustomOutputChecker lowerCamelCase__ : Dict = HfDoctestModule lowerCamelCase__ : int = HfDocTestParser
33
"""simple docstring""" from collections import namedtuple UpperCAmelCase = namedtuple("""from_to""", """from_ to""") UpperCAmelCase = { """cubicmeter""": from_to(1, 1), """litre""": from_to(0.001, 1_0_0_0), """kilolitre""": from_to(1, 1), """gallon""": from_to(0.00_454, 264.172), """cubicyard""": from_to(0.76_455, 1.30_795), """cubicfoot""": from_to(0.028, 35.3_147), """cup""": from_to(0.000_236_588, 4_226.75), } def __magic_name__ ( _lowerCamelCase: float, _lowerCamelCase: str, _lowerCamelCase: str ) -> float: '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ''', '''.join(_lowerCamelCase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(_lowerCamelCase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
535
0
"""simple docstring""" # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path snake_case = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) snake_case = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} snake_case = '''zero2''' snake_case = '''zero3''' snake_case = [ZEROa, ZEROa] def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param _snake_case = parameterized.to_safe_name('''_'''.join(str(_UpperCAmelCase ) for x in param.args ) ) return f"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test snake_case = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class UpperCAmelCase ( __UpperCAmelCase ): @parameterized.expand(__SCREAMING_SNAKE_CASE , name_func=__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): """simple docstring""" self.run_and_check( stage=__SCREAMING_SNAKE_CASE , model=__SCREAMING_SNAKE_CASE , distributed=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , ) @require_torch_multi_gpu @parameterized.expand(__SCREAMING_SNAKE_CASE , name_func=__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): """simple docstring""" self.run_and_check( stage=__SCREAMING_SNAKE_CASE , model=__SCREAMING_SNAKE_CASE , distributed=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , ) @parameterized.expand(__SCREAMING_SNAKE_CASE , name_func=__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any ): """simple docstring""" self.run_and_check( stage=__SCREAMING_SNAKE_CASE , model=__SCREAMING_SNAKE_CASE , distributed=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , ) @require_torch_multi_gpu @parameterized.expand(__SCREAMING_SNAKE_CASE , name_func=__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ): """simple docstring""" self.run_and_check( stage=__SCREAMING_SNAKE_CASE , model=__SCREAMING_SNAKE_CASE , distributed=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : List[str] ): """simple docstring""" pass def __UpperCAmelCase ( self : Any , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int = 1_0 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , ): """simple docstring""" _snake_case = models[model] _snake_case = self.run_trainer( stage=__SCREAMING_SNAKE_CASE , model_name=__SCREAMING_SNAKE_CASE , eval_steps=__SCREAMING_SNAKE_CASE , num_train_epochs=1 , distributed=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , ) self.do_checks(__SCREAMING_SNAKE_CASE ) return output_dir def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : int = 1_0 , __lowerCamelCase : int = 1 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , ): """simple docstring""" _snake_case = self.get_auto_remove_tmp_dir('''./xxx''' , after=__SCREAMING_SNAKE_CASE ) _snake_case = f"""\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(__SCREAMING_SNAKE_CASE )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n """.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files _snake_case = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() _snake_case = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] _snake_case = self.get_launcher(__SCREAMING_SNAKE_CASE ) _snake_case = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=self.get_env() ) return output_dir def __UpperCAmelCase ( self : int , __lowerCamelCase : List[Any]=False ): """simple docstring""" _snake_case = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
716
"""simple docstring""" from __future__ import annotations def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): _snake_case , _snake_case = array[indexa], array[indexa] def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if length > 1: _snake_case = int(length / 2 ) for i in range(lowerCAmelCase_ , low + middle ): comp_and_swap(lowerCAmelCase_ , lowerCAmelCase_ , i + middle , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) bitonic_merge(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if length > 1: _snake_case = int(length / 2 ) bitonic_sort(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , 1 ) bitonic_sort(lowerCAmelCase_ , low + middle , lowerCAmelCase_ , 0 ) bitonic_merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": snake_case = input('''Enter numbers separated by a comma:\n''').strip() snake_case = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
404
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Tuple , a__ : Tuple , ): UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = 99 UpperCAmelCase = 32 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 37 UpperCAmelCase = "gelu" UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 512 UpperCAmelCase = 16 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = None def __snake_case ( self : List[Any] ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : str , a__ : int , a__ : Union[str, Any] , a__ : Union[str, Any] , a__ : Optional[Any] , a__ : Optional[int] , a__ : str ): UpperCAmelCase = TFDistilBertModel(config=a__ ) UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase = model(a__ ) UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : int , a__ : Optional[Any] , a__ : str , a__ : Any , a__ : str , a__ : Optional[int] , a__ : str ): UpperCAmelCase = TFDistilBertForMaskedLM(config=a__ ) UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : int , a__ : Tuple , a__ : Dict , a__ : List[str] , a__ : Tuple , a__ : str , a__ : Any ): UpperCAmelCase = TFDistilBertForQuestionAnswering(config=a__ ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, } UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : Optional[int] , a__ : Tuple , a__ : List[str] , a__ : Dict , a__ : int , a__ : int , a__ : str ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFDistilBertForSequenceClassification(a__ ) UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Any , a__ : Optional[Any] , a__ : int , a__ : Optional[int] , a__ : Any , a__ : Dict , a__ : List[str] ): UpperCAmelCase = self.num_choices UpperCAmelCase = TFDistilBertForMultipleChoice(a__ ) UpperCAmelCase = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self : int , a__ : List[str] , a__ : Union[str, Any] , a__ : str , a__ : Tuple , a__ : List[str] , a__ : Union[str, Any] ): UpperCAmelCase = self.num_labels UpperCAmelCase = TFDistilBertForTokenClassification(a__ ) UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : int ): UpperCAmelCase = self.prepare_config_and_inputs() (UpperCAmelCase) = config_and_inputs UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _lowerCamelCase =( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = TFDistilBertModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , dim=37 ) def __snake_case ( self : Optional[int] ): self.config_tester.run_common_tests() def __snake_case ( self : int ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a__ ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a__ ) def __snake_case ( self : List[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a__ ) def __snake_case ( self : Optional[int] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a__ ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a__ ) def __snake_case ( self : str ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a__ ) @slow def __snake_case ( self : List[str] ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCAmelCase = TFDistilBertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self : str ): UpperCAmelCase = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = model(a__ )[0] UpperCAmelCase = [1, 6, 768] self.assertEqual(output.shape , a__ ) UpperCAmelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-4 )
51
"""simple docstring""" import string from math import logaa def A ( _A, _A ): """simple docstring""" snake_case_ :Union[str, Any] = document.translate( str.maketrans("", "", string.punctuation ) ).replace("\n", "" ) snake_case_ :Tuple = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A ( _A, _A ): """simple docstring""" snake_case_ :Dict = corpus.lower().translate( str.maketrans("", "", string.punctuation ) ) # strip all punctuation and replace it with '' snake_case_ :Any = corpus_without_punctuation.split("\n" ) snake_case_ :Dict = term.lower() return (len([doc for doc in docs if term in doc] ), len(_A )) def A ( _A, _A, _A=False ): """simple docstring""" if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ), 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ), 3 ) def A ( _A, _A ): """simple docstring""" return round(tf * idf, 3 )
584
0
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax a__ : int = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class __magic_name__ ( _UpperCamelCase ): def __init__( self , **__magic_name__ ): """simple docstring""" super().__init__(**__magic_name__ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , __magic_name__ , **__magic_name__ ): """simple docstring""" return super().__call__(__magic_name__ , **__magic_name__ ) def _lowerCamelCase ( self , **__magic_name__ ): """simple docstring""" _lowerCAmelCase = {} if "candidate_labels" in kwargs: _lowerCAmelCase = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowerCAmelCase = kwargs['hypothesis_template'] return preprocess_params, {}, {} def _lowerCamelCase ( self , __magic_name__ , __magic_name__=None , __magic_name__="This is a photo of {}." ): """simple docstring""" _lowerCAmelCase = load_image(__magic_name__ ) _lowerCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework ) _lowerCAmelCase = candidate_labels _lowerCAmelCase = [hypothesis_template.format(__magic_name__ ) for x in candidate_labels] _lowerCAmelCase = self.tokenizer(__magic_name__ , return_tensors=self.framework , padding=__magic_name__ ) _lowerCAmelCase = [text_inputs] return inputs def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = model_inputs.pop('candidate_labels' ) _lowerCAmelCase = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , __magic_name__ ): _lowerCAmelCase = text_inputs[0] else: # Batching case. _lowerCAmelCase = text_inputs[0][0] _lowerCAmelCase = self.model(**__magic_name__ , **__magic_name__ ) _lowerCAmelCase = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def _lowerCamelCase ( self , __magic_name__ ): """simple docstring""" _lowerCAmelCase = model_outputs.pop('candidate_labels' ) _lowerCAmelCase = model_outputs['logits'][0] if self.framework == "pt": _lowerCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 ) _lowerCAmelCase = probs.tolist() if not isinstance(__magic_name__ , __magic_name__ ): _lowerCAmelCase = [scores] elif self.framework == "tf": _lowerCAmelCase = stable_softmax(__magic_name__ , axis=-1 ) _lowerCAmelCase = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowerCAmelCase = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(__magic_name__ , __magic_name__ ) , key=lambda __magic_name__ : -x[0] ) ] return result
309
"""simple docstring""" import qiskit def A__ ( __lowerCamelCase, __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register _lowerCAmelCase = qiskit.QuantumCircuit(__lowerCamelCase, __lowerCamelCase ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1], [0, 1] ) # Execute the circuit on the qasm simulator _lowerCAmelCase = qiskit.execute(__lowerCamelCase, __lowerCamelCase, shots=1_0_0_0 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(__lowerCamelCase ) if __name__ == "__main__": a__ : Optional[Any] = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
309
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def a__ ( A__, A__, A__, A__=1_0_2_4 ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = [], [] SCREAMING_SNAKE_CASE_ : str = list(zip(A__, A__ ) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = sorted_examples[0] def is_too_big(A__ ): return tok(A__, return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE_ : int = new_src + ' ' + src SCREAMING_SNAKE_CASE_ : Union[str, Any] = new_tgt + ' ' + tgt if is_too_big(A__ ) or is_too_big(A__ ): # cant fit, finalize example finished_src.append(A__ ) finished_tgt.append(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(A__ ) finished_tgt.append(A__ ) return finished_src, finished_tgt def a__ ( A__, A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : str = Path(A__ ) save_path.mkdir(exist_ok=A__ ) for split in ["train"]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' SCREAMING_SNAKE_CASE_ : int = [x.rstrip() for x in Path(A__ ).open().readlines()] SCREAMING_SNAKE_CASE_ : Dict = [x.rstrip() for x in Path(A__ ).open().readlines()] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = pack_examples(A__, A__, A__, A__ ) print(F'''packed {split} split from {len(A__ )} examples -> {len(A__ )}.''' ) Path(save_path / F'''{split}.source''' ).open('w' ).write('\n'.join(A__ ) ) Path(save_path / F'''{split}.target''' ).open('w' ).write('\n'.join(A__ ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(A__, save_path / F'''{split}.source''' ) shutil.copyfile(A__, save_path / F'''{split}.target''' ) def a__ ( ): SCREAMING_SNAKE_CASE_ : str = argparse.ArgumentParser() parser.add_argument('--tok_name', type=A__, help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len', type=A__, default=1_2_8 ) parser.add_argument('--data_dir', type=A__ ) parser.add_argument('--save_path', type=A__ ) SCREAMING_SNAKE_CASE_ : str = parser.parse_args() SCREAMING_SNAKE_CASE_ : List[Any] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(A__, Path(args.data_dir ), args.max_seq_len, args.save_path ) if __name__ == "__main__": packer_cli()
101
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Union[str, Any] ={ 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Dict =[ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowerCAmelCase__ : Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
101
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") snake_case_ : str = logging.getLogger(__name__) @dataclass class __a : __a : Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __a : bool = field( default=lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __a : bool = field( default=lowerCamelCase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __a : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __a : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __a : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class __a : __a : str = field( default=lowerCamelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __a : str = field( default=lowerCamelCase , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Train language if it is different from the evaluation language."} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __a : Optional[bool] = field( default=lowerCamelCase , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) __a : bool = field( default=lowerCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __a : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __a : bool = field( default=lowerCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __a : bool = field( default=lowerCamelCase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def lowerCamelCase_ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''', SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase_ : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: UpperCAmelCase_ : Any = load_dataset( '''xnli''', model_args.language, split='''train''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: UpperCAmelCase_ : Union[str, Any] = load_dataset( '''xnli''', model_args.train_language, split='''train''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) UpperCAmelCase_ : Optional[Any] = train_dataset.features['''label'''].names if training_args.do_eval: UpperCAmelCase_ : Dict = load_dataset( '''xnli''', model_args.language, split='''validation''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) UpperCAmelCase_ : Union[str, Any] = eval_dataset.features['''label'''].names if training_args.do_predict: UpperCAmelCase_ : Any = load_dataset( '''xnli''', model_args.language, split='''test''', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) UpperCAmelCase_ : List[Any] = predict_dataset.features['''label'''].names # Labels UpperCAmelCase_ : List[Any] = len(SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=SCREAMING_SNAKE_CASE__, idalabel={str(SCREAMING_SNAKE_CASE__ ): label for i, label in enumerate(SCREAMING_SNAKE_CASE__ )}, labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )}, finetuning_task='''xnli''', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) UpperCAmelCase_ : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, do_lower_case=model_args.do_lower_case, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) UpperCAmelCase_ : str = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: UpperCAmelCase_ : Dict = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCAmelCase_ : Any = False def preprocess_function(SCREAMING_SNAKE_CASE__ : Tuple ): # Tokenize the texts return tokenizer( examples['''premise'''], examples['''hypothesis'''], padding=SCREAMING_SNAKE_CASE__, max_length=data_args.max_seq_length, truncation=SCREAMING_SNAKE_CASE__, ) if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase_ : List[Any] = min(len(SCREAMING_SNAKE_CASE__ ), data_args.max_train_samples ) UpperCAmelCase_ : Union[str, Any] = train_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): UpperCAmelCase_ : Optional[Any] = train_dataset.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on train dataset''', ) # Log a few random samples from the training set: for index in random.sample(range(len(SCREAMING_SNAKE_CASE__ ) ), 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase_ : str = min(len(SCREAMING_SNAKE_CASE__ ), data_args.max_eval_samples ) UpperCAmelCase_ : Optional[int] = eval_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): UpperCAmelCase_ : Optional[Any] = eval_dataset.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) if training_args.do_predict: if data_args.max_predict_samples is not None: UpperCAmelCase_ : Optional[int] = min(len(SCREAMING_SNAKE_CASE__ ), data_args.max_predict_samples ) UpperCAmelCase_ : int = predict_dataset.select(range(SCREAMING_SNAKE_CASE__ ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): UpperCAmelCase_ : List[Any] = predict_dataset.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on prediction dataset''', ) # Get the metric function UpperCAmelCase_ : Optional[Any] = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE__ : EvalPrediction ): UpperCAmelCase_ : Dict = p.predictions[0] if isinstance(p.predictions, SCREAMING_SNAKE_CASE__ ) else p.predictions UpperCAmelCase_ : Dict = np.argmax(SCREAMING_SNAKE_CASE__, axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE__, references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCAmelCase_ : Dict = default_data_collator elif training_args.fpaa: UpperCAmelCase_ : Optional[int] = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__, pad_to_multiple_of=8 ) else: UpperCAmelCase_ : Dict = None # Initialize our Trainer UpperCAmelCase_ : int = Trainer( model=SCREAMING_SNAKE_CASE__, args=SCREAMING_SNAKE_CASE__, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__, data_collator=SCREAMING_SNAKE_CASE__, ) # Training if training_args.do_train: UpperCAmelCase_ : str = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Dict = last_checkpoint UpperCAmelCase_ : str = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = train_result.metrics UpperCAmelCase_ : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : Optional[int] = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''', SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''train''', SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : int = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('''eval''', SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''eval''', SCREAMING_SNAKE_CASE__ ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = trainer.predict(SCREAMING_SNAKE_CASE__, metric_key_prefix='''predict''' ) UpperCAmelCase_ : List[str] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : List[str] = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('''predict''', SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''predict''', SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = np.argmax(SCREAMING_SNAKE_CASE__, axis=1 ) UpperCAmelCase_ : Optional[Any] = os.path.join(training_args.output_dir, '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__, '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Any = label_list[item] writer.write(F"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
644
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str: if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] ) UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ : Optional[Any] = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
644
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model SCREAMING_SNAKE_CASE_: List[Any] = BertConfig.from_json_file(_UpperCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE_: Tuple = BertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCAmelCase : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
671
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : float): return 0.0 def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) SCREAMING_SNAKE_CASE_: Dict = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = 5_12 SCREAMING_SNAKE_CASE_: str = [1] + [0] * (size - 1) SCREAMING_SNAKE_CASE_: Dict = [filter_type.process(_UpperCAmelCase ) for item in inputs] SCREAMING_SNAKE_CASE_: Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler SCREAMING_SNAKE_CASE_: Tuple = np.abs(np.fft.fft(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_: Optional[Any] = 20 * np.logaa(_UpperCAmelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds SCREAMING_SNAKE_CASE_: Any = get_bounds(_UpperCAmelCase , _UpperCAmelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(_UpperCAmelCase ) plt.show() def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = 5_12 SCREAMING_SNAKE_CASE_: Union[str, Any] = [1] + [0] * (size - 1) SCREAMING_SNAKE_CASE_: Dict = [filter_type.process(_UpperCAmelCase ) for item in inputs] SCREAMING_SNAKE_CASE_: int = [0] * (samplerate - size) # zero-padding outputs += filler SCREAMING_SNAKE_CASE_: Any = np.angle(np.fft.fft(_UpperCAmelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(_UpperCAmelCase , -2 * pi ) ) plt.show()
671
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a = ["""small""", """medium""", """large"""] a = """lm_head.decoder.weight""" a = """lm_head.weight""" def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = torch.load(__magic_name__ ) _lowerCAmelCase :int = d.pop(__magic_name__ ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) torch.save(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) a = parser.parse_args() for MODEL in DIALOGPT_MODELS: a = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''') a = F'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
382
from math import sqrt def UpperCamelCase_( __magic_name__ : int = 1000000 ): """simple docstring""" _lowerCAmelCase :int = 0 _lowerCAmelCase :int = 0 _lowerCAmelCase :int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__magic_name__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F'''{solution() = }''')
382
1
def UpperCAmelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): def get_matched_characters(UpperCAmelCase__ , UpperCAmelCase__ ) -> str: lowercase_ = [] lowercase_ = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): lowercase_ = int(max(0 , i - limit ) ) lowercase_ = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(UpperCAmelCase__ ) lowercase_ = F'''{_stra[0:_stra.index(UpperCAmelCase__ )]} {_stra[_stra.index(UpperCAmelCase__ ) + 1:]}''' return "".join(UpperCAmelCase__ ) # matching characters lowercase_ = get_matched_characters(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = get_matched_characters(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ = len(UpperCAmelCase__ ) # transposition lowercase_ = ( len([(ca, ca) for ca, ca in zip(UpperCAmelCase__ , UpperCAmelCase__ ) if ca != ca] ) // 2 ) if not match_count: lowercase_ = 0.0 else: lowercase_ = ( 1 / 3 * ( match_count / len(UpperCAmelCase__ ) + match_count / len(UpperCAmelCase__ ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters lowercase_ = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
412
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCamelCase__ : def __init__( self : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple=13 , UpperCamelCase__ : int=10 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Any=2 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : int=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Any=32 , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : Optional[Any]=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Optional[int]=10 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Any=0.9 , UpperCamelCase__ : Dict=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = num_channels lowercase_ = patch_size lowercase_ = tubelet_size lowercase_ = num_frames lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = mask_ratio lowercase_ = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase_ = (image_size // patch_size) ** 2 lowercase_ = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase_ = int(mask_ratio * self.seq_length ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): '''simple docstring''' lowercase_ = VideoMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowercase_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ): '''simple docstring''' lowercase_ = VideoMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ = torch.ones((self.num_masks,) ) lowercase_ = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) lowercase_ = mask.expand(self.batch_size , -1 ).bool() lowercase_ = model(UpperCamelCase__ , UpperCamelCase__ ) # model only returns predictions for masked patches lowercase_ = mask.sum().item() lowercase_ = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : str = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Dict = False def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = VideoMAEModelTester(self ) lowercase_ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str=False ): '''simple docstring''' lowercase_ = copy.deepcopy(UpperCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase_ = torch.ones((self.model_tester.num_masks,) ) lowercase_ = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) lowercase_ = mask.expand(self.model_tester.batch_size , -1 ).bool() lowercase_ = bool_masked_pos.to(UpperCamelCase__ ) if return_labels: if model_class in [ *get_values(UpperCamelCase__ ), ]: lowercase_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(UpperCamelCase__ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = VideoMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' if not self.has_attentions: pass else: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: lowercase_ = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase_ = True lowercase_ = False lowercase_ = True lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowercase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ = True lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowercase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase_ = len(UpperCamelCase__ ) # Check attention is always last and order is fine lowercase_ = True lowercase_ = True lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) lowercase_ = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): lowercase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowercase_ = outputs.hidden_states lowercase_ = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) lowercase_ = self.model_tester.seq_length - self.model_tester.num_masks lowercase_ = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase__ ( self : Any ): '''simple docstring''' pass def UpperCAmelCase_ ( ): lowercase_ = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) lowercase_ = np.load(UpperCAmelCase__ ) return list(UpperCAmelCase__ ) @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : Any ): '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_video() lowercase_ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowercase_ = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(UpperCamelCase__ ) lowercase_ = self.default_image_processor lowercase_ = prepare_video() lowercase_ = image_processor(UpperCamelCase__ , return_tensors="""pt""" ).to(UpperCamelCase__ ) # add boolean mask, indicating which patches to mask lowercase_ = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) lowercase_ = torch.load(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) # verify the logits lowercase_ = torch.Size([1, 1_408, 1_536] ) lowercase_ = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=UpperCamelCase__ ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) lowercase_ = torch.tensor([0.5_142] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) lowercase_ = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=UpperCamelCase__ ).to( UpperCamelCase__ ) with torch.no_grad(): lowercase_ = model(**UpperCamelCase__ ) lowercase_ = torch.tensor(torch.tensor([0.6_469] ) , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) )
412
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : int = logging.get_logger(__name__) _snake_case : Optional[Any] = {} class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """llama""" a_ = ["""past_key_values"""] def __init__( self : int , lowerCAmelCase_ : Any=3_2_0_0_0 , lowerCAmelCase_ : Optional[int]=4_0_9_6 , lowerCAmelCase_ : Optional[Any]=1_1_0_0_8 , lowerCAmelCase_ : Union[str, Any]=3_2 , lowerCAmelCase_ : List[str]=3_2 , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[int]="silu" , lowerCAmelCase_ : Union[str, Any]=2_0_4_8 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Optional[Any]=1e-6 , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : List[str]=0 , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : int=False , lowerCAmelCase_ : int=None , **lowerCAmelCase_ : Any , ) -> str: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = intermediate_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: __lowerCAmelCase = num_attention_heads __lowerCAmelCase = num_key_value_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = initializer_range __lowerCAmelCase = rms_norm_eps __lowerCAmelCase = pretraining_tp __lowerCAmelCase = use_cache __lowerCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , tie_word_embeddings=lowerCAmelCase_ , **lowerCAmelCase_ , ) def lowercase ( self : Tuple ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f"""got {self.rope_scaling}""" ) __lowerCAmelCase = self.rope_scaling.get('type' , lowerCAmelCase_ ) __lowerCAmelCase = self.rope_scaling.get('factor' , lowerCAmelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
712
def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str ): if not (isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ )): raise ValueError('longest_common_substring() takes two strings for inputs' ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __lowerCAmelCase = 0 __lowerCAmelCase = 0 for i in range(1, texta_length + 1 ): for j in range(1, texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __lowerCAmelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __lowerCAmelCase = i __lowerCAmelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
421
0
"""simple docstring""" from jiwer import compute_measures import datasets UpperCAmelCase = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ UpperCAmelCase = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ UpperCAmelCase = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCamelCase_ ( self) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Value("""string""" , id="""sequence"""), }) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False) -> Union[str, Any]: if concatenate_texts: return compute_measures(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)["wer"] else: _lowerCamelCase : List[str] = 0 _lowerCamelCase : List[Any] = 0 for prediction, reference in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE): _lowerCamelCase : Union[str, Any] = compute_measures(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
88
'''simple docstring''' snake_case_ = {} def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int ): # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on SCREAMING_SNAKE_CASE : Optional[int] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one SCREAMING_SNAKE_CASE : str = _calculate(days - 1 , _SCREAMING_SNAKE_CASE , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 SCREAMING_SNAKE_CASE : Union[str, Any] = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter SCREAMING_SNAKE_CASE : int = _calculate(days - 1 , _SCREAMING_SNAKE_CASE , 0 ) SCREAMING_SNAKE_CASE : Tuple = state_late + state_absent + state_ontime SCREAMING_SNAKE_CASE : List[Any] = prizestrings return prizestrings def __lowercase (_SCREAMING_SNAKE_CASE :int = 30 ): return _calculate(_SCREAMING_SNAKE_CASE , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
507
0
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: A_ = str(UpperCAmelCase__ ) A_ = [n] for i in range(1, len(UpperCAmelCase__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if len(str(UpperCAmelCase__ ) ) > 3: if not is_prime(int(str(UpperCAmelCase__ )[-3:] ) ) or not is_prime(int(str(UpperCAmelCase__ )[:3] ) ): return False return True def UpperCAmelCase__ ( UpperCAmelCase__ = 11 ) -> list[int]: A_ = [] A_ = 13 while len(UpperCAmelCase__ ) != count: if validate(UpperCAmelCase__ ): A_ = list_truncated_nums(UpperCAmelCase__ ) if all(is_prime(UpperCAmelCase__ ) for i in list_nums ): list_truncated_primes.append(UpperCAmelCase__ ) num += 2 return list_truncated_primes def UpperCAmelCase__ ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"""{sum(compute_truncated_primes(11)) = }""")
667
'''simple docstring''' __lowerCamelCase = range(2, 20 + 1) __lowerCamelCase = [10**k for k in range(ks[-1] + 1)] __lowerCamelCase = {} def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Tuple: A_ = sum(a_i[j] for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ) A_ = sum(a_i[j] * base[j] for j in range(min(len(UpperCAmelCase__ ), UpperCAmelCase__ ) ) ) A_ , A_ = 0, 0 A_ = n - i A_ = memo.get(UpperCAmelCase__ ) if sub_memo is not None: A_ = sub_memo.get(UpperCAmelCase__ ) if jumps is not None and len(UpperCAmelCase__ ) > 0: # find and make the largest jump without going over A_ = -1 for _k in range(len(UpperCAmelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: A_ = _k break if max_jump >= 0: A_ , A_ , A_ = jumps[max_jump] # since the difference between jumps is cached, add c A_ = diff + c for j in range(min(UpperCAmelCase__, len(UpperCAmelCase__ ) ) ): A_ , A_ = divmod(UpperCAmelCase__, 10 ) if new_c > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) else: A_ = [] else: A_ = {c: []} A_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps A_ , A_ = next_term(UpperCAmelCase__, k - 1, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead A_ , A_ = compute(UpperCAmelCase__, UpperCAmelCase__, i + dn, UpperCAmelCase__ ) diff += _diff dn += terms_jumped A_ = sub_memo[c] # keep jumps sorted by # of terms skipped A_ = 0 while j < len(UpperCAmelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(UpperCAmelCase__, (diff, dn, k) ) return (diff, dn) def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> int: if i >= n: return 0, i if k > len(UpperCAmelCase__ ): a_i.extend([0 for _ in range(k - len(UpperCAmelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) A_ = i A_ , A_ , A_ = 0, 0, 0 for j in range(len(UpperCAmelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 A_ = ds_c + ds_b diff += addend A_ = 0 for j in range(UpperCAmelCase__ ): A_ = a_i[j] + addend A_ , A_ = divmod(UpperCAmelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) return diff, i - start_i def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> str: for j in range(UpperCAmelCase__, len(UpperCAmelCase__ ) ): A_ = digits[j] + addend if s >= 10: A_ , A_ = divmod(UpperCAmelCase__, 10 ) A_ = addend // 10 + quotient else: A_ = s A_ = addend // 10 if addend == 0: break while addend > 0: A_ , A_ = divmod(UpperCAmelCase__, 10 ) digits.append(UpperCAmelCase__ ) def UpperCAmelCase__ ( UpperCAmelCase__ = 10**15 ) -> int: A_ = [1] A_ = 1 A_ = 0 while True: A_ , A_ = next_term(UpperCAmelCase__, 20, i + dn, UpperCAmelCase__ ) dn += terms_jumped if dn == n - i: break A_ = 0 for j in range(len(UpperCAmelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
667
1
"""simple docstring""" def _snake_case ( _snake_case : list ) -> list: '''simple docstring''' _A = False while is_sorted is False: # Until all the indices are traversed keep looping _A = True for i in range(0 , len(_snake_case ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _A , _A = input_list[i + 1], input_list[i] # swapping if elements not in order _A = False for i in range(1 , len(_snake_case ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _A , _A = input_list[i + 1], input_list[i] # swapping if elements not in order _A = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') a = [int(x) for x in input().split()] # inputing elements of the list in one line a = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
7
'''simple docstring''' import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : int = BarthezTokenizer __lowercase : Any = BarthezTokenizerFast __lowercase : Dict = True __lowercase : Optional[int] = True def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' super().setUp() __snake_case = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__SCREAMING_SNAKE_CASE ) __snake_case = tokenizer def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = '''<pad>''' __snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_1122 ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __snake_case = [0, 57, 3018, 7_0307, 91, 2] __snake_case = self.tokenizer( __SCREAMING_SNAKE_CASE , max_length=len(__SCREAMING_SNAKE_CASE ) , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __snake_case = batch.input_ids.tolist()[0] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = '''I was born in 92000, and this is falsé.''' __snake_case = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __snake_case = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = {'''input_ids''': [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __snake_case = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__SCREAMING_SNAKE_CASE , )
24
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" lowerCamelCase_ : Dict = StableDiffusionKDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowerCamelCase_ : Union[str, Any] = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_euler''' ) lowerCamelCase_ : List[Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : int = torch.manual_seed(0 ) lowerCamelCase_ : Tuple = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) lowerCamelCase_ : Tuple = output.images lowerCamelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : str = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ : Union[str, Any] = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowerCamelCase_ : Optional[Any] = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_euler''' ) lowerCamelCase_ : Union[str, Any] = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : Tuple = torch.manual_seed(0 ) lowerCamelCase_ : Union[str, Any] = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='''np''' ) lowerCamelCase_ : int = output.images lowerCamelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : int = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[str] = StableDiffusionKDiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowerCamelCase_ : List[Any] = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler('''sample_dpmpp_2m''' ) lowerCamelCase_ : str = '''A painting of a squirrel eating a burger''' lowerCamelCase_ : List[Any] = torch.manual_seed(0 ) lowerCamelCase_ : List[str] = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='''np''' , use_karras_sigmas=A_ , ) lowerCamelCase_ : List[Any] = output.images lowerCamelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : List[str] = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
705
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __snake_case (__UpperCAmelCase ): """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = gather(__UpperCAmelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = [state.process_index] lowerCamelCase_ : str = gather_object(__UpperCAmelCase ) assert len(__UpperCAmelCase ) == state.num_processes, F"""{gathered_obj}, {len(__UpperCAmelCase )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), F"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Union[str, Any] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = broadcast(__UpperCAmelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __snake_case (__UpperCAmelCase ): """simple docstring""" # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: lowerCamelCase_ : int = torch.arange(state.num_processes + 1 ).to(state.device ) else: lowerCamelCase_ : Optional[Any] = torch.arange(state.num_processes ).to(state.device ) lowerCamelCase_ : Any = pad_across_processes(__UpperCAmelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __snake_case (__UpperCAmelCase ): """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase_ : Dict = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = reduce(__UpperCAmelCase , '''sum''' ) lowerCamelCase_ : str = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" # For now runs on only two processes if state.num_processes != 2: return lowerCamelCase_ : Optional[int] = create_tensor(__UpperCAmelCase ) lowerCamelCase_ : Any = reduce(__UpperCAmelCase , '''mean''' ) lowerCamelCase_ : Any = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ), F"""{reduced_tensor} != {truth_tensor}""" def __snake_case (__UpperCAmelCase ): """simple docstring""" # For xla_spawn (TPUs) main() def __snake_case (): """simple docstring""" lowerCamelCase_ : int = PartialState() state.print(F"""State: {state}""" ) state.print('''testing gather''' ) test_gather(__UpperCAmelCase ) state.print('''testing gather_object''' ) test_gather_object(__UpperCAmelCase ) state.print('''testing broadcast''' ) test_broadcast(__UpperCAmelCase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(__UpperCAmelCase ) state.print('''testing reduce_sum''' ) test_reduce_sum(__UpperCAmelCase ) state.print('''testing reduce_mean''' ) test_reduce_mean(__UpperCAmelCase ) if __name__ == "__main__": main()
418
0
def lowerCamelCase__ (__lowerCamelCase ): if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : str = (1 << p) - 1 for _ in range(p - 2 ): _SCREAMING_SNAKE_CASE : List[str] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
249
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = AutoConfig.from_pretrained(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = checkpoints.load_tax_checkpoint(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": _SCREAMING_SNAKE_CASE : List[str] = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": _SCREAMING_SNAKE_CASE : Optional[Any] = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : int = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): _SCREAMING_SNAKE_CASE : List[str] = f"""layers_{str(__lowerCamelCase )}""" # Self-Attention _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] _SCREAMING_SNAKE_CASE : int = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization _SCREAMING_SNAKE_CASE : Tuple = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] _SCREAMING_SNAKE_CASE : int = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _SCREAMING_SNAKE_CASE : List[str] = flax_model.params["encoder"]["block"][str(__lowerCamelCase )]["layer"] _SCREAMING_SNAKE_CASE : Tuple = tax_attention_key _SCREAMING_SNAKE_CASE : List[Any] = tax_attention_out _SCREAMING_SNAKE_CASE : Tuple = tax_attention_query _SCREAMING_SNAKE_CASE : List[str] = tax_attention_value _SCREAMING_SNAKE_CASE : Any = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : str = tax_global_layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE : int = tax_mlp_wi_a _SCREAMING_SNAKE_CASE : Tuple = tax_mlp_wi_a else: _SCREAMING_SNAKE_CASE : List[str] = tax_mlp_wi _SCREAMING_SNAKE_CASE : int = tax_mlp_wo _SCREAMING_SNAKE_CASE : Optional[int] = tax_mlp_layer_norm _SCREAMING_SNAKE_CASE : Tuple = flax_model_encoder_layer_block # Only for layer 0: _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T _SCREAMING_SNAKE_CASE : str = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T _SCREAMING_SNAKE_CASE : Tuple = tax_encoder_global_rel_embedding # Assigning _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _SCREAMING_SNAKE_CASE : Dict = f"""layers_{str(__lowerCamelCase )}""" # Self-Attention _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] _SCREAMING_SNAKE_CASE : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] _SCREAMING_SNAKE_CASE : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] _SCREAMING_SNAKE_CASE : Dict = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention _SCREAMING_SNAKE_CASE : List[Any] = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_enc_dec_attention_module["key"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_enc_dec_attention_module["out"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_enc_dec_attention_module["query"]["kernel"] _SCREAMING_SNAKE_CASE : int = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : int = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: _SCREAMING_SNAKE_CASE : int = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] _SCREAMING_SNAKE_CASE : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: _SCREAMING_SNAKE_CASE : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization _SCREAMING_SNAKE_CASE : Any = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning _SCREAMING_SNAKE_CASE : int = flax_model.params["decoder"]["block"][str(__lowerCamelCase )]["layer"] _SCREAMING_SNAKE_CASE : Any = tax_attention_key _SCREAMING_SNAKE_CASE : Optional[int] = tax_attention_out _SCREAMING_SNAKE_CASE : Optional[Any] = tax_attention_query _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_attention_value _SCREAMING_SNAKE_CASE : Optional[Any] = tax_pre_attention_layer_norm _SCREAMING_SNAKE_CASE : Optional[int] = tax_enc_dec_attention_key _SCREAMING_SNAKE_CASE : Dict = tax_enc_dec_attention_out _SCREAMING_SNAKE_CASE : Dict = tax_enc_dec_attention_query _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_enc_dec_attention_value _SCREAMING_SNAKE_CASE : Union[str, Any] = tax_cross_layer_norm if split_mlp_wi: _SCREAMING_SNAKE_CASE : int = tax_mlp_wi_a _SCREAMING_SNAKE_CASE : Tuple = tax_mlp_wi_a else: _SCREAMING_SNAKE_CASE : Tuple = tax_mlp_wi _SCREAMING_SNAKE_CASE : List[str] = tax_mlp_wo _SCREAMING_SNAKE_CASE : Any = txa_mlp_layer_norm _SCREAMING_SNAKE_CASE : List[str] = flax_model_decoder_layer_block # Decoder Normalization _SCREAMING_SNAKE_CASE : Optional[int] = tax_model["target"]["decoder"]["decoder_norm"]["scale"] _SCREAMING_SNAKE_CASE : List[str] = txa_decoder_norm # Only for layer 0: _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T _SCREAMING_SNAKE_CASE : Tuple = tax_decoder_rel_embedding # Token Embeddings _SCREAMING_SNAKE_CASE : Tuple = tax_model["target"]["token_embedder"]["embedding"] _SCREAMING_SNAKE_CASE : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _SCREAMING_SNAKE_CASE : List[str] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(__lowerCamelCase ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": UpperCamelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) UpperCamelCase__ =parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
249
1
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase(self : Dict ) -> List[Any]: snake_case = "hf-internal-testing/tiny-random-t5" snake_case = AutoTokenizer.from_pretrained(_A ) snake_case = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case = tokenizer("This is me" , return_tensors="pt" ) snake_case = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) snake_case = model.generate(**_A ) snake_case = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) snake_case = AutoModelForSeqaSeqLM.from_pretrained(_A ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) snake_case = model_reloaded.generate(**_A ) self.assertTrue(torch.allclose(_A , _A ) ) def UpperCAmelCase(self : Union[str, Any] ) -> Any: snake_case = "hf-internal-testing/tiny-random-t5" snake_case = AutoModelForSeqaSeqLM.from_pretrained(_A ) snake_case = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_A ): model.save_pretrained(_A ) snake_case = model.reverse_bettertransformer() model.save_pretrained(_A )
294
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase_ ( A__ , A__ , A__ , A__ , A__ , A__ = None , ) -> List[Any]: """simple docstring""" snake_case = {} if train_file is not None: snake_case = [train_file] if eval_file is not None: snake_case = [eval_file] if test_file is not None: snake_case = [test_file] snake_case = datasets.load_dataset("csv" , data_files=A__ ) snake_case = list(ds[list(files.keys() )[0]].features.keys() ) snake_case = features_name.pop(A__ ) snake_case = list(set(ds[list(files.keys() )[0]][label_name] ) ) snake_case = {label: i for i, label in enumerate(A__ )} snake_case = tokenizer.model_input_names snake_case = {} if len(A__ ) == 1: for k in files.keys(): snake_case = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=A__ , max_length=A__ , padding="max_length" ) , batched=A__ , ) elif len(A__ ) == 2: for k in files.keys(): snake_case = ds[k].map( lambda A__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=A__ , max_length=A__ , padding="max_length" , ) , batched=A__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: snake_case = {k: v for k, v in ex.items() if k in input_names} snake_case = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: snake_case = {k: v for k, v in ex.items() if k in input_names} snake_case = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: snake_case = {k: v for k, v in ex.items() if k in input_names} snake_case = labelaid[ex[label_name]] yield (d, label) snake_case = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: snake_case = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) snake_case = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: snake_case = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) snake_case = ( tf.data.Dataset.from_generator( A__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: snake_case = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _A = logging.getLogger(__name__) @dataclass class lowerCamelCase : UpperCAmelCase__ : int = field(metadata={"help": "Which column contains the label"} ) UpperCAmelCase__ : str = field(default=A_ , metadata={"help": "The path of the training file"} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "The path of the development file"} ) UpperCAmelCase__ : Optional[str] = field(default=A_ , metadata={"help": "The path of the test file"} ) UpperCAmelCase__ : int = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class lowerCamelCase : UpperCAmelCase__ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase__ : Optional[str] = field( default=A_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowercase_ ( ) -> Dict: """simple docstring""" snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) snake_case , snake_case , snake_case = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case , snake_case , snake_case , snake_case = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=A__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(A__ ) , labelaid=A__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): snake_case = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , ) def compute_metrics(A__ ) -> Dict: snake_case = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer snake_case = TFTrainer( model=A__ , args=A__ , train_dataset=A__ , eval_dataset=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) snake_case = trainer.evaluate() snake_case = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(A__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(A__ ) return results if __name__ == "__main__": main()
294
1
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[Any]: snake_case__ = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) snake_case__ = MaskFormerConfig(backbone_config=__lowerCAmelCase ) snake_case__ = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok snake_case__ = 847 snake_case__ = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok snake_case__ = 150 snake_case__ = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok snake_case__ = 171 snake_case__ = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO snake_case__ = 133 snake_case__ = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok snake_case__ = 19 snake_case__ = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok snake_case__ = 65 snake_case__ = '''mapillary-vistas-id2label.json''' snake_case__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]: snake_case__ = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = dct.pop(__lowerCAmelCase ) snake_case__ = val def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: snake_case__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) snake_case__ = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[:dim, :] snake_case__ = in_proj_bias[: dim] snake_case__ = in_proj_weight[ dim : dim * 2, : ] snake_case__ = in_proj_bias[ dim : dim * 2 ] snake_case__ = in_proj_weight[ -dim :, : ] snake_case__ = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: snake_case__ = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) snake_case__ = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[: hidden_size, :] snake_case__ = in_proj_bias[:config.hidden_size] snake_case__ = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case__ = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ = in_proj_weight[-hidden_size :, :] snake_case__ = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) snake_case__ = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) snake_case__ = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ = in_proj_weight[: hidden_size, :] snake_case__ = in_proj_bias[:config.hidden_size] snake_case__ = in_proj_weight[hidden_size : hidden_size * 2, :] snake_case__ = in_proj_bias[hidden_size : hidden_size * 2] snake_case__ = in_proj_weight[-hidden_size :, :] snake_case__ = in_proj_bias[-hidden_size :] # fmt: on def SCREAMING_SNAKE_CASE ( ) -> Dict: snake_case__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case__ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ) -> Optional[int]: snake_case__ = get_maskformer_config(__lowerCAmelCase ) # load original state_dict with open(__lowerCAmelCase , '''rb''' ) as f: snake_case__ = pickle.load(__lowerCAmelCase ) snake_case__ = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys snake_case__ = create_rename_keys(__lowerCAmelCase ) for src, dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) read_in_swin_q_k_v(__lowerCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__lowerCAmelCase , __lowerCAmelCase ) # update to torch tensors for key, value in state_dict.items(): snake_case__ = torch.from_numpy(__lowerCAmelCase ) # load 🤗 model snake_case__ = MaskFormerForInstanceSegmentation(__lowerCAmelCase ) model.eval() for name, param in model.named_parameters(): print(__lowerCAmelCase , param.shape ) snake_case__ , snake_case__ = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__lowerCAmelCase ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results snake_case__ = prepare_img() if "vistas" in model_name: snake_case__ = 65 elif "cityscapes" in model_name: snake_case__ = 6_5535 else: snake_case__ = 255 snake_case__ = True if '''ade''' in model_name else False snake_case__ = MaskFormerImageProcessor(ignore_index=__lowerCAmelCase , reduce_labels=__lowerCAmelCase ) snake_case__ = image_processor(__lowerCAmelCase , return_tensors='''pt''' ) snake_case__ = model(**__lowerCAmelCase ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": snake_case__ = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __lowerCAmelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""maskformer-swin-tiny-ade""", type=str, help=("""Name of the MaskFormer model you\'d like to convert""",), ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl""", type=str, help="""Path to the original state dict (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ : str = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
33
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo lowerCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' lowerCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' lowerCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): def lowerCamelCase_ ( self: Tuple ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def lowerCamelCase_ ( self: str , UpperCamelCase_: List[List[List[str]]] , UpperCamelCase_: List[List[str]] , UpperCamelCase_: int = 1 , UpperCamelCase_: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=UpperCamelCase_ , hypotheses=UpperCamelCase_ , min_len=UpperCamelCase_ , max_len=UpperCamelCase_ ) }
43
0
def _lowerCAmelCase ( _a : str , _a : str ) -> str: lowerCAmelCase_ : int = len(_a ) lowerCAmelCase_ : int = len(_a ) lowerCAmelCase_ : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) lowerCAmelCase_ : list = [] for char_count in range(_a ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(_a ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
440
def _lowerCAmelCase ( _a : int , _a : bool = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_31_70_44_06_46_79_88_73_85_96_19_81 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis lowerCAmelCase_ : Optional[int] = [ 20_47, 1_37_36_53, 25_32_60_01, 32_15_03_17_51, 2_15_23_02_89_87_47, 3_47_47_49_66_03_83, 3_41_55_00_71_72_83_21, 1, 3_82_51_23_05_65_46_41_30_51, 1, 1, 31_86_65_85_78_34_03_11_51_16_74_61, 3_31_70_44_06_46_79_88_73_85_96_19_81, ] lowerCAmelCase_ : Dict = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_a , 1 ): if n < _p: # then we have our last prime to check lowerCAmelCase_ : str = primes[:idx] break lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCAmelCase_ : Tuple = False for r in range(_a ): lowerCAmelCase_ : Tuple = pow(_a , d * 2**r , _a ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCAmelCase_ : List[Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _lowerCAmelCase ( ) -> None: assert not miller_rabin(5_61 ) assert miller_rabin(5_63 ) # 2047 assert not miller_rabin(83_82_01 ) assert miller_rabin(83_82_07 ) # 1_373_653 assert not miller_rabin(17_31_60_01 ) assert miller_rabin(17_31_60_17 ) # 25_326_001 assert not miller_rabin(30_78_38_66_41 ) assert miller_rabin(30_78_38_66_53 ) # 3_215_031_751 assert not miller_rabin(1_71_30_45_57_48_01 ) assert miller_rabin(1_71_30_45_57_48_19 ) # 2_152_302_898_747 assert not miller_rabin(2_77_97_99_72_83_07 ) assert miller_rabin(2_77_97_99_72_83_27 ) # 3_474_749_660_383 assert not miller_rabin(1_13_85_00_23_90_94_41 ) assert miller_rabin(1_13_85_00_23_90_95_27 ) # 341_550_071_728_321 assert not miller_rabin(1_27_50_41_01_88_48_80_43_51 ) assert miller_rabin(1_27_50_41_01_88_48_80_43_91 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_96_66_46_44_58_50_77_87_79_18_67 ) assert miller_rabin(7_96_66_46_44_58_50_77_87_79_19_51 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(55_28_40_67_74_46_64_78_97_66_03_33 ) assert miller_rabin(55_28_40_67_74_46_64_78_97_66_03_59 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
440
1
'''simple docstring''' from __future__ import annotations def a_ ( _lowerCAmelCase ) -> Any: __lowerCamelCase : str = 2 __lowerCamelCase : Optional[int] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCAmelCase ) if n > 1: factors.append(__lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
459
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 __magic_name__ : Tuple = data_utils.TransfoXLTokenizer __magic_name__ : int = data_utils.TransfoXLCorpus __magic_name__ : List[str] = data_utils __magic_name__ : str = data_utils def a_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__lowerCAmelCase , '''rb''' ) as fp: lowerCAmelCase__ = pickle.load(__lowerCAmelCase , encoding='''latin1''' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""" ) lowerCAmelCase__ = corpus.vocab.__dict__ torch.save(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase__ = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __lowerCAmelCase ) lowerCAmelCase__ = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowerCAmelCase__ = os.path.abspath(__lowerCAmelCase ) lowerCAmelCase__ = os.path.abspath(__lowerCAmelCase ) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": lowerCAmelCase__ = TransfoXLConfig() else: lowerCAmelCase__ = TransfoXLConfig.from_json_file(__lowerCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = TransfoXLLMHeadModel(__lowerCAmelCase ) lowerCAmelCase__ = load_tf_weights_in_transfo_xl(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model lowerCAmelCase__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(F"""Save PyTorch model to {os.path.abspath(__lowerCAmelCase )}""" ) torch.save(model.state_dict() , __lowerCAmelCase ) print(F"""Save configuration file to {os.path.abspath(__lowerCAmelCase )}""" ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __magic_name__ : int = argparse.ArgumentParser() parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the folder to store the PyTorch model or dataset/vocab.""", ) parser.add_argument( """--tf_checkpoint_path""", default="""""", type=str, help="""An optional path to a TensorFlow checkpoint path to be converted.""", ) parser.add_argument( """--transfo_xl_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--transfo_xl_dataset_file""", default="""""", type=str, help="""An optional dataset file to be converted in a vocabulary.""", ) __magic_name__ : Optional[Any] = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
615
0
import argparse import json from tqdm import tqdm def _snake_case (): UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=__lowercase , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=__lowercase , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=__lowercase , help='where to store parsed gold_data_path file' , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , 'r') as src_file, open(args.evaluation_set , 'w') as eval_file, open( args.gold_data_path , 'w') as gold_file: UpperCamelCase_ = json.load(__lowercase) for dpr_record in tqdm(__lowercase): UpperCamelCase_ = dpr_record['question'] UpperCamelCase_ = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n') gold_file.write('\t'.join(__lowercase) + '\n') if __name__ == "__main__": main()
712
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures snake_case__ : Any = logging.get_logger(__name__) @dataclass class _a : """simple docstring""" A_ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) A_ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) A_ = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) A_ = field( default=UpperCAmelCase__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = self.task_name.lower() class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """train""" A_ = """dev""" A_ = """test""" class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = 42 A_ = 42 A_ = 42 def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = Split.train , _UpperCAmelCase = None , ) -> Tuple: warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _UpperCAmelCase , ) UpperCamelCase_ = args UpperCamelCase_ = glue_processors[args.task_name]() UpperCamelCase_ = glue_output_modes[args.task_name] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): try: UpperCamelCase_ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file UpperCamelCase_ = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) UpperCamelCase_ = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase_ = cached_features_file + '.lock' with FileLock(_UpperCAmelCase ): if os.path.exists(_UpperCAmelCase ) and not args.overwrite_cache: UpperCamelCase_ = time.time() UpperCamelCase_ = torch.load(_UpperCAmelCase ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: UpperCamelCase_ = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCamelCase_ = self.processor.get_test_examples(args.data_dir ) else: UpperCamelCase_ = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCamelCase_ = examples[:limit_length] UpperCamelCase_ = glue_convert_examples_to_features( _UpperCAmelCase , _UpperCAmelCase , max_length=args.max_seq_length , label_list=_UpperCAmelCase , output_mode=self.output_mode , ) UpperCamelCase_ = time.time() torch.save(self.features , _UpperCAmelCase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self ) -> List[str]: return len(self.features ) def __getitem__( self , _UpperCAmelCase ) -> InputFeatures: return self.features[i] def _UpperCAmelCase ( self ) -> Tuple: return self.label_list
618
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __magic_name__ ( __a : str = "" ): '''simple docstring''' UpperCamelCase__ = url or """https://www.imdb.com/chart/top/?ref_=nv_mv_250""" UpperCamelCase__ = BeautifulSoup(requests.get(__a ).text , """html.parser""" ) UpperCamelCase__ = soup.find_all("""td""" , attrs="""titleColumn""" ) UpperCamelCase__ = soup.find_all("""td""" , class_="""ratingColumn imdbRating""" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__a , __a ) } def __magic_name__ ( __a : str = "IMDb_Top_250_Movies.csv" ): '''simple docstring''' UpperCamelCase__ = get_imdb_top_aaa_movies() with open(__a , """w""" , newline="""""" ) as out_file: UpperCamelCase__ = csv.writer(__a ) writer.writerow(["""Movie title""", """IMDb rating"""] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
513
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): warnings.warn( """The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DonutImageProcessor instead.""" , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
513
1
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=13 , UpperCAmelCase_=30 , UpperCAmelCase_=2 , UpperCAmelCase_=3 , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=32 , UpperCAmelCase_=5 , UpperCAmelCase_=4 , UpperCAmelCase_=37 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=10 , UpperCAmelCase_=0.02 , UpperCAmelCase_=None , ) -> Any: lowerCamelCase : Optional[int] = parent lowerCamelCase : List[str] = batch_size lowerCamelCase : Dict = image_size lowerCamelCase : Any = patch_size lowerCamelCase : Dict = num_channels lowerCamelCase : Union[str, Any] = is_training lowerCamelCase : Union[str, Any] = use_labels lowerCamelCase : List[str] = hidden_size lowerCamelCase : Union[str, Any] = num_hidden_layers lowerCamelCase : Tuple = num_attention_heads lowerCamelCase : Dict = intermediate_size lowerCamelCase : Optional[int] = hidden_act lowerCamelCase : int = hidden_dropout_prob lowerCamelCase : Optional[int] = attention_probs_dropout_prob lowerCamelCase : List[Any] = type_sequence_label_size lowerCamelCase : Optional[int] = initializer_range lowerCamelCase : Optional[Any] = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase : Optional[int] = (image_size // patch_size) ** 2 lowerCamelCase : List[Any] = num_patches + 1 def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Optional[int] = None if self.use_labels: lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Tuple = self.get_config() return config, pixel_values, labels def _UpperCamelCase ( self ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Optional[Any]: lowerCamelCase : Tuple = ViTMSNModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase : Optional[int] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) -> Tuple: lowerCamelCase : Any = self.type_sequence_label_size lowerCamelCase : List[Any] = ViTMSNForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase : Optional[Any] = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase : List[Any] = 1 lowerCamelCase : Optional[Any] = ViTMSNForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase : str = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : int = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Union[str, Any] = config_and_inputs lowerCamelCase : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowercase_ = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : Any = ViTMSNModelTester(self ) lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37 ) def _UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def _UpperCamelCase ( self ) -> Optional[int]: pass def _UpperCamelCase ( self ) -> int: lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Union[str, Any] = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear ) ) def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase , lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : int = model_class(UpperCAmelCase_ ) lowerCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : List[Any] = [*signature.parameters.keys()] lowerCamelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> List[Any]: lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _UpperCamelCase ( self ) -> Dict: lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def _UpperCamelCase ( self ) -> List[str]: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Tuple = ViTMSNModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ) -> Tuple: return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def _UpperCamelCase ( self ) -> str: torch.manual_seed(2 ) lowerCamelCase : Tuple = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(UpperCAmelCase_ ) lowerCamelCase : Any = self.default_image_processor lowerCamelCase : Optional[Any] = prepare_img() lowerCamelCase : Dict = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase : List[str] = model(**UpperCAmelCase_ ) # verify the logits lowerCamelCase : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1E-4 ) )
133
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowercase ( __UpperCAmelCase ): lowercase_ = ['image_processor', 'tokenizer'] lowercase_ = 'BlipImageProcessor' lowercase_ = 'AutoTokenizer' def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ ) -> Dict: lowerCamelCase : Tuple = False super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : List[Any] = self.image_processor def __call__( self , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = 0 , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = False , UpperCAmelCase_ = True , UpperCAmelCase_ = None , **UpperCAmelCase_ , ) -> BatchEncoding: if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: lowerCamelCase : str = self.tokenizer lowerCamelCase : List[str] = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) return text_encoding # add pixel_values lowerCamelCase : Any = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) if text is not None: lowerCamelCase : List[Any] = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) else: lowerCamelCase : str = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase_ ) return encoding_image_processor def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> str: return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _UpperCamelCase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ) -> List[str]: return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : List[Any] = self.tokenizer.model_input_names lowerCamelCase : Optional[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
133
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = ['''image_processor''', '''tokenizer'''] UpperCAmelCase__ = '''LayoutLMv2ImageProcessor''' UpperCAmelCase__ = ('''LayoutXLMTokenizer''', '''LayoutXLMTokenizerFast''') def __init__( self : Any , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : Optional[int]=None , **UpperCAmelCase__ : Optional[int]) ->Optional[Any]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCAmelCase__ , ) A__ = kwargs.pop('''feature_extractor''') A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''') if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''') super().__init__(UpperCAmelCase__ , UpperCAmelCase__) def __call__( self : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase__ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : int = 0 , UpperCAmelCase__ : Optional[int] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase__ : Union[str, Any] , ) ->BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''') if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''') # first, apply the image processor A__ = self.image_processor(images=UpperCAmelCase__ , return_tensors=UpperCAmelCase__) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = [text] # add batch dimension (as the image processor always adds a batch dimension) A__ = features['''words'''] A__ = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , max_length=UpperCAmelCase__ , stride=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_token_type_ids=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , return_overflowing_tokens=UpperCAmelCase__ , return_special_tokens_mask=UpperCAmelCase__ , return_offsets_mapping=UpperCAmelCase__ , return_length=UpperCAmelCase__ , verbose=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ , ) # add pixel values A__ = features.pop('''pixel_values''') if return_overflowing_tokens is True: A__ = self.get_overflowing_images(UpperCAmelCase__ , encoded_inputs['''overflow_to_sample_mapping''']) A__ = images return encoded_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple) ->Union[str, Any]: '''simple docstring''' A__ = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(UpperCAmelCase__) != len(UpperCAmelCase__): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f""" {len(UpperCAmelCase__)} and {len(UpperCAmelCase__)}""") return images_with_overflow def SCREAMING_SNAKE_CASE ( self : Tuple , *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Optional[int]) ->int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Dict) ->int: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase__ , **UpperCAmelCase__) @property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->str: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def SCREAMING_SNAKE_CASE ( self : int) ->Union[str, Any]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCAmelCase__ , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Any: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , UpperCAmelCase__ , ) return self.image_processor
87
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=10 , _UpperCAmelCase=3 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=32 * 8 , _UpperCAmelCase=4 , _UpperCAmelCase=64 , ) -> List[Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = is_training UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = num_queries UpperCamelCase_ = num_channels UpperCamelCase_ = min_size UpperCamelCase_ = max_size UpperCamelCase_ = num_labels UpperCamelCase_ = hidden_dim UpperCamelCase_ = hidden_dim def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _UpperCAmelCase ) UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_UpperCAmelCase ) UpperCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_UpperCAmelCase ) > 0.5 ).float() UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_UpperCAmelCase ) > 0.5).long() UpperCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase_ = self.num_queries UpperCamelCase_ = self.num_labels UpperCamelCase_ = [1, 1, 1, 1] UpperCamelCase_ = self.num_channels UpperCamelCase_ = 64 UpperCamelCase_ = 128 UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim return config def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: UpperCamelCase_ = output.encoder_hidden_states UpperCamelCase_ = output.pixel_decoder_hidden_states UpperCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_UpperCAmelCase ) , config.decoder_layers ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Any: with torch.no_grad(): UpperCamelCase_ = MaskaFormerModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_UpperCAmelCase , _UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() def comm_check_on_output(_UpperCAmelCase ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ = model(pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase ) UpperCamelCase_ = model(_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) UpperCamelCase_ = model( pixel_values=_UpperCAmelCase , pixel_mask=_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) comm_check_on_output(_UpperCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _a ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): """simple docstring""" A_ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A_ = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {} A_ = False A_ = False A_ = False A_ = False def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_UpperCAmelCase ) @unittest.skip(reason='Mask2Former does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='Mask2Former is not a generative model' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='Mask2Former does not use token embeddings' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase_ = MaskaFormerModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = (self.model_tester.min_size,) * 2 UpperCamelCase_ = { 'pixel_values': torch.randn((2, 3, *size) , device=_UpperCAmelCase ), 'mask_labels': torch.randn((2, 10, *size) , device=_UpperCAmelCase ), 'class_labels': torch.zeros(2 , 10 , device=_UpperCAmelCase ).long(), } UpperCamelCase_ = self.model_tester.get_config() UpperCamelCase_ = MaskaFormerForUniversalSegmentation(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_UpperCAmelCase , **_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) UpperCamelCase_ = model(**_UpperCAmelCase , output_attentions=_UpperCAmelCase ) self.assertTrue(outputs.attentions is not None ) def _UpperCAmelCase ( self ) -> List[Any]: if not self.model_tester.is_training: return UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ).loss loss.backward() def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = model_class(_UpperCAmelCase ).to(_UpperCAmelCase ) model.train() UpperCamelCase_ = model(_UpperCAmelCase , mask_labels=_UpperCAmelCase , class_labels=_UpperCAmelCase ) UpperCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_UpperCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) snake_case__ : List[Any] = 1E-4 def _snake_case (): UpperCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCAmelCase ( self ) -> List[str]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) UpperCamelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) UpperCamelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_UpperCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) UpperCamelCase_ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_UpperCAmelCase , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) # masks_queries_logits UpperCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCamelCase_ = torch.tensor(_UpperCAmelCase ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) # class_queries_logits UpperCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_UpperCAmelCase ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCamelCase_ = inputs['pixel_values'].to(_UpperCAmelCase ) UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['mask_labels']] UpperCamelCase_ = [el.to(_UpperCAmelCase ) for el in inputs['class_labels']] with torch.no_grad(): UpperCamelCase_ = model(**_UpperCAmelCase ) self.assertTrue(outputs.loss is not None )
23
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification SCREAMING_SNAKE_CASE__ : int =DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co SCREAMING_SNAKE_CASE__ : int ='main' # Default branch name SCREAMING_SNAKE_CASE__ : List[str] ='f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) SCREAMING_SNAKE_CASE__ : Dict ='aaaaaaa' # This commit does not exist, so we should 404. SCREAMING_SNAKE_CASE__ : Optional[int] ='d9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes SCREAMING_SNAKE_CASE__ : Any ='4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def UpperCamelCase ( ) ->int: print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def UpperCamelCase ( ) ->str: print('''Bonjour!''' ) yield print('''Au revoir!''' ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Tuple: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def a__ ( self , _lowercase ) -> List[Any]: with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def a__ ( self , _lowercase ) -> List[str]: with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def a__ ( self , _lowercase ) -> Optional[int]: with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def a__ ( self ) -> List[str]: self.assertEqual(find_labels(_lowercase ) , ['''labels'''] ) self.assertEqual(find_labels(_lowercase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_lowercase ) , ['''start_positions''', '''end_positions'''] ) class _UpperCAmelCase ( a_ ): """simple docstring""" pass self.assertEqual(find_labels(_lowercase ) , ['''labels'''] ) @require_tf def a__ ( self ) -> str: self.assertEqual(find_labels(_lowercase ) , ['''labels'''] ) self.assertEqual(find_labels(_lowercase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_lowercase ) , ['''start_positions''', '''end_positions'''] ) class _UpperCAmelCase ( a_ ): """simple docstring""" pass self.assertEqual(find_labels(_lowercase ) , ['''labels'''] ) @require_flax def a__ ( self ) -> Tuple: # Flax models don't have labels self.assertEqual(find_labels(_lowercase ) , [] ) self.assertEqual(find_labels(_lowercase ) , [] ) self.assertEqual(find_labels(_lowercase ) , [] ) class _UpperCAmelCase ( a_ ): """simple docstring""" pass self.assertEqual(find_labels(_lowercase ) , [] )
704
"""simple docstring""" from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = 42 __snake_case = None # Automatically constructed __snake_case = "dict" __snake_case = None __snake_case = field(default="""Translation""" , init=a_ , repr=a_ ) def __call__( self ) -> Dict: return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value return {k: Value('''string''' ) for k in sorted(self.languages )} @dataclass class _UpperCAmelCase : """simple docstring""" __snake_case = None __snake_case = None __snake_case = None # Automatically constructed __snake_case = "dict" __snake_case = None __snake_case = field(default="""TranslationVariableLanguages""" , init=a_ , repr=a_ ) def a__ ( self ) -> Any: _lowerCamelCase : Optional[Any] = sorted(set(self.languages ) ) if self.languages else None _lowerCamelCase : List[Any] = len(self.languages ) if self.languages else None def __call__( self ) -> Tuple: return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} ) def a__ ( self , _lowercase ) -> Tuple: _lowerCamelCase : int = set(self.languages ) if self.languages and set(_lowercase ) - lang_set: raise ValueError( F'''Some languages in example ({", ".join(sorted(set(_lowercase ) - lang_set ) )}) are not in valid set ({", ".join(_lowercase )}).''' ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCamelCase : Optional[Any] = [] for lang, text in translation_dict.items(): if isinstance(_lowercase , _lowercase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCamelCase, _lowerCamelCase : int = zip(*sorted(_lowercase ) ) return {"language": languages, "translation": translations} def a__ ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Sequence, Value return { "language": Sequence(Value('''string''' ) ), "translation": Sequence(Value('''string''' ) ), }
558
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } SCREAMING_SNAKE_CASE : List[str] = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models a_ : Optional[Any] = """lm_head""" a_ : Any = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: a_ : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: a_ : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": a_ : Tuple = value elif weight_type == "weight_g": a_ : str = value elif weight_type == "weight_v": a_ : List[Any] = value elif weight_type == "bias": a_ : Optional[int] = value else: a_ : Any = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" a_ : str = [] a_ : Dict = fairseq_model.state_dict() a_ : List[str] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): a_ : str = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == """group""" , ) a_ : int = True else: for key, mapped_key in MAPPING.items(): a_ : Any = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: a_ : int = True if "*" in mapped_key: a_ : Tuple = name.split(SCREAMING_SNAKE_CASE_ )[0].split(""".""" )[-2] a_ : Union[str, Any] = mapped_key.replace("""*""" , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: a_ : str = """weight_g""" elif "weight_v" in name: a_ : Tuple = """weight_v""" elif "bias" in name: a_ : int = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj a_ : Optional[int] = """weight""" else: a_ : Optional[Any] = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" a_ : Optional[int] = full_name.split("""conv_layers.""" )[-1] a_ : List[str] = name.split(""".""" ) a_ : List[Any] = int(items[0] ) a_ : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a_ : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a_ : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) a_ : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a_ : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : int=True ): """simple docstring""" if config_path is not None: a_ : List[str] = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: a_ : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: a_ : List[str] = Dictionary.load_from_json(SCREAMING_SNAKE_CASE_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a_ : int = target_dict.pad_index a_ : Any = target_dict.bos_index a_ : Tuple = target_dict.eos_index a_ : Tuple = len(target_dict.symbols ) a_ : List[str] = os.path.join(SCREAMING_SNAKE_CASE_ , """vocab.json""" ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(SCREAMING_SNAKE_CASE_ ) ) return os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) a_ : Dict = target_dict.indices # fairseq has the <pad> and <s> switched a_ : Tuple = 42 a_ : Optional[int] = 43 with open(SCREAMING_SNAKE_CASE_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) a_ : Union[str, Any] = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=SCREAMING_SNAKE_CASE_ , ) a_ : Union[str, Any] = True if config.feat_extract_norm == """layer""" else False a_ : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) a_ : str = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) a_ : Union[str, Any] = UniSpeechForCTC(SCREAMING_SNAKE_CASE_ ) else: a_ : Optional[int] = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE_ ) if is_finetuned: a_ , a_ , a_ : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: a_ , a_ , a_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) a_ : Any = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) SCREAMING_SNAKE_CASE : Dict = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
419
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[Any] = "▁" SCREAMING_SNAKE_CASE : str = {"vocab_file": "sentencepiece.bpe.model"} SCREAMING_SNAKE_CASE : str = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } SCREAMING_SNAKE_CASE : Dict = { "xlm-roberta-base": 5_12, "xlm-roberta-large": 5_12, "xlm-roberta-large-finetuned-conll02-dutch": 5_12, "xlm-roberta-large-finetuned-conll02-spanish": 5_12, "xlm-roberta-large-finetuned-conll03-english": 5_12, "xlm-roberta-large-finetuned-conll03-german": 5_12, } class snake_case__ ( __A ): UpperCAmelCase : Dict = VOCAB_FILES_NAMES UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Dict = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase_ , UpperCamelCase_="<s>" , UpperCamelCase_="</s>" , UpperCamelCase_="</s>" , UpperCamelCase_="<s>" , UpperCamelCase_="<unk>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> None: """simple docstring""" a_ : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token a_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) a_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) a_ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a_ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a_ : Optional[int] = 1 a_ : int = len(self.sp_model ) + self.fairseq_offset a_ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: """simple docstring""" a_ : Union[str, Any] = self.__dict__.copy() a_ : List[Any] = None a_ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , UpperCamelCase_ ) -> str: """simple docstring""" a_ : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): a_ : int = {} a_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : Optional[int] = [self.cls_token_id] a_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase_ )) + [1] return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1] def A ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> List[int]: """simple docstring""" a_ : Optional[int] = [self.sep_token_id] a_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self ) -> Optional[int]: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def A ( self ) -> Dict: """simple docstring""" a_ : Any = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self , UpperCamelCase_ ) -> List[str]: """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def A ( self , UpperCamelCase_ ) -> Optional[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a_ : Dict = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A ( self , UpperCamelCase_ ) -> Tuple: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A ( self , UpperCamelCase_ ) -> Optional[Any]: """simple docstring""" a_ : Dict = """""".join(UpperCamelCase_ ).replace(UpperCamelCase_ , """ """ ).strip() return out_string def A ( self , UpperCamelCase_ , UpperCamelCase_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : List[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , """wb""" ) as fi: a_ : str = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
419
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): def get_masked_lm_array(SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =F'masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE' __UpperCamelCase =tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "kernel" in name: __UpperCamelCase =array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE__ ) def get_encoder_array(SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =F'encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE' __UpperCamelCase =tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "kernel" in name: __UpperCamelCase =array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE__ ) def get_encoder_layer_array(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =F'encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE' __UpperCamelCase =tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "kernel" in name: __UpperCamelCase =array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE__ ) def get_encoder_attention_layer_array(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ): __UpperCamelCase =F'encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE' __UpperCamelCase =tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =array.reshape(SCREAMING_SNAKE_CASE__ ) if "kernel" in name: __UpperCamelCase =array.transpose() return torch.from_numpy(SCREAMING_SNAKE_CASE__ ) print(F'Loading model based on config from {config_path}...' ) __UpperCamelCase =BertConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =BertForMaskedLM(SCREAMING_SNAKE_CASE__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __UpperCamelCase =model.bert.encoder.layer[layer_index] # Self-attention __UpperCamelCase =layer.attention.self __UpperCamelCase =get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE__ , '_query_dense/kernel' , self_attn.query.weight.data.shape ) __UpperCamelCase =get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE__ , '_query_dense/bias' , self_attn.query.bias.data.shape ) __UpperCamelCase =get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE__ , '_key_dense/kernel' , self_attn.key.weight.data.shape ) __UpperCamelCase =get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE__ , '_key_dense/bias' , self_attn.key.bias.data.shape ) __UpperCamelCase =get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE__ , '_value_dense/kernel' , self_attn.value.weight.data.shape ) __UpperCamelCase =get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE__ , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output __UpperCamelCase =layer.attention.output __UpperCamelCase =get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE__ , '_output_dense/kernel' , self_output.dense.weight.data.shape ) __UpperCamelCase =get_encoder_attention_layer_array( SCREAMING_SNAKE_CASE__ , '_output_dense/bias' , self_output.dense.bias.data.shape ) __UpperCamelCase =get_encoder_layer_array(SCREAMING_SNAKE_CASE__ , '_attention_layer_norm/gamma' ) __UpperCamelCase =get_encoder_layer_array(SCREAMING_SNAKE_CASE__ , '_attention_layer_norm/beta' ) # Intermediate __UpperCamelCase =layer.intermediate __UpperCamelCase =get_encoder_layer_array(SCREAMING_SNAKE_CASE__ , '_intermediate_dense/kernel' ) __UpperCamelCase =get_encoder_layer_array(SCREAMING_SNAKE_CASE__ , '_intermediate_dense/bias' ) # Output __UpperCamelCase =layer.output __UpperCamelCase =get_encoder_layer_array(SCREAMING_SNAKE_CASE__ , '_output_dense/kernel' ) __UpperCamelCase =get_encoder_layer_array(SCREAMING_SNAKE_CASE__ , '_output_dense/bias' ) __UpperCamelCase =get_encoder_layer_array(SCREAMING_SNAKE_CASE__ , '_output_layer_norm/gamma' ) __UpperCamelCase =get_encoder_layer_array(SCREAMING_SNAKE_CASE__ , '_output_layer_norm/beta' ) # Embeddings __UpperCamelCase =get_encoder_array('_position_embedding_layer/embeddings' ) __UpperCamelCase =get_encoder_array('_type_embedding_layer/embeddings' ) __UpperCamelCase =get_encoder_array('_embedding_norm_layer/gamma' ) __UpperCamelCase =get_encoder_array('_embedding_norm_layer/beta' ) # LM Head __UpperCamelCase =model.cls.predictions.transform __UpperCamelCase =get_masked_lm_array('dense/kernel' ) __UpperCamelCase =get_masked_lm_array('dense/bias' ) __UpperCamelCase =get_masked_lm_array('layer_norm/gamma' ) __UpperCamelCase =get_masked_lm_array('layer_norm/beta' ) __UpperCamelCase =get_masked_lm_array('embedding_table' ) # Pooling __UpperCamelCase =BertPooler(config=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =get_encoder_array('_pooler_layer/kernel' ) __UpperCamelCase =get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Integration test - should load without any errors ;) __UpperCamelCase =BertForMaskedLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) _A = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
682
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path SCREAMING_SNAKE_CASE__ : List[str] = Path(__file__).resolve().parents[3] / """src""" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""} SCREAMING_SNAKE_CASE__ : Any = """zero2""" SCREAMING_SNAKE_CASE__ : Dict = """zero3""" SCREAMING_SNAKE_CASE__ : str = [ZEROa, ZEROa] def _A ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param a__ : Optional[Any] = parameterized.to_safe_name("_".join(str(lowerCamelCase ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test SCREAMING_SNAKE_CASE__ : Union[str, Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __lowerCAmelCase ( _UpperCamelCase ): @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> Dict: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> str: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> List[str]: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def _snake_case ( self , snake_case , snake_case ) -> List[str]: """simple docstring""" self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) def _snake_case ( self , snake_case ) -> str: """simple docstring""" pass def _snake_case ( self , snake_case , snake_case , snake_case = 10 , snake_case = True , snake_case = True , snake_case = True , ) -> str: """simple docstring""" a__ : Tuple = models[model] a__ : int = self.run_trainer( stage=snake_case , model_name=snake_case , eval_steps=snake_case , num_train_epochs=1 , distributed=snake_case , fpaa=snake_case , ) self.do_checks(snake_case ) return output_dir def _snake_case ( self , snake_case , snake_case , snake_case = 10 , snake_case = 1 , snake_case = True , snake_case = True , ) -> Optional[Any]: """simple docstring""" a__ : str = self.get_auto_remove_tmp_dir("./xxx" , after=snake_case ) a__ : List[Any] = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(snake_case )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files a__ : str = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() a__ : Dict = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] a__ : Optional[int] = self.get_launcher(snake_case ) a__ : Optional[int] = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case , env=self.get_env() ) return output_dir def _snake_case ( self , snake_case=False ) -> List[Any]: """simple docstring""" a__ : Union[str, Any] = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
112
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = """▁""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE__ : Optional[int] = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } SCREAMING_SNAKE_CASE__ : Optional[Any] = { """google/reformer-crime-and-punishment""": 5_2_4_2_8_8, } class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case , snake_case="</s>" , snake_case="<unk>" , snake_case=[] , snake_case = None , **snake_case , ) -> None: """simple docstring""" a__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case , unk_token=snake_case , additional_special_tokens=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) a__ : Union[str, Any] = vocab_file a__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def _snake_case ( self ) -> str: """simple docstring""" return self.sp_model.get_piece_size() def _snake_case ( self ) -> Dict[str, int]: """simple docstring""" a__ : Dict = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: """simple docstring""" a__ : Tuple = self.__dict__.copy() a__ : Optional[int] = None return state def __setstate__( self , snake_case ) -> Union[str, Any]: """simple docstring""" a__ : List[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): a__ : List[Any] = {} a__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , snake_case ) -> List[str]: """simple docstring""" return self.sp_model.encode(snake_case , out_type=snake_case ) def _snake_case ( self , snake_case ) -> Union[str, Any]: """simple docstring""" return self.sp_model.piece_to_id(snake_case ) def _snake_case ( self , snake_case ) -> Any: """simple docstring""" if index < self.sp_model.get_piece_size(): a__ : Optional[Any] = self.sp_model.IdToPiece(snake_case ) return token def _snake_case ( self , snake_case ) -> Any: """simple docstring""" a__ : int = [] a__ : Dict = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case ) + token a__ : Dict = [] else: current_sub_tokens.append(snake_case ) out_string += self.sp_model.decode(snake_case ) return out_string.strip() def _snake_case ( self , snake_case , snake_case = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a__ : Tuple = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , "wb" ) as fi: a__ : str = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
112
1
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''''' _lowerCamelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowerCamelCase = None # compression type in fsspec. ex: "gzip" _lowerCamelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowercase = "" , _lowercase = None , _lowercase = None , **_lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(self , **_lowercase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode snake_case_ : Dict = fsspec.open( _lowercase , mode="""rb""" , protocol=_lowercase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) snake_case_ : List[str] = os.path.basename(self.file.path.split("""::""" )[0] ) snake_case_ : str = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) snake_case_ : Any = None @classmethod def UpperCAmelCase__ ( cls , _lowercase ) -> List[Any]: '''simple docstring''' return super()._strip_protocol(_lowercase ).lstrip("""/""" ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' if self.dir_cache is None: snake_case_ : Any = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} snake_case_ : Dict = {f["""name"""]: f} def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' return self.file.open().read() def UpperCAmelCase__ ( self , _lowercase , _lowercase = "rb" , _lowercase=None , _lowercase=True , _lowercase=None , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ : str = self._strip_protocol(_lowercase ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''bz2''' _lowerCamelCase = '''bz2''' _lowerCamelCase = '''.bz2''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''gzip''' _lowerCamelCase = '''gzip''' _lowerCamelCase = '''.gz''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''lz4''' _lowerCamelCase = '''lz4''' _lowerCamelCase = '''.lz4''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''xz''' _lowerCamelCase = '''xz''' _lowerCamelCase = '''.xz''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = '''zstd''' _lowerCamelCase = '''zstd''' _lowerCamelCase = '''.zst''' def __init__( self , _lowercase , _lowercase = "rb" , _lowercase = None , _lowercase = None , _lowercase = DEFAULT_BLOCK_SIZE , **_lowercase , ) -> str: '''simple docstring''' super().__init__( fo=_lowercase , mode=_lowercase , target_protocol=_lowercase , target_options=_lowercase , block_size=_lowercase , **_lowercase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 snake_case_ : Union[str, Any] = self.file.__enter__ class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[Any] = file_ def __enter__( self ) -> Optional[int]: '''simple docstring''' self._file.__enter__() return self def __exit__( self , *_lowercase , **_lowercase ) -> List[Any]: '''simple docstring''' self._file.__exit__(*_lowercase , **_lowercase ) def __iter__( self ) -> Dict: '''simple docstring''' return iter(self._file ) def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return next(self._file ) def __getattr__( self , _lowercase ) -> Any: '''simple docstring''' return getattr(self._file , _lowercase ) def fixed_enter(*_lowercase , **_lowercase ): return WrappedFile(_enter(*_lowercase , **_lowercase ) ) snake_case_ : List[str] = fixed_enter
21
"""simple docstring""" import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __lowerCAmelCase ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ): '''simple docstring''' snake_case_ : Union[str, Any] = nn.functional.normalize(__UpperCamelCase ) snake_case_ : Tuple = nn.functional.normalize(__UpperCamelCase ) return torch.mm(__UpperCamelCase , normalized_text_embeds.t() ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(_lowercase ) snake_case_ : Tuple = CLIPVisionModel(config.vision_config ) snake_case_ : int = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_lowercase ) snake_case_ : Optional[Any] = nn.Parameter(torch.ones(1_7 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Dict = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_lowercase ) snake_case_ : Any = nn.Parameter(torch.ones(1_7 ) , requires_grad=_lowercase ) snake_case_ : List[str] = nn.Parameter(torch.ones(3 ) , requires_grad=_lowercase ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Any: '''simple docstring''' snake_case_ : int = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : str = self.visual_projection(_lowercase ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 snake_case_ : Dict = cosine_distance(_lowercase , self.special_care_embeds ).cpu().float().numpy() snake_case_ : List[str] = cosine_distance(_lowercase , self.concept_embeds ).cpu().float().numpy() snake_case_ : Any = [] snake_case_ : Any = image_embeds.shape[0] for i in range(_lowercase ): snake_case_ : List[Any] = {"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : int = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): snake_case_ : List[str] = special_cos_dist[i][concept_idx] snake_case_ : Union[str, Any] = self.special_care_embeds_weights[concept_idx].item() snake_case_ : Tuple = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) snake_case_ : Dict = 0.01 for concept_idx in range(len(cos_dist[0] ) ): snake_case_ : int = cos_dist[i][concept_idx] snake_case_ : List[Any] = self.concept_embeds_weights[concept_idx].item() snake_case_ : List[str] = round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(_lowercase ) result.append(_lowercase ) snake_case_ : Union[str, Any] = [len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.vision_model(_lowercase )[1] # pooled_output snake_case_ : List[str] = self.visual_projection(_lowercase ) snake_case_ : str = cosine_distance(_lowercase , self.special_care_embeds ) snake_case_ : Optional[int] = cosine_distance(_lowercase , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images snake_case_ : Tuple = 0.0 snake_case_ : List[Any] = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) snake_case_ : str = torch.any(special_scores > 0 , dim=1 ) snake_case_ : List[str] = special_care * 0.01 snake_case_ : Optional[int] = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) snake_case_ : Optional[Any] = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) snake_case_ : str = torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
1