code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Dict , *__a : List[str] , __a : Any=None , __a : Any=None , **__a : int ) -> Tuple: super().__init__(*_snake_case , **_snake_case ) _UpperCamelCase : Optional[Any] = eval_examples _UpperCamelCase : Dict = post_process_function def __SCREAMING_SNAKE_CASE ( self : int , __a : Optional[Dataset] = None , __a : int=None , __a : Optional[List[str]] = None , __a : str = "eval" , **__a : Dict , ) -> int: _UpperCamelCase : int = gen_kwargs.copy() _UpperCamelCase : Dict = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) _UpperCamelCase : int = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) _UpperCamelCase : Dict = gen_kwargs _UpperCamelCase : Dict = self.eval_dataset if eval_dataset is None else eval_dataset _UpperCamelCase : Union[str, Any] = self.get_eval_dataloader(_snake_case ) _UpperCamelCase : Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : Optional[int] = self.compute_metrics _UpperCamelCase : Tuple = None _UpperCamelCase : int = time.time() _UpperCamelCase : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCamelCase : List[str] = eval_loop( _snake_case , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_snake_case , metric_key_prefix=_snake_case , ) finally: _UpperCamelCase : List[Any] = compute_metrics _UpperCamelCase : Any = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _snake_case , _snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _UpperCamelCase : int = self.post_process_function(_snake_case , _snake_case , _snake_case ) _UpperCamelCase : Optional[Any] = self.compute_metrics(_snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _UpperCamelCase : Tuple = metrics.pop(_snake_case ) metrics.update(output.metrics ) else: _UpperCamelCase : int = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_snake_case ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _UpperCamelCase : Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _snake_case ) return metrics def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Union[str, Any] , __a : Optional[int] , __a : str=None , __a : str = "test" , **__a : List[str] ) -> Dict: _UpperCamelCase : Tuple = gen_kwargs.copy() _UpperCamelCase : Tuple = self.get_test_dataloader(_snake_case ) # Temporarily disable metric computation, we will do it in the loop here. _UpperCamelCase : int = self.compute_metrics _UpperCamelCase : List[str] = None _UpperCamelCase : Optional[int] = time.time() _UpperCamelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _UpperCamelCase : int = eval_loop( _snake_case , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_snake_case , metric_key_prefix=_snake_case , ) finally: _UpperCamelCase : Tuple = compute_metrics _UpperCamelCase : List[str] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _snake_case , _snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _UpperCamelCase : Any = self.post_process_function(_snake_case , _snake_case , _snake_case , "predict" ) _UpperCamelCase : Any = self.compute_metrics(_snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _UpperCamelCase : Dict = metrics.pop(_snake_case ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_snake_case )
624
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": UpperCamelCase = input('Enter image url: ').strip() print(F'''Downloading image from {url} ...''') UpperCamelCase = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image UpperCamelCase = soup.find('meta', {'property': 'og:image'})['content'] UpperCamelCase = requests.get(image_url).content UpperCamelCase = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, 'wb') as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
387
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _a ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Union[str, Any] = """gpt_neox""" def __init__( self , __UpperCAmelCase=50_432 , __UpperCAmelCase=6_144 , __UpperCAmelCase=44 , __UpperCAmelCase=64 , __UpperCAmelCase=24_576 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.25 , __UpperCAmelCase=10_000 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=2_048 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ): super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) __A : Optional[int] = vocab_size __A : List[Any] = max_position_embeddings __A : Any = hidden_size __A : str = num_hidden_layers __A : List[str] = num_attention_heads __A : Dict = intermediate_size __A : List[Any] = hidden_act __A : Tuple = rotary_pct __A : Optional[int] = rotary_emb_base __A : int = attention_dropout __A : Optional[int] = hidden_dropout __A : List[Any] = classifier_dropout __A : Optional[Any] = initializer_range __A : Optional[int] = layer_norm_eps __A : str = use_cache __A : Optional[int] = tie_word_embeddings __A : Any = use_parallel_residual __A : List[Any] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def __UpperCAmelCase( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"got {self.rope_scaling}" ) __A : Dict = self.rope_scaling.get("type" , __UpperCAmelCase ) __A : Dict = self.rope_scaling.get("factor" , __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
387
1
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm __snake_case : str =logging.get_logger(__name__) @dataclass class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =[ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__(self ,**__lowerCamelCase ) -> Optional[int]: """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCAmelCase__ : List[Any] = deprecated_arg[3:] setattr(self ,__lowerCamelCase ,not kwargs.pop(__lowerCamelCase ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) lowerCAmelCase__ : str = kwargs.pop('''torchscript''' ,self.torchscript ) lowerCAmelCase__ : Any = kwargs.pop('''torch_xla_tpu_print_metrics''' ,self.torch_xla_tpu_print_metrics ) lowerCAmelCase__ : int = kwargs.pop('''fp16_opt_level''' ,self.fpaa_opt_level ) super().__init__(**__lowerCamelCase ) snake_case_ =field(default=lowerCamelCase__ , metadata={"""help""": """Trace the models using torchscript"""}) snake_case_ =field(default=lowerCamelCase__ , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""}) snake_case_ =field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def lowerCAmelCase__ (self ) -> Tuple["torch.device", int]: """simple docstring""" requires_backends(self ,['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: lowerCAmelCase__ : Any = torch.device('''cpu''' ) lowerCAmelCase__ : Optional[int] = 0 elif is_torch_tpu_available(): lowerCAmelCase__ : Optional[Any] = xm.xla_device() lowerCAmelCase__ : int = 0 else: lowerCAmelCase__ : Tuple = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) lowerCAmelCase__ : List[str] = torch.cuda.device_count() return device, n_gpu @property def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" return is_torch_tpu_available() and self.tpu @property def lowerCAmelCase__ (self ) -> int: """simple docstring""" requires_backends(self ,['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def lowerCAmelCase__ (self ) -> "torch.device": """simple docstring""" requires_backends(self ,['''torch'''] ) return self._setup_devices[0] @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" requires_backends(self ,['''torch'''] ) return self._setup_devices[1] @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" return self.n_gpu > 0
647
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def __init__(self ,__lowerCamelCase ,__lowerCamelCase=7 ,__lowerCamelCase=3 ,__lowerCamelCase=10 ,__lowerCamelCase=18 ,__lowerCamelCase=30 ,__lowerCamelCase=4_00 ,__lowerCamelCase=True ,__lowerCamelCase=None ,__lowerCamelCase=True ,__lowerCamelCase=[0.5, 0.5, 0.5] ,__lowerCamelCase=[0.5, 0.5, 0.5] ,__lowerCamelCase=None ,) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : List[Any] = size if size is not None else {'''shortest_edge''': 18} lowerCAmelCase__ : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : Union[str, Any] = num_channels lowerCAmelCase__ : str = num_frames lowerCAmelCase__ : Optional[Any] = image_size lowerCAmelCase__ : str = min_resolution lowerCAmelCase__ : Optional[Any] = max_resolution lowerCAmelCase__ : Optional[Any] = do_resize lowerCAmelCase__ : List[str] = size lowerCAmelCase__ : Union[str, Any] = do_normalize lowerCAmelCase__ : int = image_mean lowerCAmelCase__ : Optional[int] = image_std lowerCAmelCase__ : Optional[Any] = crop_size def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =VivitImageProcessor if is_vision_available() else None def lowerCAmelCase__ (self ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ : Tuple = VivitImageProcessingTester(self ) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_center_crop''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''size''' ) ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size ,{'''height''': 18, '''width''': 18} ) lowerCAmelCase__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ,crop_size=84 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size ,{'''height''': 84, '''width''': 84} ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowerCAmelCase__ : str = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ) for video in video_inputs: self.assertIsInstance(__lowerCamelCase ,__lowerCamelCase ) self.assertIsInstance(video[0] ,Image.Image ) # Test not batched input lowerCAmelCase__ : Optional[int] = image_processing(video_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Optional[int] = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Tuple = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,numpify=__lowerCamelCase ) for video in video_inputs: self.assertIsInstance(__lowerCamelCase ,__lowerCamelCase ) self.assertIsInstance(video[0] ,np.ndarray ) # Test not batched input lowerCAmelCase__ : Any = image_processing(video_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Dict = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : int = prepare_video_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,torchify=__lowerCamelCase ) for video in video_inputs: self.assertIsInstance(__lowerCamelCase ,__lowerCamelCase ) self.assertIsInstance(video[0] ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : Any = image_processing(video_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Optional[Any] = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
647
1
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() snake_case_ : str = logging.get_logger(__name__) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = WavaVecaForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Dict = downstream_dict['''projector.weight'''] UpperCAmelCase_ : int = downstream_dict['''projector.bias'''] UpperCAmelCase_ : List[Any] = downstream_dict['''model.post_net.linear.weight'''] UpperCAmelCase_ : Any = downstream_dict['''model.post_net.linear.bias'''] return model def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Dict = WavaVecaForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : str = downstream_dict['''model.linear.weight'''] UpperCAmelCase_ : Optional[int] = downstream_dict['''model.linear.bias'''] return model def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : int ) -> Any: UpperCAmelCase_ : int = WavaVecaForXVector.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = downstream_dict['''connector.weight'''] UpperCAmelCase_ : Any = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): UpperCAmelCase_ : List[Any] = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] UpperCAmelCase_ : Optional[Any] = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] UpperCAmelCase_ : Union[str, Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] UpperCAmelCase_ : int = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] UpperCAmelCase_ : Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] UpperCAmelCase_ : Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] UpperCAmelCase_ : Optional[Any] = downstream_dict['''objective.W'''] return model @torch.no_grad() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__, map_location='''cpu''' ) UpperCAmelCase_ : List[str] = checkpoint['''Downstream'''] UpperCAmelCase_ : List[str] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, do_normalize=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = hf_config.architectures[0] if arch.endswith('''ForSequenceClassification''' ): UpperCAmelCase_ : List[Any] = convert_classification(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith('''ForAudioFrameClassification''' ): UpperCAmelCase_ : int = convert_diarization(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) elif arch.endswith('''ForXVector''' ): UpperCAmelCase_ : Tuple = convert_xvector(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: UpperCAmelCase_ : str = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": snake_case_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") snake_case_ : Any = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
701
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None) snake_case_ : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column snake_case_ : Any = df.iloc[:, 1:2] snake_case_ : str = actual_data.values.reshape(len_data, 1) snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data) snake_case_ : List[str] = 10 snake_case_ : Any = 5 snake_case_ : Any = 20 snake_case_ : Tuple = len_data - periods * look_back snake_case_ : str = actual_data[:division] snake_case_ : Optional[int] = actual_data[division - look_back :] snake_case_ ,snake_case_ : Any = [], [] snake_case_ ,snake_case_ : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) snake_case_ : Any = np.array(train_x) snake_case_ : Optional[Any] = np.array(test_x) snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y]) snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y]) snake_case_ : List[Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") snake_case_ : Dict = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) snake_case_ : Optional[Any] = model.predict(x_test)
644
0
'''simple docstring''' import re def __lowerCamelCase ( _UpperCamelCase : str ): '''simple docstring''' UpperCAmelCase_ = re.compile( R'''^(?:0|94|\+94|0{2}94)''' R'''7(0|1|2|4|5|6|7|8)''' R'''(-| |)''' R'''\d{7}$''' ) return bool(re.search(_UpperCamelCase , _UpperCamelCase ) ) if __name__ == "__main__": lowercase__ : int = "0094702343221" print(is_sri_lankan_phone_number(phone))
390
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Optional[Any] = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = '''big_bird''' def __init__( self : List[Any] , UpperCAmelCase__ : Tuple=5_0358 , UpperCAmelCase__ : List[Any]=768 , UpperCAmelCase__ : Dict=12 , UpperCAmelCase__ : str=12 , UpperCAmelCase__ : Union[str, Any]=3072 , UpperCAmelCase__ : Dict="gelu_new" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Any=4096 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : List[Any]=1e-12 , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : int=0 , UpperCAmelCase__ : int=1 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : List[Any]=66 , UpperCAmelCase__ : Dict="block_sparse" , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Optional[int]=64 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : Optional[Any]=None , **UpperCAmelCase__ : Optional[Any] , ) ->Dict: super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , sep_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = rescale_embeddings UpperCAmelCase_ = attention_type UpperCAmelCase_ = use_bias UpperCAmelCase_ = block_size UpperCAmelCase_ = num_random_blocks UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
390
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig A = logging.get_logger(__name__) A = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class __a ( __A ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = """dpt""" def __init__( self , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=1E-12 , UpperCamelCase__=384 , UpperCamelCase__=16 , UpperCamelCase__=3 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=[2, 5, 8, 11] , UpperCamelCase__="project" , UpperCamelCase__=[4, 2, 1, 0.5] , UpperCamelCase__=[96, 192, 384, 768] , UpperCamelCase__=256 , UpperCamelCase__=-1 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=0.4 , UpperCamelCase__=255 , UpperCamelCase__=0.1 , UpperCamelCase__=[1, 1024, 24, 24] , UpperCamelCase__=[0, 1] , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[Any] = hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } SCREAMING_SNAKE_CASE_ : List[str] = BitConfig(**UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): logger.info('Initializing the config with a `BiT` backbone.' ) SCREAMING_SNAKE_CASE_ : List[Any] = BitConfig(**UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE_ : Any = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = backbone_featmap_shape SCREAMING_SNAKE_CASE_ : str = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: SCREAMING_SNAKE_CASE_ : str = None SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_act SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[str] = initializer_range SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Tuple = image_size SCREAMING_SNAKE_CASE_ : List[Any] = patch_size SCREAMING_SNAKE_CASE_ : int = num_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = qkv_bias SCREAMING_SNAKE_CASE_ : int = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) SCREAMING_SNAKE_CASE_ : Any = readout_type SCREAMING_SNAKE_CASE_ : str = reassemble_factors SCREAMING_SNAKE_CASE_ : Union[str, Any] = neck_hidden_sizes SCREAMING_SNAKE_CASE_ : Any = fusion_hidden_size SCREAMING_SNAKE_CASE_ : Optional[int] = head_in_index SCREAMING_SNAKE_CASE_ : str = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) SCREAMING_SNAKE_CASE_ : Optional[Any] = use_auxiliary_head SCREAMING_SNAKE_CASE_ : Any = auxiliary_loss_weight SCREAMING_SNAKE_CASE_ : Tuple = semantic_loss_ignore_index SCREAMING_SNAKE_CASE_ : Optional[int] = semantic_classifier_dropout def __snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.__class__.model_type return output
704
import math def _lowerCamelCase( lowerCAmelCase__ : float , lowerCAmelCase__ : float ): '''simple docstring''' return math.pow(lowerCAmelCase__ , 2 ) - a def _lowerCamelCase( lowerCAmelCase__ : float ): '''simple docstring''' return 2 * x def _lowerCamelCase( lowerCAmelCase__ : float ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = 2.0 while start <= a: SCREAMING_SNAKE_CASE_ : str = math.pow(lowerCAmelCase__ , 2 ) return start def _lowerCamelCase( lowerCAmelCase__ : float , lowerCAmelCase__ : int = 9999 , lowerCAmelCase__ : float = 0.00_000_000_000_001 ): '''simple docstring''' if a < 0: raise ValueError('math domain error' ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_initial_point(lowerCAmelCase__ ) for _ in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Tuple = value SCREAMING_SNAKE_CASE_ : Union[str, Any] = value - fx(lowerCAmelCase__ , lowerCAmelCase__ ) / fx_derivative(lowerCAmelCase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
97
0
'''simple docstring''' from collections.abc import Sequence from queue import Queue class __lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[int]=None ): A_ = start A_ = end A_ = val A_ = (start + end) // 2 A_ = left A_ = right def __repr__( self : Dict ): return F"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class __lowerCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase : Sequence , lowerCAmelCase : Optional[Any] ): A_ = collection A_ = function if self.collection: A_ = self._build_tree(0 , len(lowerCAmelCase ) - 1 ) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] ): self._update_tree(self.root , lowerCAmelCase , lowerCAmelCase ) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Any ): return self._query_range(self.root , lowerCAmelCase , lowerCAmelCase ) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] ): if start == end: return SegmentTreeNode(lowerCAmelCase , lowerCAmelCase , self.collection[start] ) A_ = (start + end) // 2 A_ = self._build_tree(lowerCAmelCase , lowerCAmelCase ) A_ = self._build_tree(mid + 1 , lowerCAmelCase ) return SegmentTreeNode(lowerCAmelCase , lowerCAmelCase , self.fn(left.val , right.val ) , lowerCAmelCase , lowerCAmelCase ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict ): if node.start == i and node.end == i: A_ = val return if i <= node.mid: self._update_tree(node.left , lowerCAmelCase , lowerCAmelCase ) else: self._update_tree(node.right , lowerCAmelCase , lowerCAmelCase ) A_ = self.fn(node.left.val , node.right.val ) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , lowerCAmelCase , lowerCAmelCase ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , lowerCAmelCase , node.mid ) , self._query_range(node.right , node.mid + 1 , lowerCAmelCase ) , ) else: # range in right child tree return self._query_range(node.right , lowerCAmelCase , lowerCAmelCase ) def _UpperCAmelCase ( self : Optional[int] ): if self.root is not None: A_ = Queue() queue.put(self.root ) while not queue.empty(): A_ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) __SCREAMING_SNAKE_CASE : Any = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
452
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) class __lowerCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase : Union[str, Any] =["pixel_values"] def __init__( self : Optional[int] , lowerCAmelCase : bool = True , lowerCAmelCase : Dict[str, int] = None , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : bool = True , lowerCAmelCase : Union[int, float] = 1 / 2_55 , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : bool = True , **lowerCAmelCase : List[Any] , ): super().__init__(**lowerCAmelCase ) A_ = size if size is not None else {"height": 3_84, "width": 3_84} A_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) A_ = do_resize A_ = size A_ = resample A_ = do_rescale A_ = rescale_factor A_ = do_normalize A_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A_ = image_std if image_std is not None else OPENAI_CLIP_STD A_ = do_convert_rgb def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Dict[str, int] , lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Tuple , ): A_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}" ) A_ = (size["height"], size["width"]) return resize(lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def _UpperCAmelCase ( self : str , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[int, float] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : str , ): return rescale(lowerCAmelCase , scale=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : np.ndarray , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Union[float, List[float]] , lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase : Dict , ): return normalize(lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase , data_format=lowerCAmelCase , **lowerCAmelCase ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase : ImageInput , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Dict[str, int]] = None , lowerCAmelCase : PILImageResampling = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[float] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[float, List[float]]] = None , lowerCAmelCase : Optional[Union[str, TensorType]] = None , lowerCAmelCase : bool = None , lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase : List[str] , ): A_ = do_resize if do_resize is not None else self.do_resize A_ = resample if resample is not None else self.resample A_ = do_rescale if do_rescale is not None else self.do_rescale A_ = rescale_factor if rescale_factor is not None else self.rescale_factor A_ = do_normalize if do_normalize is not None else self.do_normalize A_ = image_mean if image_mean is not None else self.image_mean A_ = image_std if image_std is not None else self.image_std A_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A_ = size if size is not None else self.size A_ = get_size_dict(lowerCAmelCase , default_to_square=lowerCAmelCase ) A_ = make_list_of_images(lowerCAmelCase ) if not valid_images(lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A_ = [convert_to_rgb(lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. A_ = [to_numpy_array(lowerCAmelCase ) for image in images] if do_resize: A_ = [self.resize(image=lowerCAmelCase , size=lowerCAmelCase , resample=lowerCAmelCase ) for image in images] if do_rescale: A_ = [self.rescale(image=lowerCAmelCase , scale=lowerCAmelCase ) for image in images] if do_normalize: A_ = [self.normalize(image=lowerCAmelCase , mean=lowerCAmelCase , std=lowerCAmelCase ) for image in images] A_ = [to_channel_dimension_format(lowerCAmelCase , lowerCAmelCase ) for image in images] A_ = BatchFeature(data={"pixel_values": images} , tensor_type=lowerCAmelCase ) return encoded_outputs
452
1
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase = Mock() UpperCAmelCase = conn, Mock() UpperCAmelCase = iter([1, None] ) UpperCAmelCase = lambda _lowerCAmelCase : next(_lowerCAmelCase ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_lowerCAmelCase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
705
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase =logging.get_logger(__name__) __lowerCAmelCase ={"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __lowerCAmelCase ={ "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } __lowerCAmelCase ={ "gpt-neox-20b": 2048, } class __magic_name__ ( _a): _UpperCAmelCase : int = VOCAB_FILES_NAMES _UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Tuple = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] ,__SCREAMING_SNAKE_CASE : str=None ,__SCREAMING_SNAKE_CASE : Union[str, Any]=None ,__SCREAMING_SNAKE_CASE : List[str]=None ,__SCREAMING_SNAKE_CASE : List[Any]="<|endoftext|>" ,__SCREAMING_SNAKE_CASE : Any="<|endoftext|>" ,__SCREAMING_SNAKE_CASE : Dict="<|endoftext|>" ,__SCREAMING_SNAKE_CASE : Union[str, Any]=False ,**__SCREAMING_SNAKE_CASE : Tuple ,): super().__init__( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,tokenizer_file=__SCREAMING_SNAKE_CASE ,unk_token=__SCREAMING_SNAKE_CASE ,bos_token=__SCREAMING_SNAKE_CASE ,eos_token=__SCREAMING_SNAKE_CASE ,add_prefix_space=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,) UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" ,__SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCAmelCase = getattr(__SCREAMING_SNAKE_CASE ,pre_tok_state.pop("type" ) ) UpperCAmelCase = add_prefix_space UpperCAmelCase = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCAmelCase = add_prefix_space def _UpperCAmelCase ( self : int ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Optional[str] = None ): UpperCAmelCase = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE ,name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : str ,__SCREAMING_SNAKE_CASE : "Conversation" ): UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__SCREAMING_SNAKE_CASE ,add_special_tokens=__SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(__SCREAMING_SNAKE_CASE ) > self.model_max_length: UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
405
0
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCamelCase ( self ): '''simple docstring''' __A =AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) __A =AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(lowercase__ ) from datasets import load_dataset __A =load_dataset('''nielsr/rvlcdip-demo''' ) __A =dataset['''train'''][0]['''image'''].convert('''RGB''' ) __A =image_processor(lowercase__ , return_tensors='''pt''' ).to(lowercase__ ) # forward pass with torch.no_grad(): __A =model(**lowercase__ ) __A =outputs.logits __A =torch.Size((1, 1_6) ) self.assertEqual(logits.shape , lowercase__ ) __A =torch.tensor( [-0.4158, -0.4092, -0.4347] , device=lowercase__ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ) )
184
def __lowerCAmelCase ( A , A , A , A ): # Return True if there is node that has not iterated. UpperCAmelCase_ = [False] * len(A ) UpperCAmelCase_ = [] queue.append(A ) UpperCAmelCase_ = True while queue: UpperCAmelCase_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A ) UpperCAmelCase_ = True UpperCAmelCase_ = u return visited[t] def __lowerCAmelCase ( A , A , A ): # This array is filled by BFS and to store path UpperCAmelCase_ = [-1] * (len(A )) UpperCAmelCase_ = 0 while bfs(A , A , A , A ): UpperCAmelCase_ = float("Inf" ) UpperCAmelCase_ = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ = min(A , graph[parent[s]][s] ) UpperCAmelCase_ = parent[s] max_flow += path_flow UpperCAmelCase_ = sink while v != source: UpperCAmelCase_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ = parent[v] return max_flow _a: Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _a , _a: Optional[int] = 0, 5 print(ford_fulkerson(graph, source, sink))
162
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def A__ ( lowerCamelCase="" ) -> str: UpperCamelCase_: List[str] = tempfile.mkdtemp() return os.path.join(lowerCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Optional[int] = torch.rand(12 , dtype=torch.floataa ) - 0.5 UpperCamelCase_: List[Any] = AgentAudio(snake_case_ ) UpperCamelCase_: str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case_ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case_ ) ) # Ensure that the file contains the same value as the original tensor UpperCamelCase_, UpperCamelCase_: Optional[Any] = sf.read(snake_case_ ) self.assertTrue(torch.allclose(snake_case_ , torch.tensor(snake_case_ ) , atol=1e-4 ) ) def lowerCAmelCase__ ( self : Optional[int] ): UpperCamelCase_: List[Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 UpperCamelCase_: Optional[Any] = get_new_path(suffix=""".wav""" ) sf.write(snake_case_ , snake_case_ , 1_6000 ) UpperCamelCase_: Optional[Any] = AgentAudio(snake_case_ ) self.assertTrue(torch.allclose(snake_case_ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , snake_case_ ) @require_vision @require_torch class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: Any = torch.randint(0 , 256 , (64, 64, 3) ) UpperCamelCase_: Tuple = AgentImage(snake_case_ ) UpperCamelCase_: Dict = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case_ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case_ ) ) def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Any = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" UpperCamelCase_: Dict = Image.open(snake_case_ ) UpperCamelCase_: List[str] = AgentImage(snake_case_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case_ ) ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Optional[int] = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" UpperCamelCase_: List[Any] = Image.open(snake_case_ ) UpperCamelCase_: int = AgentImage(snake_case_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case_ ) ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Dict ): UpperCamelCase_: Optional[Any] = """Hey!""" UpperCamelCase_: int = AgentText(snake_case_ ) self.assertEqual(snake_case_ , agent_type.to_string() ) self.assertEqual(snake_case_ , agent_type.to_raw() ) self.assertEqual(snake_case_ , snake_case_ )
670
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Dict = logging.get_logger(__name__) class _UpperCamelCase ( _A ): '''simple docstring''' def __init__( self : List[str] , snake_case_ : Tuple=None , **snake_case_ : List[str] ): warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
670
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = 42 lowerCAmelCase_ = None class __A ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 2 @register_to_config def __init__( self , __lowerCAmelCase = 0.02 , __lowerCAmelCase = 1_0_0 , __lowerCAmelCase = 1.007 , __lowerCAmelCase = 8_0 , __lowerCAmelCase = 0.05 , __lowerCAmelCase = 5_0 , ): '''simple docstring''' lowerCamelCase__ = sigma_max # setable values lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None # sigma(t_i) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' return sample def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' lowerCamelCase__ = num_inference_steps lowerCamelCase__ = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCamelCase__ = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) lowerCamelCase__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCamelCase__ = torch.tensor(__lowerCAmelCase , dtype=torch.floataa , device=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: lowerCamelCase__ = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCamelCase__ = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCamelCase__ = self.config.s_noise * randn_tensor(sample.shape , generator=__lowerCAmelCase ).to(sample.device ) lowerCamelCase__ = sigma + gamma * sigma lowerCamelCase__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , ): '''simple docstring''' lowerCamelCase__ = sample_hat + sigma_hat * model_output lowerCamelCase__ = (sample_hat - pred_original_sample) / sigma_hat lowerCamelCase__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__lowerCAmelCase , derivative=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True , ): '''simple docstring''' lowerCamelCase__ = sample_prev + sigma_prev * model_output lowerCamelCase__ = (sample_prev - pred_original_sample) / sigma_prev lowerCamelCase__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=__lowerCAmelCase , derivative=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' raise NotImplementedError()
481
def lowerCAmelCase__(__snake_case ) -> list: '''simple docstring''' def merge(__snake_case ,__snake_case ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__snake_case ) <= 1: return collection lowerCamelCase__ = len(__snake_case ) // 2 return merge(merge_sort(collection[:mid] ) ,merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() _a = input("Enter numbers separated by a comma:\n").strip() _a = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
481
1
"""simple docstring""" import cva import numpy as np class UpperCamelCase : def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" if k in (0.04, 0.06): _SCREAMING_SNAKE_CASE : Optional[Any] = k _SCREAMING_SNAKE_CASE : Optional[int] = window_size else: raise ValueError("invalid k value" ) def __str__( self ): """simple docstring""" return str(self.k ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = cva.imread(snake_case__ , 0 ) _SCREAMING_SNAKE_CASE : Any = img.shape _SCREAMING_SNAKE_CASE : list[list[int]] = [] _SCREAMING_SNAKE_CASE : str = img.copy() _SCREAMING_SNAKE_CASE : List[Any] = cva.cvtColor(snake_case__ , cva.COLOR_GRAY2RGB ) _SCREAMING_SNAKE_CASE : str = np.gradient(snake_case__ ) _SCREAMING_SNAKE_CASE : str = dx**2 _SCREAMING_SNAKE_CASE : Any = dy**2 _SCREAMING_SNAKE_CASE : Optional[int] = dx * dy _SCREAMING_SNAKE_CASE : List[Any] = 0.04 _SCREAMING_SNAKE_CASE : Union[str, Any] = self.window_size // 2 for y in range(snake_case__ , h - offset ): for x in range(snake_case__ , w - offset ): _SCREAMING_SNAKE_CASE : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _SCREAMING_SNAKE_CASE : Tuple = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _SCREAMING_SNAKE_CASE : List[str] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _SCREAMING_SNAKE_CASE : Optional[int] = (wxx * wyy) - (wxy**2) _SCREAMING_SNAKE_CASE : Union[str, Any] = wxx + wyy _SCREAMING_SNAKE_CASE : Any = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowercase_ : Optional[int] = HarrisCorner(0.0_4, 3) lowercase_ : Union[str, Any] = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
720
"""simple docstring""" from __future__ import annotations lowercase_ : List[str] = '''#''' class UpperCamelCase : def __init__( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : dict = {} def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = self._trie for char in text: if char not in trie: _SCREAMING_SNAKE_CASE : List[str] = {} _SCREAMING_SNAKE_CASE : List[str] = trie[char] _SCREAMING_SNAKE_CASE : Optional[Any] = True def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = self._trie for char in prefix: if char in trie: _SCREAMING_SNAKE_CASE : str = trie[char] else: return [] return self._elements(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = [] for c, v in d.items(): _SCREAMING_SNAKE_CASE : int = [" "] if c == END else [(c + s) for s in self._elements(snake_case__ )] result.extend(snake_case__ ) return tuple(snake_case__ ) lowercase_ : Union[str, Any] = Trie() lowercase_ : Optional[Any] = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def _lowerCAmelCase ( lowerCamelCase__ : str ) -> tuple: _SCREAMING_SNAKE_CASE : Dict = trie.find_word(lowerCamelCase__ ) return tuple(string + word for word in suffixes ) def _lowerCAmelCase ( ) -> None: print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
295
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __a = logging.getLogger(__name__) def lowerCamelCase__ ( _lowercase=2 , _lowercase=3 , _lowercase=16 , _lowercase = 10 , _lowercase = 2 ): '''simple docstring''' def get_dataset(_lowercase ): UpperCAmelCase_ : Optional[int] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(_lowercase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCAmelCase_ : Tuple = get_dataset(_lowercase ) UpperCAmelCase_ : List[Any] = get_dataset(_lowercase ) UpperCAmelCase_ : Optional[int] = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) UpperCAmelCase_ : int = DataLoader(_lowercase , shuffle=_lowercase , batch_size=_lowercase , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [] for epoch in range(_lowercase ): # Train quickly model.train() for batch in dataloader: UpperCAmelCase_, UpperCAmelCase_ : int = batch UpperCAmelCase_ : List[Any] = model(_lowercase ) UpperCAmelCase_ : Dict = torch.nn.functional.mse_loss(_lowercase , _lowercase ) accelerator.backward(_lowercase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __a( nn.Module ): """simple docstring""" def __init__( self ) -> Dict: super().__init__() UpperCAmelCase_ : List[str] = nn.Parameter(torch.randn(1 ) ) UpperCAmelCase_ : int = nn.Parameter(torch.randn(1 ) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Optional[int]: return x * self.a + self.b class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_, UpperCAmelCase_ : str = dummy_dataloaders() UpperCAmelCase_ : Any = ProjectConfiguration(total_limit=1 ,project_dir=_SCREAMING_SNAKE_CASE ,automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase_ : str = Accelerator(project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : int = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) ,1 ) def a__ ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : Union[str, Any] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = dummy_dataloaders() # Train baseline UpperCAmelCase_ : Union[str, Any] = Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : int = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save initial UpperCAmelCase_ : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE ,'''initial''' ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Optional[Any] = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() UpperCAmelCase_ : Optional[Any] = train(3 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : int = model.a.item(), model.b.item() UpperCAmelCase_ : Tuple = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase_ : Tuple = DummyModel() UpperCAmelCase_ : Dict = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_, UpperCAmelCase_ : List[Any] = dummy_dataloaders() UpperCAmelCase_ : List[str] = Accelerator() UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) accelerator.load_state(_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = train(2 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save everything UpperCAmelCase_ : Union[str, Any] = os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoint''' ) accelerator.save_state(_SCREAMING_SNAKE_CASE ) # Load everything back in and make sure all states work accelerator.load_state(_SCREAMING_SNAKE_CASE ) test_rands += train(1 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Union[str, Any] = model.a.item(), model.b.item() UpperCAmelCase_ : Any = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ : str = DummyModel() UpperCAmelCase_ : List[str] = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_, UpperCAmelCase_ : int = dummy_dataloaders() UpperCAmelCase_ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase_ : Optional[int] = Accelerator(project_dir=_SCREAMING_SNAKE_CASE ,project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : str = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() ((UpperCAmelCase_), (UpperCAmelCase_)) : int = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() UpperCAmelCase_ : int = train(3 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : List[str] = optimizer.state_dict() # Train partially set_seed(42 ) UpperCAmelCase_ : Optional[int] = DummyModel() UpperCAmelCase_ : str = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_, UpperCAmelCase_ : Optional[Any] = dummy_dataloaders() UpperCAmelCase_ : List[str] = ProjectConfiguration(iteration=1 ,automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = Accelerator(project_dir=_SCREAMING_SNAKE_CASE ,project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) accelerator.load_state(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_0''' ) ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Dict = model.a.item(), model.b.item() UpperCAmelCase_ : List[Any] = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = train(2 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_1''' ) ) test_rands += train(1 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) ((UpperCAmelCase_), (UpperCAmelCase_)) : Optional[int] = model.a.item(), model.b.item() UpperCAmelCase_ : str = optimizer.state_dict() self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : str = torch.tensor([1, 2, 3] ) UpperCAmelCase_ : Any = torch.tensor([2, 3, 4] ) UpperCAmelCase_ : int = DummyModel() UpperCAmelCase_ : Tuple = torch.optim.Adam(net.parameters() ) UpperCAmelCase_ : Optional[int] = Accelerator() with self.assertRaises(_SCREAMING_SNAKE_CASE ) as ve: accelerator.register_for_checkpointing(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def a__ ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ : Any = DummyModel() UpperCAmelCase_ : Any = torch.optim.Adam(params=model.parameters() ,lr=1e-3 ) UpperCAmelCase_ : Union[str, Any] = torch.optim.lr_scheduler.StepLR(_SCREAMING_SNAKE_CASE ,step_size=1 ,gamma=0.99 ) UpperCAmelCase_, UpperCAmelCase_ : Tuple = dummy_dataloaders() UpperCAmelCase_ : str = ProjectConfiguration(automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ) # Train baseline UpperCAmelCase_ : List[str] = Accelerator(project_dir=_SCREAMING_SNAKE_CASE ,project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : List[Any] = accelerator.prepare( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # Save initial accelerator.save_state() UpperCAmelCase_ : int = scheduler.state_dict() train(3 ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) self.assertNotEqual(_SCREAMING_SNAKE_CASE ,scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_0''' ) ) self.assertEqual(_SCREAMING_SNAKE_CASE ,scheduler.state_dict() ) def a__ ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCAmelCase_ : List[str] = DummyModel() UpperCAmelCase_ : Dict = ProjectConfiguration(automatic_checkpoint_naming=_SCREAMING_SNAKE_CASE ,total_limit=2 ) # Train baseline UpperCAmelCase_ : Tuple = Accelerator(project_dir=_SCREAMING_SNAKE_CASE ,project_config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(_SCREAMING_SNAKE_CASE ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE ,'''checkpoints''' ,'''checkpoint_10''' ) ) ) @require_cuda def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_SCREAMING_SNAKE_CASE ,env=os.environ.copy() ) if __name__ == "__main__": __a = '/tmp/accelerate/state_checkpointing' __a = DummyModel() __a = torch.optim.Adam(params=model.parameters(), lr=1E-3) __a = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __a ,__a = dummy_dataloaders() __a = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __a = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __a ,__a ,__a ,__a ,__a = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __a ,__a = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __a = group['params'][0].device break assert param_device.type == accelerator.device.type __a = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: __a = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: __a = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
30
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''trocr''' __lowerCAmelCase = ['''past_key_values'''] __lowerCAmelCase = { '''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model''', '''num_hidden_layers''': '''decoder_layers''', } def __init__( self , _UpperCAmelCase=50265 , _UpperCAmelCase=1024 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=4096 , _UpperCAmelCase="gelu" , _UpperCAmelCase=512 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , **_UpperCAmelCase , ): __a : List[str] = vocab_size __a : Optional[Any] = d_model __a : Optional[Any] = decoder_layers __a : Union[str, Any] = decoder_attention_heads __a : int = decoder_ffn_dim __a : List[Any] = activation_function __a : Any = max_position_embeddings __a : Dict = dropout __a : List[Any] = attention_dropout __a : Optional[Any] = activation_dropout __a : str = init_std __a : List[str] = decoder_layerdrop __a : Union[str, Any] = use_cache __a : Optional[Any] = scale_embedding __a : List[Any] = use_learned_position_embeddings __a : Optional[int] = layernorm_embedding super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
52
0
from maths.prime_check import is_prime def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ = f"Input value of [number={number}] must be an integer" raise TypeError(SCREAMING_SNAKE_CASE ) if is_prime(SCREAMING_SNAKE_CASE ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
563
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } __lowercase = { """yjernite/retribert-base-uncased""": 512, } __lowercase = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class _lowercase ( __lowerCamelCase ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Tuple = PRETRAINED_INIT_CONFIGURATION _lowercase : List[Any] = RetriBertTokenizer _lowercase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] , lowerCamelCase__ : int=None , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Dict=True , lowerCamelCase__ : Union[str, Any]="[UNK]" , lowerCamelCase__ : Optional[Any]="[SEP]" , lowerCamelCase__ : List[Any]="[PAD]" , lowerCamelCase__ : Tuple="[CLS]" , lowerCamelCase__ : List[Any]="[MASK]" , lowerCamelCase__ : Dict=True , lowerCamelCase__ : str=None , **lowerCamelCase__ : List[Any] , ) -> Dict: """simple docstring""" super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCamelCase__ ) != tokenize_chinese_chars ): A_ = getattr(lowerCamelCase__ , normalizer_state.pop('''type''' ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**lowerCamelCase__ ) A_ = do_lower_case def UpperCamelCase ( self : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str]=None ) -> Union[str, Any]: """simple docstring""" A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase ( self : Any , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Union[str, Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" A_ = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
563
1
import random def __lowerCAmelCase ( _A ,_A ): """simple docstring""" _lowercase , _lowercase , _lowercase = [], [], [] for element in data: if element < pivot: less.append(_lowercase ) elif element > pivot: greater.append(_lowercase ) else: equal.append(_lowercase ) return less, equal, greater def __lowerCAmelCase ( _A ,_A ): """simple docstring""" if index >= len(_lowercase ) or index < 0: return None _lowercase = items[random.randint(0 ,len(_lowercase ) - 1 )] _lowercase = 0 _lowercase , _lowercase , _lowercase = _partition(_lowercase ,_lowercase ) _lowercase = len(_lowercase ) _lowercase = len(_lowercase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_lowercase ,_lowercase ) # must be in larger else: return quick_select(_lowercase ,index - (m + count) )
398
"""simple docstring""" def __snake_case ( _lowercase ): """simple docstring""" UpperCamelCase = [0 for i in range(len(_lowercase ) )] # initialize interval's left pointer and right pointer UpperCamelCase , UpperCamelCase = 0, 0 for i in range(1 ,len(_lowercase ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase = min(right_pointer - i + 1 ,z_result[i - left_pointer] ) UpperCamelCase = min_edge while go_next(_lowercase ,_lowercase ,_lowercase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase , UpperCamelCase = i, i + z_result[i] - 1 return z_result def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" return i + z_result[i] < len(_lowercase ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( _lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowercase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
34
0
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) a= logging.getLogger() def _UpperCamelCase ( ): """simple docstring""" __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('-f' ) __UpperCamelCase : Dict = parser.parse_args() return args.f def _UpperCamelCase ( _a : List[Any] ): """simple docstring""" __UpperCamelCase : str = {} __UpperCamelCase : List[str] = os.path.join(_lowercase , 'all_results.json' ) if os.path.exists(_lowercase ): with open(_lowercase , 'r' ) as f: __UpperCamelCase : Optional[int] = json.load(_lowercase ) else: raise ValueError(f"""can't find {path}""" ) return results def _UpperCamelCase ( ): """simple docstring""" __UpperCamelCase : str = torch.cuda.is_available() and torch_device == 'cuda' return is_using_cuda and is_apex_available() a= logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowercase ( _lowerCamelCase ): """simple docstring""" @classmethod def lowerCAmelCase ( cls ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __UpperCamelCase : Dict = tempfile.mkdtemp() __UpperCamelCase : List[Any] = os.path.join(cls.tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) __UpperCamelCase : str = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def lowerCAmelCase ( cls ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowerCAmelCase ( self ): __UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) __UpperCamelCase : str = get_results(__A ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(__A , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__A , 'glue_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowerCAmelCase ( self ): __UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() __UpperCamelCase : str = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __UpperCamelCase : List[str] = get_results(__A ) self.assertLess(result['perplexity'] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(__A , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__A , 'clm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowerCAmelCase ( self ): __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) __UpperCamelCase : int = get_results(__A ) self.assertLess(result['perplexity'] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(__A , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__A , 'mlm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowerCAmelCase ( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __UpperCamelCase : int = 7 if get_gpu_count() > 1 else 2 __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : Any = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[Any] = get_results(__A ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) self.assertLess(result['train_loss'] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(__A , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__A , 'ner_no_trainer' ) ) ) @unittest.skip(reason='Fix me @muellerzr' ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowerCAmelCase ( self ): __UpperCamelCase : Tuple = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[str] = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) __UpperCamelCase : str = get_results(__A ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['eval_f1'] , 2_8 ) self.assertGreaterEqual(result['eval_exact'] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(__A , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__A , 'qa_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowerCAmelCase ( self ): __UpperCamelCase : List[str] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Dict = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(__A ) self.assertGreaterEqual(result['eval_accuracy'] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(__A , 'swag_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowerCAmelCase ( self ): __UpperCamelCase : Dict = self.get_auto_remove_tmp_dir() __UpperCamelCase : List[Any] = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[Any] = get_results(__A ) self.assertGreaterEqual(result['eval_rouge1'] , 1_0 ) self.assertGreaterEqual(result['eval_rouge2'] , 2 ) self.assertGreaterEqual(result['eval_rougeL'] , 7 ) self.assertGreaterEqual(result['eval_rougeLsum'] , 7 ) self.assertTrue(os.path.exists(os.path.join(__A , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__A , 'summarization_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowerCAmelCase ( self ): __UpperCamelCase : List[str] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Any = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) __UpperCamelCase : List[str] = get_results(__A ) self.assertGreaterEqual(result['eval_bleu'] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(__A , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__A , 'translation_no_trainer' ) ) ) @slow def lowerCAmelCase ( self ): __UpperCamelCase : Dict = logging.StreamHandler(sys.stdout ) logger.addHandler(__A ) __UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) __UpperCamelCase : Optional[int] = get_results(__A ) self.assertGreaterEqual(result['eval_overall_accuracy'] , 0.1_0 ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def lowerCAmelCase ( self ): __UpperCamelCase : List[Any] = self.get_auto_remove_tmp_dir() __UpperCamelCase : Tuple = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) __UpperCamelCase : int = get_results(__A ) # The base model scores a 25% self.assertGreaterEqual(result['eval_accuracy'] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(__A , 'step_1' ) ) ) self.assertTrue(os.path.exists(os.path.join(__A , 'image_classification_no_trainer' ) ) )
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a= { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a= [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys a= _LazyModule(__name__, globals()['''__file__'''], _import_structure)
287
0
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Union[str, Any]: with open(lowerCamelCase_ , encoding='''utf-8''' ) as input_file: lowerCAmelCase__ = re.compile(r'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) lowerCAmelCase__ = input_file.read() lowerCAmelCase__ = regexp.search(lowerCamelCase_ ) return match def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[Any]: with open(lowerCamelCase_ , encoding='''utf-8''' ) as input_file: lowerCAmelCase__ = re.compile(r'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) lowerCAmelCase__ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowerCAmelCase__ = regexp.finditer(lowerCamelCase_ ) lowerCAmelCase__ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: lowerCAmelCase__ = Path('''./datasets''' ) lowerCAmelCase__ = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCamelCase_ ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = Path('''./datasets''' ) lowerCAmelCase__ = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCamelCase_ ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
90
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers UpperCamelCase__ = float('nan') class A : def __init__(self : str , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = sys.stdout UpperCAmelCase__ = open(__UpperCAmelCase , "a" ) def __getattr__(self : str , __UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" return getattr(self.stdout , __UpperCAmelCase ) def lowercase_ (self : List[Any] , __UpperCAmelCase : int ) -> Dict: """simple docstring""" self.stdout.write(__UpperCAmelCase ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , __UpperCAmelCase , 0 , re.M ) ) def lowerCAmelCase_ ( __A=80, __A=False ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = [] # deal with critical env vars UpperCAmelCase__ = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: UpperCAmelCase__ = os.environ.get(__A, __A ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) UpperCAmelCase__ = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(__A ) # now the normal args cmd += list(map(shlex.quote, sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes UpperCAmelCase__ = [] UpperCAmelCase__ = "" while len(__A ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(__A ) == 0 or len(__A ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(__A ) UpperCAmelCase__ = "" return "\\\n".join(__A ) def lowerCAmelCase_ ( __A, __A ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = re.sub(r"[\\\n]+", " ", args.base_cmd ) # remove --output_dir if any and set our own UpperCAmelCase__ = re.sub("--output_dir\s+[^\s]+", "", args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir UpperCAmelCase__ = re.sub("--overwrite_output_dir\s+", "", args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A ) -> List[Any]: '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0, 100 ) for k in metric_keys}, **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )}, ) UpperCAmelCase__ = subprocess.run(__A, capture_output=__A, text=__A ) if verbose: print("STDOUT", result.stdout ) print("STDERR", result.stderr ) # save the streams UpperCAmelCase__ = variation.replace(" ", "-" ) with open(Path(__A ) / f"""log.{prefix}.stdout.txt""", "w" ) as f: f.write(result.stdout ) with open(Path(__A ) / f"""log.{prefix}.stderr.txt""", "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""", "r", encoding="utf-8" ) as f: UpperCAmelCase__ = json.load(__A ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A, __A, __A, __A, __A, ) -> int: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = f"""{id}: {variation:<{longest_variation_len}}""" UpperCAmelCase__ = f"""{preamble}: """ UpperCAmelCase__ = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(__A ), desc=__A, leave=__A ): UpperCAmelCase__ = process_run_single( __A, __A, __A, __A, __A, __A, __A ) UpperCAmelCase__ = single_run_metrics[target_metric_key] if not math.isnan(__A ): metrics.append(__A ) results.append(__A ) outcome += "✓" else: outcome += "✘" UpperCAmelCase__ = f"""\33[2K\r{outcome}""" if len(__A ) > 0: UpperCAmelCase__ = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} UpperCAmelCase__ = round(mean_metrics[target_metric_key], 2 ) UpperCAmelCase__ = f"""{outcome} {mean_target}""" if len(__A ) > 1: results_str += f""" {tuple(round(__A, 2 ) for x in results )}""" print(__A ) UpperCAmelCase__ = variation return mean_metrics else: print(__A ) return {variation_key: variation, target_metric_key: nan} def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = torch.cuda.get_device_properties(torch.device("cuda" ) ) return f""" Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = pd.DataFrame(__A ) UpperCAmelCase__ = "variation" UpperCAmelCase__ = "diff_%" UpperCAmelCase__ = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan UpperCAmelCase__ = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(__A ): # as a fallback, use the minimal value as the sentinel UpperCAmelCase__ = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(__A ): UpperCAmelCase__ = df.apply( lambda __A : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0, axis="columns", ) # re-order columns UpperCAmelCase__ = [variation_key, target_metric_key, diff_key, *report_metric_keys] UpperCAmelCase__ = df.reindex(__A, axis="columns" ) # reorder cols # capitalize UpperCAmelCase__ = df.rename(str.capitalize, axis="columns" ) # make the cols as narrow as possible UpperCAmelCase__ = df.rename(lambda __A : c.replace("_", "<br>" ), axis="columns" ) UpperCAmelCase__ = df.rename(lambda __A : c.replace("_", "\n" ), axis="columns" ) UpperCAmelCase__ = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=__A, floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=__A, floatfmt=".2f" )] print("\n\n".join(__A ) ) def lowerCAmelCase_ ( ) -> int: '''simple docstring''' UpperCAmelCase__ = argparse.ArgumentParser() parser.add_argument( "--base-cmd", default=__A, type=__A, required=__A, help="Base cmd", ) parser.add_argument( "--variations", default=__A, type=__A, nargs="+", required=__A, help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'", ) parser.add_argument( "--base-variation", default=__A, type=__A, help="Baseline variation to compare to. if None the minimal target value will be used to compare against", ) parser.add_argument( "--target-metric-key", default=__A, type=__A, required=__A, help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second", ) parser.add_argument( "--report-metric-keys", default="", type=__A, help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples", ) parser.add_argument( "--repeat-times", default=1, type=__A, help="How many times to re-run each variation - an average will be reported", ) parser.add_argument( "--output_dir", default="output_benchmark", type=__A, help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked", ) parser.add_argument( "--verbose", default=__A, action="store_true", help="Whether to show the outputs of each run or just the benchmark progress", ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = args.output_dir Path(__A ).mkdir(exist_ok=__A ) UpperCAmelCase__ = get_base_command(__A, __A ) # split each dimension into its --foo variations UpperCAmelCase__ = [list(map(str.strip, re.split(r"\|", __A ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty UpperCAmelCase__ = list(map(str.strip, map(" ".join, itertools.product(*__A ) ) ) ) UpperCAmelCase__ = max(len(__A ) for x in variations ) # split wanted keys UpperCAmelCase__ = args.report_metric_keys.split() # capture prints into a log file for convenience UpperCAmelCase__ = f"""benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) UpperCAmelCase__ = Tee(__A ) print(f"""\n*** Running {len(__A )} benchmarks:""" ) print(f"""Base command: {" ".join(__A )}""" ) UpperCAmelCase__ = "variation" UpperCAmelCase__ = [] for id, variation in enumerate(tqdm(__A, desc="Total completion: ", leave=__A ) ): UpperCAmelCase__ = base_cmd + variation.split() results.append( process_run( id + 1, __A, __A, __A, __A, args.target_metric_key, __A, args.repeat_times, __A, args.verbose, ) ) process_results(__A, args.target_metric_key, __A, args.base_variation, __A ) if __name__ == "__main__": main()
486
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'gptsan-japanese' lowerCamelCase = [ 'past_key_values', ] lowerCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str],lowercase_ : str=3_6_0_0_0,lowercase_ : Any=1_2_8_0,lowercase_ : int=1_0_2_4,lowercase_ : str=8_1_9_2,lowercase_ : Union[str, Any]=4_0_9_6,lowercase_ : Optional[int]=1_2_8,lowercase_ : Optional[Any]=1_0,lowercase_ : int=0,lowercase_ : int=1_6,lowercase_ : Any=1_6,lowercase_ : Optional[Any]=1_2_8,lowercase_ : Any=0.0,lowercase_ : Any=1E-5,lowercase_ : Tuple=False,lowercase_ : Dict=0.0,lowercase_ : Union[str, Any]="float32",lowercase_ : Union[str, Any]=False,lowercase_ : List[Any]=False,lowercase_ : Union[str, Any]=False,lowercase_ : str=0.002,lowercase_ : Optional[Any]=False,lowercase_ : str=True,lowercase_ : Dict=3_5_9_9_8,lowercase_ : Any=3_5_9_9_5,lowercase_ : Union[str, Any]=3_5_9_9_9,**lowercase_ : Optional[Any],)-> Dict: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = d_model A__ = d_ff A__ = d_ext A__ = d_spout A__ = num_switch_layers A__ = num_ext_layers A__ = num_switch_layers + num_ext_layers A__ = num_heads A__ = num_experts A__ = expert_capacity A__ = dropout_rate A__ = layer_norm_epsilon A__ = router_bias A__ = router_jitter_noise A__ = router_dtype A__ = router_ignore_padding_tokens A__ = output_hidden_states A__ = output_attentions A__ = initializer_factor A__ = output_router_logits A__ = use_cache super().__init__( separator_token_id=lowercase_,pad_token_id=lowercase_,eos_token_id=lowercase_,**lowercase_,)
708
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json", "google/bigbird-roberta-large": "https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json", "google/bigbird-base-trivia-itc": "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'big_bird' def __init__( self : Dict,lowercase_ : Optional[int]=5_0_3_5_8,lowercase_ : Union[str, Any]=7_6_8,lowercase_ : str=1_2,lowercase_ : int=1_2,lowercase_ : Optional[int]=3_0_7_2,lowercase_ : Dict="gelu_new",lowercase_ : Dict=0.1,lowercase_ : Any=0.1,lowercase_ : Optional[Any]=4_0_9_6,lowercase_ : List[Any]=2,lowercase_ : List[str]=0.02,lowercase_ : List[Any]=1E-12,lowercase_ : Dict=True,lowercase_ : List[Any]=0,lowercase_ : int=1,lowercase_ : Optional[int]=2,lowercase_ : List[Any]=6_6,lowercase_ : List[Any]="block_sparse",lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=False,lowercase_ : List[str]=6_4,lowercase_ : Optional[Any]=3,lowercase_ : Optional[int]=None,**lowercase_ : Optional[int],)-> str: '''simple docstring''' super().__init__( pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,sep_token_id=lowercase_,**lowercase_,) A__ = vocab_size A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps A__ = use_cache A__ = rescale_embeddings A__ = attention_type A__ = use_bias A__ = block_size A__ = num_random_blocks A__ = classifier_dropout class A ( _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : List[str] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
586
0
import argparse import os import re A : Any = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict A : Dict = re.compile(R'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings A : List[str] = re.compile(R'''\s*\(\s*\"(\S[^\"]+)\"''') def __lowerCamelCase ( __a :int , __a :bool = False ) -> List[str]: """simple docstring""" with open(_lowercase , """r""" , encoding="""utf-8""" ) as f: A__ = f.read() A__ = content.split("""\n""" ) A__ = [] A__ = 0 while line_idx < len(_lowercase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: A__ = len(re.search(R"""^(\s*)\S""" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 A__ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": A__ = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers A__ = sorted(_lowercase , key=lambda __a : _re_identifier.search(_lowercase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_lowercase , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(_lowercase ) ) elif "\n".join(_lowercase ) != content: return True def __lowerCamelCase ( __a :bool = False ) -> List[Any]: """simple docstring""" A__ = [os.path.join(_lowercase , _lowercase ) for f in os.listdir(_lowercase ) if f.endswith(""".py""" )] A__ = [sort_auto_mapping(_lowercase , overwrite=_lowercase ) for fname in fnames] if not overwrite and any(_lowercase ): A__ = [f for f, d in zip(_lowercase , _lowercase ) if d] raise ValueError( F'The following files have auto mappings that need sorting: {", ".join(_lowercase )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') A : List[Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
176
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __lowerCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' _A = PriorTransformer _A = "hidden_states" @property def snake_case__( self: Union[str, Any] ): lowercase__ : List[Any] = 4 lowercase__ : Optional[int] = 8 lowercase__ : List[str] = 7 lowercase__ : Optional[Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Union[str, Any] = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Any = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__( self: int, lowerCamelCase_: Dict=0 ): torch.manual_seed(lowerCamelCase_ ) lowercase__ : Tuple = 4 lowercase__ : List[Any] = 8 lowercase__ : List[str] = 7 lowercase__ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def snake_case__( self: str ): return (4, 8) @property def snake_case__( self: List[str] ): return (4, 8) def snake_case__( self: Dict ): lowercase__ : int = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } lowercase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def snake_case__( self: int ): lowercase__ , lowercase__ : Dict = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy', output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ), 0 ) model.to(lowerCamelCase_ ) lowercase__ : Tuple = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def snake_case__( self: str ): lowercase__ , lowercase__ : List[Any] = self.prepare_init_args_and_inputs_for_common() lowercase__ : Optional[int] = self.model_class(**lowerCamelCase_ ) lowercase__ : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Dict = [*signature.parameters.keys()] lowercase__ : List[str] = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2], lowerCamelCase_ ) def snake_case__( self: Union[str, Any] ): lowercase__ : str = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) lowercase__ : Optional[int] = model.to(lowerCamelCase_ ) if hasattr(lowerCamelCase_, 'set_default_attn_processor' ): model.set_default_attn_processor() lowercase__ : List[str] = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ : str = model(**lowerCamelCase_ )[0] lowercase__ : int = output[0, :5].flatten().cpu() print(lowerCamelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ : List[str] = torch.tensor([-1.3_4_3_6, -0.2_8_7_0, 0.7_5_3_8, 0.4_3_6_8, -0.0_2_3_9] ) self.assertTrue(torch_all_close(lowerCamelCase_, lowerCamelCase_, rtol=1E-2 ) ) @slow class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def snake_case__( self: Tuple, lowerCamelCase_: Union[str, Any]=1, lowerCamelCase_: Tuple=768, lowerCamelCase_: Dict=77, lowerCamelCase_: Union[str, Any]=0 ): torch.manual_seed(lowerCamelCase_ ) lowercase__ : Dict = batch_size lowercase__ : Dict = embedding_dim lowercase__ : Dict = num_embeddings lowercase__ : int = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : str = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) lowercase__ : List[str] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def snake_case__( self: str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5_8_6_1, 0.1_2_8_3, -0.0_9_3_1, 0.0_8_8_2, 0.4_4_7_6, 0.1_3_2_9, -0.0_4_9_8, 0.0_6_4_0]], [37, [-0.4_9_1_3, 0.0_1_1_0, -0.0_4_8_3, 0.0_5_4_1, 0.4_9_5_4, -0.0_1_7_0, 0.0_3_5_4, 0.1_6_5_1]], # fmt: on ] ) def snake_case__( self: Optional[Any], lowerCamelCase_: List[str], lowerCamelCase_: str ): lowercase__ : List[Any] = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior', subfolder='prior' ) model.to(lowerCamelCase_ ) lowercase__ : Optional[int] = self.get_dummy_seed_input(seed=lowerCamelCase_ ) with torch.no_grad(): lowercase__ : List[str] = model(**lowerCamelCase_ )[0] assert list(sample.shape ) == [1, 768] lowercase__ : Union[str, Any] = sample[0, :8].flatten().cpu() print(lowerCamelCase_ ) lowercase__ : Optional[Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_, lowerCamelCase_, atol=1E-3 )
266
0
'''simple docstring''' def _lowerCAmelCase ( __a ) -> bool: '''simple docstring''' _UpperCamelCase :str =[int(__a ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(__a ) == 4 and all(0 <= int(__a ) <= 2_54 for octet in octets ) if __name__ == "__main__": _lowerCamelCase : List[str] = input().strip() _lowerCamelCase : Optional[Any] = """valid""" if is_ip_va_address_valid(ip) else """invalid""" print(f"{ip} is a {valid_or_invalid} IP v4 address.")
512
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase__ ( __snake_case , unittest.TestCase ): __UpperCAmelCase = BertTokenizer __UpperCAmelCase = BertTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = filter_non_english def _UpperCamelCase ( self ) -> str: """simple docstring""" super().setUp() _UpperCamelCase :Optional[Any] =[ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _UpperCamelCase :Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _UpperCamelCase ( self , lowerCAmelCase__ ) -> List[Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] ="""UNwant\u00E9d,running""" _UpperCamelCase :Optional[int] ="""unwanted, running""" return input_text, output_text def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase :Tuple =self.tokenizer_class(self.vocab_file ) _UpperCamelCase :int =tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCAmelCase__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [9, 6, 7, 12, 10, 11] ) def _UpperCamelCase ( self ) -> int: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCamelCase :List[str] =self.get_tokenizer() _UpperCamelCase :Dict =self.get_rust_tokenizer() _UpperCamelCase :Tuple ="""UNwant\u00E9d,running""" _UpperCamelCase :Optional[Any] =tokenizer.tokenize(lowerCAmelCase__ ) _UpperCamelCase :Tuple =rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase :Any =tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase :Union[str, Any] =rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase :Any =self.get_rust_tokenizer() _UpperCamelCase :Optional[int] =tokenizer.encode(lowerCAmelCase__ ) _UpperCamelCase :int =rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # With lower casing _UpperCamelCase :str =self.get_tokenizer(do_lower_case=lowerCAmelCase__ ) _UpperCamelCase :Optional[Any] =self.get_rust_tokenizer(do_lower_case=lowerCAmelCase__ ) _UpperCamelCase :Union[str, Any] ="""UNwant\u00E9d,running""" _UpperCamelCase :Union[str, Any] =tokenizer.tokenize(lowerCAmelCase__ ) _UpperCamelCase :Tuple =rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase :Dict =tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase :str =rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase :Optional[int] =self.get_rust_tokenizer() _UpperCamelCase :Dict =tokenizer.encode(lowerCAmelCase__ ) _UpperCamelCase :Dict =rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :Union[str, Any] =BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def _UpperCamelCase ( self ) -> int: """simple docstring""" _UpperCamelCase :str =BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase :List[Any] =BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :int =BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :Tuple =BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" _UpperCamelCase :Dict =BasicTokenizer(do_lower_case=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" _UpperCamelCase :Any =BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :Optional[Any] =BasicTokenizer(do_lower_case=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Optional[Any] =BasicTokenizer(do_lower_case=lowerCAmelCase__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def _UpperCamelCase ( self ) -> int: """simple docstring""" _UpperCamelCase :Optional[int] =BasicTokenizer() _UpperCamelCase :List[Any] ="""a\n'll !!to?'d of, can't.""" _UpperCamelCase :Optional[Any] =["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" _UpperCamelCase :Tuple =["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _UpperCamelCase :Tuple ={} for i, token in enumerate(lowerCAmelCase__ ): _UpperCamelCase :Any =i _UpperCamelCase :List[Any] =WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def _UpperCamelCase ( self ) -> int: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Dict =self.get_tokenizer() _UpperCamelCase :Optional[Any] =self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCAmelCase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCAmelCase__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :List[Any] =self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) _UpperCamelCase :List[str] =tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase :str =tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase :Tuple =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) _UpperCamelCase :Any =tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase :Tuple =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase :int =f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase :Any =tokenizer_r.encode_plus( lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , ) _UpperCamelCase :Union[str, Any] =tokenizer_r.do_lower_case if hasattr(lowerCAmelCase__ , """do_lower_case""" ) else False _UpperCamelCase :str =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :int =["""的""", """人""", """有"""] _UpperCamelCase :int ="""""".join(lowerCAmelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase :Optional[int] =True _UpperCamelCase :Tuple =self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase :Any =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase :Union[str, Any] =tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase :str =tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase :Any =tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__ ) _UpperCamelCase :Dict =tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase :Optional[Any] =False _UpperCamelCase :int =self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase :Dict =self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase :Any =tokenizer_r.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase :List[str] =tokenizer_p.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase :Union[str, Any] =tokenizer_r.convert_ids_to_tokens(lowerCAmelCase__ ) _UpperCamelCase :str =tokenizer_p.convert_ids_to_tokens(lowerCAmelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase :Optional[int] =[ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(lowerCAmelCase__ ) ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
512
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class lowercase__ ( A_ ): __UpperCAmelCase = '''deberta-v2''' def __init__( self , SCREAMING_SNAKE_CASE=12_8100 , SCREAMING_SNAKE_CASE=1536 , SCREAMING_SNAKE_CASE=24 , SCREAMING_SNAKE_CASE=24 , SCREAMING_SNAKE_CASE=6144 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-7 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=-1 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="gelu" , **SCREAMING_SNAKE_CASE , ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : int = intermediate_size _lowerCamelCase : List[str] = hidden_act _lowerCamelCase : List[str] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : List[Any] = max_position_embeddings _lowerCamelCase : Tuple = type_vocab_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Optional[int] = relative_attention _lowerCamelCase : Optional[int] = max_relative_positions _lowerCamelCase : Optional[int] = pad_token_id _lowerCamelCase : Any = position_biased_input # Backwards compatibility if type(SCREAMING_SNAKE_CASE) == str: _lowerCamelCase : Optional[int] = [x.strip() for x in pos_att_type.lower().split("""|""")] _lowerCamelCase : int = pos_att_type _lowerCamelCase : Optional[Any] = vocab_size _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = kwargs.get("""pooler_hidden_size""" , SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = pooler_dropout _lowerCamelCase : Optional[int] = pooler_hidden_act class lowercase__ ( A_ ): @property def UpperCamelCase_ ( self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCamelCase : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCamelCase : int = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)]) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)]) @property def UpperCamelCase_ ( self) -> int: return 12 def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 40 , SCREAMING_SNAKE_CASE = 40 , SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: _lowerCamelCase : int = super().generate_dummy_inputs(preprocessor=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
88
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class A ( UpperCamelCase_ ): UpperCamelCase__ : List[str] =['pixel_values'] def __init__( self : Any , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = True , **lowercase_ : str , ) -> None: """simple docstring""" super().__init__(**lowercase_ ) _lowerCamelCase : Optional[int] =size if size is not None else {'shortest_edge': 224} _lowerCamelCase : List[Any] =get_size_dict(lowercase_ , default_to_square=lowercase_ ) _lowerCamelCase : str =crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCamelCase : str =get_size_dict(lowercase_ , default_to_square=lowercase_ , param_name='crop_size' ) _lowerCamelCase : Dict =do_resize _lowerCamelCase : int =size _lowerCamelCase : Optional[Any] =resample _lowerCamelCase : Optional[int] =do_center_crop _lowerCamelCase : Tuple =crop_size _lowerCamelCase : Optional[int] =do_rescale _lowerCamelCase : Optional[Any] =rescale_factor _lowerCamelCase : Union[str, Any] =do_normalize _lowerCamelCase : Optional[int] =image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCamelCase : Any =image_std if image_std is not None else OPENAI_CLIP_STD _lowerCamelCase : Any =do_convert_rgb def lowerCamelCase ( self : int , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Any , ) -> np.ndarray: """simple docstring""" _lowerCamelCase : int =get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowerCamelCase : Union[str, Any] =get_resize_output_image_size(lowercase_ , size=size['shortest_edge'] , default_to_square=lowercase_ ) return resize(lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : Union[str, Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ) -> np.ndarray: """simple docstring""" _lowerCamelCase : Union[str, Any] =get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowercase_ , size=(size['height'], size['width']) , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : str , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : int , ) -> str: """simple docstring""" return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : Optional[int] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ) -> np.ndarray: """simple docstring""" return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase ( self : List[str] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : int = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : bool = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **lowercase_ : Union[str, Any] , ) -> PIL.Image.Image: """simple docstring""" _lowerCamelCase : Union[str, Any] =do_resize if do_resize is not None else self.do_resize _lowerCamelCase : List[str] =size if size is not None else self.size _lowerCamelCase : Any =get_size_dict(lowercase_ , param_name='size' , default_to_square=lowercase_ ) _lowerCamelCase : str =resample if resample is not None else self.resample _lowerCamelCase : List[Any] =do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCamelCase : Optional[Any] =crop_size if crop_size is not None else self.crop_size _lowerCamelCase : Dict =get_size_dict(lowercase_ , param_name='crop_size' , default_to_square=lowercase_ ) _lowerCamelCase : str =do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase : List[str] =do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : Tuple =image_mean if image_mean is not None else self.image_mean _lowerCamelCase : int =image_std if image_std is not None else self.image_std _lowerCamelCase : Tuple =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCamelCase : Any =make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCamelCase : Tuple =[convert_to_rgb(lowercase_ ) for image in images] # All transformations expect numpy arrays. _lowerCamelCase : Optional[Any] =[to_numpy_array(lowercase_ ) for image in images] if do_resize: _lowerCamelCase : Optional[Any] =[self.resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ ) for image in images] if do_center_crop: _lowerCamelCase : Optional[int] =[self.center_crop(image=lowercase_ , size=lowercase_ ) for image in images] if do_rescale: _lowerCamelCase : Optional[Any] =[self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: _lowerCamelCase : List[Any] =[self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] _lowerCamelCase : List[str] =[to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] _lowerCamelCase : Tuple ={'pixel_values': images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
464
0
'''simple docstring''' import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration A ={ 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def snake_case_ (_a : Tuple ): UpperCAmelCase = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_a , _a ) A ={ 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def snake_case_ (_a : List[Any] ): UpperCAmelCase = list(s_dict.keys() ) for key in keys: UpperCAmelCase = key for k, v in WHISPER_MAPPING.items(): if k in key: UpperCAmelCase = new_key.replace(_a , _a ) print(F"{key} -> {new_key}" ) UpperCAmelCase = s_dict.pop(_a ) return s_dict def snake_case_ (_a : int ): UpperCAmelCase , UpperCAmelCase = emb.weight.shape UpperCAmelCase = nn.Linear(_a , _a , bias=_a ) UpperCAmelCase = emb.weight.data return lin_layer def snake_case_ (_a : str , _a : str ): os.makedirs(_a , exist_ok=_a ) UpperCAmelCase = os.path.basename(_a ) UpperCAmelCase = url.split('''/''' )[-2] UpperCAmelCase = os.path.join(_a , _a ) if os.path.exists(_a ) and not os.path.isfile(_a ): raise RuntimeError(F"{download_target} exists and is not a regular file" ) if os.path.isfile(_a ): UpperCAmelCase = open(_a , '''rb''' ).read() if hashlib.shaaaa(_a ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(_a ) as source, open(_a , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=8_0 , unit='''iB''' , unit_scale=_a , unit_divisor=1_0_2_4 ) as loop: while True: UpperCAmelCase = source.read(8_1_9_2 ) if not buffer: break output.write(_a ) loop.update(len(_a ) ) UpperCAmelCase = open(_a , '''rb''' ).read() if hashlib.shaaaa(_a ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def snake_case_ (_a : int , _a : Optional[Any] ): if ".pt" not in checkpoint_path: UpperCAmelCase = _download(_MODELS[checkpoint_path] ) else: UpperCAmelCase = torch.load(_a , map_location='''cpu''' ) UpperCAmelCase = original_checkpoint['''dims'''] UpperCAmelCase = original_checkpoint['''model_state_dict'''] UpperCAmelCase = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_a ) rename_keys(_a ) UpperCAmelCase = True UpperCAmelCase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] UpperCAmelCase = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_a , decoder_ffn_dim=_a , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) UpperCAmelCase = WhisperForConditionalGeneration(_a ) UpperCAmelCase , UpperCAmelCase = model.model.load_state_dict(_a , strict=_a ) if len(_a ) > 0 and not set(_a ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F" but all the following weights are missing {missing}" ) if tie_embeds: UpperCAmelCase = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCAmelCase = proj_out_weights model.save_pretrained(_a ) if __name__ == "__main__": A =argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') A =parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
358
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _a ( unittest.TestCase ): def __init__( self : List[Any] , lowercase : Dict , lowercase : List[str]=13 , lowercase : str=7 , lowercase : List[str]=True , lowercase : List[str]=True , lowercase : Optional[Any]=True , lowercase : Optional[Any]=True , lowercase : Any=99 , lowercase : Any=32 , lowercase : Any=5 , lowercase : Tuple=4 , lowercase : List[Any]=37 , lowercase : List[Any]="gelu" , lowercase : int=0.1 , lowercase : Any=0.1 , lowercase : Optional[int]=512 , lowercase : List[str]=16 , lowercase : Union[str, Any]=2 , lowercase : int=0.02 , lowercase : int=4 , ): '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_attention_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_choices def A ( self : Any ): '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_attention_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = True UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _a ( __a , unittest.TestCase ): __a : Any = True __a : str = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def A ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowercase ) UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowercase ) @require_flax class _a ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowercase ) UpperCAmelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) UpperCAmelCase = model(lowercase )[0] UpperCAmelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowercase ) # compare the actual values for a slice. UpperCAmelCase = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) ) @slow def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowercase ) UpperCAmelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) UpperCAmelCase = model(lowercase )[0] # compare the actual values for a slice. UpperCAmelCase = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowercase , atol=1E-4 ) )
358
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : Any = 'poolformer' def __init__( self , snake_case=3 , snake_case=16 , snake_case=16 , snake_case=3 , snake_case=4.0 , snake_case=[2, 2, 6, 2] , snake_case=[64, 128, 320, 512] , snake_case=[7, 3, 3, 3] , snake_case=[4, 2, 2, 2] , snake_case=[2, 1, 1, 1] , snake_case=4 , snake_case=0.0 , snake_case="gelu" , snake_case=True , snake_case=1e-5 , snake_case=0.02 , **snake_case , ): """simple docstring""" lowerCAmelCase__ : str = num_channels lowerCAmelCase__ : int = patch_size lowerCAmelCase__ : Optional[Any] = stride lowerCAmelCase__ : List[Any] = padding lowerCAmelCase__ : Tuple = pool_size lowerCAmelCase__ : Any = hidden_sizes lowerCAmelCase__ : Optional[int] = mlp_ratio lowerCAmelCase__ : List[Any] = depths lowerCAmelCase__ : Union[str, Any] = patch_sizes lowerCAmelCase__ : Optional[Any] = strides lowerCAmelCase__ : Tuple = num_encoder_blocks lowerCAmelCase__ : int = drop_path_rate lowerCAmelCase__ : str = hidden_act lowerCAmelCase__ : Union[str, Any] = use_layer_scale lowerCAmelCase__ : Optional[Any] = layer_scale_init_value lowerCAmelCase__ : List[str] = initializer_range super().__init__(**snake_case ) class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return 2e-3
453
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowercase__ ) -> float: return 1_0 - x * x def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> float: # Bolzano theory in order to find if there is a root between a and b if equation(lowercase__ ) * equation(lowercase__ ) >= 0: raise ValueError("Wrong space!" ) lowerCAmelCase__ : Union[str, Any] = a while (b - a) >= 0.01: # Find middle point lowerCAmelCase__ : int = (a + b) / 2 # Check if middle point is root if equation(lowercase__ ) == 0.0: break # Decide the side to repeat the steps if equation(lowercase__ ) * equation(lowercase__ ) < 0: lowerCAmelCase__ : str = c else: lowerCAmelCase__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
453
1
def lowerCamelCase_ ( _lowercase = 100 ) -> int: __A : List[Any] = set() __A : Any = 0 __A : Optional[Any] = n + 1 # maximum limit for a in range(2 , _lowercase ): for b in range(2 , _lowercase ): __A : Optional[int] = a**b # calculates the current power collect_powers.add(_lowercase ) # adds the result to the set return len(_lowercase ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
387
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase=5 ) -> str: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count("<mask>" ) == 1 __A : Optional[Any] = torch.tensor(tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) ).unsqueeze(0 ) # Batch size 1 __A : List[str] = model(_lowercase )[0] # The last hidden-state is the first element of the output tuple __A : Optional[int] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __A : Optional[Any] = logits[0, masked_index, :] __A : int = logits.softmax(dim=0 ) __A , __A : Union[str, Any] = prob.topk(k=_lowercase , dim=0 ) __A : Dict = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowercase ) )] ) __A : Dict = tokenizer.mask_token __A : str = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): __A : int = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(_lowercase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(_lowercase ) , _lowercase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowercase , _lowercase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs UpperCamelCase = CamembertTokenizer.from_pretrained('camembert-base') UpperCamelCase = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() UpperCamelCase = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
387
1
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase =["model.decoder.embed_positions.weights"] def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]: if "emb" in name: __lowerCamelCase = name.replace('''emb''' , '''model.decoder.embed_tokens''' ) if "transformer" in name: __lowerCamelCase = name.replace('''transformer''' , '''model.decoder''' ) if "cross_attention" in name: __lowerCamelCase = name.replace('''cross_attention''' , '''encoder_attn''' ) if "linear1" in name: __lowerCamelCase = name.replace('''linear1''' , '''fc1''' ) if "linear2" in name: __lowerCamelCase = name.replace('''linear2''' , '''fc2''' ) if "norm1" in name: __lowerCamelCase = name.replace('''norm1''' , '''self_attn_layer_norm''' ) if "norm_cross" in name: __lowerCamelCase = name.replace('''norm_cross''' , '''encoder_attn_layer_norm''' ) if "norm2" in name: __lowerCamelCase = name.replace('''norm2''' , '''final_layer_norm''' ) if "out_norm" in name: __lowerCamelCase = name.replace('''out_norm''' , '''model.decoder.layer_norm''' ) if "linears" in name: __lowerCamelCase = name.replace('''linears''' , '''lm_heads''' ) if "condition_provider.conditioners.description.output_proj" in name: __lowerCamelCase = name.replace('''condition_provider.conditioners.description.output_proj''' , '''enc_to_dec_proj''' ) return name def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Tuple[Dict, Dict]: __lowerCamelCase = list(state_dict.keys() ) __lowerCamelCase = {} for key in keys: __lowerCamelCase = state_dict.pop(__lowerCAmelCase ) __lowerCamelCase = rename_keys(__lowerCAmelCase ) if "in_proj_weight" in key: # split fused qkv proj __lowerCamelCase = val[:hidden_size, :] __lowerCamelCase = val[hidden_size : 2 * hidden_size, :] __lowerCamelCase = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __lowerCamelCase = val else: __lowerCamelCase = val return state_dict, enc_dec_proj_state_dict def __lowerCAmelCase ( UpperCamelCase__ ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values __lowerCamelCase = 10_24 __lowerCamelCase = 24 __lowerCamelCase = 16 elif checkpoint == "medium": __lowerCamelCase = 15_36 __lowerCamelCase = 48 __lowerCamelCase = 24 elif checkpoint == "large": __lowerCamelCase = 20_48 __lowerCamelCase = 48 __lowerCamelCase = 32 else: raise ValueError(f"""Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.""" ) __lowerCamelCase = MusicgenDecoderConfig( hidden_size=__lowerCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=__lowerCAmelCase , num_attention_heads=__lowerCAmelCase , ) return config @torch.no_grad() def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="cpu" ) -> Optional[int]: __lowerCamelCase = MusicGen.get_pretrained(__lowerCAmelCase , device=__lowerCAmelCase ) __lowerCamelCase = decoder_config_from_checkpoint(__lowerCAmelCase ) __lowerCamelCase = fairseq_model.lm.state_dict() __lowerCamelCase = rename_state_dict( __lowerCAmelCase , hidden_size=decoder_config.hidden_size ) __lowerCamelCase = TaEncoderModel.from_pretrained('''t5-base''' ) __lowerCamelCase = EncodecModel.from_pretrained('''facebook/encodec_32khz''' ) __lowerCamelCase = MusicgenForCausalLM(__lowerCAmelCase ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __lowerCamelCase = decoder.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) for key in missing_keys.copy(): if key.startswith(('''text_encoder''', '''audio_encoder''') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: raise ValueError(f"""Missing key(s) in state_dict: {missing_keys}""" ) if len(__lowerCAmelCase ) > 0: raise ValueError(f"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model __lowerCamelCase = MusicgenForConditionalGeneration(text_encoder=__lowerCAmelCase , audio_encoder=__lowerCAmelCase , decoder=__lowerCAmelCase ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__lowerCAmelCase ) # check we can do a forward pass __lowerCamelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __lowerCamelCase = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __lowerCamelCase = model(input_ids=__lowerCAmelCase , decoder_input_ids=__lowerCAmelCase ).logits if logits.shape != (8, 1, 20_48): raise ValueError('''Incorrect shape for logits''' ) # now construct the processor __lowerCamelCase = AutoTokenizer.from_pretrained('''t5-base''' ) __lowerCamelCase = AutoFeatureExtractor.from_pretrained('''facebook/encodec_32khz''' , padding_side='''left''' ) __lowerCamelCase = MusicgenProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) # set the appropriate bos/pad token ids __lowerCamelCase = 20_48 __lowerCamelCase = 20_48 # set other default generation config params __lowerCamelCase = int(30 * audio_encoder.config.frame_rate ) __lowerCamelCase = True __lowerCamelCase = 3.0 if pytorch_dump_folder is not None: Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) logger.info(f"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) if repo_id: logger.info(f"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(__lowerCAmelCase ) processor.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) __UpperCAmelCase =parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
546
import os import pytest from transformers.dynamic_module_utils import get_imports UpperCamelCase = '\nimport os\n' UpperCamelCase = '\ndef foo():\n import os\n return False\n' UpperCamelCase = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' UpperCamelCase = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , __lowerCAmelCase ) def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ) -> str: __UpperCamelCase : str = os.path.join(__lowerCAmelCase , """test_file.py""" ) with open(__lowerCAmelCase , """w""" ) as _tmp_file: _tmp_file.write(__lowerCAmelCase ) __UpperCamelCase : Optional[int] = get_imports(__lowerCAmelCase ) assert parsed_imports == ["os"]
269
0
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = PhobertTokenizer _SCREAMING_SNAKE_CASE = False def A ( self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] UpperCamelCase = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) UpperCamelCase = ['#version: 0.2', 'l à</w>'] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase__ ) ) def A ( self : Any , **UpperCamelCase__ : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def A ( self : Optional[Any] , UpperCamelCase__ : Dict ): """simple docstring""" UpperCamelCase = 'Tôi là VinAI Research' UpperCamelCase = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def A ( self : Any ): """simple docstring""" UpperCamelCase = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = 'Tôi là VinAI Research' UpperCamelCase = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() UpperCamelCase = tokenizer.tokenize(UpperCamelCase__ ) print(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ )
707
'''simple docstring''' def __lowerCamelCase ( A__ , A__ , A__ ) -> float: """simple docstring""" if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate UpperCamelCase = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly UpperCamelCase = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
324
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : str = DiTPipeline __UpperCAmelCase : Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCAmelCase : List[Any] = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } __UpperCAmelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCAmelCase : Tuple = False def __snake_case ( self : int ) -> Any: torch.manual_seed(0 ) __snake_case : Dict = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=lowerCamelCase , ) __snake_case : Optional[int] = AutoencoderKL() __snake_case : str = DDIMScheduler() __snake_case : Union[str, Any] = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def __snake_case ( self : List[str] , lowerCamelCase : Any , lowerCamelCase : List[Any]=0 ) -> List[Any]: if str(lowerCamelCase ).startswith("mps" ): __snake_case : Optional[int] = torch.manual_seed(lowerCamelCase ) else: __snake_case : int = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : Tuple = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __snake_case ( self : List[Any] ) -> List[Any]: __snake_case : Dict = "cpu" __snake_case : Optional[int] = self.get_dummy_components() __snake_case : Dict = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : Optional[Any] = self.get_dummy_inputs(lowerCamelCase ) __snake_case : Tuple = pipe(**lowerCamelCase ).images __snake_case : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __snake_case : int = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) __snake_case : int = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase , 1E-3 ) def __snake_case ( self : Any ) -> Optional[Any]: self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __snake_case ( self : Optional[Any] ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[Any] ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : List[Any] ) -> List[Any]: __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : Any = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __snake_case : Dict = ["vase", "umbrella", "white shark", "white wolf"] __snake_case : Any = pipe.get_label_ids(lowerCamelCase ) __snake_case : Tuple = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): __snake_case : Union[str, Any] = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __snake_case ( self : Dict ) -> Optional[int]: __snake_case : List[str] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __snake_case : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __snake_case : List[str] = ["vase", "umbrella"] __snake_case : int = pipe.get_label_ids(lowerCamelCase ) __snake_case : Optional[Any] = torch.manual_seed(0 ) __snake_case : Dict = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(lowerCamelCase , lowerCamelCase ): __snake_case : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1E-1
81
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "blip_2_vision_model" def __init__(self , _lowercase=1408 , _lowercase=6144 , _lowercase=39 , _lowercase=16 , _lowercase=224 , _lowercase=14 , _lowercase="gelu" , _lowercase=0.0_0001 , _lowercase=0.0 , _lowercase=1e-10 , _lowercase=True , **_lowercase , ): '''simple docstring''' super().__init__(**_lowercase ) __a : Tuple = hidden_size __a : Any = intermediate_size __a : Dict = num_hidden_layers __a : Optional[Any] = num_attention_heads __a : str = patch_size __a : Union[str, Any] = image_size __a : List[Any] = initializer_range __a : List[str] = attention_dropout __a : Union[str, Any] = layer_norm_eps __a : Optional[int] = hidden_act __a : int = qkv_bias @classmethod def lowerCAmelCase__(cls , _lowercase , **_lowercase ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) __a , __a : Optional[int] = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __a : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "blip_2_qformer" def __init__(self , _lowercase=30522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=0 , _lowercase="absolute" , _lowercase=2 , _lowercase=1408 , **_lowercase , ): '''simple docstring''' super().__init__(pad_token_id=_lowercase , **_lowercase ) __a : int = vocab_size __a : Union[str, Any] = hidden_size __a : Union[str, Any] = num_hidden_layers __a : Any = num_attention_heads __a : List[str] = hidden_act __a : Union[str, Any] = intermediate_size __a : Optional[int] = hidden_dropout_prob __a : Any = attention_probs_dropout_prob __a : List[str] = max_position_embeddings __a : Union[str, Any] = initializer_range __a : Union[str, Any] = layer_norm_eps __a : Any = position_embedding_type __a : Union[str, Any] = cross_attention_frequency __a : str = encoder_hidden_size @classmethod def lowerCAmelCase__(cls , _lowercase , **_lowercase ): '''simple docstring''' cls._set_token_in_kwargs(_lowercase ) __a , __a : Optional[int] = cls.get_config_dict(_lowercase , **_lowercase ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __a : Optional[int] = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = "blip-2" _lowerCAmelCase = True def __init__(self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=32 , **_lowercase ): '''simple docstring''' super().__init__(**_lowercase ) if vision_config is None: __a : List[Any] = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: __a : Optional[int] = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: __a : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __a : List[Any] = BlipaVisionConfig(**_lowercase ) __a : List[str] = BlipaQFormerConfig(**_lowercase ) __a : str = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __a : Optional[Any] = CONFIG_MAPPING[text_model_type](**_lowercase ) __a : Dict = self.text_config.tie_word_embeddings __a : Optional[Any] = self.text_config.is_encoder_decoder __a : Union[str, Any] = num_query_tokens __a : Union[str, Any] = self.vision_config.hidden_size __a : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a : Optional[Any] = 1.0 __a : List[str] = 0.02 @classmethod def lowerCAmelCase__(cls , _lowercase , _lowercase , _lowercase , **_lowercase , ): '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowercase , ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = copy.deepcopy(self.__dict__ ) __a : Union[str, Any] = self.vision_config.to_dict() __a : int = self.qformer_config.to_dict() __a : List[Any] = self.text_config.to_dict() __a : int = self.__class__.model_type return output
581
0
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase__ : Optional[Any] = logging.getLogger(__name__) UpperCamelCase__ : List[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) UpperCamelCase__ : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : '''simple docstring''' UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase ,metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } ,) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase ,metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(lowerCAmelCase )} ,) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase ,metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase ,metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase ,metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} ,) @dataclass class _lowercase : '''simple docstring''' UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase ,metadata={'''help''': '''The input training data file (a text file).'''} ) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase ,metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } ,) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase ,metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} ,) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase ,metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} ,) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase ,metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} ,) UpperCAmelCase_ : bool = field( default=lowerCAmelCase ,metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} ,) UpperCAmelCase_ : bool = field( default=lowerCAmelCase ,metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) UpperCAmelCase_ : bool = field(default=lowerCAmelCase ,metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) UpperCAmelCase_ : float = field( default=0.1_5 ,metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) UpperCAmelCase_ : float = field( default=1 / 6 ,metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } ,) UpperCAmelCase_ : int = field( default=5 ,metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) UpperCAmelCase_ : int = field( default=-1 ,metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } ,) UpperCAmelCase_ : bool = field( default=lowerCAmelCase ,metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __UpperCamelCase( _A : DataTrainingArguments , _A : PreTrainedTokenizer , _A : bool = False , _A : Optional[str] = None , ): '''simple docstring''' def _dataset(_A : Dict , _A : int=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=_A , file_path=_A , block_size=args.block_size , ref_path=_A , ) return LineByLineTextDataset(tokenizer=_A , file_path=_A , block_size=args.block_size ) else: return TextDataset( tokenizer=_A , file_path=_A , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_A , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_A ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __UpperCamelCase( ): '''simple docstring''' # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : int = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: UpperCAmelCase__ : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase__ : Dict = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: UpperCAmelCase__ : Dict = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: UpperCAmelCase__ : int = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) UpperCAmelCase__ : Tuple = AutoModelWithLMHead.from_config(_A ) model.resize_token_embeddings(len(_A ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: UpperCAmelCase__ : str = tokenizer.max_len # Our input block size will be the max possible for the model else: UpperCAmelCase__ : List[str] = min(data_args.block_size , tokenizer.max_len ) # Get datasets UpperCAmelCase__ : Dict = ( get_dataset(_A , tokenizer=_A , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) UpperCAmelCase__ : Dict = ( get_dataset(_A , tokenizer=_A , evaluate=_A , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": UpperCAmelCase__ : Tuple = DataCollatorForPermutationLanguageModeling( tokenizer=_A , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: UpperCAmelCase__ : Optional[int] = DataCollatorForWholeWordMask( tokenizer=_A , mlm_probability=data_args.mlm_probability ) else: UpperCAmelCase__ : Tuple = DataCollatorForLanguageModeling( tokenizer=_A , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer UpperCAmelCase__ : Dict = Trainer( model=_A , args=_A , data_collator=_A , train_dataset=_A , eval_dataset=_A , prediction_loss_only=_A , ) # Training if training_args.do_train: UpperCAmelCase__ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_A ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCAmelCase__ : str = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase__ : List[Any] = trainer.evaluate() UpperCAmelCase__ : List[Any] = math.exp(eval_output['''eval_loss'''] ) UpperCAmelCase__ : int = {'''perplexity''': perplexity} UpperCAmelCase__ : List[Any] = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(_A , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , _A , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(_A ) return results def __UpperCamelCase( _A : int ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
496
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : str = '▁' UpperCamelCase__ : Any = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCamelCase__ : Union[str, Any] = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } UpperCamelCase__ : Dict = { 'facebook/m2m100_418M': 1_024, } # fmt: off UpperCamelCase__ : Optional[int] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Optional[int] = ['''input_ids''', '''attention_mask'''] UpperCAmelCase_ : List[int] = [] UpperCAmelCase_ : List[int] = [] def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_="<s>" ,lowerCamelCase_="</s>" ,lowerCamelCase_="</s>" ,lowerCamelCase_="<pad>" ,lowerCamelCase_="<unk>" ,lowerCamelCase_="m2m100" ,lowerCamelCase_ = None ,lowerCamelCase_=8 ,**lowerCamelCase_ ,) -> None: '''simple docstring''' UpperCAmelCase__ : str = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase__ : Dict = language_codes UpperCAmelCase__ : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase__ : Union[str, Any] = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} UpperCAmelCase__ : Any = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowerCamelCase_ ) for lang_code in fairseq_language_code if self.get_lang_token(lowerCamelCase_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCamelCase_ ,tgt_lang=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,language_codes=lowerCamelCase_ ,sp_model_kwargs=self.sp_model_kwargs ,num_madeup_words=lowerCamelCase_ ,**lowerCamelCase_ ,) UpperCAmelCase__ : Optional[int] = vocab_file UpperCAmelCase__ : Optional[Any] = load_json(lowerCamelCase_ ) UpperCAmelCase__ : List[str] = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : List[Any] = spm_file UpperCAmelCase__ : Any = load_spm(lowerCamelCase_ ,self.sp_model_kwargs ) UpperCAmelCase__ : int = len(self.encoder ) UpperCAmelCase__ : Optional[int] = { self.get_lang_token(lowerCamelCase_ ): self.encoder_size + i for i, lang_code in enumerate(lowerCamelCase_ ) } UpperCAmelCase__ : List[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowerCamelCase_ )} UpperCAmelCase__ : List[str] = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase__ : Optional[int] = src_lang if src_lang is not None else '''en''' UpperCAmelCase__ : int = tgt_lang UpperCAmelCase__ : int = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) UpperCAmelCase__ : Optional[int] = num_madeup_words @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> None: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase_ ,out_type=lowerCamelCase_ ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Optional[int]: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowerCamelCase_ ,self.encoder[self.unk_token] ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowerCamelCase_ ,self.unk_token ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Any: '''simple docstring''' UpperCAmelCase__ : Any = [] UpperCAmelCase__ : str = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase_ ) + token UpperCAmelCase__ : str = [] else: current_sub_tokens.append(lowerCamelCase_ ) out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) UpperCAmelCase__ : Dict = [1] * len(self.prefix_tokens ) UpperCAmelCase__ : Optional[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase_ )) + ([0] * len(lowerCamelCase_ )) + suffix_ones def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Tuple = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.__dict__.copy() UpperCAmelCase__ : str = None return state def __setstate__( self ,lowerCamelCase_ ) -> None: '''simple docstring''' UpperCAmelCase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): UpperCAmelCase__ : Dict = {} UpperCAmelCase__ : int = load_spm(self.spm_file ,self.sp_model_kwargs ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase__ : Optional[int] = Path(lowerCamelCase_ ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) UpperCAmelCase__ : Optional[int] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase__ : str = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder ,lowerCamelCase_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file ,lowerCamelCase_ ) elif not os.path.isfile(self.spm_file ): with open(lowerCamelCase_ ,'''wb''' ) as fi: UpperCAmelCase__ : str = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (str(lowerCamelCase_ ), str(lowerCamelCase_ )) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = "en" ,lowerCamelCase_ = None ,lowerCamelCase_ = "ro" ,**lowerCamelCase_ ,) -> BatchEncoding: '''simple docstring''' UpperCAmelCase__ : int = src_lang UpperCAmelCase__ : Tuple = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> Optional[int]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase__ : List[str] = src_lang UpperCAmelCase__ : List[str] = self(lowerCamelCase_ ,add_special_tokens=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = self.get_lang_id(lowerCamelCase_ ) UpperCAmelCase__ : Dict = tgt_lang_id return inputs def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> None: '''simple docstring''' UpperCAmelCase__ : List[Any] = self.get_lang_token(lowerCamelCase_ ) UpperCAmelCase__ : List[Any] = self.lang_token_to_id[lang_token] UpperCAmelCase__ : Union[str, Any] = [self.cur_lang_id] UpperCAmelCase__ : Dict = [self.eos_token_id] def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> None: '''simple docstring''' UpperCAmelCase__ : Any = self.get_lang_token(lowerCamelCase_ ) UpperCAmelCase__ : Optional[int] = self.lang_token_to_id[lang_token] UpperCAmelCase__ : Tuple = [self.cur_lang_id] UpperCAmelCase__ : str = [self.eos_token_id] def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> str: '''simple docstring''' return self.lang_code_to_token[lang] def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> int: '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.get_lang_token(lowerCamelCase_ ) return self.lang_token_to_id[lang_token] def __UpperCamelCase( _A : str , _A : Dict[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = sentencepiece.SentencePieceProcessor(**_A ) spm.Load(str(_A ) ) return spm def __UpperCamelCase( _A : str ): '''simple docstring''' with open(_A , '''r''' ) as f: return json.load(_A ) def __UpperCamelCase( _A : List[str] , _A : str ): '''simple docstring''' with open(_A , '''w''' ) as f: json.dump(_A , _A , indent=2 )
496
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowercase__ : lowercase__ = LEDConfig lowercase__ = {} lowercase__ = """gelu""" def __init__( self : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Any=13 ,lowerCamelCase__ : List[Any]=7 ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : Tuple=99 ,lowerCamelCase__ : List[Any]=32 ,lowerCamelCase__ : Optional[Any]=2 ,lowerCamelCase__ : Optional[Any]=4 ,lowerCamelCase__ : List[Any]=37 ,lowerCamelCase__ : Dict=0.1 ,lowerCamelCase__ : Optional[Any]=0.1 ,lowerCamelCase__ : Tuple=20 ,lowerCamelCase__ : Optional[int]=2 ,lowerCamelCase__ : List[Any]=1 ,lowerCamelCase__ : str=0 ,lowerCamelCase__ : Union[str, Any]=4 ,): '''simple docstring''' _UpperCamelCase : Any = parent _UpperCamelCase : Optional[int] = batch_size _UpperCamelCase : int = seq_length _UpperCamelCase : Optional[int] = is_training _UpperCamelCase : Optional[int] = use_labels _UpperCamelCase : Optional[int] = vocab_size _UpperCamelCase : List[str] = hidden_size _UpperCamelCase : Optional[int] = num_hidden_layers _UpperCamelCase : str = num_attention_heads _UpperCamelCase : List[str] = intermediate_size _UpperCamelCase : Optional[int] = hidden_dropout_prob _UpperCamelCase : Any = attention_probs_dropout_prob _UpperCamelCase : Any = max_position_embeddings _UpperCamelCase : Dict = eos_token_id _UpperCamelCase : Tuple = pad_token_id _UpperCamelCase : Tuple = bos_token_id _UpperCamelCase : Any = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _UpperCamelCase : int = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _UpperCamelCase : Dict = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) _UpperCamelCase : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) _UpperCamelCase : Any = tf.concat([input_ids, eos_tensor] ,axis=1 ) _UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCamelCase : Any = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,attention_window=self.attention_window ,**self.config_updates ,) _UpperCamelCase : int = prepare_led_inputs_dict(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Any = tf.concat( [tf.zeros_like(lowerCamelCase__ )[:, :-1], tf.ones_like(lowerCamelCase__ )[:, -1:]] ,axis=-1 ,) _UpperCamelCase : Optional[int] = global_attention_mask return config, inputs_dict def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : Dict = TFLEDModel(config=lowerCamelCase__ ).get_decoder() _UpperCamelCase : str = inputs_dict['input_ids'] _UpperCamelCase : Union[str, Any] = input_ids[:1, :] _UpperCamelCase : str = inputs_dict['attention_mask'][:1, :] _UpperCamelCase : str = 1 # first forward pass _UpperCamelCase : int = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,use_cache=lowerCamelCase__ ) _UpperCamelCase , _UpperCamelCase : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : int = ids_tensor((self.batch_size, 3) ,config.vocab_size ) _UpperCamelCase : Optional[Any] = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and _UpperCamelCase : Optional[int] = tf.concat([input_ids, next_tokens] ,axis=-1 ) _UpperCamelCase : Tuple = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) _UpperCamelCase : Any = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ )[0] _UpperCamelCase : Tuple = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,past_key_values=lowerCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice _UpperCamelCase : List[str] = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) _UpperCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCamelCase__ ,lowerCamelCase__ ,rtol=1E-3 ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , ): if attention_mask is None: _UpperCamelCase : int = tf.cast(tf.math.not_equal(UpperCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCamelCase : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowercase__ ( lowercase , lowercase , unittest.TestCase ): lowercase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowercase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowercase__ = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : str = TFLEDModelTester(self ) _UpperCamelCase : int = ConfigTester(self ,config_class=lowerCamelCase__ ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase : Tuple = tf.zeros_like(inputs_dict['attention_mask'] ) _UpperCamelCase : Union[str, Any] = 2 _UpperCamelCase : Tuple = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices ,1 ,inputs_dict['global_attention_mask'] ,) _UpperCamelCase : Optional[int] = True _UpperCamelCase : int = self.model_tester.seq_length _UpperCamelCase : Optional[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCamelCase__ : Any ): _UpperCamelCase : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) def check_encoder_attentions_output(lowerCamelCase__ : List[str] ): _UpperCamelCase : Optional[int] = [t.numpy() for t in outputs.encoder_attentions] _UpperCamelCase : Optional[int] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertEqual(len(lowerCamelCase__ ) ,self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_length, seq_length] ,) self.assertListEqual( list(global_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] ,) for model_class in self.all_model_classes: _UpperCamelCase : str = True _UpperCamelCase : Dict = False _UpperCamelCase : str = False _UpperCamelCase : Optional[Any] = model_class(lowerCamelCase__ ) _UpperCamelCase : Dict = model(self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) _UpperCamelCase : Optional[int] = len(lowerCamelCase__ ) self.assertEqual(config.output_hidden_states ,lowerCamelCase__ ) check_encoder_attentions_output(lowerCamelCase__ ) if self.is_encoder_decoder: _UpperCamelCase : Optional[int] = model_class(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = model(self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(config.output_hidden_states ,lowerCamelCase__ ) check_decoder_attentions_output(lowerCamelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _UpperCamelCase : int = True _UpperCamelCase : List[str] = model_class(lowerCamelCase__ ) _UpperCamelCase : Dict = model(self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(config.output_hidden_states ,lowerCamelCase__ ) check_encoder_attentions_output(lowerCamelCase__ ) # Check attention is always last and order is fine _UpperCamelCase : Tuple = True _UpperCamelCase : Any = True _UpperCamelCase : List[Any] = model_class(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = model(self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) ,len(lowerCamelCase__ ) ) self.assertEqual(model.config.output_hidden_states ,lowerCamelCase__ ) check_encoder_attentions_output(lowerCamelCase__ ) @unittest.skip('LED keeps using potentially symbolic tensors in conditionals and breaks tracing.' ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' # TODO: Head-masking not yet implement pass def A__ ( UpperCAmelCase_ ): return tf.constant(UpperCAmelCase_ , dtype=tf.intaa ) snake_case_ : Optional[int] = 1e-4 @slow @require_tf class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : str = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ).led # change to intended input here _UpperCamelCase : Dict = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) _UpperCamelCase : Tuple = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) _UpperCamelCase : Tuple = prepare_led_inputs_dict(model.config ,lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = model(**lowerCamelCase__ )[0] _UpperCamelCase : Union[str, Any] = (1, 1024, 768) self.assertEqual(output.shape ,lowerCamelCase__ ) # change to expected output here _UpperCamelCase : int = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] ,) tf.debugging.assert_near(output[:, :3, :3] ,lowerCamelCase__ ,atol=1E-3 ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : str = TFLEDForConditionalGeneration.from_pretrained('allenai/led-base-16384' ) # change to intended input here _UpperCamelCase : Dict = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) _UpperCamelCase : int = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) _UpperCamelCase : Optional[int] = prepare_led_inputs_dict(model.config ,lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Optional[int] = model(**lowerCamelCase__ )[0] _UpperCamelCase : Optional[Any] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape ,lowerCamelCase__ ) # change to expected output here _UpperCamelCase : str = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] ,) tf.debugging.assert_near(output[:, :3, :3] ,lowerCamelCase__ ,atol=1E-3 ,rtol=1E-3 )
195
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowercase__ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowerCamelCase__ ): _UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Dict = FlaxAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowerCamelCase__ ): _UpperCamelCase : Any = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Any = FlaxAutoModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ ,lowerCamelCase__ ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: _UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : List[Any] = FlaxBertModel.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = tokenizer('Do you support jax jitted function?' ,return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCamelCase__ : Union[str, Any] ): return model(**lowerCamelCase__ ) eval(**lowerCamelCase__ ).block_until_ready() @slow def UpperCamelCase_ ( self : Dict ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: _UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Tuple = FlaxRobertaModel.from_pretrained(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = tokenizer('Do you support jax jitted function?' ,return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCamelCase__ : Union[str, Any] ): return model(**lowerCamelCase__ ) eval(**lowerCamelCase__ ).block_until_ready() def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,'bert-base is not a local folder and is not a valid model identifier' ): _UpperCamelCase : int = FlaxAutoModel.from_pretrained('bert-base' ) def UpperCamelCase_ ( self : str ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _UpperCamelCase : Tuple = FlaxAutoModel.from_pretrained(lowerCamelCase__ ,revision='aaaaaa' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase__ ,'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' ,): _UpperCamelCase : List[Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaisesRegex(lowerCamelCase__ ,'Use `from_pt=True` to load this model' ): _UpperCamelCase : Tuple = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
195
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo SCREAMING_SNAKE_CASE__ = """\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ SCREAMING_SNAKE_CASE__ = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ SCREAMING_SNAKE_CASE__ = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def A__ ( self ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def A__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1 , UpperCAmelCase = 4 , ) -> Optional[int]: '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case , hypotheses=_snake_case , min_len=_snake_case , max_len=_snake_case ) }
708
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: float , __lowerCamelCase: float , __lowerCamelCase: float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif stress < 0: raise ValueError("Stress cannot be negative" ) elif tangential_force < 0: raise ValueError("Tangential Force cannot be negative" ) elif area < 0: raise ValueError("Area cannot be negative" ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
601
0
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = LongformerTokenizer UpperCAmelCase : List[Any] = True UpperCAmelCase : str = LongformerTokenizerFast UpperCAmelCase : int = True def lowerCAmelCase_ ( self : List[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _A = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _A = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _A = {"""unk_token""": """<unk>"""} _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[int] , **_UpperCAmelCase : Union[str, Any] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , **_UpperCAmelCase : Optional[Any] ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[int] ): _A = """lower newer""" _A = """lower newer""" return input_text, output_text def lowerCAmelCase_ ( self : List[Any] ): _A = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A = """lower newer""" _A = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _A = tokenizer.tokenize(_UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokens + [tokenizer.unk_token] _A = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_UpperCAmelCase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_UpperCAmelCase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ ( self : Tuple ): _A = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) _A = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _A = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) _A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ ( self : Dict ): _A = self.get_tokenizer() _A = """Encode this sequence.""" _A = tokenizer.byte_encoder[""" """.encode('utf-8' )[0]] # Testing encoder arguments _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing spaces after special tokens _A = """<mask>""" tokenizer.add_special_tokens( {'mask_token': AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )} ) # mask token has a left space _A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) _A = """Encode <mask> sequence""" _A = """Encode <mask>sequence""" _A = tokenizer.encode(_UpperCAmelCase ) _A = encoded.index(_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase ) _A = encoded.index(_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Any ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) _A = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) _A = """A, <mask> AllenNLP sentence.""" _A = tokenizer_r.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) _A = tokenizer_p.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _A = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _A = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowerCAmelCase_ ( self : int ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _A = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _A = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _UpperCAmelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _UpperCAmelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _A = F'''{text_of_1_token} {text_of_1_token}''' _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ) + 1, 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , )
7
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase :int = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[int] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Any = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys lowerCamelCase :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
667
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[int] , snake_case : int ): '''simple docstring''' A__ : Dict = value A__ : Node | None = None A__ : Node | None = None class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , snake_case : Node ): '''simple docstring''' A__ : Tuple = tree def _UpperCamelCase ( self : List[str] , snake_case : Node | None ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : List[str] ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging A_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = ['input_values', 'attention_mask'] def __init__( self : Union[str, Any] , snake_case : int = 1 , snake_case : int = 1_6000 , snake_case : float = 0.0 , snake_case : bool = False , snake_case : int = 80 , snake_case : int = 16 , snake_case : int = 64 , snake_case : str = "hann_window" , snake_case : float = 1.0 , snake_case : float = 80 , snake_case : float = 7600 , snake_case : float = 1e-10 , snake_case : int = 2 , snake_case : bool = True , **snake_case : Dict , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A__ : Optional[int] = do_normalize A__ : List[Any] = return_attention_mask A__ : Tuple = num_mel_bins A__ : Optional[int] = hop_length A__ : List[str] = win_length A__ : List[Any] = win_function A__ : Tuple = frame_signal_scale A__ : Optional[Any] = fmin A__ : str = fmax A__ : str = mel_floor A__ : Dict = reduction_factor A__ : int = win_length * sampling_rate // 1000 A__ : Optional[Any] = hop_length * sampling_rate // 1000 A__ : Optional[int] = optimal_fft_length(self.sample_size ) A__ : List[Any] = (self.n_fft // 2) + 1 A__ : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) A__ : Optional[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , snake_case , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _UpperCamelCase ( snake_case : List[np.ndarray] , snake_case : List[np.ndarray] , snake_case : float = 0.0 ): '''simple docstring''' if attention_mask is not None: A__ : Tuple = np.array(snake_case , np.intaa ) A__ : List[Any] = [] for vector, length in zip(snake_case , attention_mask.sum(-1 ) ): A__ : str = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: A__ : int = padding_value normed_input_values.append(snake_case ) else: A__ : List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def _UpperCamelCase ( self : Optional[int] , snake_case : np.ndarray , ): '''simple docstring''' A__ : List[Any] = spectrogram( snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self : str , snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , snake_case : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , snake_case : Union[bool, str, PaddingStrategy] = False , snake_case : Optional[int] = None , snake_case : bool = False , snake_case : Optional[int] = None , snake_case : Optional[bool] = None , snake_case : Optional[Union[str, TensorType]] = None , snake_case : Optional[int] = None , **snake_case : Union[str, Any] , ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: A__ : Dict = self._process_audio( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case , ) else: A__ : Dict = None if audio_target is not None: A__ : Union[str, Any] = self._process_audio( snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case , ) if inputs is None: return inputs_target else: A__ : Union[str, Any] = inputs_target["""input_values"""] A__ : str = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: A__ : List[str] = decoder_attention_mask return inputs def _UpperCamelCase ( self : str , snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case : bool = False , snake_case : Union[bool, str, PaddingStrategy] = False , snake_case : Optional[int] = None , snake_case : bool = False , snake_case : Optional[int] = None , snake_case : Optional[bool] = None , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : Union[str, Any] , ): '''simple docstring''' A__ : List[str] = isinstance(snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) A__ : Tuple = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ : Tuple = [np.asarray(snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A__ : Tuple = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A__ : str = speech.astype(np.floataa ) # always return batch if not is_batched: A__ : Optional[Any] = [speech] # needed to make pad() work on spectrogram inputs A__ : str = self.feature_size # convert into correct format for padding if is_target: A__ : str = [self._extract_mel_features(snake_case ) for waveform in speech] A__ : List[str] = BatchFeature({"""input_values""": features} ) A__ : Dict = self.num_mel_bins else: A__ : Tuple = BatchFeature({"""input_values""": speech} ) A__ : List[str] = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) A__ : List[str] = feature_size_hack # convert input values to correct format A__ : str = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): A__ : Tuple = [np.asarray(snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A__ : Dict = [array.astype(np.floataa ) for array in input_values] elif isinstance(snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A__ : Any = input_values.astype(np.floataa ) # convert attention_mask to correct format A__ : List[Any] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: A__ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A__ : Optional[int] = ( attention_mask if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) A__ : Optional[int] = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=snake_case , padding_value=self.padding_value ) if return_tensors is not None: A__ : Any = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs def _UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' A__ : List[str] = super().to_dict() # Don't serialize these as they are derived from the other properties. A__ : Dict = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
498
0
def _a ( lowercase__ : int , lowercase__ : float , lowercase__ : float ): '''simple docstring''' return round(float(moles / volume ) * nfactor ) def _a ( lowercase__ : float , lowercase__ : float , lowercase__ : float ): '''simple docstring''' return round(float((moles * 0.0821 * temperature) / (volume) ) ) def _a ( lowercase__ : float , lowercase__ : float , lowercase__ : float ): '''simple docstring''' return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def _a ( lowercase__ : float , lowercase__ : float , lowercase__ : float ): '''simple docstring''' return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
85
def _lowerCAmelCase ( _lowerCAmelCase = 1000 ) -> int: '''simple docstring''' __snake_case = 2**power __snake_case = str(_lowerCAmelCase ) __snake_case = list(_lowerCAmelCase ) __snake_case = 0 for i in list_num: sum_of_num += int(_lowerCAmelCase ) return sum_of_num if __name__ == "__main__": A : Optional[Any] = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) A : List[Any] = solution(power) print('Sum of the digits is: ', result)
371
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'glpn' def __init__( self , snake_case_=3 , snake_case_=4 , snake_case_=[2, 2, 2, 2] , snake_case_=[8, 4, 2, 1] , snake_case_=[32, 64, 1_60, 2_56] , snake_case_=[7, 3, 3, 3] , snake_case_=[4, 2, 2, 2] , snake_case_=[1, 2, 5, 8] , snake_case_=[4, 4, 4, 4] , snake_case_="gelu" , snake_case_=0.0 , snake_case_=0.0 , snake_case_=0.02 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=64 , snake_case_=10 , snake_case_=-1 , **snake_case_ , ): super().__init__(**snake_case_ ) lowercase =num_channels lowercase =num_encoder_blocks lowercase =depths lowercase =sr_ratios lowercase =hidden_sizes lowercase =patch_sizes lowercase =strides lowercase =mlp_ratios lowercase =num_attention_heads lowercase =hidden_act lowercase =hidden_dropout_prob lowercase =attention_probs_dropout_prob lowercase =initializer_range lowercase =drop_path_rate lowercase =layer_norm_eps lowercase =decoder_hidden_size lowercase =max_depth lowercase =head_in_index
145
'''simple docstring''' import argparse import json import subprocess def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase =[] lowercase =( f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ''' https://api.github.com/repos/huggingface/transformers/actions/runners''' ) lowercase =subprocess.run(lowercase_ , shell=lowercase_ , stdout=subprocess.PIPE ) lowercase =output.stdout.decode('''utf-8''' ) lowercase =json.loads(lowercase_ ) lowercase =status['''runners'''] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(lowercase_ ) # save the result so we can report them on Slack with open('''offline_runners.txt''' , '''w''' ) as fp: fp.write(json.dumps(lowercase_ ) ) if len(lowercase_ ) > 0: lowercase ='''\n'''.join([x['''name'''] for x in offline_runners] ) raise ValueError(f'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def UpperCamelCase ( lowercase_ : int ) -> Optional[int]: '''simple docstring''' return values.split(''',''' ) _UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--target_runners''', default=None, type=list_str, required=True, help='''Comma-separated list of runners to check status.''', ) parser.add_argument( '''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.''' ) _UpperCAmelCase : Optional[int] = parser.parse_args() get_runner_status(args.target_runners, args.token)
145
1
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel snake_case = HfApi() snake_case = {} # fmt: off snake_case = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) snake_case = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) snake_case = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) snake_case = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) snake_case = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) snake_case = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) snake_case = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) snake_case = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) snake_case = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) snake_case = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) snake_case = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) snake_case = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) snake_case = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) snake_case = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) snake_case = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on snake_case = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": snake_case = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(F"Started running {mod.modelId}!!!") if mod.modelId.startswith('''CompVis'''): snake_case = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: snake_case = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) snake_case = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) snake_case = torch.tensor([1_0] * noise.shape[0]) with torch.no_grad(): snake_case = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :3_0], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3 ) print(F"{mod.modelId} has passed successfully!!!")
103
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCamelCase__ ( __lowercase): '''simple docstring''' def _lowerCamelCase ( self :Tuple , a :float ) -> float: return 0.0 def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.ndarray , _lowerCamelCase : int) -> tuple[int | float, int | float]: '''simple docstring''' __UpperCamelCase : List[str] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1])]) __UpperCamelCase : Any = max([20, np.max(fft_results[1 : samplerate // 2 - 1])]) return lowest, highest def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : FilterType , _lowerCamelCase : int) -> None: '''simple docstring''' __UpperCamelCase : List[str] = 512 __UpperCamelCase : List[Any] = [1] + [0] * (size - 1) __UpperCamelCase : List[Any] = [filter_type.process(_lowerCamelCase) for item in inputs] __UpperCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase : Optional[int] = np.abs(np.fft.fft(_lowerCamelCase)) __UpperCamelCase : Optional[int] = 20 * np.logaa(_lowerCamelCase) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1) plt.xlabel("Frequency (Hz)") plt.xscale("log") # Display within reasonable bounds __UpperCamelCase : Optional[Any] = get_bounds(_lowerCamelCase , _lowerCamelCase) plt.ylim(max([-80, bounds[0]]) , min([80, bounds[1]])) plt.ylabel("Gain (dB)") plt.plot(_lowerCamelCase) plt.show() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : FilterType , _lowerCamelCase : int) -> None: '''simple docstring''' __UpperCamelCase : Any = 512 __UpperCamelCase : Dict = [1] + [0] * (size - 1) __UpperCamelCase : Tuple = [filter_type.process(_lowerCamelCase) for item in inputs] __UpperCamelCase : Dict = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase : Optional[int] = np.angle(np.fft.fft(_lowerCamelCase)) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1) plt.xlabel("Frequency (Hz)") plt.xscale("log") plt.ylim(-2 * pi , 2 * pi) plt.ylabel("Phase shift (Radians)") plt.plot(np.unwrap(_lowerCamelCase , -2 * pi)) plt.show()
557
0
import sys from collections import defaultdict class _UpperCamelCase : def __init__( self :List[Any] ) -> str: UpperCAmelCase__ = [] def UpperCAmelCase_ ( self :str , lowerCamelCase :Union[str, Any] ) -> Union[str, Any]: return self.node_position[vertex] def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :Optional[int] , lowerCamelCase :Tuple ) -> Tuple: UpperCAmelCase__ = pos def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :int , lowerCamelCase :Union[str, Any] , lowerCamelCase :Tuple , lowerCamelCase :Optional[Any] ) -> Optional[int]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCAmelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCAmelCase__ = 2 * start + 1 else: UpperCAmelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCAmelCase__ , UpperCAmelCase__ = heap[smallest_child], positions[smallest_child] UpperCAmelCase__ , UpperCAmelCase__ = ( heap[start], positions[start], ) UpperCAmelCase__ , UpperCAmelCase__ = temp, tempa UpperCAmelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCamelCase ) self.top_to_bottom(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :Union[str, Any] , lowerCamelCase :List[str] , lowerCamelCase :List[Any] , lowerCamelCase :Tuple ) -> int: UpperCAmelCase__ = position[index] while index != 0: UpperCAmelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCAmelCase__ = heap[parent] UpperCAmelCase__ = position[parent] self.set_position(position[parent] , lowerCamelCase ) else: UpperCAmelCase__ = val UpperCAmelCase__ = temp self.set_position(lowerCamelCase , lowerCamelCase ) break UpperCAmelCase__ = parent else: UpperCAmelCase__ = val UpperCAmelCase__ = temp self.set_position(lowerCamelCase , 0 ) def UpperCAmelCase_ ( self :List[str] , lowerCamelCase :Dict , lowerCamelCase :Optional[int] ) -> Optional[int]: UpperCAmelCase__ = len(lowerCamelCase ) // 2 - 1 for i in range(lowerCamelCase , -1 , -1 ): self.top_to_bottom(lowerCamelCase , lowerCamelCase , len(lowerCamelCase ) , lowerCamelCase ) def UpperCAmelCase_ ( self :str , lowerCamelCase :List[Any] , lowerCamelCase :Union[str, Any] ) -> List[Any]: UpperCAmelCase__ = positions[0] UpperCAmelCase__ = sys.maxsize self.top_to_bottom(lowerCamelCase , 0 , len(lowerCamelCase ) , lowerCamelCase ) return temp def lowerCAmelCase ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = Heap() UpperCAmelCase__ = [0] * len(_lowerCAmelCase ) UpperCAmelCase__ = [-1] * len(_lowerCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCAmelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCAmelCase__ = [] for vertex in range(len(_lowerCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCAmelCase ) heap.node_position.append(_lowerCAmelCase ) UpperCAmelCase__ = [] UpperCAmelCase__ = 1 UpperCAmelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCAmelCase__ = 0 UpperCAmelCase__ = distance heap.heapify(_lowerCAmelCase , _lowerCAmelCase ) for _ in range(1 , len(_lowerCAmelCase ) ): UpperCAmelCase__ = heap.delete_minimum(_lowerCAmelCase , _lowerCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCAmelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCAmelCase )] ): UpperCAmelCase__ = distance heap.bottom_to_top( _lowerCAmelCase , heap.get_position(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _lowerCAmelCase : Optional[int] = int(input("Enter number of edges: ").strip()) _lowerCAmelCase : List[Any] = defaultdict(list) for _ in range(edges_number): _lowerCAmelCase : List[str] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
364
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _lowerCAmelCase : int = "facebook/wmt19-en-de" _lowerCAmelCase : int = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _lowerCAmelCase : Dict = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _lowerCAmelCase : List[Any] = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _lowerCAmelCase : Optional[Any] = tokenizer(["Making tiny model"], return_tensors="pt") _lowerCAmelCase : Optional[Any] = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save _lowerCAmelCase : Optional[Any] = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
364
1
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> str: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) __lowerCamelCase : List[Any] = precision __lowerCamelCase : Tuple = ceil(precision / 14 ) __lowerCamelCase : Union[str, Any] = 42_68_80 * Decimal(1_00_05 ).sqrt() __lowerCamelCase : List[str] = 1 __lowerCamelCase : Dict = 13_59_14_09 __lowerCamelCase : Union[str, Any] = Decimal(UpperCAmelCase_ ) for k in range(1 , UpperCAmelCase_ ): __lowerCamelCase : List[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(UpperCAmelCase_ ) ** 3) linear_term += 5_45_14_01_34 exponential_term *= -26_25_37_41_26_40_76_80_00 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": A__ : Any = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
13
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: if len(UpperCAmelCase_ ) != 32: raise ValueError('Input must be of length 32' ) __lowerCamelCase : Dict = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:] __lowerCamelCase : str = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = B'' for char in message: bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' ) __lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase_ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]: if len(UpperCAmelCase_ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ): __lowerCamelCase : Any = bit_string[pos : pos + 5_12] __lowerCamelCase : Optional[int] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' ) __lowerCamelCase : Optional[int] = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase_ , 2 ) def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowerCamelCase : Dict = 0x67_45_23_01 __lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89 __lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe __lowerCamelCase : Union[str, Any] = 0x10_32_54_76 __lowerCamelCase : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase_ ): __lowerCamelCase : Dict = aa __lowerCamelCase : Tuple = ba __lowerCamelCase : List[Any] = ca __lowerCamelCase : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowerCamelCase : List[str] = d ^ (b & (c ^ d)) __lowerCamelCase : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) __lowerCamelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: __lowerCamelCase : str = b ^ c ^ d __lowerCamelCase : Any = (3 * i + 5) % 16 else: __lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ )) __lowerCamelCase : int = (7 * i) % 16 __lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowerCamelCase : Optional[Any] = d __lowerCamelCase : Tuple = c __lowerCamelCase : Optional[int] = b __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
13
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase :Tuple = logging.get_logger(__name__) def A ( UpperCAmelCase , UpperCAmelCase ): _snake_case : Tuple = RobertaPreLayerNormConfig.from_pretrained( UpperCAmelCase , architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict _snake_case : Optional[Any] = torch.load(hf_hub_download(repo_id=UpperCAmelCase , filename="pytorch_model.bin" ) ) _snake_case : Optional[Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): _snake_case : str = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue _snake_case : Union[str, Any] = tensor_value _snake_case : Optional[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=UpperCAmelCase , config=UpperCAmelCase , state_dict=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) # convert tokenizer _snake_case : List[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase :Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
701
import sys import turtle def A ( UpperCAmelCase , UpperCAmelCase ): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) triangle(UpperCAmelCase , get_mid(UpperCAmelCase , UpperCAmelCase ) , get_mid(UpperCAmelCase , UpperCAmelCase ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( 'Correct format for using this script: ' 'python fractals.py <int:depth_for_fractal>' ) __lowerCAmelCase :Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('red') __lowerCAmelCase :Optional[int] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
278
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCAmelCase ( a_): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(a_): return ext raise Exception( f'''Unable to determine file format from file extension {path}. ''' f'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''') def __UpperCAmelCase ( a_): snake_case_ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) snake_case_ = try_infer_format_from_ext(args.input) if args.format == 'infer' else args.format snake_case_ = PipelineDataFormat.from_str( format=a_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(a_ , a_) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a ) -> Dict: snake_case_ = nlp snake_case_ = reader @staticmethod def _UpperCamelCase ( a ) -> Dict: snake_case_ = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=a , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=a , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=a , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=a , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=a , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=a , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=a , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=a , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=a ) def _UpperCamelCase ( self ) -> Tuple: snake_case_ , snake_case_ = self._nlp, [] for entry in self._reader: snake_case_ = nlp(**a ) if self._reader.is_multi_columns else nlp(a ) if isinstance(a , a ): outputs.append(a ) else: outputs += output # Saving data if self._nlp.binary_output: snake_case_ = self._reader.save_binary(a ) logger.warning(F'''Current pipeline requires output to be in binary format, saving at {binary_path}''' ) else: self._reader.save(a )
198
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' lowerCAmelCase = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCAmelCase = Features({'''text''': Value('''string''' )} ) lowerCAmelCase = Features({} ) lowerCAmelCase = "text" @property def _UpperCamelCase ( self ) -> Dict[str, str]: return {self.text_column: "text"}
198
1
from __future__ import annotations import math def _lowerCamelCase ( __A : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True SCREAMING_SNAKE_CASE = [num for num in range(3, 100001, 2) if not is_prime(num)] def _lowerCamelCase ( __A : int ) -> list[int]: if not isinstance(__A , __A ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) _UpperCAmelCase : Tuple = [] for num in range(len(__A ) ): _UpperCAmelCase : List[str] = 0 while 2 * i * i <= odd_composites[num]: _UpperCAmelCase : Dict = odd_composites[num] - 2 * i * i if is_prime(__A ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__A ) == n: return list_nums return [] def _lowerCamelCase ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F'{solution() = }')
701
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( __A : int , __A : Optional[Any] , __A : int ) -> int: # Initialise PyTorch model _UpperCAmelCase : Dict = RemBertConfig.from_json_file(__A ) print('''Building PyTorch model from configuration: {}'''.format(str(__A ) ) ) _UpperCAmelCase : int = RemBertModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__A , __A , __A ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(__A ) ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
186
0
import qiskit def _a ( UpperCAmelCase = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" lowerCamelCase__ : Union[str, Any] = qubits # Using Aer's simulator lowerCamelCase__ : str = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register lowerCamelCase__ : str = qiskit.QuantumCircuit(UpperCAmelCase , UpperCAmelCase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , UpperCAmelCase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , UpperCAmelCase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(UpperCAmelCase ) ) , list(range(UpperCAmelCase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator lowerCamelCase__ : List[str] = qiskit.execute(UpperCAmelCase , UpperCAmelCase , shots=1000 ) return job.result().get_counts(UpperCAmelCase ) if __name__ == "__main__": print(F'''Total count for various states are: {quantum_entanglement(3)}''')
315
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _a ( ) -> List[Any]: """simple docstring""" lowerCamelCase__ : Any = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase__ : List[str] = Dataset.from_dict(UpperCAmelCase ) return dataset class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): def __lowerCamelCase ( self : Optional[int] ) ->Tuple: lowerCamelCase__ : Optional[Any] = get_dataset() lowerCamelCase__ : int = make_duplicate_clusters(A , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __lowerCamelCase ( self : List[str] ) ->Any: lowerCamelCase__ : str = get_dataset() lowerCamelCase__ , lowerCamelCase__ : Any = deduplicate_dataset(A ) self.assertEqual(len(A ) , 2 ) print(A ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , A )
315
1
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __UpperCAmelCase ( _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Optional[int]=10 , _UpperCAmelCase : List[str]=1_00 , _UpperCAmelCase : Optional[int]=10_26 , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict="data/tokenized_stories_train_wikitext103.jbl" , _UpperCAmelCase : Optional[Any]="igf_context_pairs.jbl" , ) -> Any: set_seed(3 ) # generate train_data and objective_set __snake_case , __snake_case = generate_datasets( _UpperCAmelCase , _UpperCAmelCase , number=_UpperCAmelCase , min_len=10_26 , trim=_UpperCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __snake_case = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model __snake_case = load_gpta("gpt2" ).to(_UpperCAmelCase ) print("computing perplexity on objective set" ) __snake_case = compute_perplexity(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).item() print("perplexity on objective set:" , _UpperCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : Any=15 , _UpperCAmelCase : Union[str, Any]=1_28 , _UpperCAmelCase : List[str]=1_00 , _UpperCAmelCase : Optional[Any]="igf_model.pt" , ) -> Any: set_seed(42 ) # Load pre-trained model __snake_case = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model __snake_case = SecondaryLearner(_UpperCAmelCase ) # Train secondary learner __snake_case = train_secondary_learner( _UpperCAmelCase , _UpperCAmelCase , max_epochs=_UpperCAmelCase , batch_size=_UpperCAmelCase , eval_freq=1_00 , igf_model_path=_UpperCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : List[str]=10_00 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Optional[int]=recopy_gpta , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : int=10 , _UpperCAmelCase : str="gpt2_finetuned.pt" , ) -> int: __snake_case = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) __snake_case = RandomSampler(_UpperCAmelCase ) __snake_case = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase ) __snake_case = max_steps // (len(_UpperCAmelCase )) + 1 __snake_case = 0 __snake_case = torch.zeros((1, context_len) , dtype=torch.long , device=_UpperCAmelCase ) __snake_case , __snake_case , __snake_case = recopy_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_UpperCAmelCase ) secondary_learner.eval() __snake_case = [] __snake_case = 0 __snake_case = [] __snake_case = [] # Compute the performance of the transformer model at the beginning __snake_case = compute_perplexity(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) test_perps.append(_UpperCAmelCase ) print("Test perplexity, step" , _UpperCAmelCase , ":" , _UpperCAmelCase ) for epoch in range(int(_UpperCAmelCase ) ): for step, example in enumerate(_UpperCAmelCase ): torch.cuda.empty_cache() __snake_case = random.randint(0 , example.size(2 ) - context_len - 1 ) __snake_case = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __snake_case = model(_UpperCAmelCase , labels=_UpperCAmelCase ) __snake_case = True if secondary_learner is not None: __snake_case = secondary_learner.forward( torch.tensor(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_UpperCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __snake_case = -1 if predicted_q < threshold: __snake_case = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __snake_case = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __snake_case = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __snake_case = compute_perplexity(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) test_perps.append(_UpperCAmelCase ) print("Test perplexity, step" , _UpperCAmelCase , ":" , _UpperCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _UpperCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __UpperCAmelCase ( ) -> int: __snake_case = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=1_00 , type=_UpperCAmelCase , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=1_00 , type=_UpperCAmelCase , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=10_00 , type=_UpperCAmelCase , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=1_28 , type=_UpperCAmelCase , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=_UpperCAmelCase , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=_UpperCAmelCase , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=1_00 , type=_UpperCAmelCase , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=10_26 , type=_UpperCAmelCase , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=_UpperCAmelCase , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=_UpperCAmelCase , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=_UpperCAmelCase , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=_UpperCAmelCase , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner __snake_case = joblib.load("data/IGF_values.jbl" ) # Train secondary learner __snake_case = training_secondary_learner( _UpperCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model __snake_case = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __snake_case , __snake_case = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=1_00 , min_len=10_26 , trim=_UpperCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=_UpperCAmelCase , secondary_learner=_UpperCAmelCase , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
680
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
1
"""simple docstring""" import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__( self : Dict , _lowercase : Dict , _lowercase : Optional[int]=13 , _lowercase : Tuple=7 , _lowercase : int=True , _lowercase : Optional[int]=True , _lowercase : int=True , _lowercase : Union[str, Any]=True , _lowercase : str=True , _lowercase : List[str]=False , _lowercase : Dict=False , _lowercase : Optional[Any]=False , _lowercase : Dict=2 , _lowercase : Union[str, Any]=99 , _lowercase : Optional[Any]=0 , _lowercase : List[str]=32 , _lowercase : Optional[int]=5 , _lowercase : int=4 , _lowercase : Tuple=0.1 , _lowercase : List[str]=0.1 , _lowercase : List[str]=512 , _lowercase : List[Any]=2 , _lowercase : Any=0.02 , _lowercase : Tuple=2 , _lowercase : List[Any]=4 , _lowercase : List[Any]="last" , _lowercase : List[Any]=True , _lowercase : Tuple=None , _lowercase : int=0 , ) -> Optional[int]: snake_case : int = parent snake_case : Optional[Any] = batch_size snake_case : Optional[int] = seq_length snake_case : Union[str, Any] = is_training snake_case : int = use_input_lengths snake_case : Optional[Any] = use_token_type_ids snake_case : str = use_labels snake_case : Optional[Any] = gelu_activation snake_case : int = sinusoidal_embeddings snake_case : Any = causal snake_case : List[str] = asm snake_case : str = n_langs snake_case : Optional[int] = vocab_size snake_case : List[Any] = n_special snake_case : List[str] = hidden_size snake_case : Optional[Any] = num_hidden_layers snake_case : Dict = num_attention_heads snake_case : List[Any] = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : Tuple = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : Union[str, Any] = num_labels snake_case : Union[str, Any] = num_choices snake_case : str = summary_type snake_case : str = use_proj snake_case : Optional[Any] = scope snake_case : List[Any] = bos_token_id def __lowercase ( self : str ) -> List[Any]: snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : int = None if self.use_input_lengths: snake_case : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case : List[str] = None if self.use_token_type_ids: snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case : Optional[Any] = None snake_case : Tuple = None snake_case : Union[str, Any] = None if self.use_labels: snake_case : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : int = ids_tensor([self.batch_size] , 2 ).float() snake_case : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) snake_case : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowercase ( self : Any ) -> Optional[Any]: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __lowercase ( self : str , _lowercase : int , _lowercase : Any , _lowercase : List[Any] , _lowercase : Dict , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : List[Any] , ) -> Tuple: snake_case : Union[str, Any] = XLMModel(config=_lowercase ) model.to(_lowercase ) model.eval() snake_case : str = model(_lowercase , lengths=_lowercase , langs=_lowercase ) snake_case : Optional[Any] = model(_lowercase , langs=_lowercase ) snake_case : Dict = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : List[Any] , _lowercase : int , _lowercase : Dict , _lowercase : List[Any] , _lowercase : str , _lowercase : Tuple , _lowercase : List[Any] , _lowercase : List[Any] , _lowercase : List[str] , _lowercase : str , ) -> List[Any]: snake_case : Union[str, Any] = XLMWithLMHeadModel(_lowercase ) model.to(_lowercase ) model.eval() snake_case : int = model(_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : Optional[Any] , _lowercase : Dict , _lowercase : Any , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] , _lowercase : str , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Union[str, Any] , ) -> List[str]: snake_case : Any = XLMForQuestionAnsweringSimple(_lowercase ) model.to(_lowercase ) model.eval() snake_case : Union[str, Any] = model(_lowercase ) snake_case : Optional[Any] = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) snake_case : int = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self : Any , _lowercase : List[str] , _lowercase : str , _lowercase : int , _lowercase : Dict , _lowercase : str , _lowercase : Any , _lowercase : Tuple , _lowercase : Tuple , _lowercase : Tuple , ) -> str: snake_case : Dict = XLMForQuestionAnswering(_lowercase ) model.to(_lowercase ) model.eval() snake_case : Dict = model(_lowercase ) snake_case : Union[str, Any] = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , p_mask=_lowercase , ) snake_case : Union[str, Any] = model( _lowercase , start_positions=_lowercase , end_positions=_lowercase , cls_index=_lowercase , is_impossible=_lowercase , ) ((snake_case) , ) : Dict = result_with_labels.to_tuple() snake_case : Any = model(_lowercase , start_positions=_lowercase , end_positions=_lowercase ) ((snake_case) , ) : Optional[int] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowercase ( self : Tuple , _lowercase : int , _lowercase : str , _lowercase : Dict , _lowercase : str , _lowercase : int , _lowercase : List[Any] , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : Dict , ) -> Optional[Any]: snake_case : Optional[Any] = XLMForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() snake_case : Optional[int] = model(_lowercase ) snake_case : Optional[int] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase ( self : Any , _lowercase : List[Any] , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : Dict , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Optional[Any] , ) -> Tuple: snake_case : Any = self.num_labels snake_case : Optional[Any] = XLMForTokenClassification(_lowercase ) model.to(_lowercase ) model.eval() snake_case : Any = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Tuple , _lowercase : List[Any] , _lowercase : Any , _lowercase : int , _lowercase : Dict , _lowercase : Dict , _lowercase : List[Any] , _lowercase : Optional[Any] , _lowercase : int , _lowercase : Union[str, Any] , ) -> Optional[Any]: snake_case : Optional[Any] = self.num_choices snake_case : int = XLMForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() snake_case : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[str] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self : Optional[int] ) -> int: snake_case : Any = self.prepare_config_and_inputs() ( ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ( snake_case ) , ) : int = config_and_inputs snake_case : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase): __magic_name__ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __magic_name__ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __magic_name__ = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowercase ( self : Optional[Any] , _lowercase : Dict , _lowercase : Any , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : List[str] ) -> Optional[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowercase ( self : Any , _lowercase : List[Any] , _lowercase : int , _lowercase : Tuple=False ) -> int: snake_case : Dict = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) snake_case : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def __lowercase ( self : Dict ) -> Tuple: snake_case : Union[str, Any] = XLMModelTester(self ) snake_case : int = ConfigTester(self , config_class=_lowercase , emb_dim=37 ) def __lowercase ( self : int ) -> Optional[int]: self.config_tester.run_common_tests() def __lowercase ( self : int ) -> Optional[int]: snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*_lowercase ) def __lowercase ( self : int ) -> List[str]: snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*_lowercase ) def __lowercase ( self : str ) -> Union[str, Any]: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*_lowercase ) def __lowercase ( self : str ) -> int: snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*_lowercase ) def __lowercase ( self : Union[str, Any] ) -> Optional[int]: snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*_lowercase ) def __lowercase ( self : Any ) -> List[Any]: snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*_lowercase ) def __lowercase ( self : str ) -> Dict: snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*_lowercase ) def __lowercase ( self : Optional[Any] , _lowercase : int , _lowercase : Dict , _lowercase : int , _lowercase : str , _lowercase : Dict , _lowercase : int=False , _lowercase : Optional[int]=1 ) -> str: self.assertIsInstance(_lowercase , _lowercase ) self.assertListEqual( [isinstance(_lowercase , _lowercase ) for iter_attentions in attentions] , [True] * len(_lowercase ) ) self.assertEqual(len(_lowercase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(_lowercase ): # adds PAD dummy token snake_case : Tuple = min_length + idx + 1 snake_case : List[Any] = min_length + idx + 1 snake_case : Any = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(_lowercase ) ) def __lowercase ( self : int , _lowercase : Any , _lowercase : str , _lowercase : List[str] , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Optional[Any]=False , _lowercase : Union[str, Any]=1 ) -> Any: self.assertIsInstance(_lowercase , _lowercase ) self.assertListEqual( [isinstance(_lowercase , _lowercase ) for iter_hidden_states in hidden_states] , [True] * len(_lowercase ) , ) self.assertEqual(len(_lowercase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(_lowercase ): # adds PAD dummy token snake_case : Dict = min_length + idx + 1 snake_case : str = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(_lowercase ) , ) pass @slow def __lowercase ( self : Optional[int] ) -> Union[str, Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : str = XLMModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch class _a ( unittest.TestCase): @slow def __lowercase ( self : List[str] ) -> Optional[int]: snake_case : str = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(_lowercase ) snake_case : Optional[Any] = torch.tensor([[14, 447]] , dtype=torch.long , device=_lowercase ) # the president snake_case : Optional[int] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case : Union[str, Any] = model.generate(_lowercase , do_sample=_lowercase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , _lowercase )
449
"""simple docstring""" A = 8.31_4462 # Unit - J mol-1 K-1 def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: float , lowerCamelCase_: float , lowerCamelCase_: float ): """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: float , lowerCamelCase_: float , lowerCamelCase_: float ): """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
449
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class snake_case ( unittest.TestCase ): def __init__( self :Dict , _lowerCamelCase :Optional[int] , _lowerCamelCase :str=7 , _lowerCamelCase :List[str]=3 , _lowerCamelCase :Optional[int]=1_0 , _lowerCamelCase :Dict=1_8 , _lowerCamelCase :int=3_0 , _lowerCamelCase :Optional[Any]=4_0_0 , _lowerCamelCase :Tuple=True , _lowerCamelCase :List[str]=None , _lowerCamelCase :Tuple=True , _lowerCamelCase :Optional[Any]=[0.5, 0.5, 0.5] , _lowerCamelCase :int=[0.5, 0.5, 0.5] , _lowerCamelCase :Optional[Any]=None , ): __SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else {'''shortest_edge''': 1_8} __SCREAMING_SNAKE_CASE : List[Any] = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} __SCREAMING_SNAKE_CASE : int = parent __SCREAMING_SNAKE_CASE : int = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels __SCREAMING_SNAKE_CASE : int = num_frames __SCREAMING_SNAKE_CASE : Tuple = image_size __SCREAMING_SNAKE_CASE : Dict = min_resolution __SCREAMING_SNAKE_CASE : str = max_resolution __SCREAMING_SNAKE_CASE : str = do_resize __SCREAMING_SNAKE_CASE : Optional[Any] = size __SCREAMING_SNAKE_CASE : Tuple = do_normalize __SCREAMING_SNAKE_CASE : List[str] = image_mean __SCREAMING_SNAKE_CASE : List[Any] = image_std __SCREAMING_SNAKE_CASE : str = crop_size def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase__ = VivitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : str = VivitImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self :Any ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self :Any ): __SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): # Initialize image_processing __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __SCREAMING_SNAKE_CASE : Tuple = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for video in video_inputs: self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Tuple = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): # Initialize image_processing __SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : Any = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for video in video_inputs: self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : List[Any] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE_ ( self :int ): # Initialize image_processing __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Dict = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for video in video_inputs: self.assertIsInstance(_lowerCamelCase , _lowerCamelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
705
"""simple docstring""" from ...processing_utils import ProcessorMixin class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = '''SpeechT5FeatureExtractor''' lowerCamelCase__ = '''SpeechT5Tokenizer''' def __init__( self :List[Any] , _lowerCamelCase :Optional[int] , _lowerCamelCase :str ): super().__init__(_lowerCamelCase , _lowerCamelCase ) def __call__( self :Optional[int] , *_lowerCamelCase :Dict , **_lowerCamelCase :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''audio''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = kwargs.pop('''text''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''text_target''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''audio_target''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) if audio is not None and text is not None: raise ValueError( '''Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?''' ) if audio_target is not None and text_target is not None: raise ValueError( '''Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?''' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( '''You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.''' ) if audio is not None: __SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) elif text is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Tuple = None if audio_target is not None: __SCREAMING_SNAKE_CASE : Tuple = self.feature_extractor(audio_target=_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = targets['''input_values'''] elif text_target is not None: __SCREAMING_SNAKE_CASE : str = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] else: __SCREAMING_SNAKE_CASE : List[Any] = None if inputs is None: return targets if targets is not None: __SCREAMING_SNAKE_CASE : int = labels __SCREAMING_SNAKE_CASE : Dict = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE : Any = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , *_lowerCamelCase :Dict , **_lowerCamelCase :Any ): __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''input_values''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''input_ids''' , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = kwargs.pop('''labels''' , _lowerCamelCase ) if input_values is not None and input_ids is not None: raise ValueError('''Cannot process both `input_values` and `input_ids` inputs.''' ) if input_values is None and input_ids is None and labels is None: raise ValueError( '''You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.''' ) if input_values is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) elif input_ids is not None: __SCREAMING_SNAKE_CASE : int = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) else: __SCREAMING_SNAKE_CASE : Any = None if labels is not None: if "input_ids" in labels or (isinstance(_lowerCamelCase , _lowerCamelCase ) and "input_ids" in labels[0]): __SCREAMING_SNAKE_CASE : Any = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = targets['''input_ids'''] else: __SCREAMING_SNAKE_CASE : Any = self.feature_extractor.feature_size __SCREAMING_SNAKE_CASE : Any = self.feature_extractor.num_mel_bins __SCREAMING_SNAKE_CASE : Any = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = feature_size_hack __SCREAMING_SNAKE_CASE : Any = targets['''input_values'''] else: __SCREAMING_SNAKE_CASE : Dict = None if inputs is None: return targets if targets is not None: __SCREAMING_SNAKE_CASE : List[Any] = labels __SCREAMING_SNAKE_CASE : int = targets.get('''attention_mask''' ) if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE : List[Any] = decoder_attention_mask return inputs def SCREAMING_SNAKE_CASE_ ( self :Tuple , *_lowerCamelCase :Tuple , **_lowerCamelCase :Union[str, Any] ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , *_lowerCamelCase :List[Any] , **_lowerCamelCase :List[str] ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase )
401
0
"""simple docstring""" from __future__ import annotations import math def lowercase (snake_case__ : int , snake_case__ : int , snake_case__ : bool , snake_case__ : list[int] , snake_case__ : float ) -> int: '''simple docstring''' if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if len(snake_case__ ) == 0: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , snake_case__ , snake_case__ , snake_case__ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case__ , snake_case__ , snake_case__ ) , ) return min( minimax(depth + 1 , node_index * 2 , snake_case__ , snake_case__ , snake_case__ ) , minimax(depth + 1 , node_index * 2 + 1 , snake_case__ , snake_case__ , snake_case__ ) , ) def lowercase () -> None: '''simple docstring''' lowerCAmelCase = [90, 23, 6, 33, 21, 65, 123, 34_423] lowerCAmelCase = math.log(len(snake_case__ ) , 2 ) print("""Optimal value : """ , end="""""" ) print(minimax(0 , 0 , snake_case__ , snake_case__ , snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
169
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = BertJapaneseTokenizer _a = False _a = True def __lowercase ( self : Any ): super().setUp() lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __lowercase ( self : int , lowerCAmelCase : List[Any] ): lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。""" lowerCAmelCase = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def __lowercase ( self : Optional[Any] , lowerCAmelCase : List[Any] ): lowerCAmelCase , lowerCAmelCase = self.get_input_output_texts(lowerCAmelCase ) lowerCAmelCase = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.decode(lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) return text, ids def __lowercase ( self : List[str] ): pass # TODO add if relevant def __lowercase ( self : Optional[Any] ): pass # TODO add if relevant def __lowercase ( self : Any ): pass # TODO add if relevant def __lowercase ( self : List[Any] ): lowerCAmelCase = self.tokenizer_class(self.vocab_file ) lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def __lowercase ( self : int ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(lowerCAmelCase ) lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowerCAmelCase , """wb""" ) as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase ) with open(lowerCAmelCase , """rb""" ) as handle: lowerCAmelCase = pickle.load(lowerCAmelCase ) lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def __lowercase ( self : str ): lowerCAmelCase = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __lowercase ( self : int ): try: lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __lowercase ( self : Optional[int] ): try: lowerCAmelCase = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __lowercase ( self : Any ): lowerCAmelCase = MecabTokenizer(do_lower_case=lowerCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def __lowercase ( self : Optional[int] ): try: lowerCAmelCase = MecabTokenizer( do_lower_case=lowerCAmelCase , normalize_text=lowerCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def __lowercase ( self : int ): lowerCAmelCase = MecabTokenizer(normalize_text=lowerCAmelCase , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def __lowercase ( self : List[Any] ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(lowerCAmelCase ) lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowerCAmelCase , """wb""" ) as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase ) with open(lowerCAmelCase , """rb""" ) as handle: lowerCAmelCase = pickle.load(lowerCAmelCase ) lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @require_sudachi def __lowercase ( self : str ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def __lowercase ( self : str ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def __lowercase ( self : Dict ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def __lowercase ( self : int ): lowerCAmelCase = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def __lowercase ( self : str ): lowerCAmelCase = SudachiTokenizer(do_lower_case=lowerCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def __lowercase ( self : Tuple ): lowerCAmelCase = SudachiTokenizer(normalize_text=lowerCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def __lowercase ( self : List[Any] ): lowerCAmelCase = SudachiTokenizer(trim_whitespace=lowerCAmelCase , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def __lowercase ( self : List[Any] ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(lowerCAmelCase ) lowerCAmelCase = """こんにちは、世界。\nこんばんは、世界。""" lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) lowerCAmelCase = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowerCAmelCase , """wb""" ) as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase ) with open(lowerCAmelCase , """rb""" ) as handle: lowerCAmelCase = pickle.load(lowerCAmelCase ) lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @require_jumanpp def __lowercase ( self : Optional[Any] ): lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def __lowercase ( self : Optional[Any] ): lowerCAmelCase = JumanppTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def __lowercase ( self : int ): lowerCAmelCase = JumanppTokenizer(normalize_text=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def __lowercase ( self : Any ): lowerCAmelCase = JumanppTokenizer(trim_whitespace=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def __lowercase ( self : Tuple ): lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def __lowercase ( self : str ): lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] lowerCAmelCase = {} for i, token in enumerate(lowerCAmelCase ): lowerCAmelCase = i lowerCAmelCase = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def __lowercase ( self : Dict ): lowerCAmelCase = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) lowerCAmelCase = tokenizer.subword_tokenizer lowerCAmelCase = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(lowerCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) lowerCAmelCase = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(lowerCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def __lowercase ( self : str ): lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) lowerCAmelCase = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE__ ( _a , unittest.TestCase ): _a = BertJapaneseTokenizer _a = False def __lowercase ( self : Union[str, Any] ): super().setUp() lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def __lowercase ( self : Optional[int] , **lowerCAmelCase : Optional[Any] ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **lowerCAmelCase ) def __lowercase ( self : List[str] , lowerCAmelCase : Union[str, Any] ): lowerCAmelCase = """こんにちは、世界。 \nこんばんは、世界。""" lowerCAmelCase = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def __lowercase ( self : List[Any] ): pass # TODO add if relevant def __lowercase ( self : Optional[Any] ): pass # TODO add if relevant def __lowercase ( self : int ): pass # TODO add if relevant def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) lowerCAmelCase = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( lowerCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def __lowercase ( self : Any ): lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] lowerCAmelCase = {} for i, token in enumerate(lowerCAmelCase ): lowerCAmelCase = i lowerCAmelCase = CharacterTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) lowerCAmelCase = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : Optional[int] ): lowerCAmelCase = """cl-tohoku/bert-base-japanese""" lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowercase ( self : List[str] ): lowerCAmelCase = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(lowerCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) lowerCAmelCase = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
169
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _lowercase ( a_ : Optional[int] ,a_ : List[Any] ,a_ : Any ) -> str: '''simple docstring''' if isinstance(a_ ,torch.Tensor ): return image elif isinstance(a_ ,PIL.Image.Image ): __magic_name__ = [image] if isinstance(image[0] ,PIL.Image.Image ): __magic_name__ = [np.array(i.resize((w, h) ,resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] __magic_name__ = np.concatenate(a_ ,axis=0 ) __magic_name__ = np.array(a_ ).astype(np.floataa ) / 255.0 __magic_name__ = image.transpose(0 ,3 ,1 ,2 ) __magic_name__ = 2.0 * image - 1.0 __magic_name__ = torch.from_numpy(a_ ) elif isinstance(image[0] ,torch.Tensor ): __magic_name__ = torch.cat(a_ ,dim=0 ) return image def _lowercase ( a_ : Dict ,a_ : Optional[Any] ,a_ : Any ,a_ : int=0.9995 ) -> Optional[Any]: '''simple docstring''' if not isinstance(a_ ,np.ndarray ): __magic_name__ = True __magic_name__ = va.device __magic_name__ = va.cpu().numpy() __magic_name__ = va.cpu().numpy() __magic_name__ = np.sum(va * va / (np.linalg.norm(a_ ) * np.linalg.norm(a_ )) ) if np.abs(a_ ) > DOT_THRESHOLD: __magic_name__ = (1 - t) * va + t * va else: __magic_name__ = np.arccos(a_ ) __magic_name__ = np.sin(a_ ) __magic_name__ = theta_a * t __magic_name__ = np.sin(a_ ) __magic_name__ = np.sin(theta_a - theta_t ) / sin_theta_a __magic_name__ = sin_theta_t / sin_theta_a __magic_name__ = sa * va + sa * va if inputs_are_torch: __magic_name__ = torch.from_numpy(a_ ).to(a_ ) return va def _lowercase ( a_ : Tuple ,a_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' __magic_name__ = F.normalize(a_ ,dim=-1 ) __magic_name__ = F.normalize(a_ ,dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _lowercase ( a_ : Any ,a_ : str ) -> Any: '''simple docstring''' for param in model.parameters(): __magic_name__ = value class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): def __init__( self: Optional[Any] , __UpperCamelCase: AutoencoderKL , __UpperCamelCase: CLIPTextModel , __UpperCamelCase: CLIPModel , __UpperCamelCase: CLIPTokenizer , __UpperCamelCase: UNetaDConditionModel , __UpperCamelCase: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __UpperCamelCase: CLIPFeatureExtractor , __UpperCamelCase: Tuple=None , __UpperCamelCase: Union[str, Any]=None , __UpperCamelCase: Optional[int]=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=__UpperCamelCase , text_encoder=__UpperCamelCase , clip_model=__UpperCamelCase , tokenizer=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase , feature_extractor=__UpperCamelCase , coca_model=__UpperCamelCase , coca_tokenizer=__UpperCamelCase , coca_transform=__UpperCamelCase , ) __magic_name__ = ( feature_extractor.size if isinstance(feature_extractor.size , __UpperCamelCase ) else feature_extractor.size['shortest_edge'] ) __magic_name__ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __UpperCamelCase ) set_requires_grad(self.clip_model , __UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any] , __UpperCamelCase: Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __magic_name__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' self.enable_attention_slicing(__UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: int ): '''simple docstring''' set_requires_grad(self.vae , __UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' set_requires_grad(self.vae , __UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: str ): '''simple docstring''' set_requires_grad(self.unet , __UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' set_requires_grad(self.unet , __UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( self: List[Any] , __UpperCamelCase: Dict , __UpperCamelCase: List[str] , __UpperCamelCase: Any ): '''simple docstring''' __magic_name__ = min(int(num_inference_steps * strength ) , __UpperCamelCase ) __magic_name__ = max(num_inference_steps - init_timestep , 0 ) __magic_name__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _SCREAMING_SNAKE_CASE ( self: str , __UpperCamelCase: List[str] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: List[Any] , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Tuple=None ): '''simple docstring''' if not isinstance(__UpperCamelCase , torch.Tensor ): raise ValueError(F'`image` has to be of type `torch.Tensor` but is {type(__UpperCamelCase )}' ) __magic_name__ = image.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ): __magic_name__ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__UpperCamelCase ) ] __magic_name__ = torch.cat(__UpperCamelCase , dim=0 ) else: __magic_name__ = self.vae.encode(__UpperCamelCase ).latent_dist.sample(__UpperCamelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ = 0.18215 * init_latents __magic_name__ = init_latents.repeat_interleave(__UpperCamelCase , dim=0 ) __magic_name__ = randn_tensor(init_latents.shape , generator=__UpperCamelCase , device=__UpperCamelCase , dtype=__UpperCamelCase ) # get latents __magic_name__ = self.scheduler.add_noise(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __magic_name__ = init_latents return latents def _SCREAMING_SNAKE_CASE ( self: int , __UpperCamelCase: int ): '''simple docstring''' __magic_name__ = self.coca_transform(__UpperCamelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __magic_name__ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) __magic_name__ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def _SCREAMING_SNAKE_CASE ( self: Dict , __UpperCamelCase: Tuple , __UpperCamelCase: Union[str, Any] ): '''simple docstring''' __magic_name__ = self.feature_extractor.preprocess(__UpperCamelCase ) __magic_name__ = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() __magic_name__ = self.clip_model.get_image_features(__UpperCamelCase ) __magic_name__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCamelCase ) __magic_name__ = image_embeddings_clip.repeat_interleave(__UpperCamelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _SCREAMING_SNAKE_CASE ( self: List[Any] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Tuple , __UpperCamelCase: Optional[int] , __UpperCamelCase: int , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[int] , ): '''simple docstring''' __magic_name__ = latents.detach().requires_grad_() __magic_name__ = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual __magic_name__ = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __magic_name__ = self.scheduler.alphas_cumprod[timestep] __magic_name__ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __magic_name__ = torch.sqrt(__UpperCamelCase ) __magic_name__ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __UpperCamelCase ): __magic_name__ = self.scheduler.sigmas[index] __magic_name__ = latents - sigma * noise_pred else: raise ValueError(F'scheduler type {type(self.scheduler )} not supported' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ = 1 / 0.18215 * sample __magic_name__ = self.vae.decode(__UpperCamelCase ).sample __magic_name__ = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ = transforms.Resize(self.feature_extractor_size )(__UpperCamelCase ) __magic_name__ = self.normalize(__UpperCamelCase ).to(latents.dtype ) __magic_name__ = self.clip_model.get_image_features(__UpperCamelCase ) __magic_name__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__UpperCamelCase ) __magic_name__ = spherical_dist_loss(__UpperCamelCase , __UpperCamelCase ).mean() * clip_guidance_scale __magic_name__ = -torch.autograd.grad(__UpperCamelCase , __UpperCamelCase )[0] if isinstance(self.scheduler , __UpperCamelCase ): __magic_name__ = latents.detach() + grads * (sigma**2) __magic_name__ = noise_pred_original else: __magic_name__ = noise_pred_original - torch.sqrt(__UpperCamelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self: Dict , __UpperCamelCase: Union[torch.FloatTensor, PIL.Image.Image] , __UpperCamelCase: Union[torch.FloatTensor, PIL.Image.Image] , __UpperCamelCase: Optional[str] = None , __UpperCamelCase: Optional[str] = None , __UpperCamelCase: Optional[int] = 5_12 , __UpperCamelCase: Optional[int] = 5_12 , __UpperCamelCase: float = 0.6 , __UpperCamelCase: Optional[int] = 50 , __UpperCamelCase: Optional[float] = 7.5 , __UpperCamelCase: Optional[int] = 1 , __UpperCamelCase: float = 0.0 , __UpperCamelCase: Optional[float] = 1_00 , __UpperCamelCase: Optional[torch.Generator] = None , __UpperCamelCase: Optional[str] = "pil" , __UpperCamelCase: bool = True , __UpperCamelCase: float = 0.8 , __UpperCamelCase: float = 0.1 , __UpperCamelCase: float = 0.1 , ): '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError(F'You have passed {batch_size} batch_size, but only {len(__UpperCamelCase )} generators.' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if isinstance(__UpperCamelCase , torch.Generator ) and batch_size > 1: __magic_name__ = [generator] + [None] * (batch_size - 1) __magic_name__ = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] __magic_name__ = [x[0] for x in coca_is_none if x[1]] __magic_name__ = ', '.join(__UpperCamelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__UpperCamelCase ): raise ValueError( F'Content prompt is None and CoCa [{coca_is_none_str}] is None.' F'Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __magic_name__ = self.get_image_description(__UpperCamelCase ) if style_prompt is None: if len(__UpperCamelCase ): raise ValueError( F'Style prompt is None and CoCa [{coca_is_none_str}] is None.' F' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.' ) __magic_name__ = self.get_image_description(__UpperCamelCase ) # get prompt text embeddings for content and style __magic_name__ = self.tokenizer( __UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors='pt' , ) __magic_name__ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __magic_name__ = self.tokenizer( __UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=__UpperCamelCase , return_tensors='pt' , ) __magic_name__ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __magic_name__ = slerp(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # duplicate text embeddings for each generation per prompt __magic_name__ = text_embeddings.repeat_interleave(__UpperCamelCase , dim=0 ) # set timesteps __magic_name__ = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __magic_name__ = {} if accepts_offset: __magic_name__ = 1 self.scheduler.set_timesteps(__UpperCamelCase , **__UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __magic_name__, __magic_name__ = self.get_timesteps(__UpperCamelCase , __UpperCamelCase , self.device ) __magic_name__ = timesteps[:1].repeat(__UpperCamelCase ) # Preprocess image __magic_name__ = preprocess(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __magic_name__ = self.prepare_latents( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text_embeddings.dtype , self.device , __UpperCamelCase ) __magic_name__ = preprocess(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __magic_name__ = self.prepare_latents( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text_embeddings.dtype , self.device , __UpperCamelCase ) __magic_name__ = slerp(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if clip_guidance_scale > 0: __magic_name__ = self.get_clip_image_embeddings(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = self.get_clip_image_embeddings(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = slerp( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __magic_name__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __magic_name__ = content_text_input.input_ids.shape[-1] __magic_name__ = self.tokenizer([''] , padding='max_length' , max_length=__UpperCamelCase , return_tensors='pt' ) __magic_name__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __magic_name__ = uncond_embeddings.repeat_interleave(__UpperCamelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __magic_name__ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __magic_name__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __magic_name__ = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device='cpu' , dtype=__UpperCamelCase ).to( self.device ) else: __magic_name__ = torch.randn(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=__UpperCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __magic_name__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __magic_name__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __magic_name__ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __magic_name__ = {} if accepts_eta: __magic_name__ = eta # check if the scheduler accepts generator __magic_name__ = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __magic_name__ = generator with self.progress_bar(total=__UpperCamelCase ): for i, t in enumerate(__UpperCamelCase ): # expand the latents if we are doing classifier free guidance __magic_name__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __magic_name__ = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual __magic_name__ = self.unet(__UpperCamelCase , __UpperCamelCase , encoder_hidden_states=__UpperCamelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: __magic_name__, __magic_name__ = noise_pred.chunk(2 ) __magic_name__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __magic_name__ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __magic_name__, __magic_name__ = self.cond_fn( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __magic_name__ = 1 / 0.18215 * latents __magic_name__ = self.vae.decode(__UpperCamelCase ).sample __magic_name__ = (image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__UpperCamelCase , nsfw_content_detected=__UpperCamelCase )
184
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = "camembert" def __init__( self: Optional[Any] , __UpperCamelCase: Any=3_05_22 , __UpperCamelCase: Tuple=7_68 , __UpperCamelCase: str=12 , __UpperCamelCase: Optional[int]=12 , __UpperCamelCase: List[str]=30_72 , __UpperCamelCase: Any="gelu" , __UpperCamelCase: Optional[int]=0.1 , __UpperCamelCase: Any=0.1 , __UpperCamelCase: str=5_12 , __UpperCamelCase: Dict=2 , __UpperCamelCase: str=0.02 , __UpperCamelCase: List[Any]=1E-12 , __UpperCamelCase: List[Any]=1 , __UpperCamelCase: Any=0 , __UpperCamelCase: Union[str, Any]=2 , __UpperCamelCase: Dict="absolute" , __UpperCamelCase: Any=True , __UpperCamelCase: Any=None , **__UpperCamelCase: Union[str, Any] , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = hidden_act __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = position_embedding_type __magic_name__ = use_cache __magic_name__ = classifier_dropout class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): @property def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' if self.task == "multiple-choice": __magic_name__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __magic_name__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
184
1
from typing import Union import fire import torch from tqdm import tqdm def a_ ( UpperCamelCase_ : Any , UpperCamelCase_ : int = "cpu" , UpperCamelCase_ : Any = None ) -> None: """simple docstring""" lowerCamelCase = torch.load(__A , map_location=__A ) for k, v in tqdm(state_dict.items() ): if not isinstance(__A , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) lowerCamelCase = v.half() if save_path is None: # overwrite src_path lowerCamelCase = src_path torch.save(__A , __A ) if __name__ == "__main__": fire.Fire(convert)
246
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __snake_case ( __A ) -> Union[str, Any]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False def __snake_case ( __A ) -> Optional[Any]: # word like '180' or '身高' or '神' for char in word: lowercase : List[Any] = ord(__A ) if not _is_chinese_char(__A ): return 0 return 1 def __snake_case ( __A ) -> Tuple: lowercase : List[str] = set() for token in tokens: lowercase : Optional[Any] = len(__A ) > 1 and is_chinese(__A ) if chinese_word: word_set.add(__A ) lowercase : List[str] = list(__A ) return word_list def __snake_case ( __A ,__A ) -> Union[str, Any]: if not chinese_word_set: return bert_tokens lowercase : Union[str, Any] = max([len(__A ) for w in chinese_word_set] ) lowercase : int = bert_tokens lowercase , lowercase : Optional[Any] = 0, len(__A ) while start < end: lowercase : Any = True if is_chinese(bert_word[start] ): lowercase : Dict = min(end - start ,__A ) for i in range(__A ,1 ,-1 ): lowercase : List[Any] = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): lowercase : Optional[int] = """##""" + bert_word[j] lowercase : Tuple = start + i lowercase : int = False break if single_word: start += 1 return bert_word def __snake_case ( __A ,__A ,__A ) -> List[str]: lowercase : Any = [] for i in range(0 ,len(__A ) ,100 ): lowercase : List[str] = ltp_tokenizer.pipeline(lines[i : i + 100] ,tasks=["""cws"""] ).cws lowercase : Tuple = [get_chinese_word(__A ) for r in res] ltp_res.extend(__A ) assert len(__A ) == len(__A ) lowercase : Optional[Any] = [] for i in range(0 ,len(__A ) ,100 ): lowercase : Tuple = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__A ,truncation=__A ,max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__A ) == len(__A ) lowercase : Optional[Any] = [] for input_ids, chinese_word in zip(__A ,__A ): lowercase : List[str] = [] for id in input_ids: lowercase : int = bert_tokenizer._convert_id_to_token(__A ) input_tokens.append(__A ) lowercase : Dict = add_sub_symbol(__A ,__A ) lowercase : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__A ): if token[:2] == "##": lowercase : Dict = token[2:] # save chinese tokens' pos if len(__A ) == 1 and _is_chinese_char(ord(__A ) ): ref_id.append(__A ) ref_ids.append(__A ) assert len(__A ) == len(__A ) return ref_ids def __snake_case ( __A ) -> Dict: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name ,"""r""" ,encoding="""utf-8""" ) as f: lowercase : int = f.readlines() lowercase : Union[str, Any] = [line.strip() for line in data if len(__A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowercase : str = LTP(args.ltp ) # faster in GPU device lowercase : Union[str, Any] = BertTokenizer.from_pretrained(args.bert ) lowercase : List[str] = prepare_ref(__A ,__A ,__A ) with open(args.save_path ,"""w""" ,encoding="""utf-8""" ) as f: lowercase : int = [json.dumps(__A ) + """\n""" for ref in ref_ids] f.writelines(__A ) if __name__ == "__main__": lowerCAmelCase: Dict =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) lowerCAmelCase: str =parser.parse_args() main(args)
607
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase = logging.get_logger(__name__) class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Optional[Any] = '''maskformer-swin''' snake_case__ : List[str] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , a__=224 , a__=4 , a__=3 , a__=96 , a__=[2, 2, 6, 2] , a__=[3, 6, 12, 24] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.02 , a__=1e-5 , a__=None , a__=None , **a__ , ): super().__init__(**a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : List[Any] = patch_size __SCREAMING_SNAKE_CASE : Tuple = num_channels __SCREAMING_SNAKE_CASE : Dict = embed_dim __SCREAMING_SNAKE_CASE : str = depths __SCREAMING_SNAKE_CASE : List[Any] = len(a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = num_heads __SCREAMING_SNAKE_CASE : Optional[int] = window_size __SCREAMING_SNAKE_CASE : List[str] = mlp_ratio __SCREAMING_SNAKE_CASE : Any = qkv_bias __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = drop_path_rate __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : int = use_absolute_embeddings __SCREAMING_SNAKE_CASE : str = layer_norm_eps __SCREAMING_SNAKE_CASE : int = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE : Union[str, Any] = int(embed_dim * 2 ** (len(a__ ) - 1) ) __SCREAMING_SNAKE_CASE : int = ["stem"] + [f'stage{idx}' for idx in range(1 , len(a__ ) + 1 )] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = get_aligned_output_features_output_indices( out_features=a__ , out_indices=a__ , stage_names=self.stage_names )
564
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowercase = logging.get_logger(__name__) lowercase = '''T5Config''' class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Optional[int] = '''mt5''' snake_case__ : Dict = MTaConfig class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : List[str] = '''mt5''' snake_case__ : List[str] = MTaConfig class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Optional[int] = '''mt5''' snake_case__ : Union[str, Any] = MTaConfig
564
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) lowerCamelCase__ = logging.getLogger(__name__) def lowerCAmelCase__ ( a__ ) ->Any: '''simple docstring''' _UpperCamelCase = git.Repo(search_parent_directories=a__ ) _UpperCamelCase = { "repo_id": str(a__ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(a__ , "git_log.json" ) , "w" ) as f: json.dump(a__ , a__ , indent=4 ) def lowerCAmelCase__ ( a__ ) ->Optional[int]: '''simple docstring''' if params.n_gpu <= 0: _UpperCamelCase = 0 _UpperCamelCase = -1 _UpperCamelCase = True _UpperCamelCase = False return assert torch.cuda.is_available() logger.info("Initializing GPUs" ) if params.n_gpu > 1: assert params.local_rank != -1 _UpperCamelCase = int(os.environ["WORLD_SIZE"] ) _UpperCamelCase = int(os.environ["N_GPU_NODE"] ) _UpperCamelCase = int(os.environ["RANK"] ) # number of nodes / node ID _UpperCamelCase = params.world_size // params.n_gpu_per_node _UpperCamelCase = params.global_rank // params.n_gpu_per_node _UpperCamelCase = True assert params.n_nodes == int(os.environ["N_NODES"] ) assert params.node_id == int(os.environ["NODE_RANK"] ) # local job (single GPU) else: assert params.local_rank == -1 _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 1 _UpperCamelCase = 1 _UpperCamelCase = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode _UpperCamelCase = params.node_id == 0 and params.local_rank == 0 _UpperCamelCase = params.n_nodes > 1 # summary _UpperCamelCase = f'--- Global rank: {params.global_rank} - ' logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes ) logger.info(PREFIX + "Node ID : %i" % params.node_id ) logger.info(PREFIX + "Local rank : %i" % params.local_rank ) logger.info(PREFIX + "World size : %i" % params.world_size ) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node ) logger.info(PREFIX + "Master : %s" % str(params.is_master ) ) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node ) ) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu ) ) logger.info(PREFIX + "Hostname : %s" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed" ) torch.distributed.init_process_group( init_method="env://" , backend="nccl" , ) def lowerCAmelCase__ ( a__ ) ->str: '''simple docstring''' np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
547
def lowerCAmelCase__ ( a__ , a__ , a__ , a__ , a__ ) ->int: '''simple docstring''' if index == number_of_items: return 0 _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = knapsack(a__ , a__ , a__ , a__ , index + 1 ) if weights[index] <= max_weight: _UpperCamelCase = values[index] + knapsack( a__ , a__ , a__ , max_weight - weights[index] , index + 1 ) return max(a__ , a__ ) if __name__ == "__main__": import doctest doctest.testmod()
547
1
def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> bool: '''simple docstring''' _UpperCamelCase : List[Any] = 0 _UpperCamelCase : str = number while duplicate > 0: _UpperCamelCase , _UpperCamelCase : int = divmod(UpperCAmelCase_ , 1_0 ) fact_sum += factorial(UpperCAmelCase_ ) return fact_sum == number if __name__ == "__main__": print("""Program to check whether a number is a Krisnamurthy Number or not.""") lowerCAmelCase__ = int(input("""Enter number: """).strip()) print( f'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.' )
648
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self ): __a = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __a = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) __a = """The dog is cute and lives in the garden house""" __a = jnp.array([tokenizer.encode(__A )] ) __a = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim __a = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) __a = model(__A )["""last_hidden_state"""] self.assertEqual(output.shape , __A ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , __A , atol=1E-3 ) )
99
class __UpperCAmelCase : """simple docstring""" def __init__( self , __A ): __a = set_counts __a = max(__A ) __a = len(__A ) __a = [1] * num_sets __a = list(range(__A ) ) def snake_case_ ( self , __A , __A ): __a = self.get_parent(__A ) __a = self.get_parent(__A ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __a = 0 __a = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __a = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __a = 0 __a = src_parent __a = self.set_counts[src_parent] __a = max(self.max_set , __A ) return True def snake_case_ ( self , __A ): if self.parents[disj_set] == disj_set: return disj_set __a = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
99
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _lowerCamelCase : """simple docstring""" snake_case = LEDConfig snake_case = {} snake_case = "gelu" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=20 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=4 , )->Optional[Any]: '''simple docstring''' A_ : Any = parent A_ : Union[str, Any] = batch_size A_ : Optional[Any] = seq_length A_ : Any = is_training A_ : Tuple = use_labels A_ : Dict = vocab_size A_ : str = hidden_size A_ : int = num_hidden_layers A_ : int = num_attention_heads A_ : Dict = intermediate_size A_ : int = hidden_dropout_prob A_ : Optional[int] = attention_probs_dropout_prob A_ : List[Any] = max_position_embeddings A_ : Any = eos_token_id A_ : int = pad_token_id A_ : Union[str, Any] = bos_token_id A_ : Optional[int] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after A_ : int = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests A_ : Tuple = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A_ : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A_ : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) A_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) A_ : Dict = prepare_led_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = tf.concat( [tf.zeros_like(_SCREAMING_SNAKE_CASE )[:, :-1], tf.ones_like(_SCREAMING_SNAKE_CASE )[:, -1:]] , axis=-1 , ) A_ : List[str] = global_attention_mask return config, inputs_dict def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' A_ : int = TFLEDModel(config=_SCREAMING_SNAKE_CASE ).get_decoder() A_ : str = inputs_dict['''input_ids'''] A_ : int = input_ids[:1, :] A_ : List[str] = inputs_dict['''attention_mask'''][:1, :] A_ : str = 1 # first forward pass A_ : Tuple = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) A_ , A_ : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids A_ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ : int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and A_ : Optional[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) A_ : Tuple = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) A_ : Dict = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE )[0] A_ : Any = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice A_ : Any = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) A_ : Optional[int] = output_from_no_past[:, -3:, random_slice_idx] A_ : Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , rtol=1e-3 ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ): if attention_mask is None: A_ : List[str] = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A_ : Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A_ : str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A_ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _lowerCamelCase ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () snake_case = (TFLEDForConditionalGeneration,) if is_tf_available() else () snake_case = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) snake_case = True snake_case = False snake_case = False snake_case = False def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Any = TFLEDModelTester(self ) A_ : str = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self )->Dict: '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Tuple: '''simple docstring''' A_ , A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Any = tf.zeros_like(inputs_dict['''attention_mask'''] ) A_ : int = 2 A_ : Union[str, Any] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) A_ : Optional[Any] = True A_ : Tuple = self.model_tester.seq_length A_ : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ): A_ : int = outputs.decoder_attentions self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = [t.numpy() for t in outputs.encoder_attentions] A_ : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: A_ : Optional[int] = True A_ : Optional[Any] = False A_ : Any = False A_ : Tuple = model_class(_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) A_ : Optional[Any] = len(_SCREAMING_SNAKE_CASE ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) if self.is_encoder_decoder: A_ : Tuple = model_class(_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_decoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ : List[str] = True A_ : int = model_class(_SCREAMING_SNAKE_CASE ) A_ : List[str] = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine A_ : List[Any] = True A_ : Optional[int] = True A_ : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) A_ : int = model(self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(model.config.output_hidden_states , _SCREAMING_SNAKE_CASE ) check_encoder_attentions_output(_SCREAMING_SNAKE_CASE ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def _snake_case ( self )->Dict: '''simple docstring''' pass def _snake_case ( self )->Dict: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): return tf.constant(SCREAMING_SNAKE_CASE , dtype=tf.intaa ) UpperCamelCase = 1e-4 @slow @require_tf class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Optional[int] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here A_ : Union[str, Any] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) A_ : Union[str, Any] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) A_ : Dict = prepare_led_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = model(**_SCREAMING_SNAKE_CASE )[0] A_ : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here A_ : Optional[Any] = tf.convert_to_tensor( [[2.3_0_5_0, 2.8_2_7_9, 0.6_5_3_1], [-1.8_4_5_7, -0.1_4_5_5, -3.5_6_6_1], [-1.0_1_8_6, 0.4_5_8_6, -2.2_0_4_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) def _snake_case ( self )->Optional[int]: '''simple docstring''' A_ : Tuple = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here A_ : Union[str, Any] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) A_ : str = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) A_ : Dict = prepare_led_inputs_dict(model.config , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = model(**_SCREAMING_SNAKE_CASE )[0] A_ : Any = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # change to expected output here A_ : Optional[int] = tf.convert_to_tensor( [[3_3.6_5_0_7, 6.4_5_7_2, 1_6.8_0_8_9], [5.8_7_3_9, -2.4_2_3_8, 1_1.2_9_0_2], [-3.2_1_3_9, -4.3_1_4_9, 4.2_7_8_3]] , ) tf.debugging.assert_near(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-3 , rtol=1e-3 )
152
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization snake_case = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case = Features({"text": Value("string" )} ) snake_case = Features({"summary": Value("string" )} ) snake_case = "text" snake_case = "summary" @property def _snake_case ( self )->Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
152
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = {'''configuration_unispeech''': ['''UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''UniSpeechConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST''', '''UniSpeechForCTC''', '''UniSpeechForPreTraining''', '''UniSpeechForSequenceClassification''', '''UniSpeechModel''', '''UniSpeechPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging _snake_case = logging.get_logger(__name__) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: lowerCamelCase : Any = os.path.abspath(SCREAMING_SNAKE_CASE_ ) logger.info(f"""Loading PyTorch weights from {pt_path}""" ) lowerCamelCase : Optional[int] = torch.load(SCREAMING_SNAKE_CASE_ , map_location="cpu" ) logger.info(f"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowerCamelCase : List[str] = convert_pytorch_state_dict_to_flax(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowerCamelCase : Dict = convert_pytorch_sharded_state_dict_to_flax(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return flax_state_dict def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ) -> bool: return len(set(SCREAMING_SNAKE_CASE_ ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowerCamelCase : Optional[Any] = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowerCamelCase : Tuple = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowerCamelCase : Any = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # embedding lowerCamelCase : List[str] = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase : int = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : int = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase : str = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(SCREAMING_SNAKE_CASE_ ): lowerCamelCase : Any = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase : Optional[int] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase : str = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowerCamelCase : Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowerCamelCase : Optional[Any] = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowerCamelCase : List[Any] = pt_tuple_key[-2] + "_v" if name is not None: lowerCamelCase : str = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase : Optional[int] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowerCamelCase : Union[str, Any] = flax_model.params["params"] else: lowerCamelCase : int = flax_model.params lowerCamelCase : List[str] = flatten_dict(SCREAMING_SNAKE_CASE_ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase : Any = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] = {} lowerCamelCase : Optional[int] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) lowerCamelCase : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase : List[Any] = tuple(pt_key.split("." ) ) # remove base model prefix if necessary lowerCamelCase : List[str] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase , lowerCamelCase : List[str] = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # add model prefix if necessary lowerCamelCase : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase : Union[str, Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowerCamelCase : Tuple = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue # also add unexpected weight so that warning is thrown lowerCamelCase : List[Any] = jnp.asarray(SCREAMING_SNAKE_CASE_ ) else: # also add unexpected weight so that warning is thrown lowerCamelCase : List[Any] = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' import torch # Load the index lowerCamelCase : str = {} for shard_file in shard_filenames: # load using msgpack utils lowerCamelCase : str = torch.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase : str = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase : Optional[int] = flax_model.params["params"] lowerCamelCase : Any = flatten_dict(SCREAMING_SNAKE_CASE_ ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: lowerCamelCase : Optional[Any] = flax_model.params lowerCamelCase : Tuple = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Any = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) lowerCamelCase : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase : List[Any] = tuple(pt_key.split("." ) ) # remove base model prefix if necessary lowerCamelCase : Optional[Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase : int = pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase , lowerCamelCase : str = rename_key_and_reshape_tensor( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # add model prefix if necessary lowerCamelCase : Optional[int] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase : List[str] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowerCamelCase : str = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue if "var" in flax_key[-1]: lowerCamelCase : Dict = jnp.asarray(SCREAMING_SNAKE_CASE_ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue # also add unexpected weight so that warning is thrown lowerCamelCase : Optional[Any] = jnp.asarray(SCREAMING_SNAKE_CASE_ ) else: # also add unexpected weight so that warning is thrown lowerCamelCase : Optional[int] = jnp.asarray(SCREAMING_SNAKE_CASE_ ) return unflatten_dict(SCREAMING_SNAKE_CASE_ ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[str] = os.path.abspath(SCREAMING_SNAKE_CASE_ ) logger.info(f"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowerCamelCase : str = getattr(SCREAMING_SNAKE_CASE_ , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(SCREAMING_SNAKE_CASE_ , "rb" ) as state_f: try: lowerCamelCase : Any = from_bytes(SCREAMING_SNAKE_CASE_ , state_f.read() ) except UnpicklingError: raise EnvironmentError(f"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights lowerCamelCase : Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE_ : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE_ ) ).values() if any(SCREAMING_SNAKE_CASE_ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) lowerCamelCase : List[str] = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int = flatten_dict(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = pt_model.state_dict() lowerCamelCase : Optional[Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) lowerCamelCase : Any = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowerCamelCase : Optional[int] = [] lowerCamelCase : Tuple = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCamelCase : Optional[int] = flax_key_tuple[0] == pt_model.base_model_prefix lowerCamelCase : Tuple = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase : Dict = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase : List[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(SCREAMING_SNAKE_CASE_ ) not in pt_model_dict: # conv layer lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("weight",) lowerCamelCase : Tuple = jnp.transpose(SCREAMING_SNAKE_CASE_ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(SCREAMING_SNAKE_CASE_ ) not in pt_model_dict: # linear layer lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) lowerCamelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCamelCase : Tuple = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowerCamelCase : str = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: lowerCamelCase : List[str] = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: lowerCamelCase : List[str] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowerCamelCase : Any = ".".join(SCREAMING_SNAKE_CASE_ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowerCamelCase : Tuple = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowerCamelCase : Any = key.split("." ) lowerCamelCase : str = None if key_components[-3::2] == ["parametrizations", "original0"]: lowerCamelCase : Any = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: lowerCamelCase : Tuple = key_components[-2] + "_v" if name is not None: lowerCamelCase : Any = key_components[:-3] + [name] lowerCamelCase : Any = ".".join(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[int] = key if flax_key in special_pt_names: lowerCamelCase : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowerCamelCase : Optional[Any] = np.asarray(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) else flax_tensor lowerCamelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE_ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # re-transform missing_keys to list lowerCamelCase : List[Any] = list(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(f"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(SCREAMING_SNAKE_CASE_ ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" " use it for predictions and inference." ) else: logger.warning( f"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" "If your task is similar to the task the model of the checkpoint was trained on, " f"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
340
1
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = ComputeEnvironment.AMAZON_SAGEMAKER UpperCamelCase_ = True UpperCamelCase_ = """ml.p3.2xlarge""" UpperCamelCase_ = """accelerate_sagemaker_execution_role""" UpperCamelCase_ = """hf-sm""" UpperCamelCase_ = """us-east-1""" UpperCamelCase_ = 1 UpperCamelCase_ = """accelerate-sagemaker-1""" UpperCamelCase_ = """1.6""" UpperCamelCase_ = """4.4""" UpperCamelCase_ = """train.py""" UpperCamelCase_ = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] UpperCamelCase_ = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class lowercase__ ( unittest.TestCase): def __A ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , UpperCamelCase__ ) assert isinstance(converted_args['''do_train'''] , UpperCamelCase__ ) assert isinstance(converted_args['''epochs'''] , UpperCamelCase__ ) assert isinstance(converted_args['''learning_rate'''] , UpperCamelCase__ ) assert isinstance(converted_args['''max_steps'''] , UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
34
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) # TODO Update this __UpperCamelCase : List[str] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class lowercase__ ( UpperCamelCase_): UpperCamelCase_ = """esm""" def __init__( self : Tuple , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Any=768 , UpperCamelCase__ : Optional[Any]=12 , UpperCamelCase__ : str=12 , UpperCamelCase__ : Optional[int]=3072 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Union[str, Any]=1026 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Any=1E-12 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : int=None , UpperCamelCase__ : Optional[int]=False , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : Any , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : str = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Dict = position_embedding_type SCREAMING_SNAKE_CASE : Any = use_cache SCREAMING_SNAKE_CASE : Dict = emb_layer_norm_before SCREAMING_SNAKE_CASE : List[str] = token_dropout SCREAMING_SNAKE_CASE : List[Any] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) SCREAMING_SNAKE_CASE : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Union[str, Any] = EsmFoldConfig(**UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) SCREAMING_SNAKE_CASE : Optional[int] = get_default_vocab_list() else: SCREAMING_SNAKE_CASE : Optional[Any] = vocab_list else: SCREAMING_SNAKE_CASE : str = None SCREAMING_SNAKE_CASE : int = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = self.esmfold_config.to_dict() return output @dataclass class lowercase__ : UpperCamelCase_ = None UpperCamelCase_ = True UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = 0 UpperCamelCase_ = True UpperCamelCase_ = False UpperCamelCase_ = 128 UpperCamelCase_ = None def __A ( self : Optional[int] ): '''simple docstring''' if self.trunk is None: SCREAMING_SNAKE_CASE : Optional[Any] = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Tuple = TrunkConfig(**self.trunk ) def __A ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = asdict(self ) SCREAMING_SNAKE_CASE : Tuple = self.trunk.to_dict() return output @dataclass class lowercase__ : UpperCamelCase_ = 48 UpperCamelCase_ = 1_024 UpperCamelCase_ = 128 UpperCamelCase_ = 32 UpperCamelCase_ = 32 UpperCamelCase_ = 32 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = False UpperCamelCase_ = 4 UpperCamelCase_ = 128 UpperCamelCase_ = None def __A ( self : Any ): '''simple docstring''' if self.structure_module is None: SCREAMING_SNAKE_CASE : Optional[int] = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) SCREAMING_SNAKE_CASE : Dict = self.sequence_state_dim // self.sequence_head_width SCREAMING_SNAKE_CASE : Tuple = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def __A ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = asdict(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.structure_module.to_dict() return output @dataclass class lowercase__ : UpperCamelCase_ = 384 UpperCamelCase_ = 128 UpperCamelCase_ = 16 UpperCamelCase_ = 128 UpperCamelCase_ = 12 UpperCamelCase_ = 4 UpperCamelCase_ = 8 UpperCamelCase_ = 0.1 UpperCamelCase_ = 8 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 7 UpperCamelCase_ = 10 UpperCamelCase_ = 1E-8 UpperCamelCase_ = 1E5 def __A ( self : Dict ): '''simple docstring''' return asdict(self ) def A ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
34
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=True , _lowerCAmelCase="pt" ) -> str: """simple docstring""" A : Any = {"""add_prefix_space""": True} if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and not line.startswith(""" """ ) else {} A : Optional[int] = padding_side return tokenizer( [line] , max_length=_lowerCAmelCase , padding="""max_length""" if pad_to_max_length else None , truncation=_lowerCAmelCase , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , **_lowerCAmelCase , ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , ) -> int: """simple docstring""" A : Dict = input_ids.ne(_lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__="train", lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__="", ): super().__init__() A : List[str] = Path(lowerCamelCase__ ).joinpath(type_path + """.source""" ) A : List[Any] = Path(lowerCamelCase__ ).joinpath(type_path + """.target""" ) A : int = self.get_char_lens(self.src_file ) A : List[Any] = max_source_length A : Optional[Any] = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' A : str = tokenizer A : str = prefix if n_obs is not None: A : Optional[int] = self.src_lens[:n_obs] A : Optional[Any] = src_lang A : Tuple = tgt_lang def __len__( self ): return len(self.src_lens ) def __getitem__( self, lowerCamelCase__ ): A : List[Any] = index + 1 # linecache starts at 1 A : int = self.prefix + linecache.getline(str(self.src_file ), lowerCamelCase__ ).rstrip("""\n""" ) A : int = linecache.getline(str(self.tgt_file ), lowerCamelCase__ ).rstrip("""\n""" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer, lowerCamelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A : str = ( self.tokenizer.question_encoder if isinstance(self.tokenizer, lowerCamelCase__ ) else self.tokenizer ) A : int = self.tokenizer.generator if isinstance(self.tokenizer, lowerCamelCase__ ) else self.tokenizer A : Any = encode_line(lowerCamelCase__, lowerCamelCase__, self.max_source_length, """right""" ) A : List[Any] = encode_line(lowerCamelCase__, lowerCamelCase__, self.max_target_length, """right""" ) A : List[str] = source_inputs["""input_ids"""].squeeze() A : str = target_inputs["""input_ids"""].squeeze() A : Any = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _lowerCAmelCase ( lowerCamelCase__ ): return [len(lowerCamelCase__ ) for x in Path(lowerCamelCase__ ).open().readlines()] def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Union[str, Any] = torch.stack([x["""input_ids"""] for x in batch] ) A : Tuple = torch.stack([x["""attention_mask"""] for x in batch] ) A : List[str] = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A : str = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer, lowerCamelCase__ ) else self.tokenizer.pad_token_id ) A : List[str] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer, lowerCamelCase__ ) else self.tokenizer.pad_token_id ) A : Tuple = trim_batch(lowerCamelCase__, lowerCamelCase__ ) A , A : Tuple = trim_batch(lowerCamelCase__, lowerCamelCase__, attention_mask=lowerCamelCase__ ) A : Any = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch SCREAMING_SNAKE_CASE_:Optional[Any] = getLogger(__name__) def __UpperCamelCase ( _lowerCAmelCase ) -> Any: """simple docstring""" return list(itertools.chain.from_iterable(_lowerCAmelCase ) ) def __UpperCamelCase ( _lowerCAmelCase ) -> None: """simple docstring""" A : Any = get_git_info() save_json(_lowerCAmelCase , os.path.join(_lowerCAmelCase , """git_log.json""" ) ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=4 , **_lowerCAmelCase ) -> Optional[Any]: """simple docstring""" with open(_lowerCAmelCase , """w""" ) as f: json.dump(_lowerCAmelCase , _lowerCAmelCase , indent=_lowerCAmelCase , **_lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase ) -> Optional[int]: """simple docstring""" with open(_lowerCAmelCase ) as f: return json.load(_lowerCAmelCase ) def __UpperCamelCase ( ) -> int: """simple docstring""" A : List[str] = git.Repo(search_parent_directories=_lowerCAmelCase ) A : Dict = { """repo_id""": str(_lowerCAmelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List: """simple docstring""" return list(map(_lowerCAmelCase , _lowerCAmelCase ) ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" with open(_lowerCAmelCase , """wb""" ) as f: return pickle.dump(_lowerCAmelCase , _lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase ) -> Optional[int]: """simple docstring""" def remove_articles(_lowerCAmelCase ): return re.sub(R"""\b(a|an|the)\b""" , """ """ , _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase ): A : str = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Tuple: """simple docstring""" A : Dict = normalize_answer(_lowerCAmelCase ).split() A : Tuple = normalize_answer(_lowerCAmelCase ).split() A : Optional[Any] = Counter(_lowerCAmelCase ) & Counter(_lowerCAmelCase ) A : Dict = sum(common.values() ) if num_same == 0: return 0 A : Union[str, Any] = 1.0 * num_same / len(_lowerCAmelCase ) A : Dict = 1.0 * num_same / len(_lowerCAmelCase ) A : Optional[int] = (2 * precision * recall) / (precision + recall) return fa def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" return normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Dict: """simple docstring""" assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) A : Dict = 0 for hypo, pred in zip(_lowerCAmelCase , _lowerCAmelCase ): em += exact_match_score(_lowerCAmelCase , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: em /= len(_lowerCAmelCase ) return {"em": em} def __UpperCamelCase ( _lowerCAmelCase ) -> int: """simple docstring""" return model_prefix.startswith("""rag""" ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: """simple docstring""" A : Dict = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A : List[Any] = """dropout_rate""" for p in extra_params: if getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): if not hasattr(_lowerCAmelCase , _lowerCAmelCase ) and not hasattr(_lowerCAmelCase , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(_lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) continue A : List[Any] = p if hasattr(_lowerCAmelCase , _lowerCAmelCase ) else equivalent_param[p] setattr(_lowerCAmelCase , _lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) delattr(_lowerCAmelCase , _lowerCAmelCase ) return hparams, config
662
class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self, lowerCamelCase__ ): # we need a list not a string, so do something to change the type A : List[Any] = arr.split(""",""" ) def _lowerCAmelCase ( self ): A : int = [int(self.array[0] )] * len(self.array ) A : Optional[Any] = [int(self.array[0] )] * len(self.array ) for i in range(1, len(self.array ) ): A : Union[str, Any] = max( int(self.array[i] ) + sum_value[i - 1], int(self.array[i] ) ) A : Dict = max(sum_value[i], rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": SCREAMING_SNAKE_CASE_:int = input("""please input some numbers:""") SCREAMING_SNAKE_CASE_:Dict = SubArray(whole_array) SCREAMING_SNAKE_CASE_:Optional[int] = array.solve_sub_array() print(("""the results is:""", re))
662
1
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCAmelCase ( UpperCamelCase__ : int ): """simple docstring""" def wrapper(*UpperCamelCase__ : Tuple , **UpperCamelCase__ : List[Any] ): __UpperCAmelCase = timeit.default_timer() __UpperCAmelCase = func(*UpperCamelCase__ , **UpperCamelCase__ ) __UpperCAmelCase = timeit.default_timer() - starttime return delta __UpperCAmelCase = func.__name__ return wrapper def lowerCAmelCase ( UpperCamelCase__ : dict , UpperCamelCase__ : str=1_0_0 , UpperCamelCase__ : Union[str, Any]=None ): """simple docstring""" __UpperCAmelCase = [] __UpperCAmelCase = seq_shapes or {} for i in range(UpperCamelCase__ ): __UpperCAmelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase__ , _ArrayXD ): __UpperCAmelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase__ , datasets.Value ): if v.dtype == "string": __UpperCAmelCase = '''The small grey turtle was surprisingly fast when challenged.''' else: __UpperCAmelCase = np.random.randint(1_0 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase__ , datasets.Sequence ): while isinstance(UpperCamelCase__ , datasets.Sequence ): __UpperCAmelCase = v.feature __UpperCAmelCase = seq_shapes[k] __UpperCAmelCase = np.random.rand(*UpperCamelCase__ ).astype(v.dtype ) __UpperCAmelCase = data dummy_data.append((i, example) ) return dummy_data def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict=1_0_0 , UpperCamelCase__ : Optional[Any]=None ): """simple docstring""" __UpperCAmelCase = generate_examples(UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes=UpperCamelCase__ ) with ArrowWriter(features=UpperCamelCase__ , path=UpperCamelCase__ ) as writer: for key, record in dummy_data: __UpperCAmelCase = features.encode_example(UpperCamelCase__ ) writer.write(UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __UpperCAmelCase = datasets.Dataset.from_file(filename=UpperCamelCase__ , info=datasets.DatasetInfo(features=UpperCamelCase__ ) ) return dataset
654
'''simple docstring''' from ...configuration_utils import PretrainedConfig class A ( UpperCAmelCase ): a_ = '''bert-generation''' def __init__( self : str , __a : str=5_0_3_5_8 , __a : int=1_0_2_4 , __a : Optional[Any]=2_4 , __a : Any=1_6 , __a : int=4_0_9_6 , __a : Any="gelu" , __a : Union[str, Any]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=5_1_2 , __a : int=0.0_2 , __a : str=1e-12 , __a : List[str]=0 , __a : Optional[int]=2 , __a : Tuple=1 , __a : str="absolute" , __a : Optional[Any]=True , **__a : Tuple , ) -> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = hidden_act __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = position_embedding_type __UpperCAmelCase = use_cache
654
1
'''simple docstring''' import random def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = num - 1 _lowerCAmelCase = 0 while s % 2 == 0: _lowerCAmelCase = s // 2 t += 1 for _ in range(5 ): _lowerCAmelCase = random.randrange(2 , num - 1 ) _lowerCAmelCase = pow(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if v != 1: _lowerCAmelCase = 0 while v != (num - 1): if i == t - 1: return False else: _lowerCAmelCase = i + 1 _lowerCAmelCase = (v**2) % num return True def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if num < 2: return False _lowerCAmelCase = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : int = 1024 ): '''simple docstring''' while True: _lowerCAmelCase = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(SCREAMING_SNAKE_CASE_ ): return num if __name__ == "__main__": _SCREAMING_SNAKE_CASE = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
18
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
387
0
'''simple docstring''' def __UpperCAmelCase ( A : int , A : Optional[int] , A : Optional[int] , A : str , A : List[Any] , A : Tuple ) -> Union[str, Any]: if index == r: for j in range(A ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase_ : Optional[Any] = arr[i] combination_util(A , A , A , index + 1 , A , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(A , A , A , A , A , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def __UpperCAmelCase ( A : Union[str, Any] , A : Optional[int] , A : Union[str, Any] ) -> int: # A temporary array to store all combination one by one UpperCAmelCase_ : str = [0] * r # Print all combination using temporary array 'data[]' combination_util(A , A , A , 0 , A , 0 ) if __name__ == "__main__": # Driver code to check the function above _UpperCamelCase : List[Any] = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
216
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( A : str , A : List[Any] , A : Tuple ) -> str: return params[F"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def __UpperCAmelCase ( A : int , A : Any , A : Dict , A : Any="attention" ) -> Union[str, Any]: UpperCAmelCase_ : Dict = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) UpperCAmelCase_ : int = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCAmelCase_ : Dict = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) UpperCAmelCase_ : Optional[int] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCAmelCase_ : List[Any] = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) UpperCAmelCase_ : int = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCAmelCase_ : Tuple = np.ascontiguousarray(params[F"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) UpperCAmelCase_ : List[Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( A : Optional[Any] , A : Tuple , A : Optional[int] , A : str=False ) -> Dict: if split_mlp_wi: UpperCAmelCase_ : List[Any] = params[F"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] UpperCAmelCase_ : str = params[F"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] UpperCAmelCase_ : Tuple = (wi_a, wi_a) else: UpperCAmelCase_ : List[str] = params[F"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] UpperCAmelCase_ : Dict = params[F"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def __UpperCAmelCase ( A : Tuple , A : int , A : Optional[Any] , A : int ) -> Dict: return params[F"{prefix}/{prefix}/{layer_name}/scale"][:, i] def __UpperCAmelCase ( A : dict , *, A : int , A : bool , A : bool = False ) -> Any: UpperCAmelCase_ : int = traverse_util.flatten_dict(variables['''target'''] ) UpperCAmelCase_ : Optional[int] = {'''/'''.join(A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase_ : int = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' , A ) UpperCAmelCase_ : Any = collections.OrderedDict() # Shared embeddings. UpperCAmelCase_ : int = old['''token_embedder/embedding'''] # Encoder. for i in range(A ): # Block i, layer 0 (Self Attention). UpperCAmelCase_ : List[str] = tax_layer_norm_lookup(A , A , '''encoder''' , '''pre_attention_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = tax_attention_lookup(A , A , '''encoder''' , '''attention''' ) UpperCAmelCase_ : int = layer_norm UpperCAmelCase_ : Union[str, Any] = k.T UpperCAmelCase_ : str = o.T UpperCAmelCase_ : List[Any] = q.T UpperCAmelCase_ : Dict = v.T # Block i, layer 1 (MLP). UpperCAmelCase_ : str = tax_layer_norm_lookup(A , A , '''encoder''' , '''pre_mlp_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = tax_mlp_lookup(A , A , '''encoder''' , A ) UpperCAmelCase_ : List[Any] = layer_norm if split_mlp_wi: UpperCAmelCase_ : Dict = wi[0].T UpperCAmelCase_ : Dict = wi[1].T else: UpperCAmelCase_ : Tuple = wi.T UpperCAmelCase_ : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase_ : Optional[Any] = tax_relpos_bias_lookup( A , A , '''encoder''' ).T UpperCAmelCase_ : Any = old['''encoder/encoder_norm/scale'''] if not scalable_attention: UpperCAmelCase_ : Optional[Any] = tax_relpos_bias_lookup( A , 0 , '''encoder''' ).T UpperCAmelCase_ : List[str] = tax_relpos_bias_lookup( A , 0 , '''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(A ): # Block i, layer 0 (Self Attention). UpperCAmelCase_ : Optional[int] = tax_layer_norm_lookup(A , A , '''decoder''' , '''pre_self_attention_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = tax_attention_lookup(A , A , '''decoder''' , '''self_attention''' ) UpperCAmelCase_ : int = layer_norm UpperCAmelCase_ : Any = k.T UpperCAmelCase_ : Optional[int] = o.T UpperCAmelCase_ : List[Any] = q.T UpperCAmelCase_ : str = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase_ : str = tax_layer_norm_lookup(A , A , '''decoder''' , '''pre_cross_attention_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = tax_attention_lookup(A , A , '''decoder''' , '''encoder_decoder_attention''' ) UpperCAmelCase_ : Any = layer_norm UpperCAmelCase_ : Optional[Any] = k.T UpperCAmelCase_ : Union[str, Any] = o.T UpperCAmelCase_ : List[str] = q.T UpperCAmelCase_ : Any = v.T # Block i, layer 2 (MLP). UpperCAmelCase_ : Dict = tax_layer_norm_lookup(A , A , '''decoder''' , '''pre_mlp_layer_norm''' ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = tax_mlp_lookup(A , A , '''decoder''' , A ) UpperCAmelCase_ : Optional[int] = layer_norm if split_mlp_wi: UpperCAmelCase_ : Optional[int] = wi[0].T UpperCAmelCase_ : int = wi[1].T else: UpperCAmelCase_ : Any = wi.T UpperCAmelCase_ : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase_ : List[str] = tax_relpos_bias_lookup(A , A , '''decoder''' ).T UpperCAmelCase_ : Optional[Any] = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase_ : int = old['''decoder/logits_dense/kernel'''].T return new def __UpperCAmelCase ( A : Tuple , A : bool ) -> List[str]: UpperCAmelCase_ : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase_ : Optional[Any] = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase_ : Optional[int] = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) UpperCAmelCase_ : int = state_dict['''shared.weight'''] return state_dict def __UpperCAmelCase ( A : Any , A : Optional[Any] , A : Optional[Any] , A : str , A : Optional[int] ) -> Dict: UpperCAmelCase_ : List[str] = checkpoints.load_tax_checkpoint(A ) UpperCAmelCase_ : str = convert_tax_to_pytorch( A , num_layers=config.num_layers , is_encoder_only=A , scalable_attention=A ) UpperCAmelCase_ : Union[str, Any] = make_state_dict(A , A ) model.load_state_dict(A , strict=A ) def __UpperCAmelCase ( A : str , A : int , A : List[str] , A : bool = False , A : bool = False , ) -> Any: UpperCAmelCase_ : Union[str, Any] = MTaConfig.from_json_file(A ) print(F"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase_ : Dict = UMTaEncoderModel(A ) else: UpperCAmelCase_ : Dict = UMTaForConditionalGeneration(A ) # Load weights from tf checkpoint load_tax_weights_in_ta(A , A , A , A , A ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(A ) # Verify that we can load the checkpoint. model.from_pretrained(A ) print('''Done''' ) if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) parser.add_argument( '--scalable_attention', action='store_true', help='Whether the model uses scaled attention (umt5 model)', default=False, ) _UpperCamelCase : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
216
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=False): SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''module.blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''')) rename_keys.append((F'''module.blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''')) rename_keys.append( (F'''module.blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''')) rename_keys.append((F'''module.blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''')) rename_keys.append((F'''module.blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''')) rename_keys.append((F'''module.blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''')) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''')) rename_keys.append((F'''module.blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''')) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''')) rename_keys.append((F'''module.blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''')) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith('vit') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ]) return rename_keys def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): for i in range(config.num_hidden_layers): if base_model: SCREAMING_SNAKE_CASE = '' else: SCREAMING_SNAKE_CASE = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F'''module.blocks.{i}.attn.qkv.weight''') SCREAMING_SNAKE_CASE = state_dict.pop(F'''module.blocks.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. SCREAMING_SNAKE_CASE = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = dct.pop(_UpperCAmelCase) SCREAMING_SNAKE_CASE = val def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = ViTMSNConfig() SCREAMING_SNAKE_CASE = 1000 SCREAMING_SNAKE_CASE = 'datasets/huggingface/label-files' SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase) , 'r')) SCREAMING_SNAKE_CASE = {int(_UpperCAmelCase): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE = 384 SCREAMING_SNAKE_CASE = 1536 SCREAMING_SNAKE_CASE = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE = 1024 SCREAMING_SNAKE_CASE = 4096 SCREAMING_SNAKE_CASE = 24 SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = 1024 SCREAMING_SNAKE_CASE = 4096 SCREAMING_SNAKE_CASE = 24 SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = ViTMSNModel(_UpperCAmelCase) SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu')['target_encoder'] SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size) remove_projection_head(_UpperCAmelCase) SCREAMING_SNAKE_CASE = create_rename_keys(_UpperCAmelCase , base_model=_UpperCAmelCase) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , base_model=_UpperCAmelCase) model.load_state_dict(_UpperCAmelCase) model.eval() SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase).raw) SCREAMING_SNAKE_CASE = ViTImageProcessor( size=config.image_size , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase) SCREAMING_SNAKE_CASE = image_processor(images=_UpperCAmelCase , return_tensors='pt') # forward pass torch.manual_seed(2) SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase) SCREAMING_SNAKE_CASE = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]]) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[14.28_89, -18.90_45, 11.72_81]]) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[41.50_28, -22.86_81, 45.64_75]]) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]]) else: SCREAMING_SNAKE_CASE = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]]) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _UpperCAmelCase , atol=1e-4) print(F'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(_UpperCAmelCase) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_UpperCAmelCase) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) a_ : List[Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
73
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" a = 0.0 for coeff in reversed(snake_case_ ): a = result * x + coeff return result if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase__ : int = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
387
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __lowerCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class A__ : _UpperCAmelCase :str _UpperCAmelCase :str _UpperCAmelCase :Optional[str] = None _UpperCAmelCase :Optional[str] = None _UpperCAmelCase :Optional[str] = None @dataclass(frozen=__snake_case ) class A__ : _UpperCAmelCase :List[int] _UpperCAmelCase :Optional[List[int]] = None _UpperCAmelCase :Optional[List[int]] = None _UpperCAmelCase :Optional[Union[int, float]] = None _UpperCAmelCase :Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class A__ ( __snake_case ): _UpperCAmelCase :List[InputFeatures] def __init__( self , A_ , A_ , A_ , A_ = None , A_=False , A_ = False , ): '''simple docstring''' UpperCamelCase : Optional[Any] = hans_processors[task]() UpperCamelCase : Optional[Any] = os.path.join( A_ , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(A_ ) , A_ , ) , ) UpperCamelCase : List[str] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase : int = label_list[2], label_list[1] UpperCamelCase : Dict = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase : int = cached_features_file + ".lock" with FileLock(A_ ): if os.path.exists(A_ ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) UpperCamelCase : List[str] = torch.load(A_ ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) UpperCamelCase : List[Any] = ( processor.get_dev_examples(A_ ) if evaluate else processor.get_train_examples(A_ ) ) logger.info("Training examples: %s" , len(A_ ) ) UpperCamelCase : Tuple = hans_convert_examples_to_features(A_ , A_ , A_ , A_ ) logger.info("Saving features into cached file %s" , A_ ) torch.save(self.features , A_ ) def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self , A_ ): '''simple docstring''' return self.features[i] def __UpperCamelCase( self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class A__ : _UpperCAmelCase :List[InputFeatures] def __init__( self , A_ , A_ , A_ , A_ = 128 , A_=False , A_ = False , ): '''simple docstring''' UpperCamelCase : Optional[Any] = hans_processors[task]() UpperCamelCase : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase , UpperCamelCase : Any = label_list[2], label_list[1] UpperCamelCase : Tuple = label_list UpperCamelCase : Optional[Any] = processor.get_dev_examples(A_ ) if evaluate else processor.get_train_examples(A_ ) UpperCamelCase : str = hans_convert_examples_to_features(A_ , A_ , A_ , A_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(A_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase : str = tf.data.Dataset.from_generator( A_ , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def __UpperCamelCase( self ): '''simple docstring''' return self.dataset def __len__( self ): '''simple docstring''' return len(self.features ) def __getitem__( self , A_ ): '''simple docstring''' return self.features[i] def __UpperCamelCase( self ): '''simple docstring''' return self.label_list class A__ ( __snake_case ): def __UpperCamelCase( self , A_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(A_ , "heuristics_train_set.txt" ) ) , "train" ) def __UpperCamelCase( self , A_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(A_ , "heuristics_evaluation_set.txt" ) ) , "dev" ) def __UpperCamelCase( self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = [] for i, line in enumerate(A_ ): if i == 0: continue UpperCamelCase : Union[str, Any] = "%s-%s" % (set_type, line[0]) UpperCamelCase : Optional[int] = line[5] UpperCamelCase : Tuple = line[6] UpperCamelCase : int = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCamelCase : Optional[Any] = line[0] examples.append(InputExample(guid=A_ , text_a=A_ , text_b=A_ , label=A_ , pairID=A_ ) ) return examples def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> int: UpperCamelCase : Optional[int] = {label: i for i, label in enumerate(_lowerCAmelCase )} UpperCamelCase : List[str] = [] for ex_index, example in tqdm.tqdm(enumerate(_lowerCAmelCase ) , desc="convert examples to features" ): if ex_index % 1_0000 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCamelCase : List[str] = tokenizer( example.text_a , example.text_b , add_special_tokens=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" , truncation=_lowerCAmelCase , return_overflowing_tokens=_lowerCAmelCase , ) UpperCamelCase : str = label_map[example.label] if example.label in label_map else 0 UpperCamelCase : Tuple = int(example.pairID ) features.append(InputFeatures(**_lowerCAmelCase , label=_lowerCAmelCase , pairID=_lowerCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features __lowerCamelCase : Tuple = { """hans""": 3, } __lowerCamelCase : List[Any] = { """hans""": HansProcessor, }
38
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ): '''simple docstring''' UpperCamelCase : Dict = parent UpperCamelCase : str = 13 UpperCamelCase : int = 7 UpperCamelCase : str = True UpperCamelCase : Dict = True UpperCamelCase : str = True UpperCamelCase : Tuple = True UpperCamelCase : List[str] = 99 UpperCamelCase : Optional[Any] = 384 UpperCamelCase : Tuple = 2 UpperCamelCase : Union[str, Any] = 4 UpperCamelCase : Dict = 37 UpperCamelCase : Any = "gelu" UpperCamelCase : List[Any] = 0.1 UpperCamelCase : int = 0.1 UpperCamelCase : Tuple = 512 UpperCamelCase : List[Any] = 16 UpperCamelCase : int = 2 UpperCamelCase : Dict = 0.02 UpperCamelCase : Optional[Any] = 3 UpperCamelCase : List[Any] = 4 UpperCamelCase : Dict = 128 UpperCamelCase : Optional[Any] = 2 UpperCamelCase : Optional[int] = 9 UpperCamelCase : Optional[int] = 1 UpperCamelCase : Union[str, Any] = None def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : str = None if self.use_input_mask: UpperCamelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = None if self.use_token_type_ids: UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[int] = None UpperCamelCase : List[Any] = None if self.use_labels: UpperCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Any = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = TFConvBertModel(config=A_ ) UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase : Optional[int] = [input_ids, input_mask] UpperCamelCase : Any = model(A_ ) UpperCamelCase : int = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Tuple = TFConvBertForMaskedLM(config=A_ ) UpperCamelCase : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase : Dict = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Dict = self.num_labels UpperCamelCase : int = TFConvBertForSequenceClassification(config=A_ ) UpperCamelCase : List[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase : Optional[Any] = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = self.num_choices UpperCamelCase : str = TFConvBertForMultipleChoice(config=A_ ) UpperCamelCase : List[Any] = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase : Dict = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase : Any = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase : List[str] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCamelCase : Optional[Any] = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Dict = self.num_labels UpperCamelCase : str = TFConvBertForTokenClassification(config=A_ ) UpperCamelCase : List[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase : str = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = TFConvBertForQuestionAnswering(config=A_ ) UpperCamelCase : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase : Union[str, Any] = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Optional[Any] = config_and_inputs UpperCamelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A__ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :Dict = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _UpperCAmelCase :Optional[Any] = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase :Any = False _UpperCAmelCase :int = False _UpperCAmelCase :str = False def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = TFConvBertModelTester(self ) UpperCamelCase : Dict = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Optional[Any] = True UpperCamelCase : Any = True if hasattr(A_ , "use_cache" ): UpperCamelCase : List[str] = True UpperCamelCase : List[Any] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCamelCase : Any = getattr(self.model_tester , "key_length" , A_ ) for model_class in self.all_model_classes: UpperCamelCase : List[Any] = self._prepare_for_class(A_ , A_ ) UpperCamelCase : Dict = model_class(A_ ) UpperCamelCase : Optional[int] = len(model(A_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ , saved_model=A_ ) UpperCamelCase : Union[str, Any] = os.path.join(A_ , "saved_model" , "1" ) UpperCamelCase : Dict = tf.keras.models.load_model(A_ ) UpperCamelCase : str = model(A_ ) if self.is_encoder_decoder: UpperCamelCase : Union[str, Any] = outputs["encoder_hidden_states"] UpperCamelCase : Any = outputs["encoder_attentions"] else: UpperCamelCase : Any = outputs["hidden_states"] UpperCamelCase : List[str] = outputs["attentions"] self.assertEqual(len(A_ ) , A_ ) UpperCamelCase : int = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) , A_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Dict = True UpperCamelCase : int = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) UpperCamelCase : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCamelCase : Optional[int] = getattr(self.model_tester , "key_length" , A_ ) UpperCamelCase : Optional[Any] = getattr(self.model_tester , "key_length" , A_ ) def check_decoder_attentions_output(A_ ): UpperCamelCase : Optional[Any] = len(A_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase : Any = outputs.decoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(A_ ): UpperCamelCase : Dict = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = True UpperCamelCase : List[Any] = False UpperCamelCase : Dict = model_class(A_ ) UpperCamelCase : Dict = model(self._prepare_for_class(A_ , A_ ) ) UpperCamelCase : List[str] = len(A_ ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) if self.is_encoder_decoder: UpperCamelCase : int = model_class(A_ ) UpperCamelCase : Tuple = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_decoder_attentions_output(A_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase : Tuple = True UpperCamelCase : int = model_class(A_ ) UpperCamelCase : Dict = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) # Check attention is always last and order is fine UpperCamelCase : Optional[int] = True UpperCamelCase : List[str] = True UpperCamelCase : Optional[int] = model_class(A_ ) UpperCamelCase : Optional[Any] = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) ) self.assertEqual(model.config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) @require_tf class A__ ( unittest.TestCase ): @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) UpperCamelCase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase : List[str] = model(A_ )[0] UpperCamelCase : int = [1, 6, 768] self.assertEqual(output.shape , A_ ) UpperCamelCase : List[str] = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1e-4 )
38
1
from typing import Any import numpy as np def _lowerCamelCase ( __lowerCamelCase ) -> bool: '''simple docstring''' return np.array_equal(__lowerCamelCase , matrix.conjugate().T ) def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase ) -> Any: '''simple docstring''' UpperCAmelCase__ : List[Any] = v.conjugate().T UpperCAmelCase__ : int = v_star.dot(__lowerCamelCase ) assert isinstance(__lowerCamelCase , np.ndarray ) return (v_star_dot.dot(__lowerCamelCase )) / (v_star.dot(__lowerCamelCase )) def _lowerCamelCase ( ) -> None: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) UpperCAmelCase__ : int = np.array([[1], [2], [3]] ) assert is_hermitian(__lowerCamelCase ), F"{a} is not hermitian." print(rayleigh_quotient(__lowerCamelCase , __lowerCamelCase ) ) UpperCAmelCase__ : Dict = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__lowerCamelCase ), F"{a} is not hermitian." assert rayleigh_quotient(__lowerCamelCase , __lowerCamelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
79
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A_ : Optional[int] ="""pt""" elif is_tf_available(): A_ : int ="""tf""" else: A_ : Tuple ="""jax""" class __a ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : Dict = ByTaTokenizer SCREAMING_SNAKE_CASE__ : List[str] = False def snake_case_ ( self ): super().setUp() _lowerCamelCase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case_ ( self ): return ByTaTokenizer.from_pretrained('google/byt5-small' ) def snake_case_ ( self , **a__ ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **a__ ) def snake_case_ ( self , a__ , a__=False , a__=20 , a__=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _lowerCamelCase = [] for i in range(len(a__ ) ): try: _lowerCamelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=a__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowerCamelCase = list(filter(lambda a__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , a__ ) ) _lowerCamelCase = list(filter(lambda a__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a__ ) , a__ ) ) if max_length is not None and len(a__ ) > max_length: _lowerCamelCase = toks[:max_length] if min_length is not None and len(a__ ) < min_length and len(a__ ) > 0: while len(a__ ) < min_length: _lowerCamelCase = toks + toks # toks_str = [t[1] for t in toks] _lowerCamelCase = [t[0] for t in toks] # Ensure consistency _lowerCamelCase = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) if " " not in output_txt and len(a__ ) > 1: _lowerCamelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a__ ) ) if with_prefix_space: _lowerCamelCase = ' ' + output_txt _lowerCamelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) return output_txt, output_ids def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowerCamelCase = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = 'Unicode €.' _lowerCamelCase = tokenizer(a__ ) _lowerCamelCase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , a__ ) # decoding _lowerCamelCase = tokenizer.decode(a__ ) self.assertEqual(a__ , 'Unicode €.</s>' ) _lowerCamelCase = tokenizer('e è é ê ë' ) _lowerCamelCase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , a__ ) # decoding _lowerCamelCase = tokenizer.decode(a__ ) self.assertEqual(a__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowerCamelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on _lowerCamelCase = tokenizer(a__ , padding=a__ , return_tensors=a__ ) self.assertIsInstance(a__ , a__ ) if FRAMEWORK != "jax": _lowerCamelCase = list(batch.input_ids.numpy()[0] ) else: _lowerCamelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(a__ , a__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCamelCase = tokenizer(a__ , padding=a__ , return_tensors=a__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , a__ ) self.assertIn('attention_mask' , a__ ) self.assertNotIn('decoder_input_ids' , a__ ) self.assertNotIn('decoder_attention_mask' , a__ ) def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = [ 'Summary of the text.', 'Another summary.', ] _lowerCamelCase = tokenizer( text_target=a__ , max_length=32 , padding='max_length' , truncation=a__ , return_tensors=a__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def snake_case_ ( self ): _lowerCamelCase = self.ta_base_tokenizer _lowerCamelCase = ['A long paragraph for summarization. </s>'] _lowerCamelCase = ['Summary of the text. </s>'] # fmt: off _lowerCamelCase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] _lowerCamelCase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on _lowerCamelCase = tokenizer(a__ , text_target=a__ ) self.assertEqual(a__ , batch['input_ids'][0] ) self.assertEqual(a__ , batch['labels'][0] ) def snake_case_ ( self ): # safety check on max_len default value so we are sure the test works _lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = ' He is very happy, UNwant\u00E9d,running' _lowerCamelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) _lowerCamelCase = tokenizer.__class__.from_pretrained(a__ ) _lowerCamelCase = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) shutil.rmtree(a__ ) _lowerCamelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowerCamelCase = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowerCamelCase = tokenizer.encode(a__ , add_special_tokens=a__ ) tokenizer.save_pretrained(a__ ) _lowerCamelCase = tokenizer.__class__.from_pretrained(a__ ) _lowerCamelCase = after_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowerCamelCase = tokenizer.__class__.from_pretrained(a__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a__ ) def snake_case_ ( self ): _lowerCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a__ ) with open(os.path.join(a__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowerCamelCase = json.load(a__ ) with open(os.path.join(a__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowerCamelCase = json.load(a__ ) _lowerCamelCase = [F'<extra_id_{i}>' for i in range(1_25 )] _lowerCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowerCamelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(a__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(a__ , a__ ) with open(os.path.join(a__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(a__ , a__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCamelCase = tokenizer_class.from_pretrained( a__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCamelCase = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=a__ )] _lowerCamelCase = tokenizer_class.from_pretrained( a__ , additional_special_tokens=a__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def snake_case_ ( self ): _lowerCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a__ ) _lowerCamelCase = tokenizer_class.from_pretrained(a__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def snake_case_ ( self ): pass def snake_case_ ( self ): pass def snake_case_ ( self ): pass def snake_case_ ( self ): pass def snake_case_ ( self ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens _lowerCamelCase = self.get_tokenizers(fast=a__ , do_lower_case=a__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _lowerCamelCase = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowerCamelCase = tokenizer.convert_tokens_to_string(a__ ) self.assertIsInstance(a__ , a__ ) def snake_case_ ( self ): _lowerCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _lowerCamelCase = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowerCamelCase = 0 _lowerCamelCase = tokenizer.convert_ids_to_tokens( a__ , skip_special_tokens=a__ ) for attr in attributes_list: setattr(a__ , attr + '_id' , a__ ) self.assertEqual(getattr(a__ , a__ ) , a__ ) self.assertEqual(getattr(a__ , attr + '_id' ) , a__ ) setattr(a__ , attr + '_id' , a__ ) self.assertEqual(getattr(a__ , a__ ) , a__ ) self.assertEqual(getattr(a__ , attr + '_id' ) , a__ ) setattr(a__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens_ids' ) , [] ) setattr(a__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(a__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
650
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_ : """simple docstring""" def __init__( self ,lowercase ,lowercase=13 ,lowercase=32 ,lowercase=3 ,lowercase=4 ,lowercase=[10, 20, 30, 40] ,lowercase=[2, 2, 3, 2] ,lowercase=True ,lowercase=True ,lowercase=37 ,lowercase="gelu" ,lowercase=10 ,lowercase=0.02 ,lowercase=["stage2", "stage3", "stage4"] ,lowercase=[2, 3, 4] ,lowercase=None ,): """simple docstring""" UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Dict = num_stages UpperCAmelCase_ : int = hidden_sizes UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Dict = use_labels UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : List[Any] = out_features UpperCAmelCase_ : Dict = out_indices UpperCAmelCase_ : str = scope def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ : Dict = None if self.use_labels: UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_labels) UpperCAmelCase_ : int = self.get_config() return config, pixel_values, labels def A_ ( self): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,num_stages=self.num_stages ,hidden_act=self.hidden_act ,is_decoder=lowercase ,initializer_range=self.initializer_range ,out_features=self.out_features ,out_indices=self.out_indices ,num_labels=self.num_labels ,) def A_ ( self ,lowercase ,lowercase ,lowercase): """simple docstring""" UpperCAmelCase_ : Tuple = ConvNextModel(config=lowercase) model.to(lowercase) model.eval() UpperCAmelCase_ : Dict = model(lowercase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def A_ ( self ,lowercase ,lowercase ,lowercase): """simple docstring""" UpperCAmelCase_ : int = ConvNextForImageClassification(lowercase) model.to(lowercase) model.eval() UpperCAmelCase_ : Any = model(lowercase ,labels=lowercase) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels)) def A_ ( self ,lowercase ,lowercase ,lowercase): """simple docstring""" UpperCAmelCase_ : List[str] = ConvNextBackbone(config=lowercase) model.to(lowercase) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowercase) # verify hidden states self.parent.assertEqual(len(result.feature_maps) ,len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) ,[self.batch_size, self.hidden_sizes[1], 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) ,len(config.out_features)) self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:]) # verify backbone works with out_features=None UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Tuple = ConvNextBackbone(config=lowercase) model.to(lowercase) model.eval() UpperCAmelCase_ : Optional[int] = model(lowercase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) ,1) self.parent.assertListEqual(list(result.feature_maps[0].shape) ,[self.batch_size, self.hidden_sizes[-1], 1, 1]) # verify channels self.parent.assertEqual(len(model.channels) ,1) self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]]) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ (lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _lowerCamelCase = ( {"""feature-extraction""": ConvNextModel, """image-classification""": ConvNextForImageClassification} if is_torch_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def A_ ( self): """simple docstring""" UpperCAmelCase_ : Dict = ConvNextModelTester(self) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowercase ,has_text_modality=lowercase ,hidden_size=37) def A_ ( self): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self): """simple docstring""" return @unittest.skip(reason="ConvNext does not use inputs_embeds") def A_ ( self): """simple docstring""" pass @unittest.skip(reason="ConvNext does not support input and output embeddings") def A_ ( self): """simple docstring""" pass @unittest.skip(reason="ConvNext does not use feedforward chunking") def A_ ( self): """simple docstring""" pass def A_ ( self): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = model_class(lowercase) UpperCAmelCase_ : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : str = [*signature.parameters.keys()] UpperCAmelCase_ : str = ["pixel_values"] self.assertListEqual(arg_names[:1] ,lowercase) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def A_ ( self): """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowercase) def A_ ( self): """simple docstring""" def check_hidden_states_output(lowercase ,lowercase ,lowercase): UpperCAmelCase_ : Optional[int] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): UpperCAmelCase_ : Any = model(**self._prepare_for_class(lowercase ,lowercase)) UpperCAmelCase_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : Tuple = self.model_tester.num_stages self.assertEqual(len(lowercase) ,expected_num_stages + 1) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : int = True check_hidden_states_output(lowercase ,lowercase ,lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Any = True check_hidden_states_output(lowercase ,lowercase ,lowercase) def A_ ( self): """simple docstring""" UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) @slow def A_ ( self): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Tuple = ConvNextModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def _snake_case ( ) -> str: '''simple docstring''' UpperCAmelCase_ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case_ (unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224") if is_vision_available() else None @slow def A_ ( self): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224").to(lowercase) UpperCAmelCase_ : Tuple = self.default_image_processor UpperCAmelCase_ : Any = prepare_img() UpperCAmelCase_ : Tuple = image_processor(images=lowercase ,return_tensors="pt").to(lowercase) # forward pass with torch.no_grad(): UpperCAmelCase_ : List[str] = model(**lowercase) # verify the logits UpperCAmelCase_ : Any = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape ,lowercase) UpperCAmelCase_ : str = torch.tensor([-0.0260, -0.4739, 0.1911]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowercase ,atol=1E-4)) @require_torch class snake_case_ (unittest.TestCase , lowercase__ ): """simple docstring""" _lowerCamelCase = (ConvNextBackbone,) if is_torch_available() else () _lowerCamelCase = ConvNextConfig _lowerCamelCase = False def A_ ( self): """simple docstring""" UpperCAmelCase_ : List[Any] = ConvNextModelTester(self)
455
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class snake_case_ (lowercase__ ): """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 class snake_case_ (lowercase__ , lowercase__ ): """simple docstring""" _lowerCamelCase = 1 @register_to_config def __init__( self ,lowercase = 2000 ,lowercase = 0.15 ,lowercase = 0.01 ,lowercase = 1348.0 ,lowercase = 1E-5 ,lowercase = 1 ,): """simple docstring""" UpperCAmelCase_ : Optional[int] = sigma_max # setable values UpperCAmelCase_ : Optional[int] = None self.set_sigmas(lowercase ,lowercase ,lowercase ,lowercase) def A_ ( self ,lowercase ,lowercase = None): """simple docstring""" return sample def A_ ( self ,lowercase ,lowercase = None ,lowercase = None): """simple docstring""" UpperCAmelCase_ : int = sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCAmelCase_ : List[Any] = torch.linspace(1 ,lowercase ,lowercase ,device=lowercase) def A_ ( self ,lowercase ,lowercase = None ,lowercase = None ,lowercase = None): """simple docstring""" UpperCAmelCase_ : Any = sigma_min if sigma_min is not None else self.config.sigma_min UpperCAmelCase_ : int = sigma_max if sigma_max is not None else self.config.sigma_max UpperCAmelCase_ : Union[str, Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowercase ,lowercase) UpperCAmelCase_ : Union[str, Any] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCAmelCase_ : Optional[int] = torch.exp(torch.linspace(math.log(lowercase) ,math.log(lowercase) ,lowercase)) UpperCAmelCase_ : Any = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def A_ ( self ,lowercase ,lowercase): """simple docstring""" return torch.where( timesteps == 0 ,torch.zeros_like(t.to(timesteps.device)) ,self.discrete_sigmas[timesteps - 1].to(timesteps.device) ,) def A_ ( self ,lowercase ,lowercase ,lowercase ,lowercase = None ,lowercase = True ,): """simple docstring""" if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") UpperCAmelCase_ : Optional[int] = timestep * torch.ones( sample.shape[0] ,device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCAmelCase_ : Tuple = (timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCAmelCase_ : Optional[int] = timesteps.to(self.discrete_sigmas.device) UpperCAmelCase_ : Optional[Any] = self.discrete_sigmas[timesteps].to(sample.device) UpperCAmelCase_ : Optional[Any] = self.get_adjacent_sigma(lowercase ,lowercase).to(sample.device) UpperCAmelCase_ : Any = torch.zeros_like(lowercase) UpperCAmelCase_ : Dict = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCAmelCase_ : Dict = diffusion.flatten() while len(diffusion.shape) < len(sample.shape): UpperCAmelCase_ : List[str] = diffusion.unsqueeze(-1) UpperCAmelCase_ : List[Any] = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCAmelCase_ : Union[str, Any] = randn_tensor( sample.shape ,layout=sample.layout ,generator=lowercase ,device=sample.device ,dtype=sample.dtype) UpperCAmelCase_ : Any = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCAmelCase_ : Tuple = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowercase ,prev_sample_mean=lowercase) def A_ ( self ,lowercase ,lowercase ,lowercase = None ,lowercase = True ,): """simple docstring""" if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCAmelCase_ : int = randn_tensor(sample.shape ,layout=sample.layout ,generator=lowercase).to(sample.device) # compute step size from the model_output, the noise, and the snr UpperCAmelCase_ : Union[str, Any] = torch.norm(model_output.reshape(model_output.shape[0] ,-1) ,dim=-1).mean() UpperCAmelCase_ : Optional[Any] = torch.norm(noise.reshape(noise.shape[0] ,-1) ,dim=-1).mean() UpperCAmelCase_ : List[Any] = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCAmelCase_ : Optional[Any] = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCAmelCase_ : Any = step_size.flatten() while len(step_size.shape) < len(sample.shape): UpperCAmelCase_ : Tuple = step_size.unsqueeze(-1) UpperCAmelCase_ : Dict = sample + step_size * model_output UpperCAmelCase_ : int = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowercase) def A_ ( self ,lowercase ,lowercase ,lowercase ,): """simple docstring""" UpperCAmelCase_ : Any = timesteps.to(original_samples.device) UpperCAmelCase_ : List[str] = self.discrete_sigmas.to(original_samples.device)[timesteps] UpperCAmelCase_ : Tuple = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowercase) * sigmas[:, None, None, None] ) UpperCAmelCase_ : Tuple = noise + original_samples return noisy_samples def __len__( self): """simple docstring""" return self.config.num_train_timesteps
455
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) a__ : Dict = 'bert-base-cased' a__ : List[str] = 'fp16' a__ : Optional[Any] = 'bf16' a__ : Dict = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): def __UpperCAmelCase ( self ): """simple docstring""" super().setUp() A_ = dict( ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,) def __UpperCAmelCase ( self ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__snake_case ): A_ = self.dist_env.copy() A_ = f'{i + 1}' A_ = strategy with mockenv_context(**__snake_case ): A_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def __UpperCAmelCase ( self ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__snake_case ): A_ = self.dist_env.copy() A_ = prefetch_policy with mockenv_context(**__snake_case ): A_ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def __UpperCAmelCase ( self ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__snake_case ): A_ = self.dist_env.copy() A_ = state_dict_type with mockenv_context(**__snake_case ): A_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = AutoModel.from_pretrained(__snake_case ) for policy in FSDP_AUTO_WRAP_POLICY: A_ = self.dist_env.copy() A_ = policy if policy == "TRANSFORMER_BASED_WRAP": A_ = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": A_ = '''2000''' with mockenv_context(**__snake_case ): A_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__snake_case ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) A_ = self.dist_env.copy() A_ = '''TRANSFORMER_BASED_WRAP''' A_ = '''T5Layer''' with mockenv_context(**__snake_case ): A_ = FullyShardedDataParallelPlugin() with self.assertRaises(__snake_case ) as cm: fsdp_plugin.set_auto_wrap_policy(__snake_case ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) A_ = self.dist_env.copy() A_ = '''SIZE_BASED_WRAP''' A_ = '''0''' with mockenv_context(**__snake_case ): A_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__snake_case ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __UpperCAmelCase ( self ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: A_ = self.dist_env.copy() A_ = mp_dtype with mockenv_context(**__snake_case ): A_ = Accelerator() if mp_dtype == "fp16": A_ = torch.floataa elif mp_dtype == "bf16": A_ = torch.bfloataa A_ = MixedPrecision(param_dtype=__snake_case ,reduce_dtype=__snake_case ,buffer_dtype=__snake_case ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__snake_case ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,__snake_case ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__snake_case ) def __UpperCAmelCase ( self ): """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: A_ = self.dist_env.copy() A_ = str(__snake_case ).lower() with mockenv_context(**__snake_case ): A_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__snake_case ) ) @require_fsdp @require_multi_gpu @slow class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): def __UpperCAmelCase ( self ): """simple docstring""" super().setUp() A_ = 0.82 A_ = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] A_ = { '''multi_gpu_fp16''': 3_2_0_0, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_0_0_0, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_9_0_0, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } A_ = 1_6_0 A_ = 1_6_0 A_ = inspect.getfile(accelerate.test_utils ) A_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = os.path.join(self.test_scripts_folder ,'''test_performance.py''' ) A_ = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: A_ = cmd.copy() for i, strategy in enumerate(__snake_case ): if strategy.lower() in config: cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', f'--performance_lower_bound={self.performance_lower_bound}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case ,env=os.environ.copy() ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' ) A_ = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__snake_case ): A_ = cmd.copy() cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) if strategy != "FULL_SHARD": continue A_ = len(__snake_case ) for state_dict_type in FSDP_STATE_DICT_TYPE: A_ = cmd_config[:state_dict_config_index] cmd_config.append(f'--fsdp_state_dict_type={state_dict_type}' ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case ,env=os.environ.copy() ) A_ = cmd_config[:-1] A_ = os.path.join(self.tmpdir ,'''epoch_0''' ) cmd_config.extend( [ f'--resume_from_checkpoint={resume_from_checkpoint}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case ,env=os.environ.copy() ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' ) A_ = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): A_ = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__snake_case ): if strategy.lower() in spec: cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', f'--peak_memory_upper_bound={peak_mem_upper_bound}', f'--n_train={self.n_train}', f'--n_val={self.n_val}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case ,env=os.environ.copy() )
188
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : str = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
188
1
def _snake_case ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ): if index == r: for j in range(__snake_case ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location _UpperCamelCase = arr[i] combination_util(__snake_case , __snake_case , __snake_case , index + 1 , __snake_case , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _snake_case ( __snake_case , __snake_case , __snake_case ): # A temporary array to store all combination one by one _UpperCamelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(__snake_case , __snake_case , __snake_case , 0 , __snake_case , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowerCAmelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
71
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "gpt_neox" def __init__( self : Union[str, Any] , _A : Union[str, Any]=5_0432 , _A : List[Any]=6144 , _A : int=44 , _A : int=64 , _A : Optional[Any]=2_4576 , _A : Any="gelu" , _A : Tuple=0.25 , _A : Union[str, Any]=1_0000 , _A : Tuple=0.0 , _A : Any=0.0 , _A : int=0.1 , _A : List[str]=2048 , _A : Dict=0.02 , _A : Optional[Any]=1e-5 , _A : Tuple=True , _A : List[Any]=0 , _A : Optional[int]=2 , _A : Optional[int]=False , _A : List[Any]=True , _A : Any=None , **_A : Any , ): super().__init__(bos_token_id=_A , eos_token_id=_A , **_A ) _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = rotary_pct _UpperCamelCase = rotary_emb_base _UpperCamelCase = attention_dropout _UpperCamelCase = hidden_dropout _UpperCamelCase = classifier_dropout _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = use_cache _UpperCamelCase = tie_word_embeddings _UpperCamelCase = use_parallel_residual _UpperCamelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def UpperCamelCase_ ( self : str ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _A ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"""got {self.rope_scaling}""" ) _UpperCamelCase = self.rope_scaling.get('''type''' , _A ) _UpperCamelCase = self.rope_scaling.get('''factor''' , _A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_A , _A ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
71
1
import math from numpy import inf from scipy.integrate import quad def snake_case_ (__A : float ) -> float: if num <= 0: raise ValueError("""math domain error""" ) return quad(__A , 0 , __A , args=(__A) )[0] def snake_case_ (__A : float , __A : float ) -> float: return math.pow(__A , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
651
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Optional[int] =field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCamelCase : bool =field( default=a_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) lowerCamelCase : Optional[int] =field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] =field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowerCamelCase : Optional[int] =field( default=a_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : str =field( default=a_ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : str =field( default=a_ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Train language if it is different from the evaluation language."} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase : Optional[bool] =field( default=a_ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) lowerCamelCase : str =field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCamelCase : bool =field( default=a_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def snake_case_ () -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : List[str] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""" , __A ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCAmelCase : int = training_args.get_process_log_level() logger.setLevel(__A ) datasets.utils.logging.set_verbosity(__A ) transformers.utils.logging.set_verbosity(__A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __lowerCAmelCase : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __lowerCAmelCase : Union[str, Any] = load_dataset( """xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __lowerCAmelCase : List[str] = load_dataset( """xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Dict = train_dataset.features["""label"""].names if training_args.do_eval: __lowerCAmelCase : Tuple = load_dataset( """xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Optional[int] = eval_dataset.features["""label"""].names if training_args.do_predict: __lowerCAmelCase : List[Any] = load_dataset( """xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Optional[Any] = predict_dataset.features["""label"""].names # Labels __lowerCAmelCase : Optional[int] = len(__A ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__A , idalabel={str(__A ): label for i, label in enumerate(__A )} , labelaid={label: i for i, label in enumerate(__A )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __lowerCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __lowerCAmelCase : List[str] = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __lowerCAmelCase : int = False def preprocess_function(__A : List[str] ): # Tokenize the texts return tokenizer( examples["""premise"""] , examples["""hypothesis"""] , padding=__A , max_length=data_args.max_seq_length , truncation=__A , ) if training_args.do_train: if data_args.max_train_samples is not None: __lowerCAmelCase : Union[str, Any] = min(len(__A ) , data_args.max_train_samples ) __lowerCAmelCase : List[str] = train_dataset.select(range(__A ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): __lowerCAmelCase : Dict = train_dataset.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , ) # Log a few random samples from the training set: for index in random.sample(range(len(__A ) ) , 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: __lowerCAmelCase : str = min(len(__A ) , data_args.max_eval_samples ) __lowerCAmelCase : Optional[int] = eval_dataset.select(range(__A ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): __lowerCAmelCase : List[Any] = eval_dataset.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __lowerCAmelCase : Dict = min(len(__A ) , data_args.max_predict_samples ) __lowerCAmelCase : Optional[int] = predict_dataset.select(range(__A ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): __lowerCAmelCase : Union[str, Any] = predict_dataset.map( __A , batched=__A , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , ) # Get the metric function __lowerCAmelCase : Optional[Any] = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__A : EvalPrediction ): __lowerCAmelCase : Optional[int] = p.predictions[0] if isinstance(p.predictions , __A ) else p.predictions __lowerCAmelCase : Tuple = np.argmax(__A , axis=1 ) return metric.compute(predictions=__A , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __lowerCAmelCase : Dict = default_data_collator elif training_args.fpaa: __lowerCAmelCase : Union[str, Any] = DataCollatorWithPadding(__A , pad_to_multiple_of=8 ) else: __lowerCAmelCase : Optional[int] = None # Initialize our Trainer __lowerCAmelCase : Optional[int] = Trainer( model=__A , args=__A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__A , tokenizer=__A , data_collator=__A , ) # Training if training_args.do_train: __lowerCAmelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase : Tuple = last_checkpoint __lowerCAmelCase : List[str] = trainer.train(resume_from_checkpoint=__A ) __lowerCAmelCase : int = train_result.metrics __lowerCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__A ) ) __lowerCAmelCase : Optional[int] = min(__A , len(__A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""" , __A ) trainer.save_metrics("""train""" , __A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase : List[str] = trainer.evaluate(eval_dataset=__A ) __lowerCAmelCase : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__A ) __lowerCAmelCase : List[Any] = min(__A , len(__A ) ) trainer.log_metrics("""eval""" , __A ) trainer.save_metrics("""eval""" , __A ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : Any = trainer.predict(__A , metric_key_prefix="""predict""" ) __lowerCAmelCase : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__A ) ) __lowerCAmelCase : str = min(__A , len(__A ) ) trainer.log_metrics("""predict""" , __A ) trainer.save_metrics("""predict""" , __A ) __lowerCAmelCase : Any = np.argmax(__A , axis=1 ) __lowerCAmelCase : int = os.path.join(training_args.output_dir , """predictions.txt""" ) if trainer.is_world_process_zero(): with open(__A , """w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(__A ): __lowerCAmelCase : List[Any] = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
651
1
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder snake_case__ : int = datasets.utils.logging.get_logger(__name__) class snake_case_( folder_based_builder.FolderBasedBuilderConfig ): __UpperCamelCase = None __UpperCamelCase = None class snake_case_( folder_based_builder.FolderBasedBuilder ): __UpperCamelCase = datasets.Audio() __UpperCamelCase = '''audio''' __UpperCamelCase = AudioFolderConfig __UpperCamelCase = 42 # definition at the bottom of the script __UpperCamelCase = AudioClassification(audio_column='''audio''' , label_column='''label''' ) snake_case__ : Union[str, Any] = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] snake_case__ : str = AUDIO_EXTENSIONS
637
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Tuple , _snake_case : Union[str, Any]=10 ): lowerCAmelCase : Dict = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[int] , _snake_case : int=10 ): lowerCAmelCase : Optional[int] = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : List[str] = os.path.join(_snake_case , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _snake_case ) lowerCAmelCase : List[Any] = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Any ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ ) def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : List[str] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : List[Any] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Union[str, Any] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_0_0 ): lowerCAmelCase : Union[str, Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase : Optional[int] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase : Any = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCamelCase_ , weight_decay=0.0 , relative_step=UpperCamelCase_ , scale_parameter=UpperCamelCase_ , warmup_init=UpperCamelCase_ , ) for _ in range(1_0_0_0 ): lowerCAmelCase : List[Any] = criterion(UpperCamelCase_ , UpperCamelCase_ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class snake_case_( unittest.TestCase ): __UpperCamelCase = nn.Linear(50 , 50 ) if is_torch_available() else None __UpperCamelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None __UpperCamelCase = 10 def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None ): self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for a, b in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertAlmostEqual(UpperCamelCase_ , UpperCamelCase_ , delta=UpperCamelCase_ , msg=UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Tuple = {'''num_warmup_steps''': 2, '''num_training_steps''': 1_0} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase, lowerCAmelCase : Union[str, Any] = data lowerCAmelCase : List[Any] = scheduler_func(self.optimizer , **UpperCamelCase_ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) lowerCAmelCase : str = unwrap_schedule(UpperCamelCase_ , self.num_steps ) self.assertListAlmostEqual( UpperCamelCase_ , UpperCamelCase_ , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) lowerCAmelCase : Optional[int] = scheduler_func(self.optimizer , **UpperCamelCase_ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCamelCase_ ) # wrap to test picklability of the schedule lowerCAmelCase : List[Any] = unwrap_and_save_reload_schedule(UpperCamelCase_ , self.num_steps ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ , msg=F'''failed for {scheduler_func} in save and reload''' ) class snake_case_: def __init__( self : List[Any] , UpperCamelCase_ : Any ): lowerCAmelCase : Tuple = fn def __call__( self : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[Any] ): return self.fn(*UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def lowerCamelCase__ ( self : Any , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : Union[str, Any] = list(map(self , scheduler.lr_lambdas ) )
637
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
699
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def _lowerCAmelCase ( _lowerCAmelCase )-> Optional[Any]: return 1.0 / (1.0 + np.exp(-_outputs )) def _lowerCAmelCase ( _lowerCAmelCase )-> str: __UpperCAmelCase = np.max(_outputs , axis=-1 , keepdims=_lowerCAmelCase ) __UpperCAmelCase = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_lowerCAmelCase ) class UpperCAmelCase ( UpperCAmelCase_ ): _A : List[str] = """sigmoid""" _A : Optional[Any] = """softmax""" _A : Optional[int] = """none""" @add_end_docstrings( UpperCAmelCase_ , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class UpperCAmelCase ( UpperCAmelCase_ ): _A : Dict = False _A : Optional[int] = ClassificationFunction.NONE def __init__( self , **__A ): super().__init__(**__A ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __lowerCamelCase ( self , __A=None , __A=None , __A="" , **__A ): # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __UpperCAmelCase = tokenizer_kwargs __UpperCAmelCase = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: __UpperCAmelCase = self.model.config.return_all_scores if isinstance(__A , __A ) or top_k is None: __UpperCAmelCase = top_k __UpperCAmelCase = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , __A , ) if return_all_scores: __UpperCAmelCase = None else: __UpperCAmelCase = 1 if isinstance(__A , __A ): __UpperCAmelCase = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __UpperCAmelCase = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *__A , **__A ): __UpperCAmelCase = super().__call__(*__A , **__A ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __UpperCAmelCase = 'top_k' not in kwargs if isinstance(args[0] , __A ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __lowerCamelCase ( self , __A , **__A ): __UpperCAmelCase = self.framework if isinstance(__A , __A ): return self.tokenizer(**__A , return_tensors=__A , **__A ) elif isinstance(__A , __A ) and len(__A ) == 1 and isinstance(inputs[0] , __A ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__A , **__A ) elif isinstance(__A , __A ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(__A , return_tensors=__A , **__A ) def __lowerCamelCase ( self , __A ): return self.model(**__A ) def __lowerCamelCase ( self , __A , __A=None , __A=1 , __A=True ): # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __UpperCAmelCase = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __UpperCAmelCase = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: __UpperCAmelCase = self.model.config.function_to_apply else: __UpperCAmelCase = ClassificationFunction.NONE __UpperCAmelCase = model_outputs['logits'][0] __UpperCAmelCase = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __UpperCAmelCase = sigmoid(__A ) elif function_to_apply == ClassificationFunction.SOFTMAX: __UpperCAmelCase = softmax(__A ) elif function_to_apply == ClassificationFunction.NONE: __UpperCAmelCase = outputs else: raise ValueError(f'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __UpperCAmelCase = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(__A ) ] if not _legacy: dict_scores.sort(key=lambda __A : x["score"] , reverse=__A ) if top_k is not None: __UpperCAmelCase = dict_scores[:top_k] return dict_scores
126
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
720
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( __magic_name__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizer __SCREAMING_SNAKE_CASE : List[Any] = XGLMTokenizerFast __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = True def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = """<pad>""" lowercase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(UpperCamelCase__ ) , 1_008 ) def UpperCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = XGLMTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) lowercase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCamelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowercase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(UpperCamelCase__ , f.name ) lowercase_ = XGLMTokenizer(f.name , keep_accents=UpperCamelCase__ ) lowercase_ = pickle.dumps(UpperCamelCase__ ) pickle.loads(UpperCamelCase__ ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ = self.get_tokenizer() lowercase_ = self.get_rust_tokenizer() lowercase_ = """I was born in 92000, and this is falsé.""" lowercase_ = tokenizer.tokenize(UpperCamelCase__ ) lowercase_ = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = self.get_rust_tokenizer() lowercase_ = tokenizer.encode(UpperCamelCase__ ) lowercase_ = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = """Hello World!""" lowercase_ = [2, 31_227, 4_447, 35] self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off lowercase_ = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(UpperCamelCase__ , self.big_tokenizer.encode(UpperCamelCase__ ) ) @slow def UpperCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ = { """input_ids""": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="""facebook/xglm-564M""" , padding=UpperCamelCase__ , )
650
0
'''simple docstring''' import math def lowerCamelCase_ ( A_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase_ ( A_ = 1_00_01 ): try: __lowerCamelCase = int(A_ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) __lowerCamelCase = [] __lowerCamelCase = 2 while len(A_ ) < nth: if is_prime(A_ ): primes.append(A_ ) num += 1 else: num += 1 return primes[len(A_ ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
316
'''simple docstring''' def lowerCamelCase_ ( A_ , A_ ): __lowerCamelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __lowerCamelCase = n - k # Calculate C(n,k) for i in range(A_ ): result *= n - i result //= i + 1 return result def lowerCamelCase_ ( A_ ): return binomial_coefficient(2 * node_count , A_ ) // (node_count + 1) def lowerCamelCase_ ( A_ ): if n < 0: raise ValueError('''factorial() not defined for negative values''' ) __lowerCamelCase = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase_ ( A_ ): return catalan_number(A_ ) * factorial(A_ ) if __name__ == "__main__": _UpperCamelCase : Dict =int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
316
1
"""simple docstring""" def snake_case (A_ :Optional[Any] ): '''simple docstring''' a : str = len(A_ ) for i in range(length - 1 ): a : Tuple = i for k in range(i + 1 , A_ ): if collection[k] < collection[least]: a : List[str] = k if least != i: a : List[str] = (collection[i], collection[least]) return collection if __name__ == "__main__": _UpperCamelCase : int = input('Enter numbers separated by a comma:\n').strip() _UpperCamelCase : List[str] = [int(item) for item in user_input.split(',')] print(selection_sort(unsorted))
720
"""simple docstring""" # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _UpperCamelCase : int = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
118
0
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): # load base model _UpperCamelCase : str = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _UpperCamelCase : Optional[Any] = load_file(UpperCAmelCase_ ) _UpperCamelCase : int = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _UpperCamelCase : Union[str, Any] = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) _UpperCamelCase : List[str] = pipeline.text_encoder else: _UpperCamelCase : List[str] = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) _UpperCamelCase : List[Any] = pipeline.unet # find the target layer _UpperCamelCase : List[Any] = layer_infos.pop(0 ) while len(UpperCAmelCase_ ) > -1: try: _UpperCamelCase : List[str] = curr_layer.__getattr__(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: _UpperCamelCase : Any = layer_infos.pop(0 ) elif len(UpperCAmelCase_ ) == 0: break except Exception: if len(UpperCAmelCase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _UpperCamelCase : Optional[int] = layer_infos.pop(0 ) _UpperCamelCase : Union[str, Any] = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(UpperCAmelCase_ ) else: pair_keys.append(UpperCAmelCase_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _UpperCamelCase : int = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _UpperCamelCase : Any = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase_ , UpperCAmelCase_ ).unsqueeze(2 ).unsqueeze(3 ) else: _UpperCamelCase : int = state_dict[pair_keys[0]].to(torch.floataa ) _UpperCamelCase : Optional[Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase_ , UpperCAmelCase_ ) # update visited list for item in pair_keys: visited.append(UpperCAmelCase_ ) return pipeline if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') snake_case_ : Tuple = parser.parse_args() snake_case_ : List[str] = args.base_model_path snake_case_ : Union[str, Any] = args.checkpoint_path snake_case_ : List[Any] = args.dump_path snake_case_ : Tuple = args.lora_prefix_unet snake_case_ : Dict = args.lora_prefix_text_encoder snake_case_ : str = args.alpha snake_case_ : Dict = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) snake_case_ : List[Any] = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
195
'''simple docstring''' def A__ ( UpperCAmelCase_ = 1_0_0_0 ): _UpperCamelCase : List[str] = 3 _UpperCamelCase : Any = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 1_5 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"""{solution() = }""")
195
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowercase ( a__ : str ) -> Dict: _UpperCamelCase = DPTConfig(embedding_type='''hybrid''' ) if "large" in checkpoint_url: _UpperCamelCase = 1024 _UpperCamelCase = 4096 _UpperCamelCase = 24 _UpperCamelCase = 16 _UpperCamelCase = [5, 11, 17, 23] _UpperCamelCase = [256, 512, 1024, 1024] _UpperCamelCase = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _UpperCamelCase = 768 _UpperCamelCase = [1, 1, 1, 0.5] _UpperCamelCase = [256, 512, 768, 768] _UpperCamelCase = 150 _UpperCamelCase = 16 _UpperCamelCase = (1, 384, 384) _UpperCamelCase = False _UpperCamelCase = '''project''' if "ade" in checkpoint_url: _UpperCamelCase = True _UpperCamelCase = 768 _UpperCamelCase = [1, 1, 1, 0.5] _UpperCamelCase = 150 _UpperCamelCase = 16 _UpperCamelCase = '''huggingface/label-files''' _UpperCamelCase = '''ade20k-id2label.json''' _UpperCamelCase = json.load(open(cached_download(hf_hub_url(a__ , a__ , repo_type='''dataset''' ) ) , '''r''' ) ) _UpperCamelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} _UpperCamelCase = [1, 150, 480, 480] return config, expected_shape def lowercase ( a__ : Dict ) -> Optional[int]: _UpperCamelCase = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(a__ , a__ ) def lowercase ( a__ : Tuple ) -> Union[str, Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCamelCase = name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: _UpperCamelCase = name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: _UpperCamelCase = name.replace('''patch_embed''' , '''''' ) if "pos_embed" in name: _UpperCamelCase = name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: _UpperCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: _UpperCamelCase = name.replace('''proj''' , '''projection''' ) if "blocks" in name: _UpperCamelCase = name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: _UpperCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _UpperCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name and "backbone" not in name: _UpperCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name and "backbone" not in name: _UpperCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: _UpperCamelCase = name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: _UpperCamelCase = name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: _UpperCamelCase = name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: _UpperCamelCase = name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: _UpperCamelCase = name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: _UpperCamelCase = name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: _UpperCamelCase = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCamelCase = name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _UpperCamelCase = name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: _UpperCamelCase = name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: _UpperCamelCase = name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: _UpperCamelCase = name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: _UpperCamelCase = name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCamelCase = name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCamelCase = name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCamelCase = name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCamelCase = name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCamelCase = name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: _UpperCamelCase = name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: _UpperCamelCase = name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: _UpperCamelCase = name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: _UpperCamelCase = name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: _UpperCamelCase = name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: _UpperCamelCase = name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: _UpperCamelCase = name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: _UpperCamelCase = name.replace('''bn''' , '''batch_norm''' ) if "head" in name: _UpperCamelCase = name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: _UpperCamelCase = name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: _UpperCamelCase = name.replace('''auxlayer''' , '''auxiliary_head.head''' ) if "backbone" in name: _UpperCamelCase = name.replace('''backbone''' , '''backbone.bit.encoder''' ) if ".." in name: _UpperCamelCase = name.replace('''..''' , '''.''' ) if "stem.conv" in name: _UpperCamelCase = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: _UpperCamelCase = name.replace('''blocks''' , '''layers''' ) if "convolution" in name and "backbone" in name: _UpperCamelCase = name.replace('''convolution''' , '''conv''' ) if "layer" in name and "backbone" in name: _UpperCamelCase = name.replace('''layer''' , '''layers''' ) if "backbone.bit.encoder.bit" in name: _UpperCamelCase = name.replace('''backbone.bit.encoder.bit''' , '''backbone.bit''' ) if "embedder.conv" in name: _UpperCamelCase = name.replace('''embedder.conv''' , '''embedder.convolution''' ) if "backbone.bit.encoder.stem.norm" in name: _UpperCamelCase = name.replace('''backbone.bit.encoder.stem.norm''' , '''backbone.bit.embedder.norm''' ) return name def lowercase ( a__ : Optional[int] , a__ : str ) -> Any: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _UpperCamelCase = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase = in_proj_weight[: config.hidden_size, :] _UpperCamelCase = in_proj_bias[: config.hidden_size] _UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase = in_proj_bias[-config.hidden_size :] def lowercase ( ) -> Optional[Any]: _UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _UpperCamelCase = Image.open(requests.get(a__ , stream=a__ ).raw ) return im @torch.no_grad() def lowercase ( a__ : Optional[int] , a__ : Tuple , a__ : Optional[int] , a__ : Dict , a__ : str ) -> Dict: _UpperCamelCase , _UpperCamelCase = get_dpt_config(a__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _UpperCamelCase = torch.load(a__ , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(a__ ) # rename keys for key in state_dict.copy().keys(): _UpperCamelCase = state_dict.pop(a__ ) _UpperCamelCase = val # read in qkv matrices read_in_q_k_v(a__ , a__ ) # load HuggingFace model _UpperCamelCase = DPTForSemanticSegmentation(a__ ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(a__ ) model.load_state_dict(a__ ) model.eval() # Check outputs on an image _UpperCamelCase = 480 if '''ade''' in checkpoint_url else 384 _UpperCamelCase = DPTImageProcessor(size=a__ ) _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(a__ , return_tensors='''pt''' ) # forward pass _UpperCamelCase = model(**a__ ).logits if '''ade''' in checkpoint_url else model(**a__ ).predicted_depth if show_prediction: _UpperCamelCase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='''bicubic''' , align_corners=a__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(a__ ).mkdir(exist_ok=a__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if push_to_hub: model.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) UpperCAmelCase = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
342
"""simple docstring""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowercase ( a__ : Union[str, Any] , a__ : str ) -> int: _UpperCamelCase = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''encoder.deit.blocks.{i}.norm1.weight''', F'''encoder.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm1.bias''', F'''encoder.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.weight''', F'''encoder.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.attn.proj.bias''', F'''encoder.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.norm2.weight''', F'''encoder.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.norm2.bias''', F'''encoder.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.weight''', F'''encoder.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc1.bias''', F'''encoder.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append( (F'''encoder.deit.blocks.{i}.mlp.fc2.weight''', F'''encoder.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''encoder.deit.blocks.{i}.mlp.fc2.bias''', F'''encoder.encoder.layer.{i}.output.dense.bias''') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ('''encoder.deit.cls_token''', '''encoder.embeddings.cls_token'''), ('''encoder.deit.pos_embed''', '''encoder.embeddings.position_embeddings'''), ('''encoder.deit.patch_embed.proj.weight''', '''encoder.embeddings.patch_embeddings.projection.weight'''), ('''encoder.deit.patch_embed.proj.bias''', '''encoder.embeddings.patch_embeddings.projection.bias'''), ('''encoder.deit.norm.weight''', '''encoder.layernorm.weight'''), ('''encoder.deit.norm.bias''', '''encoder.layernorm.bias'''), ] ) return rename_keys def lowercase ( a__ : List[str] , a__ : List[Any] ) -> Optional[Any]: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _UpperCamelCase = state_dict.pop(F'''encoder.deit.blocks.{i}.attn.qkv.weight''' ) _UpperCamelCase = in_proj_weight[ : encoder_config.hidden_size, : ] _UpperCamelCase = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _UpperCamelCase = in_proj_weight[ -encoder_config.hidden_size :, : ] def lowercase ( a__ : List[Any] , a__ : List[str] , a__ : Dict ) -> str: _UpperCamelCase = dct.pop(a__ ) _UpperCamelCase = val def lowercase ( a__ : List[Any] ) -> Union[str, Any]: if "handwritten" in checkpoint_url: _UpperCamelCase = '''https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg''' # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = '''https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg''' _UpperCamelCase = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('''RGB''' ) return im @torch.no_grad() def lowercase ( a__ : Any , a__ : List[str] ) -> Tuple: _UpperCamelCase = ViTConfig(image_size=384 , qkv_bias=a__ ) _UpperCamelCase = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _UpperCamelCase = 768 elif "large" in checkpoint_url: # use ViT-large encoder _UpperCamelCase = 1024 _UpperCamelCase = 4096 _UpperCamelCase = 24 _UpperCamelCase = 16 _UpperCamelCase = 1024 else: raise ValueError('''Should either find \'base\' or \'large\' in checkpoint URL''' ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _UpperCamelCase = False _UpperCamelCase = '''relu''' _UpperCamelCase = 1024 _UpperCamelCase = True _UpperCamelCase = False _UpperCamelCase = False # load HuggingFace model _UpperCamelCase = ViTModel(a__ , add_pooling_layer=a__ ) _UpperCamelCase = TrOCRForCausalLM(a__ ) _UpperCamelCase = VisionEncoderDecoderModel(encoder=a__ , decoder=a__ ) model.eval() # load state_dict of original model, rename some keys _UpperCamelCase = torch.hub.load_state_dict_from_url(a__ , map_location='''cpu''' , check_hash=a__ )['''model'''] _UpperCamelCase = create_rename_keys(a__ , a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , a__ ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _UpperCamelCase = state_dict.pop(a__ ) if key.startswith('''decoder''' ) and "output_projection" not in key: _UpperCamelCase = val else: _UpperCamelCase = val # load state dict model.load_state_dict(a__ ) # Check outputs on an image _UpperCamelCase = ViTImageProcessor(size=encoder_config.image_size ) _UpperCamelCase = RobertaTokenizer.from_pretrained('''roberta-large''' ) _UpperCamelCase = TrOCRProcessor(a__ , a__ ) _UpperCamelCase = processor(images=prepare_img(a__ ) , return_tensors='''pt''' ).pixel_values # verify logits _UpperCamelCase = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _UpperCamelCase = model(pixel_values=a__ , decoder_input_ids=a__ ) _UpperCamelCase = outputs.logits _UpperCamelCase = torch.Size([1, 1, 50265] ) if "trocr-base-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: _UpperCamelCase = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: _UpperCamelCase = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , a__ , atol=1e-3 ), "First elements of logits not as expected" Path(a__ ).mkdir(exist_ok=a__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) UpperCAmelCase = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
342
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> float: SCREAMING_SNAKE_CASE__ = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE__ = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE__ = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE__ = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation _A = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
159
import math snake_case__ = 10 snake_case__ = 7 snake_case__ = BALLS_PER_COLOUR * NUM_COLOURS def lowerCamelCase__ ( a : int = 20 ) -> str: """simple docstring""" a__ :List[str] = math.comb(a , a ) a__ :Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a ) a__ :Union[str, Any] = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
395
0
def _UpperCAmelCase ( a : list ): snake_case__ = False while is_sorted is False: # Until all the indices are traversed keep looping snake_case__ = True for i in range(0 , len(a ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: snake_case__ , snake_case__ = input_list[i + 1], input_list[i] # swapping if elements not in order snake_case__ = False for i in range(1 , len(a ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: snake_case__ , snake_case__ = input_list[i + 1], input_list[i] # swapping if elements not in order snake_case__ = False return input_list if __name__ == "__main__": print("""Enter list to be sorted""") a__ = [int(x) for x in input().split()] # inputing elements of the list in one line a__ = odd_even_sort(input_list) print("""The sorted list is""") print(sorted_list)
99
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm a__ = logging.get_logger(__name__) @dataclass class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : str , **UpperCamelCase__ : Dict): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case__ = deprecated_arg[3:] setattr(self , UpperCamelCase__ , not kwargs.pop(UpperCamelCase__)) logger.warning( F'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' F''' {positive_arg}={kwargs[positive_arg]}''') snake_case__ = kwargs.pop("""torchscript""" , self.torchscript) snake_case__ = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics) snake_case__ = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level) super().__init__(**UpperCamelCase__) _lowercase : bool = field(default=lowercase_ , metadata={'''help''': '''Trace the models using torchscript'''} ) _lowercase : bool = field(default=lowercase_ , metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''} ) _lowercase : str = field( default='''O1''' , metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) } , ) @cached_property def __magic_name__ ( self : Tuple): '''simple docstring''' requires_backends(self , ["""torch"""]) logger.info("""PyTorch: setting up devices""") if not self.cuda: snake_case__ = torch.device("""cpu""") snake_case__ = 0 elif is_torch_tpu_available(): snake_case__ = xm.xla_device() snake_case__ = 0 else: snake_case__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""") snake_case__ = torch.cuda.device_count() return device, n_gpu @property def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def __magic_name__ ( self : List[str]): '''simple docstring''' requires_backends(self , ["""torch"""]) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' requires_backends(self , ["""torch"""]) return self._setup_devices[0] @property def __magic_name__ ( self : str): '''simple docstring''' requires_backends(self , ["""torch"""]) return self._setup_devices[1] @property def __magic_name__ ( self : str): '''simple docstring''' return self.n_gpu > 0
99
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = "dandelin/vilt-b32-finetuned-vqa" SCREAMING_SNAKE_CASE : Any = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) SCREAMING_SNAKE_CASE : Tuple = "image_qa" SCREAMING_SNAKE_CASE : str = AutoProcessor SCREAMING_SNAKE_CASE : int = AutoModelForVisualQuestionAnswering SCREAMING_SNAKE_CASE : str = ["image", "text"] SCREAMING_SNAKE_CASE : Optional[int] = ["text"] def __init__( self : List[Any] , *_UpperCamelCase : Dict , **_UpperCamelCase : List[Any] ) ->int: requires_backends(self , ['''vision'''] ) super().__init__(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Optional[int] , _UpperCamelCase : "Image" , _UpperCamelCase : str ) ->Union[str, Any]: return self.pre_processor(_UpperCamelCase , _UpperCamelCase , return_tensors='''pt''' ) def snake_case__( self : Any , _UpperCamelCase : Union[str, Any] ) ->str: with torch.no_grad(): return self.model(**_UpperCamelCase ).logits def snake_case__( self : Union[str, Any] , _UpperCamelCase : Dict ) ->Any: snake_case_ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
39
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :Optional[int] = { """configuration_rembert""": ["""REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RemBertConfig""", """RemBertOnnxConfig"""] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :str = ["""RemBertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = ["""RemBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Dict = [ """REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RemBertForCausalLM""", """RemBertForMaskedLM""", """RemBertForMultipleChoice""", """RemBertForQuestionAnswering""", """RemBertForSequenceClassification""", """RemBertForTokenClassification""", """RemBertLayer""", """RemBertModel""", """RemBertPreTrainedModel""", """load_tf_weights_in_rembert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = [ """TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRemBertForCausalLM""", """TFRemBertForMaskedLM""", """TFRemBertForMultipleChoice""", """TFRemBertForQuestionAnswering""", """TFRemBertForSequenceClassification""", """TFRemBertForTokenClassification""", """TFRemBertLayer""", """TFRemBertModel""", """TFRemBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
628
0
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case, snake_case): __snake_case = multiprocessing.Manager() __snake_case = manager.list() __snake_case = multiprocessing.Process(target=snake_case, args=(check_program, result, timeout)) p.start() p.join(timeout=timeout + 1) if p.is_alive(): p.kill() if not result: result.append('''timed out''') return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __snake_case = shutil.rmtree __snake_case = os.rmdir __snake_case = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __snake_case = {} with swallow_io(): with time_limit(snake_case): exec(snake_case, snake_case) result.append('''passed''') except TimeoutException: result.append('''timed out''') except BaseException as e: result.append(f"failed: {e}") # Needed for cleaning up. __snake_case = rmtree __snake_case = rmdir __snake_case = chdir @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( snake_case): def signal_handler(snake_case, snake_case): raise TimeoutException('''Timed out!''') signal.setitimer(signal.ITIMER_REAL, snake_case) signal.signal(signal.SIGALRM, snake_case) try: yield finally: signal.setitimer(signal.ITIMER_REAL, 0) @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ): __snake_case = WriteOnlyStringIO() with contextlib.redirect_stdout(snake_case): with contextlib.redirect_stderr(snake_case): with redirect_stdin(snake_case): yield @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(snake_case): yield dirname class _A ( _UpperCAmelCase ): """simple docstring""" pass class _A ( io.StringIO ): """simple docstring""" def lowercase ( self : int , *A_ : List[Any] , **A_ : Tuple ) -> str: raise OSError def lowercase ( self : Dict , *A_ : Dict , **A_ : Optional[Any] ) -> int: raise OSError def lowercase ( self : List[str] , *A_ : str , **A_ : Any ) -> List[Any]: raise OSError def lowercase ( self : Optional[Any] , *A_ : List[str] , **A_ : Optional[int] ) -> Tuple: return False class _A ( contextlib._RedirectStream ): # type: ignore """simple docstring""" UpperCamelCase_ : Union[str, Any] = '''stdin''' @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( snake_case): if root == ".": yield return __snake_case = os.getcwd() os.chdir(snake_case) try: yield except BaseException as exc: raise exc finally: os.chdir(snake_case) def SCREAMING_SNAKE_CASE ( snake_case=None): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS, (maximum_memory_bytes, maximum_memory_bytes)) resource.setrlimit(resource.RLIMIT_DATA, (maximum_memory_bytes, maximum_memory_bytes)) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK, (maximum_memory_bytes, maximum_memory_bytes)) faulthandler.disable() import builtins __snake_case = None __snake_case = None import os __snake_case = '''1''' __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None import shutil __snake_case = None __snake_case = None __snake_case = None import subprocess __snake_case = None # type: ignore __snake_case = None import sys __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None
93
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _A ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Optional[int] ) -> List[str]: __snake_case = tempfile.mkdtemp() # fmt: off __snake_case = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __snake_case = dict(zip(A_ , range(len(A_ ) ) ) ) __snake_case = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __snake_case = {'''unk_token''': '''<unk>'''} __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A_ ) ) __snake_case = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } __snake_case = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(A_ , A_ ) def lowercase ( self : Optional[Any] , **A_ : Dict ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , **A_ ) def lowercase ( self : Optional[int] , **A_ : str ) -> str: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def lowercase ( self : Any , **A_ : Tuple ) -> Tuple: return ViTImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def lowercase ( self : Optional[int] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def lowercase ( self : int ) -> Optional[Any]: __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self : Optional[Any] ) -> Optional[Any]: __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = self.get_image_processor() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) __snake_case = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) __snake_case = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def lowercase ( self : Union[str, Any] ) -> Any: __snake_case = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __snake_case = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) __snake_case = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def lowercase ( self : Any ) -> str: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(A_ , return_tensors='''np''' ) __snake_case = processor(images=A_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase ( self : List[str] ) -> List[Any]: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = '''lower newer''' __snake_case = processor(text=A_ ) __snake_case = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self : List[Any] ) -> str: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = '''lower newer''' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def lowercase ( self : Union[str, Any] ) -> Any: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = self.prepare_image_inputs() __snake_case = self.prepare_image_inputs() __snake_case = processor(images=A_ , visual_prompt=A_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def lowercase ( self : Optional[int] ) -> Dict: __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = CLIPSegProcessor(tokenizer=A_ , image_processor=A_ ) __snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case = processor.batch_decode(A_ ) __snake_case = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ )
93
1
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __A ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" def is_in_circle(_SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: __SCREAMING_SNAKE_CASE : str = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __SCREAMING_SNAKE_CASE : Union[str, Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. __SCREAMING_SNAKE_CASE : Tuple = proportion * 4 print(f'The estimated value of pi is {pi_estimate}' ) print(f'The numpy value of pi is {pi}' ) print(f'The total error is {abs(pi - pi_estimate )}' ) def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Callable[[float], float] , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 , ): """simple docstring""" return mean( function_to_integrate(uniform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def __A ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 ): """simple docstring""" def identity_function(_SCREAMING_SNAKE_CASE : float ) -> float: return x __SCREAMING_SNAKE_CASE : Union[str, Any] = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : Union[str, Any] = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {expected_value}' ) print(f'Total error is {abs(estimated_value - expected_value )}' ) print("******************" ) def __A ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" def function_to_integrate(_SCREAMING_SNAKE_CASE : float ) -> float: return sqrt(4.0 - x * x ) __SCREAMING_SNAKE_CASE : Optional[int] = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f'Estimated value is {estimated_value}' ) print(f'Expected value is {pi}' ) print(f'Total error is {abs(estimated_value - pi )}' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
211
'''simple docstring''' from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __lowerCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : int = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) snake_case__ : Union[str, Any] = ( { '''feature-extraction''': TFMobileBertModel, '''fill-mask''': TFMobileBertForMaskedLM, '''question-answering''': TFMobileBertForQuestionAnswering, '''text-classification''': TFMobileBertForSequenceClassification, '''token-classification''': TFMobileBertForTokenClassification, '''zero-shot''': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) snake_case__ : Dict = False snake_case__ : Optional[int] = False def a_ ( self , a__ , a__ , a__=False ): __SCREAMING_SNAKE_CASE : Tuple = super()._prepare_for_class(a__ , a__ , return_labels=a__ ) if return_labels: if model_class in get_values(a__ ): __SCREAMING_SNAKE_CASE : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __lowerCamelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=32 , a__=32 , a__=2 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.02 , a__=3 , a__=4 , a__=None , ): __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : str = batch_size __SCREAMING_SNAKE_CASE : int = seq_length __SCREAMING_SNAKE_CASE : Any = is_training __SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask __SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids __SCREAMING_SNAKE_CASE : Dict = use_labels __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : Any = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Any = num_choices __SCREAMING_SNAKE_CASE : List[str] = scope __SCREAMING_SNAKE_CASE : Optional[int] = embedding_size def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : List[Any] = None __SCREAMING_SNAKE_CASE : Any = None if self.use_labels: __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[str] = TFMobileBertModel(config=a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ ) __SCREAMING_SNAKE_CASE : Any = [input_ids, input_mask] __SCREAMING_SNAKE_CASE : str = model(a__ ) __SCREAMING_SNAKE_CASE : int = model(a__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Tuple = TFMobileBertForMaskedLM(config=a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : str = TFMobileBertForNextSentencePrediction(config=a__ ) __SCREAMING_SNAKE_CASE : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Tuple = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = TFMobileBertForPreTraining(config=a__ ) __SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Optional[int] = model(a__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Any = self.num_labels __SCREAMING_SNAKE_CASE : Optional[int] = TFMobileBertForSequenceClassification(config=a__ ) __SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Dict = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[Any] = self.num_choices __SCREAMING_SNAKE_CASE : int = TFMobileBertForMultipleChoice(config=a__ ) __SCREAMING_SNAKE_CASE : Dict = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE : Any = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE : List[str] = tf.tile(tf.expand_dims(a__ , 1 ) , (1, self.num_choices, 1) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __SCREAMING_SNAKE_CASE : Union[str, Any] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels __SCREAMING_SNAKE_CASE : int = TFMobileBertForTokenClassification(config=a__ ) __SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Any = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): __SCREAMING_SNAKE_CASE : Dict = TFMobileBertForQuestionAnswering(config=a__ ) __SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __SCREAMING_SNAKE_CASE : Optional[Any] = model(a__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : Union[str, Any] = config_and_inputs __SCREAMING_SNAKE_CASE : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def a_ ( self ): __SCREAMING_SNAKE_CASE : int = TFMobileBertModelTest.TFMobileBertModelTester(self ) __SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=a__ , hidden_size=37 ) def a_ ( self ): self.config_tester.run_common_tests() def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*a__ ) @slow def a_ ( self ): # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __SCREAMING_SNAKE_CASE : Any = TFMobileBertModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased" ) __SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE : str = model(a__ )[0] __SCREAMING_SNAKE_CASE : Dict = [1, 6, 30522] self.assertEqual(output.shape , a__ ) __SCREAMING_SNAKE_CASE : str = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , a__ , atol=1e-4 )
211
1
"""simple docstring""" import math import sys def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' if number != int(_lowerCamelCase ): raise ValueError("the value of input must be a natural number" ) if number < 0: raise ValueError("the value of input must not be a negative number" ) if number == 0: return 1 _lowerCamelCase : Optional[int] = [-1] * (number + 1) _lowerCamelCase : int = 0 for i in range(1 , number + 1 ): _lowerCamelCase : Optional[Any] = sys.maxsize _lowerCamelCase : Tuple = int(math.sqrt(_lowerCamelCase ) ) for j in range(1 , root + 1 ): _lowerCamelCase : Dict = 1 + answers[i - (j**2)] _lowerCamelCase : Union[str, Any] = min(_lowerCamelCase , _lowerCamelCase ) _lowerCamelCase : Optional[int] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
386
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
386
1
from abc import ABC, abstractmethod from typing import List, Optional class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Dict ) -> Tuple: # test for the above condition self.test() def snake_case_ ( self : List[str] ) -> Dict: _A = 0 _A = False while not completed: if counter == 1: self.reset() _A = self.advance() if not self.does_advance(__lowerCAmelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) _A , _A , _A = self.update(__lowerCAmelCase ) counter += 1 if counter > 1_00_00: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def snake_case_ ( self : Dict ) -> str: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def snake_case_ ( self : List[Any] , __lowerCAmelCase : int ) -> Any: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : int ) -> Tuple: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def snake_case_ ( self : List[str] ) -> Optional[int]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def snake_case_ ( self : List[Any] ) -> int: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def snake_case_ ( self : Tuple , __lowerCAmelCase : Union[str, Any]=False ) -> Optional[Any]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : List[Any] , __lowerCAmelCase : List[int] ) -> Any: super(__lowerCAmelCase , self ).__init__() if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or len(__lowerCAmelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) _A = token_ids _A = len(self.token_ids ) _A = -1 # the index of the currently fulfilled step _A = False def snake_case_ ( self : Optional[int] ) -> str: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : int ) -> str: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def snake_case_ ( self : Dict , __lowerCAmelCase : int ) -> str: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' ) _A = False _A = False _A = False if self.does_advance(__lowerCAmelCase ): self.fulfilled_idx += 1 _A = True if self.fulfilled_idx == (self.seqlen - 1): _A = True _A = completed else: # failed to make progress. _A = True self.reset() return stepped, completed, reset def snake_case_ ( self : Union[str, Any] ) -> int: _A = False _A = 0 def snake_case_ ( self : Union[str, Any] ) -> Any: return self.seqlen - (self.fulfilled_idx + 1) def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Dict=False ) -> str: _A = PhrasalConstraint(self.token_ids ) if stateful: _A = self.seqlen _A = self.fulfilled_idx _A = self.completed return new_constraint class lowerCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCAmelCase : List[List[int]] , __lowerCAmelCase : Optional[Any]=True ) -> Any: _A = max([len(__lowerCAmelCase ) for one in nested_token_ids] ) _A = {} for token_ids in nested_token_ids: _A = root for tidx, token_id in enumerate(__lowerCAmelCase ): if token_id not in level: _A = {} _A = level[token_id] if no_subsets and self.has_subsets(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f''' {nested_token_ids}.''' ) _A = root def snake_case_ ( self : Dict , __lowerCAmelCase : str ) -> List[str]: _A = self.trie for current_token in current_seq: _A = start[current_token] _A = list(start.keys() ) return next_tokens def snake_case_ ( self : List[str] , __lowerCAmelCase : str ) -> int: _A = self.next_tokens(__lowerCAmelCase ) return len(__lowerCAmelCase ) == 0 def snake_case_ ( self : List[str] , __lowerCAmelCase : int ) -> Optional[Any]: _A = list(root.values() ) if len(__lowerCAmelCase ) == 0: return 1 else: return sum([self.count_leaves(__lowerCAmelCase ) for nn in next_nodes] ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str ) -> int: _A = self.count_leaves(__lowerCAmelCase ) return len(__lowerCAmelCase ) != leaf_count class lowerCamelCase__ ( _A): """simple docstring""" def __init__( self : Optional[int] , __lowerCAmelCase : List[List[int]] ) -> Union[str, Any]: super(__lowerCAmelCase , self ).__init__() if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or len(__lowerCAmelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) _A = DisjunctiveTrie(__lowerCAmelCase ) _A = nested_token_ids _A = self.trie.max_height _A = [] _A = False def snake_case_ ( self : str ) -> str: _A = self.trie.next_tokens(self.current_seq ) if len(__lowerCAmelCase ) == 0: return None else: return token_list def snake_case_ ( self : List[Any] , __lowerCAmelCase : int ) -> List[str]: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' ) _A = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : int ) -> Tuple: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' ) _A = False _A = False _A = False if self.does_advance(__lowerCAmelCase ): self.current_seq.append(__lowerCAmelCase ) _A = True else: _A = True self.reset() _A = self.trie.reached_leaf(self.current_seq ) _A = completed return stepped, completed, reset def snake_case_ ( self : Tuple ) -> int: _A = False _A = [] def snake_case_ ( self : Any ) -> List[str]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def snake_case_ ( self : str , __lowerCAmelCase : Dict=False ) -> Optional[int]: _A = DisjunctiveConstraint(self.token_ids ) if stateful: _A = self.seqlen _A = self.current_seq _A = self.completed return new_constraint class lowerCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCAmelCase : List[Constraint] ) -> Optional[Any]: _A = constraints # max # of steps required to fulfill a given constraint _A = max([c.seqlen for c in constraints] ) _A = len(__lowerCAmelCase ) _A = False self.init_state() def snake_case_ ( self : int ) -> str: _A = [] _A = None _A = [constraint.copy(stateful=__lowerCAmelCase ) for constraint in self.constraints] def snake_case_ ( self : int ) -> Any: _A = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def snake_case_ ( self : Any ) -> str: _A = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _A = constraint.advance() if isinstance(__lowerCAmelCase , __lowerCAmelCase ): token_list.append(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): token_list.extend(__lowerCAmelCase ) else: _A = self.inprogress_constraint.advance() if isinstance(__lowerCAmelCase , __lowerCAmelCase ): token_list.append(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): token_list.extend(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None else: return token_list def snake_case_ ( self : List[str] , __lowerCAmelCase : Optional[List[int]] ) -> Dict: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _A , _A = self.add(__lowerCAmelCase ) # the entire list of constraints are fulfilled if self.completed: break def snake_case_ ( self : Any , __lowerCAmelCase : int ) -> Optional[int]: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) _A , _A = False, False if self.completed: _A = True _A = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _A , _A , _A = self.inprogress_constraint.update(__lowerCAmelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__lowerCAmelCase ) ) _A = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _A = None if len(self.pending_constraints ) == 0: # we're done! _A = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__lowerCAmelCase ): _A , _A , _A = pending_constraint.update(__lowerCAmelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(__lowerCAmelCase ) _A = None if not complete and stepped: _A = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _A = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _A = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def snake_case_ ( self : Tuple , __lowerCAmelCase : Union[str, Any]=True ) -> Optional[Any]: _A = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _A = [ constraint.copy(stateful=__lowerCAmelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _A = self.inprogress_constraint.copy(stateful=__lowerCAmelCase ) _A = [constraint.copy() for constraint in self.pending_constraints] return new_state
2
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def _UpperCAmelCase ( __lowerCamelCase : Optional[int] ) -> str: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Dict: _snake_case = create_tensor(__lowerCamelCase ) _snake_case = gather(__lowerCamelCase ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def _UpperCAmelCase ( __lowerCamelCase : Tuple ) -> Tuple: _snake_case = [state.process_index] _snake_case = gather_object(__lowerCamelCase ) assert len(__lowerCamelCase ) == state.num_processes, f'''{gathered_obj}, {len(__lowerCamelCase )} != {state.num_processes}''' assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}''' def _UpperCAmelCase ( __lowerCamelCase : int ) -> Union[str, Any]: _snake_case = create_tensor(__lowerCamelCase ) _snake_case = broadcast(__lowerCamelCase ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def _UpperCAmelCase ( __lowerCamelCase : str ) -> int: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: _snake_case = torch.arange(state.num_processes + 1 ).to(state.device ) else: _snake_case = torch.arange(state.num_processes ).to(state.device ) _snake_case = pad_across_processes(__lowerCamelCase ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def _UpperCAmelCase ( __lowerCamelCase : Any ) -> List[str]: # For now runs on only two processes if state.num_processes != 2: return _snake_case = create_tensor(__lowerCamelCase ) _snake_case = reduce(__lowerCamelCase , '''sum''' ) _snake_case = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), f'''{reduced_tensor} != {truth_tensor}''' def _UpperCAmelCase ( __lowerCamelCase : int ) -> Optional[int]: # For now runs on only two processes if state.num_processes != 2: return _snake_case = create_tensor(__lowerCamelCase ) _snake_case = reduce(__lowerCamelCase , '''mean''' ) _snake_case = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(__lowerCamelCase , __lowerCamelCase ), f'''{reduced_tensor} != {truth_tensor}''' def _UpperCAmelCase ( __lowerCamelCase : Dict ) -> List[Any]: # For xla_spawn (TPUs) main() def _UpperCAmelCase ( ) -> Optional[Any]: _snake_case = PartialState() state.print(f'''State: {state}''' ) state.print('''testing gather''' ) test_gather(__lowerCamelCase ) state.print('''testing gather_object''' ) test_gather_object(__lowerCamelCase ) state.print('''testing broadcast''' ) test_broadcast(__lowerCamelCase ) state.print('''testing pad_across_processes''' ) test_pad_across_processes(__lowerCamelCase ) state.print('''testing reduce_sum''' ) test_reduce_sum(__lowerCamelCase ) state.print('''testing reduce_mean''' ) test_reduce_mean(__lowerCamelCase ) if __name__ == "__main__": main()
224
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowerCAmelCase : Dict = imread(r"""digital_image_processing/image_data/lena_small.jpg""") lowerCAmelCase : int = cvtColor(img, COLOR_BGR2GRAY) def a__ ( ) -> Optional[int]: lowerCamelCase = cn.convert_to_negative(snake_case__ ) # assert negative_img array for at least one True assert negative_img.any() def a__ ( ) -> Dict: with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(snake_case__ , 1_10 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def a__ ( ) -> str: lowerCamelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def a__ ( ) -> Tuple: lowerCamelCase = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase = canny.canny(snake_case__ ) # assert canny array for at least one True assert canny_array.any() def a__ ( ) -> Optional[int]: assert gg.gaussian_filter(snake_case__ , 5 , sigma=0.9 ).all() def a__ ( ) -> Union[str, Any]: # laplace diagonals lowerCamelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase = conv.img_convolve(snake_case__ , snake_case__ ).astype(snake_case__ ) assert res.any() def a__ ( ) -> int: assert med.median_filter(snake_case__ , 3 ).any() def a__ ( ) -> str: lowerCamelCase , lowerCamelCase = sob.sobel_filter(snake_case__ ) assert grad.any() and theta.any() def a__ ( ) -> str: lowerCamelCase = sp.make_sepia(snake_case__ , 20 ) assert sepia.all() def a__ ( snake_case__ = "digital_image_processing/image_data/lena_small.jpg" ) -> Dict: lowerCamelCase = bs.Burkes(imread(snake_case__ , 1 ) , 1_20 ) burkes.process() assert burkes.output_img.any() def a__ ( snake_case__ = "digital_image_processing/image_data/lena_small.jpg" , ) -> List[str]: lowerCamelCase = rs.NearestNeighbour(imread(snake_case__ , 1 ) , 4_00 , 2_00 ) nn.process() assert nn.output.any() def a__ ( ) -> Optional[Any]: lowerCamelCase = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. lowerCamelCase = imread(snake_case__ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase = 0 lowerCamelCase = 0 lowerCamelCase = image[x_coordinate][y_coordinate] lowerCamelCase = lbp.get_neighbors_pixel( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase = lbp.local_binary_value(snake_case__ , snake_case__ , snake_case__ ) assert lbp_image.any()
718
"""simple docstring""" from __future__ import annotations def a__ ( snake_case__ , snake_case__ = None , snake_case__ = None ) -> None: if start is None: lowerCamelCase = 0 if end is None: lowerCamelCase = len(snake_case__ ) - 1 if start >= end: return lowerCamelCase = (start + end) // 2 slowsort(snake_case__ , snake_case__ , snake_case__ ) slowsort(snake_case__ , mid + 1 , snake_case__ ) if sequence[end] < sequence[mid]: lowerCamelCase , lowerCamelCase = sequence[mid], sequence[end] slowsort(snake_case__ , snake_case__ , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
533
0
def lowercase_ ( SCREAMING_SNAKE_CASE : int = 60_08_51_47_51_43 ): """simple docstring""" try: snake_case__ : Optional[int] =int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) snake_case__ : str =1 snake_case__ : str =2 while i * i <= n: while n % i == 0: snake_case__ : List[str] =i n //= i i += 1 if n > 1: snake_case__ : Any =n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F"""{solution() = }""")
381
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["image_processor", "tokenizer"] lowerCamelCase_ = "AutoImageProcessor" lowerCamelCase_ = "AutoTokenizer" def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict: """simple docstring""" super().__init__(__A , __A ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: SCREAMING_SNAKE_CASE__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def _snake_case ( self :Dict ) -> List[Any]: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
6
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowercase__ ( snake_case_ :Optional[Any] ): __UpperCAmelCase = 384 __UpperCAmelCase = 7 if "tiny" in model_name: __UpperCAmelCase = 96 __UpperCAmelCase = (2, 2, 6, 2) __UpperCAmelCase = (3, 6, 12, 24) elif "small" in model_name: __UpperCAmelCase = 96 __UpperCAmelCase = (2, 2, 18, 2) __UpperCAmelCase = (3, 6, 12, 24) elif "base" in model_name: __UpperCAmelCase = 128 __UpperCAmelCase = (2, 2, 18, 2) __UpperCAmelCase = (4, 8, 16, 32) __UpperCAmelCase = 12 __UpperCAmelCase = 512 elif "large" in model_name: __UpperCAmelCase = 192 __UpperCAmelCase = (2, 2, 18, 2) __UpperCAmelCase = (6, 12, 24, 48) __UpperCAmelCase = 12 __UpperCAmelCase = 768 # set label information __UpperCAmelCase = 150 __UpperCAmelCase = 'huggingface/label-files' __UpperCAmelCase = 'ade20k-id2label.json' __UpperCAmelCase = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) __UpperCAmelCase = {int(_lowercase ): v for k, v in idalabel.items()} __UpperCAmelCase = {v: k for k, v in idalabel.items()} __UpperCAmelCase = SwinConfig( embed_dim=_lowercase , depths=_lowercase , num_heads=_lowercase , window_size=_lowercase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) __UpperCAmelCase = UperNetConfig( backbone_config=_lowercase , auxiliary_in_channels=_lowercase , num_labels=_lowercase , idalabel=_lowercase , labelaid=_lowercase , ) return config def lowercase__ ( snake_case_ :Union[str, Any] ): __UpperCAmelCase = [] # fmt: off # stem rename_keys.append(('''backbone.patch_embed.projection.weight''', '''backbone.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.projection.bias''', '''backbone.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''backbone.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''backbone.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def lowercase__ ( snake_case_ :List[str] , snake_case_ :Optional[Any] , snake_case_ :List[Any] ): __UpperCAmelCase = dct.pop(_lowercase ) __UpperCAmelCase = val def lowercase__ ( snake_case_ :Tuple , snake_case_ :str ): __UpperCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) __UpperCAmelCase = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase = in_proj_weight[:dim, :] __UpperCAmelCase = in_proj_bias[: dim] __UpperCAmelCase = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase = in_proj_weight[ -dim :, : ] __UpperCAmelCase = in_proj_bias[-dim :] # fmt: on def lowercase__ ( snake_case_ :Tuple ): __UpperCAmelCase = x.shape __UpperCAmelCase = x.reshape(_lowercase , 4 , in_channel // 4 ) __UpperCAmelCase = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(_lowercase , _lowercase ) return x def lowercase__ ( snake_case_ :List[Any] ): __UpperCAmelCase = x.shape __UpperCAmelCase = x.reshape(_lowercase , in_channel // 4 , 4 ) __UpperCAmelCase = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(_lowercase , _lowercase ) return x def lowercase__ ( snake_case_ :List[str] ): __UpperCAmelCase = x.shape[0] __UpperCAmelCase = x.reshape(4 , in_channel // 4 ) __UpperCAmelCase = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(_lowercase ) return x def lowercase__ ( snake_case_ :Any ): __UpperCAmelCase = x.shape[0] __UpperCAmelCase = x.reshape(in_channel // 4 , 4 ) __UpperCAmelCase = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(_lowercase ) return x def lowercase__ ( snake_case_ :Optional[int] , snake_case_ :Dict , snake_case_ :str ): __UpperCAmelCase = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } __UpperCAmelCase = model_name_to_url[model_name] __UpperCAmelCase = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' , file_name=_lowercase )[ 'state_dict' ] for name, param in state_dict.items(): print(_lowercase , param.shape ) __UpperCAmelCase = get_upernet_config(_lowercase ) __UpperCAmelCase = UperNetForSemanticSegmentation(_lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase = state_dict.pop(_lowercase ) if "bn" in key: __UpperCAmelCase = key.replace('''bn''' , '''batch_norm''' ) __UpperCAmelCase = val # rename keys __UpperCAmelCase = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: __UpperCAmelCase = reverse_correct_unfold_reduction_order(_lowercase ) if "norm" in key: __UpperCAmelCase = reverse_correct_unfold_norm_order(_lowercase ) model.load_state_dict(_lowercase ) # verify on image __UpperCAmelCase = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' __UpperCAmelCase = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ).convert('''RGB''' ) __UpperCAmelCase = SegformerImageProcessor() __UpperCAmelCase = processor(_lowercase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = outputs.logits print(logits.shape ) print('''First values of logits:''' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": __UpperCAmelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": __UpperCAmelCase = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": __UpperCAmelCase = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": __UpperCAmelCase = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _lowercase , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-swin-tiny', type=str, choices=[f"""upernet-swin-{size}""" for size in ['tiny', 'small', 'base', 'large']], help='Name of the Swin + UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _lowercase : Optional[Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
704
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() _lowercase : List[str] = { 'bart': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'bert': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'bert-base-cased-finetuned-mrpc': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'dpr': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'gpt2': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlnet': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'xlm-roberta': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'transfo-xl': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'openai-gpt': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'roberta': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'layoutlm': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), 'roberta-large-mnli': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'camembert': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'flaubert': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'distilbert-base-distilled-squad': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'lxmert-visual-feature-encoder': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'ctrl': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'albert': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 't5': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'electra': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), 'wav2vec2': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def lowercase__ ( snake_case_ :str , snake_case_ :Union[str, Any] , snake_case_ :Tuple , snake_case_ :List[str] , snake_case_ :List[Any]=False , snake_case_ :List[Any]=True ): if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __UpperCAmelCase = cached_file(snake_case_ , snake_case_ , force_download=not use_cached_models ) __UpperCAmelCase = config_class.from_json_file(snake_case_ ) __UpperCAmelCase = True __UpperCAmelCase = True print(F'''Building TensorFlow model from configuration: {config}''' ) __UpperCAmelCase = model_class(snake_case_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __UpperCAmelCase = cached_file( snake_case_ , snake_case_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __UpperCAmelCase = load_pytorch_checkpoint_in_tfa_model(snake_case_ , snake_case_ ) if compare_with_pt_model: __UpperCAmelCase = tf_model(tf_model.dummy_inputs , training=snake_case_ ) # build the network __UpperCAmelCase = torch.load(snake_case_ , map_location='''cpu''' ) __UpperCAmelCase = pt_model_class.from_pretrained( pretrained_model_name_or_path=snake_case_ , config=snake_case_ , state_dict=snake_case_ ) with torch.no_grad(): __UpperCAmelCase = pt_model(**pt_model.dummy_inputs ) __UpperCAmelCase = pto[0].numpy() __UpperCAmelCase = tfo[0].numpy() __UpperCAmelCase = np.amax(np.abs(np_pt - np_tf ) ) print(F'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, F'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(F'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(snake_case_ , save_format='''h5''' ) def lowercase__ ( snake_case_ :Union[str, Any] , snake_case_ :List[str] , snake_case_ :int=None , snake_case_ :Optional[int]=None , snake_case_ :List[str]=False , snake_case_ :Optional[int]=False , snake_case_ :Dict=False , snake_case_ :List[Any]=False , ): if args_model_type is None: __UpperCAmelCase = list(MODEL_CLASSES.keys() ) else: __UpperCAmelCase = [args_model_type] for j, model_type in enumerate(snake_case_ , start=1 ): print('''=''' * 100 ) print(F''' Converting model type {j}/{len(snake_case_ )}: {model_type}''' ) print('''=''' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __UpperCAmelCase = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __UpperCAmelCase = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(snake_case_ , snake_case_ ) , start=1 ): print('''-''' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue __UpperCAmelCase = model_shortcut_name elif only_convert_finetuned_models: print(F''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( F''' Converting checkpoint {i}/{len(snake_case_ )}: {model_shortcut_name} - model_type {model_type}''' ) print('''-''' * 100 ) if config_shortcut_name in aws_config_map: __UpperCAmelCase = cached_file(snake_case_ , snake_case_ , force_download=not use_cached_models ) else: __UpperCAmelCase = config_shortcut_name if model_shortcut_name in aws_model_maps: __UpperCAmelCase = cached_file(snake_case_ , snake_case_ , force_download=not use_cached_models ) else: __UpperCAmelCase = model_shortcut_name if os.path.isfile(snake_case_ ): __UpperCAmelCase = '''converted_model''' convert_pt_checkpoint_to_tf( model_type=snake_case_ , pytorch_checkpoint_path=snake_case_ , config_file=snake_case_ , tf_dump_path=os.path.join(snake_case_ , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=snake_case_ , ) if remove_cached_files: os.remove(snake_case_ ) os.remove(snake_case_ ) if __name__ == "__main__": _lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_dump_path', default=None, type=str, required=True, help='Path to the output Tensorflow dump file.' ) parser.add_argument( '--model_type', default=None, type=str, help=( f"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ 'convert all the models from AWS.' ), ) parser.add_argument( '--pytorch_checkpoint_path', default=None, type=str, help=( 'Path to the PyTorch checkpoint path or shortcut name to download from AWS. ' 'If not given, will download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--config_file', default=None, type=str, help=( 'The config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture. If not given and ' '--pytorch_checkpoint_path is not given or is a shortcut name ' 'use the configuration associated to the shortcut name on the AWS' ), ) parser.add_argument( '--compare_with_pt_model', action='store_true', help='Compare Tensorflow and PyTorch model predictions.' ) parser.add_argument( '--use_cached_models', action='store_true', help='Use cached models if possible instead of updating to latest checkpoint versions.', ) parser.add_argument( '--remove_cached_files', action='store_true', help='Remove pytorch models after conversion (save memory when converting in batches).', ) parser.add_argument('--only_convert_finetuned_models', action='store_true', help='Only convert finetuned models.') _lowercase : List[Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
397
0
'''simple docstring''' def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase__ : List[str] = _modexpt(UpperCamelCase__ , exponent // 2 , UpperCamelCase__ ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(UpperCamelCase__ , exponent - 1 , UpperCamelCase__ )) % modulo_value def _UpperCamelCase ( UpperCamelCase__ = 1_7_7_7 , UpperCamelCase__ = 1_8_5_5 , UpperCamelCase__ = 8 ): UpperCAmelCase__ : List[str] = base for _ in range(1 , UpperCamelCase__ ): UpperCAmelCase__ : Dict = _modexpt(UpperCamelCase__ , UpperCamelCase__ , 1_0**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
407
'''simple docstring''' import re from filelock import FileLock try: import nltk __A =True except (ImportError, ModuleNotFoundError): __A =False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _UpperCamelCase ( UpperCamelCase__ ): re.sub("""<n>""" , """""" , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
407
1
from typing import TYPE_CHECKING from ....utils import _LazyModule snake_case : int = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys snake_case : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
657
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
1
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any=7 , __lowerCAmelCase : str=3 , __lowerCAmelCase : Any=18 , __lowerCAmelCase : Optional[int]=30 , __lowerCAmelCase : List[str]=400 , __lowerCAmelCase : Any=True , __lowerCAmelCase : List[Any]=None , __lowerCAmelCase : Union[str, Any]=True , ): """simple docstring""" _lowerCAmelCase = size if size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize def a ( self : Union[str, Any] ): """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( __lowercase , unittest.TestCase ): """simple docstring""" __A = ImageGPTImageProcessor if is_vision_available() else None def a ( self : Dict ): """simple docstring""" _lowerCAmelCase = ImageGPTImageProcessingTester(self ) @property def a ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'clusters' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) def a ( self : int ): """simple docstring""" _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def a ( self : str ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) _lowerCAmelCase = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , obj[key] ) ) else: self.assertEqual(obj[key] , _A ) def a ( self : List[Any] ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase = os.path.join(_A , 'image_processor.json' ) image_processor_first.to_json_file(_A ) _lowerCAmelCase = self.image_processing_class.from_json_file(_A ).to_dict() _lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _A ) def a ( self : List[str] ): """simple docstring""" _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_A ) _lowerCAmelCase = self.image_processing_class.from_pretrained(_A ).to_dict() _lowerCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_A , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _A ) @unittest.skip('ImageGPT requires clusters at initialization' ) def a ( self : Tuple ): """simple docstring""" pass def A_ ( ): _lowerCAmelCase = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) _lowerCAmelCase = Image.open(dataset[4]['file'] ) _lowerCAmelCase = Image.open(dataset[5]['file'] ) _lowerCAmelCase = [imagea, imagea] return images @require_vision @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def a ( self : List[Any] ): """simple docstring""" _lowerCAmelCase = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) _lowerCAmelCase = prepare_images() # test non-batched _lowerCAmelCase = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1024) ) _lowerCAmelCase = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , _A ) # test batched _lowerCAmelCase = image_processing(_A , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1024) ) _lowerCAmelCase = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _A )
309
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class A_ ( __lowercase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Any = "switch_transformers" _SCREAMING_SNAKE_CASE : int = ["past_key_values"] _SCREAMING_SNAKE_CASE : Optional[Any] = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _A=32128 , _A=768 , _A=64 , _A=2048 , _A=64 , _A=12 , _A=3 , _A=12 , _A=3 , _A=12 , _A=8 , _A=False , _A=0.01 , _A="float32" , _A=False , _A=32 , _A=128 , _A=0.1 , _A=1e-6 , _A=0.001 , _A=0.001 , _A=1.0 , _A="relu" , _A=True , _A=False , _A=True , _A=0 , _A=1 , **_A , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Tuple = d_model _UpperCAmelCase : Dict = d_kv _UpperCAmelCase : str = d_ff _UpperCAmelCase : int = num_sparse_encoder_layers _UpperCAmelCase : Dict = num_layers _UpperCAmelCase : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _UpperCAmelCase : Dict = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: _UpperCAmelCase : int = self.num_layers // self.num_sparse_encoder_layers else: _UpperCAmelCase : Optional[int] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: _UpperCAmelCase : Optional[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: _UpperCAmelCase : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers _UpperCAmelCase : Any = num_heads _UpperCAmelCase : List[Any] = num_experts _UpperCAmelCase : List[str] = expert_capacity _UpperCAmelCase : List[str] = router_bias _UpperCAmelCase : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''') _UpperCAmelCase : List[str] = router_dtype _UpperCAmelCase : Any = router_ignore_padding_tokens _UpperCAmelCase : Optional[Any] = relative_attention_num_buckets _UpperCAmelCase : Optional[int] = relative_attention_max_distance _UpperCAmelCase : List[Any] = dropout_rate _UpperCAmelCase : Optional[int] = layer_norm_epsilon _UpperCAmelCase : Union[str, Any] = initializer_factor _UpperCAmelCase : int = feed_forward_proj _UpperCAmelCase : List[str] = use_cache _UpperCAmelCase : Optional[int] = add_router_probs _UpperCAmelCase : Optional[int] = router_z_loss_coef _UpperCAmelCase : List[str] = router_aux_loss_coef _UpperCAmelCase : Union[str, Any] = self.feed_forward_proj.split('''-''') _UpperCAmelCase : int = act_info[-1] _UpperCAmelCase : int = act_info[0] == '''gated''' if len(_A) > 1 and act_info[0] != "gated" or len(_A) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''') # for backwards compatibility if feed_forward_proj == "gated-gelu": _UpperCAmelCase : Optional[Any] = '''gelu_new''' super().__init__( pad_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , **_A , )
485
0
'''simple docstring''' import argparse import struct import unittest class lowerCamelCase : def __init__( self , a_ ): lowerCAmelCase : Dict = data # Initialize hash values lowerCAmelCase : Any = [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19, ] # Initialize round constants lowerCAmelCase : Optional[int] = [ 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, ] lowerCAmelCase : str = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( a_ ): lowerCAmelCase : Any = B"\x80" + (B"\x00" * (63 - (len(a_ ) + 8) % 64)) lowerCAmelCase : str = struct.pack(">Q" , (len(a_ ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self ): # Convert into blocks of 64 bytes lowerCAmelCase : List[str] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCAmelCase : List[str] = list(struct.unpack(">16L" , a_ ) ) # add 48 0-ed integers words += [0] * 48 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCAmelCase : Dict = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowerCAmelCase : Optional[int] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowerCAmelCase : str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression lowerCAmelCase : List[str] = self.ror(a_ , 6 ) ^ self.ror(a_ , 11 ) ^ self.ror(a_ , 25 ) lowerCAmelCase : int = (e & f) ^ ((~e & 0xffffffff) & g) lowerCAmelCase : Tuple = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 lowerCAmelCase : Union[str, Any] = self.ror(a_ , 2 ) ^ self.ror(a_ , 13 ) ^ self.ror(a_ , 22 ) lowerCAmelCase : List[str] = (a & b) ^ (a & c) ^ (b & c) lowerCAmelCase : Optional[Any] = (sa + maj) % 0x100000000 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) lowerCAmelCase : str = [a, b, c, d, e, f, g, h] # Modify final values lowerCAmelCase : List[Any] = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] lowerCAmelCase : int = "".join([hex(a_ )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self , a_ , a_ ): return 0xffffffff & (value << (32 - rotations)) | (value >> rotations) class lowerCamelCase ( unittest.TestCase ): def _lowerCamelCase ( self ): import hashlib lowerCAmelCase : Any = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(a_ ).hash , hashlib.shaaaa(a_ ).hexdigest() ) def __A ( ): import doctest doctest.testmod() lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "-s" ,"--string" ,dest="input_string" ,default="Hello World!! Welcome to Cryptography" ,help="Hash the string" ,) parser.add_argument( "-f" ,"--file" ,dest="input_file" ,help="Hash contents of a file" ) lowerCAmelCase : Dict = parser.parse_args() lowerCAmelCase : Tuple = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file ,"rb" ) as f: lowerCAmelCase : int = f.read() else: lowerCAmelCase : Union[str, Any] = bytes(a_ ,"utf-8" ) print(SHAaaa(a_ ).hash ) if __name__ == "__main__": main()
717
'''simple docstring''' def __A ( a_ : int ): assert ( isinstance(a_ ,a_ ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 lowerCAmelCase , lowerCAmelCase : int = 1, 1 for _ in range(number_of_steps - 1 ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
551
0
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Optional[Any] =ComputeEnvironment.AMAZON_SAGEMAKER lowerCamelCase__ : int =True lowerCamelCase__ : List[Any] ="ml.p3.2xlarge" lowerCamelCase__ : Tuple ="accelerate_sagemaker_execution_role" lowerCamelCase__ : Tuple ="hf-sm" lowerCamelCase__ : Tuple ="us-east-1" lowerCamelCase__ : int =1 lowerCamelCase__ : Any ="accelerate-sagemaker-1" lowerCamelCase__ : Optional[Any] ="1.6" lowerCamelCase__ : Dict ="4.4" lowerCamelCase__ : Any ="train.py" lowerCamelCase__ : Optional[int] =[ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] lowerCamelCase__ : List[Any] =[ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class A__ ( unittest.TestCase ): def lowercase ( self ) -> Optional[int]: """simple docstring""" __magic_name__ : Optional[int] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , lowerCamelCase ) assert isinstance(converted_args['''do_train'''] , lowerCamelCase ) assert isinstance(converted_args['''epochs'''] , lowerCamelCase ) assert isinstance(converted_args['''learning_rate'''] , lowerCamelCase ) assert isinstance(converted_args['''max_steps'''] , lowerCamelCase ) with pytest.raises(lowerCamelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
154
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class A__ ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=0.9 , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , ) -> int: """simple docstring""" __magic_name__ : int = size if size is not None else {'''shortest_edge''': 30} __magic_name__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} __magic_name__ : Dict = parent __magic_name__ : List[str] = batch_size __magic_name__ : Dict = num_channels __magic_name__ : List[str] = min_resolution __magic_name__ : str = max_resolution __magic_name__ : int = do_resize_and_center_crop __magic_name__ : Dict = size __magic_name__ : Union[str, Any] = crop_pct __magic_name__ : str = crop_size __magic_name__ : Tuple = do_normalize __magic_name__ : Union[str, Any] = image_mean __magic_name__ : Optional[Any] = image_std def lowercase ( self ) -> Dict: """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowerCamelCase__ : str =PoolFormerImageProcessor if is_vision_available() else None def lowercase ( self ) -> List[str]: """simple docstring""" __magic_name__ : int = PoolFormerImageProcessingTester(self ) @property def lowercase ( self ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self ) -> List[Any]: """simple docstring""" __magic_name__ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase , '''crop_pct''' ) ) self.assertTrue(hasattr(lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase , '''image_std''' ) ) def lowercase ( self ) -> Tuple: """simple docstring""" __magic_name__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowercase ( self ) -> int: """simple docstring""" pass def lowercase ( self ) -> str: """simple docstring""" __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __magic_name__ : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase ( self ) -> str: """simple docstring""" __magic_name__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ : Any = image_processing(lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowercase ( self ) -> Dict: """simple docstring""" __magic_name__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input __magic_name__ : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __magic_name__ : Union[str, Any] = image_processing(lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
154
1
from math import factorial def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) -> float: """simple docstring""" if successes > trials: raise ValueError('successes must be lower or equal to trials') if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers') if not isinstance(UpperCamelCase__ , UpperCamelCase__) or not isinstance(UpperCamelCase__ , UpperCamelCase__): raise ValueError('the function is defined for non-negative integers') if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0') UpperCamelCase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! UpperCamelCase = float(factorial(UpperCamelCase__)) coefficient /= factorial(UpperCamelCase__) * factorial(trials - successes) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
703
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ : Union[str, Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class A__ ( __snake_case , unittest.TestCase ): '''simple docstring''' snake_case__ = XLMProphetNetTokenizer snake_case__ = False snake_case__ = True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = XLMProphetNetTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" UpperCamelCase = '[PAD]' UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1012 ) def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = XLMProphetNetTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) UpperCamelCase = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" UpperCamelCase = 'Hello World!' UpperCamelCase = [3_5389, 6672, 49, 2] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" UpperCamelCase = {'input_ids': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
410
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowerCAmelCase ( _a , unittest.TestCase ): """simple docstring""" __magic_name__ :Optional[int] = UnCLIPImageVariationPipeline __magic_name__ :Dict = IMAGE_VARIATION_PARAMS - {"""height""", """width""", """guidance_scale"""} __magic_name__ :Optional[Any] = IMAGE_VARIATION_BATCH_PARAMS __magic_name__ :Tuple = [ """generator""", """return_dict""", """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] __magic_name__ :Optional[Any] = False @property def snake_case ( self ): '''simple docstring''' return 3_2 @property def snake_case ( self ): '''simple docstring''' return 3_2 @property def snake_case ( self ): '''simple docstring''' return self.time_input_dim @property def snake_case ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def snake_case ( self ): '''simple docstring''' return 1_0_0 @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(snake_case_ ) @property def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Optional[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) return CLIPVisionModelWithProjection(snake_case_ ) @property def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Optional[int] = { """clip_embeddings_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """cross_attention_dim""": self.cross_attention_dim, } lowerCAmelCase__ :Optional[Any] = UnCLIPTextProjModel(**snake_case_ ) return model @property def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :List[Any] = { """sample_size""": 3_2, # RGB in channels """in_channels""": 3, # Out channels is double in channels because predicts mean and variance """out_channels""": 6, """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": """identity""", } lowerCAmelCase__ :Union[str, Any] = UNetaDConditionModel(**snake_case_ ) return model @property def snake_case ( self ): '''simple docstring''' return { "sample_size": 6_4, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def snake_case ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ :Optional[Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def snake_case ( self ): '''simple docstring''' torch.manual_seed(1 ) lowerCAmelCase__ :List[str] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.dummy_decoder lowerCAmelCase__ :Optional[int] = self.dummy_text_proj lowerCAmelCase__ :Any = self.dummy_text_encoder lowerCAmelCase__ :List[Any] = self.dummy_tokenizer lowerCAmelCase__ :Dict = self.dummy_super_res_first lowerCAmelCase__ :List[Any] = self.dummy_super_res_last lowerCAmelCase__ :Tuple = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1_0_0_0 , ) lowerCAmelCase__ :List[Any] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1_0_0_0 , ) lowerCAmelCase__ :str = CLIPImageProcessor(crop_size=3_2 , size=3_2 ) lowerCAmelCase__ :int = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=True ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(snake_case_ ) ).to(snake_case_ ) if str(snake_case_ ).startswith('mps' ): lowerCAmelCase__ :Any = torch.manual_seed(snake_case_ ) else: lowerCAmelCase__ :Dict = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) if pil_image: lowerCAmelCase__ :Optional[Any] = input_image * 0.5 + 0.5 lowerCAmelCase__ :List[Any] = input_image.clamp(0 , 1 ) lowerCAmelCase__ :Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase__ :Dict = DiffusionPipeline.numpy_to_pil(snake_case_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = """cpu""" lowerCAmelCase__ :List[Any] = self.get_dummy_components() lowerCAmelCase__ :str = self.pipeline_class(**snake_case_ ) lowerCAmelCase__ :List[str] = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase__ :Optional[Any] = self.get_dummy_inputs(snake_case_ , pil_image=snake_case_ ) lowerCAmelCase__ :Dict = pipe(**snake_case_ ) lowerCAmelCase__ :List[str] = output.images lowerCAmelCase__ :str = self.get_dummy_inputs(snake_case_ , pil_image=snake_case_ ) lowerCAmelCase__ :Optional[Any] = pipe( **snake_case_ , return_dict=snake_case_ , )[0] lowerCAmelCase__ :List[Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ :List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase__ :List[str] = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = """cpu""" lowerCAmelCase__ :Optional[int] = self.get_dummy_components() lowerCAmelCase__ :Tuple = self.pipeline_class(**snake_case_ ) lowerCAmelCase__ :Any = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase__ :List[str] = self.get_dummy_inputs(snake_case_ , pil_image=snake_case_ ) lowerCAmelCase__ :Optional[Any] = pipe(**snake_case_ ) lowerCAmelCase__ :List[Any] = output.images lowerCAmelCase__ :Optional[int] = self.get_dummy_inputs(snake_case_ , pil_image=snake_case_ ) lowerCAmelCase__ :Optional[Any] = pipe( **snake_case_ , return_dict=snake_case_ , )[0] lowerCAmelCase__ :List[str] = image[0, -3:, -3:, -1] lowerCAmelCase__ :Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowerCAmelCase__ :Optional[Any] = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = """cpu""" lowerCAmelCase__ :List[str] = self.get_dummy_components() lowerCAmelCase__ :Dict = self.pipeline_class(**snake_case_ ) lowerCAmelCase__ :int = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase__ :Any = self.get_dummy_inputs(snake_case_ , pil_image=snake_case_ ) lowerCAmelCase__ :str = [ pipeline_inputs["""image"""], pipeline_inputs["""image"""], ] lowerCAmelCase__ :str = pipe(**snake_case_ ) lowerCAmelCase__ :List[str] = output.images lowerCAmelCase__ :List[Any] = self.get_dummy_inputs(snake_case_ , pil_image=snake_case_ ) lowerCAmelCase__ :Any = [ tuple_pipeline_inputs["""image"""], tuple_pipeline_inputs["""image"""], ] lowerCAmelCase__ :List[str] = pipe( **snake_case_ , return_dict=snake_case_ , )[0] lowerCAmelCase__ :Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ :Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 6_4, 6_4, 3) lowerCAmelCase__ :Optional[int] = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = torch.device('cpu' ) class _lowerCAmelCase : """simple docstring""" __magic_name__ :Union[str, Any] = 1 lowerCAmelCase__ :Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ :Union[str, Any] = self.pipeline_class(**snake_case_ ) lowerCAmelCase__ :Tuple = pipe.to(snake_case_ ) pipe.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase__ :Optional[int] = torch.Generator(device=snake_case_ ).manual_seed(0 ) lowerCAmelCase__ :Union[str, Any] = pipe.decoder.dtype lowerCAmelCase__ :List[str] = 1 lowerCAmelCase__ :str = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) lowerCAmelCase__ :List[Any] = pipe.prepare_latents( snake_case_ , dtype=snake_case_ , device=snake_case_ , generator=snake_case_ , latents=snake_case_ , scheduler=DummyScheduler() ) lowerCAmelCase__ :List[str] = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) lowerCAmelCase__ :Union[str, Any] = pipe.prepare_latents( snake_case_ , dtype=snake_case_ , device=snake_case_ , generator=snake_case_ , latents=snake_case_ , scheduler=DummyScheduler() ) lowerCAmelCase__ :Dict = self.get_dummy_inputs(snake_case_ , pil_image=snake_case_ ) lowerCAmelCase__ :Dict = pipe( **snake_case_ , decoder_latents=snake_case_ , super_res_latents=snake_case_ ).images lowerCAmelCase__ :int = self.get_dummy_inputs(snake_case_ , pil_image=snake_case_ ) # Don't pass image, instead pass embedding lowerCAmelCase__ :Union[str, Any] = pipeline_inputs.pop('image' ) lowerCAmelCase__ :List[Any] = pipe.image_encoder(snake_case_ ).image_embeds lowerCAmelCase__ :str = pipe( **snake_case_ , decoder_latents=snake_case_ , super_res_latents=snake_case_ , image_embeddings=snake_case_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = torch_device == """cpu""" # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor lowerCAmelCase__ :Any = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=snake_case_ , expected_max_diff=snake_case_ ) @skip_mps def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = torch_device == """cpu""" lowerCAmelCase__ :Any = True lowerCAmelCase__ :List[str] = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] self._test_inference_batch_single_identical( test_max_difference=snake_case_ , relax_max_difference=snake_case_ , additional_params_copy_to_batched_inputs=snake_case_ , ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = [ """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes lowerCAmelCase__ :Any = [2, 3] self._test_inference_batch_consistent( batch_sizes=snake_case_ , additional_params_copy_to_batched_inputs=snake_case_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=snake_case_ ) @skip_mps def snake_case ( self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def snake_case ( self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def snake_case ( self ): '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) lowerCAmelCase__ :Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) lowerCAmelCase__ :Optional[Any] = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) lowerCAmelCase__ :Any = pipeline.to(snake_case_ ) pipeline.set_progress_bar_config(disable=snake_case_ ) lowerCAmelCase__ :Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ :List[Any] = pipeline( snake_case_ , generator=snake_case_ , output_type='np' , ) lowerCAmelCase__ :Union[str, Any] = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert_mean_pixel_difference(snake_case_ , snake_case_ , 1_5 )
93
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __a = 16 __a = 32 def __snake_case( _lowerCAmelCase , _lowerCAmelCase = 16 ) -> Optional[Any]: snake_case__ : Optional[int] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case__ : Optional[int] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : List[str] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": snake_case__ : Tuple = 8 else: snake_case__ : int = None return tokenizer.pad( _lowerCAmelCase , padding="""longest""" , max_length=_lowerCAmelCase , pad_to_multiple_of=_lowerCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case__ : List[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) snake_case__ : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __a = mocked_dataloaders # noqa: F811 def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _lowerCAmelCase ) == "1": snake_case__ : int = 2 # New Code # snake_case__ : Any = int(args.gradient_accumulation_steps ) # Initialize accelerator snake_case__ : Any = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=_lowerCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : List[Any] = config["""lr"""] snake_case__ : Optional[Any] = int(config["""num_epochs"""] ) snake_case__ : Union[str, Any] = int(config["""seed"""] ) snake_case__ : List[str] = int(config["""batch_size"""] ) snake_case__ : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) set_seed(_lowerCAmelCase ) snake_case__ , snake_case__ : Tuple = get_dataloaders(_lowerCAmelCase , _lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : Tuple = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : Any = AdamW(params=model.parameters() , lr=_lowerCAmelCase ) # Instantiate scheduler snake_case__ : List[Any] = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = accelerator.prepare( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(_lowerCAmelCase ): snake_case__ : Any = model(**_lowerCAmelCase ) snake_case__ : str = output.loss accelerator.backward(_lowerCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : str = model(**_lowerCAmelCase ) snake_case__ : Optional[int] = outputs.logits.argmax(dim=-1 ) snake_case__ , snake_case__ : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowerCAmelCase , references=_lowerCAmelCase , ) snake_case__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _lowerCAmelCase ) def __snake_case( ) -> List[str]: snake_case__ : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCAmelCase , default=_lowerCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=_lowerCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case__ : Tuple = parser.parse_args() snake_case__ : Dict = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
374
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase : Optional[int] ={"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Tuple =["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCAmelCase : Union[str, Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : List[str] =get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase : int =25_0004 UpperCAmelCase : Dict =25_0020 @require_sentencepiece @require_tokenizers class _lowercase (a_ , unittest.TestCase ): '''simple docstring''' lowercase__ = MBartTokenizer lowercase__ = MBartTokenizerFast lowercase__ = True lowercase__ = True def _lowerCamelCase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ = MBartTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = MBartTokenizer(snake_case__ , keep_accents=snake_case__ ) UpperCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) UpperCamelCase_ = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase_ = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _lowerCamelCase ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) UpperCamelCase_ = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = tokenizer_r.save_pretrained(snake_case__ ) UpperCamelCase_ = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) UpperCamelCase_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way UpperCamelCase_ = tokenizer_r.from_pretrained(snake_case__ ) UpperCamelCase_ = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) UpperCamelCase_ = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way UpperCamelCase_ = tokenizer_r.from_pretrained(snake_case__ ) UpperCamelCase_ = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) UpperCamelCase_ = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase_ = tokenizer_r.from_pretrained(snake_case__ ) UpperCamelCase_ = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class _lowercase (unittest.TestCase ): '''simple docstring''' lowercase__ = """facebook/mbart-large-en-ro""" lowercase__ = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowercase__ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowercase__ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def _lowerCamelCase ( cls ): '''simple docstring''' UpperCamelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) UpperCamelCase_ = 1 return cls def _lowerCamelCase ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 25_0020 ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) UpperCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] UpperCamelCase_ = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , snake_case__ ) UpperCamelCase_ = 10 UpperCamelCase_ = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , snake_case__ ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_0026, 25_0001] ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) UpperCamelCase_ = MBartTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors="pt" ) UpperCamelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) UpperCamelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors="pt" ) UpperCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors="pt" ) UpperCamelCase_ = targets["input_ids"] UpperCamelCase_ = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(snake_case__ ) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 25_0004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_0001, } , )
504
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available SCREAMING_SNAKE_CASE : Dict = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
257
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[Any] = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
257
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowerCamelCase__ : a : Union[str, Any] = PegasusConfig a : List[Any] = {} a : Optional[int] = """gelu""" def __init__( self : List[Any] , A_ : Dict , A_ : Any=1_3 , A_ : Union[str, Any]=7 , A_ : Any=True , A_ : Optional[Any]=False , A_ : Any=9_9 , A_ : List[str]=3_2 , A_ : List[str]=2 , A_ : str=4 , A_ : List[Any]=3_7 , A_ : List[Any]=0.1 , A_ : List[Any]=0.1 , A_ : Optional[Any]=4_0 , A_ : Any=2 , A_ : str=1 , A_ : Tuple=0 , ): '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase = prepare_pegasus_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] , A_ : List[Any] , A_ : Union[str, Any] ): '''simple docstring''' __lowercase = TFPegasusModel(config=A_ ).get_decoder() __lowercase = inputs_dict["""input_ids"""] __lowercase = input_ids[:1, :] __lowercase = inputs_dict["""attention_mask"""][:1, :] __lowercase = inputs_dict["""head_mask"""] __lowercase = 1 # first forward pass __lowercase = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase = model(A_ , attention_mask=A_ )[0] __lowercase = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1e-3 ) def lowerCAmelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Optional[Any]=None , ): """simple docstring""" if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase__ ( _a , _a , unittest.TestCase ): a : Tuple = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a : int = (TFPegasusForConditionalGeneration,) if is_tf_available() else () a : Optional[int] = ( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a : Optional[Any] = True a : Any = False a : int = False def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' __lowercase = TFPegasusModelTester(self ) __lowercase = ConfigTester(self , config_class=A_ ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_sentencepiece @require_tokenizers @require_tf class lowerCamelCase__ ( unittest.TestCase ): a : int = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] a : Union[str, Any] = [ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers a : Optional[Any] = """google/pegasus-xsum""" @cached_property def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **A_ : Union[str, Any] ): '''simple docstring''' __lowercase = self.translate_src_text(**A_ ) assert self.expected_text == generated_words def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , **A_ : int ): '''simple docstring''' __lowercase = self.tokenizer(self.src_text , **A_ , padding=A_ , return_tensors="""tf""" ) __lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=A_ , ) __lowercase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ ) return generated_words @slow def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' self._assert_generated_batch_equal_expected()
442
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCAmelCase_ ( UpperCamelCase__ : Callable , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float ): """simple docstring""" __lowercase = int(np.ceil((x_end - xa) / step_size ) ) __lowercase = np.zeros((n + 1,) ) __lowercase = ya __lowercase = xa for k in range(UpperCamelCase__ ): __lowercase = y[k] + step_size * ode_func(UpperCamelCase__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
442
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase : Union[str, Any] =logging.get_logger(__name__) if is_vision_available(): import PIL class A ( __lowercase ): _snake_case =['''pixel_values'''] def __init__( self: Union[str, Any] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: bool = True , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: bool = True , _lowerCAmelCase: Union[int, float] = 1 / 255 , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: bool = True , **_lowerCAmelCase: str , ) -> None: '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase_ =size if size is not None else {"shortest_edge": 224} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase , param_name="crop_size" ) UpperCAmelCase_ =do_resize UpperCAmelCase_ =size UpperCAmelCase_ =resample UpperCAmelCase_ =do_center_crop UpperCAmelCase_ =crop_size UpperCAmelCase_ =do_rescale UpperCAmelCase_ =rescale_factor UpperCAmelCase_ =do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ =image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ =do_convert_rgb def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: PILImageResampling = PILImageResampling.BICUBIC , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) UpperCAmelCase_ =get_resize_output_image_size(_lowerCAmelCase , size=size["shortest_edge"] , default_to_square=_lowerCAmelCase ) return resize(_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Dict[str, int] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[int] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase_ =get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Union[str, Any] , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[int, float] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[Any] , ) -> Optional[int]: '''simple docstring''' return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: np.ndarray , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Union[float, List[float]] , _lowerCAmelCase: Optional[Union[str, ChannelDimension]] = None , **_lowerCAmelCase: Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[str] , _lowerCAmelCase: ImageInput , _lowerCAmelCase: bool = None , _lowerCAmelCase: Dict[str, int] = None , _lowerCAmelCase: PILImageResampling = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: int = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: float = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: Optional[Union[float, List[float]]] = None , _lowerCAmelCase: bool = None , _lowerCAmelCase: Optional[Union[str, TensorType]] = None , _lowerCAmelCase: Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowerCAmelCase: Tuple , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase_ =do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ =size if size is not None else self.size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , param_name="size" , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =resample if resample is not None else self.resample UpperCAmelCase_ =do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ =crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ =get_size_dict(_lowerCAmelCase , param_name="crop_size" , default_to_square=_lowerCAmelCase ) UpperCAmelCase_ =do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ =rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ =do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ =image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ =image_std if image_std is not None else self.image_std UpperCAmelCase_ =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ =make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ =[convert_to_rgb(_lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ =[to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ =[self.resize(image=_lowerCAmelCase , size=_lowerCAmelCase , resample=_lowerCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase_ =[self.center_crop(image=_lowerCAmelCase , size=_lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ =[self.rescale(image=_lowerCAmelCase , scale=_lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ =[self.normalize(image=_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase ) for image in images] UpperCAmelCase_ =[to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] UpperCAmelCase_ ={"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
54
'''simple docstring''' import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __A = logging.get_logger(__name__) class A ( __UpperCAmelCase ): def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> None: '''simple docstring''' warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
325
0
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _UpperCAmelCase = get_tests_dir('fixtures/dummy_feature_extractor_config.json') _UpperCAmelCase = get_tests_dir('fixtures/vocab.json') _UpperCAmelCase = get_tests_dir('fixtures') class _UpperCamelCase ( unittest.TestCase ): _UpperCamelCase : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] def lowercase ( self: Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = 0 def lowercase ( self: Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ = WavaVecaConfig() UpperCamelCase_ = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , "vocab.json" ) ) UpperCamelCase_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ = WavaVecaFeatureExtractor() UpperCamelCase_ = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) UpperCamelCase_ = WavaVecaProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # drop `processor_class` in tokenizer with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , "r" ) as f: UpperCamelCase_ = json.load(_SCREAMING_SNAKE_CASE ) config_dict.pop("processor_class" ) with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , "w" ) as f: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ = WavaVecaFeatureExtractor() UpperCamelCase_ = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) UpperCamelCase_ = WavaVecaProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # save in new folder processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # drop `processor_class` in feature extractor with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , "r" ) as f: UpperCamelCase_ = json.load(_SCREAMING_SNAKE_CASE ) config_dict.pop("processor_class" ) with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , "w" ) as f: f.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[Any] ) -> List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase_ = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) # copy relevant files copyfile(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , "w" ) as f: f.write("{}" ) UpperCamelCase_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] ) -> Dict: """simple docstring""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) UpperCamelCase_ = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) UpperCamelCase_ = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version UpperCamelCase_ = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=_SCREAMING_SNAKE_CASE , use_fast=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def lowercase ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" try: AutoConfig.register("custom" , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase_ = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ = os.path.join(_SCREAMING_SNAKE_CASE , "vocab.txt" ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) UpperCamelCase_ = CustomTokenizer(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = CustomProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = AutoProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase ( self: str ) -> List[str]: """simple docstring""" class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : List[Any] = False class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Union[str, Any] = False class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : List[str] = '''AutoFeatureExtractor''' _UpperCamelCase : Dict = '''AutoTokenizer''' _UpperCamelCase : Optional[Any] = False try: AutoConfig.register("custom" , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) AutoTokenizer.register(_SCREAMING_SNAKE_CASE , slow_tokenizer_class=_SCREAMING_SNAKE_CASE ) AutoProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local classes. UpperCamelCase_ = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. UpperCamelCase_ = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. UpperCamelCase_ = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase ( self: Any ) -> Dict: """simple docstring""" UpperCamelCase_ = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def lowercase ( self: int ) -> List[Any]: """simple docstring""" UpperCamelCase_ = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class _UpperCamelCase ( unittest.TestCase ): _UpperCamelCase : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def lowercase ( cls: List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def lowercase ( cls: Tuple ) -> List[str]: """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def lowercase ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = WavaVecaProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_SCREAMING_SNAKE_CASE , "test-processor" ) , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) UpperCamelCase_ = WavaVecaProcessor.from_pretrained(f'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , _SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowercase ( self: str ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = WavaVecaProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(_SCREAMING_SNAKE_CASE , "test-processor-org" ) , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token , organization="valid_org" , ) UpperCamelCase_ = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , _SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowercase ( self: List[Any] ) -> List[str]: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() UpperCamelCase_ = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ = os.path.join(_SCREAMING_SNAKE_CASE , "vocab.txt" ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) UpperCamelCase_ = CustomTokenizer(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = CustomProcessor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'''{USER}/test-dynamic-processor''' , token=self._token ) UpperCamelCase_ = Repository(_SCREAMING_SNAKE_CASE , clone_from=f'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(_SCREAMING_SNAKE_CASE , "tokenizer_config.json" ) ) as f: UpperCamelCase_ = json.load(_SCREAMING_SNAKE_CASE ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(_SCREAMING_SNAKE_CASE , "custom_processing.py" ) ) ) repo.push_to_hub() UpperCamelCase_ = AutoProcessor.from_pretrained(f'''{USER}/test-dynamic-processor''' , trust_remote_code=_SCREAMING_SNAKE_CASE ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
371
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[int]: return x + 2 class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ = "x = 3" UpperCamelCase_ = {} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {} , state=_SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3} ) UpperCamelCase_ = "x = y" UpperCamelCase_ = {"y": 5} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {} , state=_SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 5, "y": 5} ) def lowercase ( self: List[str] ) -> Dict: """simple docstring""" UpperCamelCase_ = "y = add_two(x)" UpperCamelCase_ = {"x": 3} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {"add_two": add_two} , state=_SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {} , state=_SCREAMING_SNAKE_CASE ) assert result is None assert "tried to execute add_two" in out.out def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = "x = 3" UpperCamelCase_ = {} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {} , state=_SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3} ) def lowercase ( self: Dict ) -> Any: """simple docstring""" UpperCamelCase_ = "test_dict = {'x': x, 'y': add_two(x)}" UpperCamelCase_ = {"x": 3} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {"add_two": add_two} , state=_SCREAMING_SNAKE_CASE ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3, "y": 5} ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowercase ( self: List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = "x = 3\ny = 5" UpperCamelCase_ = {} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {} , state=_SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3, "y": 5} ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" UpperCamelCase_ = "text = f'This is x: {x}.'" UpperCamelCase_ = {"x": 3} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {} , state=_SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3, "text": "This is x: 3."} ) def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = "if x <= 3:\n y = 2\nelse:\n y = 5" UpperCamelCase_ = {"x": 3} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {} , state=_SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3, "y": 2} ) UpperCamelCase_ = {"x": 8} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {} , state=_SCREAMING_SNAKE_CASE ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 8, "y": 5} ) def lowercase ( self: str ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = "test_list = [x, add_two(x)]" UpperCamelCase_ = {"x": 3} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {"add_two": add_two} , state=_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , [3, 5] ) self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3, "test_list": [3, 5]} ) def lowercase ( self: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = "y = x" UpperCamelCase_ = {"x": 3} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {} , state=_SCREAMING_SNAKE_CASE ) assert result == 3 self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3, "y": 3} ) def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = "test_list = [x, add_two(x)]\ntest_list[1]" UpperCamelCase_ = {"x": 3} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {"add_two": add_two} , state=_SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3, "test_list": [3, 5]} ) UpperCamelCase_ = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" UpperCamelCase_ = {"x": 3} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {"add_two": add_two} , state=_SCREAMING_SNAKE_CASE ) assert result == 5 self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowercase ( self: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = "x = 0\nfor i in range(3):\n x = i" UpperCamelCase_ = {} UpperCamelCase_ = evaluate(_SCREAMING_SNAKE_CASE , {"range": range} , state=_SCREAMING_SNAKE_CASE ) assert result == 2 self.assertDictEqual(_SCREAMING_SNAKE_CASE , {"x": 2, "i": 2} )
371
1
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int = 1000 ) -> Any: _UpperCAmelCase : Union[str, Any] = -1 _UpperCAmelCase : Optional[Any] = 0 for a in range(1, n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _UpperCAmelCase : int = (n * n - 2 * a * n) // (2 * n - 2 * a) _UpperCAmelCase : Union[str, Any] = n - a - b if c * c == (a * a + b * b): _UpperCAmelCase : Dict = a * b * c if candidate >= product: _UpperCAmelCase : List[str] = candidate return product if __name__ == "__main__": print(F'''{solution() = }''')
238
'''simple docstring''' from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase : list ): if not nums: raise ValueError('List is empty' ) return sum(lowerCamelCase ) / len(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
128
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase = abspath(join(dirname(__file__), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def UpperCamelCase_( _A :str )-> int: config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def UpperCamelCase_( _A :str )-> Optional[Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_A ) def UpperCamelCase_( _A :List[Any] )-> Optional[Any]: from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase__ = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_A , id=_A ) def UpperCamelCase_( _A :List[str] , _A :Optional[int] )-> Union[str, Any]: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: UpperCamelCase__ = 0 # Doctest custom flag to ignore output. __UpperCamelCase = doctest.register_optionflag('IGNORE_RESULT') __UpperCamelCase = doctest.OutputChecker class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" def snake_case__ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , snake_case , snake_case , snake_case ) __UpperCamelCase = CustomOutputChecker __UpperCamelCase = HfDoctestModule __UpperCamelCase = HfDocTestParser
185
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) __UpperCamelCase = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
185
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowercase : Optional[int] = ["""small""", """medium""", """large"""] lowercase : List[Any] = """lm_head.decoder.weight""" lowercase : Tuple = """lm_head.weight""" def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: lowercase : Tuple = torch.load(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = d.pop(SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) lowercase : Union[str, Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowercase : int = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''') lowercase : Tuple = F'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
336
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowercase : List[str] = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = ["""CLIPFeatureExtractor"""] lowercase : Tuple = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
336
1
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase ( lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def UpperCamelCase ( lowercase_ : np.ndarray , lowercase_ : Optional[str] , lowercase_ : Optional[str] = None ) -> Tuple: '''simple docstring''' lowercase =tesseract_config if tesseract_config is not None else '''''' # apply OCR lowercase =to_pil_image(lowercase_ ) lowercase , lowercase =pil_image.size lowercase =pytesseract.image_to_data(lowercase_ , lang=lowercase_ , output_type='''dict''' , config=lowercase_ ) lowercase , lowercase , lowercase , lowercase , lowercase =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase =[idx for idx, word in enumerate(lowercase_ ) if not word.strip()] lowercase =[word for idx, word in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] lowercase =[coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase =[] for x, y, w, h in zip(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): lowercase =[x, y, x + w, y + h] actual_boxes.append(lowercase_ ) # finally, normalize the bounding boxes lowercase =[] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase_ , lowercase_ , lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = ['pixel_values'] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = True , snake_case_ = None , snake_case_ = "" , **snake_case_ , ): super().__init__(**snake_case_ ) lowercase =size if size is not None else {'''height''': 2_24, '''width''': 2_24} lowercase =get_size_dict(snake_case_ ) lowercase =do_resize lowercase =size lowercase =resample lowercase =apply_ocr lowercase =ocr_lang lowercase =tesseract_config def _A( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = None , **snake_case_ , ): lowercase =get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase =(size['''height'''], size['''width''']) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def _A( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ): lowercase =do_resize if do_resize is not None else self.do_resize lowercase =size if size is not None else self.size lowercase =get_size_dict(snake_case_ ) lowercase =resample if resample is not None else self.resample lowercase =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase =make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. lowercase =[to_numpy_array(snake_case_ ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase =[] lowercase =[] for image in images: lowercase , lowercase =apply_tesseract(snake_case_ , snake_case_ , snake_case_ ) words_batch.append(snake_case_ ) boxes_batch.append(snake_case_ ) if do_resize: lowercase =[self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowercase =[flip_channel_order(snake_case_ ) for image in images] lowercase =[to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] lowercase =BatchFeature(data={'''pixel_values''': images} , tensor_type=snake_case_ ) if apply_ocr: lowercase =words_batch lowercase =boxes_batch return data
145
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Any = { '''configuration_blenderbot_small''': [ '''BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotSmallConfig''', '''BlenderbotSmallOnnxConfig''', ], '''tokenization_blenderbot_small''': ['''BlenderbotSmallTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = ['''BlenderbotSmallTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ '''BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotSmallForCausalLM''', '''BlenderbotSmallForConditionalGeneration''', '''BlenderbotSmallModel''', '''BlenderbotSmallPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ '''TFBlenderbotSmallForConditionalGeneration''', '''TFBlenderbotSmallModel''', '''TFBlenderbotSmallPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ '''FlaxBlenderbotSmallForConditionalGeneration''', '''FlaxBlenderbotSmallModel''', '''FlaxBlenderbotSmallPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
145
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[Any] , a__ : Optional[Any] , a__ : Any=13 , a__ : str=32 , a__ : Optional[int]=3 , a__ : Tuple=4 , a__ : Any=[10, 20, 30, 40] , a__ : Any=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : List[str]=True , a__ : Union[str, Any]=37 , a__ : Tuple="gelu" , a__ : Any=10 , a__ : List[str]=0.02 , a__ : List[Any]=["stage2", "stage3", "stage4"] , a__ : Any=[2, 3, 4] , a__ : int=None , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = num_channels UpperCAmelCase = num_stages UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = num_labels UpperCAmelCase = initializer_range UpperCAmelCase = out_features UpperCAmelCase = out_indices UpperCAmelCase = scope def __snake_case ( self : Dict ): UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def __snake_case ( self : Dict ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __snake_case ( self : Dict , a__ : Tuple , a__ : Union[str, Any] , a__ : List[Any] ): UpperCAmelCase = ConvNextVaModel(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __snake_case ( self : Dict , a__ : Any , a__ : Dict , a__ : List[Any] ): UpperCAmelCase = ConvNextVaForImageClassification(a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : Any , a__ : Optional[Any] , a__ : List[Any] , a__ : Dict ): UpperCAmelCase = ConvNextVaBackbone(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCAmelCase = None UpperCAmelCase = ConvNextVaBackbone(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __snake_case ( self : Any ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict def __snake_case ( self : List[str] ): UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = config_and_inputs UpperCAmelCase = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _lowerCamelCase =( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : List[Any] ): UpperCAmelCase = ConvNextVaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def __snake_case ( self : Tuple ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : Optional[Any] ): return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def __snake_case ( self : List[str] ): pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def __snake_case ( self : Union[str, Any] ): pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def __snake_case ( self : str ): pass def __snake_case ( self : Optional[Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase = True if model_class.__name__ in [ *get_values(a__ ), *get_values(a__ ), ]: continue UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.train() UpperCAmelCase = self._prepare_for_class(a__ , a__ , return_labels=a__ ) UpperCAmelCase = model(**a__ ).loss loss.backward() def __snake_case ( self : Union[str, Any] ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_with_labels() UpperCAmelCase = False UpperCAmelCase = True if ( model_class.__name__ in [*get_values(a__ ), *get_values(a__ )] or not model_class.supports_gradient_checkpointing ): continue UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.gradient_checkpointing_enable() model.train() UpperCAmelCase = self._prepare_for_class(a__ , a__ , return_labels=a__ ) UpperCAmelCase = model(**a__ ).loss loss.backward() def __snake_case ( self : str ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(a__ ) UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a__ ) def __snake_case ( self : Any ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __snake_case ( self : Any ): def check_hidden_states_output(a__ : Dict , a__ : str , a__ : Dict ): UpperCAmelCase = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): UpperCAmelCase = model(**self._prepare_for_class(a__ , a__ ) ) UpperCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase = True check_hidden_states_output(a__ , a__ , a__ ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @slow def __snake_case ( self : Tuple ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = ConvNextVaModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def __snake_case ( ) -> int: """simple docstring""" UpperCAmelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self : Dict ): return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def __snake_case ( self : Dict ): UpperCAmelCase = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(a__ ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = preprocessor(images=a__ , return_tensors='''pt''' ).to(a__ ) # forward pass with torch.no_grad(): UpperCAmelCase = model(**a__ ) # verify the logits UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , a__ ) UpperCAmelCase = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
51
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase: List[str] = logging.get_logger() def _lowercase( __a : int , __a : str , __a : LevitConfig , __a : Path , __a : bool = True ): print(f"""Converting {name}...""" ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": a__ =timm.create_model('levit_128s' , pretrained=__a ) else: a__ =timm.create_model('levit_128' , pretrained=__a ) if hidden_sizes == 192: a__ =timm.create_model('levit_192' , pretrained=__a ) if hidden_sizes == 256: a__ =timm.create_model('levit_256' , pretrained=__a ) if hidden_sizes == 384: a__ =timm.create_model('levit_384' , pretrained=__a ) from_model.eval() a__ =LevitForImageClassificationWithTeacher(__a ).eval() a__ =OrderedDict() a__ =from_model.state_dict() a__ =list(from_model.state_dict().keys() ) a__ =list(our_model.state_dict().keys() ) print(len(__a ) , len(__a ) ) for i in range(len(__a ) ): a__ =weights[og_keys[i]] our_model.load_state_dict(__a ) a__ =torch.randn((2, 3, 224, 224) ) a__ =from_model(__a ) a__ =our_model(__a ).logits assert torch.allclose(__a , __a ), "The model logits don't match the original one." a__ =name print(__a ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) a__ =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f"""Pushed {checkpoint_name}""" ) def _lowercase( __a : Path , __a : str = None , __a : bool = True ): a__ ='imagenet-1k-id2label.json' a__ =1000 a__ =(1, num_labels) a__ ='huggingface/label-files' a__ =num_labels a__ =json.load(open(hf_hub_download(__a , __a , repo_type='dataset' ) , 'r' ) ) a__ ={int(__a ): v for k, v in idalabel.items()} a__ =idalabel a__ ={v: k for k, v in idalabel.items()} a__ =partial(__a , num_labels=__a , idalabel=__a , labelaid=__a ) a__ ={ 'levit-128S': 128, 'levit-128': 128, 'levit-192': 192, 'levit-256': 256, 'levit-384': 384, } a__ ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __a , names_to_config[model_name] , __a , __a ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __a , __a , __a , __a ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _lowerCAmelCase: Union[str, Any] = parser.parse_args() _lowerCAmelCase: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
20
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowerCAmelCase : Any = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowerCAmelCase : int = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowerCAmelCase : List[str] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class SCREAMING_SNAKE_CASE__ ( datasets.Metric): def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def UpperCAmelCase_ ( self , A_ , A_ , A_=None , A_=None , A_=None , A_=None , A_="auto" , A_=-1 , A_=0.9 , A_=5 , A_=500 , A_="gpt2-large" , A_=-1 , A_=1024 , A_=25 , A_=5 , A_=True , A_=25 , )-> Optional[int]: '''simple docstring''' UpperCamelCase = compute_mauve( p_text=A_ , q_text=A_ , p_features=A_ , q_features=A_ , p_tokens=A_ , q_tokens=A_ , num_buckets=A_ , pca_max_data=A_ , kmeans_explained_var=A_ , kmeans_num_redo=A_ , kmeans_max_iter=A_ , featurize_model_name=A_ , device_id=A_ , max_text_length=A_ , divergence_curve_discretization_size=A_ , mauve_scaling_factor=A_ , verbose=A_ , seed=A_ , ) return out
432
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Union[str, Any] = 16 lowerCAmelCase : Any = 32 def A_( A : Accelerator , A : int = 16): UpperCamelCase = AutoTokenizer.from_pretrained('bert-base-cased') UpperCamelCase = load_dataset('glue' , 'mrpc') def tokenize_function(A : Dict): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A , max_length=A) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( A , batched=A , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column('label' , 'labels') def collate_fn(A : int): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( A , padding='longest' , max_length=A , pad_to_multiple_of=A , return_tensors='pt' , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets['train'] , shuffle=A , collate_fn=A , batch_size=A) UpperCamelCase = DataLoader( tokenized_datasets['validation'] , shuffle=A , collate_fn=A , batch_size=A) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : int = mocked_dataloaders # noqa: F811 def A_( A : List[str] , A : Dict): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , A) == "1": UpperCamelCase = 2 # New Code # UpperCamelCase = int(args.gradient_accumulation_steps) # Initialize accelerator UpperCamelCase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=A) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( 'Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`') # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config['lr'] UpperCamelCase = int(config['num_epochs']) UpperCamelCase = int(config['seed']) UpperCamelCase = int(config['batch_size']) UpperCamelCase = evaluate.load('glue' , 'mrpc') set_seed(A) UpperCamelCase , UpperCamelCase = get_dataloaders(A , A) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=A) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=100 , num_training_steps=(len(A) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( A , A , A , A , A) # Now we train the model for epoch in range(A): model.train() for step, batch in enumerate(A): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(A): UpperCamelCase = model(**A) UpperCamelCase = output.loss accelerator.backward(A) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): UpperCamelCase = model(**A) UpperCamelCase = outputs.logits.argmax(dim=-1) UpperCamelCase , UpperCamelCase = accelerator.gather_for_metrics((predictions, batch['labels'])) metric.add_batch( predictions=A , references=A , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A) def A_( ): UpperCamelCase = argparse.ArgumentParser(description='Simple example of training script.') parser.add_argument( '--mixed_precision' , type=A , default=A , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=A , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.') UpperCamelCase = parser.parse_args() UpperCamelCase = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(A , A) if __name__ == "__main__": main()
432
1